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Abstract 

Metabolomics is the study of chemical processes involving small-molecule metabolites in 

a given biological system. These small molecules are downstream outputs of cellular activities. 

An understanding of the metabolome change can help us to visualize perturbations in the genome 

or proteome from the environmental impacts.  

To study metabolomics, our lab has developed a differential chemical isotope labeling 

(CIL) platform. In this platform, dansylation reaction is used to label the amine/phenol 

submetabolome with a dansyl tag. The benefit of using this platform includes better LC 

separation efficiency, MS detection sensitivity, and metabolite quantification accuracy. We can 

typically detect over 1000 metabolites in human urine samples and over 600 metabolites in 

human serum samples.  

In this thesis, Chapter 2 and Chapter 3 described the development of new data processing 

programs to better handle the large LC-MS metabolomics dataset from CIL LC MS platform. 

The two programs, zero-fill and IsoMS-Quant, were aimed to reduce the number of missing 

values in the LC-MS dataset and to improve the accuracy of the quantitative metabolomics result. 

Chapters, 4 and 5 focus on the development of metabolite identification methods. As described 

in Chapter 4, a retention time correction algorithm was combined with a dansyl labeled 

metabolite standard library, providing a possibility for quick metabolite identification through 

RT and m/z matching with 278 dns-standards. In Chapter 5, a library of predicted fragment-ion-

spectra containing 383,830 possible human metabolites was developed, which allowed the search 

of experimental MS/MS spectra for metabolite identification. An application of these analytical 

techniques to biomarker discovery work is included in Chapter 6, specifically. The CIL LC-MS 
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platform was used in the study of potential biomarkers and diagnostic models for early-stage 

diagnosis of Alzheimer’s disease and mild cognitive impairment.  

Overall, these research activities have provided technique improvements and 

demonstrated the enhanced analytical performance as well as the capability of CIL LC-MS-based 

metabolomics methods. All these enabled analytical technique further our understanding of 

metabolomics and its role in system biology.  
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Chapter 1  

Introduction 

1.1 Introduction to metabolomics 

Metabolomics is the systematic study of the entire small molecules in a biological 

system. These small molecules are the chemical products of cellular metabolism processes and 

include a range of endogenous and exogenous chemical entities, such as peptides, amino acids, 

nucleic acids, carbohydrates, organic acids, vitamins, polyphenols, alkaloids, minerals.[1] 

Metabolomics provides a unique scope of studying small biological molecules by allowing the 

simultaneous assessment of a large amount of chemicals in a biological system. This important 

feature leads to a growing interest in applying metabolomics to different areas of research. For 

example, disease states can be reflected by changes in metabolite concentration.[2] In 

metabolomics research based disease diagnosis, metabolites of significant concentration changes 

can be detected using the high throughput analytical techniques developed in this field.[3] Also, 

in clinical and pharmaceutical applications, quantifying and monitoring a large amount of small 

molecules can help evaluate the effect of drug metabolism and the toxicology. There are many 

in-depth reviews on the application of metabolomics in various research fields, including disease 

diagnosis,[4-9] drug discovery,[10-13] environmental assessment,[14, 15] as well as other 

biological related researches.[2, 16, 17] 

From the system biology aspect, metabolomics together with genomics, transcriptomics, 

and proteomics, built up the “omics” research field.[18] The integrated study of “omics” can 

offer a better understanding of the entire system biology. Figure 1 shows the central dogma of 

biology and the omics cascade. Even through extensive biological information can be observed 



2 

 

on the genomics and proteomics side, the information has little correlation with the phenotype. 

On the other side, metabolites are the end product of the omics cascade and their concentration 

levels reflect the downstream biochemical response to genetic or environmental changes. 

Therefore, metabolomics is commonly considered as the linkage between genotypes and 

phenotypes and a direct signature of biochemical activities. More significantly, apart from 

genomics and proteomics, metabolomics research has become a new powerful approach to study 

the system biology. 

 

Figure 1.1The central dogma of biology and the omic cascade 

Even through the study of metabolites can be traced back to ancient when people 

evaluated the glucose concentration in urine for diabetics diagnosis,[19] the term 

“metabolomics” was first brought up by S.G. Oliver and his colleagues [20] in the year of 1998. 

With the rapid development of recent analytical technologies in small molecule separation, 
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detection, and identification, the study of a whole metabolome became possible. Numerous 

research efforts have been made in the past decade to develop new tools and methods for 

metabolomics research. These efforts include the development of high resolution mass 

spectrometers[21, 22] and high performance separation system,[23] innovation of automated data 

processing programs and robust data analysis software,[24-27] as well as the construction of 

metabolomics database[1, 28, 29]. 

Metabolomics is still a relatively new research field and numerous technique 

developments have been published in the past decades. However, there are still some challenges 

in metabolomics.[30-32] The following context in the introduction chapter is going to 

specifically describe the achievements from the aspects of the analytical techniques, data 

processing methods and metabolite identifications in metabolomics. Also, the remaining 

challenges in each part will be addressed as well.  

 

1.2 Analytical technologies in metabolomics analysis 

Metabolomics is a rapidly evolving research field contributing to the development of 

highly sensitive analytical tools. Nuclear magnetic resonance (NMR) and mass spectrometry 

(MS) are two of the most commonly used technologies, relying on their high throughput and 

high sensitivity.  

NMR is one of the first techniques used for metabolomics.[33] The advantage of NMR 

based metabolomics includes non-destructive, fast and highly robust as well as informative 

structural information.[34] However, the detection sensitivity of NMR is not as good as MS and 

large amounts of sample are required for the analysis.[35]  
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The fundamental mechanism behind MS instrument is that the m/z of charged molecules 

is measured in the MS analyzer. Even through the detection sensitivity of MS is several orders of 

magnitude higher than NMR, using MS alone for metabolite detection does not fulfill the high-

throughput requirement in metabolomics research. The coupling of a separation technique with 

MS detection is more commonly applied. There are three most commonly used separation 

methods that are coupled with MS to achieve high throughput requirement: liquid 

chromatography (LC),[23, 36] gas chromatography (GC),[37] and capillary electrophoresis 

(CE).[38]  

LC-MS is the most widely used method in metabolomics. The development of LC-MS 

significantly impacted metabolomics as it can detect metabolites of wide chemical variation yet 

only requires minimal amounts of sample. In the approach of using LC as the separation tool, the 

LC column needs to be carefully selected to achieve the best separation performance. RPLC and 

HILIC columns are two of the most widely used LC column types. In RPLC, the stationary phase 

is composed of non-polar chemicals covalently bonded onto the silica base microporous particles. 

Good separation performance can be achieved on moderately polar to non-polar metabolites 

using C18 based RPLC. In HILIC column, the stationary phase can be either unmodified bare 

silica or polar chemical bonded phase, such as amide (TSK gel Amide-80), aspartamide 

(PolyHYDROXYETHYLA), diol (YMC-pack Diol), cross-linked diol (Luna HILIC), cyano 

(Alltima Cyano), and cyclodextrin (Nucleodex β–OH) groups. Highly polar or ionic metabolites 

are usually not separated by RPLC due to their weak interaction with the stationary phase. When 

this problem is encountered, HILIC columns can be used.[39]  

A smaller LC column particle size can increase the mass transfer rate and thus benefit the 

LC separation efficiency. An improved version of LC column, named UPLC column, was 
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invented back in 2004.[40] UPLC column uses sub-2 µm particles and the UPLC system 

operates with mobile phases at high linear velocities, causing higher pressures than those used in 

HPLC. A dramatic increase in resolution, speed and sensitivity can thus be achieved. The 

application of UPLC-MS for metabolome profiling has shown not only a faster separation speed 

compare with conventional HPLC-MS methods, but also a more superior metabolome 

coverage.[41] 

The improvement of LC separation can also be reached by using multidimensional LC 

separation[42]. In a typical 2D LC separation, two chromatographic separations occur in 

sequence. Usually, selection of first dimensional and second dimensional columns is based on 

the principle that these two separations need to have different mechanism. In the case when the 

two separation mechanisms are completely unrelated, an orthogonal 2D separation can be 

achieved. For example, an orthogonal 2D separation based on strong cation exchange (SCX) and 

RPLC is widely used in proteomics analysis.[43]  

Apart from LC-MS, GC-MS is a good choice for studying thermally stable and volatile 

metabolites or metabolites that can be volatized through chemical derivatization. GC-MS 

technique has been widely used to analyze organic acids, amino acids, and other volatile 

metabolites. There are two major advantages in GC-MS based metabolomics. First is the high 

resolution benefit from the separation mechanism of a GC column. Second is the consistent MS 

pattern benefit from the highly reproducible electron ionization (EI) fragmentation mechanism. 

Also, retention time in the GC-MS can easily be calibrated using the indexed retention time. 

However, for metabolites that are nonvolatile, labile or cannot be derivatized, it is difficult to 

detect those with GC-MS.  
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1.2.1 Current challenges in metabolomics analysis 

There are several major analytical challenges in metabolomics studies that needs to be 

resolved for better understanding of the whole metabolome as well as the application. Most 

notably, there are three major analytical challenges; the unknown size of the overall metabolome; 

the wide concentration range, and diverse chemical properties of the metabolites.  

The metabolome can be defined as a complete complement of all small molecules found 

in cell, organ, organism, and biofluids. The documentation of all the metabolites is fundamental 

for metabolomics research. However, it is still not clear how big the overall size of the 

metabolome is. The Human Metabolome Project (HMP) was launched in 2004 as part of an 

effort to identify and quantify all the detectable metabolites in the human body. A freely 

available electronic database, HMDB,[1] was released, containing records of 2180 endogenous 

metabolites. So far, HMDB is on its version 3.6 and contains 41,993 metabolite entries including 

water-soluble, lipid soluble, as well as predicted metabolites. However, the overall size of the 

entire metabolome is still unknown, causing issues for metabolite identification as well as 

completely understanding of the metabolic pathways.  

The concentrations of metabolites also vary greatly in the biological samples. Take the 

human urine for example, the most concentrated metabolite, urea, normally has a concentration 

of over 10 mM, while there are some low abundance metabolites, with concentrations of sub pM. 

The concentration change from high concentration to low concentration is over 7 orders of 

magnitude. The analytical challenge over this wide concentration range is that if the instrument 

is tuned to detect these high concentration metabolites, the low concentration metabolites might 

not be detected due to ion suppression effect. On the other hand, if the instrument is tuned to be 

sensitive enough to detect low concentration metabolites, the high concentration metabolites 
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might over saturate the MS detector. Overall, it is very important to develop an analytical 

technique that is capable of covering a wide range of metabolome concentrations. 

The diversity of chemical properties is another issue associated with metabolomics. 

Unlike gene, such as DNA, consisting of four building blocks, A, T, C, G; or proteins consisting 

of 20 amino acids, the building blocks for metabolites include but not limited to: amines, amino 

acids, carboxylic acids, ketone, and other chemical functional groups. Due to various chemical 

properties, their detection sensitivity can vary greatly, causing the difficulties of using one 

instrument to get good signals for all of them.  

Focusing on resolving these analytical challenges, researchers have been working on 

developing new instruments and technologies. More sensitive and high throughput analytical 

tools have been developed to improve the coverage. For example, our research group has 

developed a divide-and-conquer approach by chemically isotope labelling metabolites with 

certain functional groups.[44, 45] Metabolite library has also been developed to facilitate the 

identification of the chemical isotope labeled metabolites.[46] The details of these approaches 

will be discussed in the following section.   

1.2.2 Chemical Isotope Labeling LC-MS based metabolomics 

A CIL LC-MS is a concept that instead of loading the metabolite samples directly into the 

LC-MS system, a chemical isotope labeling reagent is used to label the metabolites before LC-

MS analysis. The original idea of the chemical isotope labeling method comes from the isotope 

internal standard. In LC-MS based quantitative metabolite analysis, for the purpose of 

overcoming matrix and ion suppression effects, isotope internal standards are widely used. To 

quantify the concentration of a certain metabolite, an isotope internal standard of that metabolite 

with known concentration is spiked into the solution. The concentration of the analyte can then 
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be calculated based on the MS signal intensity ratio between the analyte and the internal 

standard. For metabolomics research, a sufficiently high detection sensitivity is always favored 

but never gets satisfied by any of the currently detection technologies. Regarding the idea of 

isotope internal standard in metabolomics study, the approach of generating isotope internal 

standards for all the individual metabolite is expensive and impractical. An alternative approach 

is to use a chemical reaction to introduce an isotope tag on to the metabolite.  

Chemical isotope labeling strategy has been widely used in metabolomics research by 

targeting at a specific chemical functional group.[47-64] Commonly targeted functional groups 

are amines, carboxylic acids, ketone, and carbonyls. An ideal chemical isotope labeling reagent 

should meet four requirements. Firstly, high labeling reaction efficiency is very important in CIL 

labeling. For example, in dansylation reactions, labeling efficiency of most of the amine/phenol- 

containing metabolites are over 90%. A high labeling efficiency is the first critical step of 

capturing low abundance metabolites. Without a good labeling efficiency, these trace metabolites 

can hardly be labeled by the reagent and thus cannot be MS detected. More importantly, a high 

and consistent labeling efficiency makes it possible to quantitatively compare the metabolites in 

different samples after isotope labeling. Secondly, the reaction byproducts during the CIL 

reaction need to be simple and low in abundance. If a large amount of byproducts are formed 

during the reaction, these byproducts may over saturate the LC separation, causing poor LC 

separation peaks and ion suppression in MS detection, resulting in undetected real metabolites. 

Thirdly, a clear isotope pattern is very important to distinguish real metabolite vs. back ground 

noise. For example, in the dansylation reaction, the lightly labeled peak and heavily labeled peak 

have a mass difference of 2.0067 Da. Using high resolution MS for metabolomics detection, this 

isotope pattern of labeled metabolites can be very distinctive to exclude background MS noise 
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from real metabolites. Last but not least, a good CIL labeling experiment also needs to be able to 

improve ESI sensitivity and LC separation. For example, the dansylation reaction procedure I 

used in my thsis work is a well-known reaction for chemical isotope labeling and has been 

successfully applied to metabolomics studies of various biological samples, such as urine, 

cerebrospinal fluid, saliva, and cell lysis. In this case, the derivatization strategy provides 10-

1000 fold increase in sensitivity as well as good quantification precision. Also, upon the addition 

of the chemical tag, the hydrophobicity of the labeled metabolites is significantly improved. The 

labeled metabolites then spent longer time in the LC column and thus a better LC separation is 

achieved.  

 

1.3 Metabolomic data analysis  

After acquiring the raw LC-MS data, metabolic features need to be extracted for further 

analysis. The same metabolic feature from different sample analysis results needs to be aligned 

together to generate a metabolite-intensity table, which contains metabolite intensity in each 

sample column that is associated with metabolite ID in a row. Statistical analysis can then be 

performed on the table to find metabolites with significant statistical meanings. These 

statistically significant metabolites are then validated through internal or external approaches. 

Validated metabolites could then be used as biomarkers for disease diagnosis or other biological 

applications.  

1.3.1 Metabolic feature extraction 

Before data analysis, metabolic features or MS peaks need to be extracted from the raw 

LC-MS data. Several robust software tools have been developed for processing LC-MS data for 
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metabolomics, such as IsoMS,[27] XCMS,[24] and mzMine.[25] The key features of a peak 

picking software involve data conversion, peak detection, noise filtering, and alignment. These 

software tools have been proven to be very efficient in processing LC-MS based metabolomics 

data. In a chemical isotope labeling LC-MS metabolomics platform, a true metabolite is detected 

as a peak pair with a mass difference determined by the mass difference of light- and heavy-

chain tags. Because of this unique feature, conventional data processing programs cannot handle 

CIL LC-MS data format very well. Our group developed a software tool, named IsoMS, for 

processing the data set generated from CIL LC-MS experiment.[27] Figure 1.2 shows the 

workflow of IsoMS data processing. In IsoMS, the first step is peak pairing.  For each MS peak 

in a MS spectrum, its charge state and isotope distribution is determined. Then, two ions of same 

charge state with a user-defined mass difference (e.g., 2.0067 for 
12

C2/
13

C2-dansyl metabolites) 

are then paired to each other. A confident level is also assigned to each peak pair. The second 

step in the IsoMS involves the filtering of adduct and byproduct peak pairs. Since all the noise 

peaks show up as singlet peaks, they have already been filtered out in the peak pairing step. 

However, labeled metabolites with adduct formation from Na
+
, K

+
, or MH4

+
, dimer and trimer, 

and in-source fragment ions (e.g., loss of CO2) can also exist at the  same mass spectrum together 

with the plus H
+
 form. Fortunately, these peak pairs can be easily filtered out since they have a 

fixed mass difference with the MH
+
 form. Byproducts generated during the chemical isotope 

labeling reaction process can also be filtered out by attaching a method blank in the filter 

background peak files implemented in the IsoMS. After peak pair filtering, only MH
+
 peak pair 

from a metabolite is retained. The next step is the grouping of all the peak pairs belonging to the 

same metabolite in adjacent spectra according to mass and a user-defined m/z tolerance window. 

After this step, all the peak pairs belong to isotopic labeled metabolites were extracted from the 
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raw LC-MS data. A list of peak pair is then generated containing all the peak pairs with retention 

time, accurate m/z, 
12

C intensity, 
12

C2-/
13

C2- intensity ratio for each LC-MS data (attach a figure). 

For a metabolomics study involving the analysis of multiple samples, IsoMS offers an alignment 

function, IsoMS-align, to align the same peak pairs found in multiple runs based on accurate m/z, 

retention time, and intensity. A metabolite-intensity table will be generated after the last step 

(Figure 1.2). This table is then ready for further analysis.  
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Figure 1.2 Workflow for IsoMS data processing (adapted from IsoMS[27]) 

To validate the peak pair picking efficiency, a manual inspection was performed using a 

file of 1388 peak pairs found in a differentially dansyl labeled human urine. In this validation test, 

only 24 false ones were detected. The false positive rate can thus be calculated as 1.7%, 
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indicating that a good specificity (<5%) could be obtained using IsoMS. This result indicates the 

good metabolic feature extraction ability of IsoMS.  

1.3.2 Data preprocessing  

After aligning all the LC-MS results together and generating the metabolite-intensity 

table, performing data preprocessing is usually recommended before stepping into the statistical 

analysis. In the data preprocessing stage, missing data refilling and data normalization are 

performed. 

 Missing intensity values is commonly observed in the LC-MS based metabolomics,[26, 

65] where low intensity ions might not get detected due to detection sensitivity or ion 

suppression effect. A typical of 10-40% missing values are observed in a normal LC-MS dataset. 

The large amount of missing values can reduce the statistical performance. Conventionally, 

people would replace these missing values with a minimal value based on the hypothesis that 

these missing values are caused by low MS sensitivity. There are also other approaches available 

for treating these missing values, such as excluding the features with missing values, replacing 

the missing value with mean, or estimating the missing value using statistical calculations[66].  

Data normalization is important in metabolomics data analysis in order to unbiasedly 

present metabolic features with equal importance and comparable scale for multivariate 

statistical analysis. Commonly used data normalization approaches are auto-scaling, pareto 

scaling, and range scaling[67] (see Table 1.1). Autoscaling is most widely used in preprocessing 

LC-MS based metabolomics data.  In this method, a mean and standard deviation are calculated 

using all the quantitative values (absolute intensity or relative intensity ration) of a metabolic 

feature. Then, each quantitative value is subtracted by its mean and then divided by its standard 

deviation to get a scaled value. The benefit of using autoscaling is that all the quantitative values 
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unit variance and thus all the different metabolic features are of the same statistical weight. 

Pareto scaling method is similar to autoscaling. Instead of dividing by the standard deviation, 

square root of the standard deviation is used in the pareto scaling method. In a range scaling, 

each quantitative value is divided by the minimum and maximum range of that metabolic feature, 

after subtraing the mean.  

Table 1.1 Different types of data normalization 

Type Algorithm 

Autoscaling 
𝑥𝑖

′ =
𝑥𝑖 − �̅�

𝑆𝐷
 

Pareto scaling 
𝑥𝑖

′ =
𝑥𝑖 − �̅�

√𝑆𝐷
 

Range scaling 
𝑥𝑖

′ =
𝑥𝑖 − �̅�

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

 

1.3.3 Statistical analysis 

One of the important goals of metabolomics is to identify the meaningful metabolites that 

correlate with different biological stages in the dataset. Common statistical tools can be 

categorized into univariate analysis and multivariate analysis. In an univariate statistical analysis, 

each individual metabolic feature is statistically analyzed separately. Commonly used univariate 

statistical analysis tools are T test or ANOVA. These two univariate analyses can find 

metabolites of significant difference in pair-wise comparison or multiple group comparison. To 

quickly visualize and identify the metabolic features with significant concentration changes on a 

figure, volcano plot is more commonly used. In a volcano plot, the x axis is the fold change and 
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y axis is the p value calculated from ANOVA. Metabolites showing significantly different 

concentration in a particular group would be located on the top right or top left corner of the 

volcano plot. Univariate statistical tools are very convenient to identify a single or a list of 

metabolites that contribute to the biological difference of two metabolomic sample groups.  

Benefiting from the high throughput and high sensitivity of LC-MS technique, 

metabolomics data normally contains thousands of metabolic features. Multivariate analysis 

allows the simultaneous analysis of multiple metabolic features in one statistical model. 

Multivariate analysis can be classified into non-supervised and supervised approaches. In the 

non-supervised approach, all the metabolic features were unbiasedly treated and the whole data 

set were projected into a two dimensional or three dimension al space. Each principle component 

(PC) is a linear combination of all these metabolic features. The most commonly used non-

supervised method is principle component analysis (PCA)[68]. Non-supervised multivariate 

analysis is very useful in visualizing the overall separation of different groups of samples.  

In supervised multivariate statistical analysis, the information of sample classification is 

provided for the model construction. Based on the classification information, the model can 

specifically look for metabolites that contribute the most to the classification.  This important 

feature allows us to find significant metabolites (e.g., biomarkers) that can distinguish the two 

different biological states (disease vs. normal). Supervised multivariate analysis encompasses 

many methods, including partial least square (PLS),[69] orthogonal partial least square (OPLS) 

based discriminant analysis (DA)[70], soft-independent modeling of class analogy (SIMCA),[71]  

supportive vector machine, and binary logistic regression.  

A potential important problem of using supervised multivariate statistical analysis is 

overfitting.[72] Since we provide the classification information to the model, it is likely that 
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sometimes the model use random noise to describe this classification if no other meaningful 

metabolic features are found. To reduce the risk of overfitting, internal validation and external 

validation are commonly used.[73]  Commonly used internal validation methods are cross 

validation. Cross validation is performed by splitting the entire dataset into two parts, one for 

model development (training dataset) and another for model validation (validation dataset). The 

validation perform is used to indicate if the model is overfitting or not. In the case when 

overfitting happens, the model may separate the groups of samples in the training dataset very 

well but the separation of sample groups in the validation dataset is not as good. In an external 

validation experiment, another set of samples are collected independently and LC-MS analysis is 

performed following the same experimental protocol. Important metabolic features identified 

from the multivariate analysis were applied to the new set of LC-MS data, externally validating 

these features if the same kind of separation can be repeated in the external validation dataset. 

 

1.4 Metabolite identification in MS-base metabolomics 

The identification of unknown compounds is a main bottleneck in metabolomics. There 

are several commonly used compound database: KEGG Compound,[74] PubChem,[75] and 

Chemspider.[76] The use of accurate mass along with searching against metabolite library can 

results in many possible matches and it is difficult to tell the correct structure from other possible 

candidate merely based on the mass. However, if high resolution and high accuracy of mass and 

isotope ratio measurements are available, a correct elemental composition may be obtained and 

thus it is still possible to narrow down the candidate list. Seven Golden Rules developed by 

Tobias et. al.[77] summarized the rules that are required to generate a chemical formula based on 

the molecular mass obtained using high resolution MS. Most commonly, metabolite 
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identification is performed through the interpretation of structural information of a metabolite, 

which is generated using a tandem mass spectrometer. 

Tandem MS/MS experiment is performed by isolating molecular ions with its particular 

precursor mass and then breaking down that ion into pieces with the help of collision gas. Mass 

signals of the fragments from that molecule provide unique structural information. This 

structural information is widely used for metabolite identification. The MS/MS spectrum 

generated from a tandem mass spectrometer experiment can be either interpreted manually by a 

MS expert to elucidate its structure or search against a standard MS/MS spectra library. The 

approach of manual interpretation is time-consuming and heavily relies on the experience of the 

MS/MS analyst. In the approach of searching against standard MS/MS spectra library, the 

spectra library can be either experimental or theoretical.   

Currently, there are many experimental MS/MS library available for metabolite 

identification, such as NIST MS/MS library,[78] Metlin,[28], MassBank,[79] and HMDB.[1] In 

an experimental MS/MS standard spectra library, all the MS/MS spectra are acquired through the 

MS/MS experiments of metabolic standards. Instrument types and vendor information are also 

associated with these MS/MS data and user can choose the sub-database that has similar MS/MS 

experimental conditions for metabolite identification. The matching of experimental MS/MS 

spectrum with a standard MS/MS spectrum in a standard MS/MS spectra library is highly 

reliable for metabolite identification. Since the number of metabolite standards that can be 

acquired is limited, a major challenging in developing the experimental MS/MS standard spectra 

library is to expand the number of metabolites.  

Since the coverage of experimental MS/MS standard libraries is far from covering the 

entire metabolome space, theoretical MS/MS library has been developed in the past decades. In 
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the theoretical MS/MS library, all the MS/MS spectra are generated based on prediction of 

fragmentation pattern according to a set of fragmentation rules. There are several approaches for 

generating predicted MS/MS spectra (more precisely a list of fragment ions with unit intensity), 

depending on the chemical bond breakage rules used and the number or level of fragment ions 

included in a predicted fragment ion spectrum.[80-91] There are also some commercial products 

(e.g., Mass Frontier from Thermo Scientific, Waltham, US and ACD/MS Fragmenter from 

Advanced Chemistry Labs, Toronto, Canada) as well as published tools (e.g., Metfrag[82], 

Fragment Identificator or FiD[81] and MIDAS[88]) for generating predicted MS/MS spectra 

with varying degrees of success.  

 

1.5 Overview of thesis 

Based on my research objective, this thesis can be divided into three parts. The first part 

(Chapter 2 and 3) describes the development of metabolomics data processing programs to better 

extract useful metabolomic information. The second part (Chapter 4 and 5) focuses on the 

development of metabolic libraries for metabolite identification. The third part (Chapter 6) 

discusses the applications of metabolic biomarker discovery work using our CIL LC-MS 

approach.  

Specifically, Chapter 2 describes an R language based program, allowing the users to 

retrieve the missing values from raw LC-MS data. Our study shows that through filling in the 

low intensity metabolic information, this program can significantly improve the statistical 

performance. Chapter 3 describes another R language based program, aiming at better 

quantification accuracy in CIL LC-MS experiments. By re-constructing the 12C/13C peak patio 
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using the chromatographic area information, a more precise intensity ratio can be obtained. 

Specifically, in Chapter 4, a Dns-metabolite standards library, DnsID is developed. This library 

has the accurate mass, retention time and MS/MS spectra information for 275 common human 

endogenous metabolites after the dansylation labeling. A retention time correction function was 

embedded to correct systematic RT shifts of LC-MS setups in different labs. This library allows 

the automatic metabolite identification for dansylation based CIL LC-MS dataset.  In Chapter 5, 

an in-silico fragmentation algorithm is developed to generate predicted MS/MS spectra for 8000 

known human endogenous metabolites and 375,000 predicted human metabolites. This predicted 

MS/MS library allows for the metabolite identification with no experimental MS/MS spectra 

available. In Chapter 6 we applied the dansylation based CIL LC-MS to study saliva metabolic 

changes associated with Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). 

Potential biomarkers that distinguish these two disease stages from normal aging (NA) were 

discovered and identified. Metabolic diagnostic models were also developed for the purpose of 

clinical diagnosis. Overall, the thesis shows the development and application of analytical 

techniques to study metabolomics. Finally, Chapter 7 provides a conclusion of the thesis as well 

as a brief discussion on the future research directions. 
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Chapter 2  

Counting Missing Values in a Metabolite-Intensity Dataset for Measuring the 

Analytical Performance of a Metabolomics Platform 

2.1 Introduction 

 Missing intensity-values is common in a multiple-sample dataset generated by an 

"omics" analytical tool for genomics, proteomics and metabolomics applications.[92-98] One of 

the major roles of an omics study is to find genes, proteins or metabolites that have significant 

differences in different biological groups such as healthy vs. diseased samples. Analytical tools 

are used to generate a rectangular matrix or table containing an intensity (or quantity) value in 

each sample column that is associated with an individual gene, protein or metabolite in a row. 

Missing values in the table can cause problem in performing statistical calculation.[99] 

Genomics and proteomics researchers have devoted a considerable amount of efforts to 

understand and develop appropriate methods to handle the missing data.[92-95, 100-105] There 

is an increasing awareness of this problem in the field of metabolomics and several papers have 

been published on this topic,[96-98, 106-114] including the development of statistical tools to fill 

the missing values or simply disregard all the features with missing data. However, filling the 

missing values non-experimentally needs to be carefully performed.[97, 98, 114] There are 

debates on whether missing values should be filled and, if so, how best the missing values are 

filled (e.g., should we use the lowest intensity or a mean of all the measured values in a dataset to 

fill the missing values?).[110-112] 

 We echo the view of a growing number of researchers on the importance of dealing with 

missing values properly in metabolomics. In our view, the best approach to tackle the problem is 
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from the experimental side, i.e., developing and applying robust analytical tools to profile the 

metabolomes of many samples with the least number of missing values. In an ideal situation, 

there should be very few missing values if a metabolomic technique is capable of detecting and 

quantifying all the metabolites; missing values would indicate the true absence of the metabolites 

for biological reasons. However, due to technical limitations of current analytical methods, the 

extent of missing values can be large, even in replicate dataset of the same sample where 

metabolite concentrations should be the same. In the case of LC-MS based metabolomics 

research, low-concentration or not-easily-ionizable metabolites may not be detected due to 

detection sensitivity issue or ion suppression effect.[115] In addition, data processing including 

peak picking may cause the loss of peak intensity information.[110, 114, 116] There are several 

metrics including detection sensitivity, technical precision, quantification accuracy and the 

number of detectable metabolites that have been routinely used to measure the analytical 

performance of a metabolome profiling technique.[115, 117-119] We feel that the extent of 

missing values should be considered as another important parameter to gauge the performance of 

a method. In other words, the number of missing values should be reported, like the number of 

metabolites profiled, as a criterion to gauge the quality of a dataset.  

In this work, we report an investigation of the issue of missing values in a chemical 

isotope labeling (CIL) LC-MS metabolomics platform. In high-performance CIL LC-MS, the 

isotope labeling reagents are rationally designed to improve both LC separation efficiency and 

MS detection sensitivity significantly.[45, 57, 58, 60-62, 120-122] For example, dansylation, 

targeting the amine/phenol submetabolome, allows the detection of labeled metabolites with a 

sensitivity improvement of 10 to 1000-fold over the un-labeled counterparts.[120] With the 

ability of detecting thousands of putative metabolites from an individual sample (e.g., human 
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urine) by using this platform, an important question rises on how well we can profile them 

consistently in multiple samples, as metabolomics requires analyzing many samples of usually 

the same type, not just one sample. To this end, we have developed a data processing workflow 

that explores a unique feature of peak-pair picking from mass spectra generated by differential 

CIL LC-MS in order to fill the missing values in a multiple-sample dataset. This method allows a 

significant reduction of missing values, enabling determination of a greater number of significant 

metabolites that separates different groups of samples, a common goal of many metabolomics 

studies in disease biomarker discovery and systems biology. To facilitate method comparison in 

terms of missing values, we propose a standardized approach of counting missing values in 

replicate dataset as a way of gauging the extent of missing values for a given analytical method. 

 

2.2 Experimental Section 

2.2.1 Dansylation Labeling  

 12
C-dansyl chloride for metabolite labeling was purchased from Sigma-Aldrich Canada 

(Markham, ON, Canada). 
13

C-dansyl chloride was synthesized in our lab.[120] The labeling 

reaction was performed according to a protocol reported previously.[121] 

2.2.2 LC-MS  

The 
12

C- and 
13

C-labeled samples were mixed and centrifuged at 20,800 g for 10 min 

before injecting into a Bruker Maxis Impact QTOF mass spectrometer (Billerica, MA, USA) 

linked to an Agilent 1100 series binary HPLC system (Palo Alto, CA, USA). A reversed-phase 

Zorbax Eclipse Plus C18 column (2.1 mm × 100 mm, 1.8 µm particle size, 95 Å pore size) from 

Agilent was used. Solvent A was 0.1% (v/v) LC-MS grade formic acid in 5% (v/v) grade ACN, 
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and solvent B was 0.1% (v/v) LC-MS grade formic acid in LC-MS grade ACN. The gradient 

elution profile was as follows: t=0.0 min 20% B, t=3.5 min, 35% B, t=18.0 min, 65%B, t=24 

min, 99%B, t=28 min, 99% B. The flow rate was 180 µL/min. The sample injection volume was 

2 µL. 

2.2.3 Zero-fill Program 

 The LC-MS data generated were first processed using a peak-pair picking software, 

IsoMS.[123] The level 1 peak pairs[123] were aligned from multiple runs by retention time 

match within 30 s and accurate mass match within 5 ppm to produce a CSV file or table.  The 

zero-fill program was then used to fill the missing values in the CSV file. This program was 

written in R and is freely available from www.mycompoundid.org. 

In zero-fill, finding the missing value of a peak pair in the raw data of a sample uses 

information of retention time (rt), m/z value (mz) and absolute intensity (int) of the 
13

C-peak of 

the pair. The 
13

C-peak is from a controlled sample (e.g., a 
13

C-labeled pooled sample or 
13

C-

labeled universal-metabolome-standard) that is spiked into all the 
12

C-labeled individual 

samples. Thus, the absolute intensity of this peak for a given labeled metabolite should be 

theoretically the same in all the samples. A matching score is used to find the peak pair based on 

similarities of these three parameters. It is defined as 

Score = (1 −
rt. diff

rt. tol
) /4 + (1 −

mz. diff

mz. tol
) /2 + (1 − 2 × int. diff)/4 

where 

rt. diff = abs(rt. 𝐶13 . peak − rt. rawdata. peak) 
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mz. diff. light = 1E6 ×
abs(mz. 𝐶12 . peak − mz. rawdata. peak + 2.0067)

mz. 𝐶13 . peak
 

mz. diff. heavy = 1E6 ×
abs(mz. 𝐶13 . peak − mz. rawdata. peak)

mz. 𝐶13 . peak
 

int. diff = abs(log(
int. 𝐶13 . peak

int. rawdata. peak
)) 

The default rt tolerance (tol) is 30 s and the default mz tolerance is 5 ppm. A different 

weight (divided by 2 or 4) is assigned to each of the similarity equations in the score function; 

mz is deemed to be more important than rt and int and therefore given more weight. If the 

matching score is larger than 0.6, it will be considered as a match. This scoring algorithm was 

developed using several metabolomic datasets where missing values in metabolite-intensity 

tables had been manually picked from the raw data. 

2.2.4 Statistical Analysis 

  Multivariate statistical analysis was carried out using SIMCA-P+ 12 (Umetrics 

AB, Umea, Sweden). Volcano plot was plotted using Origin 8.5. 

 

2.3 Results and Discussion 

2.3.1 IsoMS and Missing Values 

 Figure 2.1 shows the workflow for processing isotope labeled LC-MS data. IsoMS is 

used to perform peak picking, peak pairing, peak-pair filtering and peak intensity ratio 

calculation.[123] Using IsoMS-align script, information on the peak pair IDs and their peak ratio 

values from multiple LC-MS runs is extracted to produce a CSV file. This metabolite-intensity 
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data file can be opened as an Excel table for data inspection or further statistical analysis. In 

picking the peak pairs, IsoMS classifies the peak pairs into three groups, namely level 1, 2 or 

3.[123] Level 1 peak pairs are the most confident pairs where the 
13

C-natural-isotope peaks are 

accompanied with the light- and heavy-chain labeled metabolite within a pair. Level 2 peak pairs 

miss one of the 
13

C-natural-isotope peaks. Level 3 peak pairs are the least confident pairs with 

both 
13

C-natural-isotope peaks missing. To reduce the extent of false positive peak pairs found 

by IsoMS, only level 1 peak pairs are retained in the metabolite-intensity table. In doing so, the 

false positive rate (FPR) is usually less than 5%.  
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Figure 2.1 Workflow for processing CIL LC-MS data that incorporates the zero-fill program 

Inspecting the metabolite-intensity table generated by IsoMS, it is apparent that there are 

many missing values in the table from a multiple sample dataset, even in replicate runs of the 

same sample. As an example, Figure 2.2A shows a distribution of the number of peak pairs 

found in 
12

C-/
13

C-dansyl labeled human urine samples (i.e., experimental triplicate runs of the 

same urine). Among the 1549 peak pairs found in run 1 and run 2, 960 pairs or 62% are in 
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common. Comparing run 1 and run 3, 944 out of 1540 pairs (61%) are in common. There are 971 

common pairs out of 1516 pairs (64%) found in run 2 and run 3. As the sample number 

increases, the number of commonly detected metabolites decreases (see below). In metabolomics 

work, it is common to use a criterion such as 50%-rule to retain the metabolites with missing 

intensity values in no more than 50% of the samples for statistical analysis. Currently there is no 

consensus on what this percentage limit should be.[97, 98, 114]   

 



28 

 

 

Figure 2.2 Venn diagrams of the number of peak pairs detected from experimental triplicate 

analysis of 13C-/12C-dansyl labeled human urine samples: (A) without zero-fill and (B) with 

zero-fill. 

 Missing values in replicate runs are mainly caused by technical and data processing 

limitations. To reduce the number of missing values, measurement should be done using a 

technique that gives very high reproducibility. However, even for a very reproducible technique, 

data processing can still be the limiting factor. In processing LC-MS data (with or without CIL), 

because of the need to balance the sensitivity and specificity in peak picking and intensity 

measurement, some low-abundance peaks or other peaks not meeting a set of criteria in the peak 

picking algorithm are missing in the metabolite-intensity table. Re-analyzing the original LC-MS 

data may help filling the missing values in the table. This can be done manually by inspecting the 

original spectrum or chromatogram. Because this is a time-consuming process, manual filling of 

missing values is best done for selected metabolites that have already been found to be 
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significant in statistical analysis of the initial metabolite-intensity data file. However, this 

approach will not alter the initial metabolite-intensity table used to perform statistical analysis 

for finding the significant metabolites in the first place. Alternatively, an algorithm may be 

developed to automate the re-analysis process to detect and fill the missing values (i.e., zero-fill). 

However, this is not easy to implement due to the fact that it is often difficult to differentiate the 

metabolite peaks from the background peaks when the signal intensity is very low, even with a 

high resolution instrument. Solvents, impurities, salts, etc., and their multi-mers and clusters can 

give arise many peaks at the low mass region (m/z<300) where metabolite ions are detected. 

2.3.2 Zero-fill Program 

 CIL LC-MS offers an opportunity to overcome the difficulty of implementing an 

automated zero-fill process. In CIL LC-MS, the metabolite ion mass is shifted to a higher mass 

(m/z>300) by adding the labeling group to a metabolite (e.g., the mass of dansyl group is 

234.0583 Da). This reduces the extent of background interference. More importantly, all the 

metabolite peaks in differential CIL LC-MS are detected in pairs and thus can be distinguished 

from the singlet background peaks. In addition, a 
13

C-labeled control sample is spiked to all 
12

C-

labeled individual samples. As a consequence, the absolute intensity of the 
13

C-peak of a 

metabolite peak-pair should be similar for all the samples, providing another differentiation 

parameter. We have developed a zero-fill program to re-analyze the CIL MS data after the initial 

generation of the metabolite-intensity data file by IsoMS. 

 As Figure 2.1 shows, the zero-fill program first reads the metabolite-intensity data file, 

and then looks for missing values starting from the first sample run. Once a missing value is 

found, it goes back to the raw peak list file of the LC-MS run. Based on the matching of 

retention time, m/z and 
13

C-labeled-peak intensity (see Experimental Section) of the missing-
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value peak pair with those in the raw data file, the program finds the correct 
13

C-peak. In case 

that the 
13

C-peak is not available in the raw data, the program stops the search for the 
12

C-labeled 

peak of the peak pair to avoid generating any false positive result. If the 
13

C-peak exists in the 

data, the program would go ahead to search for the 
12

C-peak also based on retention time, m/z 

and intensity, as well as that the 
12

C-peak must exist in the same mass spectrum as the 
13

C-peak. 

Once both peaks are picked, the zero-fill program calculates the peak intensity ratio. This ratio is 

entered into the metabolite-intensity data file to replace the missing value. To distinguish the 

ratios determined by IsoMS and the zero-filled ratios, 2 decimal places are kept for the ratios 

from IsoMS, while 8 decimal places are kept for the ratios from the zero-fill program. This helps 

glance at the table to obtain a visual impression of the extent of zero-fill. 

2.3.3 Performance of Zero-fill 

 We have systematically evaluated the performance of the zero-fill program with an 

objective of extracting a maximal number of peak pairs within an acceptable level of FPR (i.e., 

<5%) from a multiple-run dataset. In the workflow shown in Figure 2.1, IsoMS is first used to 

process the dataset using a chosen intensity or S/N threshold for extracting the peak pairs. The 

value of this threshold has a large effect on the number of peak pairs picked by this program. 

Figure 3 shows the total number of level 1 peak pairs, FPR, and the number of missing values as 

a function of threshold value for peak-pair picking. These results were obtained from an 

experimental triplicate dataset of dansyl labeled human urine. Figure 2.3A shows an overall 

decrease in the peak-pair number as the S/N threshold increases. The FPR level (see Figure 2.3B, 

without zero-fill) does not change significantly except that it is lower at the threshold of S/N 60 

from which only the very high abundance peaks are picked. These results indicate that IsoMS is 

able to pick the level 1 peak pairs with FPR of <4% even at a very low threshold (S/N 3). 
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However, the numbers of peak pairs detected using S/N 3 and 9 thresholds are similar, 

suggesting that lowering the threshold from 9 to 3 cannot increase the peak pair number 

anymore. Manual inspection of the results indicates that many of the peak pairs with S/N<9 are 

not belonging to the level 1 group. The plot in Figure 2.3C (without zero-fill) shows that the 

average number of missing values in each run decreases as the threshold increases. This is 

consistent with the notion that the high abundance peaks are more reproducible. Considering that 

the performance of using S/N 9 is similar to that of S/N 3 and IsoMS data processing is faster 

with S/N 9 (i.e., 5 min per run using S/N 9 vs. 20 min per run using S/N 3), we choose a 

threshold of S/N 9 to carry out the IsoMS data processing to generate the initial metabolite-

intensity data file. 
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Figure 2.3 (A) Number of peak pairs detected, (B) percentage of missing values and (C) false 

positive rate (FPR) as a function of S/N used for IsoMS data processing of the experimental 

triplicate dataset of labeled urine. 

 Applying the zero-fill program to re-analyze the triplicate dataset, the average percentage 

of missing values drops dramatically from 26.4% to 2.5%. This can be more clearly seen in 

Figure 2.2B where the distribution of the number of peak pairs found in the three runs is shown. 

The common peak pairs found in the three runs increases from 829 (48.9%) to 1590 (93.9%). 

The average run-to-run reproducibility is 98%, compared to 67% ± 1% without using zero-fill 
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(see Figure 2.2A). Many of the retrieved values can be manually confirmed by inspecting the 

peak pairs in the raw mass spectra. In fact, with zero-fill, the FDR drops from 2.9% to 2.4% (see 

Figure 2.3B). Thus, the zero-fill program can retrieve missing values from the raw data very 

effectively.  

We have studied the performance of zero-fill in a dataset containing 10 replicate 

injections of the same dansyl urine sample. Figure 2.4A shows the number of peak pairs detected 

with and without zero-fill as a function of cumulative injection number. Without zero-fill, the 

cumulative number of peak pairs increases gradually and then reaches a near-plateau after 9 

injections. The number of missing values also gradually reduces as more replicate data are 

included in the combined runs (Figure 2.4B). However, with zero-fill, both the total number of 

peak pairs detected and the number of missing values reach the plateau much faster. In fact, the 

results of duplicate injections with zero-fill are similar to those of 9 or 10 injections without 

zero-fill. Even using one injection, 2217 peak pairs can be detected, compared to 2368 peak pairs 

from the combined results of duplicate injections. As Figure 2.4C shows, with zero-fill, the FPR 

decreases as more replicate data are included, while without zero-fill, the FPR increases.   
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Figure 2.4 (A) Number of peak pairs detected, (B) percentage of missing values and (C) false 

positive rate (FPR) as a function of S/N used for IsoMS data processing of the 10-run replicate 

injection dataset of labeled urine. 

 We have also analyzed the performance of zero-fill on a dataset of 30 LC-MS runs from 

experimental triplicate of dansyl labeled samples with 10 injections for each sample.  The results 

of experimental replicates measure the overall experimental variations, not just instrumental 

variation which is gauged by repeat injections of the same sample. Figure 2.5 shows the plots 

where the y-axis represents the injection number. The combined results of three replicate 

samples from each injection are used. For example, for injection 1, the total number of peak pairs 

detected in the three samples with the first injection is used (three LC-MS runs). For injection 2, 

the combined total number of peak pairs detected in the three samples with the first and second 

injections is plotted (6 LC-MS runs). As Figure 2.5 shows, the trends of changes in the number 

of peak pairs, missing values and FPR are similar to the injection replicate dataset shown in 

Figure 2.4.  However, in the experimental triplicate results, even after 10 replicate runs for each 

sample, there are still about 15% missing values (~450 peak pairs) if zero-fill is not performed 
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(see Figure 5B). These are the peak pairs with variations caused by the sample handing process. 

For example, some low abundance metabolites might be labeled with slightly different 

efficiencies in the triplicate samples, which can result in signal intensity reduction in one of the 

13
C-natural-isotope peaks to a level that the peak pair is no longer belonging to the level 1 group. 

In contrast, with zero-fill, the percentage of missing values drops much faster and reaches almost 

zero after two injections of each sample. Even with one injection, most of the peak pairs from the 

combined results are detected (See Figure 2.5B). 
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Figure 2.5 (A) Number of peak pairs detected, (B) percentage of missing values and (C) false 

positive rate (FPR) as a function of S/N used for IsoMS data processing of the 30-run dataset of 

labeled urine. 

 The above results indicate that with zero-fill the number of peak pairs detected in each 

run can reach a near-maximal number even without performing replicate runs for each sample. 

However, the maximal number of peak pairs detectable within a dataset is dependent on the 
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number of runs present in the dataset. Comparing the total maximal number of peak pairs 

detected in the 3-run dataset (Figure 2.3A) to the 10-run dataset (Figure 2.4A) and the 30-run 

dataset (Figure 2.5A), it is clear that the maximal number increases as the number of LC-MS 

runs increases. This is understandable considering the fact that each run adds some unique peak 

pairs to the total. However, there appears to be a diminished return as the number of runs 

increases beyond a certain value. For example, using 10 runs, instead of 3 runs, the peak pair 

number increases from 1700 to 2350 (i.e., 38% with a net gain of 650 pairs). However, using 30 

runs, instead of 10 runs, the pair number increases from 2350 to 2900 (i.e., 23% with a net gain 

of only 550 pairs). Thus, performing replicates merely for the purpose of increasing the peak pair 

number in a dataset needs to be considered within the context of instrumental time available. In a 

clinical metabolomics study involving the profiling of hundreds of samples, one may choose not 

to perform replicate runs in order to save instrument time. On the other hand, for a cellular 

metabolomics work where only a few samples are profiled, it may be well justified to perform 

replicate runs. In any case, with zero-fill, we can recover the missing values in a dataset very 

effectively and efficiently.  

2.3.4 Characterization of Missing Values 

 As indicated earlier, the source of missing values in replicate run dataset is mainly from 

the measurement and data processing processes which can be influenced much more by the low 

abundance peaks than the high abundance ones. We have characterised the missing values in 

terms of signal intensity in the 10-run dataset. While peak ratio is used to measure the relative 

concentration in CIL LC-MS, the absolute intensity of a peak is related to abundance and 

detection sensitivity of the metabolite. It should be noted that detection sensitivity of different 

metabolites becomes more uniform after dansylation labeling. For example, the difference in MS 
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signal intensity for 17 dansyl amino acid standards is within one order of magnitude, compared 

to more than three orders of magnitude for unlabeled amino acids.[120] Thus, the absolute 

intensity of labeled metabolites is a good indication of analyte abundance in a sample. Figure 2.6 

shows a histogram of the peak pair distribution as a function of the absolute intensity measured 

by S/N. The S/N values are binned in log9 to distribute the number of peak pairs found in each 

bin evenly across the y-axis. In the low S/N bins, there are significantly more pairs detected with 

zero-fill. For example, at around S/N 9 (i.e., 1.0 in log9), about 200 pairs are detected with zero-

fill, compared to 100 pairs detected without zero-fill. In the high S/N bins, the number of peak 

pairs found with and without zero-fill is similar. Thus, the zero-fill process recovers mainly the 

low intensity or low abundance metabolites that fail to detect in the 1st path of data analysis by 

IsoMS. 
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Figure 2.6 Number of peak pairs as a function of log9(S/N) 

2.3.5 Standardization of Counting Missing Values 

 Because missing values are mainly from the low abundance peaks which are more 

difficult to reproducibly detect, the extent of missing values in a dataset should be a good 

indicator to judge the overall analytical performance of a metabolome profiling method. We 

propose to use an experimental triplicate dataset (e.g., the data shown in Figure 2.2) and a 10-run 

injection replicate dataset (e.g., the data shown in Figure 2.4A) of the same sample to measure 

the performance of a method regarding the missing values. Although using data of different 
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samples has the benefit of evaluating how well a method quantifies the same metabolites of 

different concentrations in different samples, it requires a set of standard samples available for 

method evaluation. Replicate data of the same sample is readily generated in a lab. Using the 

same type of sample (e.g., human urine), the performance of different methods in terms of 

missing values can still be compared, at least within the context of performing metabolomics 

study using this type of sample. Recent development of standard samples such as NIST serum 

standard should facilitate future work of comparing different methods, if such a standard is used 

across different platforms and methods.[124] 

 Using the replicate dataset, we propose that the performance indicators be 1) number of 

peak pairs detected per run and the total number of peak pairs detected within a dataset (triplicate 

or 10-run replicate), 2) intensity dynamic range from the lowest absolute signal intensity giving a 

quantity result to the highest intensity giving an intensity value, and 3) number of missing values 

and percentage of missing values in triplicate and 10-run replicate datasets. Table 2.1 and 2.2 

show the summary of the results for the triplicate and 10-run datasets obtained by the dansylation 

CIL LC-MS method, respectively. 

Table 2.1 The summary of the results for the triplicate dataset obtained by dansylation CIL LC-

MS method 

 

number 

of pairs 

min 

intensity 

max 

intensity 

no. of 

missing 

value 

percent of missing 

value 

Run  1 1678 1510 1872500 16 0.94% 

Run  2 1683 1510 1872500 11 0.65% 

Run  3 1675 1510 1872500 19 1.12% 

Average 1679 1510 1872500 15 0.91% 

std 4 0 0 4 0.24% 

Overall 

performance 
1694 1510 1872500 46 
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Table 2.2 The summary of the results for the 10-run dataset obtained by dansylation CIL LC-MS 

method 

 

number 

of pairs 

min 

intensity 

max 

intensity 

no. of 

missing 

value 

percent of missing 

value 

Run  1 2217 1510 1850000 151 6.38% 

Run  2 2235 1510 1850000 133 5.62% 

Run  3 2138 1510 1850000 230 9.71% 

Run  4 2233 1500 1850000 135 5.70% 

Run  5 2257 1500 1850000 111 4.69% 

Run  6 2168 1500 1850000 200 8.45% 

Run  7 2088 1500 1850000 280 11.82% 

Run  8 2226 1500 1850000 142 6% 

Run  9 2168 1500 1850000 200 8.45% 

Run  10 2198 1500 1850000 170 7.18% 

Average 2193 1503 1850000 175 7.40% 

std 52 5 0 52 2.20% 

Overall 

performance 
2368 1500 1850000 1752 

 

 

2.3.6 Metabolomics Application 

 Finally, we have applied the zero-fill program in a metabolomics study to demonstrate 

the benefits of using zero-fill for disease biomarker discovery. In this case, we applied zero-fill 

to a set of LC-MS data generated from a human bladder cancer metabolomics study.[125] It 

consists of 109 LC-MS runs of dansyl labeled urine samples collected from 55 bladder cancer 

patients and 54 controls. Individual samples were separately labeled with 
12

C-danylation and 

then mixed with 
13

C-dansylated universal metabolome-standard of human urine. The individual 

13
C-/

12
C-labeled mixtures were separated and analyzed using reversed phase LC and Bruker 9.4-

Tesla Fourier transform ion cyclotron resonance mass spectrometer.[125] Supplemental Table 
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T2.1 (see Appendix folder) shows the original metabolite-intensity table generated using IsoMS 

from the 109 runs. Supplemental Table T2.2 (see Appendix folder) shows the table after 

applying the zero-fill program to the dataset. The volcano and OPLS-DA plots of the datasets 

with and without zero-fill are shown in Figure 2.7. 
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Figure 2.7 Volcano plots of the 109-sample data set from a bladder cancer biomarker discovery 

study: (A) without zero-fill and (B) with zero-fill. The red dots represent a metabolite with a fold 

change of > 1.5 and p-value < 0.01. OPLS-DA plots of the 109-sample dataset: (C) without zero-

fill and (D) with zero-fill 

 As Figure 2.7A, B shows, more significant metabolites are detected in the volcano plot of 

the zero-filled data. There are 81 metabolites with fold change of greater than 1.5 and p-value of 

less than 0.01 in the dataset with zero-fill, compared to 65 metabolites without zero-fill. A 

similar observation is found in the OPLS-DA analysis. There are 385 significant metabolites 

(VIP score of ≥1.5) found from the zero-filled data, compared to 53 metabolites without zero-fill. 

Supplemental Tables T2.3-T2.6 (see Appendix folder) list the significant metabolites; some of 

them were putatively identified based on accurate mass match against the Human Metabolome 

Database (HMDB) and the Evidence-Based Metabolome Library (EML) by using the 
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MyCompoundID program. As Figure 2.7C,D shows, a much better separation of the cancer and 

control groups is obtained with the zero-filled data (without zero-fill: R
2
X=0.389, R

2
Y=0.745, 

Q
2
=0.562; with zero-fill: R

2
X=0.366, R

2
Y=0.972, Q

2
=0.621).  

 The above results clearly show a significant improvement of the quality of statistical 

analysis after applying zero-fill to the 109-sample dataset, enabling the detection of more and 

better-discriminating significant metabolites to differentiate two cohorts of samples. To measure 

the quality of the metabolite-intensity data in terms of missing values, we plot the percentage of 

common peak pairs detectable in cumulative samples as a function of sample runs in a dataset 

(see Figure 2.8). This plot is informative for determining the consistency of metabolite detection 

among all the runs. For example, 2858 peak pairs or about 60% of the total number of peak pairs 

found in the zero-filled dataset (4761) can be consistently quantified in half of the samples 

(109/2), while without zero-fill only 395 or 8.3% of the total (4761) are commonly detected. In 

our view, this type of plot should be presented, along with the metabolite-intensity table, when 

reporting the metabolome profiling data in a metabolomics study. This would assist in judging 

the overall coverage of the metabolomic profiles in a study.    
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Figure 2.8 Percentage of common peak pairs detected in cumulative runs as a function of sample 

runs. The total number of pairs detected from 109 runs is 4761. 

 

2.4 Conclusions 

We report a workflow to reduce the extent of missing values in chemical isotope labeling 

LC-MS metabolomics platform. A zero-fill program, freely available at MyCompoundID.org, 

has been developed to retrieve missing values in the initial metabolite-intensity table generated 

by IsoMS. Missing values were found to be mainly from the metabolites with low signal 

intensity in mass spectra. The zero-fill program developed based on the unique features of peak 

pairing and consistency of absolute intensity of the 
13

C-labeled peaks from a 
13

C-labeled control 

sample spiked into all 
13

C-labeled individual samples allows significant reduction in missing 
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values. This reduction affords the detection of more and better-discriminating significant 

metabolites in a metabolomics study involving the metabolomic profiling of 109 samples for 

bladder cancer biomarker discovery.  

Because the extent of missing values can have a profound effect on metabolomics results, 

we feel that counting missing values should be considered as an important metrics for measuring 

the analytical performance of a metabolomics platform. To facilitate method comparison in 

terms of missing values, we proposed and illustrated the use of two datasets, one from 

experimental triplicate and another one from 10 replicate injections of the same sample, to 

measure the extent of missing values. Finally, in reporting metabolomics data, we feel that it is 

important to include the result of missing value analysis (e.g., a plot of number or percentage of 

common metabolites detected in cumulative samples as a function of sample runs). This analysis 

result, along with the metabolite-intensity table containing all the metabolites and their intensity 

values from the entire dataset, measures the level of commonly quantifiable metabolites in a 

metabolomics study. At a chosen % threshold (e.g., metabolites commonly quantifiable in more 

than 50% of all the samples), the number of metabolites retained for statistical analysis should be 

reported. In this regard, future work is still needed to examine the issue of selecting the most 

appropriate % threshold for data inclusion in statistical analysis.   
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Chapter 3  

Quantitative Metabolome Analysis Based on Chromatographic Peak 

Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass 

Spectrometry 

3.1 Introduction 

Chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) 

uses differential isotope mass tags to label a metabolite in two comparative samples (e.g., 
12

C-

labeling of an individual sample and 
13

C-labeling of a pooled sample), followed by mixing and 

LC-MS analysis. Individual metabolites are detected as peak pairs in mass spectra. The intensity 

ratio of a peak pair can be used to measure the relative concentration of the same metabolite in 

two samples. CIL LC-MS can significantly increase the detectability of metabolites by rationally 

designing the labeling reagents to target a group of metabolites (e.g., all amine-containing 

metabolites or amine submetabolome) to improve both LC separation and MS sensitivity.[45, 

120] It can also overcome the technical problems such as matrix effects, ion suppression and 

instrument drifts to generate more precise and accurate quantitative results, compared to 

conventional LC-MS.[60, 61, 122, 126] There are a number of new advances reported[53-58, 61, 

62, 122, 126-136] in the area of developing CIL LC-MS for targeted and untargeted 

metabolomics, particularly for improving labeling chemistries and extending the utility of CIL 

LC-MS to analyze a broad range of metabolites. However, proper processing of CIL LC-MS data 

is also critical to maintain high sensitivity (i.e., extracting as many peak pairs as possible from a 

dataset), high specificity (i.e., keeping low false-positive rate), and high performance 

quantification (i.e., achieving high precision and accuracy).[123] To this end, we have been 
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involved in developing data processing methods specifically for handling CIL LC-MS data. The 

software tools related to these methods including IsoMS[123] and Zero-fill[137] are freely 

available from the www.mycompoundid.org website.  

In our data processing workflow, the raw mass spectral data, instead of the 

chromatographic peak data, are used for metabolite peak detection, peak pairing, peak-pair 

filtering and peak ratio calculation by IsoMS.[123] This MS-centric approach allows us to detect 

more peaks, as many regions of the baseline in a chromatogram still contain mass spectra with 

low abundance ion peaks. Using a chromatographic peak threshold for peak picking will not 

detect these peaks. Moreover, it is easier and more reliable to group or remove peaks from the 

same metabolite using a mass spectrum. This is because the salt/solvent adducts, mono- or 

hetero-dimers, multimers, common fragment ions (e.g., -H2O and -CO2) of a molecular ion are 

present in the same mass spectrum and thus can be readily detected and filtered out. Finally, the 

Zero-fill program[137] can be used to detect a missing peak pair in a mass spectrum based on the 

similarity of retention time, accurate mass and 
13

C-peak intensity (the same amount of 
13

C-

labeled pool is spiked to each sample) to those of the other samples where the peak pair is 

detected. This algorithm would be difficult to implement using chromatographic peak 

information. 

While processing mass spectral data directly provides some advantages, it is not optimal 

for extracting quantitative information from the mass spectral peak intensities. Currently, in 

IsoMS, the peak ratio of a peak pair from a 
13

C-/
12

C-labeled metabolite is calculated from a mass 

spectrum.[123] If the same peak pair shows up in multiple neighbouring scans or spectra, only 

the highest intensity peak pair is kept. Its peak ratio is calculated and then entered in the 

metabolite-intensity table. In order to utilize all the peak pairs intensity information, we have 



51 

 

now developed a program, IsoMS-Quant, to reconstruct two chromatographic peaks, one for 
12

C- 

or light-labeled metabolite and another one for 
13

C- or heavy-labeled metabolite, for each peak 

pair shown in the metabolite-intensity table. The area ratio of the two chromatographic peaks 

measured by the sums of 
13

C- or 
12

C-labeled peak intensities is calculated as a measure of 

relative concentration of the metabolite in light-labeled sample vs. heavy-labeled sample. Using 

chromatographic peaks for quantification smoothes out signal fluctuations associated with mass 

spectral peak intensities in multiple scans, thereby providing better quantification. For targeted 

metabolite quantification, chromatographic peaks of an analyte are often used. In this report, we 

describe the IsoMS-Quant program and how it can be used to generate quantitative information 

in CIL LC-MS. Using examples of urine and serum metabolome analysis, we demonstrate that 

this program can improve untargeted quantitative metabolome profiling as well as targeted 

metabolite quantification significantly. The IsoMS-Quant program is freely available at 

www.mycompoundid.org and this program, along with IsoMS and Zero-fill, forms a complete 

data processing tool for the CIL LC-MS quantitative metabolomics platform. 

  

3.2 Experimental Section 

3.2.1 Dansylation Labeling and LC-MS  

The labeling reaction (see Figure 3.1 for the reaction scheme) and LC-MS analysis on a 

Bruker Impact HD QTOF mass spectrometer (Billerica, MA, USA) linked to an Agilent 1100 

HPLC system (Palo Alto, CA, USA) and an electrospray ionization source were performed 

according to a protocol reported previously.[130, 137]  



52 

 

 

Figure 3.1 Dansylation reaction scheme 

3.2.2 IsoMS-Quant 

The IsoMS-Quant program was developed using R, an open source language and 

environment used in data processing and statistical programming. The user manual is provided in 

“IsoMS-Quant user manual” (see Appendix). Figure 3.2 shows the overall workflow for CIL LC-

MS data processing. The raw LC-MS data are first processed using a peak-pair picking software, 

IsoMS. The high-confident level 1 peak pairs (i.e., the pair with two labeled peaks accompanied 

with their corresponding 
13

C natural abundance peak) are aligned from multiple LC-MS runs to 

produce a metabolite-intensity CSV file or table.  The Zero-fill program is then used to fill the 
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missing values in the CSV file. The IsoMS-Quant program is applied to the final metabolite-

intensity table after the zero-fill process. Although we use the overall workflow shown in Figure 

3.2 to illustrate how IsoMS-Quant is implemented in processing CIL LC-MS data, this program, 

in principle, should be applicable to other peak-picking software. While it is beyond the scope of 

this work, comparing different software packages for processing CIL LC-MS data should be 

valuable from a user’s perspective.   
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Figure 3.2 Workflow for processing chemical isotope labeling LC-MS data for quantitative 

metabolomic profiling. 
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During the IsoMS-Quant processing, the program loops through all the available MS-

peak-intensity ratios starting from the first sample in the metabolite-intensity table. For each 

peak ratio, its associated retention time (rt), mz_light, mz_heavy, and 
13

C-labeled MS-peak 

intensity (int) are used to locate this peak in the raw MS peak list from the original LC-MS 

dataset. A matching score is used to find the corresponding 
13

C-labeled peak that was used to 

calculate the MS-peak-intensity ratio entered into the metabolite-intensity table. The matching 

score is defined as: 

Score = (1 −
rt. diff

rt. tol
) /4 + (2 −

mz. diff. light + mz. diff. heavy

mz. tol
) /2 + (1 − 2 × int. diff)/4 

where 

rt. diff = abs(rt. 𝐶13 . peak − rt. rawdata. peak) 

mz. diff. light = 1E6 ×
abs(mz. 𝐶12 . peak − mz. rawdata. peak + 2.0067)

mz. 𝐶13 . peak
 

mz. diff. heavy = 1E6 ×
abs(mz. 𝐶13 . peak − mz. rawdata. peak)

mz. 𝐶13 . peak
 

int. diff = abs(log(
int. 𝐶13 . peak

int. rawdata. peak
)) 

The terms, rt.
13

C.peak, mz.
13

C.peak (or mz.
12

C.peak), and int.
13

C.peak, refer to retention 

time, m/z value, and intensity of the labeled peak in the metabolite-intensity table, respectively. 

The terms, rt.rawdata.peak, mz.rawdata.peak, and int.rawdata.peak, refer to retention time, mz 

value, and intensity of the labeled peak in the raw MS peak list, respectively. The value, 2.0067, 

comes from the mass difference of the two isotope carbons (
13

C vs. 
12

C labeling). The default rt 

tolerance (rt.tol) is 30 s and the default mz tolerance (mz.tol) is 5 ppm. These tolerance values 



56 

 

are instrument-dependent and can be adjusted. A different weight (divided by 2 or 4) is assigned 

to each of the similarity terms in the above score calculation equation. The mz value is deemed 

to be more important than rt and int and, therefore, given more weight. The MS peak with the 

maximal matching score is considered to be the correct 
13

C-labeled peak. Once the 
13

C-labeled 

peak is found in the raw peak list data, its corresponding 
12

C-labeled peak is also identified in the 

same MS scan based on the mz difference of smaller than mz tolerance (default 5 ppm) from that 

of the 
12

C-labeled peak in the metabolite-intensity table. 

 After both the 
12

C- and 
13

C-labeled peaks of a peak pair are identified in an MS scan, 

peaks in the neighboring MS scans are checked to see if the peak pair is also present. The check 

procedure stops once either the 
12

C or 
13

C peak is not found in a particular MS scan. After this 

procedure is completed, all the 
12

C- and 
13

C-labeled MS-peak intensities in these continuous MS 

scans over a chromatographic peak are used for chromatographic area calculation. Figure 3.3 

shows how to calculate the chromatographic peak area from the sum of MS peak intensities.  
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Figure 3.3 Schematic of chromatographic peak area calculation from mass spectral intensity 

values (blue lines) 

In a typical LC-MS experiment, the MS signals are acquired at a constant time interval 

(e.g., at a spectral acquisition or scan rate of 1 Hz used in this work) and thus the 

chromatographic peak area can be calculated as the sum of all the segmented areas in trapezoids: 

Area = ∑𝐴𝑟𝑒𝑎𝑖

𝑛

1

 

where n is the number of scans where the same peak pair is detected. The area of each trapezoid 

can be described as: 
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𝐴𝑟𝑒𝑎𝑖 =
1

2
(𝑖𝑛𝑡𝑘 + 𝑖𝑛𝑡𝑘+1) × 𝑡𝑖𝑚𝑒. 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

Since the chromatographic peak area ratio of a peak pair is: 

Ratio =
𝐴𝑟𝑒𝑎𝑜𝑓 𝐶12

𝐴𝑟𝑒𝑎𝑜𝑓 𝐶13  

by substituting the area with MS peak intensity, the ratio becomes: 

Ratio =
∑ 𝑖𝑛𝑡𝑛

1 𝑜𝑓 𝐶12

∑ 𝑖𝑛𝑡𝑜𝑓 𝐶13𝑛
1

 

Thus the chromatographic peak area ratio of a peak pair can be determined as the sum of all the 

MS intensity values of the 
12

C-labeled peaks divided by the sum of all the intensity values of the 

13
C-labeled peaks.  

 After IsoMS-Quant completes the ratio calculation, it will compare the new ratio to the 

original intensity ratio. If the ratio difference is greater than 4-fold, the chromatographic ratio 

would be rejected; using manual inspections of the ratio results, we found that they belonged to 

less than 0.5% of the total number of peak pairs found and they were all falsely picked pairs. 

Otherwise, the new ratio will replace the original intensity ratio in the metabolite-intensity table 

which can be exported for statistical analysis or other uses.   

3.3 Results and Discussion 

 CIL LC-MS is a platform that allows in-depth profiling of chemical-group-based 

submetabolomes using different labeling reagents targeting different classes of metabolites 

(e.g.,
13

C-/
12

C-dansylation labeling for quantifying amine- and phenol-containing 

metabolites.[125, 138-140]). The major difference between CIL LC-MS and conventional LC-
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MS is that in CIL LC-MS all the true metabolites show up in the mass spectra as peak pairs 

which can be readily differentiated from the singlet peaks originated from background or noise. 

Thus it is much easier and more reliable to detect the true metabolite peaks. Based on this unique 

feature of peak pair detection, we have developed two software modules, IsoMS and Zero-fill, to 

process CIL LC-MS data to produce a metabolite-intensity table.[123, 137]  The peak ratio in the 

table was calculated from the highest intensity peak pair found in multiple mass spectra. This 

way of calculation, while it is simple to implement, does not use the intensity ratio information in 

other neighboring mass spectra. In contrast, IsoMS-Quant utilizes all the mass spectral peak pair 

information to calculate a peak ratio.  

 Comparing the performance of using MS peak intensity ratio vs. chromatographic peak 

area ratio, three cases can be considered. Figure 3.4A shows an example of good 

chromatographic peaks where the peak ratios are basically the same: 0.51 from the 

chromatographic peak area calculation vs. 0.50 from the mass spectral intensity calculation. In 

this case, the overall mass spectral signals are strong (Figure 3.4B), representing a high 

abundance or readily ionizable metabolite found in a 
12

C-labeled human serum sample mixed 

with a 
13

C-labeled pooled sample. However, because of a wide concentration dynamic range of 

metabolites present in a sample such as human serum, there are many low-intensity peaks 

detected in LC-MS. For these peaks, the highest intensity peak pair may not be representative of 

the concentration ratio of the labeled metabolite. Figure 3.4C shows an example of relatively 

poor chromatographic peaks for both the 
12

C- and 
13

C-labeled mass spectral peaks (Figure 3.4D). 

Poor peak shape is likely due to the effects of other co-eluting components or background ions 

present in a complex sample along with the analyte during the analyte elution; these peaks show 

up randomly and unpredictably and cannot be mimicked using simple standards. The ratio 
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calculated using the highest mass spectral peak intensities (1.26) does not match well with the 

ratio determined from the chromatographic peak areas (0.98). 

 

Figure 3.4 (A) Extracted ion chromatograms (EICs) of a relatively high abundance or easily 

ionizable 
13

C-/
12

C-labeled peak pair (green: 
12

C-labeled metabolite; red: 
13

C-labeled metabolite) 

found in a mixture of a 
12

C-labeled individual human serum and a 
12

C-labeled pooled serum 

prepared from 100 healthy individuals and (B) the highest intensity mass spectrum of the pair. 
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(C) EICs of a relatively low abundance or not readily ionizable peak pair and (D) the high 

intensity mass spectrum of the pair. (E) EICs of a saturated peak pair and (F) EICs of the 

corresponding pair plotted using their 
13

C natural abundance peaks. 

 Another case is related to the saturation of MS detection which can lead to distorted peak 

shapes. Figure 3.4E shows an example where the MS signals are saturated and the mass spectral 

peak intensity no longer reflects the real metabolite concentration. IsoMS-Quant addresses this 

issue by automatically finding the 
13

C natural isotope peaks of both the 
12

C- and 
13

C-labeled 

metabolite peaks and then using these peaks to reconstruct the chromatographic peaks (Figure 

3.2F) for ratio calculation. Since the 
13

C natural isotope peak is much lower in intensity, they are 

less likely to be saturated in MS detection and thus can be used for more accurate quantification. 

In the Impact QTOF instrument, we rarely observed the saturation of the 
13

C natural isotope peak; 

electrospray ionization saturation often occurred before detection saturation. In IsoMS-Quant, a 

user can enter a threshold above which saturation occurs, depending on the MS instrument used. 

 The overall performance improvement for quantitative metabolomics can be 

demonstrated using the results of triplicate analysis of a 
13

C-/
12

C-labeled human urine sample. In 

this experiment, an equal amount of 
12

C-labeled and 
13

C-labeled same urine was mixed for 

analysis and thus the peak ratios for all the metabolite peak pairs should be equal to 1. Figure 

3.5A plots the number of peak pairs detected in multiple neighboring mass spectral scans as a 

function of the scan number. Out of the 1660 peak pairs detected, only 7 pairs (<1%) were 

detected in a single mass spectrum. The highest percentage of peak pairs belongs to those 

detected over 6 to 10 mass spectra or chromatographic peaks of 6 to 10 s. Thus, for most of the 

peak pairs detected, they appear in multiple scans and integration of peak pair intensities over 

these scans should improve quantification.    
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Figure 3.5 Distributions of the number of peak pairs detected in a 1:1 13C-/12C-labeled human 

urine sample as a function of (A) number of neighboring MS scans where a peak pair is detected, 

(B) peak ratios calculated before and after applying IsoMS-Quant, and (C) relative standard 

deviation of peak ratios from triplicate experiments (n=3) 

Figure 3.5B shows a distribution of the number of peak pairs as a function of the peak 

ratio determined with and without applying IsoMS-Quant. The peak ratio distribution becomes 

more symmetric after using IsoMS-Quant and there are more peak pairs with peak ratio values 

close to 1. Figure 3.5C shows a distribution of the number of peak pairs as a function of the 

relative standard deviation (RSD) of the peak ratio from the mean from experimental triplicate 

runs. More peak pairs have their ratios close to the mean after using IsoMS-Quant. Without 

using IsoMS-Quant, the 
12

C/
13

C ratios have an averaged RSD of 10.4%, and with IsoMS-Quant, 

the averaged RSD is reduced to 6.7%. The results shown in Figure 3.5B, C illustrate that the use 

of IsoMS-Quant can improve the accuracy and precision for quantitative metabolomics by CIL 

LC-MS. We note that we have not studied how the retention time precision or mass accuracy of 
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different instruments would affect the degree of improvement achievable by IsoMS-Quant. In 

our studies, we usually used an LC instrument that can readily provide a retention time precision 

of better than 30 s and a mass spectrometer that can provide a mass accuracy of better than 5 

ppm for CIL LC-MS.  

We have used the IsoMS-Quant program for a number of metabolomics research projects 

and observed improvement in quantitative results that lead to better statistical analysis of the 

metabolomic data. One example is in a metabolomics study where a set of 109 LC-MS runs of 

dansyl labeled urine samples collected from 55 bladder cancer patients and 54 controls were 

processed to search for potential metabolite biomarkers for diagnosis of bladder cancer.[125, 137] 

The two groups could be readily separated using PLS-DA or volcano plots based on 

concentration variations of a number of significant metabolites.[125, 137] Figure 3.6 shows a 

plot of the p-values of three representative significant metabolites obtained before and after 

applying IsoMS-Quant. The p-values increase by more than 10-fold after using IsoMS-Quant. 

This level of improvement can be attributed to the fact that IsoMS-Quant generates more precise 

and accurate peak ratio values, allowing the reduction of intra-group variations and better 

separation of inter-group differences. 
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Figure 3.6 P-values of three significant metabolites differentiating bladder cancer and control 

groups in a metabolomics study of 109 bladder cancer and control samples. Metabolite #1722 

with molecular mass of 323.1703 was putatively identified as a derivative of 1,3-diaminopropane 

with the addition of adenosine, Metabolite #2306 with molecular mass of 290.1474 was 

putatively identified as a derivative of glutamic acid with the addition of carnitine, and 

Metabolite #2631 with molecular ion mass of 144.1017 was putatively identified as proline 

betaine. 

Finally, the use of IsoMS-Quant can also improve the analytical performance of targeted 

metabolite quantification. For targeted metabolite quantification using CIL LC-MS, a reference 

sample such as a pooled sample is 
13

C-labeled, following by spiking 
12

C-labeled metabolite 

standards with known concentrations to determine the absolute concentrations of all the 

metabolites of interest. This reference sample can then be used to quantify the metabolites in an 

individual sample by measuring the peak ratio of a metabolite peak pair from a mixture of 
12

C-

labeled individual sample and 
13

C-labeled reference sample. As an example, we performed 

absolute quantification of 20 metabolites in an individual human serum sample. Standard 

addition method using 
12

C-dansyl labeled metabolite standards was used to determine the 
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absolute concentrations of these 20 metabolites in a 
13

C-labeled pooled sample generated from 

mixing serums of 100 healthy individuals. An aliquot of the 
13

C-labeled pooled sample was 

spiked into a 
12

C-labeled individual sample in 1:1 volume ratio. The mixture was analyzed by 

LC-MS. The absolute concentrations of the 20 metabolites in the individual sample were 

determined by using the peak ratio of a metabolite peak pair and the absolute concentration of 

the metabolite in the pooled sample. Peak ratio was calculated with and without using IsoMS-

Quant.  

Table 3.1 lists the concentrations of 20 metabolites found in the individual serum sample 

using data processing with and without applying IsoMS-Quant. As Table 3.1 shows, the 

percentage of concentration difference for an individual metabolite by the two processing 

methods or relative error can be up to 32% (for serine) and as high as over 55% (for glycine 

where mass spectral peaks were saturated); the average difference was 13%. Manual inspection 

of the concentration data generated from the IsoMS-Quant method indicated that these 

concentration values were much more reliable, as the chromatographic peak shapes of a peak 

pair were well represented. Better precision is also achieved using IsoMS-Quant (mean RSD of 

4.2% vs. 6.7% without IsoMS-Quant from triplicate experiments). This example demonstrates 

that by using IsoMS-Quant better accuracy and precision can be achieved for targeted 

quantification of metabolites of interest using CIL LC-MS.   

Table 3.1 Results of targeted quantification of 20 metabolites in a human serum sample by LC-

MS analysis of a mixture of the 12C-labeled sample and the 13C-labeled pooled serum standard 

with known concentrations of these metabolites. 

Name 
Absolute conc. from 

peak area (µM) 

Absolute conc. from MS 

intensity (µM) 

Absolute conc. 

Relative error 
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Taurine 68 ± 1 69 ± 5 1% 

Arginine 364.6 ± 0.3 371 ± 1 2% 

Asparagine 10 ± 4 10 ± 4 0% 

Glutamine 89 ± 1 96 ± 4 8% 

Homoserine 0.98 ± 0.02 0.8 ± 0.1 18% 

Serine 428 ± 1 293 ± 6 32% 

Aspartic Acid 1289 ± 4 1310 ± 30 2% 

Trans-4-Hydroxyl-

L-Proline 
20.2 ± 0.2 19.1 ± 0.5 5% 

Threonine 220.6 ± 0.5 169 ± 3 23% 

Aminoadipic acid 2.7 ± 0.2 2.6 ± 0.4 4% 

Glycine 411 ± 2 183 ± 4 55% 

Glycylproline 0.56 ± 0.04 0.58 ± 0.06 4% 

Tryptophan 182 ± 1 206 ± 4 13% 

Phenylalanine 330 ± 4 230 ± 19 30% 

Isoleucine 128 ± 2 99 ± 1 23% 

Lysine  430 ± 8 365 ± 6 15% 

4-Hydroxybenzoic 

acid 
0.64 ± 0.01 0.65 ± 0.01 2% 

Desaminotyrosine 0.25 ± 0.02 0.24 ± 0.01 4% 

Histidine 254 ± 2 211 ± 4 17% 

Pyrocatechol 0.0041 ± 0.0005 0.0041 ± 0.0005 0% 
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3.4 Conclusions 

We have developed a method of generating quantitative peak ratio data using 

chromatographic peak areas of a peak pair in CIL LC-MS. A mass spectral peak pair found in  

the metabolite-intensity table generated by IsoMS and Zero-fill is searched against the raw LC-

MS data to find all neighboring mass spectra where the same peak pair is continuously detected. 

The chromatographic peaks of the light-labeled and heavy-labeled metabolites in the pair are 

constructed and their peak areas are determined for peak ratio measurement. We implemented 

this method by developing a software program, IsoMS-Quant, for automatic peak ratio 

calculation. IsoMS-Quant is demonstrated to provide better precision and accuracy for both 

untargeted and targeted metabolic profiling work using CIL LC-MS. IsoMS-Quant, along with 

IsoMS and Zero-fill, forms a complete workflow for rapid processing of raw LC-MS data 

generated by CIL LC-MS. 
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Chapter 4  

DnsID in MyCompoundID for Rapid Identification of Dansylated Amine- and 

Phenol-Containing Metabolites in LC-MS-Based Metabolomics 

4.1 Introduction 

Metabolite identification in liquid chromatography mass spectrometry (LC-MS)-based 

metabolomics remains to be one of the major analytical challenges. The first path of metabolite 

identification often involves mass search and/or MS/MS spectral search of a given peak against a 

compound library for possible match. Several compound libraries containing accurate masses 

and MS/MS spectra of standards have been developed.[141-143] However, there are a limited 

number of MS/MS spectra of metabolites available. Moreover, not all metabolites can produce a 

sufficient number of fragment ions for library search. Using mass search alone can lead to many 

possible structure candidates.[144-146] On the other hand, retention time (RT) of metabolites 

can be another important piece of information.[120, 147-151] However, RT can vary greatly, 

depending on a number of factors including instrumental setup, column type and elution 

conditions used. Thus, RT is not commonly used as a search parameter in a publicly available 

compound library. Instead, RT match is often performed at the final stage of confirming a 

metabolite identity using an authentic standard. By spiking a standard to a sample or running 

identical LC-MS conditions for the standard and sample, retention time can then be 

compared.[152]  

We have been developing a high-performance chemical isotope labeling (CIL) LC-MS 

platform for metabolomics where a mass-coded chemical labeling reagent (i.e., an isotope 

reagent) is rationally designed to label a submetabolome of the same functional group in order to 
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improve LC separation, increase MS sensitivity and enhance quantification simultaneously.[45, 

120, 123, 130, 138, 153, 154] For example, 
12

C2/
13

C2-dansylation (Dns) labeling LC-MS can be 

used to profile amine- and phenol-containing submetabolome with much improved metabolite 

coverage.[120] Other labeling reagents for targeted or untargeted metabolomic profiling have 

also been reported from a number of research groups.[47-64] In the case of dansylation, it offers 

a means of reducing the great diversity of physicochemical properties of many different 

metabolites in a metabolome so that the labeled metabolites can be efficiently separated using a 

reversed phase (RP) LC column alone.[120, 155] This averts the use of different columns to 

analyze different groups of metabolites (e.g., ionic, hydrophilic, hydrophobic, etc).[156] Since 

only one type of column is used, it should be relatively easier to use the retention time 

information of metabolites for comparison. 

However, even in RPLC-MS, retention time is sensitive to the experimental conditions 

used. Using the same LC-MS setup, slight changes in elution conditions can vary the retention 

time significantly. In this work, we report our study of applying a retention time calibration 

method to correct the RT drifts from one LC-MS dataset to another. This method is shown to be 

robust to generate a normalized RT for each dansyl labeled standard that can be used for library 

search. In addition to normalized RT information, MS and MS/MS spectra were obtained for 

individual standards. A search program, DnsID, was developed to match MS, MS/MS and RT of 

an unknown metabolite to those in the library for identification of labeled metabolites in 

dansylation LC-MS. To allow other researchers to use this resource for metabolite identification, 

we implemented the RT calibration and library search algorithms in a web-based interface that 

are freely available at the www.MyCompoundID.org website.  
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4.2 Experimental Section 

4.2.1 Construction of Dns-library  

The current Dns-library contains a total of 315 Dns-compounds from 273 unique 

metabolites (see Table T 4.1 for the complete list). To build this library, each metabolite standard 

was individually labeled using the dansylation labeling protocol previously published.[130] The 

final concentration of the dansylated standard for LC-MS analysis was about 10 µM after 

diluting by 0.1% (v/v) formic acid in 9:1 (v/v) H2O/ACN. All the dansylated standards were 

analyzed by LC-QTOF (see below) to produce MS, RT and MS/MS information. A mixture of 

RT calibrants (see below) was run every 10 injections of different Dns-standards to correct for 

any significant RT drifts during the data collection process. 
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Table 4.1 The complete Dns-compounds list in the Dns-library 

ID HMDB No. Name 
Acc. 
mass 

mz_light 
Normalized RT 

(min) 
Tag 
No. 

Charge 
No. 

1 HMDB00001 1-Methylhistidine 169.0851 403.1434 2.17 1 1 

2 HMDB00002 1,3-Diaminopropane 74.0844 308.1427 2.63 1 1 

3 HMDB00002_2 1,3-Diaminopropane - multi-tags 74.0844 271.0583 20.49 2 2 

4 HMDB00020 p-Hydroxyphenylacetic acid 152.0473 386.1057 16.91 1 1 

5 HMDB00021 Iodotyrosine 306.9705 387.5436 23.88 2 2 

6 HMDB00022 3-Methoxytyramine 167.0946 317.6056 25.49 2 2 

7 HMDB00045 Adenosine monophosphate 347.0631 581.1214 1.75 1 1 

8 HMDB00050 Adenosine 267.0968 501.1551 3.94 1 1 

9 HMDB00051 Ammonia 17.0266 251.0849 5.82 1 1 

10 HMDB00056 Beta-Alanine 89.0477 323.1060 7.24 1 1 

11 HMDB00064 Creatine 131.0695 365.1278 3.02 1 1 

12 HMDB00070 D-Pipecolic acid 129.0790 363.1373 13.23 1 1 

13 HMDB00085 Deoxyguanosine 267.0968 501.1551 8.49 1 1 

14 HMDB00087 Dimethylamine 45.0578 279.1162 15.07 1 1 

15 HMDB00089 Cytidine 243.0855 477.1438 5.87 1 1 

16 HMDB00089_2 Cytidine - H2O 243.0855 459.1333 7.38 1 1 

17 HMDB00095 Cytidine monophosphate 323.0519 557.1102 1.88 1 1 

18 HMDB00095_2 Cytidine monophosphate - Isomer 323.0519 557.1102 2.87 1 1 

19 HMDB00099 L-Cystathionine 222.0674 345.0920 13.34 2 2 

20 HMDB00099_2 L-Cystathionine - Isomer 222.0674 345.0920 13.69 2 2 

21 HMDB00101 Deoxyadenosine 251.1018 485.1602 8.72 1 1 

22 HMDB00112 Gamma-Aminobutyric acid 103.0633 337.1216 7.79 1 1 

23 HMDB00112_2 Gamma-Aminobutyric acid - H2O 103.0633 319.1144 13.57 1 1 

24 HMDB00118 Homovanillic acid 182.0579 416.1162 16.51 1 1 

25 HMDB00123 Glycine 75.0320 309.0903 6.59 1 1 

26 HMDB00128 Guanidoacetic acid 117.0538 351.1121 2.74 1 1 
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27 HMDB00130 Homogentisic acid 168.0423 318.0794 24.84 2 2 

28 HMDB00133 Guanosine 283.0917 517.1500 2.22 1 1 

29 HMDB00148 L-Glutamic Acid 147.0532 381.1115 5.05 1 1 

30 HMDB00148_2 L-Glutamic Acid - H2O 147.0532 363.1009 9.46 1 1 

31 HMDB00149 Ethanolamine 61.0528 295.1111 6.00 1 1 

32 HMDB00152 Gentisic acid 154.0266 388.0849 17.11 1 1 

33 HMDB00152_2 Gentisic acid - multi-tags 154.0266 311.0716 24.69 2 2 

34 HMDB00153 Estriol 288.1725 522.2309 20.36 1 1 

35 HMDB00157 Hypoxanthine + H2O 136.0385 388.1098 2.12 1 1 

36 HMDB00157_2 Hypoxanthine - multi-tags 136.0385 370.0968 8.73 1 1 

37 HMDB00157_3 Hypoxanthine - Isomer 136.0385 370.0968 9.65 1 1 

38 HMDB00158 L-Tyrosine 181.0739 324.5953 22.65 2 2 

39 HMDB00159 L-Phenylalanine 165.0790 399.1373 12.74 1 1 

40 HMDB00161 L-Alanine 89.0477 323.1060 7.57 1 1 

41 HMDB00162 L-Proline 115.0633 349.1216 10.18 1 1 

42 HMDB00164 Methylamine 31.0422 265.1005 9.82 1 1 

43 HMDB00167 L-Threonine 119.0582 353.1166 5.79 1 1 

44 HMDB00168 L-Asparagine 132.0535 366.1118 3.00 1 1 

45 HMDB00168_2 L-Asparagine - H2O 132.0535 348.1070 6.40 1 1 

46 HMDB00172 L-Isoleucine 131.0946 365.1529 13.06 1 1 

47 HMDB00177 L-Histidine 155.0695 389.1278 18.09 1 1 

48 HMDB00182 L-Lysine 146.1055 307.1111 17.47 2 2 

49 HMDB00187 L-Serine 105.0426 339.1009 4.40 1 1 

50 HMDB00191 L-Aspartic Acid 133.0375 367.0958 5.16 1 1 

51 HMDB00192 L-Cystine 240.0238 354.0702 14.11 2 2 

52 HMDB00206 N6-Acetyl-L-Lysine 188.1161 422.1744 5.71 1 1 

53 HMDB00210 Pantothenic acid 219.1107 453.1690 8.37 1 1 

54 HMDB00214 Ornithine 132.0899 300.1033 16.58 2 2 

55 HMDB00224 O-Phosphoethanolamine 141.0191 375.0774 2.02 1 1 

56 HMDB00228 Phenol 94.0419 328.1002 23.16 1 1 
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57 HMDB00238 Sepiapterin 237.0862 471.1445 10.14 1 1 

58 HMDB00239 Pyridoxine 169.0739 403.1322 10.12 1 1 

59 HMDB00239_2 Pyridoxine - H2O 169.0739 385.1243 18.01 1 1 

60 HMDB00251 Taurine 125.0147 359.0730 2.24 1 1 

61 HMDB00259 Serotonin 176.0950 322.1058 24.65 2 2 

62 HMDB00262 Thymine 126.0429 360.1012 13.21 1 1 

63 HMDB00265 Liothyronine 650.7900 884.8484 19.14 1 1 

64 HMDB00271 Sarcosine 89.0477 323.1060 9.34 1 1 

65 HMDB00279 Saccharopine 276.1321 510.1905 2.26 1 1 

66 HMDB00279_2 Saccharopine - H2O 276.1321 492.1799 5.65 1 1 

67 HMDB00291 Vanillylmandelic acid 198.0528 432.1111 12.81 1 1 

68 HMDB00291_2 Vanillylmandelic acid - H2O 198.0528 414.1005 21.31 1 1 

69 HMDB00292 Xanthine 152.0334 386.0917 8.95 1 1 

70 HMDB00296 Uridine 244.0695 478.1279 7.84 1 1 

71 HMDB00296_2 Uridine - H2O 244.0695 460.1173 8.67 1 1 

72 HMDB00300 Uracil 112.0273 346.0856 11.34 1 1 

73 HMDB00301 Urocanic acid 138.0429 372.1012 13.52 1 1 

74 HMDB00303 Tryptamine 160.1000 394.1584 18.03 1 1 

75 HMDB00306 Tyramine 137.0841 302.6004 25.83 2 2 

76 HMDB00356 17-Epiestriol 288.1725 522.2309 23.93 1 1 

77 HMDB00370 2-Amino-3-phosphonopropionic acid 169.0140 403.0723 1.69 1 1 

78 HMDB00397 2-Pyrocatechuic acid 154.0266 388.0849 16.31 1 1 

79 HMDB00440 3-Hydroxyphenylacetic acid 152.0473 386.1057 16.72 1 1 

80 HMDB00446 N-Alpha-acetyllysine 188.1161 422.1744 6.79 1 1 

81 HMDB00450 5-Hydroxylysine 162.1004 315.1085 13.88 2 2 

82 HMDB00452 L-Alpha-aminobutyric acid 103.0633 337.1216 9.13 1 1 

83 HMDB00455 Allocystathionine 222.0674 345.0920 13.33 2 2 

84 HMDB00455_2 Allocystathionine - Isomer 222.0674 345.0920 13.61 2 2 

85 HMDB00468 Biopterin 237.0862 471.1445 6.03 1 1 

86 HMDB00469 5-Hydroxymethyluracil 142.0378 376.0962 8.87 1 1 
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87 HMDB00473 6-Dimethylaminopurine 163.0858 397.1441 18.56 1 1 

88 HMDB00479 3-methyl-histidine 169.0851 403.1434 2.01 1 1 

89 HMDB00484 Vanillic acid 168.0423 402.1006 17.34 1 1 

90 HMDB00500 4-Hydroxybenzoic acid 138.0317 372.0900 17.57 1 1 

91 HMDB00504 5-Hydroxy-L-tryptophan 220.0848 344.1007 20.29 1 1 

92 HMDB00510 Aminoadipic acid 161.0688 395.1271 5.97 1 1 

93 HMDB00517 L-Arginine 174.1117 408.1700 2.44 1 1 

94 HMDB00557 L-Alloisoleucine 131.0946 365.1529 13.20 1 1 

95 HMDB00574 Cysteine 121.0197 355.0781 14.12 1 1 

96 HMDB00592 Glucosamine 6-sulfate 259.0362 493.0945 1.79 1 1 

97 HMDB00615 Epinephrine 183.0895 417.1479 6.19 1 1 

98 HMDB00615_2 Epinephrine - Isomer 183.0895 417.1479 7.20 1 1 

99 HMDB00615_3 Epinephrine - Isomer 183.0895 417.1479 8.59 1 1 

100 HMDB00630 Cytosine 111.0433 345.1016 7.58 1 1 

101 HMDB00641 L-Glutamine 146.0691 380.1275 3.32 1 1 

102 HMDB00650 D-Alpha-aminobutyric acid 103.0633 337.1216 9.23 1 1 

103 HMDB00667 L-Thyroine 273.1001 370.6084 25.44 2 2 

104 HMDB00669 Ortho-Hydroxyphenylacetic acid 152.0473 386.1057 16.42 1 1 

105 HMDB00670 Homo-L-arginine 188.1273 422.1856 3.00 1 1 

106 HMDB00676 L-Homocystine 268.0551 368.0859 15.82 2 2 

107 HMDB00679 Homocitrulline 189.1113 423.1697 4.47 1 1 

108 HMDB00684 L-Kynurenine 208.0848 442.1431 11.44 1 1 

109 HMDB00684_2 L-Kynurenine - H2O 208.0848 424.1325 11.97 1 1 

110 HMDB00687 L-leucine 131.0946 365.1529 13.36 1 1 

111 HMDB00696 L-Methionine 149.0510 383.1094 10.89 1 1 

112 HMDB00704 Isoxanthopterin 179.0443 413.1026 9.55 1 1 

113 HMDB00704_2 Isoxanthopterin - Isomer 179.0443 413.1026 10.82 1 1 

114 HMDB00706 L-Aspartyl-L-phenylalanine 280.1059 514.1642 10.07 1 1 

115 HMDB00714 Hippuric acid 179.0582 413.1166 7.07 1 1 

116 HMDB00716 L-Pipecolic acid 129.0790 363.1373 13.45 1 1 
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117 HMDB00719 L-Homoserine 119.0582 353.1166 4.05 1 1 

118 HMDB00719_2 L-Homoserine - H2O 119.0582 335.1060 9.26 1 1 

119 HMDB00721 Glycylproline 172.0848 406.1431 7.17 1 1 

120 HMDB00725 Trans-4-Hydroxyl-L-Proline 131.0582 365.1166 5.17 1 1 

121 HMDB00734 Indoleacrylic acid 187.0633 421.1216 20.61 1 1 

122 HMDB00750 3-Hydroxymandelic acid 168.0423 402.1006 12.94 1 1 

123 HMDB00750_2 3-Hydroxymandelic acid - COOH 168.0423 356.0951 21.64 1 1 

124 HMDB00755 Hydroxyphenyllactici acid 182.0579 416.1162 14.39 1 1 

125 HMDB00759 Glycyl-L-Leucine 188.1161 422.1744 11.22 1 1 

126 HMDB00763 5-Hydroxyindoleacetic acid 191.0582 425.1166 15.09 1 1 

127 HMDB00819 Normetanephrine 183.0895 325.6031 23.41 2 2 

128 HMDB00840 Salicyluric acid 195.0532 429.1115 11.05 1 1 

129 HMDB00881 Xanthurenic acid 205.0375 439.0958 9.06 1 1 

130 HMDB00881_2 Xanthurenic acid - multi-tags 205.0375 629.0732 26.34 2 1 

131 HMDB00883 L-Valine 117.0790 351.1373 10.81 1 1 

132 HMDB00884 Ribothymidine 258.0852 492.1435 5.85 1 1 

133 HMDB00884_2 Ribothymidine - Isomer 258.0852 492.1435 8.54 1 1 

134 HMDB00884_3 Ribothymidine - H2O 258.0852 474.1329 9.39 1 1 

135 HMDB00897 7-Methylguanine 165.0651 399.1234 10.32 1 1 

136 HMDB00904 Citrulline 175.0957 409.1540 3.74 1 1 

137 HMDB00905 Deoxyadenosine monophosphate 331.0682 565.1265 4.58 1 1 

138 HMDB00929 L-Tryptophan 204.0899 438.1482 11.44 1 1 

139 HMDB00939 S-Adenosylhomocysteine 384.1216 426.1191 10.52 2 2 

140 HMDB00954 trans-Ferulic acid 194.0579 428.1162 18.47 1 1 

141 HMDB00955 Isoferulic acid 194.0579 428.1162 17.49 1 1 

142 HMDB00957 pyrocatechol 110.0368 289.0767 26.70 2 2 

143 HMDB00965 Hypotaurine 109.0197 343.0781 2.47 1 1 

144 HMDB00982 5-Methylcytidine 257.1012 491.1595 2.94 1 1 

145 HMDB00982_2 5-Methylcytidine - Isomer 257.1012 491.1595 5.98 1 1 

146 HMDB00991 2-aminooctanoic acid 159.1259 393.1842 19.20 1 1 
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147 HMDB01044 2'-Deoxyguanosine 5'-monophosphate 347.0631 581.1214 5.57 1 1 

148 HMDB01049 Gamma-Glutamylcysteine 250.0623 483.1211 8.62 1 1 

149 HMDB01065 2-Hydroxyphenethlamine 137.0841 371.1424 10.77 1 1 

150 HMDB01065_2 2-Hydroxyphenethlamine - Isomer 137.0841 371.1424 13.77 1 1 

151 HMDB01069 2-Phenylaminoadenosine 358.1390 592.1973 8.73 1 1 

152 HMDB01123 2-Aminobenzoic acid 137.0477 371.1060 16.62 1 1 

153 HMDB01149 5-Aminolevulinic acid 131.0582 365.1166 7.59 1 1 

154 HMDB01169 4-Aminophenol 109.0528 343.1111 16.30 1 1 

155 HMDB01169_2 4-Aminophenol - multi-tags 109.0528 288.5847 25.04 2 2 

156 HMDB01173 5'-Methylthioadenosine 297.0896 531.1479 6.97 1 1 

157 HMDB01202 dCMP 307.0569 541.1153 4.66 1 1 

158 HMDB01232 4-Nitrophenol 139.0269 373.0853 23.45 1 1 

159 HMDB01238 N-Acetylserotonin 218.1055 452.1638 14.32 1 1 

160 HMDB01254 Glucosamine 6-phosphate 259.0457 493.1040 1.60 1 1 

161 HMDB01257 Spermidine 145.1579 306.6373 10.54 2 2 

162 HMDB01336 3,4-Dihydroxybenzeneacetic acid 168.0423 318.0794 23.90 2 2 

163 HMDB01341 ADP 427.0294 661.0877 1.49 1 1 

164 HMDB01370 Diaminopimelic acid 190.0954 329.1060 12.30 2 2 

165 HMDB01370_2 Diaminopimelic acid - Isomer 190.0954 329.1060 12.96 2 2 

166 HMDB01392 p-Aminobenzoic acid 137.0477 371.1060 11.52 1 1 

167 HMDB01397 Guanosine monophosphate 363.0580 597.1163 1.15 1 1 

168 HMDB01398 Guaiacol 124.0524 358.1107 22.54 1 1 

169 HMDB01413 Citicoline 488.1073 722.1657 1.48 1 1 

170 HMDB01413_2 Citicoline - Isomer 488.1073 722.1657 1.28 1 1 

171 HMDB01414 1,4-diaminobutane 88.1000 278.1083 21.27 2 2 

172 HMDB01431 Pyridoxamine 168.0899 318.1033 19.47 2 2 

173 HMDB01432 Agmatine 130.1218 364.1802 4.52 1 1 

174 HMDB01432_2 Agmatine - multi-tags 130.1218 299.1192 15.28 2 2 

175 HMDB01476 3-Hydroxyanthranilic acid 153.0426 387.1009 18.14 1 1 

176 HMDB01522 Methylguanidine 73.0640 307.1223 3.84 1 1 
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177 HMDB01522_2 Methylguanidine - multi-tags 73.0640 270.5903 22.52 2 2 

178 HMDB01525 Imidazole 68.0374 302.0958 14.29 1 1 

179 HMDB01545 Pyridoxal 167.0582 401.1166 12.01 1 1 

180 HMDB01645 L-Norleucine 131.0946 365.1529 14.11 1 1 

181 HMDB01713 m-Coumaric acid 164.0473 398.1057 18.51 1 1 

182 HMDB01833 Aminopterin 440.1557 674.2140 6.06 1 1 

183 HMDB01842 Guanidine 59.0483 293.1067 3.00 1 1 

184 HMDB01849 Propranolol 259.1572 493.2155 24.95 1 1 

185 HMDB01855 5-Hydroxytryptophol 177.0790 411.1373 15.55 1 1 

186 HMDB01856 Protocatechuic acid 154.02661 311.0716 24.51 2 2 

187 HMDB01858 p-Cresol 108.0575 342.1158 24.54 1 1 

188 HMDB01859 Acetaminophen 151.0633 385.1216 16.35 1 1 

189 HMDB01861 3-Methylhistamine 125.0953 359.1536 3.27 1 1 

190 HMDB01866 3,4-Dihydroxymandelic acid 184.0372 326.0769 21.73 2 2 

191 HMDB01867 4-Aminohippuric acid 194.0691 428.1275 8.38 1 1 

192 HMDB01868 5-Methoxysalicylic acid 168.0423 402.1006 16.38 1 1 

193 HMDB01885 3-Chlorotyrosine 215.0349 341.5758 23.57 2 2 

194 HMDB01889 Theophylline 180.0647 414.1230 15.42 1 1 

195 HMDB01891 m-Aminobenzoic acid 137.0477 371.1060 11.76 1 1 

196 HMDB01894 Aspartame 294.1216 528.1799 13.72 1 1 

197 HMDB01895 Salicylic acid 138.0317 372.0900 15.62 1 1 

198 HMDB01901 Aminocaproic acid 131.0946 365.1529 10.21 1 1 

199 HMDB01904 3-Nitrotyrosine 226.0590 335.1080 22.61 2 2 

200 HMDB01904_2 3-Nitrotyrosine - H2O 226.0590 347.0878 22.61 2 2 

201 HMDB01906 2-Aminoisobutyric acid 103.0633 337.1216 8.91 1 1 

202 HMDB01915 Alendronic acid 249.0167 483.0750 1.59 1 1 

203 HMDB01918 Thyroxine 776.6867 622.4017 27.74 2 2 

204 HMDB01924 Atenolol 266.1630 500.2214 11.91 1 1 

205 HMDB01932 Metoprolol 267.1834 501.2418 22.09 1 1 

206 HMDB01937 Salbutamol 239.1521 473.2105 8.27 1 1 
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207 HMDB01937_2 Salbutamol - H2O 239.1521 455.1999 8.42 1 1 

208 HMDB01938 Lisinopril 405.2264 320.1460 7.68 1 2 

209 HMDB01942 Phenylpropanolamine 151.0997 385.1580 15.13 1 1 

210 HMDB01943 Pseudoephedrine 165.1154 399.1737 19.38 1 1 

211 HMDB01964 Caffeic acid 180.0423 324.0800 24.64 1 1 

212 HMDB01972 3-Aminosalicylic acid 153.0426 387.1009 12.22 1 1 

213 HMDB02005 Methionine Sulfoxide 165.0460 399.1043 3.72 1 1 

214 HMDB02005_2 Methionine Sulfoxide - Isomer 165.0460 399.1043 4.20 1 1 

215 HMDB02006 2,3-Diaminoproprionic acid 104.0586 286.0876 15.65 2 2 

216 HMDB02017 1-Phenylethylamine 121.0891 355.1475 18.63 1 1 

217 HMDB02024 Imidazoleacetic acid 126.0429 360.1012 11.12 1 1 

218 HMDB02048 m-Cresol 108.0575 342.1158 24.44 1 1 

219 HMDB02055 o-Cresol 108.0575 342.1158 24.60 1 1 

220 HMDB02064 N-Acetylputrescine 130.1106 364.1689 7.25 1 1 

221 HMDB02085 Syringic acid 198.0528 432.1111 18.10 1 1 

222 HMDB02099 6-Methyladenine 149.0701 383.1285 12.22 1 1 

223 HMDB02099_2 6-Methyladenine - Isomer 149.0701 383.1285 12.74 1 1 

224 HMDB02108 Methylcysteine 135.0354 369.0937 9.37 1 1 

225 HMDB02128 2,4-Diamino-6-hydroxypyrimidine 126.0542 360.1125 8.95 1 1 

226 HMDB02141 N-Methyl-a-aminoisobutyric acid 117.0790 351.1373 13.65 1 1 

227 HMDB02182 Phenylephrine 167.0946 317.6056 25.39 2 2 

228 HMDB02199 Desaminotyrosine 166.0630 400.1213 18.04 1 1 

229 HMDB02205 L-Homocysteic acid 183.0201 417.0785 1.64 1 1 

230 HMDB02210 2-Phenylglycine 151.0633 385.1216 11.69 1 1 

231 HMDB02322 Cadaverine 102.1157 285.1162 22.39 2 2 

232 HMDB02339 5-Methoxytryptophan 234.1004 468.1588 9.79 1 1 

233 HMDB02362 2,4-Diaminobutyric acid 118.0742 293.0954 15.80 2 2 

234 HMDB02390 3-Cresotinic acid 152.0473 386.1057 16.80 1 1 

235 HMDB02393 N-methyl-D-aspartic acid 147.0532 381.1115 7.53 1 1 

236 HMDB02658 6-Hydroxynicotinic acid 139.0269 373.0853 12.21 1 1 
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237 HMDB02658_2 6-Hydroxynicotinic acid - Isomer 139.0269 373.0853 15.32 1 1 

238 HMDB02670 Naringenin 272.0685 370.0926 15.29 2 2 

239 HMDB02706 Canavanine 176.0909 322.1038 11.37 2 2 

240 HMDB02706_2 Canavanine - Isomer 176.0909 322.1038 11.59 2 2 

241 HMDB02991 Cysteamine 77.0299 311.0882 15.08 1 1 

242 HMDB03012 Aniline 93.0578 327.1162 17.32 1 1 

243 HMDB03134 Biocytin 372.1831 606.2414 6.72 1 1 

244 HMDB03157 Guanidinosuccinic acid 175.0593 409.1176 2.81 1 1 

245 HMDB03164 Chlorogenic acid 354.0951 411.1059 19.45 2 2 

246 HMDB03164_2 Chlorogenic acid - Isomer 354.0951 411.1059 21.24 2 2 

247 HMDB03282 1-Methylguanine 165.0651 399.1234 9.57 1 1 

248 HMDB03320 Indole-3-carboxylic acid 161.0477 395.1060 19.27 1 1 

249 HMDB03334 Symmetric dimethylarginine 202.1430 436.2013 3.05 1 1 

250 HMDB03337 Oxidized glutathione 612.1520 540.1343 8.07 2 2 

251 HMDB03338 Hydroxylamine 33.0215 267.0798 12.02 1 1 

252 HMDB03355 5-Aminopentanoic acid 117.0790 351.1373 8.68 1 1 

253 HMDB03423 D-Glutamine 146.0691 380.1275 3.32 1 1 

254 HMDB03431 L-Histidinol 141.0902 375.1485 1.44 1 1 

255 HMDB03464 4-Guanidinobutanoic acid 145.0851 379.1434 3.65 1 1 

256 HMDB03464_2 4-Guanidinobutanoic acid - H2O 145.0851 361.1329 11.00 1 1 

257 HMDB03474 3,5-Diiodo-L-tyrosine 432.8672 666.9255 11.82 1 1 

258 HMDB03474_2 3,5-Diiodo-L-tyrosine - multi-tags 432.8672 450.4919 24.18 2 2 

259 HMDB03640 Beta-Leucine 131.0946 365.1529 10.78 1 1 

260 HMDB03640_2 Beta-Leucine - H2O 131.0946 347.1424 20.77 1 1 

261 HMDB03911 3-Aminoisobutanoic acid 103.0633 337.1216 8.67 1 1 

262 HMDB03911_2 3-Aminoisobutanoic acid - H2O 103.0633 319.1110 16.29 1 1 

263 HMDB04095 5-Methoxytryptamine 190.1106 424.1689 16.52 1 1 

264 HMDB04122 Selenocystine 335.9128 402.0147 15.09 2 2 

265 HMDB04437 Diethanolamine 105.0790 339.1373 5.49 1 1 

266 HMDB04811 2,4-Dichlorophenol 161.9639 396.0222 26.30 1 1 
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267 HMDB04815 4-Hydroxy-3-methylbenzoic acid 152.0473 386.1057 19.43 1 1 

268 HMDB04987 Alpha-Aspartyl-lysine 261.1325 364.6246 13.61 2 2 

269 HMDB04992 Benzocaine 165.0790 399.1373 20.08 1 1 

270 HMDB06050 o-Tyrosine 181.0739 324.5953 22.38 2 2 

271 HMDB11177 L-phenylalanyl-L-proline 262.1317 496.1901 13.13 1 1 

272 HMDB11737 Gamma Glutamylglutamic acid 276.0958 510.1541 3.44 1 1 

273 HMDB13243 Leucyl-phenylalanine 278.1630 512.2214 16.59 1 1 

274 HMDB13302 Phenylalanylphenylalanine 312.1474 546.2057 16.55 1 1 

275 HMDB28689 Alanyl-Histidine 226.1066 460.1649 17.62 1 1 

276 HMDB28691 Alanyl-Leucine 202.1317 436.1901 11.36 1 1 

277 HMDB28694 Alanyl-Phenylalanine 236.1161 470.1744 12.11 1 1 

278 HMDB28698 Alanyl-Tryptophan 275.1270 509.1853 11.09 1 1 

279 HMDB28699 Alanyl-Tyrosine 252.1110 360.1138 21.85 2 2 

280 HMDB28716 Arginyl-Phenylalanine 321.1801 555.2384 6.80 1 1 

281 HMDB28844 Glycyl-Isoleucine 188.1161 422.1744 10.78 1 1 

282 HMDB28848 Glycyl-Phenylalanine 222.1004 456.1588 11.65 1 1 

283 HMDB28852 Glycyl-Tryptophan 261.1113 495.1697 11.19 1 1 

284 HMDB28853 Glycyl-Tyrosine 238.0954 353.1060 21.63 2 2 

285 HMDB28854 Glycyl-Valine 174.1004 408.1588 9.19 1 1 

286 HMDB28878 Histidinyl-Alanine 226.1066 460.1649 16.69 1 1 

287 HMDB28937 Leucyl-Proline 228.1474 462.2057 12.99 1 1 

288 HMDB28940 Leucyl-Tryptophan 317.1739 551.2323 15.77 1 1 

289 HMDB28941 Leucyl-Tyrosine 294.1580 381.1373 23.98 1 1 

290 HMDB28988 Phenylalanyl-Alanine 236.1161 470.1744 10.58 1 1 

291 HMDB28995 Phenylalanyl-Glycine 222.1004 456.1588 9.43 1 1 

292 HMDB29001 Phenylalanyl-Methionine 296.1195 530.1778 13.87 1 1 

293 HMDB29007 Phenylalanyl-Tyrosine 328.1423 398.1295 24.22 2 2 

294 HMDB29008 Phenylalanyl-Valine 264.1474 498.2057 13.62 1 1 

295 HMDB29043 Serinyl-Leucine 218.1267 452.1850 8.90 1 1 

296 HMDB29046 Serinyl-Phenylalanine 252.1110 486.1693 9.38 1 1 
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297 HMDB29065 Threoninyl-Leucine 232.1423 466.2006 10.18 1 1 

298 HMDB29082 Tryptophyl-Glutamate 332.1246 566.1830 8.29 1 1 

299 HMDB29087 Tryptophyl-Leucine 317.1739 551.2323 14.60 1 1 

300 HMDB29090 Tryptophyl-Phenylalanine 351.1583 585.2166 15.36 1 1 

301 HMDB29095 Tryptophyl-Tyrosine 367.1532 417.6349 23.25 1 1 

302 HMDB29098 Tyrosyl-Alanine 252.1110 360.1138 20.86 2 2 

303 HMDB29105 Tyrosyl-Glycine 238.0954 353.1060 20.19 2 2 

304 HMDB29109 Tyrosyl-Leucine 294.1580 381.1373 23.77 2 2 

305 HMDB29118 Tyrosyl-Valine 280.1423 374.1295 22.83 2 2 

306 HMDB29306 4-Ethylphenol 122.0732 356.1315 25.63 1 1 

307 HMDB59964 2,3,4-Trihydroxybenzoic acid 170.0215 319.0691 24.10 2 2 

308 HMDB59966 3,5-Dimethoxyphenol 154.0630 388.1213 23.75 1 1 

309 HMDB60003 Isovanillic acid 168.0423 402.1006 15.69 1 1 

310 312 Gly-Gly-Gly-Gly 246.0964 480.1548 3.39 1 1 

311 313 Trp-Gly-Gly 318.1328 552.1911 7.60 1 1 

312 314 Gly-Norvaline 174.1005 408.1588 9.51 1 1 

313 315 Gly-Norleucine 188.1161 422.6993 11.36 1 1 

314 316 Phenyl-Leucine 278.1631 512.2214 15.90 1 1 

315 317 Phe-Phe-Phe 459.2158 693.2741 19.95 1 1 
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4.2.2 LC-MS and MS/MS  

Several LC-MS setups were used in this work. Detailed information on the LC and MS 

settings is provided in “Supplemental Note for Dns-lib Instrumental Settings” in the Appendix. 

To construct the dansyl library, an individual 
12

C-dansyl labeled standard was injected 

into a Bruker HD Impact QTOF mass spectrometer (Billerica, MA, USA) with electrospray 

ionization (ESI) linked to an Agilent 1100 HPLC system (Palo Alto, CA, USA). Reversed-phase 

Zorbax Eclipse C18 column (2.0 mm × 100 mm, 1.7 µm particle size, 95 Å pore size) from 

Agilent was used.  

For human urine sample analysis, two equal aliquots were taken from the same urine 

collected from a healthy individual with the approval of the University of Alberta Ethics Board 

and labeled separately by 
12

C- and 
13

C-dansylation. The labeled samples were mixed in 1:1 and 

centrifuged at 20,800 g for 10 min before injecting into LC-QTOF-MS for analysis.  IsoMS was 

used to process the data including adduct ion filtering to retain only [M+H]
+
 ions to generate 

unique peak pairs from individual labeled metabolites.[123] While it is not the focus of this work, 

both relative and absolute quantification of dansyl labeled metabolites can be performed using 

differential isotope labeling.[157] 

To validate the performance of the RT correction algorithm, a mixture of Dns-

metabolites was prepared using 20 Dns-standards (see Table T 4.3 for the list) and analyzed 

using the Bruker LC-QTOF-MS as well as the Bruker 9.4-T Fourier-transform Ion Cyclotron 

Resonance (FTICR) MS.  
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To examine the differences of fragmentation patterns obtained using different tandem 

mass spectrometers, MS/MS spectra of several Dns-metabolites were also collected using a 

QTRAP 4000 mass spectrometer (AB Sciex, Foster City, CA).  

4.2.3 Retention Time Calibration  

Table 4.1 lists the 22 Dns-standards selected according to their elution times in a typical 

dansylation RPLC-MS run. They were mixed in equal moles and served as the retention time 

calibrants (RTcal). They are generally very stable and can be stored at -20 C for a year or longer 

without degradation.  

4.2.4 DnsID for Metabolite Identification  

Identification of labeled metabolites in a sample in a user's laboratory is done in two 

steps. The first step is to run the RTcal mixture in LC-MS to produce the retention time 

information for all the calibrants. The next step is to run a real sample under the same LC-MS 

conditions as those used for running the RTcal. The two data files are then uploaded to the 

DnsID program which is hosted at the MyCompoundID website 

(www.mycompoundid.org).[144] In DnsID, the retention times of all the labeled metabolites 

detected in the sample are first corrected using the retention time information obtained from the 

RTcal. The program then compares the mass and the corrected retention time of an individual 

unknown metabolite to those in the Dns-library for possible match. If a tandem mass 

spectrometer is available, MS/MS spectrum of a matched metabolite can be generated and 

searched against the standard MS/MS spectra in the Dns-library for further confirmation of the 

metabolite identity. The scoring system used for MS/MS search is the same as the one described 

previously for MS/MS-based di/tripeptide identification.[158] 
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A user manual of the DnsID program and an example of search are shown in the 

Appendix, respectively. These documents are also provided at the website. 

 

4.3 Results and Discussion 

4.3.1 Retention Time Calibration.  

Table 4.2 lists the composition of the RTcal mixture which was carefully developed to 

space the individual calibrants at similar RT intervals over the whole metabolite elution window. 

Figure 4.1A shows the base-peak ion chromatogram of the RTcal mixture obtained using a 

typical dansylation LC-MS running condition. In most cases, the interval is less than 2 min, 

allowing the use of a simple linear calibration equation to correct the retention times of any 

metabolite peaks falling within a given short interval. There are a few unlabeled low-intensity 

peaks in Figure 4.1A from the impurities (e.g., a peak at RT 10.9 with m/z 355.1458 which was a 

natural isotopic peak of an unknown peak pair at m/z 351.1396 and 353.1461). 

Table 4.2 A list of dansyl labeled standards used for retention time calibration (i.e., RT 

calibrants). 

 HMDB No. Name mz_light mz_heavy RT (min) 

1 HMDB00517 Dns-Arginine 408.1700 410.1767 2.44 

2 HMDB00187 Dns-Serine 339.1009 341.1076 4.40 

3 HMDB00148 Dns-Glutamic acid 381.1115 383.1182 5.05 

4 HMDB00167 Dns-Threonine 353.1166 355.1233 5.79 

5 HMDB00123 Dns-Glycine 309.0903 311.0970 6.59 

6 HMDB00161 Dns-Alanine 323.1060 325.1127 7.57 

7 HMDB01906 Dns-2-Aminoisobutyric acid 337.1216 339.1283 8.91 

8 HMDB00162 Dns-Proline 349.1216 351.1283 10.18 

9 HMDB00696 Dns-Methionine 383.1094 385.1161 10.89 

10 HMDB00159 Dns-Phenylalanine 399.1373 401.1440 12.74 

11 HMDB01894 Dns-Aspartame 528.1799 530.1866 13.72 
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12 HMDB00192 Dns-Cystine 354.0702 356.0769 14.11 

13 HMDB00087 Dns-Dimethylamine 279.1162 283.1308 14.67 

14 HMDB00676 Dns-Homocystine 368.0859 370.0926 15.82 

15 HMDB00182 Dns-Lysine 307.1111 309.1178 17.47 

16 HMDB02017 Dns-1-phenylethylamine 355.1475 357.1542 18.63 

17 HMDB29098 Dns-Tyrosyl-Alanine 360.1138 362.1205 20.86 

18 HMDB02322 Dns-Cadaverine 285.1162 287.1229 22.39 

19 HMDB00158 Dns-Tyrosine 324.5953 326.6020 22.65 

20 HMDB00259 Dns-Serotonin 322.1058 324.1125 24.65 

21 HMDB29306 Dns-4-Ethylphenol 356.1315 358.1382 25.63 

22 HMDB00957 Dns-Pyrocatechol 289.0767 291.0834 26.70 

 

 Figure 4.1B shows the schematic display of the RT calibration method. It works by 

dividing the whole LC chromatogram into 23 time intervals. Except the first and last time 

intervals, all the other 21 intervals have each of them bracketed by two reference standards from 

the RTcal. Within each interval, the RT differences of two pairs of standards between the user's 

RTcal run and the library RTcal data are calculated (e.g., Δt1 and Δt2 for the time shifts of 

standards 1 and 2, respectively). Then, a linear RT correction is applied to calculate the RT shift 

(Δt) (see Figure 1B for the equation). To correct the RT shift of any peak within the interval for a 

real sample, the measured RT of the metabolite in the LC-MS run of the sample (ti in Figure 1B) 

is subtracted by the RT shift to generate a corrected RT (ti_corrected). For any metabolite peaks 

present in the first and last time intervals, only one pair of standard is available (either the first or 

the last reference standard). Thus, only one RT difference (Δtfirst_standard or ∆tlast_standard) is 

calculated between the user’s RTcal run and the library RTcal data. The measured RT of a 

labeled metabolite in a sample is corrected by subtracting Δtfirst_standard or ∆tlast_standard. After 

processing the chromatographic peaks at all the intervals in the sample LC-MS run, a CSV file 

containing the corrected RT data is created for the sample.   
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Figure 4.1(A) Base peak ion chromatogram of a mixture of 22 RT calibration standards (RTcal) 

(see Table 1 for the list) obtained by using RPLC-MS with a linear gradient elution. (B) 
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Schematic of the retention time calibration method where t1
0
 (or t2

0
) and t1 (or t2) refer to 

retention time of standard 1 (or standard 2) found in the library and the user's RTcal 

chromatogram, respectively, ∆t1 and ∆t2 refer to the retention time shift of the user's 

chromatogram from the library data for standard 1 and 2, respectively, ti refers to the retention 

time of any metabolite peak resided in between the retention times of standards 1 and 2, and ∆t is 

the retention time correction for ti . 

 The performance of the RT calibration method is illustrated in Figure 4.2 where retention 

time correlations of different LC-MS experiments (LC-FTICR-MS and LC-QTOF-MS) before 

and after applying RT calibration are shown. In this case, 20 standards have been selected from 

the library with retention time span over the entire metabolite elution window. Two different 

HPLC systems with different batches of the same type of column were used. Also, the 

connection tubing lengths and the interfaces of LC-FTICR-MS and LC-QTOF-MS were 

different. Figure 4.2 shows the RT correlation plots of the 20 standards from the data obtained by 

LC-FTICR-MS and those in the Dns-library. Before applying the RT calibration, there is a shift 

to a higher RT for the LC-FTICR-MS data. The RT shift can be as large as 4.8 min (see Table T 

4.3). Although the RT shift becomes smaller at the high organic elution region, the shift is still 

greater than 0.5 min. However, even with these large and non-linear RT variations, after 

applying the RT calibration, an excellent linear correlation between the corrected RT and the 

library RT can be obtained (R
2
=0.9996). As it is shown in Table T 4.3, the RT shift after 

calibration for all the metabolites is below 15 s, which is the RT tolerance threshold we typically 

use for performing DnsID M-RT search (see below). This example illustrates that the RT 

calibration method is able to correct for RT shifts found in different LC-MS setups.  
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Table 4.3 The RT shifts of 20 standards before and after calibration 

Test 

std 
HMDB No. 

Name (Dns 

labeled) 
mz_light 

Library 

RT 

LC-

FTICR-

MS 

original 

RT 

LC-

FTICR-MS 

corrected 

RT 

RT shift 

before 

calibration 

RT shift 

after 

calibration 

1 HMDB00251 Taurine 359.0730 2.24 7.09 2.36 4.85 0.12 

2 HMDB00168 Asparagine 366.1117 3.00 7.69 2.96 4.69 -0.04 

3 HMDB00641 Glutamine 380.1275 3.32 7.99 3.39 4.67 0.07 

4 HMDB00679 Homocitrulline 423.1699 4.47 8.77 4.49 4.30 0.02 

5 HMDB00191 Aspartic Acid 367.0958 5.16 9.31 5.14 4.15 -0.02 

6 HMDB00510 Aminoadipic acid 395.1271 5.97 10.04 5.96 4.07 -0.01 

7 HMDB00721 Glycylproline 406.1432 7.17 11.32 7.08 4.15 -0.09 

8 HMDB00210 Pantothenic acid  453.1694 8.37 12.58 8.19 4.21 -0.18 

9 HMDB00883 Valine 351.1364 10.81 15.58 10.89 4.77 0.08 

10 HMDB00929 Tryptophan 438.1476 11.44 16.18 11.53 4.74 0.09 

11 HMDB00172 Isoleucine 365.1512 13.06 17.75 13.28 4.69 0.22 

12 HMDB00687 Leucine 365.1512 13.36 17.99 13.58 4.63 0.22 

13 HMDB29087 
Tryptophyl-

Leucine 
551.2323 14.60 19.25 14.63 4.23 0.03 

14 HMDB00214 Ornithine 300.1034 16.58 20.57 16.46 3.99 -0.12 

15 HMDB00177 Histidine 389.1278 18.09 21.89 18.01 3.80 -0.08 

16 HMDB00954 trans-ferulic acid  428.1162 18.47 22.25 18.43 3.78 -0.04 

17 HMDB01414 1,4-diaminobutane 278.1083 21.27 23.75 21.47 2.48 0.20 

18 HMDB00228 Phenol 328.0993 23.16 24.84 23.36 1.73 0.20 

19 HMDB00130 Homogenstic acid 318.0794 24.84 25.73 24.65 0.89 -0.19 

20 HMDB00881 Xanthurenic acid  629.0730 26.34 26.87 26.37 0.53 0.03 
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Figure 4.2 Correlation plots of the retention times of RTcal obtained by LC-FTICR-MS vs. those 

in the Dns-library before (in blue) and after (in Red) applying the RT calibration method. 

 We have also examined whether RT changes with sample matrix. In this case, we 

injected a RTcal mixture followed by three injections of the dansylated urine. Many of the 

labeled amino acids in RTcal were detected in the samples. Table T 4.4 shows the measured RTs 

for 10 labeled amino acids in RTcal and urine samples. The RT differences between those in 

urine and standard mixture are within 2.6 s, indicating that RTs were not affected by sample 

matrix.     
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Table 4.4 RTs of 10 labeled amino acids  in stds and urine 

 

*un-normalized raw RT data. 

 
Name mz_light 

Std_1 rt 

(min)* 

Urine_1 

rt (min)* 

Urine_2 

rt (min)* 

Urine_3 

rt (min)* 

Averaged 

urine rt (min) 

Averaged rt 

difference 

(second) 

1 Dns-Arginine 408.1700 2.58 2.60 2.60 2.60 2.60 1.2 

2 Dns-Serine 339.1009 4.56 4.56 4.57 4.46 4.53 -1.8 

3 Dns-Threonine 353.1166 5.87 5.83 5.83 5.85 5.84 -2.0 

4 Dns-Alanine 323.1060 7.60 7.55 7.54 7.58 7.56 -2.6 

5 Dns-Proline 349.1217 10.24 10.24 10.24 10.22 10.23 -0.4 

6 Dns-Methionine 383.1094 10.99 10.99 11.01 10.98 10.99 0.2 

7 Dns-Phenylalanine 399.1373 12.79 12.81 12.80 12.78 12.80 0.4 

8 Dns-Cystine 354.0703 14.14 14.16 14.14 14.15 14.15 0.6 

9 Dns-Lysine 307.1111 17.51 17.54 17.53 17.53 17.53 1.4 

10 Dns-Tyrosine 324.5953 22.70 22.74 22.70 22.73 22.72 1.4 
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4.3.2 Dns-library  

The current Dns-library consists of 273 unique metabolites that have been found in 

biological samples related to human, according to the Human Metabolome Database (HMDB). 

These are mainly amines and phenols with a few other types of metabolites that can be labeled 

by dansylation (see Table T 4.1). They also include 39 dipeptides and 2 tripeptides; di/tripeptides 

are products of enzymatic reactions and degradation products of proteins and some of them have 

significant biological activities and functions.[158] Table T 4.5 shows a list of metabolic 

pathways where one or more of these metabolites belong to. These metabolites cover more than 

42 metabolic pathways, offering the possibility of probing their perturbations in metabolomics 

studies using dansylation LC-MS. Due to multiple products that could be formed after 

dansylation of a metabolite containing more than one amine or phenol group, there are 314 

different labeled compounds in the current library from the 273 metabolites (i.e., two products 

each from 8 di-amines, 27 amine-phenols and three products from 3 amine-phenols).   

Table 4.5 List of Pathways involved 

 Pathway Name 

1 Nitrogen metabolism 

2 Aminoacyl-tRNA biosynthesis 

3 Tyrosine metabolism 

4 Arginine and proline metabolism 

5 Glycine, serine and threonine metabolism 

6 Alanine, aspartate and glutamate metabolism 

7 beta-Alanine metabolism 

8 Phenylalanine metabolism 

9 Glutathione metabolism 

10 Cysteine and methionine metabolism 

11 Pyrimidine metabolism 

12 Purine metabolism 
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13 Lysine degradation 

14 Cyanoamino acid metabolism 

15 Lysine biosynthesis 

16 Tryptophan metabolism 

17 D-Glutamine and D-glutamate metabolism 

18 Histidine metabolism 

19 Phenylalanine, tyrosine and tryptophan biosynthesis 

20 Pantothenate and CoA biosynthesis 

21 Taurine and hypotaurine metabolism 

22 D-Arginine and D-ornithine metabolism 

23 Valine, leucine and isoleucine biosynthesis 

24 Sulfur metabolism 

25 Biotin metabolism 

26 Methane metabolism 

27 Glycerophospholipid metabolism 

28 Valine, leucine and isoleucine degradation 

29 Vitamin B6 metabolism 

30 Caffeine metabolism 

31 Ubiquinone and other terpenoid-quinone biosynthesis 

32 Thiamine metabolism 

33 Sphingolipid metabolism 

34 Propanoate metabolism 

35 Selenoamino acid metabolism 

36 Butanoate metabolism 

37 Nicotinate and nicotinamide metabolism 

38 Primary bile acid biosynthesis 

39 Folate biosynthesis 

40 Porphyrin and chlorophyll metabolism 

41 Amino sugar and nucleotide sugar metabolism 

42 Steroid hormone biosynthesis 

 

 In addition to mass and normalized RT, the Dns-library contains high-resolution QTOF 

MS/MS spectra of individual metabolites. We recognize that low-resolution tandem mass 

spectrometers such as triple quadrupole (QqQ), Qtrap and ion trap are currently more readily 

available than QTOF as they are more widely used for targeted metabolite analysis.[159-161] 

The MS/MS spectra generated using these instruments should still be useful for comparison with 

the QTOF spectra in the library. As an example, MS/MS spectra of Dns-biocytin obtained using 
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Qtrap 4000 and Impact HD QTOF are shown in Figure 4.3. In this case, the fragmentation 

patterns in terms of relative peak intensities of the fragment ions are somewhat different, but the 

types of fragment ions generated are almost the same. The pattern difference is understandable 

for CID MS/MS where several parameters including collision cell design, collision voltage, etc. 

can influence the spectral pattern.  
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Figure 4.3 MS/MS spectra of Dns-biocytin obtained by (A) QTOF MS (library spectrum) and 

(B) QTrap MS (see Figure 4.5 for structure assignments of major fragment ions). 

 For constructing the library MS/MS spectra in QTOF, half of the data acquisition time 

was spent at collision energy of 20 eV and another half at 50 eV. Therefore, each MS/MS 

spectrum actually represents an averaged fragmentation pattern at these two collision energies. 

However, when using a tandem MS such as QqQ or Qtrap for targeted analysis, sometimes only 

one collision energy is used. As an example, panels A and B in Figure 4.4. show the Qtrap 

MS/MS spectra of Dns-histidinyl-alanine collected at 25 eV and 55 eV, respectively. Each 

spectrum matches partially with the corresponding MS/MS spectrum in the library (Figure 4.4C). 

Nevertheless, within this partial match, similar fragmentation patterns were observed. In addition, 

it is also possible to overlay the two Qtrap MS/MS spectra (Figure 4.4D) to obtain a more 
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complete match with the library spectrum, thereby providing higher confidence of correct 

identification.  
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Figure 4.4 MS/MS spectra of Dns-histidinyl-alanine. 
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 Comparisons of the MS/MS spectra shown in Figure 4.3 and Figure 4.4 indicate that 

there are several common fragment ions detected. They are from the fragmentation of the Dns 

group. Figures 4.5 and 4.6 show the interpretation of the major fragment ions present in the 

MS/MS spectra of Dns-biocytin and Dns-histidinyl-alanine, respectively. 



99 

 

 

Figure 4.5 Interpretation of the major fragment ions present in the MS/MS spectra of Dns-

biocytin. 
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Figure 4.6 Interpretation of the major fragment ion present in the MS/MS spectra of Dns-

histidinyl-alanine. 

 It should be noted that, although the 273 Dns-standards already cover many metabolic 

pathways, the size of the current library is still relatively small, compared to thousands of Dns-

metabolites detectable in a biological sample using LC-MS.[137, 162] There is clearly a need to 

expand the library in the future through acquisition of more commercially available standards as 
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well as synthesis of key metabolic pathway related amines and phenols. In addition, we hope that 

other users will contribute to the expansion of this public library by providing us any standards 

that are not readily available. 

4.3.3 DnsID M-RT Search  

Out of the three searchable parameters for each Dns-metabolite in the Dns-library, mass 

and RT matches by M-RT search can result in confident identification of a Dns-metabolite. 

Figure 4.7 shows a screenshot of the DnsID program depicting the search process. In a user's 

laboratory, the RTcal mixture, which can be prepared by the user and is also available by 

contacting the corresponding author, is first run by LC-MS. The resultant data are processed by 

the user to generate a file containing accurate masses of RTcal along with their corresponding 

measured RT. This calibration file is uploaded to DnsID (see Figure 4.7). An LC-MS run of a 

sample differentially labeled by 
12

C- and 
13

C-dansylation from a metabolomic profiling work is 

then chosen for metabolite identification using DnsID. 
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Figure 4.7 Screenshot of the mass and RT (M-RT) search interface of DnsID in 

www.mycompoindid.org 

 As Figure 4.7 shows, there are two modes of M-RT search. In the single search mode, the 

calibration file is first uploaded. The measured mass of a Dns-metabolite of interest found in a 

sample (e.g., a significant metabolite differentiating two groups of samples in a metabolomics 

study) is entered along with the mass tolerance which is dependent on the instrument used. The 

measured RT of the Dns-metabolite and its tolerance are then entered. The RT tolerance should 

be within the limit of RT variation encountered in LC-MS. In our LC-QTOF-MS and LC-

FTICR-MS setups, the RT tolerance is typically within 15 s and the mass error is within 10 ppm. 

However, for a lower abundance chromatographic peak, the peak shape may not be perfectly 
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symmetric and thus increasing the RT tolerance to some extent (e.g., using 30 s) is warranted. 

While mass error for most of the metabolite peaks detected is less than 2 ppm, low abundance 

peaks can have mass error of up to 10 ppm due to relatively poor peak shapes.  

For untargeted metabolite identification, the batch mode M-RT search can be used. In 

this case, both the calibration file and the IsoMS-processed CSV file of a sample LC-MS run are 

uploaded (see Figure 4.7). The mass tolerance and retention time tolerance are also entered. 

DnsID automatically performs RT calibration using the calibration file against the Dns-library 

data, followed by applying the RT calibration to the uploaded sample CSV file to correct any RT 

shifts caused by the differences in the user's LC-MS setup and the library LC-MS setup. The 

search result page displays all the matches that can be sorted according to an individual 

parameter (e.g., RT) (see Figure 4.8). The displayed information includes the name of matched 

metabolite, HMDB number (or Dns-library number if HMDB number is not available for the 

standard), several numeric parameters as well as external links to HMDB and KEGG. These 

external links are useful to extract biological information about the matched metabolite. On the 

summary page, there is also a "Show Detail" column which provides a link to the ion 

chromatogram and MS/MS spectrum of the Dns-standard (see an example shown in Figure 4.9). 

The standard's chromatogram is particularly useful for manual inspection of a match where a 

larger RT difference or error (i.e., between 15 and 30 s) is found. A larger RT error is acceptable 

if this is due to relatively poor chromatographic peak shape. Otherwise, the match may be false. 
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Figure 4.8 Partial list of the search result from LC-MS analysis of a 12C-/13C-dansyl labeled 

human urine sample. 
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Figure 4.9 Detailed information of a Dns-standard. 

While Figure 4.8 shows only a partial list of matches from the analysis of a dansyl 

labeled human urine sample, the complete list is shown in Table T 4.6. The mass error and RT 

error of each match are shown in the search result. Again, a larger RT error should trigger a 

manual inspection of the sample chromatogram to compare the chromatographic peak of the 

match with that of the Dns-standard. As Table T 4.6 shows, a total of 105 metabolites were 

matched. Manual inspection of all these M-RT matches did not find any obvious mistake in the 

match result. On the search result page, there is an option of saving the search results as a CSV 

file to the user's computer. This file can be opened locally by Excel or other program for 

presentation or further processing. No result files or any original data from a user are saved in the 

server. 
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Table 4.6 The entire urine search results 

# 
Input 

mass 

Inpu

t RT 

Calibrate

d RT 
HMDB No. Name 

Monoisotopi

c molecular 

mass 

mz_light 
Librar

y RT 

Mass 

error 

RT 

erro

r 

HMD

B link 

KEG

G link 

Show 

detail 

Matche

d with 

MS/MS 

search 

1 
375.078

5 
2.05 1.94 

HMDB0022

4 
O-Phosphoethanolamine 141.0191 

375.077

4 
2.02 

0.001

1 
0.08 Link  Link  

Detai

l 

Yes 

2 
359.074

3 
2.31 2.18 

HMDB0025

1 
Taurine 125.0147 359.073 2.24 

0.001

3 
0.06 Link  Link  

Detai

l 

Yes 

3 
403.144

3 
2.32 2.19 

HMDB0000

1 
1-Methylhistidine 169.0851 

403.143

4 
2.17 

0.000

9 
0.02 Link  Link  

Detai

l 

Yes 

 

403.144

3 
2.32 2.19 

HMDB0047

9 
3-methyl-histidine 169.0851 

403.143

4 
2.01 

0.000

9 
0.18 Link  Link  

Detai

l 

No 

4 
408.170

8 
2.61 2.47 

HMDB0051

7 
L-Arginine 174.1117 408.17 2.44 

0.000

8 
0.03 Link  Link  

Detai

l 

Yes 

5 
343.078

1 
2.64 2.5 

HMDB0096

5 
Hypotaurine 109.0197 

343.078

1 
2.47 0 0.03 Link  Link  

Detai

l 

Yes 

6 
351.112

4 
2.81 2.67 

HMDB0012

8 
Guanidoacetic acid 117.0538 

351.112

1 
2.74 

0.000

3 
0.07 Link  Link  

Detai

l 

Yes 

7 
366.113

2 
3.09 2.94 

HMDB0016

8 
L-Asparagine 132.0535 

366.111

8 
3.00 

0.001

4 
0.06 Link  Link  

Detai

l 

Yes 

8 
422.186

1 
3.21 3.06 

HMDB0067

0 
Homo-L-arginine 188.1273 

422.185

6 
3.00 

0.000

5 
0.06 Link  Link  

Detai

l 

Yes 

9 
359.154

7 
3.28 3.14 

HMDB0186

1 
3-Methylhistamine 125.0953 

359.153

6 
3.27 

0.001

1 
0.13 Link  Link  

Detai

l 

Yes 

10 
436.201

4 
3.44 3.29 

HMDB0333

4 
Symmetric dimethylarginine 202.143 

436.201

3 
3.05 

0.000

1 
0.24 Link  Link  

Detai

l 

Yes 

11 
380.128

8 
3.44 3.3 

HMDB0064

1 
L-Glutamine 146.0691 

380.127

5 
3.32 

0.001

3 
0.02 Link  Link  

Detai

l 

Yes 

 

380.128

8 
3.44 3.3 

HMDB0342

3 
D-Glutamine 146.0691 

380.127

5 
3.32 

0.001

3 
0.02 Link  Link  

Detai

l 

No 

12 
359.153

8 
3.49 3.34 

HMDB0186

1 
3_Methylhistamine 125.0953 

359.153

6 
3.27 

0.000

2 
0.07 Link  Link  

Detai

l 

Yes 

13 
409.155

1 
3.65 3.5 

HMDB0090

4 
Citrulline 175.0957 409.154 3.74 

0.001

1 
0.24 Link  Link  

Detai

l 

Yes 

14 
399.104

9 
3.83 3.68 

HMDB0200

5 
Methionine Sulfoxide 165.046 

399.104

3 
3.72 

0.000

6 
0.04 Link  Link  

Detai

l 

Yes 

http://www.hmdb.ca/metabolites/hmdb00224
http://www.genome.jp/dbget-bin/www_bget?cpd:C00346
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00224&RT=2.02&HMDB_NAME=O-Phosphoethanolamine&Average_mass=0.0&Accurate_mass=141.0191&mz_light=375.0774&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00224&RT=2.02&HMDB_NAME=O-Phosphoethanolamine&Average_mass=0.0&Accurate_mass=141.0191&mz_light=375.0774&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00251
http://www.genome.jp/dbget-bin/www_bget?cpd:C00245
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00251&RT=2.24&HMDB_NAME=Taurine&Average_mass=0.0&Accurate_mass=125.0147&mz_light=359.073&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00251&RT=2.24&HMDB_NAME=Taurine&Average_mass=0.0&Accurate_mass=125.0147&mz_light=359.073&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00001
http://www.genome.jp/dbget-bin/www_bget?cpd:C01152
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00001&RT=2.17&HMDB_NAME=1_Methylhistidine&Average_mass=0.0&Accurate_mass=169.0851&mz_light=403.1434&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00001&RT=2.17&HMDB_NAME=1_Methylhistidine&Average_mass=0.0&Accurate_mass=169.0851&mz_light=403.1434&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00479
http://www.genome.jp/dbget-bin/www_bget?cpd:C01152
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00479&RT=2.01&HMDB_NAME=3_methyl-histidine&Average_mass=0.0&Accurate_mass=169.0851&mz_light=403.1434&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00479&RT=2.01&HMDB_NAME=3_methyl-histidine&Average_mass=0.0&Accurate_mass=169.0851&mz_light=403.1434&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00517
http://www.genome.jp/dbget-bin/www_bget?cpd:C00062
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00517&RT=2.44&HMDB_NAME=L-Arginine&Average_mass=0.0&Accurate_mass=174.1117&mz_light=408.17&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00517&RT=2.44&HMDB_NAME=L-Arginine&Average_mass=0.0&Accurate_mass=174.1117&mz_light=408.17&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00965
http://www.genome.jp/dbget-bin/www_bget?cpd:C00519
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00965&RT=2.47&HMDB_NAME=Hypotaurine&Average_mass=0.0&Accurate_mass=109.0197&mz_light=343.0781&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00965&RT=2.47&HMDB_NAME=Hypotaurine&Average_mass=0.0&Accurate_mass=109.0197&mz_light=343.0781&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00128
http://www.genome.jp/dbget-bin/www_bget?cpd:C00581
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00128&RT=2.74&HMDB_NAME=Guanidoacetic%20acid&Average_mass=0.0&Accurate_mass=117.0538&mz_light=351.1121&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00128&RT=2.74&HMDB_NAME=Guanidoacetic%20acid&Average_mass=0.0&Accurate_mass=117.0538&mz_light=351.1121&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00168
http://www.genome.jp/dbget-bin/www_bget?cpd:C00152
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00168&RT=3.0&HMDB_NAME=L-Asparagine&Average_mass=0.0&Accurate_mass=132.0535&mz_light=366.1118&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00168&RT=3.0&HMDB_NAME=L-Asparagine&Average_mass=0.0&Accurate_mass=132.0535&mz_light=366.1118&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00670
http://www.genome.jp/dbget-bin/www_bget?cpd:C01924
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00670&RT=3.0&HMDB_NAME=Homo-L-arginine&Average_mass=0.0&Accurate_mass=188.1273&mz_light=422.1856&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00670&RT=3.0&HMDB_NAME=Homo-L-arginine&Average_mass=0.0&Accurate_mass=188.1273&mz_light=422.1856&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01861
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01861&RT=3.27&HMDB_NAME=3_Methylhistamine&Average_mass=0.0&Accurate_mass=125.0953&mz_light=359.1536&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01861&RT=3.27&HMDB_NAME=3_Methylhistamine&Average_mass=0.0&Accurate_mass=125.0953&mz_light=359.1536&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb03334
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03334&RT=3.05&HMDB_NAME=Symmetric%20dimethylarginine&Average_mass=0.0&Accurate_mass=202.143&mz_light=436.2013&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03334&RT=3.05&HMDB_NAME=Symmetric%20dimethylarginine&Average_mass=0.0&Accurate_mass=202.143&mz_light=436.2013&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00641
http://www.genome.jp/dbget-bin/www_bget?cpd:C00064
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00641&RT=3.32&HMDB_NAME=L-Glutamine&Average_mass=0.0&Accurate_mass=146.0691&mz_light=380.1275&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00641&RT=3.32&HMDB_NAME=L-Glutamine&Average_mass=0.0&Accurate_mass=146.0691&mz_light=380.1275&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb03423
http://www.genome.jp/dbget-bin/www_bget?cpd:C00819
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03423&RT=3.32&HMDB_NAME=D-Glutamine&Average_mass=0.0&Accurate_mass=146.0691&mz_light=380.1275&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03423&RT=3.32&HMDB_NAME=D-Glutamine&Average_mass=0.0&Accurate_mass=146.0691&mz_light=380.1275&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01861
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01861&RT=3.27&HMDB_NAME=3_Methylhistamine&Average_mass=0.0&Accurate_mass=125.0953&mz_light=359.1536&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01861&RT=3.27&HMDB_NAME=3_Methylhistamine&Average_mass=0.0&Accurate_mass=125.0953&mz_light=359.1536&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00904
http://www.genome.jp/dbget-bin/www_bget?cpd:C00327
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00904&RT=3.74&HMDB_NAME=Citrulline&Average_mass=0.0&Accurate_mass=175.0957&mz_light=409.154&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00904&RT=3.74&HMDB_NAME=Citrulline&Average_mass=0.0&Accurate_mass=175.0957&mz_light=409.154&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb02005
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02005&RT=3.72&HMDB_NAME=Methionine%20Sulfoxide&Average_mass=0.0&Accurate_mass=165.046&mz_light=399.1043&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02005&RT=3.72&HMDB_NAME=Methionine%20Sulfoxide&Average_mass=0.0&Accurate_mass=165.046&mz_light=399.1043&mz_heavy=0.0&tag=1.0&charge=1.0
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HMDB0152

2 
Methylguanidine 73.064 

307.122
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HMDB0071
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HMDB0200
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HMDB0018
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L-Serine 105.0426 
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0.000
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0.01 Link  Link  
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Yes 
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HMDB0067

9 
Homocitrulline 189.1113 

423.169

7 
4.47 

0.000

5 
0.02 Link  Link  

Detai

l 

Yes 

20 
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HMDB0014

8 
L-Glutamic Acid 147.0532 
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HMDB0027
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Saccharopine - H2O 276.1321 
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N6-Acetyl-L-Lysine 188.1161 
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Detai
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23 
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HMDB0016

7 
L-Threonine 119.0582 
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Detai
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Yes 

24 
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HMDB0051
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Aminoadipic acid 161.0688 

395.127
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Detai
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Yes 
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HMDB0014

9 
Ethanolamine 61.0528 
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0.000
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0.02 Link  Link  

Detai
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Yes 

26 
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HMDB0012

3 
Glycine 75.032 

309.090
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6.59 0 0.05 Link  Link  

Detai

l 

Yes 

27 
422.175

2 
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HMDB0044

6 
N-Alpha-acetyllysine 188.1161 

422.174

4 
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0.000
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0.03 Link  Link  

Detai
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Yes 

28 
531.148
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HMDB0117
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5'-Methylthioadenosine 297.0896 
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0.000
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0.06 Link  Link  

Detai

l 

Yes 

29 
406.143
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7.19 7.14 

HMDB0072

1 
Glycylproline 172.0848 

406.143
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7.17 

0.000

1 
0.03 Link  Link  

Detai

l 

Yes 
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323.106

5 
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HMDB0005
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0.000
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0.02 Link  Link  

Detai
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Yes 
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1 
L-Alanine 89.0477 323.106 7.57 0 0.04 Link  Link  

Detai
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Yes 

32 
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7.64 7.61 

HMDB0114

9 
5-Aminolevulinic acid 131.0582 

365.116

6 
7.59 

0.000

7 
0.02 Link  Link  

Detai

l 

Yes 

33 
337.121

8 
7.72 7.69 

HMDB0011

2 
Gamma-Aminobutyric acid 103.0633 

337.121

6 
7.79 

0.000

2 
0.1 Link  Link  

Detai

l 

Yes 

34 453.168 8.24 8.22 HMDB0021 Pantothenic acid 219.1107 453.169 8.37 0.000 0.15 Link  Link  Detai Yes 

http://www.hmdb.ca/metabolites/hmdb1522
http://www.genome.jp/dbget-bin/www_bget?cpd:C02294
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01522&RT=3.84&HMDB_NAME=Methylguanidine&Average_mass=0.0&Accurate_mass=73.064&mz_light=307.1223&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01522&RT=3.84&HMDB_NAME=Methylguanidine&Average_mass=0.0&Accurate_mass=73.064&mz_light=307.1223&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00719
http://www.genome.jp/dbget-bin/www_bget?cpd:C00263
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00719&RT=4.05&HMDB_NAME=L-Homoserine&Average_mass=0.0&Accurate_mass=119.0582&mz_light=353.1166&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00719&RT=4.05&HMDB_NAME=L-Homoserine&Average_mass=0.0&Accurate_mass=119.0582&mz_light=353.1166&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb02005
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02005_2&RT=4.2&HMDB_NAME=Methionine%20Sulfoxide%20-%20Isomer&Average_mass=0.0&Accurate_mass=165.046&mz_light=399.1043&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02005_2&RT=4.2&HMDB_NAME=Methionine%20Sulfoxide%20-%20Isomer&Average_mass=0.0&Accurate_mass=165.046&mz_light=399.1043&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00187
http://www.genome.jp/dbget-bin/www_bget?cpd:C00065
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00187&RT=4.4&HMDB_NAME=L-Serine&Average_mass=0.0&Accurate_mass=105.0426&mz_light=339.1009&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00187&RT=4.4&HMDB_NAME=L-Serine&Average_mass=0.0&Accurate_mass=105.0426&mz_light=339.1009&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00679
http://www.genome.jp/dbget-bin/www_bget?cpd:C02427
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00679&RT=4.47&HMDB_NAME=Homocitrulline&Average_mass=0.0&Accurate_mass=189.1113&mz_light=423.1697&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00679&RT=4.47&HMDB_NAME=Homocitrulline&Average_mass=0.0&Accurate_mass=189.1113&mz_light=423.1697&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00148
http://www.genome.jp/dbget-bin/www_bget?cpd:C00025
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00148&RT=5.05&HMDB_NAME=L-Glutamic%20Acid&Average_mass=0.0&Accurate_mass=147.0532&mz_light=381.1115&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00148&RT=5.05&HMDB_NAME=L-Glutamic%20Acid&Average_mass=0.0&Accurate_mass=147.0532&mz_light=381.1115&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00279
http://www.genome.jp/dbget-bin/www_bget?cpd:C00449
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00279_2&RT=5.65&HMDB_NAME=Saccharopine%20-%20H2O&Average_mass=0.0&Accurate_mass=276.1321&mz_light=492.1799&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00279_2&RT=5.65&HMDB_NAME=Saccharopine%20-%20H2O&Average_mass=0.0&Accurate_mass=276.1321&mz_light=492.1799&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00206
http://www.genome.jp/dbget-bin/www_bget?cpd:C02727
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00206&RT=5.71&HMDB_NAME=N6-Acetyl-L-Lysine&Average_mass=0.0&Accurate_mass=188.1161&mz_light=422.1744&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00206&RT=5.71&HMDB_NAME=N6-Acetyl-L-Lysine&Average_mass=0.0&Accurate_mass=188.1161&mz_light=422.1744&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00167
http://www.genome.jp/dbget-bin/www_bget?cpd:C00188
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00167&RT=5.79&HMDB_NAME=L-Threonine&Average_mass=0.0&Accurate_mass=119.0582&mz_light=353.1166&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00167&RT=5.79&HMDB_NAME=L-Threonine&Average_mass=0.0&Accurate_mass=119.0582&mz_light=353.1166&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00510
http://www.genome.jp/dbget-bin/www_bget?cpd:C00956
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00510&RT=5.97&HMDB_NAME=Aminoadipic%20acid&Average_mass=0.0&Accurate_mass=161.0688&mz_light=395.1271&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00510&RT=5.97&HMDB_NAME=Aminoadipic%20acid&Average_mass=0.0&Accurate_mass=161.0688&mz_light=395.1271&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/HMDB00149
http://www.genome.jp/dbget-bin/www_bget?cpd:C00189
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00149&RT=6.0&HMDB_NAME=Ethanolamine&Average_mass=0.0&Accurate_mass=61.0528&mz_light=295.1111&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00149&RT=6.0&HMDB_NAME=Ethanolamine&Average_mass=0.0&Accurate_mass=61.0528&mz_light=295.1111&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00123
http://www.genome.jp/dbget-bin/www_bget?cpd:C00037
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00123&RT=6.59&HMDB_NAME=Glycine&Average_mass=0.0&Accurate_mass=75.032&mz_light=309.0903&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00123&RT=6.59&HMDB_NAME=Glycine&Average_mass=0.0&Accurate_mass=75.032&mz_light=309.0903&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00446
http://www.genome.jp/dbget-bin/www_bget?cpd:C12989
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00446&RT=6.79&HMDB_NAME=N-Alpha-acetyllysine&Average_mass=0.0&Accurate_mass=188.1161&mz_light=422.1744&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00446&RT=6.79&HMDB_NAME=N-Alpha-acetyllysine&Average_mass=0.0&Accurate_mass=188.1161&mz_light=422.1744&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01173
http://www.genome.jp/dbget-bin/www_bget?cpd:C00170
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01173&RT=6.97&HMDB_NAME=5%27-Methylthioadenosine&Average_mass=0.0&Accurate_mass=297.0896&mz_light=531.1479&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01173&RT=6.97&HMDB_NAME=5%27-Methylthioadenosine&Average_mass=0.0&Accurate_mass=297.0896&mz_light=531.1479&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00721
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00721&RT=7.17&HMDB_NAME=Glycylproline&Average_mass=0.0&Accurate_mass=172.0848&mz_light=406.1431&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00721&RT=7.17&HMDB_NAME=Glycylproline&Average_mass=0.0&Accurate_mass=172.0848&mz_light=406.1431&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00056
http://www.genome.jp/dbget-bin/www_bget?cpd:C00099
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00056&RT=7.24&HMDB_NAME=Beta-Alanine&Average_mass=0.0&Accurate_mass=89.0477&mz_light=323.106&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00056&RT=7.24&HMDB_NAME=Beta-Alanine&Average_mass=0.0&Accurate_mass=89.0477&mz_light=323.106&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00161
http://www.genome.jp/dbget-bin/www_bget?cpd:C00041
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00161&RT=7.57&HMDB_NAME=L-Alanine&Average_mass=0.0&Accurate_mass=89.0477&mz_light=323.106&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00161&RT=7.57&HMDB_NAME=L-Alanine&Average_mass=0.0&Accurate_mass=89.0477&mz_light=323.106&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01149
http://www.genome.jp/dbget-bin/www_bget?cpd:C00430
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01149&RT=7.59&HMDB_NAME=5-Aminolevulinic%20acid&Average_mass=0.0&Accurate_mass=131.0582&mz_light=365.1166&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01149&RT=7.59&HMDB_NAME=5-Aminolevulinic%20acid&Average_mass=0.0&Accurate_mass=131.0582&mz_light=365.1166&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00112
http://www.genome.jp/dbget-bin/www_bget?cpd:C00334
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00112&RT=7.79&HMDB_NAME=Gamma-Aminobutyric%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00112&RT=7.79&HMDB_NAME=Gamma-Aminobutyric%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/HMDB00210
http://www.genome.jp/dbget-bin/www_bget?cpd:C00864
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00210&RT=8.37&HMDB_NAME=Pantothenic%20acid&Average_mass=0.0&Accurate_mass=219.1107&mz_light=453.169&mz_heavy=0.0&tag=1.0&charge=1.0
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35 
337.122

0 
8.71 8.69 

HMDB0190

6 
2-Aminoisobutyric acid 103.0633 

337.121
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8.91 

0.000

4 
0.22 Link  Link  

Detai

l 
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337.122

0 
8.71 8.69 

HMDB0391

1 
3-Aminoisobutanoic acid 103.0633 

337.121

6 
8.67 

0.000

4 
0.02 Link  Link  

Detai

l 

Yes 

36 
370.097
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8.76 8.74 

HMDB0015

7 
Hypoxanthine - multi-tags 136.0385 

370.096

8 
8.73 

0.000

8 
0.01 Link  Link  

Detai

l 

Yes 

37 
351.137

5 
8.85 8.83 

HMDB0335

5 
5-Aminopentanoic acid 117.079 

351.137

3 
8.68 

0.000

2 
0.15 Link  Link  

Detai

l 

Yes 

38 
376.096

0 
8.9 8.88 

HMDB0046

9 
5-Hydroxymethyluracil 142.0378 

376.096

2 
8.87 

0.000

2 
0.01 Link  Link  

Detai

l 

Yes 

39 
386.092

3 
9.06 9.03 

HMDB0029

2 
Xanthine 152.0334 

386.091

7 
8.95 

0.000

6 
0.08 Link  Link  

Detai

l 

Yes 

40 
337.122

2 
9.15 9.12 

HMDB0045

2 
L-Alpha-aminobutyric acid 103.0633 

337.121

6 
9.13 

0.000

6 
0.01 Link  Link  

Detai

l 

Yes 

 

337.122

2 
9.15 9.12 

HMDB0065

0 
D-Alpha-aminobutyric acid 103.0633 

337.121

6 
9.23 

0.000

6 
0.11 Link  Link  

Detai

l 

No 

 

337.122

2 
9.15 9.12 

HMDB0190

6 
2-Aminoisobutyric acid 103.0633 

337.121

6 
8.91 

0.000

6 
0.21 Link  Link  

Detai

l 

No 

41 
335.105

3 
9.34 9.31 

HMDB0071

9 
L-Homoserine - H2O 119.0582 335.106 9.26 

0.000

7 
0.05 Link  Link  

Detai

l 

Yes 

42 
399.124

4 
9.44 9.41 

HMDB0328

2 
1-Methylguanine 165.0651 

399.123

4 
9.57 0.001 0.16 Link  Link  

Detai

l 

Yes 

43 
456.158

2 
9.46 9.42 

HMDB2899

5 
Phenylalanyl-Glycine 222.1004 

456.158

8 
9.43 

0.000

6 
0.01 Link  Link  

Detai

l 

Yes 

44 
363.101

1 
9.55 9.51 

HMDB0014

8 
L-Glutamic Acid - H2O 147.0532 

363.100

9 
9.46 

0.000

2 
0.05 Link  Link  

Detai

l 

Yes 

45 
413.103

0 
9.56 9.52 

HMDB0070

4 
Isoxanthopterin 179.0443 

413.102

6 
9.55 

0.000

4 
0.03 Link  Link  

Detai

l 

Yes 

46 
369.093

9 
9.58 9.54 

HMDB0210

8 
Methylcysteine 135.0354 

369.093

7 
9.37 

0.000

2 
0.17 Link  Link  

Detai

l 

Yes 

47 
265.100

7 
9.69 9.64 

HMDB0016

4 
Methylamine 31.0422 

265.100

5 
9.82 

0.000

2 
0.18 Link  Link  

Detai

l 

Yes 

48 
370.097

2 
9.77 9.73 

HMDB0015

7 
Hypoxanthine - Isomer 136.0385 

370.096

8 
9.65 

0.000

4 
0.08 Link  Link  

Detai

l 

Yes 

49 
349.121

7 
10.23 10.17 

HMDB0016

2 
L-Proline 115.0633 

349.121

6 
10.18 

0.000

1 
0.01 Link  Link  

Detai

l 

Yes 

50 
399.122

8 
10.34 10.28 

HMDB0089

7 
7-Methylguanine 165.0651 

399.123

4 
10.32 

0.000

6 
0.04 Link  Link  

Detai

l 

Yes 

http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00210&RT=8.37&HMDB_NAME=Pantothenic%20acid&Average_mass=0.0&Accurate_mass=219.1107&mz_light=453.169&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01906
http://www.genome.jp/dbget-bin/www_bget?cpd:C03665
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01906&RT=8.91&HMDB_NAME=2_Aminoisobutyric%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01906&RT=8.91&HMDB_NAME=2_Aminoisobutyric%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb03911
http://www.genome.jp/dbget-bin/www_bget?cpd:C05145
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03911&RT=8.67&HMDB_NAME=3_Aminoisobutanoic%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03911&RT=8.67&HMDB_NAME=3_Aminoisobutanoic%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00157
http://www.genome.jp/dbget-bin/www_bget?cpd:C00262
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00157_2&RT=8.73&HMDB_NAME=Hypoxanthine%20-%20multi-tags&Average_mass=0.0&Accurate_mass=136.0385&mz_light=370.0968&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00157_2&RT=8.73&HMDB_NAME=Hypoxanthine%20-%20multi-tags&Average_mass=0.0&Accurate_mass=136.0385&mz_light=370.0968&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb03355
http://www.genome.jp/dbget-bin/www_bget?cpd:C00431
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03355&RT=8.68&HMDB_NAME=5-Aminopentanoic%20acid&Average_mass=0.0&Accurate_mass=117.079&mz_light=351.1373&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03355&RT=8.68&HMDB_NAME=5-Aminopentanoic%20acid&Average_mass=0.0&Accurate_mass=117.079&mz_light=351.1373&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00469
http://www.genome.jp/dbget-bin/www_bget?cpd:C03088
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00469&RT=8.87&HMDB_NAME=5-Hydroxymethyluracil&Average_mass=0.0&Accurate_mass=142.0378&mz_light=376.0962&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00469&RT=8.87&HMDB_NAME=5-Hydroxymethyluracil&Average_mass=0.0&Accurate_mass=142.0378&mz_light=376.0962&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00292
http://www.genome.jp/dbget-bin/www_bget?cpd:C00385
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00292&RT=8.95&HMDB_NAME=Xanthine&Average_mass=0.0&Accurate_mass=152.0334&mz_light=386.0917&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00292&RT=8.95&HMDB_NAME=Xanthine&Average_mass=0.0&Accurate_mass=152.0334&mz_light=386.0917&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/HMDB00452
http://www.genome.jp/dbget-bin/www_bget?cpd:C02356
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00452&RT=9.13&HMDB_NAME=L-Alpha-aminobutyric%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00452&RT=9.13&HMDB_NAME=L-Alpha-aminobutyric%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00650
http://www.genome.jp/dbget-bin/www_bget?cpd:C02261
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00650&RT=9.23&HMDB_NAME=D-Alpha-aminobutyric%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00650&RT=9.23&HMDB_NAME=D-Alpha-aminobutyric%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01906
http://www.genome.jp/dbget-bin/www_bget?cpd:C03665
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01906&RT=8.91&HMDB_NAME=2_Aminoisobutyric%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01906&RT=8.91&HMDB_NAME=2_Aminoisobutyric%20acid&Average_mass=0.0&Accurate_mass=103.0633&mz_light=337.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00719
http://www.genome.jp/dbget-bin/www_bget?cpd:C00263
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00719_2&RT=9.26&HMDB_NAME=L-Homoserine%20-%20H2O&Average_mass=0.0&Accurate_mass=119.0582&mz_light=335.106&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00719_2&RT=9.26&HMDB_NAME=L-Homoserine%20-%20H2O&Average_mass=0.0&Accurate_mass=119.0582&mz_light=335.106&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb03282
http://www.genome.jp/dbget-bin/www_bget?cpd:C04152
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03282&RT=9.57&HMDB_NAME=1_Methylguanine&Average_mass=0.0&Accurate_mass=165.0651&mz_light=399.1234&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03282&RT=9.57&HMDB_NAME=1_Methylguanine&Average_mass=0.0&Accurate_mass=165.0651&mz_light=399.1234&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb28995
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB28995&RT=9.43&HMDB_NAME=Phenylalanyl-Glycine&Average_mass=0.0&Accurate_mass=222.1004&mz_light=456.1588&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB28995&RT=9.43&HMDB_NAME=Phenylalanyl-Glycine&Average_mass=0.0&Accurate_mass=222.1004&mz_light=456.1588&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00148
http://www.genome.jp/dbget-bin/www_bget?cpd:C00025
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00148_2&RT=9.46&HMDB_NAME=L-Glutamic%20Acid%20-%20H2O&Average_mass=0.0&Accurate_mass=147.0532&mz_light=363.1009&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00148_2&RT=9.46&HMDB_NAME=L-Glutamic%20Acid%20-%20H2O&Average_mass=0.0&Accurate_mass=147.0532&mz_light=363.1009&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00704
http://www.genome.jp/dbget-bin/www_bget?cpd:C03975
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00704&RT=9.55&HMDB_NAME=Isoxanthopterin&Average_mass=0.0&Accurate_mass=179.0443&mz_light=413.1026&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00704&RT=9.55&HMDB_NAME=Isoxanthopterin&Average_mass=0.0&Accurate_mass=179.0443&mz_light=413.1026&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb02108
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02108&RT=9.37&HMDB_NAME=Methylcysteine&Average_mass=0.0&Accurate_mass=135.0354&mz_light=369.0937&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02108&RT=9.37&HMDB_NAME=Methylcysteine&Average_mass=0.0&Accurate_mass=135.0354&mz_light=369.0937&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00164
http://www.genome.jp/dbget-bin/www_bget?cpd:C00218
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00164&RT=9.82&HMDB_NAME=Methylamine&Average_mass=0.0&Accurate_mass=31.0422&mz_light=265.1005&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00164&RT=9.82&HMDB_NAME=Methylamine&Average_mass=0.0&Accurate_mass=31.0422&mz_light=265.1005&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00157
http://www.genome.jp/dbget-bin/www_bget?cpd:C00262
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00157_3&RT=9.65&HMDB_NAME=Hypoxanthine%20-%20Isomer&Average_mass=0.0&Accurate_mass=136.0385&mz_light=370.0968&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00157_3&RT=9.65&HMDB_NAME=Hypoxanthine%20-%20Isomer&Average_mass=0.0&Accurate_mass=136.0385&mz_light=370.0968&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00162
http://www.genome.jp/dbget-bin/www_bget?cpd:C00148
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00162&RT=10.18&HMDB_NAME=L-Proline&Average_mass=0.0&Accurate_mass=115.0633&mz_light=349.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00162&RT=10.18&HMDB_NAME=L-Proline&Average_mass=0.0&Accurate_mass=115.0633&mz_light=349.1216&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00897
http://www.genome.jp/dbget-bin/www_bget?cpd:C02242
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00897&RT=10.32&HMDB_NAME=7-Methylguanine&Average_mass=0.0&Accurate_mass=165.0651&mz_light=399.1234&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00897&RT=10.32&HMDB_NAME=7-Methylguanine&Average_mass=0.0&Accurate_mass=165.0651&mz_light=399.1234&mz_heavy=0.0&tag=1.0&charge=1.0
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51 
351.137

9 
10.88 10.78 

HMDB0088

3 
L-Valine 117.079 

351.137

3 
10.81 

0.000

6 
0.03 Link  Link  

Detai

l 

Yes 

52 
383.110

3 
10.98 10.88 

HMDB0069

6 
L-Methionine 149.051 

383.109

4 
10.89 

0.000

9 
0.01 Link  Link  

Detai

l 

Yes 

53 
429.111

2 
11.17 11.07 

HMDB0084

0 
Salicyluric acid 195.0532 

429.111

5 
11.05 

0.000

3 
0.02 Link  Link  

Detai

l 

Yes 

54 
360.101

5 
11.24 11.15 

HMDB0202

4 
Imidazoleacetic acid 126.0429 

360.101

2 
11.12 

0.000

3 
0.03 Link  Link  

Detai

l 

Yes 

55 
346.086

2 
11.25 11.15 

HMDB0030

0 
Uracil 112.0273 

346.085

6 
11.34 

0.000

6 
0.19 Link  Link  

Detai

l 

Yes 

56 
438.147

9 
11.53 11.44 

HMDB0092

9 
L-Tryptophan 204.0899 

438.148

2 
11.44 

0.000

3 
0 Link  Link  

Detai

l 

Yes 

57 
346.086

2 
11.54 11.46 

HMDB0030

0 
Uracil 112.0273 

346.085

6 
11.34 

0.000

6 
0.12 Link  Link  

Detai

l 

Yes 

58 
442.144

9 
11.55 11.47 

HMDB0068

4 
L-Kynurenine 208.0848 

442.143

1 
11.44 

0.001

8 
0.03 Link  Link  

Detai

l 

Yes 

59 
424.132

7 
12.21 12.14 

HMDB0068

4 
L-Kynurenine - H2O 208.0848 

424.132

5 
11.97 

0.000

2 
0.17 Link  Link  

Detai

l 

Yes 

60 
399.137

2 
12.79 12.74 

HMDB0015

9 
L-Phenylalanine 165.079 

399.137

3 
12.74 

0.000

1 
0 Link  Link  

Detai

l 

Yes 

61 
432.110

4 
12.97 12.91 

HMDB0029

1 
Vanillylmandelic acid 198.0528 

432.111

1 
12.81 

0.000

7 
0.1 Link  Link  

Detai

l 

Yes 

62 
462.204

8 
12.97 12.92 

HMDB2893

7 
Leucyl-Proline 228.1474 

462.205

7 
12.99 

0.000

9 
0.07 Link  Link  

Detai

l 

Yes 

63 
365.153

5 
13.12 13.06 

HMDB0017

2 
L-Isoleucine 131.0946 

365.152

9 
13.06 

0.000

6 
0 Link  Link  

Detai

l 

Yes 

 

365.153

5 
13.12 13.06 

HMDB0055

7 
L-Alloisoleucine 131.0946 

365.152

9 
13.20 

0.000

6 
0.14 Link  Link  

Detai

l 

No 

64 
462.204

7 
13.15 13.09 

HMDB2893

7 
Leucyl-Proline 228.1474 

462.205

7 
12.99 0.001 0.1 Link  Link  

Detai

l 

Yes 

65 
363.137

6 
13.31 13.24 

HMDB0007

0 
D-Pipecolic acid 129.079 

363.137

3 
13.23 

0.000

3 
0.01 Link  Link  

Detai

l 

Yes 

 

363.137

6 
13.31 13.24 

HMDB0071

6 
L-Pipecolic acid 129.079 

363.137

3 
13.45 

0.000

3 
0.21 Link  Link  

Detai

l 

No 

66 
360.101

3 
13.36 13.29 

HMDB0026

2 
Thymine 126.0429 

360.101

2 
13.21 

0.000

1 
0.08 Link  Link  

Detai

l 

Yes 

67 
365.153

7 
13.42 13.36 

HMDB0055

7 
L-Alloisoleucine 131.0946 

365.152

9 
13.20 

0.000

8 
0.16 Link  Link  

Detai

l 

No 

 
365.153 13.42 13.36 HMDB0068 L-leucine 131.0946 365.152 13.36 0.000 0 Link  Link  Detai Yes 

http://www.hmdb.ca/metabolites/hmdb00883
http://www.genome.jp/dbget-bin/www_bget?cpd:C00183
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00883&RT=10.81&HMDB_NAME=L-Valine&Average_mass=0.0&Accurate_mass=117.079&mz_light=351.1373&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00883&RT=10.81&HMDB_NAME=L-Valine&Average_mass=0.0&Accurate_mass=117.079&mz_light=351.1373&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00696
http://www.genome.jp/dbget-bin/www_bget?cpd:C00073
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00696&RT=10.89&HMDB_NAME=L-Methionine&Average_mass=0.0&Accurate_mass=149.051&mz_light=383.1094&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00696&RT=10.89&HMDB_NAME=L-Methionine&Average_mass=0.0&Accurate_mass=149.051&mz_light=383.1094&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00840
http://www.genome.jp/dbget-bin/www_bget?cpd:C07588
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00840&RT=11.05&HMDB_NAME=Salicyluric%20acid&Average_mass=0.0&Accurate_mass=195.0532&mz_light=429.1115&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00840&RT=11.05&HMDB_NAME=Salicyluric%20acid&Average_mass=0.0&Accurate_mass=195.0532&mz_light=429.1115&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb02024
http://www.genome.jp/dbget-bin/www_bget?cpd:C02835
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02024&RT=11.12&HMDB_NAME=Imidazoleacetic%20acid&Average_mass=0.0&Accurate_mass=126.0429&mz_light=360.1012&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02024&RT=11.12&HMDB_NAME=Imidazoleacetic%20acid&Average_mass=0.0&Accurate_mass=126.0429&mz_light=360.1012&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00300
http://www.genome.jp/dbget-bin/www_bget?cpd:C00106
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00300&RT=11.34&HMDB_NAME=Uracil&Average_mass=0.0&Accurate_mass=112.0273&mz_light=346.0856&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00300&RT=11.34&HMDB_NAME=Uracil&Average_mass=0.0&Accurate_mass=112.0273&mz_light=346.0856&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00929
http://www.genome.jp/dbget-bin/www_bget?cpd:C00078
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00929&RT=11.44&HMDB_NAME=L-Tryptophan&Average_mass=0.0&Accurate_mass=204.0899&mz_light=438.1482&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00929&RT=11.44&HMDB_NAME=L-Tryptophan&Average_mass=0.0&Accurate_mass=204.0899&mz_light=438.1482&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00300
http://www.genome.jp/dbget-bin/www_bget?cpd:C00106
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00300&RT=11.34&HMDB_NAME=Uracil&Average_mass=0.0&Accurate_mass=112.0273&mz_light=346.0856&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00300&RT=11.34&HMDB_NAME=Uracil&Average_mass=0.0&Accurate_mass=112.0273&mz_light=346.0856&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00684
http://www.genome.jp/dbget-bin/www_bget?cpd:C00328
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00684&RT=11.44&HMDB_NAME=L-Kynurenine&Average_mass=0.0&Accurate_mass=208.0848&mz_light=442.1431&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00684&RT=11.44&HMDB_NAME=L-Kynurenine&Average_mass=0.0&Accurate_mass=208.0848&mz_light=442.1431&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00684
http://www.genome.jp/dbget-bin/www_bget?cpd:C00328
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00684_2&RT=11.97&HMDB_NAME=L-Kynurenine%20-%20H2O&Average_mass=0.0&Accurate_mass=208.0848&mz_light=424.1325&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00684_2&RT=11.97&HMDB_NAME=L-Kynurenine%20-%20H2O&Average_mass=0.0&Accurate_mass=208.0848&mz_light=424.1325&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00159
http://www.genome.jp/dbget-bin/www_bget?cpd:C00079
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00159&RT=12.74&HMDB_NAME=L-Phenylalanine&Average_mass=0.0&Accurate_mass=165.079&mz_light=399.1373&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00159&RT=12.74&HMDB_NAME=L-Phenylalanine&Average_mass=0.0&Accurate_mass=165.079&mz_light=399.1373&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00291
http://www.genome.jp/dbget-bin/www_bget?cpd:C05584
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00291&RT=12.81&HMDB_NAME=Vanillylmandelic%20acid&Average_mass=0.0&Accurate_mass=198.0528&mz_light=432.1111&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00291&RT=12.81&HMDB_NAME=Vanillylmandelic%20acid&Average_mass=0.0&Accurate_mass=198.0528&mz_light=432.1111&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb28937
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB28937&RT=12.99&HMDB_NAME=Leucyl-Proline&Average_mass=0.0&Accurate_mass=228.1474&mz_light=462.2057&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB28937&RT=12.99&HMDB_NAME=Leucyl-Proline&Average_mass=0.0&Accurate_mass=228.1474&mz_light=462.2057&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00172
http://www.genome.jp/dbget-bin/www_bget?cpd:C00407
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00172&RT=13.06&HMDB_NAME=L-Isoleucine&Average_mass=0.0&Accurate_mass=131.0946&mz_light=365.1529&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00172&RT=13.06&HMDB_NAME=L-Isoleucine&Average_mass=0.0&Accurate_mass=131.0946&mz_light=365.1529&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00557
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00557&RT=13.2&HMDB_NAME=L-Alloisoleucine&Average_mass=0.0&Accurate_mass=131.0946&mz_light=365.1529&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00557&RT=13.2&HMDB_NAME=L-Alloisoleucine&Average_mass=0.0&Accurate_mass=131.0946&mz_light=365.1529&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb28937
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB28937&RT=12.99&HMDB_NAME=Leucyl-Proline&Average_mass=0.0&Accurate_mass=228.1474&mz_light=462.2057&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB28937&RT=12.99&HMDB_NAME=Leucyl-Proline&Average_mass=0.0&Accurate_mass=228.1474&mz_light=462.2057&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00070
http://www.genome.jp/dbget-bin/www_bget?cpd:C00408
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00070&RT=13.23&HMDB_NAME=D-Pipecolic%20acid&Average_mass=0.0&Accurate_mass=129.079&mz_light=363.1373&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00070&RT=13.23&HMDB_NAME=D-Pipecolic%20acid&Average_mass=0.0&Accurate_mass=129.079&mz_light=363.1373&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00716
http://www.genome.jp/dbget-bin/www_bget?cpd:C00408
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00716&RT=13.45&HMDB_NAME=L-Pipecolic%20acid&Average_mass=0.0&Accurate_mass=129.079&mz_light=363.1373&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00716&RT=13.45&HMDB_NAME=L-Pipecolic%20acid&Average_mass=0.0&Accurate_mass=129.079&mz_light=363.1373&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00262
http://www.genome.jp/dbget-bin/www_bget?cpd:C00178
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00262&RT=13.21&HMDB_NAME=Thymine&Average_mass=0.0&Accurate_mass=126.0429&mz_light=360.1012&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00262&RT=13.21&HMDB_NAME=Thymine&Average_mass=0.0&Accurate_mass=126.0429&mz_light=360.1012&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00557
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00557&RT=13.2&HMDB_NAME=L-Alloisoleucine&Average_mass=0.0&Accurate_mass=131.0946&mz_light=365.1529&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00557&RT=13.2&HMDB_NAME=L-Alloisoleucine&Average_mass=0.0&Accurate_mass=131.0946&mz_light=365.1529&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00687
http://www.genome.jp/dbget-bin/www_bget?cpd:C00123
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00687&RT=13.36&HMDB_NAME=L-leucine&Average_mass=0.0&Accurate_mass=131.0946&mz_light=365.1529&mz_heavy=0.0&tag=1.0&charge=1.0
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7 7 9 8 l 

68 
372.101

1 
13.71 13.63 

HMDB0030

1 
Urocanic acid 138.0429 

372.101

2 
13.52 

0.000

1 
0.11 Link  Link  

Detai

l 

Yes 

69 
345.092

1 
13.72 13.64 

HMDB0009

9 
L-Cystathionine - Isomer 222.0674 345.092 13.69 

0.000

1 
0.05 Link  Link  

Detai

l 

No 

 

345.092

1 
13.72 13.64 

HMDB0045

5 
Allocystathionine - Isomer 222.0674 345.092 13.61 

0.000

1 
0.03 Link  Link  

Detai

l 

Yes 

70 
315.107

8 
13.83 13.75 

HMDB0045

0 
5-Hydroxylysine 162.1004 

315.108

5 
13.88 

0.000

7 
0.13 Link  Link  

Detai

l 

Yes 

71 
315.107

3 
14.09 14.05 

HMDB0045

0 
5-Hydroxylysine 162.1004 

315.108

5 
13.88 

0.001

2 
0.17 Link  Link  

Detai

l 

Yes 

72 
354.070

1 
14.14 14.1 

HMDB0019

2 
L-Cystine 240.0238 

354.070

2 
14.11 

0.000

1 
0.01 Link  Link  

Detai

l 

Yes 

73 
425.116

1 
15.21 15.11 

HMDB0076

3 
5-Hydroxyindoleacetic acid 191.0582 

425.116

6 
15.09 

0.000

5 
0.02 Link  Link  

Detai

l 

Yes 

74 
414.122

4 
15.58 15.43 

HMDB0188

9 
Theophylline 180.0647 414.123 15.42 

0.000

6 
0.01 Link  Link  

Detai

l 

Yes 

75 
368.085

6 
16.02 15.84 

HMDB0067

6 
L-Homocystine 268.0551 

368.085

9 
15.82 

0.000

3 
0.02 Link  Link  

Detai

l 

Yes 

76 
319.110

9 
16.46 16.32 

HMDB0391

1 
3_Aminoisobutanoic acid - H2O 103.0633 319.111 16.29 

0.000

1 
0.03 Link  Link  

Detai

l 

Yes 

77 
388.085

7 
16.52 16.38 

HMDB0039

7 
2-Pyrocatechuic acid 154.0266 

388.084

9 
16.31 

0.000

8 
0.07 Link  Link  

Detai

l 

Yes 

78 
371.106

0 
16.57 16.44 

HMDB0112

3 
2-Aminobenzoic acid 137.0477 371.106 16.62 0 0.18 Link  Link  

Detai

l 

Yes 

79 
402.099

4 
16.58 16.45 

HMDB0186

8 
5-Methoxysalicylic acid 168.0423 

402.100

6 
16.38 

0.001

2 
0.07 Link  Link  

Detai

l 

Yes 

80 
386.105

3 
16.62 16.49 

HMDB0044

0 
3-Hydroxyphenylacetic acid 152.0473 

386.105

7 
16.72 

0.000

4 
0.23 Link  Link  

Detai

l 

No 

 

386.105

3 
16.62 16.49 

HMDB0066

9 
Ortho-Hydroxyphenylacetic acid 152.0473 

386.105

7 
16.42 

0.000

4 
0.07 Link  Link  

Detai

l 

Yes 

81 
416.116

2 
16.68 16.56 

HMDB0011

8 
Homovanillic acid 182.0579 

416.116

2 
16.51 0 0.05 Link  Link  

Detai

l 

Yes 

82 
386.106

1 
17.1 17.02 

HMDB0002

0 
p-Hydroxyphenylacetic acid 152.0473 

386.105

7 
16.91 

0.000

4 
0.11 Link  Link  

Detai

l 

Yes 

 

386.106

1 
17.1 17.02 

HMDB0239

0 
3_Cresotinic acid 152.0473 

386.105

7 
16.80 

0.000

4 
0.22 Link  Link  

Detai

l 

No 

83 
388.084

8 
17.39 17.34 

HMDB0015

2 
Gentisic acid 154.0266 

388.084

9 
17.11 

0.000

1 
0.23 Link  Link  

Detai

l 

Yes 

http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00687&RT=13.36&HMDB_NAME=L-leucine&Average_mass=0.0&Accurate_mass=131.0946&mz_light=365.1529&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00301
http://www.genome.jp/dbget-bin/www_bget?cpd:C00785
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00301&RT=13.52&HMDB_NAME=Urocanic%20acid&Average_mass=0.0&Accurate_mass=138.0429&mz_light=372.1012&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00301&RT=13.52&HMDB_NAME=Urocanic%20acid&Average_mass=0.0&Accurate_mass=138.0429&mz_light=372.1012&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00099
http://www.genome.jp/dbget-bin/www_bget?cpd:C02291
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00099_2&RT=13.69&HMDB_NAME=L-Cystathionine%20-%20Isomer&Average_mass=0.0&Accurate_mass=222.0674&mz_light=345.092&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00099_2&RT=13.69&HMDB_NAME=L-Cystathionine%20-%20Isomer&Average_mass=0.0&Accurate_mass=222.0674&mz_light=345.092&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00455
http://www.genome.jp/dbget-bin/www_bget?cpd:C00542
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00455_2&RT=13.61&HMDB_NAME=Allocystathionine%20-%20Isomer&Average_mass=0.0&Accurate_mass=222.0674&mz_light=345.092&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00455_2&RT=13.61&HMDB_NAME=Allocystathionine%20-%20Isomer&Average_mass=0.0&Accurate_mass=222.0674&mz_light=345.092&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00450
http://www.genome.jp/dbget-bin/www_bget?cpd:C16741
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00450&RT=13.88&HMDB_NAME=5-Hydroxylysine&Average_mass=0.0&Accurate_mass=162.1004&mz_light=315.1085&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00450&RT=13.88&HMDB_NAME=5-Hydroxylysine&Average_mass=0.0&Accurate_mass=162.1004&mz_light=315.1085&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00450
http://www.genome.jp/dbget-bin/www_bget?cpd:C16741
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00450&RT=13.88&HMDB_NAME=5-Hydroxylysine&Average_mass=0.0&Accurate_mass=162.1004&mz_light=315.1085&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00450&RT=13.88&HMDB_NAME=5-Hydroxylysine&Average_mass=0.0&Accurate_mass=162.1004&mz_light=315.1085&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00192
http://www.genome.jp/dbget-bin/www_bget?cpd:C00491
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00192&RT=14.11&HMDB_NAME=L-Cystine&Average_mass=0.0&Accurate_mass=240.0238&mz_light=354.0702&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00192&RT=14.11&HMDB_NAME=L-Cystine&Average_mass=0.0&Accurate_mass=240.0238&mz_light=354.0702&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00763
http://www.genome.jp/dbget-bin/www_bget?cpd:C05635
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00763&RT=15.09&HMDB_NAME=5-Hydroxyindoleacetic%20acid&Average_mass=0.0&Accurate_mass=191.0582&mz_light=425.1166&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00763&RT=15.09&HMDB_NAME=5-Hydroxyindoleacetic%20acid&Average_mass=0.0&Accurate_mass=191.0582&mz_light=425.1166&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01889
http://www.genome.jp/dbget-bin/www_bget?cpd:C07130
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01889&RT=15.42&HMDB_NAME=Theophylline&Average_mass=0.0&Accurate_mass=180.0647&mz_light=414.123&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01889&RT=15.42&HMDB_NAME=Theophylline&Average_mass=0.0&Accurate_mass=180.0647&mz_light=414.123&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00676
http://www.genome.jp/dbget-bin/www_bget?cpd:C01817
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00676&RT=15.82&HMDB_NAME=L-Homocystine&Average_mass=0.0&Accurate_mass=268.0551&mz_light=368.0859&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00676&RT=15.82&HMDB_NAME=L-Homocystine&Average_mass=0.0&Accurate_mass=268.0551&mz_light=368.0859&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb03911
http://www.genome.jp/dbget-bin/www_bget?cpd:C05145
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03911_2&RT=16.29&HMDB_NAME=3_Aminoisobutanoic%20acid%20-%20H2O&Average_mass=0.0&Accurate_mass=103.0633&mz_light=319.111&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03911_2&RT=16.29&HMDB_NAME=3_Aminoisobutanoic%20acid%20-%20H2O&Average_mass=0.0&Accurate_mass=103.0633&mz_light=319.111&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00397
http://www.genome.jp/dbget-bin/www_bget?cpd:C00196
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00397&RT=16.31&HMDB_NAME=2_Pyrocatechuic%20acid&Average_mass=0.0&Accurate_mass=154.0266&mz_light=388.0849&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00397&RT=16.31&HMDB_NAME=2_Pyrocatechuic%20acid&Average_mass=0.0&Accurate_mass=154.0266&mz_light=388.0849&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01123
http://www.genome.jp/dbget-bin/www_bget?cpd:C00108
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01123&RT=16.62&HMDB_NAME=2_Aminobenzoic%20acid&Average_mass=0.0&Accurate_mass=137.0477&mz_light=371.106&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01123&RT=16.62&HMDB_NAME=2_Aminobenzoic%20acid&Average_mass=0.0&Accurate_mass=137.0477&mz_light=371.106&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01868
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01868&RT=16.38&HMDB_NAME=5-Methoxysalicylic%20acid&Average_mass=0.0&Accurate_mass=168.0423&mz_light=402.1006&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01868&RT=16.38&HMDB_NAME=5-Methoxysalicylic%20acid&Average_mass=0.0&Accurate_mass=168.0423&mz_light=402.1006&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00440
http://www.genome.jp/dbget-bin/www_bget?cpd:C05593
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00440&RT=16.72&HMDB_NAME=3_Hydroxyphenylacetic%20acid&Average_mass=0.0&Accurate_mass=152.0473&mz_light=386.1057&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00440&RT=16.72&HMDB_NAME=3_Hydroxyphenylacetic%20acid&Average_mass=0.0&Accurate_mass=152.0473&mz_light=386.1057&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00669
http://www.genome.jp/dbget-bin/www_bget?cpd:C05852
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00669&RT=16.42&HMDB_NAME=Ortho-Hydroxyphenylacetic%20acid&Average_mass=0.0&Accurate_mass=152.0473&mz_light=386.1057&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00669&RT=16.42&HMDB_NAME=Ortho-Hydroxyphenylacetic%20acid&Average_mass=0.0&Accurate_mass=152.0473&mz_light=386.1057&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00118
http://www.genome.jp/dbget-bin/www_bget?cpd:C05582
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00118&RT=16.51&HMDB_NAME=Homovanillic%20acid&Average_mass=0.0&Accurate_mass=182.0579&mz_light=416.1162&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00118&RT=16.51&HMDB_NAME=Homovanillic%20acid&Average_mass=0.0&Accurate_mass=182.0579&mz_light=416.1162&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00020
http://www.genome.jp/dbget-bin/www_bget?cpd:C00642
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00020&RT=16.91&HMDB_NAME=p-Hydroxyphenylacetic%20acid&Average_mass=0.0&Accurate_mass=152.0473&mz_light=386.1057&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00020&RT=16.91&HMDB_NAME=p-Hydroxyphenylacetic%20acid&Average_mass=0.0&Accurate_mass=152.0473&mz_light=386.1057&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb02390
http://www.genome.jp/dbget-bin/www_bget?cpd:C14088
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02390&RT=16.8&HMDB_NAME=3_Cresotinic%20acid&Average_mass=0.0&Accurate_mass=152.0473&mz_light=386.1057&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02390&RT=16.8&HMDB_NAME=3_Cresotinic%20acid&Average_mass=0.0&Accurate_mass=152.0473&mz_light=386.1057&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00152
http://www.genome.jp/dbget-bin/www_bget?cpd:C00628
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00152&RT=17.11&HMDB_NAME=Gentisic%20acid&Average_mass=0.0&Accurate_mass=154.0266&mz_light=388.0849&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00152&RT=17.11&HMDB_NAME=Gentisic%20acid&Average_mass=0.0&Accurate_mass=154.0266&mz_light=388.0849&mz_heavy=0.0&tag=1.0&charge=1.0
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84 
307.109

8 
17.52 17.48 

HMDB0018

2 
L-Lysine 146.1055 

307.111

1 
17.47 

0.001

3 
0.01 Link  Link  

Detai

l 

Yes 

85 
402.100

2 
17.59 17.55 

HMDB0048

4 
Vanillic acid 168.0423 

402.100

6 
17.34 

0.000

4 
0.21 Link  Link  

Detai

l 

Yes 

86 
428.115

5 
17.68 17.65 

HMDB0095

5 
Isoferulic acid 194.0579 

428.116

2 
17.49 

0.000

7 
0.16 Link  Link  

Detai

l 

Yes 

87 
372.090

1 
17.81 17.77 

HMDB0050

0 
4-Hydroxybenzoic acid 138.0317 372.09 17.57 

0.000

1 
0.2 Link  Link  

Detai

l 

Yes 

88 
389.127

3 
18.07 18.04 

HMDB0017

7 
L-Histidine 155.0695 

389.127

8 
18.09 

0.000

5 
0.05 Link  Link  

Detai

l 

Yes 

89 
400.120

7 
18.14 18.11 

HMDB0219

9 
Desaminotyrosine 166.063 

400.121

3 
18.04 

0.000

6 
0.07 Link  Link  

Detai

l 

Yes 

90 
394.157

2 
18.18 18.15 

HMDB0030

3 
Tryptamine 160.1 

394.158

4 
18.03 

0.001

2 
0.12 Link  Link  

Detai

l 

Yes 

91 
398.105

1 
18.57 18.55 

HMDB0171

3 
m-Coumaric acid 164.0473 

398.105

7 
18.51 

0.000

6 
0.04 Link  Link  

Detai

l 

Yes 

92 
428.115

2 
18.68 18.66 

HMDB0095

4 
trans-Ferulic acid 194.0579 

428.116

2 
18.47 0.001 0.19 Link  Link  

Detai

l 

Yes 

93 
393.182

6 
19.15 19.13 

HMDB0099

1 
2-aminooctanoic acid 159.1259 

393.184

2 
19.20 

0.001

6 
0.07 Link  Link  

Detai

l 

Yes 

94 
411.104

3 
19.55 19.52 

HMDB0316

4 
Chlorogenic acid 354.0951 

411.105

9 
19.45 

0.001

6 
0.07 Link  Link  

Detai

l 

Yes 

95 
278.106

9 
21.22 21.18 

HMDB0141

4 
1,4-diaminobutane 88.1 

278.108

3 
21.27 

0.001

4 
0.09 Link  Link  

Detai

l 

Yes 

96 
411.104

4 
21.23 21.19 

HMDB0316

4 
Chlorogenic acid - Isomer 354.0951 

411.105

9 
21.24 

0.001

5 
0.05 Link  Link  

Detai

l 

Yes 

97 
356.094

5 
21.62 21.59 

HMDB0075

0 

3-Hydroxymandelic acid - 

COOH 
168.0423 

356.095

1 
21.64 

0.000

6 
0.05 Link  Link  

Detai

l 

Yes 

98 
326.075

3 
21.93 21.91 

HMDB0186

6 
3,4-Dihydroxymandelic acid 184.0372 

326.076

9 
21.73 

0.001

6 
0.18 Link  Link  

Detai

l 

Yes 

99 
324.594

2 
22.73 22.68 

HMDB0015

8 
L-Tyrosine 181.0739 

324.595

3 
22.65 

0.001

1 
0.03 Link  Link  

Detai

l 

Yes 

100 
328.099

0 
23.29 23.2 

HMDB0022

8 
Phenol 94.0419 

328.100

2 
23.16 

0.001

2 
0.04 Link  Link  

Detai

l 

Yes 

101 
311.070

3 
24.64 24.44 

HMDB0015

2 
Gentisic acid - multi-tags 154.0266 

311.071

6 
24.69 

0.001

3 
0.25 Link  Link  

Detai

l 

No 

 

311.070

3 
24.64 24.44 

HMDB0185

6 
Protocatechuic acid 154.0266 

311.071

6 
24.51 

0.001

3 
0.07 Link  Link  

Detai

l 

Yes 

102 322.104 24.88 24.67 HMDB0025 Serotonin 176.095 322.105 24.65 0.001 0.02 Link  Link  Detai Yes 

http://www.hmdb.ca/metabolites/hmdb00182
http://www.genome.jp/dbget-bin/www_bget?cpd:C00047
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00182&RT=17.47&HMDB_NAME=L-Lysine&Average_mass=0.0&Accurate_mass=146.1055&mz_light=307.1111&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00182&RT=17.47&HMDB_NAME=L-Lysine&Average_mass=0.0&Accurate_mass=146.1055&mz_light=307.1111&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00484
http://www.genome.jp/dbget-bin/www_bget?cpd:C06672
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00484&RT=17.34&HMDB_NAME=Vanillic%20acid&Average_mass=0.0&Accurate_mass=168.0423&mz_light=402.1006&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00484&RT=17.34&HMDB_NAME=Vanillic%20acid&Average_mass=0.0&Accurate_mass=168.0423&mz_light=402.1006&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00955
http://www.genome.jp/dbget-bin/www_bget?cpd:C10470
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00955&RT=17.49&HMDB_NAME=Isoferulic%20acid&Average_mass=0.0&Accurate_mass=194.0579&mz_light=428.1162&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00955&RT=17.49&HMDB_NAME=Isoferulic%20acid&Average_mass=0.0&Accurate_mass=194.0579&mz_light=428.1162&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00500
http://www.genome.jp/dbget-bin/www_bget?cpd:C00156
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00500&RT=17.57&HMDB_NAME=4-Hydroxybenzoic%20acid&Average_mass=0.0&Accurate_mass=138.0317&mz_light=372.09&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00500&RT=17.57&HMDB_NAME=4-Hydroxybenzoic%20acid&Average_mass=0.0&Accurate_mass=138.0317&mz_light=372.09&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00177
http://www.genome.jp/dbget-bin/www_bget?cpd:C00135
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00177&RT=18.09&HMDB_NAME=L-Histidine&Average_mass=0.0&Accurate_mass=155.0695&mz_light=389.1278&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00177&RT=18.09&HMDB_NAME=L-Histidine&Average_mass=0.0&Accurate_mass=155.0695&mz_light=389.1278&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb02199
http://www.genome.jp/dbget-bin/www_bget?cpd:C01744
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02199&RT=18.04&HMDB_NAME=Desaminotyrosine&Average_mass=0.0&Accurate_mass=166.063&mz_light=400.1213&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02199&RT=18.04&HMDB_NAME=Desaminotyrosine&Average_mass=0.0&Accurate_mass=166.063&mz_light=400.1213&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00303
http://www.genome.jp/dbget-bin/www_bget?cpd:C00398
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00303&RT=18.03&HMDB_NAME=Tryptamine&Average_mass=0.0&Accurate_mass=160.1&mz_light=394.1584&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00303&RT=18.03&HMDB_NAME=Tryptamine&Average_mass=0.0&Accurate_mass=160.1&mz_light=394.1584&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01713
http://www.genome.jp/dbget-bin/www_bget?cpd:C12621
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01713&RT=18.51&HMDB_NAME=m-Coumaric%20acid&Average_mass=0.0&Accurate_mass=164.0473&mz_light=398.1057&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01713&RT=18.51&HMDB_NAME=m-Coumaric%20acid&Average_mass=0.0&Accurate_mass=164.0473&mz_light=398.1057&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00954
http://www.genome.jp/dbget-bin/www_bget?cpd:C01494
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00954&RT=18.47&HMDB_NAME=trans-Ferulic%20acid&Average_mass=0.0&Accurate_mass=194.0579&mz_light=428.1162&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00954&RT=18.47&HMDB_NAME=trans-Ferulic%20acid&Average_mass=0.0&Accurate_mass=194.0579&mz_light=428.1162&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00991
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00991&RT=19.2&HMDB_NAME=2_aminooctanoic%20acid&Average_mass=0.0&Accurate_mass=159.1259&mz_light=393.1842&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00991&RT=19.2&HMDB_NAME=2_aminooctanoic%20acid&Average_mass=0.0&Accurate_mass=159.1259&mz_light=393.1842&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb03164
http://www.genome.jp/dbget-bin/www_bget?cpd:C00852
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03164&RT=19.45&HMDB_NAME=Chlorogenic%20acid&Average_mass=0.0&Accurate_mass=354.0951&mz_light=411.1059&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03164&RT=19.45&HMDB_NAME=Chlorogenic%20acid&Average_mass=0.0&Accurate_mass=354.0951&mz_light=411.1059&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb01414
http://www.genome.jp/dbget-bin/www_bget?cpd:C00134
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01414&RT=21.27&HMDB_NAME=1-4-diaminobutane&Average_mass=0.0&Accurate_mass=88.1&mz_light=278.1083&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01414&RT=21.27&HMDB_NAME=1-4-diaminobutane&Average_mass=0.0&Accurate_mass=88.1&mz_light=278.1083&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb03164
http://www.genome.jp/dbget-bin/www_bget?cpd:C00852
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03164_2&RT=21.24&HMDB_NAME=Chlorogenic%20acid%20-%20Isomer&Average_mass=0.0&Accurate_mass=354.0951&mz_light=411.1059&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB03164_2&RT=21.24&HMDB_NAME=Chlorogenic%20acid%20-%20Isomer&Average_mass=0.0&Accurate_mass=354.0951&mz_light=411.1059&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00750
http://mcid.cs.ualberta.ca:8080/Compound_MRT/Not
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00750_2&RT=21.64&HMDB_NAME=3_Hydroxymandelic%20acid%20-%20COOH&Average_mass=0.0&Accurate_mass=168.0423&mz_light=356.0951&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00750_2&RT=21.64&HMDB_NAME=3_Hydroxymandelic%20acid%20-%20COOH&Average_mass=0.0&Accurate_mass=168.0423&mz_light=356.0951&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb01866
http://www.genome.jp/dbget-bin/www_bget?cpd:C05580
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01866&RT=21.73&HMDB_NAME=3-4-Dihydroxymandelic%20acid&Average_mass=0.0&Accurate_mass=184.0372&mz_light=326.0769&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01866&RT=21.73&HMDB_NAME=3-4-Dihydroxymandelic%20acid&Average_mass=0.0&Accurate_mass=184.0372&mz_light=326.0769&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00158
http://www.genome.jp/dbget-bin/www_bget?cpd:C00082
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00158&RT=22.65&HMDB_NAME=L-Tyrosine&Average_mass=0.0&Accurate_mass=181.0739&mz_light=324.5953&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00158&RT=22.65&HMDB_NAME=L-Tyrosine&Average_mass=0.0&Accurate_mass=181.0739&mz_light=324.5953&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00228
http://www.genome.jp/dbget-bin/www_bget?cpd:C00146
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00228&RT=23.16&HMDB_NAME=Phenol&Average_mass=0.0&Accurate_mass=94.0419&mz_light=328.1002&mz_heavy=0.0&tag=1.0&charge=1.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00228&RT=23.16&HMDB_NAME=Phenol&Average_mass=0.0&Accurate_mass=94.0419&mz_light=328.1002&mz_heavy=0.0&tag=1.0&charge=1.0
http://www.hmdb.ca/metabolites/hmdb00152
http://www.genome.jp/dbget-bin/www_bget?cpd:C00628
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00152_2&RT=24.69&HMDB_NAME=Gentisic%20acid%20-%20multi-tags&Average_mass=0.0&Accurate_mass=154.0266&mz_light=311.0716&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00152_2&RT=24.69&HMDB_NAME=Gentisic%20acid%20-%20multi-tags&Average_mass=0.0&Accurate_mass=154.0266&mz_light=311.0716&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/HMDB01856
http://www.genome.jp/dbget-bin/www_bget?cpd:C00230
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01856&RT=24.51&HMDB_NAME=Protocatechuic%20acid&Average_mass=0.0&Accurate_mass=154.02661&mz_light=311.0716&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB01856&RT=24.51&HMDB_NAME=Protocatechuic%20acid&Average_mass=0.0&Accurate_mass=154.02661&mz_light=311.0716&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00259
http://www.genome.jp/dbget-bin/www_bget?cpd:C00780
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00259&RT=24.65&HMDB_NAME=Serotonin&Average_mass=0.0&Accurate_mass=176.095&mz_light=322.1058&mz_heavy=0.0&tag=2.0&charge=2.0
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http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00259&RT=24.65&HMDB_NAME=Serotonin&Average_mass=0.0&Accurate_mass=176.095&mz_light=322.1058&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00130
http://www.genome.jp/dbget-bin/www_bget?cpd:C00544
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00130&RT=24.84&HMDB_NAME=Homogentisic%20acid&Average_mass=0.0&Accurate_mass=168.0423&mz_light=318.0794&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00130&RT=24.84&HMDB_NAME=Homogentisic%20acid&Average_mass=0.0&Accurate_mass=168.0423&mz_light=318.0794&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00022
http://www.genome.jp/dbget-bin/www_bget?cpd:C05587
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00022&RT=25.49&HMDB_NAME=3_Methoxytyramine&Average_mass=0.0&Accurate_mass=167.0946&mz_light=317.6056&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00022&RT=25.49&HMDB_NAME=3_Methoxytyramine&Average_mass=0.0&Accurate_mass=167.0946&mz_light=317.6056&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb02182
http://www.genome.jp/dbget-bin/www_bget?cpd:C07441
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02182&RT=25.39&HMDB_NAME=Phenylephrine&Average_mass=0.0&Accurate_mass=167.0946&mz_light=317.6056&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB02182&RT=25.39&HMDB_NAME=Phenylephrine&Average_mass=0.0&Accurate_mass=167.0946&mz_light=317.6056&mz_heavy=0.0&tag=2.0&charge=2.0
http://www.hmdb.ca/metabolites/hmdb00306
http://www.genome.jp/dbget-bin/www_bget?cpd:C00483
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00306&RT=25.83&HMDB_NAME=Tyramine&Average_mass=0.0&Accurate_mass=137.0841&mz_light=302.6004&mz_heavy=0.0&tag=2.0&charge=2.0
http://mcid.cs.ualberta.ca:8080/Compound_MRT/mrtdetailServlet?HMDB_No=HMDB00306&RT=25.83&HMDB_NAME=Tyramine&Average_mass=0.0&Accurate_mass=137.0841&mz_light=302.6004&mz_heavy=0.0&tag=2.0&charge=2.0
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4.3.4 DnsID MS/MS Search 

In DnsID, the MS/MS spectral library can be searched using an acquired MS/MS 

spectrum from a sample. Figure 4.10 shows the screenshot of the MS/MS search interface. The 

fragment ion masses and intensities along with their mass tolerance are entered. Because 

structurally similar metabolites may have different molecular ion masses, but similar MS/MS 

spectra (e.g., a methylated standard with a methyl group added to the core structure of a 

standard), DnsID MS/MS search has the option of not specifying the precursor ion mass for 

spectral match. This option is useful to find related metabolites. An example is shown in Figure 

4.11. In this case, the unknown metabolite matches to Dns-arginine in the library based on the 

fragment ions only, but the precursor ion mass differs by 14.0156 Da. By searching the mass of 

the unknown using MyCompoundID against the predicted human metabolite library, there were 

4 matches (Figure 4.11). This unknown was thought to be likely a metabolite of Dns-arginine 

with the addition of CH2 group, possibly Dns-homo-arginine. Subsequently we obtained homo-

arginine, produced Dns-homo-arginine and generated the MS/MS of the labeled standard. The 

MS/MS spectrum of Dns-homo-arginine matched perfectly with the MS/MS spectrum of the 

unknown. While in this case it was fortunate that we could obtain the standard to confirm the 

identity of the unknown, in many other cases we could not obtain standards for metabolite 

confirmation. Nevertheless, using this strategy to identify structurally related metabolites, albeit 

putatively, can still be useful as one can infer some biological relevance of these metabolites, 

potentially helpful for studying metabolic mechanism related to a biological event.  
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Figure 4.10 Screenshot of the MS/MS search interface of DnsID in www.mycompoindid.org. 
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Figure 4.11 MS/MS search without specifying the precursor ion of a Dns-metabolite found in a 

labeled human urine sample. MS/MS spectra of (A) the unknown metabolite and (B) Dns-

arginine from the Dns-library. (C) Screenshot of the result obtained from searching the precursor 
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ion mass of the unknown against the predicted human metabolite library in 

www.mycompoundid.org. The unknown was confirmed to be Dns-homo-arginine. 

Another option of MS/MS search is to include RT information during the search. If 

precursor ion mass is also entered, this option allows the matches of all three searchable 

parameters. One unique application of this option is to distinguish isomers of Dns-standards in 

the library. Some positional isomers have different retention times, but the same or similar 

fragmentation patterns. One example is Dns-leucine and Dns-isoleucine (Figure 4.12). In the 

labeled human urine sample, two peaks with the same ion mass (m/z 365.1529) within a mass 

tolerance of 10 ppm were detected at two different retention times. When the MS/MS library was 

searched without the retention time information, there were two matches with similar matching 

scores. However, by including the RT information, we could clearly rule out Dns-isoleucine and 

confirm that the metabolite detected in urine was Dns-leucine. 
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Figure 4.12 MS/MS spectra of Dns-leucine (A) and Dns-isoleucine (B). (C) Ion chromatogram 

showing the retention time difference of the dansyl labeled isomers. 

4.3.5 Application of DnsID  

For the human urine sample analyzed in this work, 105 metabolite matches were obtained 

using M-RT search (Table T 4.6). To validate the M-RT match results, an automatic LC-MS/MS 

experiment was performed on the same urine sample to generate the MS/MS spectra of the 
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labeled metabolites. Out of the 105 M-RT matches, 77 matched metabolites (73.3%) had their 

corresponding MS/MS spectra generated with relatively high quality (i.e., the precursor ion 

intensity was sufficiently high to produce a number of fragment ions in MS/MS) (see last column 

in Table T 4.6). Based on MS/MS spectral search, all these 77 M-RT matches could be 

confirmed to have the correct structures. The other 28 M-RT matched metabolites (26.7%) had 

low precursor ion signal intensities and thus their MS peaks were not selected for the auto 

MS/MS experiment.  

The above example illustrates that out of the three searchable parameters for each Dns-

metabolite, M-RT matches can result in confident identification of a Dns-metabolite. In 

principle, metabolite identification can also be done by using mass and MS/MS matches (M-

MS/MS matches). In each case, an authentic standard is required to confirm the identity of a 

match. However, M-RT search does not require the use of a tandem MS, while M-MS/MS search 

does. This difference is significant and may play an important role in deciding the initial 

infrastructure investment and subsequent usage of the MS equipment. A simple MS instrument 

such as LC-TOF-MS that provides adequate mass resolution and mass measurement accuracy for 

CIL MS metabolome profiling is a relatively inexpensive capital investment.[162] Moreover, all 

the time-consuming profiling work is based on MS detection, which does not require MS/MS. 

After the MS profiling work, one can just use M-RT search to identify the metabolites of interest 

and then use authentic standards to confirm the metabolite identities. In future works, we will 

continue to examine the robustness of the M-RT search approach for metabolite identification in 

various metabolomics applications. 

It should be noted that, for the 
13

C-/
12

C-dansyl labeled human urine, we detected 1552 

peak pairs in triplicate runs. Using accurate mass search (5 ppm tolerance) against HMDB and 
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the MCID library with one reaction,[144] we matched 378 and 600 metabolites, respectively. 

Compared to 105 metabolites identified using DnsID,  many dansyl metabolites still remain to be 

positively identified. Some compounds such as drugs or drug metabolites in urine could not be 

detected using DnsID as it does not contain these compounds in the library. Expanding the 

dansyl standard library is clearly needed. 

 

4.4 Conclusions 

We have developed a dansyl standards library and a library search program, DnsID, for 

rapid identification of metabolites in dansylation LC-MS targeting the analysis of the 

amine/phenol submetabolome. The current Dns-library consists of 273 unique metabolites and 

should be expandable in the future. Construction of other types of labeled standards, such as 

DmPA labeled acids for profiling the acid submetabolome, is currently on the way. As CIL LC-

MS technology further advances, we envisage a broad use of this resource for rapid identification 

of labeled metabolites for metabolomics research. 
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Chapter 5  

MyCompoundID MS/MS Search: Metabolite Identification Using a Library 

of Predicted Fragment-Ion-Spectra of 383,830 Possible Human Metabolites 

5.1 Introduction 

Mass spectrometry (MS)-based metabolomics has been developed rapidly in the past 

decade or so. However, metabolite identification from the MS data is still a challenge. Accurate 

mass search alone against a chemical database can result in many possible matches. To generate 

structural information of a metabolite, MS/MS or fragment ion spectrum can be produced using a 

tandem mass spectrometer. The fragmentation pattern can be manually interpreted, often against 

a probable chemical structure found using accurate mass search, to confirm or disapprove a 

structure.[144] Considering that manual spectral interpretation is a time-consuming process, 

spectral search using an MS/MS spectral library of metabolite standards has been developed for 

rapid metabolite identification.[163, 164] Besides in-house and commercial libraries,[165, 166] 

several public libraries have been developed as a very useful resource. For example, our 

laboratory constructed the HMDB MS/MS spectral library using 800 endogenous human 

metabolites.[1] Other libraries such as Metlin[141, 167] and MassBank[143] contain MS/MS 

spectra of metabolites as well as other synthetic compounds such as common drugs. However, 

the number of metabolites with reference spectra available is still very small, due to the lack of 

standards.   

In the absence of a standard, a predicted MS/MS spectrum of a given structure can be 

helpful in manual spectral interpretation as well as in spectral match. There are several 

approaches for generating predicted MS/MS spectra (more precisely a list of fragment ions with 
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unit intensity), depending on the chemical bond breakage rules used and the number or level of 

fragment ions included in a predicted fragment ion spectrum.[80-91] Commercial products (e.g., 

Mass Frontier from Thermo Scientific, Waltham, US and ACD/MS Fragmenter from Advanced 

Chemistry Labs, Toronto, Canada) and published tools (e.g., Metfrag[82], Fragment Identificator 

or FiD[81] and MIDAS[88]) are available for generating predicted MS/MS spectra with varying 

degrees of success.  

Our approach is to develop a web-based online tool for metabolite identification based on 

integrated MS and MS/MS search using a comprehensive library of predicted spectra of all 

metabolites in MyCompoundID.org (MCID).[144] The current MCID compound library 

includes 8,021 known endogenous human metabolites in the Human Metabolome Database 

(HMDB) and 375,809 predicted human metabolites in the Evidence-based Metabolome Library 

(EML) with one metabolic reaction. We developed an in silico method of predicting fragment 

ions using heteroatom-initiated bond breakage rules and applied it to all MCID metabolites to 

generate a predicted MS/MS spectral library. An automated MS/MS search program was 

developed that allows a user to search an experimental MS/MS spectrum, in single or batch 

search mode, against the library for spectral match. In this paper, we describe the MCID spectral 

library and MS/MS search tool and demonstrate its performance using MS/MS spectra of 

metabolite standards and those acquired from a human urine sample.  
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5.2 Experimental Section 

5.2.1 Overall Workflow 

 In the MCID MS/MS search method, a precursor ion mass of a metabolite is first used 

to search against the MCID library to generate a list of candidate compounds with matched 

molecular ion masses. The fragment ion masses from an experimental MS/MS spectrum are then 

compared to the predicted fragment ion masses of each candidate compound in the list. A fit 

score is assigned to each comparison to measure the similarity between the experimental and 

predicted fragment ions. Once all the comparisons are done, the candidates in the list are ranked 

by the fit scores.  

5.2.2 Predicting MS/MS Fragment Ions 

The MCID spectral library contains the predicted MS/MS spectra of 383,830 known and 

potentially existing human metabolites.[144] Each predicted spectrum was generated using a 

"chopping" program following a series of in silico fragmentation rules. A .mol file of a 

compound structure is used by the program. The algorithm in the chopping program involves 

two steps. The first step is the heteroatom-initiated bond breakage or chopping. Heteroatoms in a 

compound such as O and N are identified and the bonds connecting to the heteroatoms are 

broken to create possible fragments. The second step is the splittable-bond chopping. Splittable-

bonds are linear single bonds and double bonds in aromatic structures. If there are less than 40 

splittable-bonds in the chemical structure, four layers of chopping are done. In cases that there 

are 40-60 splittable-bonds, three layers of chopping are done to avoid generating too many 

fragment ions. For a very large compound with > 60 splittable-bonds, only two layers of 

chopping are carried out. After applying these two steps of chopping to a compound structure, a 

mass redundancy check is performed to combine the same fragment ion masses. A list of 
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fragment ion masses are then compiled for the compound and stored as a predicted MS/MS 

spectrum. All predicted spectra are stored in a local MySQL database in the MCID web server. 

5.2.3 Match Algorithm 

Two layers of scoring have been developed to gauge the similarity between the 

experimental MS/MS data and the predicted MS/MS data. At first, we calculate an initial match 

score, according to:  

𝑠𝑐𝑜𝑟𝑒𝑖 =
1

max(𝑤𝑒𝑖𝑔ℎ𝑡)
𝑤𝑒𝑖𝑔ℎ𝑡𝑖                             

where  

𝑤𝑒𝑖𝑔ℎ𝑡𝑖 =< 𝑚/𝑧⃗⃗⃗⃗ ⃗⃗ ⃗⃗  (𝑚𝑎𝑡𝑐ℎ𝑒𝑑) > ∙ < 𝐼𝑛𝑡⃗⃗ ⃗⃗  ⃗(𝑚𝑎𝑡𝑐ℎ𝑒𝑑) >  

 < m/z⃗⃗⃗⃗⃗⃗ ⃗⃗ (matched) >: 𝑡ℎ𝑒𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑙𝑖𝑠𝑡𝑜𝑓𝑚/𝑧 

< Int⃗⃗⃗⃗  ⃗(matched) >: 𝑡ℎ𝑒𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑙𝑖𝑠𝑡𝑜𝑓𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 

Using the above equation, a weight is calculated for each comparison by the dot product 

of the matched m/z's and intensities. An m/z tolerance is set to determine if the experimental m/z 

is matched with the predicted m/z. The initial score is calculated by normalization against the 

maximum weight in all the candidates. For the candidates with no-zero initial scores, a fit score 

is then used to quantify and rank how well the experimental spectrum is matched to the predicted 

spectrum. The fit score is defined as: 

fit. score =
< 𝑚/𝑧⃗⃗⃗⃗ ⃗⃗ ⃗⃗  (𝑚𝑎𝑡𝑐ℎ𝑒𝑑) >∙< 𝐼𝑛𝑡⃗⃗ ⃗⃗  ⃗(𝑚𝑎𝑡𝑐ℎ𝑒𝑑) >

< 𝑚/𝑧⃗⃗⃗⃗ ⃗⃗ ⃗⃗  (𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙) >∙< 𝐼𝑛𝑡⃗⃗ ⃗⃗  ⃗(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙) >
 

 where 

 < 𝑚/𝑧⃗⃗⃗⃗ ⃗⃗ ⃗⃗  (𝑚𝑎𝑡𝑐ℎ𝑒𝑑) >: 𝑡ℎ𝑒𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑙𝑖𝑠𝑡𝑜𝑓𝑚/𝑧  
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< 𝐼𝑛𝑡⃗⃗ ⃗⃗  ⃗(𝑚𝑎𝑡𝑐ℎ𝑒𝑑) >: 𝑡ℎ𝑒𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑙𝑖𝑠𝑡𝑜𝑓𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 

< 𝑚/𝑧⃗⃗⃗⃗ ⃗⃗ ⃗⃗  (𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙) > :𝑡ℎ𝑒𝑒𝑛𝑡𝑖𝑟𝑒𝑙𝑖𝑠𝑡𝑜𝑓𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑚/𝑧 

< 𝐼𝑛𝑡⃗⃗ ⃗⃗  ⃗(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙) >: 𝑡ℎ𝑒𝑒𝑛𝑡𝑖𝑟𝑒𝑙𝑖𝑠𝑡𝑜𝑓𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 

 

5.2.4 MS/MS of Standards  

35 metabolites were selected to generate the MS/MS spectra. An individual standard was 

used to produce a final concentration of 10 µM. A Bruker Impact HD QTOF mass spectrometer 

(Billerica, MA) was used to generate the MS/MS spectra using direct infusion with collision 

energy of 20-50 eV. 

5.2.5 LC-MS/MS of Urine 

A human urine sample was collected from an healthy individual and filtered using 0.22 

µM-pore-size filter (Millipore Corp., MA) twice. LC-MS/MS analysis was performed on the 

Bruker QTOF-MS equipped with an Agilent 1100 HPLC system (Palo Alto, CA, USA). 

Reversed-phase Zorbax Eclipse C18 column (2.1 mm × 100 mm, 1.8 µm particle size, 95 Å pore 

size) from Agilent was used. Solvent A was 0.1% (v/v) LC-MS grade formic acid in 2% (v/v) 

grade ACN, and solvent B was 0.1% (v/v) LC-MS grade formic acid in LC-MS grade 98% 

ACN. The gradient elution profile was as follows: t = 0.0 min 0% B, t = 10 min, 0% B, t = 50.0 

min, 80% B, t = 55 min, 100%B, t = 60 min, 100% B, t = 60.1 min, 0% B, t = 80 min, 0% B. The 

flow rate was 100 µL/min. The sample injection volume was 20 µL. 
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5.3 Results and Discussion 

5.3.1 MCID MS/MS Search 

There are two search modes available (see Figure 5.1 for a screenshot of the web 

interface and Appendix for a user manual for MCID MS/MS search). In the single-spectrum 

search which is useful for targeted metabolite identification, a user selects either the zero-

reaction library containing all the known metabolites in HMDB or the one-reaction library 

containing all the predicted metabolites in EML. The precursor ion type, mass and mass 

tolerance are entered. The fragment ion masses and their relative intensities, and the m/z 

tolerance value for the fragment ions are also entered. "Deisotope" is selected as a default to 

remove the 
13

C natural abundance isotopic peak(s) of a fragment ion. Figure 1A shows an 

example of the search results obtained by searching the zero-reaction library. The result page 

lists all the mass-matched metabolites. For each candidate, the HMDB ID number with a link to 

the HMDB database is given along with other information.  
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Figure 5.1 Screenshot of the web interface 

For each candidate, the initial score and fit score from MS/MS spectral comparison are 

given. In the case shown in Figure 5.2A, the three candidates are isomers and the fit score is the 

same. By clicking the initial score, a new page will be displayed. Figure 5.3A shows an example 

where the experimental MS/MS spectrum is shown. The matched peaks to the predicted 

spectrum are shown in red and unmatched ones are shown in grey. It also displays a table (Figure 

5.3B) containing information on the masses and intensities of the experimental fragment ions 
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(matched ones in red and unmatched ones in black), the number of matched fragment ion 

structures, and a link called "Detail". By clicking "Detail", another page will be displayed 

(Figure 5.3C) which provides a summary of the matched fragment ion(s) including the predicted 

structure(s). These multiple layers of information can be very helpful for manual confirmation of 

a MS/MS match. Manual interpretation may assist in determining which structure among the 

matches is the most probable one fitting to the MS/MS fragmentation pattern. 

 

Figure 5.2 Screenshot of search MCID MS/MS results. (A) Single-mode search. (B) Batch-mode 

search. 
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Figure 5.3 Screenshot of showing more details 

To facilitate manual comparison of an experimental MS/MS spectrum and a predicted 

spectrum, there is also a function of uploading the matched metabolite structure to a local 

ChemDraw software or an online ChemDraw Plugin (freeware). In both programs, a built-in 
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"Fragmentation Tools" can be used to direct a bond breakage of a structure to show the resulting 

fragment ion structures and their masses. An example of how to use this tool for manual 

fragmentation pattern interpretation has been given in the original MCID paper.[144]  

In addition to single spectrum search, a user can upload a CSV file generated from LC-

MS/MS analysis of a sample for batch mode search. This is useful for examining all the possible 

matches in a metabolomic profiling experiment. The file format used is shown in Supplemental 

File F5.1. To share the computation resource in the MCID server by multiple users, the file size 

is limited to 100 MS/MS spectra. For a large file, a file split program can be downloaded to split 

the file into several small files with each limited to 100 spectra. These split files can be uploaded 

individually for MS/MS search. The search time for each file depends on the parameters used 

(e.g., a smaller precursor mass tolerance would increase the search speed as fewer candidates 

would need to be examined in MS/MS search) and the number of search jobs in the server. After 

the searches, the individual search results can be merged by a file merge program which can also 

be downloaded from the website to produce the final result in CSV.  

Figure 5.2 B shows a screenshot of part of a search result page from MS/MS spectra of a 

human urine sample acquired by LC-QTOF-MS. A summary table lists information on retention 

time, precursor ion mass, precursor ion intensity, the number of fragment ions detected, the 

number of mass-matched metabolites (i.e., number of hits), fit score, show-details with links and 

save-result in CSV for a given match. By clicking the show-detail, several layers of information 

can be displayed for each MS/MS match as in the case of single spectrum search discussed 

earlier.  

The search results can be sorted according to any parameters in the summary table. There 

are several parameters (see the top of Figure 5.2B) that can be used to filter the search results to 



131 

 

retain the matches of interest. By clicking "Download Table Result", all the filtered matches are 

saved to the user's computer in a CSV file (see Supplemental Table T5.1 as an example). For 

privacy and confidentiality, the server does not store any search file or search results. However, 

in the saved CSV file that can be opened in Excel, there is a link column containing long names 

for all the individual matches. By copying and pasting a link name of a match to the web, the 

user can retrieve the search result in MCID for the match. This is possible because the long name 

contains all the MS and MS/MS information required for a new MCID MS/MS search to 

generate the match result again. This feature allows a user to examine any matches in the result 

table without the need of repeating the batch mode search.      

5.3.2 MS/MS Search of Standards 

To evaluate the performance of MCID MS/MS search, we searched the MS/MS spectra 

of 35 standards generated by QTOF-MS against the predicted MS/MS spectral library. These 

metabolites were randomly picked in order to cover as many different types of compounds as 

possible. Table 5.1 shows the list of metabolites and their search results. The MS/MS spectra 

were searched using the zero- and one-reaction libraries with a normal (i.e., 0.005 Da, a typical 

mass accuracy from QTOF-MS). Also, a wider (i.e., 0.05 Da for zero-reaction and 0.01 Da for 

one-reaction) precursor ion mass tolerance was used to artificially include more possible 

candidates and thus evaluate the MS/MS search in terms of distinguishing the correct structure 

from false ones. The wider tolerance was deliberately used in order to increase the number of 

mass-matched metabolites including many false ones for the purpose of testing the ability of 

using MS/MS search to distinguish the correct structure from the false ones. The fragment ion 

mass tolerance was set to be 0.005 Da, according to the QTOF-MS/MS mass accuracy.  
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Table 5.1 Summary of MCID MS and MS/MS search results for 35 metabolite standards. 

# Name 

Zero-reaction library search One-reaction library search 

Fit 

score 

for 

correct 

structur

e 

Precursor mass 

tolerance ±0.05 Da 

Precursor mass 

tolerance ±0.005 Da 

Precursor mass 

tolerance ±0.01 Da 

Precursor mass 

tolerance ±0.005 Da 

Ran

k 

# of 

MS/M

S 

match 

# of 

MS 

matc

h 

Ran

k 

# of 

MS/M

S 

match 

# of 

MS 

matc

h 

Ran

k 

# of 

MS/M

S 

match 

# of 

MS 

matc

h 

Ran

k 

# of 

MS/M

S 

match 

# of 

MS 

matc

h 

1 Adenine 1 1 5 1 1 1 1 3 19 1 3 19 0.815 

2 Androstenedione 3 10 12 1 1 1 3 28 33 2 28 32 0.896 

3 Dopamine 1 3 6 1 3 3 1 19 22 1 19 22 0.819 

4 Folic acid 1 1 1 1 1 1 
4 

(3)* 
12 23 3 6 12 0.873 

5 Glycine 2 3 3 1 1 1 1 15 17 1 15 17 0.993 

6 Glutathione 1 1 4 1 1 1 1 5 22 1 5 6 0.892 

7 L-Phenylalanine 1 4 14 1 2 4 1 28 40 1 20 40 0.838 

8 L-Alanine 1 4 4 1 4 4 1 27 31 1 23 32 0.810 

9 Riboflavin 1 0 1 1 0 1 1 0 13 1 0 7 0.554 

10 Thymine 1 0 6 1 0 2 1 0 4 1 0 6 0.114 

11 Sarcosine 1 4 4 1 4 4 1 27 31 1 27 32 0.909 

12 Tryptamine 1 2 13 1 1 2 1 2 25 1 2 10 0.869 

13 Tyramine 1 3 10 1 3 4 1 11 17 1 11 18 0.700 

14 
Chenodeoxycholic 

acid 
3 0 18 3 0 18 7 (2) 0 44 7 (2) 0 44 0.465 

15 Creatinine 1 1 3 1 1 1 1 1 1 1 1 1 0.764 

16 Isovalerylcarnitine 1 3 3 1 3 3 2 17 18 2 15 16 0.980 

17 L-Methionine 1 2 6 1 2 2 1 13 17 1 13 19 0.965 

18 trans-Ferulic acid 1 2 13 1 2 3 1 30 39 1 30 39 0.969 
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19 

2'-

Deoxyguanosine 

5'-monophosphate 

1 4 4 1 4 4 1 22 34 1 22 32 0.958 

20 

N-

Acetylmannosami

ne 

2 1 8 3 1 7 
11 

(3) 
28 43 

11 

(3) 
23 37 0.407 

21 Melatonin 1 1 3 1 1 1 1 7 16 1 6 12 0.986 

22 Pyridoxamine 1 1 8 1 1 1 2 5 16 2 5 16 0.820 

23 
N-

Acetylputrescine 
1 2 11 1 1 1 1 10 10 2 10 10 0.971 

24 Creatine 1 1 17 1 1 2 1 4 5 1 4 7 0.985 

25 L-Asparagine 1 5 24 1 3 5 1 9 13 1 9 12 0.984 

26 L-Cystine 1 1 1 1 1 1 1 3 6 1 3 3 0.949 

27 Ornithine 1 2 23 1 2 2 1 12 12 1 12 12 0.945 

28 Pyridoxine 1 4 8 1 4 4 4 (2) 20 25 4 (2) 20 25 0.935 

29 Taurine 1 5 5 1 1 1 1 4 1 1 2 2 0.873 

30 Uric acid 1 1 9 1 1 1 1 3 9 1 3 3 0.839 

31 Xanthine 1 3 19 1 3 3 1 3 7 1 3 6 0.962 

32 Xanthosine 1 3 4 1 1 1 2 11 21 1 7 10 0.971 

33 DL-Homocystine 1 2 10 1 2 2 1 4 11 1 2 8 0.936 

34 4-Hydroxyproline 1 4 17 1 3 8 1 8 52 1 8 52 0.998 

35 Xanthurenic acid 1 4 5 1 1 1 1 9 17 1 9 17 0.958 

 

*(x) where x=new rank after grouping isomers as one group. 
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With a wider precursor ion mass tolerance, for the zero-reaction library search, an 

average of 8.6 library compounds were mass-matched to a tested standard, while MS/MS search 

resulted in an average of 2.5 matched compounds with a fit score of ≥0.700 (see below). For the 

one-reaction search, an average of 20.4 compounds were matched to a standard if only mass 

search was used. With MS/MS search, an average of 11.4 compounds with a fit score of ≥0.700 

was matched to a standard. Using the precursor ion mass tolerance of 0.005 Da, for the zero-

reaction search, an average of 2.9 and 1.7 compounds were matched to a standard using MS 

search and MS/MS search, respectively. For the one-reaction library, MS search and MS/MS 

search resulted in an average of 18.2 and 10.4 compounds matched to a standard. These results 

show that the number of MS/MS matched structures with a fit score of ≥0.700 is significantly 

lower than the number of MS matched structures. 

Since the structures of the 35 standards are known, we can examine the accuracy of the 

MS/MS matches in a rank according to the fit score. For the zero-reaction search using a wider 

mass tolerance, 31, 2 and 2 standards (88.6%, 5.7% and 5.7%) gave the correct compound as the 

top, 2nd and 3rd ranked match, respectively (see Table 5.1). Even for the one-reaction search, 

27, 3 and 1 standards (77.1%, 8.6% and 2.9%) gave the correct structure as the top, 2nd and 3rd 

ranked match, respectively. Only 4 standards had the correct structure ranked below the 3rd 

match. The 11th ranked N-acetylmannosamine, out of 43 mass-matched compounds, have 

isomers ranked from top 1 to 10. Effectively this match was ranked 3rd if isomers were counted 

as one (see Table 1 with the new rank in brackets). Similarly, for the 7th ranked 

chenodeoxycholic acid, out of 44 mass-matched compounds, the top 5 matches were isomers. 

Counting all the isomers as one, this match was ranked 2nd. In the case of using 0.005 Da 
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precursor ion mass tolerance for MS/MS search, as Table 1 shows, for the zero-reaction library, 

33 (94.3%), 0 (0%), 2 (5.7%) standards gave the correct structure as the top, 2nd and 3rd ranked 

match, respectively. For the one-reaction library, 27 (77.1%), 4 (11.4%), 1 (2.9%) standards gave 

the correct structure as the top, 2nd and 3rd ranked match. Only 3 (8.6%) standards were below 

top three. These three cases would be ranked top 3 if grouping the isomers as one.  

The above results show that the correct structure of a MS/MS search belongs to one of 

the top three structures with majority of them as the top match. This finding would suggest that, 

for a MS/MS search, only the top 3 structures including isomers need to be inspected manually 

to confirm or disapprove a match. This should greatly improve the overall metabolite 

identification efficiency. For the 35 standards, after generating the top three structure matches for 

each metabolite in the one-reaction search results, we manually checked the matches to validate 

the automatic MS/MS search results. 27 top ranked metabolites could be manually confirmed. 

For the 2nd ranked metabolites, 3 out of 4 could be confirmed by manually eliminating the top 

ranked false match. Only one of the 2nd ranked metabolites (isovalerlcarnitine, #16 in Table 5.1) 

could not be differentiated from the top ranked structure due to the lack of characteristic 

fragment ions from the two structures. 

Table 5.1 also lists the fit score of the correctly matched structure from MS/MS search 

for each standard. The fit score determines the matching quality of the experimental MS/MS data 

with the predicted MS/MS data. The average fit score for all the correct structures is 0.860 and 

90% of the correct structures have fit scores of ≥0.700. There are 3 cases that the correct 

structures have a fit score of <0.700. Manual inspection of these matches shows that these 

spectra do not have enough high intensity and informative fragment ion peaks. For example, in 

the case of thymine (#10 in Table 5.1) with a fit score of 0.114, the MS/MS spectrum shows only 
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one fragment ion peak and this peak cannot be explained even with manual interpretation. This 

observation is not surprising, considering that not all the metabolites can be fragmented or 

produce a sufficient number of characteristic fragment ions. Nevertheless, more than 90% of the 

35 standards could produce MS/MS spectra with sufficiently high quality to render a fit score of 

≥0.700. Thus, a fit score of 0.700 can be used as a cut-off threshold for automated MS/MS search 

to produce a list of structure candidates from which manual interpretation can be carried out to 

approve or disapprove a structure match.  

5.3.3 MS/MS Search of Urine Metabolites 

To demonstrate the utility of MCID MS/MS search in real world applications, a human 

urine sample was analyzed by LC-QTOF-MS, followed by library search for metabolite 

identification. In this experiment, a precursor ion exclusion (PIE) strategy, similar to that used in 

shotgun proteomics work,[168] was applied to acquire as many MS/MS spectra as possible from 

triplicate runs of the same human urine.  

In total, 5794 MS/MS spectra were generated using the PIE strategy. We used 0.005 Da 

mass tolerance for precursor and fragment ions in MCID MS/MS search and generated 1698 

spectral matches using the zero-reaction library (see Supplemental Table T5.2 for the list). We 

then performed a cross-validation of some of the spectral matches using a Bruker HMDB 

MS/MS spectral library. This Bruker library containing 800 standards was created in the same 

QTOF instrument as the one used for running the urine sample. Thus, excellent fragmentation 

pattern match of the urine metabolite and library standard is expected, which should in turn 

provide high confidence for validation of the MCID MS/MS search results. One example of the 

validation work is shown in Figure 5.4. Figure 5.4A shows the experimental MS/MS spectrum of 

carnitine found in urine at the retention time of 2.55 min. Figure 5.4B shows the match of the 
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experimental MS/MS with the predicted MS/MS spectrum of carnitine in the MCID library. 

Figure 5.4C shows the standard MS/MS spectrum of carnitine in the Bruker library. The fit score 

for this compound using the predicted spectral library was 0.995, compared to purity score of 

954 out of 1000 using the Bruker library. Thus, the MCID MS/MS search result or identification 

of carnitine was cross-validated.  
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Figure 5.4 One example of the MS/MS validation 

Table 5.2 lists the metabolites initially identified using MCID MS/MS search with the 

zero-reaction library and subsequently validated using the Bruker experimental spectral library. 

Out of the 77 validated spectral matches, 54, 18, 3 metabolites were correctly identified by 



140 

 

MCID MS/MS as the top (70.1%), 2nd (23.4%) and 3rd (3.9%) ranked structure, respectively. 

Two of them were ranked below top 3. However, if treating isomers as a group, only 1 spectral 

match had the correct structure ranked below top 3. Thus, 76 out of the 77 spectral matches 

(97.4%) had the correct structure belonging to one of the top 3 matched structures. The average 

fit score was 0.775. These results indicate that using MCID MS/MS search, almost all the 

correctly matched metabolites could be found as the top 3 structures in a LC-MS/MS experiment 

of a real biological sample. If this holds true for the other non-validated matches, only the top 3 

structures from a MCID MS/MS search of an unknown metabolite would need to be inspected or 

confirmed for identification. Of course, more validation work is needed to generalize this finding 

in the future. Nevertheless, the urine results illustrate that MCID MS/MS search is capable of 

identifying metabolites with high confidence. 

Table 5.2 Summary of zero-reaction library MS/MS spectral match results of 77 metabolites 

used for cross-validation in the urine sample analysis. 

No. 
Precursor 

m/z 

RT 

(min) 

LC-

MS 

run 

# 

ID 

Correct 

structure 

rank 

# of 

MS 

match 

Fit 

score 

1 156.078 2.07 1 L-Histidine 1 1 0.969 

2 147.114 2.12 1 L-Lysine 1 1 0.957 

3 118.086 2.45 2 Betaine 4 5 0.559 

4 170.093 2.52 2 1-Methylhistidine 1 2 0.978 

5 162.114 2.55 1 L-Carnitine 1 2 0.995 

6 76.0759 2.56 1 Trimethylamine N-oxide 2 2 0.99 

7 137.071 2.59 3 1-Methylnicotinamide 1 1 0.436 

8 104.07 2.62 3 L-Alpha-aminobutyric acid 1 8 0.909 

9 138.055 2.67 2 Trigonelline 3 5 0.454 

10 189.123 2.71 3 N6-Acetyl-L-lysine 1 3 0.678 

11 204.123 3.03 1 L-Acetylcarnitine 1 1 0.884 

12 130.05 3.39 3 Pyrrolidonecarboxylic acid 3 5 0.634 
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13 189.124 3.66 1 N-Alpha-acetyllysine 1 3 0.952 

14 150.06 3.97 2 L-Methionine 1 2 0.951 

15 139.052 4.13 1 Urocanic acid 1 2 0.927 

16 148.061 4.4 2 L-Glutamic acid 2 6 0.372 

17 137.047 4.79 1 Hypoxanthine 1 3 0.955 

18 282.12 5.44 1 1-Methyladensine 1 4 0.98 

19 240.11 5.89 1 Dihydrobiopterin 1 3 0.598 

20 132.102 5.97 3 L-Norleucine 1 6 0.992 

21 132.103 6.25 2 L-Isoleucine 1 6 0.988 

22 182.082 6.4 1 L-Tyrosine 2 5 0.943 

23 138.092 7.56 2 Tyramine 1 4 0.884 

24 385.13 8.88 2 S-Adenosylhomocysteine 1 1 0.887 

25 268.104 10.41 2 Adenosine 2 3 0.921 

26 330.06 11.85 3 Cyclic AMP 2 2 0.998 

27 166.087 13.73 1 L-Phenylalanine 1 4 0.89 

28 154.05 17.35 1 3-Hydroxyanthranilic acid 1 2 0.826 

29 220.119 22.24 2 Pantothenic acid 1 2 0.931 

30 137.046 22.33 1 Hypoxanthine 1 3 0.836 

31 197.067 22.65 1 1,3-Dimethyluric acid 2 8 0.635 

32 153.128 22.88 2 Perillyl alcohol 2 3 0.472 

33 181.072 22.94 1 Theobromine 1 17 0.906 

34 196.06 23.54 2 Salicyluric acid 3 6 0.65 

35 158.082 23.6 1 Tiglylglycine 1 2 0.939 

36 160.097 24.12 2 Isovalerylglycine 2 6 0.98 

37 118.086 24.44 2 L-Valine 1 5 0.557 

38 169.05 24.51 2 Isovanillic acid 4 (2) 7 0.863 

39 181.072 24.68 2 Theophylline 2 17 0.975 

40 206.044 24.91 2 Xanthurenic acid 1 1 0.934 

41 181.061 25.02 3 Nicotinuric acid 1 1 0.994 

42 205.097 25.04 1 L-Tryptophan 1 1 0.743 

43 162.056 25.74 3 Indole-3-carboxylic acid 2 3 0.99 

44 190.05 25.79 1 Kynurenic acid 1 1 0.642 

45 153.128 26.02 3 Perillyl alcohol 2 3 0.881 

46 281.113 26.04 1 L-Aspartyl-L-phenylalanine 1 2 0.884 

47 164.037 26.57 1 Acetylcysteine 1 1 0.427 

48 295.129 26.62 2 Aspartame 2 2 0.677 

49 246.17 26.76 1 Isovalerylcarnitine 1 3 0.985 
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50 161.107 26.78 2 Tryptamine 1 2 0.806 

51 195.088 26.94 1 Caffeine 1 1 0.954 

52 180.066 27.31 1 Hippuric acid 1 2 0.994 

53 111.043 27.41 3 Pyrocatechol 1 2 0.858 

54 130.051 27.66 1 Pyrrolidonecarboxylic acid 2 5 0.885 

55 265.119 27.69 2 
Alpha-N-phenylacetyl-L-

glutamine 
1 2 0.968 

56 377.146 28.06 1 Riboflavin 1 1 0.879 

57 160.133 28.29 1 DL-2-aminooctanoic acid 1 1 0.779 

58 116.071 28.45 1 L-Proline 1 2 0.878 

59 194.081 29.17 2 Phenylacetylglycine 2 3 0.953 

60 162.056 29.96 1 Indole-3-carboxylic acid 1 3 0.968 

61 131.107 30.47 2 Heptanoic acid 1 1 0.398 

62 197.082 30.55 2 Homoveratric acid 1 1 0.943 

63 147.076 33.06 2 L-Glutamine 1 4 0.692 

64 206.082 32.4 1 Indolelactic acid 1 3 0.877 

65 231.16 32.75 1 Dodecanedioic acid 1 1 0.261 

66 189.113 33.58 1 Azelaic acid 2 2 0.824 

67 365.232 34.53 1 Tetrahydrocortisone 2 6 0.681 

68 176.07 34.82 1 Indoleacetic acid 2 3 0.896 

69 466.316 35.5 1 Glycocholic acid 1 2 0.129 

70 160.134 36.82 3 DL-2-aminooctanoic acid 1 1 0.704 

71 245.175 43.07 2 1,11-Undecanedicarboxylic acid 1 1 0.37 

72 173.154 50.88 1 Capric acid 1 1 0.446 

73 122.097 51.25 2 N,N-Dimethylaniline 1 3 0.418 

74 199.171 52.15 1 5-Dodecenoic acid 1 2 0.274 

75 201.185 56.89 1 Dodecanoic acid 1 1 0.531 

76 283.264 57.94 2 Elaidic acid 2 3 0.716 

77 283.262 58.73 2 Vaccenic acid 1 3 0.245 

 

The fit scores of the 77 metabolites were analyzed to determine the best cut-off for high 

confident MS/MS match. From the study of the 35 metabolite standards, we proposed to use 

0.700 as the cut-off.  However, we noticed that, in the urine sample analysis, this cut-off score is 

too restricted in some cases. This is because, in the analysis of a complicated biological sample, 
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metabolites have a wide concentration range and their MS/MS signals can be affected by 

precursor ion intensity, background impurities and co-eluting compounds. For example, of the 77 

metabolites, only 52 (67.5%) of the correctly matched structures had their fit score of >0.700. 

Another 18 (23.4%) of the correct structures had a fit score of between 0.700 and 0.400 and 7 

(9.1%) structures even had a fit score of below 0.400. These results indicate that using a cut-off 

fit score of 0.700 will exclude a large fraction of the correct structures. On the other hand, of the 

52 metabolites with a fit score of larger than 0.700, their correct structures were all ranked at the 

top 3. Thus, we can use a cut-off of 0.700 to generate a list of high confident structure matches 

where one of the top 3 structures is expected to be correct. For the remaining spectral matches 

with a fit score of below 0.700, we would still examine the top three structure matches of an 

experimental MS/MS spectrum to determine if one of the matches is correct; however, there is 

no guarantee that any of the top 3 structures is correct in these cases. We recognize that simply 

using a fit score cut-off of 0.700 represents a compromise between the search specificity and 

sensitivity. Future work will be needed to develop a more robust scoring system for MS/MS 

search to increase both specificity and sensitivity.   

We applied the 0.700 cut-off threshold to all of the 1160 spectral matches including the 

77 validated matches. We found that 636 MS/MS spectra have structure matches with a fit score 

of ≥0.700 for a total of 1227 structures (see Supplemental Table T5.3). Among them, 378, 126, 

and 54 spectral match with 1, 2, and 3 structures, respectively, and 78 spectral match with 4 or 

more high-score structures. While we cannot narrow down each spectral match to one structure, 

we can state that 636 MS/MS spectra have high confident structure matches and one of the top 

three structures for each spectral match is most likely correct. It is clear that MCID MS/MS 

search can generate many high confident, but still putative identifications from a urine sample.  
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Finally, we would like to illustrate the power of using MCID MS/MS to search a 

predicted MS/MS spectral library of one-reaction metabolites. Out of the 5794 MS/MS spectra 

collected from the urine sample, we took the remaining unmatched or unconfirmed spectra (i.e., 

5158) from the zero-reaction library search to search the one-reaction library and the results are 

shown in Supplemental Table T5.4. A total of 3920 (76.0%) MS/MS spectra were matched to the 

one-reaction library. Among them, 1250 spectra have a total of 5966 structures matched with a 

fit score of ≥0.700 (see Supplemental Table T5.5). This includes 587, 380, and 123 spectra match 

with 1, 2, and 3 structures, respectively, and 160 spectra match with 4 or more high-score 

structures. 

To validate some of these matches, we used the published data of 87 one-reaction 

metabolites that were identified based on manual interpretation of the mass-matched metabolites 

in MCID MS search.[144] Based on the match of retention time, precursor mass and MS/MS 

fragmentation pattern, 78 out of these 87 metabolites (88.5%) were identified in the current urine 

sample (see Table 5.3). Among the 78 metabolites, 44 (56.8%), 17 (21.8%) and 6 (7.7%) spectra 

had their correctly matched structures ranked at the top, 2nd and 3rd, respectively. Only 11 

correct structure matches were ranked below the top 3. If treating isomers as a group, out of 

these 11 matches, 3 matches were ranked #2 and 2 matches were ranked #3. Thus, 72 out of the 

78 metabolites (92.3%) had the correct structure belonging to one of the top 3 structure matches. 

Among the 78 metabolites, there were 57 spectral matches with a fit score of ≥0.700. For these 

matches, 56 of them (98.2%) had a correct structure listed at the top 3 matches (treating isomers 

as a group). These results demonstrate that a fit score cut-off threshold of 0.700 can narrow down 

the correct structure to one of the top 3 structure matches, even for the one-reaction library 

search. If this holds true, one of the top 3 matches for each of the 1250 MS/MS spectra having 
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one-reaction library metabolite matches with a fit score of ≥0.700 in Supplemental Table T5.5 

should be the correct structure. 
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Table 5.3 Summary of one-reaction library MS/MS spectral match results of 78 metabolites used for cross-validation in the urine 

sample analysis. 

No. Precursor m/z RT (min) 
LC-MS  

run # 
ID 

Correction  

structure rank 
# of MS match  Fit score 

1 137.0467 4.79 1 8-Hydroxypurine - H2 or isomers 1 16 0.960 

2 169.0601 4.12 2 3-Hydroxyanthranilic acid + NH or isomers 1 20 0.537 

3 171.088 4.88 1 L-Histidine + NH or isomers 1 2 0.689 

4 188.1035 4.1 1 Homocitrulline - H2 or isomers 1 9 0.893 

5 190.1067 26.74 2 Suberic acid + NH or isomers 5 (2) 25 0.900 

6 197.1279 25.97 1 L-prolyl-L-proline – O or isomers 4 7 0.910 

7 203.0802 8.71 1 Indoleacrylic acid + NH or isomers 1 9 0.731 

8 209.1168 31.75 3 3-Methoxybenzenepropanoic acid + C2H4 or isomers 1 2 0.700 

9 220.0601 28.04 1 N'-Formylkynurenine – NH3 or isomers 8 13 0.654 

10 222.0787 7.51 1 3-Hydroxyvaleric acid + C3H5NOS or isomers 6 26 0.617 

11 224.1278 39.31 1 Perillic acid + C2H3NO or isomers 1 1 0.930 

12 226.0823 4.25 1 Deoxycytidine – H2 or isomers 1 22 0.824 

13 257.1485 30.62 1 Dethiobiotin + C2H2O 3 5 0.685 

14 257.2263 47.61 1 Retinoic acid or isomers - CO2 1 6 0.623 

15 257.2261 49.04 1 Retinoic acid or isomers - CO2 1 6 0.969 

16 259.165 31.86 2 Capryloylglycine + C2H3NO 4 6 0.328 

17 262.1652 9.95 1 Hydroxyvalerylcarnitine or isomers – H2 1 22 0.891 

18 262.1658 11.42 1 Hydroxyvalerylcarnitine or isomers – H2 1 22 0.956 

19 263.1382 28.31 2 L-phenylalanyl-L-hydroxyproline - O 1 8 0.883 

20 266.102 30.16 1 (R)-2-Benzylsuccinate + C2H3NO 2 19 0.883 

21 269.1231 3.69 1 Homocarnosine + CO 2 10 0.969 

22 272.1845 31.99 1 Heptanoylcarnitine - H2 or isomers 1 7 0.802 
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23 272.1852 31.29 1 Heptanoylcarnitine - H2 or isomers 1 7 0.968 

24 272.1852 30.51 1 Heptanoylcarnitine - H2 or isomers 1 7 0.979 

25 273.2207 41.63 1 Androstenol - H2 3 23 0.733 

26 273.2214 41.63 1 Androstenol - H2 4(2) 23 0.733 

27 284.1851 31.54 1 2-Octenoylcarnitine - H2 or isomers 2 3 0.964 

28 284.1856 30.47 2 2-Octenoylcarnitine - H2 or isomers 2 3 0.975 

29 285.2573 40.79 1 Docosahexaenoic acid - CO2 1 1 0.894 

30 286.1272 12.45 3 trans-trans-Muconic acid + C7H13NO2 or isomers 1 13 0.946 

31 287.1996 35.42 2 Testosterone - H2 or isomers 6 (2) 32 0.412 

32 300.2166 35.37 1 9-Decenoylcarnitine - CH2 or isomers 1 4 0.989 

33 300.2169 46.77 2 9-Decenoylcarnitine - CH2 or isomers 1 4 0.991 

34 302.1608 23.74 1 Pimelylcarnitine - H2 or isomers 2 5 0.803 

35 302.1959 39.65 2 Heptanoylcarnitine + CO or isomers 2 9 0.522 

36 302.1953 29.04 1 Heptanoylcarnitine + CO or isomers 2 9 0.730 

37 302.1955 34.78 2 Heptanoylcarnitine + CO or isomers 3 9 0.634 

38 302.1958 30.37 2 Heptanoylcarnitine + CO or isomers 1 9 0.612 

39 303.1004 28.13 1 4-Hydroxy tolbutamide + O 4 (3) 5 0.446 

40 304.2109 31.51 1 3-Hydroxyoctanoic acid + C7H13NO2 or isomers 1 10 0.978 

41 304.2119 31.12 1 3-Hydroxyoctanoic acid + C7H13NO2 or isomers 1 19 0.991 

42 310.2008 35.02 1 2-trans,4-cis-Decadienoylcarnitine - H2 or isomers 2 4 0.976 

43 310.2012 36.32 1 2-trans,4-cis-Decadienoylcarnitine - H2 or isomers 2 4 0.983 

44 316.175 26.19 1 2-Octenedioic acid + C7H13NO2 or isomers 1 2 0.952 

45 316.211 30.76 2 6-Keto-decanoylcarnitine - CH2 or isomer 3 5 0.901 

46 318.1908 27.94 1 Hydroxyhexanoycarnitine + C2H2O or isomers 2 6 0.877 

47 318.2068 35.16 2 16a-Hydroxyandrost-4-ene-3,17-dione + NH3 or isomers 1 10 0.188 

48 319.1651 30.09 1 Indoleacetic acid + C7H13NO2 1 5 0.981 

49 326.0869 10.47 2 Inodxyl glucuronide + O or isomers 6 (3) 19 0.953 

50 328.2108 30.28 1 2-trans,4-cis-Decadienoylcarnitine + O or isomers 1 3 0.681 
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51 328.2111 31.78 1 2-trans,4-cis-Decadienoylcarnitine + O or isomers 1 3 0.972 

52 328.2112 33.09 1 2-trans,4-cis-Decadienoylcarnitine + O or isomers 1 3 0.986 

53 328.248 39.89 1 4,8 dimethylnonanoyl carnitine - H2 or isomers 2 12 0.992 

54 328.2472 39.82 2 4,8 dimethylnonanoyl carnitine - H2 or isomers 2 12 0.993 

55 330.1907 28.51 1 2-Octenoylcarnitine + CO2 1 2 0.971 

56 330.2267 30.07 1 9-Decenoylcarnitine + O 2 6 0.847 

57 332.2061 29.58 1 Nonate + C7H13NO2 1 8 0.939 

58 332.2422 33.5 1 (R)-3-Hydroxydecanoic acid + C7H13NO2 or isomers 1 7 0.659 

59 332.2422 36.09 1 (R)-3-Hydroxydecanoic acid + C7H13NO2 or isomers 1 7 0.788 

60 337.1754 30.2 1 Phenylacetylglycine + C7H13NO2 or isomers 2 6 0.899 

61 341.1697 20.5 2 L-Dopa + C7H13NO2 1 9 0.982 

62 342.2272 31.98 1 9-Decenoylcarnitine + CO 2 3 0.861 

63 344.2055 25.73 1 Decenedioic acid + C7H13NO2 or isomers 1 1 0.447 

64 344.2059 30.79 3 Decenedioic acid + C7H13NO2 or isomers 1 1 0.705 

65 346.1256 5.26 1 Muramic acid + C4H2N2O 5 (4) 25 0.598 

66 346.2207 31.43 1 Nonanoylcarnitine + CO2 or isomers 1 4 0.862 

67 356.2428 37.22 1 9-Decenoylcarnitine + C2H2O 3 3 0.889 

68 358.258 38.66 1 2-Hydroxylauroylcarnitine – H2 3 10 0.978 

69 384.115 23.66 1 Adenylsuccinic acid -HPO3 1 15 0.901 

70 384.2738 38.32 1 3, 5-Tetradecadiencarnitine - O 1 11 0.746 

71 402.2832 34.54 1 Dodecanedioylcarnitine + +C2H4 2 6 0.898 

72 432.3101 40.89 1 Lithocholic acid glycine conjugate - H2 or isomer 1 9 0.736 

73 464.1897 34.77 1 Tetrahydrofolic acid + H2O 7 (5) 11 0.355 

74 523.2527 32.21 2 Cortexolone + C6H8O6 1 11 0.446 

75 593.3332 44.33 1 D-Urobilinogen + H2 or isomers 1 7 0.987 

76 595.3481 45.12 1 L-Urobilinogen - H2 2 5 0.971 

77 626.2066 31.06 3 Hesperidin + NH 1 2 0.585 

78 642.3468 33.03 1 Glycochenodeoxycholic acid 3-glucuronide + O 1 10 0.636 
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Taken together, the urine sample analysis results indicate that, in most cases, only the top 3 

structure matches from the MS/MS search of an experimental MS/MS spectrum with a fit score 

of ≥0.700 needs to be manually inspected for confirming or disapproving a match. Of course, for 

positive metabolite identification, an authentic standard is needed to confirm a structure match. 

In this regard, using MCID MS/MS search, standards of only a few top ranked candidates need 

to be acquired or synthesized, which should greatly reduce the time and efforts needed for 

metabolite identification. 

 

5.4 Conclusions 

We have developed a web-based MS/MS spectral search tool for improving metabolite 

identification based on the use of a large library of predicted fragment-ion-spectra of over 

383,830 possible human metabolites. This tool is freely accessible at www.MyCompoundID.org, 

allowing a user to search a MS/MS spectrum or a batch of spectra against the library for possible 

structure matches. Using MS/MS spectra collected from 35 standards and a human urine sample, 

we demonstrated that one of the top 3 matches from a MS/MS spectrum with a fit score of 

greater than 0.700 (out of 1.000) is a correct structure. While MCID MS/MS spectral search 

cannot always produce one unique structure match, narrowing down the possible matches to the 

top 3 candidates should save the time and efforts to find or synthesize authentic compound 

standards for positive identification.  
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Chapter 6  

Saliva Metabolomic Changes Associated with Mild Cognitive Impairment and 

Alzheimer's Disease Revealed by Chemical Isotope Labeling Liquid 

Chromatography Mass Spectrometry 

6.1 Introduction 

Mild cognitive impairment (MCI) is defined as a clinical state characterized by 

significant cognitive impairment in the absence of dementia. MCI is known as the transition 

between normal aging and the prodromal phase of Alzheimer’s disease (AD).[169] Early 

diagnosis of MCI and AD can assist in management and treatment of the diseases.[170, 171] 

There is a pressing need for an improved, rapid and sensitive method for diagnosing MCI 

patients, as the preclinical period of AD can reveal valuable information to develop interventions 

that may delay or prevent AD.[172] While discovering protein biomarkers of MCI and AD is an 

active area of research,[173-176] applying metabolomics to reveal metabolic perturbations in 

many biochemical pathways related to MCI and AD may allow us to discover a panel of 

metabolite biomarkers specific to MCI and AD.[177]  

Over the past few years, a number of metabolomics studies on AD and a few on MCI 

have been reported. These studies used human CSF,[178, 179] plasma/serum,[180-182] or brain 

tissue samples.[183] Human saliva is another attractive medium because it is inexpensive and 

easy to collect and non-invasive. Saliva, often considered as “the mirror of the body”, is secreted 

from three pairs of major salivary glands and many salivary glands lying beneath the oral 

mucosa.[184] Saliva metabolomics is an attractive approach to screen for potential diagnostic 

and prognostic biomarkers to distinguish different states of diseases.[185] For example, saliva 
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metabolomic profiles of healthy controls and of patients with oral, breast or pancreatic cancer 

have been investigated to differentiate different groups.[186] 

To search for potential biomarkers of MCI and AD, an analytical technique that allows 

accurate quantification and high metabolome coverage is needed. To this end, we have recently 

reported a quantitative technique based on 
13

C-/
12

C-isotope dansylation labeling combined with 

liquid chromatography Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry 

(MS) for in-depth profiling of the amine/phenol submetabolome in human saliva sample.[187] In 

this work, we report a workflow with improved submetabolome coverage for saliva 

metabolomics and the application of this workflow for discovering potential metabolite 

biomarkers to differentiate MCI, AD and normal controls (NA) using 82 saliva samples in the 

training set and 27 independent samples in the validation set. 

 

6.2 Experimental Section 

6.2.1 Subjects 

Ethics approval of this work was obtained from the University of Alberta according to the 

university’s health research policy. Saliva samples were collected from 109 participants 

including 82 samples for the biomarker discovery work (i.e., the training set) and 27 samples for 

the biomarker validation work (i.e., the validation set). The training set (TS) consisted of n = 35 

NA adults (age = 64-75 years; 62.9% female), n = 25 MCI adults (age: 64-75 years; 60% 

female), and n = 22 AD patients (age = 52-91 years; 72.7 % female). The validation set consisted 

of n = 10 NA adults, n = 10 MCI adults, and n = 7 AD adults. The demographic characteristics 
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and clinical information of the participants are shown in Table 6.1. Each individual sample  was 

analyzed in experimental triplicates. 

Table 6.1 Baseline characteristics for discovery and validation samples 

 
Discovery Validation 

Characteristics NA MCI AD NA MCI AD 

n 35 25 22 10 10 7 

Age (years) 
69.94 

(3.80) 

70.40 

(3.38) 

77.09 

(11.20) 

71.40 

(2.84) 

71.50 

(2.51) 

70.11 

(16.60) 

Gender (M/F) 13/22 10/15 6/16 5/5 5/5 2/5 

Education, years 
15.69 

(2.69) 

14.68 

(2.94) 

11.59 

(3.23) 

14.80 

(3.26) 

15.40 

(3.03) 

14.00 

(2.08) 

Mini-Mental State 

Exam 

28.46 

(1.42) 

27.39 

(3.14) 

21.32 

(4.76) 

28.70 

(1.06) 

27.70 

(1.89) 

19.57 

(6.58) 

 

6.2.2 Sample Collection and Storage 

Salivary samples were collected using Oragene®•DNA Self-Collection Kit OG-500 

DNA Genotek, Inc., Ottawa, Ontario, Canada). Whole saliva was collected according to the 

manufacturer's instructions and was placed inside the kit which also contained an Oragene DNA-

preserving solution. The ingredients of Oragene solution include ethyl alcohol (<24 %) and Tris-

HCl buffer (pH 8). As provided by established procedures, samples were stored at room 

temperature before dansylation labeling experiments and were preserved in -20°C or -80°C after 

the labeling experiments for long-term storage and follow-up studies. 
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6.2.3 Chemicals and reagents  

13
C-dansyl chloride (DnsCl) was synthesized in-house as described by Guo and Li.[44]

 

12
C-dansyl chloride was purchased from Sigma-Aldrich (Milwaukee, WI). All reagents were of 

ACS grade or higher with water and organic solvents being of MS grade.  

6.2.4 Metabolite extraction and isotope labelling 

Based on our earlier work on saliva metabolome profiling,[187] we have developed an 

improved workflow in this work. Specifically, an aliquot of 5 µL of saliva sample was dissolved 

in 20 µL ACN/ H2O (50/50) in a screw cap vial. 12.5 µL of NaHCO3/NaH2CO3 buffer solution 

(500 mM, 1:1, v/v) was mixed in the solution and the vial was vortexed and then spun down. 

36.6 µL of freshly prepared 
12

C-DnsCl or 
13

C-DnsCl in acetonitrile (12 mg/mL) was added into 

the vial. The solution was vortexed, spun down again, and then let to react for 60 min in an oven 

at 60 
o
C. 5 µL of NaOH (250 mM) was added to quench the excess DnsCl. After another 10 min 

incubation in the 60 
o
C oven, 25 µL of formic acid in ACN/ H2O (425 mM, 50/50) was added to 

neutralize the solution. Each individual saliva sample was directly labeled with 
12

C-DnsCl. A 

pooled saliva sample was prepared by pooling 10 µL of each from all 82 saliva samples together. 

This pooled sample was labeled with 
13

C-DnsCl under the exact same reaction condition. Both 

the training sample set and validation sample set used the same 
13

C-labeled pooled sample to mix 

with their 
12

C-labeled individual saliva samples.  

6.2.5 UPLC-UV 

After being labeled with 
12

C- or 
13

C-DnsCl, the total concentration of the labeled 

submetabolome in a sample was quantified by a step-gradient ultra-high pressure liquid 

chromatography (UPLC) with UV detection at 338 nm.[188] An ACQUITY UPLC system 

(Waters Corporation, Milford, MA) equipped with photo diode array (PDA) detector, and a 
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Waters ACQUITY UPLC BEH (Ethylene Bridged Hybrid) C18 column (2.1 mm × 50 mm, 1.7 

μm particle size, 130 Å) were used for online LC-UV analysis. LC solvent A was 0.1% (v/v) in 

5% (v/v) ACN, and solvent B was 0.1% (v/v) formic acid in ACN. The gradient elution profile 

was as follows: t = 0 min, 0% B; t = 1.00 min, 0% B; t = 1.01 min, 95% B; t = 2.50 min, 95% B; 

t = 3.00 min, 0% B; t = 6.00 min, 0% B. The flow rate was 450 μL/min, and the sample injection 

volume was 2 μL.  

6.2.6 LC-FTICR-MS  

Metabolomic analyses were performed using an Agilent 1100 series capillary HPLC 

system (Agilent, Palo Alto, CA, USA) connected to a Bruker 9.4 T Apex-Qe Fourier transform 

ion cyclotron resonance (FTICR) mass spectrometer (Bruker, Billerica, MA, USA) equipped 

with an electrospray ionization (ESI) interface operating in positive mode. Reversed phase (RP) 

chromatographic separation was carried out on an Eclipse C18 column (2.1 mm ×100 mm, 1.8 

μm, 95 Å), with solvent A being water with 0.1% (v/v) formic acid and 5% acetonitrile (ACN) 

(v/v), and solvent B being ACN  with 0.1% (v/v) formic acid. The LC flow rate was 180 μL/min 

and running time was 26.50 min. The gradient was: t = 0 min, 20% B; t = 3.50 min, 35% B; t = 

18.00 min, 65% B; t = 21.00 min, 95% B; t = 21.50 min, 95% B; t = 23.00 min, 98% B; t =24.00 

min, 98% B; t = 26.50 min, 99% B. The sample injection volume was 6 µL and the flow was 

split 1:2 and 60 μL/min of the LC eluate entered the ESI-MS system. 

6.2.7 Data processing and statistical analysis 

The 
12

C/
13

C ion pairs were extracted from raw LC-MS data by a peak pair picking 

program, IsoMS.[27] The peak pairs of all individual samples were then aligned by retention 

time and accurate mass to produce a metabolite-intensity table. The alignment parameters were 

set as retention time tolerance of 30 seconds and accurate mass tolerance of 8 ppm. A Zero-fill 
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program[65] was then applied to all the peak pairs in the table to retrieve the missing values from 

the raw LC-MS data. 

Multivariate statistical analysis of the LC-MS data was carried out using SIMCA-P+ 12.0 

(Umetrics, Umea, Sweden). Principle component analysis (PCA) and orthogonal partial least 

squares - discriminant analysis (OPLS-DA) were used to analyze the data. Receiver operating 

characteristic (ROC) analysis and linear SVM model was performed using MetaboAnalyst[26] 

(http://www.metaboanalyst.ca/). Mean center and autoscaling were used to normalize all the 

peak ratio values prior to the statistical analysis.  

6.2.8 Metabolite identification  

For positive or definitive metabolite identification, the peak pairs were matched against a 

Dns-standards library by retention time and accurate mass. In addition, putative metabolite 

identification was performed based on accurate mass match of the peak pairs found to the 

metabolites in the Human Metabolome Database (HMDB)[189] and the Evidence-based 

Metabolome Library (EML) using MyCompoundID,[46] with a mass tolerance of 5 ppm.  

 

6.3 Results and Discussion 

 The major objective of this work is to identify and verify a set of metabolites that can 

help diagnosis of AD and MCI patients. Figure 6.1 shows the entire workflow of this study. 5 µL 

saliva sample was aliquoted out from each individual sample and labeled with 
12

C-DnsCl. A 

pooled sample was prepared by mixing small aliquots of individual samples and then labeled 

with 
13

C-DnsCl. The 
12

C-labeled individual sample was then mixed with 
13

C-labeled pooled 

sample in a 1:1 amount ratio after the total concentration of the labeled metabolites was 
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determined by LC-UV. After the LC-MS analysis, automatic data preprocessing was performed 

to extract the peak pairs belonging to the labeled amine/phenol submetabolome. To discover the 

metabolites that contribute to the statistical difference of AD, MCI and NA, we performed pair-

wise comparison using OPLS-DA and volcano plot analysis. The diagnostic power of the 

common metabolites that were highly ranked in both statistical tools was then evaluated by ROC 

analysis. Top ranked metabolites were identified and externally validated by another set of 

samples. These metabolites could potentially be served as biomarkers for the diagnosis of AD 

and MCI. 
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Figure 6.1 Experimental workflow 

6.3.1 Improved workflow for saliva metabolome profiling 

In our previous study, cold acetone (-20 ˚C) was used to remove the proteins before the 

dansylation labeling.[187] However, it was noted that most of the proteins have already been 
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rapidly precipitated by the presence of ethyl alcohol in Oragene·DNA saliva collection kits. 

Therefore, a set of experiments were carried out to determine the best solvent to dissolve the 

saliva sample without subsequent protein precipitation and concentration steps in order to 

prevent any progressive loss of samples. A 5 µL starting saliva sample was aliquoted out and 

dissolved in 20 µL acetone (ACE), 20 µL H2O, or 20 µL ACN/H2O (50/50) at room temperature. 

Another 5 µL starting saliva sample was dissolved in acetone and stored at -20 
o
C overnight to 

serve as the control sample. Each solution was then subjected to dansyl labeling, followed by 

LC-UV quantification. The peak areas of the labeled metabolites were measured and compared 

among the three solvent system experiments. As shown in Figure 6.2, the labeling efficiencies of 

the experiments with 3 chosen solvents are higher than that of the control. The ACN/H2O (50/50) 

system is shown to have the best performance.  
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Figure 6.2 UV peak area and peak pair numbers detected in different dissolving solvent systems 

The number of peak pairs detected in each of the dissolving solvent systems was 

extracted using IsoMS. The right x-axis in Figure 6.2 shows the number of peak pairs detected. 

There are 1911±15 (n=3) peak pairs detected in the ACN/H2O (50/50) experiment, showing a 

marked improvement over the old protocol as described in the control experiment (i.e., 1727±16 

peak pairs). These results indicate that by omitting the protein precipitation step more 

metabolites could be detected. Therefore, we used ACN/H2O (50/50) as the solvent to dissolve 

the 5 µL saliva sample for all the subsequent experiments. 

Another major improvement of the current workflow over the original protocol is on data 

processing. An optimized IsoMS was used for peak picking with high sensitivity and specificity. 

The newly developed Zero-fill program[65] was applied to all the metabolome data produced 

which retrieved many missing peak ratio values in the initial metabolite-intensity table generated 
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by IsoMS. Thus, the overall metabolome coverage with consistent peak ratio values was more 

than doubled, compared to the data set produced in our original work (see below). 

6.3.2 The saliva metabolome  

The optimized sample and data processing workflow was used to profile the 82 saliva 

samples in the training set. Relative standard deviations (RSD) for peak pair ratios ranged from 

0.1% to 15%, with an average of 2% for the triplicate experiments. A set of data that fell within 

the range of 10-15% was subjected to Grubbs test at 99% confidence level to detect any 

statistical outlier. A total of 6230 unique pairs or metabolites (defined by molecular ion m/z 

coupled with its retention time) were obtained from the LC-FTICR-MS analysis with an average 

of 3669 peak pairs detected from each sample. Among them, 3801 peak pairs were commonly 

detected in more than 50% of the samples. By searching these peak pairs against the Dns-library 

composed of 273 labeled standards, using mass tolerance of 5 ppm and RT tolerance of 15 s, 79 

metabolites were positively identified based on mass and RT matches (see Table T6.2 for the 

list). Using MyCompoundID MS search based on accurate mass of peak pairs with mass 

tolerance of 5 ppm, 616 (9.9%) metabolites were putatively identified using the HMDB library 

and 2972 (47.7%) were identified using the predicted human metabolite library with one reaction 

(see Supplemental Table T6.1, T6.2). These results demonstrate a high coverage of the 

amine/phenol submetabolome in saliva using the optimized dansylation LC-MS workflow and 

also show the complexity and great diversity of the salivary metabolites present in a sample.
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Table 6.2 Dns-lib search results 

# 
Input 

mass 

Input 

rt 

Calibrated 

RT 
HMDB No. Name 

Monoisotopic 

molecular mass 
mz_light 

Library 

RT 

1 408.1707 1.40 2.43 HMDB00517 L-Arginine 174.1117 408.1700 2.44 

2 366.1118 2.22 2.94 HMDB00168 L-Asparagine 132.0535 366.1118 3.00 

3 399.1054 3.88 3.94 HMDB02005 Methionine Sulfoxide 165.0460 399.1043 3.72 

4 339.1011 4.58 4.37 HMDB00187 L-Serine 105.0426 339.1009 4.40 

5 381.1119 5.24 4.85 HMDB00148 L-Glutamic Acid 147.0532 381.1115 5.05 

6 339.1372 6.05 5.46 HMDB04437 Diethanolamine 105.0790 339.1373 5.49 

7 353.1167 6.51 5.81 HMDB00167 L-Threonine 119.0582 353.1166 5.79 

8 295.1111 6.87 6.13 HMDB00149 Ethanolamine 61.0528 295.1111 6.00 

9 309.0914 7.46 6.68 HMDB00123 Glycine 75.0320 309.0903 6.59 

10 406.1437 7.74 6.93 HMDB00721 Glycylproline 172.0848 406.1431 7.17 

11 364.1677 7.97 7.14 HMDB02064 N-Acetylputrescine 130.1106 364.1689 7.25 

12 323.1060 8.14 7.30 HMDB00056 Beta-Alanine 89.0477 323.1060 7.24 

13 323.1055 8.47 7.59 HMDB00161 L-Alanine 89.0477 323.1060 7.57 

14 381.1118 8.52 7.64 HMDB02393 N-methyl-D-aspartic acid 147.0532 381.1115 7.53 

15 337.1217 8.78 7.88 HMDB00112 Gamma-Aminobutyric acid 103.0633 337.1216 7.79 

16 337.1218 9.39 8.43 HMDB03911 3-Aminoisobutanoic acid 103.0633 337.1216 8.67 

17 337.1220 9.77 8.77 HMDB01906 2-Aminoisobutyric acid 103.0633 337.1216 8.91 

 
337.1220 9.77 8.77 HMDB03911 3-Aminoisobutanoic acid 103.0633 337.1216 8.67 

18 351.1376 9.90 8.89 HMDB03355 5-Aminopentanoic acid 117.0790 351.1373 8.68 

19 452.1863 9.97 8.96 HMDB29043 Serinyl-Leucine 218.1267 452.1850 8.90 

20 408.1594 10.16 9.13 HMDB28854 Glycyl-Valine 174.1004 408.1588 9.19 

21 337.1219 10.37 9.32 HMDB00650 D-Alpha-aminobutyric acid 103.0633 337.1216 9.23 

 
337.1219 10.37 9.32 HMDB00452 L-Alpha-aminobutyric acid 103.0633 337.1216 9.13 

22 456.1599 10.48 9.42 HMDB28995 Phenylalanyl-Glycine 222.1004 456.1588 9.43 
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23 408.1594 10.49 9.43 
 

Gly-Norvaline 174.1005 408.1588 9.51 

24 323.1060 10.52 9.45 HMDB00271 Sarcosine 89.0477 323.1060 9.34 

25 363.1009 10.53 9.47 HMDB00148 L-Glutamic Acid - H2O 147.0532 363.1009 9.46 

26 466.2014 11.30 10.17 HMDB29065 Threoninyl-Leucine 232.1423 466.2006 10.18 

27 514.1650 11.33 10.19 HMDB00706 L-Aspartyl-L-phenylalanine 280.1059 514.1642 10.07 

28 349.1218 11.35 10.21 HMDB00162 L-Proline 115.0633 349.1216 10.18 

29 470.1758 11.73 10.47 HMDB28988 Phenylalanyl-Alanine 236.1161 470.1744 10.58 

30 365.1533 11.90 10.59 HMDB03640 Beta-Leucine 131.0946 365.1529 10.78 

31 351.1372 12.08 10.71 HMDB00883 L-Valine 117.0790 351.1373 10.81 

32 383.1095 12.14 10.75 HMDB00696 L-Methionine 149.0510 383.1094 10.89 

33 422.1747 12.17 10.77 HMDB28844 Glycyl-Isoleucine 188.1161 422.1744 10.78 

34 371.1409 12.37 10.91 HMDB01065 2-Hydroxyphenethlamine 137.0841 371.1424 10.77 

35 360.1013 12.38 10.92 HMDB02024 Imidazoleacetic acid 126.0429 360.1012 11.12 

36 361.1330 12.40 10.94 HMDB03464 4-Guanidinobutanoic acid - H2O 145.0851 361.1329 11.00 

37 495.1691 12.62 11.18 HMDB28852 Glycyl-Tryptophan 261.1113 495.1697 11.19 

38 422.1747 12.67 11.24 HMDB00759 Glycyl-L-Leucine 188.1161 422.1744 11.22 

39 438.1494 12.72 11.29 HMDB00929 L-Tryptophan 204.0899 438.1482 11.44 

40 436.1906 12.75 11.32 HMDB28691 Alanyl-Leucine 202.1317 436.1901 11.36 

41 456.1588 13.06 11.66 HMDB28848 Glycyl-Phenylalanine 222.1004 456.1588 11.65 

42 470.1750 13.50 12.14 HMDB28694 Alanyl-Phenylalanine 236.1161 470.1744 12.11 

43 399.1377 14.07 12.78 HMDB00159 L-Phenylalanine 165.0790 399.1373 12.74 

44 462.2066 14.25 12.97 HMDB28937 Leucyl-Proline 228.1474 462.2057 12.99 

45 365.1522 14.29 13.01 HMDB00172 L-Isoleucine 131.0946 365.1529 13.06 

46 496.1912 14.29 13.01 HMDB11177 L-phenylalanyl-L-proline 262.1317 496.1901 13.13 

47 365.1532 14.57 13.31 HMDB00557 L-Alloisoleucine 131.0946 365.1529 13.20 

48 365.1529 14.70 13.44 HMDB00687 L-leucine 131.0946 365.1529 13.36 

49 372.1014 14.87 13.62 HMDB00301 Urocanic acid 138.0429 372.1012 13.52 

50 364.6247 14.88 13.63 HMDB04987 Alpha-Aspartyl-lysine 261.1325 364.6246 13.61 
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51 498.2060 14.95 13.70 HMDB29008 Phenylalanyl-Valine 264.1474 498.2057 13.62 

52 371.1407 15.22 13.99 HMDB01065 2-Hydroxyphenethlamine - Isomer 137.0841 371.1424 13.77 

53 365.1527 15.24 14.01 HMDB01645 L-Norleucine 131.0946 365.1529 14.11 

54 354.0703 15.34 14.12 HMDB00192 L-Cystine 240.0238 354.0702 14.11 

55 416.1172 15.80 14.58 HMDB00755 Hydroxyphenyllactici acid 182.0579 416.1162 14.39 

56 414.1244 16.63 15.42 HMDB01889 Theophylline 180.0647 414.1230 15.42 

57 551.2324 17.03 15.82 HMDB28940 Leucyl-Tryptophan 317.1739 551.2323 15.77 

58 512.2234 17.05 15.84 
 

Phenyl-Leucine 278.1631 512.2214 15.90 

59 385.1216 17.57 16.37 HMDB01859 Acetaminophen 151.0633 385.1216 16.35 

60 300.1034 17.63 16.42 HMDB00214 Ornithine 132.0899 300.1033 16.58 

61 512.2225 17.68 16.48 HMDB13243 Leucyl-phenylalanine 278.1630 512.2214 16.59 

62 546.2066 17.76 16.56 HMDB13302 Phenylalanylphenylalanine 312.1474 546.2057 16.55 

63 460.1655 17.81 16.61 HMDB28878 Histidinyl-Alanine 226.1066 460.1649 16.69 

64 386.1057 18.29 17.09 HMDB00020 p-Hydroxyphenylacetic acid 152.0473 386.1057 16.91 

65 307.1104 18.67 17.47 HMDB00182 L-Lysine 146.1055 307.1111 17.47 

66 460.1654 18.79 17.61 HMDB28689 Alanyl-Histidine 226.1066 460.1649 17.62 

67 400.1200 19.06 17.92 HMDB02199 Desaminotyrosine 166.0630 400.1213 18.04 

68 353.1050 21.14 20.27 HMDB29105 Tyrosyl-Glycine 238.0954 353.1060 20.19 

69 278.1082 22.19 21.46 HMDB01414 1-4-diaminobutane 88.1000 278.1083 21.27 

70 356.0949 22.28 21.56 HMDB00750 3-Hydroxymandelic acid - COOH 168.0423 356.0951 21.64 

71 353.1060 22.51 21.82 HMDB28853 Glycyl-Tyrosine 238.0954 353.1060 21.63 

72 360.1138 22.58 21.91 HMDB28699 Alanyl-Tyrosine 252.1110 360.1138 21.85 

73 501.2423 22.97 22.34 HMDB01932 Metoprolol 267.1834 501.2418 22.09 

74 285.1159 23.10 22.49 HMDB02322 Cadaverine 102.1157 285.1162 22.39 

75 324.5955 23.25 22.66 HMDB00158 L-Tyrosine 181.0739 324.5953 22.65 

76 374.1294 23.39 22.80 HMDB29118 Tyrosyl-Valine 280.1423 374.1295 22.83 

77 328.1002 23.78 23.19 HMDB00228 Phenol 94.0419 328.1002 23.16 

78 417.6356 23.86 23.27 HMDB29095 Tryptophyl-Tyrosine 367.1532 417.6349 23.25 
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79 381.1384 24.37 23.78 HMDB28941 Leucyl-Tyrosine 294.1580 381.1373 23.98 

 
381.1384 24.37 23.78 HMDB29109 Tyrosyl-Leucine 294.1580 381.1373 23.77 
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6.3.3 Multivariate analysis 

To relate the three health states to the metabolome profiles, multivariate analysis was 

performed on the training data set. Principle component analysis (PCA) was first used to obtain 

an overview of the NA, MCI and AD saliva data in an unsupervised approach. The PCA score 

plot is shown in Figure 6.3A. As we can see, due to large biological variations, there are some 

overlaps of the samples from different health states. However, we can still see some separation; 

saliva samples from AD patients are located on the top right corner marked in green. The 

separation between NA and MCI samples is not very obvious, indicating that the metabolomic 

differences between MCI and NA samples are not as large as those of AD and NA. 

We applied OPLS-DA to study the metabolomic variations in NA, MCI and AD with the 

score plot shown in Figure 6.3B. To evaluate the quality of the OPLS-DA model, an internal 

validation method using a seven-fold cross-validation step was applied, from which the values of 

Q
2
Y (predictive ability of the model) and R

2
Y (goodness of fit parameter) were calculated. The 

score plot shows a very clear separation among the three groups with high validation parameters 

(R
2
Y=0.93 and Q

2
Y =0.87), indicating the robustness of the model. To view the progression of 

saliva metabolomic variations from NA to MCI, and then to AD, a 3D OPLS-DA plot is shown 

in Figure 3C. There is a clear trajectory of the metabolic changes through the three health states 

(i.e., the AD clusters are far away from the NA's, compared to MCI's). 
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Figure 6.3 (A) PCA score plot, (B) 2D OPLS-DA score plot, and (C) 3D OPLS-DA score plot of 

AD, MCI, and NA  

Table 6.2 shows a misclassification table applied to the internally cross-validated OPLS-

DA model. Only one sample was misclassified and the overall P value (Fisher probability: 1.8 

×10
-35

) is very small, which validates the group separation.  

Table 6.3 Misclassification table of the OPLS-DA analysis for AD, MCI, and NA 

  Members Correct NA MCI AD 

No 

class 

(YPred 

< 0) 

NA 35 100% 35 0 0 0 

MCI 25 100% 0 25 0 0 

AD 22 100% 0 0 22 0 

No 

class 
0   0 0 0 0 

Total 82 100% 35 25 22 0 

Fishers 

prob. 
1.20E-41           

 

6.3.4 Discovery and validation of potential biomarkers 

The ultimate goal of this study is to find potential metabolite biomarkers for diagnosis of 

MCI and AD. To determine the significant metabolites that differentiate paired groups (i.e., MCI 

vs. NA, AD vs. MCI and AD vs. NA) with relatively high confidence, both multivariate (OPLS-

DA) and univariate (Volcano plot) statistical tools were applied to cross-select the important 

metabolites. Common metabolites found by both tools were extracted and then ROC analysis 

was applied to evaluate their diagnostic performance. Metabolites with high diagnostic 

performance were considered as the potential biomarkers and further externally evaluated using 
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another set of samples (i.e., validation set). We strived to use as few metabolites as possible (i.e., 

the top three ranked metabolites) to build a diagnostic model, as the use of a larger number of 

metabolites may not be practical or cost-effective in clinical applications.  

Using the above approach, OPLS-DA analysis was first applied for pair-wise 

comparisons and the resultant score plots are shown in Figure 4. Notably, all OPLS-DA models 

demonstrate clear group separation with high validation metrics, confirming the goodness of fit 

and good predictive capabilities of the proposed models. From OPLS-DA analysis, metabolites 

with VIP score of larger than 1.5 in all three comparisons were retained (see Supplemental Table 

T6.3). Next, volcano plots analysis was performed to find metabolites with high fold-change and 

low p values and the results are shown in Figure 5. Thresholds of p-value of 0.01 and fold-

change of 1.2 were used to discriminate between the significantly up and down-regulated 

metabolites (see Supplemental Table T6.4).  
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Figure 6.4 OPL-DA score plots for pair-wise comparisons of: (A) NA vs. MCI, (B) NA vs. AD, 

and (C) MCI vs. AD. 
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Figure 6.5 Volcano plots for pair-wise comparisons of: (A) NA vs. MCI, (B) NA vs. AD, and (C) 

MCI vs. AD. 

The results of OPLS-DA and Volcano plot analyses were compared and only the 

metabolites shown up as significant in both analyses were further considered. ROC analysis was 

performed on these common metabolites and an AUC cut-off value of 0.75 was used to generate 

the final list of significant metabolites that were deemed to be potentially biomarkers. There 

were 175 significant metabolites found in AD vs. NA comparison, 142 metabolites in AD vs. 

MCI comparison and 59 metabolites in MCI vs. NA comparison (see Supplemental Table T6.5).  

To validate some of the significant metabolites found in the training set, another set of 27 

samples were collected separately from the training set. Following the same experimental 

protocol, each individual sample was labeled by 
12

C-DnsCl and experimental triplicate was 

performed. Also, the same 
13

C-labeled pooled sample was used and mixed with each 
12

C-labeled 

individual sample at a 1:1 sample amount, followed by LC-MS analysis. An average of 2981 

peak pairs or metabolites were detected per sample with a total of 4157 peak pairs detected in the 

27 samples. Among them, 3184 peak pairs were commonly found in more than 50% of the 

samples, which is lower than the 3801 common peak pairs found in 50% of the samples in the 

training set. The lower numbers are due to the fact that the low abundance peak pairs are not 

recovered using the zero-fill program as efficiently in a smaller size of samples as that in a larger 

size of samples.  

The purpose of this validation dataset is to validate the discovered biomarkers and 

diagnostic models and thus only those significant metabolites discovered in the training dataset 

were studied in the validation dataset. Based on the criteria of AUC > 0.75 in both the training 

set and validation set, we were able to identify 63, 48, and 2 common metabolites that have 
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consistently good ROC performance for AD vs. NA, AD vs. MCI and MCI vs. NA comparisons 

in both the training and validation dataset, respectively. These metabolites are listed in 

Supplemental Table T6.6. Among them, 4 metabolites were definitively identified for 

differentiating AD and NA, while 3 metabolites were definitively identified for differentiating 

AD and MCI. All these validated biomarkers have less than 20% missing values in both the 

training and validation datasets. 

6.3.5 Development and validation of diagnostic model  

A single metabolite alone may have a good prediction power for disease diagnosis. 

However, a diagnostic model using multiple biomarkers may give a better performance.[190] We 

used a linear support vector machine tool (linear SVM) in MetaboAnalyst[26] to develop a 

diagnostic model for each of the three pair-wise comparisons using the training data set. Its 

diagnostic performance was further evaluated using the validation data set. Table 3 shows the 

summary of the three linear SVM based diagnostic models.  

As Table 3 shows, using the top 3 metabolites (#6112, #7628 and #4489), we could 

distinguish AD from NA with AUC=0.998 (0.992-1.000 at 95% CI) in the training set. This 

result was validated in the validation set with AUC=0.989. The diagnostic sensitivity was 94.1% 

and the specificity was 98.1%. Similarly, using three metabolites (#1429, #3731 and #943), we 

could separate AD from MCI with AUC=0.998 (0.991-1.000 at 95% CI) in TS and AUC=0.997 

in VS. The sensitivity was 98.5% and the specificity was 98.6%. In the case of MCI vs. NA, 

using two metabolites (#3731 and #7500), MCI and NA could be differentiated with AUC=0.774 

(0.672-0.852 at 95% CI) in TS and AUC=0.889 in VS. The sensitivity was 70.7% and the 

specificity was 79.0%. It is clear that the diagnostic performance on MCI vs. NA is not as good 

as the other two pair-wise comparisons. Adding more metabolites did not improve the diagnostic 
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performance. This indicates that it is more difficult to differentiate the metabolic changes from 

normal aging to mild cognition impairment. Nevertheless, using the two metabolites found, we 

could separate NA and MCI with good sensitivity and specificity. Future work of using different 

labeling chemistries targeting different groups of submetabolomes may discover other classes of 

metabolites that could improve the overall diagnostic performance.  

Table 6.4 Metabolic diagnostic models for pair-wise comparison using top-ranked biomarkers 

 
ID 

RT 

(min) 

Molecular 

weight 
Putative ID 

Training 

AUC 

(95% 

CI) 

Validation 

AUC 

(95% CI) 

Sensitivity Specificity 

AD 

vs 

NA 

#6112 18.86 297.1087 Methylguanosine 

0.998 

(0.992 – 

1.000) 

0.989 94.10% 98.10% 
#7628 22.51 302.1379 

Histidinyl-

Phenylalanine 

#4489 15.16 330.19 
 

AD 

vs 

MCI 

#1429 7.8 125.0448 
 

0.998 

(0.991 – 

1.000) 

0.997 98.50% 98.60% 

#3731 13.93 468.1979 

Glucosylgalactosyl 

hydroxylysine- 

H2O 

#943 5.91 105.0791 
Aminobutyric acid 

+ H2 

MCI 

vs 

NA 

#3731 13.93 468.1573 

Glucosylgalactosyl 

hydroxylysine- 

H2O 0.774 

(0.672 – 

0.852) 

0.889 70.70% 79.00% 

#7500 22.29 289.1635 
Glutamine + 

Carnitine 

 

The potential biomarkers listed in Table 3 have not been positively identified. We have 

also built the diagnostic models using the positively identified metabolites only and the results 

are shown in Table 4. For separating AD and NA, using three identified metabolites, 
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phenylalanyl-proline, phenylalanyl-phenylalanine and Urocanic acid, we could obtain AUC 

0.832 (0.772-0.920 at 95% CI) in TS and 0.754 in DS with 71.2% sensitivity and 81.9% 

specificity. For separating AD and MCI, alanyl-phenylalanine and phenylalanyl-proline could be 

used with AUC 0.874 (0.787-0.948 at 95% CI) in TS and 0.792 in DS with 83.9% sensitivity and 

82.3% specificity. Although these models did not achieve high AUC as the top 3 biomarkers, 

these positively identified metabolites could be more readily transferred to a real clinical 

application using targeted LC-MS/MS metabolite analysis. However, for future validation work 

using CIL LC-MS, it is worth monitoring the identified metabolites as well as the un-identified 

metabolites. If some of the high-performance biomarkers are validated in multi-center large scale 

validation studies, more efforts could be devoted to identify these biomarkers using fractionation 

methods and multiple characteristic tools such as tandem MS, NMR and synthesis of standards. 

Table 6.5 Metabolic diagnostic model for pair-wise comparison using identified biomarkers 

 
Training AUC 

(95% CI) 

Validation AUC 

(95% CI) 
Sensitivity Specificity 

AD vs NA : 

phenylalanyl-L-Proline 

Phenylalanylphenylalanine 

Urocanic acid 

0.832 (0.772 – 

0.920) 
0.754 71.4% 80.0% 

AD vs MCI: 

Alanyl-phenylalanine 

phenylalanyl-L-Proline 

0.874 (0.787 – 

0.948) 
0.792 85.7% 80.0% 

 

 

6.4 Conclusions 

 In this work, an improved dansylation isotope labelling LC-FTICR-MS method has been 

developed for metabolite biomarker discovery using human salivary samples. Even though only 

a very small amount of starting material (5 μL of individual saliva) was used for the experiments, 
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a total of 6230 metabolites in the amine/phenol submetabolome could be detected from the 83 

samples used as the training set. Using the top 3 metabolites commonly found by both OPLS-DA 

and volcano plot analyses, excellent sensitivity (~99%) and specificity (~99%) could be achieved 

for differentiating AD from NA or AD from MCI and good sensitivity (~71%) and specificity 

(~82%) could be obtained for separating MCI from NA. These results were validated using 

another set of 27 samples. This study has shown the promise of using salivary biomarkers for 

diagnosis of MCI and AD.  
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Chapter 7  

Conclusion and Future Work 

LC-MS technique has been widely used in the application of metabolomics due to its 

high sensitivity and high throughput. However, because of the great chemical diversity and wide 

dynamic range, it is difficult to detect and identify a entire metabolome using one technique. To 

improve the separation and detection in LC-MS based metabolomics, our group has applied a 

divide-and-conquer approach by using chemical isotope labeling reagents to target specific 

submetabolome. One approach, for example, uses dansylation chemistry to target amine-/phenol- 

containing submetabolome. This approach has been successfully applied to the study of urine, 

serum, CSF, saliva, and cell lysis solutions. My thesis research focuses on the development and 

application of CIL LC-MS platform. Based on the research objectives, my thesis work is 

composed of three parts. The first part aims at the development computer programs to improve 

LC-MS-base metabolic data processing. The second part describes the solutions to metabolite 

identification in LC-MS-base metabolomics. The third part addresses an application of CIL LC-

MS for the clinical biomarker discovery. The major achievements of each research project are 

summarized below.  

 In Chapter 2, Metabolomics requires quantitative comparison of individual metabolites 

present in an entire sample set. Unfortunately missing intensity-values in one or more samples 

are very common. Because missing values can have a profound influence on metabolomic 

results, the extent of missing values found in a metabolomic dataset should be treated as an 

important parameter for measuring the analytical performance of a technique. In this work, we 

report a study of the scope of missing values and a robust method of filling the missing values in 

a chemical isotope labeling (CIL) LC-MS metabolomics platform. Unlike conventional LC-MS, 
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CIL LC-MS quantifies the concentration differences of individual metabolites in two 

comparative samples based on the mass spectral peak intensity ratio of a peak pair from a 

mixture of differentially labeled samples. We show that this peak-pair feature can be explored as 

a unique means of extracting metabolite intensity information from raw mass spectra. In our 

approach, a stringent peak-pair peaking algorithm, IsoMS, is initially used to process the LC-MS 

dataset to generate a CSV file or table that contains metabolite ID and peak ratio information 

(i.e., metabolite-intensity table). A zero-fill program is developed to automatically find a missing 

value in the CSV file and go back to the raw LC-MS data to find the peak pair, then calculate the 

ratio and enter the ratio value into the table. Most of the missing values are found to be low 

abundance peak pairs. We demonstrate the performance of this method in analyzing 

experimental and technical replicate dataset of human urine metabolome. Furthermore, we 

propose a standardized approach of counting missing values in replicate dataset as a way of 

gauging the extent of missing values in a metabolomics platform. Finally, we illustrate that 

applying the zero-fill program, in conjunction with dansylation CIL LC-MS, can lead to a 

marked improvement in finding significant metabolites that differentiate bladder cancer patients 

and their controls in a metabolomics study of 109 subjects.  

 In Chapter 3, generating precise and accurate quantitative information on metabolomic 

changes in comparative samples is important for metabolomics research where technical 

variations in the metabolomic data should be minimized in order to reveal biological changes. 

We report a method and software program, IsoMS-Quant, for extracting quantitative information 

from a metabolomic dataset generated by chemical isotope labeling (CIL) liquid chromatography 

mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the 

highest intensity peak pair to measure relative quantity difference of a differentially labeled 
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metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-

labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative 

concentration difference in two comparative samples. Using chromatographic peaks to perform 

relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with 

IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak 

pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This 

program can be freely downloaded from the www.MyCompoundID.org website for non-

commercial use. 

 In Chapter 4, high-performance chemical isotope labeling (CIL) liquid chromatography 

mass spectrometry (LC-MS) is an enabling technology based on rational design of labeling 

reagents to target a class of metabolites sharing the same functional group (e.g., all the amine-

containing metabolites or the amine submetabolome) to provide concomitant improvements in 

metabolite separation, detection and quantification. However, identification of labeled 

metabolites remains to be an analytical challenge. In this work, we describe a library of labeled 

standards and a search method for metabolite identification in CIL LC-MS. The current library 

consists of 273 unique metabolites, mainly amines and phenols, that are individually labeled by 

dansylation (Dns). Some of them produced more than one Dns-derivative (isomers or multiple 

labeled products), resulting in a total of 315 dansyl compounds in the library. These metabolites 

cover 42 metabolic pathways, allowing the possibility of probing their changes in metabolomics 

studies. Each labeled metabolite contains three searchable parameters: molecular ion mass, 

MS/MS spectrum and retention time (RT). To overcome RT variations caused by experimental 

conditions used, we have developed a calibration method to normalize RTs of labeled 

metabolites using a mixture of RT calibrants. A search program, DnsID*, has been developed in 
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www.MyCompoundID.org for automated identification of dansyl labeled metabolites in a 

sample based on matching one or more of the three parameters with those of the library 

standards. Using human urine as an example, we illustrate the workflow and analytical 

performance of this method for metabolite identification. This freely accessible resource is 

expandable by adding more amine and phenol standards in the future. In addition, the same 

strategy should be applicable for developing other labeled standards libraries to cover different 

classes of metabolites for comprehensive metabolomics using CIL LC-MS. 

 In Chapter 5, we report an analytical tool to facilitate metabolite identification based on 

MS/MS spectral match of an unknown to a library of predicted MS/MS spectra of possible 

human metabolites. To construct the spectral library, all the known endogenous human 

metabolites in the Human Metabolome Database (HMDB) (8,021 metabolites) and their 

predicted metabolic products via one metabolic reaction in the Evidence-based Metabolome 

Library (EML) (375,809 predicted metabolites) were subjected to in silico fragmentation to 

produce the predicted MS/MS spectra. This library is hosted at the public MCID website 

(www.MyCompoundID.org) and a spectral search program, MCID MS/MS*, has been 

developed to allow a user to search one or a batch of experimental MS/MS spectra against the 

library spectra for possible match(s). Using MS/MS spectra generated from standard metabolites 

and a human urine sample, we demonstrate that this tool is very useful for putative metabolite 

identification. It allows a user to narrow down many possible structures initially found by using 

accurate mass search of an unknown metabolite to only one or a few candidates, thereby saving 

time and efforts in selecting or synthesizing metabolite standard(s) for eventual positive 

metabolite identification. 
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 In Chapter 6, we report an improved saliva metabolome profiling workflow to search for 

potential metabolite biomarkers for differentiating individuals with normal aging (NA), mild 

cognitive impairment (MCI) and Alzheimer’s disease (AD). The workflow is based on a high-

performance differential chemical isotope labeling (CIL) liquid chromatography mass 

spectrometry (LC-MS) platform using dansylation derivatization for in-depth profiling of the 

amine/phenol submetabolome. A total of 82 saliva samples (35 NA, 22 MCI and 25 AD) were 

profiled as the training set (TS) and another 27 independent samples (10 NA, 10 MCI and 7 AD) 

were analyzed as the validation set (VS). In total, 6230 peak pairs or metabolites were detected 

in TS and 3590 of them (57.6%) could be mass-matched to the metabolites in metabolomic 

databases. In addition, 3801 metabolites could be consistently detected in more than 50% of the 

samples. They were subjected to analysis using multiple statistical tools in order to cross-select 

potential biomarkers with high statistical significance. Receiver operating characteristic (ROC) 

analysis was performed to determine the diagnostic power of each potential biomarker in TS. 

Metabolites with AUC>0.75 were further externally validated in VS. In total, 63, 47, and 2 

metabolites were validated as biomarkers in AD vs. NA, AD vs. MCI, and MCI vs. NA 

comparison, respectively. Diagnostic model was developed for each pair-wise comparison using 

linear supportive vector machine. Our study showed the possibility of distinguishing AD from 

NA using three metabolites with AUC=0.998 (0.992-1.000 at 95% CI) in TS and AUC=0.989 in 

VS. We could separate AD from MCI using three metabolites with AUC=0.998 (0.991-1.000 at 

95% CI) in TS and AUC=0.997 in VS. Using two metabolites, MCI and NA could be 

differentiated with AUC=0.774 (0.672-0.852 at 95% CI) in TS and AUC=0.889 in VS. While a 

large scale validation work is still required to confirm the specificity and sensitivity of these 
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biomarkers, this work demonstrates that saliva metabolites could potentially be used for 

diagnosis of MCI and AD. 

 Today, the metabolomics is far away from mature and there are still several challenges 

need to be resolved.  

Firstly, the metabolic coverage of current analytical technique is still small comparing to 

the overall size of the metabolome. It is very critical to have good metabolome coverage as it is 

the first step towards the comprehensive metabolomics analysis. Even through the CIL LC-MS 

method developed in our group has been proven to be able to detect much more metabolites than 

regular LC-MS approach; we are still facing the issue of not being able to detect enough number 

of metabolites. To further improve the metabolic coverage, two dimensional LC-MS strategy has 

been proposed, in which case, metabolites were further separated in a second dimensional 

column to separate the co-eluting metabolites from the first dimension. Our preliminary result 

indicates that a high pH - low pH two dimensional LC-MS coupling with our CIL LC-MS 

method has a much better metabolome coverage. 

 Secondly, the integration of untargeted metabolomic profiling with biological pathways 

analysis can be a very popular research topic in the next few years. Biological pathway study, 

which usually performed using targeted metabolomic analysis, has the advantage of high 

sensitivity and specificity. However, focusing on one pathway may lead to the information loss 

of other related pathways. The benefit of integrating untargeted metabolomic profiling with 

biological pathway analysis allows the understanding of a much wider pathways and also the 

discovery of new pathways relate to different clinical stages. 
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 Thirdly, metabolite identification is still a big challenge in the MS based metabolomics. 

Typically, the result of manual MS/MS interpretation varies greatly depending on the experience. 

Also, in the approach of matching experimental spectrum with standard spectra, it is very likely 

that the standard MS/MS spectra are not available. All these mentioned problems don’t fit with 

requirement of metabolite identification in the large metabolomics data generated by high 

throughput MS based techniques. Automatic structural interpretation would be a great 

breakthrough in the field of metabolite identification if it can offer high accuracy and low false 

positive rate. Our lab has spent efforts to develop a predicted MS/MS library for the purpose of 

semi-automatic, batch mode based metabolite identification as described in Chapter 5. However, 

there are still lots of rooms to improve the prediction algorithm to generate better predicted 

MS/MS spectra. 
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Appendix 

IsoMS-Quant User Manual 

 

 IsoMS-Quant is a program written in R for recalculating the peak intensity ratio using the 

chromatographic peak area information. This program is part of the data processing software 

used for the chemical isotope labeling (CIL) LC-MS metabolomics platform.  

 The IsoMS-Quant script is freely available for non-commercial use from 

www.mycompoundid.org. 

 The instruction for using the IsoMS-Quant program is given below. 

 

1) Download the IsoMS-Quant script from MyCompoundID.org. 

2) Assign the folder of IsoMS-Quant as the working folder of RGui by clicking: File → Change 

dir… (see below). 
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3) Open the IsoMS-Quant script (see below) and change the parameters therein (see Table 1 for 

the explanation of these parameters).  

 

 

Table 1. IsoMS-Quant parameters that need to be changed according to the user's 

LC-MS instrumental conditions. 

Parameter Function 

file.path 
Set the data path to the folder that contains the zero-filled 

metabolite-intensity matrix 

raw.file.path 
Set the data path to the folder that contains all the raw LC-

MS data containing all the peak information 

mz.tol Set the mz tolerance for the IsoMS-Quant processing 

rt.tol 
Set the retention time tolerance for the IsoMS-Quant 

processing 

int.uplimit Set the mass intensity saturation threshold 

 

 

4) Save the parameter changes to the script. Type in the command code in RGui as shown in red 

in the following screen shot and press enter to run the script.  
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5) After running the script, a new csv file named “After_reconstruction_ratio.csv” will be 

created. This csv file contains the IsoMS-Quant result. 

 

Supplemental Note for Dns-lib Work Instrumental Settings 

 LC-MS for Constructing the Dansyl Library. To construct the dansyl library, an 

individual 
12

C-dansyl labeled standard was injected into a Bruker HD Impact QTOF mass 

spectrometer (Billerica, MA, USA) with electrospray ionization (ESI) linked to an Agilent 1100 

HPLC system (Palo Alto, CA, USA). Reversed-phase Zorbax Eclipse C18 column (2.0 mm × 

100 mm, 1.7 µm particle size, 95 Å pore size) from Agilent was used. Solvent A was 0.1% (v/v) 

formic acid in water with 5% (v/v) ACN, and solvent B was 0.1% (v/v) formic acid in ACN. The 

gradient elution profile was as follows: t=0.0 min, 20% B; t=3.5 min, 35% B; t=18.0 min, 65%B; 

t=24 min, 99%B; t=28 min, 99% B. The flow rate was 180 µL/min. The sample injection volume 

was 2 µL. All the spectra were collected using the positive ion mode. For MS/MS, multiple 

reaction monitoring (MRM) using the Bruker QTOF-MS was used to generate an averaged 
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collision-induced dissociation (CID) spectrum at the collision energies of 20 and 50 eV for each 

dansyl standard; half of the acquisition time was spent at 20 eV and another half was spent at 50 

eV. In this way, both low and high mass fragment ions were detected, providing better coverage 

for spectral comparison.  

 

 LC and LC-MS Settings. Various instrumental settings were used in this work for 

different purposes and are given below. 

 

(1) LC-QTOF-MS 

Instrument: Bruker HD Impact QTOF system (Billerica, MA, USA) equipped with an 

Agilent 1100 series binary HPLC system (Agilent, Palo Alto, CA).  

Column: An Agilent reversed phase Eclipse Plus C18 column (2.1 mm × 10 cm, 1.8 μm 

particle size, 95 Å pore size) for separation.  

LC gradient: Solvent A was 0.1% (v/v) formic acid in 5% (v/v) acetonitrile, and solvent 

B was 0.1% (v/v) formic acid in acetonitrile. The chromatographic conditions were: t = 0 min, 

20% B; t = 3.5 min, 35% B; t = 18 min, 65% B; t = 21 min, 95% B; t = 21.5 min, 95% B; t = 23 

min, 98% B; t = 24.5 min, 98% B; t = 26.5 min, 99% B; t = 28.5 min, 99% B; t = 29.5 min, 20% 

B. The flow rate was 180 μL/min and the injection volume was 2 μL.  

QTOF instrument parameters 

1. MS instrument parameter: m/z scan range: 150 to 1000  

2. Ion mode: positive ion 
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3. Source parameters 

 End plate offset: 500 V, Capillary: 4500 V, Nebulizer: 1.8 Bar, Dry gas: 8.0 L/min, 

Dry temperature: 230 ºC. 

4. Tune parameters 

 Funnel 1 RF 250.0 Vpp, Funnel 2 RF: 150.0 Vpp, Hexapole RF: 110.0 Vpp, 

Quadrupole ion energy: 3.0 eV, Low mass: 100.00, Collision RF 1500.0 Vpp, 

Transfer time: 80.0 µs. Pre pulse storage 10.0 µs. 

 

(2) LC-QTOF-MRM for MS/MS Spectral Library Construction  

Instrument: Bruker HD Impact QTOF system (Billerica, MA, USA) equipped with an 

Agilent 1100 series binary HPLC system (Agilent, Palo Alto, CA).  

Column: A Phenomenex Kinetex C18 column (2.1 mm × 5 cm, 1.7 μm particle size, 100 

Å pore size) was used for chromatographic separation. 

LC gradient: Solvent A was 0.1% (v/v) formic acid in 5% (v/v) acetonitrile, and solvent 

B was 0.1% (v/v) formic acid in acetonitrile. The chromatographic conditions were: t=0.0, 

20%B; t = 1.0, 20%B; t = 1.01, 99% B, t = 10.0, 99% B, t = 10.01, 20%B; t = 18.0, 20%B. The 

flow rate was 180 μL/min and the injection volume was 5 μL.  

QTOF instrument parameters 

1. MS instrument parameter: m/z scan range: 20 to 1000  

2. Ion mode: positive ion 

3. Source parameters 
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End plate offset: 500 V, Capillary: 4500 V, Nebulizer: 1.0 Bar, Dry gas: 6.0 L/min, 

Dry temperature: 230 ºC. 

4. Tune parameters 

Funnel 1 RF 200.0 Vpp, Funnel 2 RF: 200.0 Vpp, Hexapole RF: 50.0 Vpp, 

Quadrupole ion energy: 5.0 eV, Low mass: 50.00, Pre pulse storage 5.0 µs. Basic 

stepping: Collision RF 200.0 - 700.0 Vpp (50% - 50%), Collision Energy 20 – 50 ev 

(timing 50% - 50%).  

5. MRM 

Precursor ion m/z: specified to the mz_light, width: 6.0, isCID: 0.0 eV, collision 

energy: 40 eV, x Acq: 2.0 

 

(3) LC-Qtrap-MS/MS  

Instrument: QTRAP 4000 system (Applied Biosystems, Foster City, CA) equipped with 

an Agilent 1100 series binary HPLC system (Agilent, Palo Alto, CA).  

Column: A Phenomenex Kinetex C18 column (2.1 mm × 5 cm, 1.7 μm particle size, 100 

Å pore size) was used for chromatographic separation.  

LC gradient: Solvent A was 0.1% (v/v) formic acid in 5% (v/v) acetonitrile, and solvent 

B was 0.1% (v/v) formic acid in acetonitrile. The chromatographic conditions were: t = 0 min, 

20% B; t = 1 min, 20% B; t = 1.01 min, 99% B; t = 2 min, 99% B; t = 2.01 min, 20% B; t = 8 

min, 20% B. The flow rate was 180 μL/min and the injection volume was 5 μL.  

Qtrap instrument parameters:  
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All MS/MS spectra were obtained in the positive ion mode with enhanced product ion 

scan. Mass range was m/z 50-700 for HMDB03134 and m/z 50-500 for HMDB28878, with a 

scan rate of 1000 Da/s. Dynamic fill time was selected. Curtain gas was set to 10 psi, CAD gas 

was set to high, IS was 4800, TEM was 200, GS1 and GS2 were set to 12 and 0, respectively and 

ihe was on. 

 

(4) LC-QTOF-MS/MS for Running Labeled Samples  

Instrument: Bruker HD Impact QTOF system (Billerica, MA, USA) equipped with an 

Agilent 1100 series binary HPLC system (Agilent, Palo Alto, CA).  

Column: An Agilent reversed phase Eclipse Plus C18 column (2.1 mm × 10 cm, 1.8 μm 

particle size, 95 Å pore size) for separation.  

LC gradient: Solvent A was 0.1% (v/v) formic acid in 5% (v/v) acetonitrile, and solvent 

B was 0.1% (v/v) formic acid in acetonitrile. The chromatographic conditions were: t = 0 min, 

20% B; t = 3.5 min, 35% B; t = 18 min, 65% B; t = 21 min, 95% B; t = 21.5 min, 95% B; t = 23 

min, 98% B; t = 24.5 min, 98% B; t = 26.5 min, 99% B; t = 28.5 min, 99% B; t = 29.5 min, 20% 

B. The flow rate was 180 μL/min and the injection volume was 2 μL.  

QTOF instrument parameters:  

1. m/z scan range: 150 to 1000  

2. Ion mode: positive ion 

3. Source parameters 
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 End plate offset: 500 V, Capillary: 4500 V, Nebulizer: 1.8 Bar, Dry gas: 8.0 L/min, 

Dry temperature: 230 ºC. 

4. Tune parameters 

 Funnel 1 RF 250.0 Vpp, Funnel 2 RF: 150.0 Vpp, Hexapole RF: 110.0 Vpp, 

Quadrupole ion energy: 3.0 eV, Low mass: 100.00, Pre pulse storage 10.0 µs. Basic 

stepping: Collision RF 200.0 - 1500.0 Vpp (50% - 50%), Collision energy: 20 - 50 ev 

(timing: 50% - 50%).  

5. Auto MS/MS 

 Precursor exclusion mode. Smart exclusion 5X, Active exclusion: exclude after 3 

spectra, release after 1.00 min. 

 

(5) LC-FTICR-MS 

Instrument: Bruker 9.4 Tesla Apex-Qe Fourier transform ion-cyclotron resonance 

(FTICR) mass spectrometer (Bruker, Billerica, MA) linked to an Agilent 1100 series binary 

HPLC system (Agilent, Palo Alto, CA).  

Column: The samples were injected onto an Agilent reversed phase Eclipse Plus C18 

column (2.1 mm × 10 cm, 1.8 μm particle size, 95 Å pore size) for separation.  

LC gradient: Solvent A was 0.1% (v/v) formic acid in 5% (v/v) acetonitrile, and solvent 

B was 0.1% (v/v) formic acid in acetonitrile. The chromatographic conditions were: t = 0 min, 

20% B; t = 3.5 min, 35% B; t = 18 min, 65% B; t = 21 min, 95% B; t = 21.5 min, 95% B; t = 23 

min, 98% B; t = 24.5 min, 98% B; t = 26.5 min, 99% B; t = 28.5 min, 99% B; t = 29.5 min, 20% 

B. The flow rate was 180 μL/min. A splitter of 2:1 ratio was used and 120 μL/min of the flow 

injected into the MS instrument. The sample injection volume was 2 μL.  
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FTICR instrument parameters:  

1. m/z scan range: 200 to 1000  

2. Ion mode: positive ion 

3. Source parameters 

 Capillary: 4200 V, Nebulizer: 2.3 Bar, Dry gas: 7.0 L/min, Dry temperature: 190 ºC. 

4. Tune parameters 

 Acquisition 256k, Average spectra 2, source accumulation 0.1 seconds, collision cell 

accumulation 1.0 seconds, TOF 0.0007 seconds. 

 

Dns-lib Tutorial 

1. Workflow. The workflow for metabolite identification using Dns-library is shown below 

(Figure 1).  
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Figure 1. Workflow for M-RT search and MS/MS search. 

 

2. Dns-library database. The current Dns-library consists of 273 unique metabolites with a total 

of 315 entries. The Dns-library view on the sidebar lists all these Dns-metabolites with their mz 

and normalized RT information. Figure 2 shows a screenshot of the Dns-library database. The 

user can view the HMDB number, monoisotopic molecular mass, mz_light, normalized or 

corrected RT for each of the Dns-metabolite standards from the table. In addition, the hyperlinks 

for each Dns-metabolite to HMDB and KEGG databases are provided. These databases provide 

detailed biological information about the metabolite. 

 

Figure 2. Screenshot of a partial Dns-library table. 

The user can click the “Show Detail” button, which guides the user to a page with more detailed 

information about the dansyl labeled metabolite (Figure 3). An LC-MS chromatogram and 

MS/MS spectrum are provided on this page. These data were collected using pure standard 
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compound and can be used to compare with the user's experimental data. Details on the 

preparation of the Dns-standards can be found in the materials and methods part of the paper. 

 

Figure 3. Screenshot of the "Show detail" page. 

 

3. M-RT single mode search. M-RT single mode search allows a user to search the Dns-library 

by submitting a single metabolite feature with its RT and mass (M+H). Also, a calibration file 
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needs to be submitted to correct the retention time of the single metabolite feature. Figure 4 

shows the screenshot of the single mode search.  

 

Figure 4. M-RT single mode search parameters. 

There are six search parameters. 

1) Precursor Mass. The user needs to input the precursor mass of the metabolite feature. 

2) Mass tolerance. The user needs to define a mass tolerance for the precursor mass search. 

5 ppm is normally used for data collected using high resolution MS such as TOF and FT 

(10 ppm or higher may be used for very low abundance peaks). If the experiment is 

performed using a low resolution MS instrument, a larger mass tolerance should be 

considered.   

3) Retention time. The user needs to input the retention time of the metabolite feature. 

4) RT tolerance. The user needs to define a retention time tolerance for the M-RT 

search;15 seconds is normally used. If no close matches are found, a wider retention time 

window should be considered with caution. For LC with lower retention time precision, a 

larger RT tolerance may be used. 

5) Calibration file. A calibration file needs to be uploaded to adjust the retention time of 

the metabolite feature to match the retention time of metabolites in the Dns-library. The 

template of the calibration file is shown in the "user example". The user needs to 
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download the template and fill in the retention time information for each of the 

calibration standards used in the calibration file. The retention time has a unit of second.   

6) Calibration file type. In the current Dns-library RT correction method, a 22 Dns-

standards file is used. We will include other types of the calibration files for different 

applications in the future. 

7) Submit query. Once all the parameters have been set, the user can click on the “submit 

query” to start the M-RT single mode search. 

 

4. M-RT batch mode search. M-RT batch search mode allows a user to search the Dns-library 

using the entire dansyl-labeled LC-MS file. Figure 5 shows the screenshot of the batch mode 

search.  

 

Figure 5. M-RT batch mode search parameters. 

The parameters include: 

1) Mass tolerance. The user needs to define a mass tolerance for the precursor mass search. 

5 ppm is normally used for data collected using high resolution MS such as TOF and FT 

(10 ppm or higher may be used for very low abundance peaks). If the experiment is 

performed using a low resolution MS instrument, a larger mass tolerance should be 

considered.   
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2) RT tolerance. The user needs to define a retention time tolerance for the M-RT 

search;15 seconds is normally used. If no close matches are found, a wider retention time 

window should be considered with caution. For LC with lower retention time precision, a 

larger RT tolerance may be used. 

3) Sample file. A sample file needs to be uploaded onto the website for batch mode search. 

The sample file is the metabolite-intensity matrix after processing the raw LC-MS data in 

IsoMS, Iso-Align, and Zero-fill.    

4) Calibration file. A calibration file needs to be uploaded for adjusting the retention time 

of the metabolite feature to match with the retention time of the metabolites in the Dns-

library. The template of the calibration file is shown in the "user example". The user 

needs to download this template and fill in the retention time information for each of the 

calibration standards used in the calibration file. The retention time has a unit of second. 

5) Calibration file type. In the current Dns-library RT correction method, a 22-Dns-

standards file is used. We will include other types of the calibration files for different 

applications in the future. 

6) Submit query. Once all the parameters have been set, the user can click on the “submit 

query” to start the M-RT batch mode search. 

 

5. MS/MS search. The MS/MS search function allows a user to identify a dansyl labeled 

metabolite using MS/MS information. Figure 6 shows the screenshot of the MS/MS search 

function.  
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Figure 6. MS/MS search parameters. 

The parameters include: 

1) Precursor mass. The user needs to input the precursor mass of the metabolite 

feature. 

2) Neutral or ion. The user can define the type of the precursor mass. It can be either an 

M+H ion or a neutral mass.  

3) MS/MS list. The user needs to input a list of MS/MS fragment ion masses with their 

associated intensities.  

4) MS/MS tolerance. The user needs to set a mass tolerance for the MS/MS fragment 

ions to perform the matching with the MS/MS information in the Dns-library.  

5) Match precursor ion. The user has the option of defining the precursor ion mass for 

MS/MS search. If this option is enabled, only the Dns-metabolites that match with the 
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precursor mass will be further used to compare the MS/MS fragment ions. If this 

option is disabled, the MS/MS match is performed on all 273 Dns-metabolites.  

6) Precursor mass tolerance. The user needs to define a mass tolerance for the 

precursor mass search. 5 ppm is normally used for data collected using high 

resolution MS such as TOF and FT (10 ppm or higher may be used for very low 

abundance peaks). If the experiment is performed using a low resolution MS 

instrument, a larger mass tolerance should be considered. 

7) Match retention time. The user has the option of including RT for MS/MS search. If 

this option is on, only the Dns-metabolites that match with the retention time will be 

further used to compare the MS/MS fragment ions. If this option is off, the MS/MS 

match is performed on all 273 Dns-metabolites. 

8) RT tolerance. The user needs to define a retention time tolerance for the M-RT 

search;15 seconds is normally used. If no close matches are found, a wider retention 

time window should be considered with caution. For LC with lower retention time 

precision, a larger RT tolerance may be used. 

9) Calibration file. A calibration file needs to be uploaded for adjusting the retention 

time of the metabolite feature to be consistent with the retention time of metabolites 

in the Dns-library. The template of the calibration file is shown in the "user 

example". The user needs to download that template and fill in the retention time 

information for each of the calibration standard used in the calibration file. The 

retention time has a unit of second. 
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10) Calibration file type. In the current Dns-library RT correction method, a 22-Dns-

standards file is used. We will include other types of the calibration files for different 

applications in the future. 

 

6. M-RT search result display. Figure 8 shows the screenshot of the M-RT search result. The 

search result table is similar to the Dns-library table with several extra columns.  

 

Figure 8. Screenshot of M-RT search result. 

 

7. MS/MS search result display. Figure 9 shows the screenshot of the M-RT search result. The 

search result table is similar to the Dns-library table with several extra columns.   

 

Figure 9. Screenshot of MS/MS search. 

Examples of M-RT and MS/MS Search 

1. An example of using M-RT to do single mode search. 
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1). For the M-RT single mode search, the user enters a precursor mass (359.0730) and retention 

time (425.28 seconds), together with their mass tolerance (5 ppm) and RT tolerance (15 seconds) 

(see Figure 1). A calibration file with 22 calibration standards also needs to be uploaded. The 

template of the calibration file can be found below. The user needs to download it and change the 

retention time according to the calibration file performed with the metabolite feature. After 

filling out the retention time, click the “Submit Query” to start the M-RT single mode search. 

 

Figure 1. Single mode search parameter 

2). The search result is shown in Figure 2.  

 

Figure 2. Single search result. 

2. An example of using M-RT to do batch mode search. 

1). For the M-RT batch mode search, the user enters a mass tolerance (5 ppm) and RT tolerance 

(15 seconds) (see Figure 1). The user also needs to upload a sample file and a calibration file. 

The template of the sample file and calibration file are attached. For the calibration file, the user 

needs to download it and change the retention time according to the calibration file. After it’s all 

done, click the “Submit Query” to start the M-RT single mode search. 
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Figure 3. Batch mode search parameters. 

2). The search result is shown in Figure 4. 

 

Figure 4. Batch mode search result. 

3). At the end of the search result table, there is an “Export as CSV” button (Figure 5). By 

clicking this button, the user can export the search results into a CSV table shown in Figure 6 

 

Figure 5. “Export as CSV” button. 
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Figure 6. Exported CSV search result. 

3. An example of performing M-RT and MS/MS search. 

1). For the MS/MS search, the user inputs a precursor mass (581.1214) and select the ion type as 

[M+H]. Also, a MS/MS list needs to be uploaded.  The MS/MS tolerance is defined at a default 

of 0.005 Da. The match precursor ion and match retention time functions are all turned off, 

which means the MS/MS search is based on the match of MS/MS fragments with the MS/MS 

standards. After all the parameters are set, click “Submit Query” to start the MS/MS search. 
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Figure 7. MS/MS search parameters. 

2). The MS/MS search result is shown in Figure 8. 

 

Figure 8. MS/MS search result. 

 

  



215 

 

Tutorial for MCID MS/MS Search 

Part I. Introduction to MCID MS/MS Search 

Part II. Examples of MCID MS/MS Search 

 Part II includes the instructions for file splitting and file merging in batch mode 

search using a large file of  > 100 spectra: 

o 2.1. Use “MCID-split.R” to split a big MS/MS data file 

o 2.3. Use “MCID-merge.R” to combine all the search results 
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Tutorial Part I. Introduction to MCID MS/MS Search 

1. Workflow. The workflow for metabolite identification using MCID MS/MS search is shown 

in Figure 1. The precursor ion mass and fragment ion masses in an experimental MS/MS 

spectrum are entered into the program for comparison with the library metabolites and their 

predicted fragment ions. A match score (fit score) is generated in the search result which can 

be used to judge the quality of a match. 

 

Figure 1. MCID MS/MS search workflow. 
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2. MCID spectral library for MS/MS search. The MCID database is composed of all the 

known endogenous human metabolites in the Human Metabolome Database (HMDB) (8,021 

metabolites) and their predicted metabolic products via one metabolic reaction in the 

Evidence-based Metabolome Library (EML) (375,809 predicted metabolites). All the 

predicted MS/MS spectra are generated using in silico fragmentation algorithms. This 

spectral library is hosted at the public MCID website (www.MyCompoundID.org) and 

allows user to submit single experimental MS/MS spectrum or a batch of MS/MS spectra to 

search against the library spectra for possible match(s). 

3.  MCID single-mode MS/MS search. The MCID single-mode MS/MS search allows a user 

to search one experimental MS/MS data against the library spectra. Figure 2 shows the 

screenshot of MCID single mode MS/MS search interface. 
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Figure 2. MCID single-mode MS/MS search interface. 

a. # Reaction. The user needs to choose the type of library, either zero-reaction 

metabolite library (no reaction) or one-reaction metabolite library (one reaction). 

b. Neutral or Ion. The user needs to define the type of precursor ion.  

c. Precursor Mass. The user needs to input a precursor mass. 

d. Mass Tolerance. The user needs to define a mass tolerance for the precursor mass. 

0.005 Da is normally used for MS/MS data collected using high resolution MS such 

as TOF and FT. If the experiment is performed using a low resolution or low mass-

accuracy MS instrument, a larger mass tolerance should be considered. 

e. Query Mass. The user needs to input the list of MS/MS peaks with their intensities in 

this box. Once the “Deisotope” checkbox is checked, natural isotopic peaks will be 

excluded from the matching with the library MS/MS spectra to avoid false matching. 

f. MS/MS Tolerance. The user needs to define a mass tolerance for the fragment ion 

peaks. 0.005 Da is normally used for data collected using high resolution MS such as 

TOF and FT. If the experiment is performed using a low resolution or low mass-

accuracy MS instrument such as a triple quadrupole MS, a larger mass tolerance 

should be considered. 

4. MCID batch-mode MS/MS search. The MCID batch-mode MS/MS search allows a user to 

search an entire experimental LC-MS/MS dataset for all the possible matches. Figure 3 

shows the screenshot of the MCID batch-mode MS/MS search interface. 
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Figure 3. MCID batch-mode MS/MS search interface. 

a. # Reactions. The user needs to choose the type of library, either zero-reaction 

metabolite library (no reaction) or one-reaction metabolite library (one reaction). 

b. Neutral or Ion. The user needs to define the type of precursor ion. Usually [M+H]
+
 

is selected in a typical LC-MS/MS analysis. 

c. CSV File. The user needs to upload a CSV file generated from LC-MS/MS analysis 

of a sample for batch-mode search. An example of the file format used (e.g., MSMS 

file example) can be downloaded from the website. The file size is limited to 100 
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spectra. If a large file is used, a file split program can be used to split the large file 

into several small files for uploading (see Instruction given in Part II, section 2). 

d. Deisotope. Once the “Deisotope” checkbox is checked, natural isotopic peaks will be 

excluded from the matching with the library MS/MS spectra to avoid false matching. 

e. Mass Tolerance. The user needs to define a mass tolerance for the precursor mass. 

0.005 Da is normally used for MS/MS data collected using high resolution MS such 

as TOF and FT. If the experiment is performed using a low resolution or low mass-

accuracy MS instrument, a larger mass tolerance should be considered. 

f. MS/MS Tolerance. The user needs to define a mass tolerance for the fragment MS 

peaks. 0.005 Da is normally used for data collected using high resolution MS such as 

TOF and FT. If the experiment is performed using a low resolution or low mass-

accuracy MS instrument, a larger mass tolerance should be considered. 

5. Single-mode search result display. Figure 4 shows the screenshots of the MCID MS/MS 

single-mode search results using L-Asparagine as an example. After MS/MS search, all the 

mass-matched candidates are listed in the result page shown in Figure 4A. The correct 

structure, L-Asparagine, has the highest fit score (0.984). To further interpret the match 

result, the user can click the web link in the “Initial Score” column to display another layer of 

the match result. For example, by clicking "1.000" in Initial Score from L-Asparagine, a new 

page is displayed as shown in Figure 4B. This page shows the matching quality of the 

predicted MS/MS spectrum against the experimental MS/MS spectrum. All the matched 

peaks are labeled in red and unmatched peaks are in grey. On the same page, all the 

experimental MS/MS peaks are listed in a table (see Figure 4C). By clicking in the “Detail” 
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column, another page will be displayed as shown in Figure 4D. On this page, a specific 

experimental MS/MS peak is matched with a predicted MS/MS peak and the matched 

structure is displayed. The user can judge whether this matched structure is reasonable or not 

against the entire metabolite structure.  

(A)  

 

(B) 
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(C) 

 

 (D) 
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Figure 4. Screenshots of single-mode MS/MS search results. 

 

6. Batch-mode search result display. Figure 5 shows a screenshot of the MCID batch-mode 

MS/MS search result. As displayed at the top of the table, the user can further filter the 

search results table using precursor mass, intensity, number of fragments, number of hits, and 

the fit score. Also, the entire search results table can be exported as a CSV file by clicking 

the “Download Table Result”. Figure 6 shows the screenshot of the exported search results. 

The web link provided at the end of each row allows the user to manually check the matching 

result from the MCID website. The user merely needs to cut and paste the link name to the 

internet and the search result displayed for a given match will be the same as a single-

spectrum search result. The user can follow the instruction given in Section 5 to interpret the 

search results. 
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Figure 5. Screenshot of batch-mode search results. 

 

Figure 6. Screenshot of the exported batch-mode search results. 

Tutorial Part II. Examples of MCID MS/MS Search 

1. An example of using MCID single-mode MS/MS search 

 Using L-Asparagine as an example, the MS/MS data are shown below. 

Precursor ion(neutral): 132.0535 
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MS/MS list: 

m/z I %  

42.0337 5.4  

43.0177 27.3  

44.0130 27.7  

44.0494 19.8  

45.0448 3.6  

45.0523 0.6  

46.0287 7.9  

51.0228 0.9  

53.0023 9.8  

55.0179 4.0  

59.0370 0.6  

60.0446 10.6  

70.0291 29.9  

70.0656 0.7  

71.0130 2.7  

71.0326 0.8  

73.0290 1.6  

74.0243 100.0  

75.0275 2.5  

87.0555 0.9  

88.0394 2.9  

 

Referring to Figure 1, the user selects the spectral library as the zero-reaction library (i.e., No 

reaction), selects the type of precursor mass as Neutral, and enters the precursor mass (132.0535) 

along with the mass tolerance. In this case, the mass tolerance for the precursor mass is selected 

as the default (i.e., 0.005 Da). The user then enters the fragment ion masses and their 

corresponding intensities from the experimental MS/MS spectrum in the Query Mass box. 

Deisotope is selected as default to remove the 
13

C-natural abundance peaks accompanied with 

the fragment ion peaks. The user enters the mass tolerance for the fragment ion masses or selects 

the default (0.005 Da). The user clicks the “Submit Query” to start the single-mode MS/MS 

search.  
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Figure 1. Screenshot of MCID single-mode MS/MS search settings. 

The search result is shown in Figure 2A. To help interpret the match, the user can click the web 

link in the “Initial Score” column to display another layer of the match result. For example, by 

clicking "1.000" in Initial Score from L-Asparagine, a new page is displayed as shown in Figure 

2B. This page shows the match quality of the predicted MS/MS spectrum against the 

experimental MS/MS spectrum. All the matched peaks are labeled in red and unmatched peaks 

are in grey. On the same page, all the experimental MS/MS peaks are listed in a table (see Figure 

2C). By clicking in the “Detail” column, another page will be displayed as shown in Figure 2D. 

On this page, a specific experimental MS/MS peak is matched with a predicted MS/MS peak and 

the matched structure is displayed. The user can judge whether this matched structure is 

reasonable or not against the entire metabolite structure. The user can also follow the instruction 

given in Part I for more information on how to interpret the search results. 
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 (A) 

 

(B) 
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(C) 

 

(D) 

 

Figure 2. Screenshots of single-mode MS/MS search results. 

 

2.  An example of using MCID batch-mode MS/MS search 

2.1. Use “MCID-split.R” to split a big MS/MS data file 

For the MCID batch-mode MS/MS search, we limit the size of the uploaded batch-mode file to 

100 MS/MS spectra so that the server is not occupied for too long by a search work using a very 

big file. We provide an R based program, “MCID-split.R”, for the user to split a big file into 

smaller files of up to 100 MS/MS spectra in each file. The user can download this program from 
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the MCID website and the latest R program from https://www.r-project.org/. To run the “MCID-

split.R”, the user needs to open the R program and assign the fold of “MCID-split.R” as the 

working folder of RGui by clicking: File → Change dir… (see Figure 3).  

 

Figure 3. Screenshot of changing the working directory. 

Then, the user opens the MCID-split.R script and changes the data path (data.path) (Figure 4) to 

the folder that contains the big file.  

 

Figure 4. Screenshot of setting the data path. 

Next, the user needs to type in “source(“MCID-split.R”)” into the RGui and press enter to start 

the splitting process (see Figure 5). 
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Figure 5. How to run the MCID-split.R. 

After running the program, the user can find a list of small files with each containing a maximum 

of 100 MS/MS spectra (see Figure 6). These files are ready to be used to do batch-mode search 

online.  
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Figure 6. Screenshot of the file splitting results. 

2.2. Batch-mode search parameters and results 

To perform the batch-mode search, the user needs to define the reaction type (i.e., select the 

zero-reaction or one-reaction library), precursor ion type, precursor MS tolerance as well as 

MS/MS tolerance. Then, click the “Submit Query” to start the batch-mode search (see Figure 7).  

It takes about 2 min to complete a batch mode search with 100 MS/MS spectra using a precursor 

ion mass tolerance 0.005 Da. However, this search time may be longer if the server is busy to 

process many queries from multiple users. 

Figure 8 shows a screenshot of the MCID batch-mode MS/MS search result. The user can follow 

the instructions in Part I to interpret the search results.  As displayed at the top of the table, the 

user can further filter the search results table using precursor mass, intensity, number of 

fragments, number of hits (i.e., mass-matched candidates), and the fit score. Also, the entire 

search results table can be exported as a CSV file by clicking the “Download Table Result”. 
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Figure 7. MCID batch-mode MS/MS search settings. 

 

Figure 8. Screenshot of batch-mode MS/MS search results. 
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2.3. Use “MCID-merge.R” to combine all the search results 

After all the search results in CSV are downloaded, another R program “MCID-merge.R” is used 

to combine all the individual search results files into one complete final results CSV table. To do 

so, similar to the use of “MCI-split.R”, the user needs to open the RGui and assign the fold of 

“MCID-merge.R” as the working folder of RGui by clicking: File → Change dir… (see Figure 

9).  

 

Figure 9. Screenshot of changing work directory. 

Then, the user opens the MCID-merge.R script and changes the data path (data.path) (Figure 10) 

to the folder that contains all the search results files. 

 

Figure 10. Screenshot of data.path setting. 

Next, the user needs to type in “source(“MCID-merge.R”)” into the RGui and press enter to start 

merging all the results files together (see Figure 11). 
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Figure 11. How to run the MCID-merge.R. 

After the process is completed, a “combined search results.csv” file will be created (see Figure 

12) and this file contains all the information from all the individual searches. 
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Figure 12. Screenshot of the merged result. 

When the “combined search results.csv” file is opened, all the information about the search 

results are shown (see Figure 13). The web link provided at the end of each row allows the user 

to manually check an individual match result from the MCID website. The user merely needs to 

cut and paste the link name to the internet and the search result displayed for a given match will 

be the same as a single-spectrum search result. The user can then follow the instruction given in 

Part I to interpret the search results. 

 

Figure 13. Screenshot of the exported batch-mode search results. 


