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Abstract

Robot localization is the problem of estimating the position of a robot given 

its sensory observations, control actions and a map. There exist efficient ap­

proaches to this problem, for example, Kalman and extended Kalman filters 

and Monte Carlo localization. These approaches address the problem by using 

probabilistic models for the motion and sensing of the robot. The effectiveness 

of these approaches is naturally dependent on the accuracy of these models.

Finding good models, or calibration, traditionally involves long and error- 

prone measurements and manual tuning. Therefore, an automatic calibration 

technique, which is the subject of this research, is highly desirable.

This thesis takes a Bayesian approach to calibration. Expert knowledge 

about the models is encoded as a prior distribution in parameter space.

A new belief about parameters’ distribution is inferred from data collected 

onboard the robot. Since analytical inference of this distribution is not fea­

sible, a Markov Chain Monte Carlo algorithm is used to draw samples from 

this distribution. The effectiveness of our technique is demonstrated both in 

simulation and on a real robot.
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Chapter 1 

Introduction

Most robotic tasks require the robot to have accurate information about its 

location. Therefore, robot localization is one of the most fundamental prob­

lems that needs to be addressed. More formally, mobile robot localization is 

the problem of estimating the position of the robot in a global coordinate sys­

tem, given a map of the environment, and the history of sensor and odometry 

readings. Significant efforts have been put to solve this problem and a variety 

of effective techniques have been developed.

Kalman Filters (KF) [8], Extended Kalman filters (EKF) [5], Unscented 

Kalman Filters (UKF) [6] and Monte Carlo Localization (MCL) [4] are all well 

known approaches to this problem. In situations that the uncertainty about 

the position of the robot can be modeled with a unimodal distribution, Kalman 

and Extended Kalman filter can be used effectively for localization. However, 

in some problems such as localization in an office environment, where many 

corners and hallways are similar, using a unimodal distribution can fail. Monte 

Carlo localization has proven to be effective in dealing with problems where 

multimodal distributions are required to model the position of the robot.

The mentioned methods usually use parametric probabilistic models in 

order to model the uncertainties involved in the problem. Dynamic environ­

ments, noisy sensors and also inaccurate actuators of robots are examples of 

sources of uncertainties. In the mentioned localization methods uncertainties 

are described through the motion and sensor models of the robot. These mod­

els usually contain some parameters that must be tuned to mimic the real

1
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world as closely as possible in order to localize the robot accurately. Tuning 

these parameters is called calibration. Traditionally calibration is done man­

ually. This dissertation aims to develop a method to automate the calibration 

process.

1.1 M otivation

Models used in localization are traditionally hand-tuned. Such manual tun­

ing involves tedious and error prone measurements. It should also be redone 

often, since the physical properties of the robots can change with time, e.g. 

the inflation of the tires changes with the temperature and gradually decreases 

over, time as well as motor wear and increased sensor noise. The environmen­

tal conditions, e.g. surface friction, lighting, etc., are also always changing. 

Additionally, in order to facilitate the presence of the robots in our day to 

day life, robots need to be able to coexist with people in un-engineered public 

enivornments. This means that there will be many unexpected or unknown 

factors that make it hard to manually calibrate for. Moreover, manual cali­

bration can make it difficult to field new sensors or locomotion mechanisms. 

The aforementioned problems inspired the development of a method to cali­

brate the models involved in robot localization automatically, described in this 

thesis.

1.2 Approach

The calibration method described in this thesis is based on Bayesian approach. 

First, the knowledge about the parameters involved in models is encapsulated 

in a prior distribution over parameter space. Then the robot is allowed to 

move in the environment in which it should be localized, collecting data. This 

data is used with a Markov Chain Monte Carlo (MCMC) sampling algorithm 

to draw samples from the posterior distribution of the parameters given the 

collected data. Finally, different techniques are proposed for incorporating the 

posterior parameter samples into Monte Carlo Localization.

2
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1.3 Contributions

The contributions of this dissertation are two fold.

Effective Bayesian calibration for M onte Carlo localization. An effi­

cient Markov Chain Monte Carlo sampling method is proposed to draw sam­

ples from the posterior distribution of model parameters given the data col­

lected by the robot. The proposed method is completely general, unlike simi­

lar methods in literature, which are usually limited to certain types of models. 

The technique described in this thesis can be used to calibrate general robot 

models, such as commonly used multimodal laser range-finder models.

A novel extension to  M onte Carlo Localization. A new extension to 

Monte Carlo localization is also proposed in order to utilize the samples of the 

posterior distribution of model parameters.

The basic algorithm and some of the results presented in this thesis ap­

peared in the Proceedings of the National Conference on Artificial Intelligence 

(AAAI) [7].

1.4 Guide to the Thesis

This thesis is organized as follows.

Chapter 2: Background. In this chapter, the framework that the pro­

posed technique is based on is introduced. After explaining Monte Carlo Lo­

calization, its connection to particle filtering and particle smoothing is demon­

strated. The attention then moves to the parametric models that are used 

in MCL and parameter estimation techniques. Finally, Bayesian techniques 

are described, including two examples of sampling algorithms - Gibbs and 

Metropolis sampling.

Chapter 3: The Algorithm . The proposed calibration technique is pre­

sented in detail in this chapter. First the Bayesian formulation of the problem

3
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is described, followed by detailed presentation of the proposed algorithm. Af­

terwards three methods are introduced in order to exploit the output samples 

of the calibration procedure.

Chapter 4: R esults. The results section is divided into two main parts: 

experiments in simulation and experiments on real a robot. In each section 

the data collected from the robot is used to calibrate a number of models with 

increasing complexity. Graphs of both samples of the posterior distribution 

after calibration are presented along with the resulting localization accuracy. 

The results verify the effectiveness of the proposed calibration technique. This 

section also highlights the fact that the calibrated parameters outperform the 

true parameters, which is counter-intuitive and paradoxical. The analysis of 

these paradoxical results is deferred to the next chapter.

Chapter 5: Discussion. This chapter starts with a discussion of paradox­

ical observations from the results chapter, demonstrating that they are, in 

fact, sensible. We also investigate whether the calibration procedure might 

find parameters suited to a particular number of particles used in MCL. The 

major finding is that although the experiments do not completely confirm to 

intuition, they do show that calibration with a number of particles smaller 

than the number used in MCL results in more robust localization. Finally the 

chapter presents results from a number of other empirical investigations, all 

exploring the robustness of the proposed technique.

Chapter 6: R elated Literature. In this chapter relation of the proposed 

to other work on automatic calibration is explained pointing out the superiority 

of the new method to similar work.

Chapter 7: Conclusion. This final chapter brings major conclusion of the 

thesis and presents a sketch of possible future work.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 

Background

This chapter provides an introduction to the subjects that the proposed cal­

ibration technique builds upon. It starts with an overview of mobile robot 

localization [14] which is the framework that the calibration technique op­

erates within. Monte Carlo Localization (MCL), the application of particle 

filtering to the localization problem, is presented in detail along with particle 

smoothing which is an extension of particle filtering for identifying a complete 

trajectory. This is followed by discussion of Bayesian parameter estimation, 

and Markov chain sampling methods. The proposed Gibbs and Metropolis 

sampling methods are specifically emphasized, since they constitute the core 

of the proposed algorithm.

2.1 Mobile Robot Localization

The position of a mobile robot in an environment is not usually measurable 

by the robot itself. Even a robot equipped with a GPS device does not know 

its exact position accurately. Therefore, robots have to infer their positions 

using other measurable quantities, which are the observations of their sensors 

and also knowledge about their control actions. The robots then keep an 

internal belief about their positions. In probabilistic robotics the robot’s belief 

about its state at time t  is represented as a conditional probability density 

function over the position space given the observation and action history. More 

formally, one can write:

bel(xt ) = P(x t \z1:t, u 1:t) (2.1)

5
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where x t is the state vector. Often x t is a three dimensional vector, where 

the first two dimensions are the location coordinates, and the third one is the 

orientation of the robot. ut represents the control action, while zt represents 

the observation vector. The dimensionality of z depends on the sensors of the 

robot. When l:t  appears as a subscript, it refers to the sequence of variables 

beginning at time 1 through time t, e.g., z\-_t = zi, z2, , zt .

The sequence of observations and control actions, i.e., z1:t and u i:t, is called 

data and written as simply V.  In order to be able to update a robot’s belief as 

it moves, the robot needs to have a generation rule as well as a measurement or 

observation rule. These rules are also called motion and sensor models. Since 

the actuators and sensors of robots are noisy, the rule cannot be represented 

as a deterministic function. Therefore, the motion and sensor models are 

represented as conditional probability density functions.

The motion model :

P (x t |x1:<_i, U 1:t, = P(x t \xt- 1, Ut ) (2.2)

The sensor model :

P{zt \x1:U Ui-t, z1:t) = P{zt\xt) (2.3)

In the motion model, xt_i and ut are assumed sufficient statistics of all pre­

vious control actions and observations, allowing to write the model in the

simple form on right-hand side of Equation 2.2. In the sensor model the same

assumption holds about x t. This assumption is known as the Markov prop­

erty. One approach to robot localization is recursive Bayes filtering, which 

computes the posterior distribution given the robot’s observations and control 

actions. It does the posterior computation recursively, i.e. it calculates bel(xt) 

from bel{xt- i )  and the most recent observation and control action. In general, 

the posterior distributions do not have a closed form making recursive com­

putation infeasible. Approximations to the posterior distribution are typically 

employed. For example, Kalman filters approximate the posterior as normal 

distribution while particle filters approximate it with a set of samples. In the 

next section, the application of particle filters to robot localization, typically 

called Monte Carlo localization, is described.

6
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2.1.1 M onte Carlo Localization

Monte Carlo Localization is the application of particle filtering in robot local­

ization.

Particle Filtering

Particle filtering approximates the current belief with a finite set of samples, 

or particles. The recursive update results in a new set of particles using im­

portance sampling followed by resampling.

Im portance sampling. Importance sampling is a method for computing 

expectations of a distribution using Monte Carlo sampling of a different distri­

bution. This method is usually used when there is no easy way to sample from 

the target distribution. Assume that f ( x ) is the distribution for which expec­

tations are to computed. Importance sampling instead draws samples from 

an auxiliary probability density function, or candidate distribution, g(x) and 

associates each of the samples with a weight equal to the value of f (x ) /g(x) .  

The only condition that g{x) must fulfill is that it must not be zero for x’s 

where f(x) is non-zero. The better g(x) approximates f (x ) ,  the closer are the 

samples to the true distribution, and the more accurate the computed expec­

tations. It can easily be shown that the expectation of the generated samples 

using this method will converge to the true expectation of the distribution as

the number of samples increases. Suppose a(X)  is a function of the random

variable X  and wants to compute E[a(X)].

E f  [o(X)] =  J ^ a(x)f (x)  =  J ^ a ( x ) j & g ( x )  = (2.4)

w o g  -  E  («>
#(*) r^g

Derivation. Mathematical derivation for particle filtering using importance 

sampling follows. Samples of bel(xt) can be obtained by generating trajectory 

samples from bel{xi,*) and discarding the earlier samples. Therefore, replacing

7
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bel(xi-t) with bel(xt) does not change the problem.

bel(x i;t) =  P{xht\zi:t,uht) (2.6)

=  Z P (z t \x1:tz 1:t- 1,Ui:t)P(xi:t\zht- 1, u 1:t) (2.7)

=  Z P (z t \xt)P(x i:t\zi:t̂ 1ui:t) (2.8)

=  ZP(zt\x t)bel(xht) (2.9)

where bel(xi;t) is the the belief after taking the control action at time t  but 

before receiving the observation.

bel(x i:t) =  ZP(z t \xt)P(xt \xi:t-iUi:t)P(Xi:t-l\Zi:t-l,Ui:t-l)  (2.10)

=  ZP(zt\xt)P(xt \xt^ i , u t)P(xht- i \zv. t - i ,u1:t- 1) (2.11)

=  Z P (z t \xt)P(xt\xt- i , u t)bel(x1:t-i)  (2.12)

where Z  is a normalization constant.

Equation 2.7 follows 2.6 because of the Bayes’ rule, and 2.8 is a result of 

Markov property. Equation 2.10 follows 2.8 applying chain rule and 2.11 is a 

result of Markov property. The inductive Equation 2.12 shapes the recursive 

basis of the particle filtering algorithm. Suppose that there is a set of parti­

cles sampled from bel{xi:t_i), and one wants to draw samples from bel(xi;t) 

distribution. However, it is not generally easy to draw samples from this dis­

tribution. Therefore, using the importance sampling technique, samples from 

bel(xi:t) can be drawn instead. The importance sampling correction, as can be 

seen from Equation 2.9 is then just P(zt \xt), i.e., the sensor model. As can be 

seen in Equation 2.12, sampling from bel(xi:t) involves using the recursive sam­

ples from the previous time-step and then sampling from the motion model, 

all of which are tractable. Now there is a set of particles each associated with 

a weight, i.e., (x^ \ ,w ^) ,  which is a discrete representation of bel(xi:t) distri­

bution. The particles are then resampled with probability proportional to the 

weights, and as a result the new set of particles will actually be drawn from 

the target distribution. The initial set of particles is assumed as sampled from 

the prior P(x0).
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Algorithm . Algorithm 1 summarizes the particle filtering algorithm. The 

derivation involves sampling a complete trajectory, but usually all one desires 

to know is the posterior distribution of the robot’s current location. The 

presented algorithm drops the history of states and the particles only store the 

current time-step. If samples from the complete trajectory are to be drawn, 

the samples of the previous time steps can be kept. Connecting each particle 

to its parent particle will give a set of samples from the trajectory. However, 

since the resampling step in this algorithm causes high levels of degeneracy 

in the trajectory over time, generated trajectory samples are not favorable. 

Particle smoothing is the usual method that is used to generate samples of the 

trajectory.

Algorithm  1 Particle Filtering.
1. Given parameters X t~i, zt , u t

2. for i =  1 to N

(a) Draw particle i from the motion model:

x f  ~  P(x t \xt- i , u t)

(b) Give the zth particle a weight proportional to the sensor model 
value:

wW =  P(zt\xt)

3. for k =  1 to N

(a) Resample: draw i with probability oc

(b) add < x f 1, > to X t

4. return X t

2.1.2 Particle Sm oothing

Particle smoothing [14] is also a recursive procedure that is applied backward 

to the output particles of the particle filtering algorithm. The idea behind par­

ticle smoothing is to extract the most probable trajectory through the avail­

able particles, instead of just connecting the parent points to their children.

9
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Mathematical derivation of the particle smoothing algorithm follows:

Xi:T ~  P(X1:t\Ui-.T, Zv.t) (2.13)
T - 1

P (x 1:t\Ui-.T,Z1:T) = P{xT\u1:T, Zh T ) P (x t \xt+i:T, U1:t, Z1:t) (2.14)
t =  1

Xt  ~  P (a ;t |® t+ i:r ,M i:t ,^ i: t )

=  P (x t |xt+i ,« i :t,Zi:t) (2.15)

=  ZP(x t+1 \xt,ut)P(xt\uht, z 1:t) (2.16)

=  Z P ( x t+i\xt,u t)bel(xt) (2.17)

Rewriting the posterior as in Equation 2.14, one can realize that all that 

is needed to be done is to recursively draw samples from the distribution 

P(x t\xt+i:T, zi;t , u i :t). Following the Bayes’ rule, the distribution can be re­

placed with the expression in Equation 2.17. Applying importance sampling 

to Equation 2.17, one can draw samples from bel(xt) with probability pro­

portional to importance sampling’s correction term. Since bel(xt) is already 

sampled by particle filtering step, only resampling from the particle set with 

probability proportional to P (x t+i\xt ,u t) is necessary. Algorithm 2 presents 

the particle smoothing algorithm.

2.1.3 Parameterized M odels

Up to this point, the motion and sensor models have not been made explicit. 

Although the exact form of the models will depend upon the particular robot 

and application, it is common to consider a family of models parameterized by 

some vector 9. Assume that the form of the model is known, but the model 

parameters are not and these need to be calibrated. Thus, from now on, the 

motion and sensor model will be written as follows:

•  M otion m odel : P ( x t \xt- i , u t ,9)

• Sensor model : P(zt \xt ,9)

In all of the above algorithms, there is an implicit conditioning on the vector 

9.

10
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A lgorithm  2 Particle Smoothing.
1. Given Xi_x, Wi:T> U\-.t

2. For j  = 1 to N  (N samples from the trajectory):

(a) Draw i with probability oc

X T  <—  Xr p

(b) for t  — T  — 1 to 1

i. Recalculate the weights of previous step particles:

= P{xt+1 \ x f \ u ) w l ' \  i = 1 . . . N

ii. Resample: draw i with probability oc
. . .  _  (i)in. x t <— x\

(c) <- ( x i , x 2, . . .  , x T)

3. Return X 1;T

2.2 Bayesian Approach to Parameter Estima­
tion

The goal of this thesis is to calibrate the motion and sensor models used in 

Monte Carlo localization. This problem is generally called parameter esti­

mation. A Bayesian approach is adapted to solve the problem of parameter 

estimation. Bayesian parameter estimation, or Bayesian inference, usually 

consists of the following steps:

1. Considering 9, the unknown parameters, as a random variable

2. Defining a probability density function over the parameter space, i.e. a 

prior distribution P(9), which expresses the belief about the parameters 

without seeing any data.

3. Obtaining a new belief about 9 after observing a sequence of data, i.e., 

V.  This is basically calculating the posterior distribution P(9\V)

However, in many problems, analytical calculation of the posterior distribu­

tion is impossible. In these cases different methods can be used in order

11
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to approximate the posterior distribution. The approach selected here is to 

draw samples from the posterior distribution using Markov Chain Monte Carlo 

(MCMC) methods that will be explained in the following sections [15].

2.3 Markov Chain M onte Carlo M ethods

The best way to get accurate estimates to the expectations of interest, is to 

continuously search for the regions of high probability. Monte Carlo methods 

based on Markov Chain theory are methods that have this property. In the 

following section the theory of Markov chains, in extent necessary to develop 

MCMC sampling, is presented.

2.3.1 Markov Chains

A Markov chain is a representation of a stochastic process, where t  is 

often interpreted as time. In a Markov chain the distribution of X  in time 

t + 1 is entirely specified by the distribution of X  in time t. More specifically :

P ( X {t+1) = xt+1|X w =  x {t\  ..., A {1) =  x(1)) =  P ( X {t+1) = x t+l\ X {t) = x {t))

(2.18)

This is called Markov property. A Markov chain is specified by the initial 

distribution of po(x), and the transition probabilities of one state to 

another state, which is the conditional distribution of given the possible

values for X ® .  Prom now on, the probability of a transition from state x  to 

x' at time n will be designated as Tn(x, x'). If transition probabilities do 

not depend on time, the chain is called homogeneous or stationary and the 

transition probabilities will be represented as T ( x , x f). The most important 

characteristic of Markov chains is that certain Markov chains converge to a 

unique invariant distribution. The invariant distribution of a Markov chain 

is defined as a distribution over the states of the chain that persists forever, 

when it is reached. To sample from a complex distribution, a Markov chain is 

built by specifying the transition probabilities, whose invariant distribution is 

the distribution of interest. The transition probabilities are usually defined by

12
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a set of base transition probabilities represented by , each of which leaves 

the desired distribution unchanged.

More formally the invariant distribution, n(x)  satisfies:

7r(x ) = x), (2.19)
x'

or, in matrix form:

7T =  ttT (2.20)

T  =  B x . . . B n (2.21)

The invariant distribution is the eigenvector of Matrix T  with eigenvalue of

1. For most stochastic matrices a complete set of linearly independent eigen 

vectors can be found. The eigenvectors corresponding to eigenvalue of 1 can 

be chosen in a way so that all the elements of the vector are real and sum 

to one. Of special interest are in the transition matrices that have just one 

eigenvector corresponding to eigenvalue 1.

A Markov chain satisfies the detailed balance condition, if the probability 

of being in state x  and moving to state x! is equal to the probability of being 

in state x' and transition to state x. It is easy to show that the invariant 

distribution of such a chain exists.

A Markov chain is said to be ergodic if the probability of transitioning from 

any state to another possible state is greater than zero. It can be proven that if 

a Markov chain is ergodic, it will always converge to an invariant distribution 

regardless of the initial choice of the probability distribution po(x). These two 

properties will be used while constructing Markov chains based on Gibbs and 

Metropolis methods, in order to prove that the chain’s invariant distribution 

is our desired distribution [10].

Gibbs Sampling M ethod

The Gibbs algorithm is conceptually the simplest of Markov Chain Monte 

Carlo sampling methods and is appropriate for problems where the variables 

have a small finite range or have conditional distributions of a form that 

are easy to sample from. Suppose that a set of random variables X  =

13
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(.X i , . . . , X n) is given and samples are to be drawn from their joint distri­

bution P ( X i , . . . ,  X n). In order to simulate this distribution, Gibbs sampling 

method repeatedly selects one of the variables either randomly or in a spe­

cial order. Then, keeping other variables unchanged, it replaces the selected 

variable with a value drawn from its conditional distribution given the values 

of other variables. This process is identical to building a Markov chain with 

a set of base transition probabilities B k for k =  1, ,n  with the following 

definition:

B k(x,xf) =  P(x'k\{xi : i ±  k}) ' ^ 8 (xh x'i) (2.22)
i^k

where 8 (x, x') is a function taking on 1 if and only if x — x' (otherwise 0). The 

base transition are usually assumed to be applied in sequence, however they 

can be picked randomly. It can be easily shown that each of the base transi­

tion probabilities leaves the invariant distribution unchanged. Therefore, any 

combination of the base transition probabilities will not change the joint dis­

tribution. It can also be shown that the chain is ergodic, regardless of whether 

transitions are chosen sequentially or randomly, as long as the conditional dis­

tributions are non-zero everywhere. Thus, the chain converges to the invariant 

distribution, which is the distribution of interest. Gibbs sampling algorithm 

relies on the assumption that sampling from the conditional distributions is 

feasible. However, in many problems this assumption is not valid. Metropolis 

algorithm is an alternative which builds upon looser assumptions. Algorithm 

3 summarizes the Gibbs algorithm [10].

M etropolis Sampling M ethod

The Metropolis algorithm is similar to the Gibbs sampling method, however 

it is more general and it does not require sampling from conditional distri­

butions, which may be difficult. The only assumption that is made in this 

method is that the joint density function should be calculable. Suppose that 

samples are to be drawn from the joint distribution of P ( X \ , . . . ,  X n) where 

X  =  X i , . . . ,  X n are all random variables, either discrete or continuous. The 

Metropolis algorithm repeatedly leaves all the variables but one unchanged on

14
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A lgorithm  3 Gibbs Sampling.
1. Initialize:

x  =  X {0) =  (xu . . . , x n) 
k = 1 
5  =  0

2. while (1)

(a) Sample from conditional distribution:

X k  ~  P ( X k  | X i ,  • • • , X k — \ i  X k - \ - 1 )  • • • > ^ - n )

(b) a: =  (xi , . . . , x ' fc, . . . , : r n)

(c) add x to 5

(d) A: =  (fc +  1) mod n

3. return 5

each iteration. If the A;th variable is to be changed, a new candidate value is 

sampled from a proposal distribution Sk(x,x'k). The new value is kept with 

the acceptance probability A(x, x1), otherwise it is left unchanged as well. The 

acceptance function can have many forms, such as the one that used in the 

proposed algorithm :

A(x, x') =  min ^1, (2-23)

The mentioned process can be translated to a Markov chain with base transi­

tions defined as follows:

B k(x,x')  = S k{x,x'k)A(x ,x ' )Y \& {x i,x'i) (2.24)
i^k

+  X ) [l ^   ̂8 k{X) Xfo)A(X)
x i^k

where:

Sk(x, x'k) = Sk(x', Xk) when Xi =  x\ for all i ^  k  (2.25)

It can easily be shown that the detailed balance property holds for all the 

chains that fulfill the above condition. Also the chain will be ergodic as long as 

Sk(x, x'k) is non-zero for all x'k. These two conditions guarantee the convergence

15
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of the chain to the joint distribution. Algorithm 4 summarizes the Metropolis 

algorithm [10].

A lgorithm  4 Metropolis sampling.
1. Initialize:

x = X (0) =  (xu . . . , x n) 
k = 1 
S  — 0

2. while (1)

(a) Draw sample from the proposal distribution:

x*k ~  S k(x ,xk)

(b) x = x* with the probability of A(x, x*)

(c) add £ to S'

(d) k = (k + 1) mod n

3. return S

16
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Chapter 3 

Bayesian Calibration

In this chapter a new approach to calibration problem for Monte Carlo Lo­

calization is presented. It starts with a formal mathematical derivation of the 

approach, followed by presentation of the algorithm itself. Finally, different 

methods that can be used to exploit the output of our algorithm in MCL are 

discussed.

3.1 M athematical Derivation

As explained in the previous chapter, the motion and the observation models 

are the key elements in Monte Carlo localization and can be represented as 

follows:

Motion model : P(x t \xt- i ,  ut, 9) (3.1)

Sensor model : P(zt \xt ,9) (3.2)

As mentioned before, 9 is the parameter vector to be calibrated, which is con­

sidered a random variable in Bayesian approach. The goal is to calculate the 

posterior distribution of 6  given the data collected from the robot, which con­

sists of a history of the observation and control action vectors. More formally, 

the following distribution should be characterized:

P(9\V) = P(9\z1:T,u 1:T) (3.3)

17
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Since this distribution does not have a simple closed form, it can be approxi­

mated by generating a set of samples from it. More formally :

0{i) ~ P (0 |z i : r ,u 1:r)  (3.4)

Marginalizing over the unknown trajectories one can instead draw samples 

from the joint distribution in Equation 3.6:

P ( 0 \ z 1:T,U1:t ) =  [_ P(@, (3-5)
J X\ .’j'

(0(i), X « )  -  P ( e , X 1:T\zhT,u 1:T) (3.6)

As explained in the previous chapter, the Gibbs sampling algorithm guarantees 

that iterating between the following two steps, will eventually result in drawing 

samples from the joint distribution of P ( 0 , X i :T\zi:T,u i :T).

X%  ~  P(Xl:T\zi:T,UhT,e) (3.7)

dw  ~  P ( e \ X hT , z 1:T, u hT) (3.8)

Equation 3.7 requires to draw samples from the posterior distribution of com­

plete trajectories given the observations, control actions and a specific param­

eter value. Recalling from the background chapter, one can realize that this is 

the operation that particle smoothing algorithm performs. Unfortunately, the 

sampling operation of Equation 3.8 is not feasible. From the Markov chains’ 

perspective, by performing particle smoothing a Markov chain is built with a 

set of base transitions, that leaves the distribution unchanged. However, the 

chain is not definitely ergodic without the second step of the Gibbs algorithm. 

Thus, more transition rules must be added to the chain.

Going back to the joint distribution, P(0, Xi:t \T>), an alternative approach

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is to break down the distribution applying chain and Bayes rules:

p (o , x 1:T\v )

=  P ( x 1:T, z1:T\9 , u 1:T) P ( Q ) / Z (3.9)

(3.10)

P ( x t \ x \ - t —\i Ul.Ti 9')'

. P(zt\x1:t, z 1:t^1, u 1:T,0)
(3.11)

=  ! - ^ ' [ \ P ( x t \ x t - i , U t , 0 )P(zt\xu d), (3.12)

As can be observed in Equation 3.12, it is possible to write the distribution as a

product of prior, motion and sensor model density functions and a normalizing 

factor Z.  As explained in the previous chapter, the only necessary condition 

for employing the Metropolis algorithm for sampling from a distribution, is 

the ablility to calculate the distribution function up to an unknown factor. 

Consequently, the Metropolis algorithm is applicable to the problem.

Returning to the Markov chain’s perspective, more transition rules must 

be added to the chain. These transitions will make the chain ergodic as well 

as keep its distribution unchanged.

As explained in the previous section, samples can be drawn from the condi-

can efficiently be evaluated. Therefore, a hybrid MCMC technique can be em­

ployed to draw samples from the target distribution. In one step, i.e. inference, 

a sample of a complete trajectory is drawn using particle smoothing, keeping 

the parameters unchanged. In the next step, i.e. estimation, the Metropolis 

algorithm is applied, using a proposal distribution and formulating an ac­

ceptance function based on the joint distribution. More specifically, small 

Gaussian perturbations are applied in turn to one of the dimensions of the 

parameter vector, and the new state is then accepted with the probability of

3.2 Algorithm

tional distribution of P ( X \ :T\zi:T, Wi:t> 0) and the joint density function P( 6 , X i :t\zi-.t, U lt)

19
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the acceptance function, defined as follows:

A(9 §) = min (i P(o,x1:T\vy\ _

(3.13)
• (i P $  17  p (Xt’ l ^ - 1’Uu 6 )p (zt\x t»<?A 
m ’ p (e) i d  l^-i> 0)-P(2tkt, 0)y '

mm

Algorithm 5 summarizes this algorithm.

Algorithm  5 Bayesian calibration

The parameter N  is the number of steps of change after burn-in and m  is the 
number of Metropolis iterations per Gibbs step.

1. Given training data V  and parameters N, m.

2. Initialize Markov chain.

0(o) ~  P{6)

3. For i <— 1 up to (N  +  T):

(a) Sample a trajectory.

X (i) <— PA RT IC LESM O O TH ING (,2i:T, t t i :T, 0 ( i-1 ) )

(b) Sample model parameters.

#(*) < _

Repeat m  times: For j  <— 1 up to d:

i. Generate candidate.

4  <— S a m p l e N o r m a l ( 0 ,  a \ )

L  /?« . /  sk if k = j
k ( 0  otherwise

ii. Accept candidate.

p  <— S a m p l e U n i f o r m ( 0 ,  1)

0 (i) j  $ i f p < m i n ( l ,
9® otherwise

P (0 ,X i ,t T)\ ,t )
P {6 ,X \ ;T "D-l :t )

4. Return samples (9^\ x ^ )  for i =  (T + 1) . . .  (T + N ) .
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Step 3(a) of Algorithm 5, the inference step, is computationally much more 

demanding than the estimation step. It requires 2T n  evaluations of the motion 

and sensor model density functions (where n  is the number of particles and T  

is the length of the calibration trajectory), while the estimation step needs dT  

evaluations (where d is the dimensionality of the parameter vector). For each 

inference step the estimation step is repeated, which takes a shorter time, m  

times in order to increase the simulation rate and speed up the convergence. 

Indeed, the value of m  is much smaller than n.

3.3 Using the Posterior Samples

In the previous section, a method was presented to generate a set of samples 

from the posterior distribution of the parameter vector, given the collected 

data. These samples should now be used in Monte Carlo localization. The 

simplest approach is to extract a single suitable parameter vector from the set 

of samples. The most straightforward choice is to simply calculate the mean 

of the samples:

0mean =  YliLi 0 ^ / N .  (3-14)

Another simple method is to choose the maximum a posteriori (MAP) sample 

from the Markov chain,

#MAP =  argmax P  (0(l), x^)T \V), (3.15)
»={l , . . . ,7 l}

using Equation 3.12. The accuracy results using both methods are presented in 

the next chapter. However, neither of the two mentioned methods are properly 

Bayesian, making use of the uncertainty inherent in the posterior samples. A 

more Bayesian approach is to construct posterior motion and sensor models. 

A fully Bayesian approach, though, would result in non-Markov models since 

the next state and observation would no longer be independent of history. As 

the calibration method used a batch approach, the posterior models are based 

only on the training data, ignoring new observations. Essentially, the model 

parameters are assumed as conditionally independent of new data given the
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training data (this is called batch assumption in the derivation below). As the 

size of the training data set increases, this assumption becomes more and more 

justified.

Posterior M otion M odel. The posterior motion model is derived by inte­

grating over the unknown model parameters,

P{xt \xt_l ,uu V)

= [  P(x t \xt- 1,ut,'D,9)P(d\xt- i , u t ,V )  (3.16)
J0

= [  P(x t \xt. 1,u t,d )P (6 \V l  (3.17)
Je

where Equation 3.17 follows from conditional independence of the training data 

given the model parameters and the batch assumption. Samples can be drawm 

from this distribution by simply sampling 6 ~  P(6\V)  and then sampling x t ~  

P(x t\xt- i ,  ut, 6). Since 6^  are samples from the model parameter posterior, 

approximate sampling can be achieved by choosing i € {1, . . .  N }  with uniform 

probability and then drawing the sample of x t using the parameters .

Posterior Sensor M odel. For the posterior sensor model, a posterior can 

be derived by integrating over the unknown model parameters,

P(zt\xt ,V )  = [  P(zt\xt,V,d)P(6\xu V)  (3.18)
Je

P( z t \xt ,d)P(e\V),  (3.19)

using conditional independence and the batch assumption, as was done with 

the posterior motion model. This can be approximated using a Monte Carlo 

estimate with samples of 6 drawn from the posterior distribution. Since 0h) 

are samples from the posterior,

N 1
P(z ,\x„V)  m (3.20)

i = 1

An additional practical assumption is also made. Rather than summing over 

all of the posterior model parameter samples, a subsample k < N  is consid­

ered, and the mean observation likelihood is used as the approximate posterior 

likelihood.
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Chapter 4 

Experim ents

The proposed Bayesian calibration technique was examined both in simulation 

and on a real robot. Three different models were used to simulate a wheeled 

robot with sonar sensors. The data generated from each of these models was 

used for calibrating the models with the same form, as well as models with 

simpler forms. The technique was also used to calibrate two different models 

with the data collected from a real robot. The accuracy of localization using 

calibrated models was evaluated as well.

4.1 Experiments in Simulation

Amigobot is a simulation of the real Amigobot robot. It is a wheeled robot with 

8 sonars around its perimeter. There are six sonar sensors on the front and two 

on the back. Three models with increasing complexity were used to simulate 

this robot. The calibration procedure was applied to all three of these models, 

using data generated from identical models or more complicated ones. In the 

initial experiments, the calibration procedure was applied to two types of data 

sets: shorter training data sets covering about 10 minutes, and longer ones 

about 30 minutes. The results were statistically convincing that training with 

longer data sets are much more effective. Therefore, the longer data sets were 

used for later calibrations. In the first three experiments, calibration was done 

assuming the form of models was known. This almost never happens in real- 

world problems. In the second set of experiments, we examined calibration on 

wrong models. In these experiments we examined to what extent calibration
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could help when the model is wrong. In addition to requiring the form of the 

model, the calibration procedure requires a prior over the model parameters. 

The parameters of the models were all assumed to be independent of each 

other. The prior density functions over the parameters are preset, and for each 

calibration procedure a set of parameters was drawn from the prior density 

functions. Then a trajectory was simulated with those randomly generated 

parameters, and this data set was used for the calibration procedure. The 

calibration procedure was repeated for a number of i.i.d. samples from the 

parameters’ prior density functions.

Then, the posterior samples from the calibration procedure were used in 

the three proposed localizing techniques, i.e. Mean, MAP and Posterior. The 

results are presented for each of the three forms of calibrated models as well 

as the calibrated wrong models. The localization accuracies of the three men­

tioned methods, are compared to those of the mean of the prior distribution 

and the true parameter values.

The training and testing data was generated in an asymmetrical L-shaped 

room, 3x3 meters in size. The readings from all eight sonar sensors and also 

odometry information were used to localize the robot.

4.1.1 M odel 1: Simple-Amigobot

The first model that the calibration procedure was applied to simply added 

independent zero-mean Gaussian noise to the robot: motion and sensors. In 

the motion model noises were added to forward, sideways and rotational move­

ments. The sensor model also consisted of independent zero-mean Gaussian 

noise added to each of the sensor’s exact reading. Therefore, there were four 

parameters to be calibrated, which were the variances of the Gaussian noises. 

The prior density functions were chosen to be gamma distributions. The pos­

terior distribution from the calibration procedure applied on a shorter training 

data set is shown in the upper part of Figure 4.1 while the lower plots illus­

trate the posterior distribution from training with a longer training data set. 

The dark crosses represent the samples from the posterior distribution using 

the Bayesian calibration method, while the long lines are the true parameter
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values that the training data was generated with. Comparing the two graphs, 

one can see that training with longer training data sets moves the posterior 

distribution farther from the true values than training with the shorter data 

set. Although this might seem counterintuitive, one should delay making con­

clusions to after evaluating the localization accuracy results.

As explained in the previous section, the accuracy of localization using the 

Mean, MAP and Posterior methods were compared to the mean of the prior 

and the true values the data was generated with. Figures 4.2 and 4.3 show this 

comparison for four different parameters, learnt from long and short training 

datasets. As can be observed in the figure, the parameter values extracted from 

the learnt posterior distribution localize the robot more robustly than the mean 

of the prior in both training cases. More precisely, the Mean and Map methods 

outperform the Posterior method. However, the results are not statistically 

significant to compare the Mean and Map methods. Compared to them, the 

Posterior method performs poorly in localization. Another counterintuitive 

observation in both figures is that Mean and MAP values are localizing the 

robot even better than the true values. This issue will be analyzed later in 

section 5.1. To compare the effectiveness of training with the short and long 

data sets, one needs to consider Figures 4.3 and 4.2. In order to do so, the mean 

error of each method was averaged over all four parameters. This comparison 

is shown in Figure 4.4. It can be observed that for all methods, the parameters 

calibrated with the longer data sets outperform the parameters calibrated with 

the shorter data sets.

Overall, although calibration does not necessarily result in a correct infer­

ence of the true posterior, it is effective for improving localization accuracy.

4.1.2 M odel 2: Biased-Am igobot

In the following experiments the previous motion model is augmented with 

biases in forward and sideways movements. Consequently, the number of pa­

rameters of the model increases to 6. To model the bias in motion, identical 

independent distributed Gaussian noises with bias values as the mean of the
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Figure 4.1: Amigobot posterior parameter samples with small (top) and large 
(bottom) amount of training.

Localization error, Simple-Amigobot, trained with long data set

Theta

True ■  Prior —  Mean la MAP Ml Posterior

Figure 4.2: Amigobot localization results with 95% confidence intervals. 
(Trained with long data set)
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Figure 4.3: Amigobot localization results with 95% confidence intervals. 
(Trained with short data set)
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Methods

Figure 4.4: Amigobot localization results with 95% confidence intervals (short 
vs. long).
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Figure 4.5: Amigobot with biases in motion model, posterior parameter sam­
ples after training

distributions were added to the forward and sideways movements. The prior 

distribution over the biases’ space is considered to be Gaussian, since negative 

numbers are valid values for bias in motion. The sensor model is identical 

to the sensor model of the previous experiments. The posterior distribution 

after calibration and the localization accuracy graphs are shown in Figures 4.5 

and 4.6. Each column in the graph is the representative of a different set of 

parameters.

Localization accuracy graphs for the biased model, are compatible with the 

previous observations of the simpler model. The parameter values from the 

posterior distribution can localize the robot considerably better than the mean 

of the prior. They also usually perform better or equally well in comparison 

to the true parameter values. Although calibration does not infer the true 

parameters, it is still effective in improving localization accuracy.

4.1.3 M odel 3: Biased-FN P-A m igobot

In the following experiments, the previous model is made more complicated 

by adding false positive and false negative to the sensor model and also adding 

bias to rotational movements. Each sensor reading is still assumed to be in­

dependent. Since each sensor reading is either a true positive, false positive 

or a false negative, the three ratios should add up to one. Therefore a Dirich- 

let distribution is considered as the prior distribution over these values. This 

sensor model simulates a robot’s sensor that occasionally fails to detect an 

obstacle, and sometimes detects a nonexistent obstacle, either due to the pres­

ence of moving objects or other factors. In this model the sensor model is
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Figure 4.6: Amigobot with biases localization results with 95% confidence 
intervals.

no longer Gaussian, but a combination of three probability density functions. 

More formally the sensor model is represented as follows:

P(zt,i\xt) = X̂  p (zt,i,Z,i\xt) (4-1)
tm={TP,FN,FP}

= P(zt,i\xt,Tt,i)P{Tt,i\xt)
TP,FN,FP}

=  P(zt,i\xt, Ttti = TP)P(Tt,i = TP|a:t)
+P(zt,i\xti %,i = F P =  FP |xt)

+P(zt<i\xt , Ttti = FN)P(Tt)i = FN|xt), (4.2)

where Tt i represents the set of states of observation of the ith  sensor({true 

positive, false positive, false negative }). The states of the observation are 

assumed independent of the position of the robot. Therefore one can write:

P(zt,i\xt) = P (ztj\x t ,T tji = TP)P(Ttti = TP)

+ P (zt,i\xt,Tt,i = FP)P(Tt,i = FP)

+P(ztti\xu = FN)P(Tt>i = FN), (4.3)
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Figure 4.7: Amigobot with biases in motion model and false positive and 
negatives in sensor model, posterior parameter samples after training
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Figure 4.8: Amigobot with biases in motion model and false positive and 
negatives in sensor model localization results with 95% confidence intervals.

where P(Tt>i = {TP, FN, FP}) is the probability distribution function over the 

states of the observation of the ith  sensor and adds up to one.

Figure 4.7 shows the samples from the posterior distribution after calibra­

tion and Figure 4.8 shows the localization accuracy graphs for this model. 

These results also confirm the observations in the previous experiments.

4.1.4 Calibration with Wrong M odels

Knowing the form of the models beforehand is an unrealistic assumption. 

Therefore, another case was examined, where the model that the calibration 

procedure was applied to was of different form than the model used to generate 

the training data.
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Figure 4.10: Simple Amigobot trained with Amigobot-Biased data

E x p erim en t O ne. In the first experiment the training data was generated 

with the biased Amigobot, and the calibration procedure was applied to the 

simple Amigobot model. Figure 4.9 shows the samples of the posterior distri­

bution of the simple model’s parameters, trained with data collected from the 

biased Amigobot. Comparing Figure 4.9 and Figure 4.5, one can see that the 

posterior distribution over the forward and sideways variances in the simpler 

model is much farther from the true values. This observation is intuitive. In
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Figure 4.11: Simple Amigobot trained with Amigobot-Biased-FNP data

order for the simpler model to be able to explain the data from the model 

with biases, the calibration procedure sets the variances of the motion model 

to higher values. Figure 4.10 compares the localization capability of the wrong 

calibrated model and the right calibrated model. Note that the prior for both 

the correct and wrong model perform identically since the mean of the bias pa­

rameters are zero. Although the calibrated wrong model does not localize the 

robot as well as the calibrated right model, calibration considerably improves 

its performance.

Experim ent Two. In the second experiment, the simple Amigobot model 

was trained with the data collected from the Amigobot’s model with biases 

in motion and false negative and positives in the sensor model. Figure 4.11 

shows the posterior samples after applying the calibration procedure. As can 

be seen in the figure the calibration procedure explores the parameter space. 

This exploration starts from spaces with large variances in the motion model 

and small variances in the sensor model and stops in the space with large 

variances in the motion model and very large variances for the sensor model. 

Ignoring one of the least important dimensions, the parameters’ space can be 

illustrated in a three-dimensional space, as in Figure 4.12. The three methods 

of localization were evaluated with the calibrated wrong model. All methods 

failed in localizing the robot. The reason is that the model used for calibration 

is just so far removed from the true model that it cannot even approximate
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Figure 4.12: 3d representation of the parameter space

the complicated sensor model to make localization possible.

From the last two experiments one can conclude that the closer the selected 

models are to the true model used to generate the training dataset, the more 

effective is calibration.

4.2 Real Robot Experiments

A Sony AIBO ERS-7 robotic dog was used as the second platform for the 

experiments. The AIBO is a four-legged robot with a CMOS color camera as 

its primary sensing device. The AIBO had been used in the Robocup Legged 

League,in an environment similar to the one used in the experiments. The 

calibration procedure was applied to data collected from the robot moving in 

a 2.7x1.8 meter field with bi-colored markers in each corner. The calibration 

procedure was applied to two different models of the robot, with increasing 

complexity. An overhead camera was mounted in order to extract the true 

position of the robot for use as ground truth. As can be seen in Figure 4.13, 

the robot was marked with a green circle, in order to simplify the extraction 

of its true position.

4.2.1 M odel 1: Simple-AIBO

The first motion model used in the experiments was identical to the motion 

model in Simple-Amigobot: It involved three variances related to three inde-
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Figure 4.13: AIBO setup
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Figure 4.14: AIBO posterior parameter samples

pendent zero-mean Gaussian noise variables added to movements in the three 

dimensions. For the sensor model two features were extracted from each vis­

ible marker: the number of visible pixels and the relative angle towards the 

marker. The sensor model adds zero-mean Gaussian noise to the relative angle 

towards each visible marker and zero-mean Gaussian noise to the number of 

visible pixels from each marker. The variance of the latter noise is assumed to 

be proportional to the number of visible pixels from each marker. Therefore, 

there are five parameters that need calibration. Figure 4.14 shows the sam­

ples of the posterior distribution after calibration. Localization accuracies of 

these parameters were then measured by averaging the localization error over 

hundreds of localization trials on a single ten minute trajectory. Figure 4.15 

shows AIBO’s localization error bars with 95% confidence intervals. Like the 

results in simulation, the calibrated parameters outperform the mean of the 

prior.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

Localization error,Aibo-Simple

129.5 

129

128.5
E

8 128 
V
e a•
Z  127.5 

127

126.5 

126
Prior Mean MAP Posterior

Methods

Figure 4.15: AIBO localization results with 95% confidence intervals.

4.2.2 M odel 2: B iased-FNP-AIBO

The second model used to localize AIBO was a model that supported false 

positives and false negatives in the sensor model as well as biases in the motion 

of the robot. The motion model was identical to the motion model of Biased- 

Amigobot, and the sensor model simulated a noisy camera, which sometimes 

lead to a misplacement of the marker (false positive) and sometimes lead to 

missing a marker (false negative). The formal representation of the sensor 

model follows:
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P (zt,i\xt) = Y  P{zti %,i\x t) (4.4)
tm={TP,FN,FP}

Y  P(zt\xuTt,i)P(Ttti\x t) 
r tii={ TP,FN,FP}

=  P(zt,i\%t, %,i =  T P )P(Ttii =  TP |xt) +

P (zt4\xt ,Tt = FP)P(% = FP\xt) +

P{zt,i\xt ,%  =  FN)P(Tt =  FN|xt)

=  P (pix^, angf i |x t, Ttfi = T P )P (7 ^  = TP |xt) +

P{pbLtj, angt i |xt, Tt,i = FP )P(%ti = FP |xf) +

P(pix<,i, angt i |xt, Tt = FN)P(Tt = FN|xt)

=  P(angt,il*t, Pi = TP)P(pixt i |xt , Tu  =  TP )P(Ttti = TP \xt) +

P(angt)i|xt, pix^, "II,i =  FP)P(angt i |xt, =  FP )P(Tt<i = FP |xf) +

P (an6t,ila;t5 P ^ i )  %,i = FN)P(pixt)i|xt , %,i =  FN )P(Ttti = FN|xf)

(4.5)

where

E m,.w= E p(%,i) = i (4.6)
tm={TP,FN,FP} rtii={TP,FN,FP}

and

P(pixt i \xt,T tti = TP) =  N (pixt4,pix* ,a2)

P(Pixt,ilx*’^  =  FP) =  exppdf (screensize, p)

P ( v ^ x t,%,i =  FN) =  { °

where exppdf is the exponential density function. Similar density functions 

are selected for angt t. Figure 4.16 shows samples of the posterior distribution 

after calibrating the second model. As one can see, the posterior distribution 

of P (FP) and P(FN) clusters around zero, although the means of the prior 

distributions are equal to 0.1. The vision system being used already disre­

garded blobs of a small number of pixels. Therefore, false negatives and false 

positives were rarely happening.
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Figure 4.16: Biased-FNP-AIBO samples from the posterior distribution 

Localization error, different models

145

140

135

130

?  125

8 120

115

110

105

Methods

m  Prior(simple) » Mean(simple) SMAP(simple) s  Posterior(simple)
» Prior(biasedfnp) n  Mean(biasedfnp) »  MAP(biasedfnp) a  Posterior(biasedfnp)

Figure 4.17: Biased-FNP-AIBO localization results with 95% confidence in­
tervals.

Figure 4.17 compares the localization accuracies of the calibrated and un­

calibrated complicated models. The parameters extracted from the posterior 

distribution localize the robot more accurately. One can also observe that 

localization with the more complicated model is more robust than the simpler 

model.
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Chapter 5 

Discussion

The experiment results were presented in the previous section. Although most 

results matched the expectations, some of them were not so intuitive. In 

this chapter, we explore some of these results are further explored. In the 

first section the phenomenon of true parameter values being outperformed 

by calibrated parameters is examined, relying on more experiments as well 

as observations from the robot localization literature. Subsequently, other 

questions are examined, all related to the convergence of the calibration and 

the effects of the number of particles used with calibration and localization.

5.1 Discussion of Paradoxical the Results

In Section 4.1.1, it was shown that in simulated experiments the parameters 

extracted from the posterior distribution outperformed the true parameter 

values when used in localization. The calibration procedure usually finds pa­

rameter values larger than the true parameter values. In the literature on 

mobile robot localization researchers usually recommend setting the parame­

ter values higher than the values obtained from manual tuning, since it results 

in more robust localization. This appears to be what the calibration procedure 

does naturally.

As mentioned before, MCL is an effort to estimate P{x t \z\-.t U\-.t ) posterior 

distribution given the robot’s motion model, P{xt \xt- u  9) and sensor model, 

P (zt \xt , 9). At first glance, one might think that having the true values for 9, 

would give the true posterior distribution, and therefore, the least error. How-
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ever, recall that MCL, which is based on importance sampling, guarantees that 

the weighted mean of samples converges to the true mean of the target prob­

ability density function with an infinite number of particles. Therefore, the 

samples that MCL provides, are just an estimate of the posterior distribution. 

Consequently, there is room for improvement in this estimation. Therefore, 

samples of a posterior with different parameter values, might generate a closer 

mean to the true trajectory and also a higher probability.

As MCL is a step of the calibration procedure, the algorithm uses the 

same approximation used when localizing the robot. This suggests that the 

algorithm might be able to compensate for this approximation error. In other 

words, our calibration technique might be able to find parameters that are 

suitable to the number of particles used in localization. This possibility is 

explored experimentally in the next section.

5.2 Number of Particles

This section examines the effect of the number of particles used during cal­

ibration to localization accuracy. Both the number of particles used in the 

particle smoothing step of calibration as well as the number of particles used 

in localization were varied when evaluating the resulting calibrated models. All 

experiments were performed on Simple-Amigobot. The environmental setup 

was the same as in Section 4.1. The calibration procedure was run with 50, 

100, 200 and 400 particles for 10 randomly chosen sets of parameters. Then the 

learnt parameters were tested and compared with the true and prior parameter 

values in localization using 50, 100, 200 and 400 particles, by averaging the 

mean error over thousands of trajectories. The graph in Figure 5.1 shows four 

lines, each color representing parameters calibrated with a different number of 

particles in the calibration procedure. The figure shows that calibration with 

a fewer number of particles will result in more robust parameters for localiza­

tion. In other words, the parameters should be calibrated using a particle set 

smaller than the particles set used in localization.
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Figure 5.1: Connection between the training and testing particle numbers

5.3 Incremental Calibration

The likelihood function over the parameter space with the entire data sequence 

may involve very sharp peaks of likelihood making it difficult for MCMC to 

find and sample from these regions. Although it was not clear whether this 

was a problem, data was slowly being added during calibration to compensate 

for this potential problem. The motivation was that the posterior distribution 

does not change significantly as small amounts of data are added. So a sample 

drawn from the posterior given only a portion of the data would be a good 

starting point for the posterior given slightly more data. Thus, each itera­

tion of MCMC can include more and more data until the entire trajectory 

is being considered. Figure 5.2 compares the output posterior distributions 

after applying the calibration procedure using the whole data set and the dis­

tribution when the training data was added gradually. Figure 5.3 shows the 

resulting differences in localization accuracy. There is no appreciable improve-
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Figure 5.2: Posterior distributions after calibration with a complete data set 
(top) versus gradually added data (bottom)

ment by incrementally including data, as neither does the posterior nor the 

resulting localization improve in a significant way. One might as well start 

drawing samples from the target distribution instead of wasting effort shifting 

the distribution from the prior towards the posterior distribution.

5.4 Long Training Data Set

Lastly, the effect of a very long training trajectory was examined to con­

firm whether this might affect the rate of convergence of the chain. Simple- 

Amigobot model was trained using a trajectory with 20000 steps (i.e., 5.5 

hours). Figure 5.4 shows the posterior distribution after the calibration proce­

dure. As one can observe, the distribution is rather concentrated and the chain
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Figure 5.3: Localization accuracy graphs after calibrating with a complete 
data set versus gradually added data

does not diverge due to the prolonged data. Although one might imagine that 

a very long data set would produce small values for the acceptance function 

and therefore, a low acceptance rate.
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Figure 5.4: Calibrating the simple model of Amigobot with a very long training 
data set
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Chapter 6 

R elated Work

This chapter examines previous work on the calibration problem. Although 

the need for accurate models in robot localization is crucial, the calibration 

problem has not received much attention in the robotics community and much 

of the work focuses primarily on motion model calibration.

This problem has received more attention as the general problem of param­

eter or model estimation within the state-estimation community [2]. There­

fore, this chapter is presented in two main sections. The first section examines 

related work on automatic calibration within the robotics field. The second 

section focuses on previous work in the more general state-estimation commu-

6.1 Calibration in Robotics

In this section, calibration related work within the robotics community is ex-

6.1.1 Stronger and Stone

Stronger and Stone [13] model the motion and sensor of a robot with deter­

ministic models. The models that they use have the following form:

nity.

amined.

Motion model: x t =  Xq + (6 .1)

(6.2)Sensor model: x t = S{zt)
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where xt represents the distance from the marker, therefore it has only one 

dimension. ut represents the action command that robot received at time t. 

S  is the function that relates the observation zt to a specific location and A

is a function that specify the relation between the actions and the location of

the robot. The authors use the following function approximators to define the 

functions A  and S.

d
A M  = (6-3)

i=0 
d

S(Z<) = ^2SiXt\ (6 ‘4 )
i=0

where d represents the degree of the polynomials. The algorithm attempts to 

learn coefficients a; and s*. As one can see in Equations 6.1 and 6.2, there 

are two sources for calculating x, and this basically shapes the basis of the 

algorithm proposed in [13]. The technique, SCASM (Simultaneous Calibration 

of Action and Sensor Models), is un-supervised and learns one model from the 

other one. The authors present a weighted polynomial regression method to 

calibrate the models. However, since the models they use are not probabilistic, 

the models and consequently the calibration technique cannot be directly used 

in Monte Carlo localization.

6.1.2 Roy and Thrun

Roy and Thrun [11] use an incremental maximum likelihood estimator to cal­

ibrate the motion model online. However, the authors assume that the noise 

term in the model is known and just calibrate for the bias terms in transla­

tional and rotational movements. More specifically, the motion model has the 

following form:

X t = A X t- 1 + N (B ,'Z B), (6.5)

where E^ is assumed to be known and the goal is to calculate B  which rep­

resents the bias vector including bias factors in forward and rotational move­

ments. The authors estimate the bias vector maximizing the likelihood of bias 

parameters given the difference of two sequential readings of the sensors and
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the robot’s measurement of the transition. More precisely they suggest an 

efficient method to solve:

argmax P (B trans, Brot\V) (6.6)
B f r a n s j B r o t

Roy and Thrun calibrate the motion model completely relying on the sensor 

readings of the robot. Without using a probabilistic model for sensors. How­

ever, sensors have varying degrees of accuracy. The more noisy a sensor is, 

the more crucial it is to be modeled probabilistically. The proposed approach 

might be effective for the robot equipped with laser range-finders used by the 

authors, however it might deteriorate for a robot with noisier sensors.

6.1.3 Eliazar and Parr

Eliazar and Parr [3] go one step further than Roy and Thrun and calibrate 

not only the terms that account for systematic errors but also the noise terms 

related to the stochastic nature of the robot’s motion. The framework that 

the calibration is applied to is that of Simultaneous Localization and Mapping 

(SLAM). The presented motion model involves 12 parameters and calibrated 

by Expectation Maximization (EM) technique. In the E-step, particle smooth­

ing is applied to the history of the particles and the average of the likelihoods 

is calculated. Later, a weighted least squares method is used to maximize 

the likelihood function in the M-step. The advantage of Eliazar and Parr’s 

method over Roy and Thrun’s is that it does not rely on sensor readings in 

order to calibrate the motion model. However, both proposed techniques are 

incomplete in the sense that they do not attempt to calibrate the sensor model.

6.1.4 M ilstein and Wang

Milstein and Wang [9] developed a dynamic calibration technique to cali­

brate the motion model for MCL. Like Roy and Thrun, they also use a robot 

equipped with a laser range-finder. Therefore, the technique is based on the 

assumption that the sensors and, therefore, the sensor model is precise and 

the data is reliable enough to calibrate the motion model. The proposed ap­

proach is basically to correct the motion model with the collected observation
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up to that time step. The mean of the particles is frequently collected before 

and after the resampling step of MCL. Then the collected data is matched to 

two Gaussian distributions, whose parameters are linear functions of the noise 

parameters considered for forward, sideways and rotational movements. The 

problem is formulated as an optimization problem and solved using conven­

tional optimization methods. Although satisfactory experimental results are 

reported, this method does not calibrate the sensor model and would not be 

as effective for robots with less precise sensors.

6.2 State Estimation

This section describes related research in the state-space community.

6.2.1 Andrews

Andrews’ Bayesian learning algorithm [1], is the most closely related work to 

the technique proposed in this thesis. Andrews suggests a Bayesian approach

to simultaneous state and parameter estimation in nonlinear state-space mod­

els (NSSMs) with more stress on parameter estimation. The state and obser­

vation generative models are of the following form:

x t = A(f){xt_i) -I- ex (6.7)

yt = Bxjj(xt) + ey If y is continuous (6.8)

yt =  If y is discrete, (6-9)

where

<f>(xt) =  (6 1Q)

i/>(xt) =  e - ( x t - v k)T^ k~Hxt - v k)

The author then presents an MCMC method to draw samples from the pos­

terior distribution of P(6, x \:t \D) where 6 = {A, B}.

Similar to the method proposed in this thesis, Andrews’ technique consists of 

iterating between two steps : parameter estimation and inference. Suggested 

inference step is very similar, as it employs particle smoothing in order to draw
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samples from the state vectors. However, the approach to learning is different 

since the generation models are assumed to be of a specific form. Consequently 

the author is able to derive a method to sample from the posterior distribu­

tion of P(0\T>, Xi:^), assuming that the prior distribution over the parameters 

A  and B  are Gaussian:

d® ~  P (d \V ,x l:T{i)) (6.12)

~  P (A \V ,x 1:T{i))P (B \V ,x 1:T{i)) (6.13)

where:

P (A \V , x 1:T{i}) oc P (A )P (x i:T(i)\A) (6.14)

P (B \V ,x 1:T{i)) oc P {B )P (V {i)\B) (6.15)

Since the posterior distributions above are products of Gaussian distributions, 

they are Gaussian themselves. Therefore they can be simulated easily. An­

drew’s approach, however, is not applicable to calibration problems in robotics, 

since the models that are used in robotics, are more complicated (e.g., the mix­

tures of distributions used in the Biased-FNP-Amigobot model from Section 

4.1.3) and cannot be represented by forms suggested in [1].

6.2.2 Storvik

Storvik [12] proposes an online Rao-Blackwellized particle filter technique to 

draw samples from the joint posterior of unknown dynamic states and static 

parameters. The algorithm benefits from the existence of sufficient statistics 

for the history of states and observations, in order to work in real-time. This 

technique is to marginalize the static parameters out of the joint distribution 

and simplify the distribution of the unknown parameters given the history 

of observation and unknown states by replacing the history with sufficient 

statistics, which are updated recursively. More specifically in order to draw 

samples from the joint distribution of P (x i:t, 0\zi:t), applying Bayes and chain
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rules, Storvik factorizes the distribution as follows:

P (x l:t,9\z1:t) = C P (x1:t,6 ,zt\zi* -i) (6.16)

(6.17)

X P (x t \Xi:t- l ,  0)P(zt \x1:t, Z1:t- 1 , 9)

=  C'P(x1:t_1|2r1:t_1)P(0|Tt_i)P(a;t |xt_1,0)P (*t|zt , <9X6-18)

where Tt_i is the sufficient statistics for the history of observations and states. 

Storvik’s algorithm is summarized in Table 6.

A lg o rith m  6 Storvik’s Algorithm.
1. Importance sampling : for i =  1 to N

(a) sample thetaW ~  P (6 \T ^1)

(b) sample ~  P (x t \xt- i ,  9®)

(c) w® = P(zt\xP ,0W )

2. Resampling: for i =  1 to N

(a) sample j  from 1 , . . . ,  N  with probability oc w ^ \ i  =  1,..

(b) sample =  x{^

(c) = T (T ® l,x ‘t \ z l)

(d) =  1

. ,N

3. return X t

This approach suffers from the same limitation as Andrews’ approach in 

that it can’t represent common models used in robotics.
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Chapter 7 

Conclusion and Future Work

The goal of this thesis was to develop a method for automatic calibration 

of parametric probabilistic models used in Monte Carlo localization. This 

final chapter summarizes the contributions of this thesis and presents some 

directions for future work.

7.1 Contributions

There are two main contributions of this thesis:

Efficient Bayesian calibration for M onte Carlo localization. An effi­

cient Markov Chain Monte Carlo (MCMC) sampling method was developed. 

The method approximates the posterior distribution of parameters of the mod­

els used in Monte Cairo localization, depending on the data collected from the 

robot. Since the problem was approached in a general scope, the proposed 

technique, unlike the previously developed methods in the literature, is appli­

cable to complicated models which are commonly used in robotics.

A novel extension to  M onte Carlo Localization. An extension to Monte 

Carlo localization was proposed, which can exploit the generated samples from 

the posterior distribution of parameters given the collected data.

The effectiveness of the proposed techniques was evaluated both in simula­

tion and on a real robot.
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7.2 Future Work

As shown in this thesis, it is possible to automatically calibrate the motion and 

sensor models entirely from data gathered on the robot. Unfortunately, non­

engineered environments tend to be irregular and no single model will work 

in all environments or even throughout a single environment. For example, 

motion on concrete or muddy ground differs significantly, while weather con­

ditions can drastically affect the behavior of sensors. In order to adapt models 

to often rapidly changing conditions, the robot needs to frequently collect data 

and calibrate its models in real-time. However, the current MCMC technique, 

can not be used for online calibration, since the computation time increases 

with the length of the collected data. Keeping the collected data also becomes 

infeasible in long run.

If the posterior distribution of parameters given the collected data depends 

on low dimensional sufficient statistics, the computation time for sampling 

the posterior distribution becomes independent of the length of the data. As 

mentioned in the related work chapter, Storvik proposes a Rao-Blackwellized 

particle filtering technique for online state estimation with the presence of 

unknown static parameters. Rao-Blackwellization basically marginalizes the 

static parameters out of the posterior distribution. It then recursively calcu­

lates some low-dimensional sufficient statistics from the history of observations 

and hidden states, which is the key to the real-time feasibility of the approach. 

However, Storvik’s approach is limited to certain types of models and also as­

sumes that the parameters of the sensor model are either known, or that some 

special treatments should be applied to the algorithm.

Extending Storvik’s approach to be applicable to online calibration of com­

mon robotic models is an interesting direction for future work. Comparing the 

offline method developed in this thesis, and such an online technique in vari­

ous combinations would help establish the ideal applications of calibration for 

robot localization.
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