National Lib
el S

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Yous te Volre roference

Our file NOIres refercesce

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de Ila thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

iLa qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



UNIVERSITY OF ALBERTA

IDENTIFICATION OF POWER SYSTEM TRANSFER

FUNCTIONS USING NEURAL NETWORKS

BY

@ DEBORAH MAY GILLARD
A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science.

DEPARTMENT OF ELECTRICAL ENGINEERING

EDMONTON, ALBERTA

FALL 1994



National Lib
Bl e

Acquisitions and

Billiotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Cttawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellingtcn
Ottawa (Ontario)

Your hie Votte rehcenve

(ur ie Notre relenywe

L’auteur a accordé une licence
irréevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et socus
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-95036-6

Canada



Name

Dl f3e A£BH

f"l4/y

Crs bt 507

Dissetation Absiracts infemational is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your di:- artation. Enter the corresponding four-digit code in the spaces provided.

e L (¢ /,’,"‘(r,‘o'..//.( X

A D

et C L0 AL

(LET] UM

Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
e ATows AN

Art
Bil

Business . ...
Community College ...

Curriculum ond Instruction

E Childhood
o

lingual and Multicultural

THE ARTS
coreernn 0729

Industrial

Longuage ond Literature ...

ematics ......... .
Music ...
Philosophy of ...

SUBJECT TERM

Saciology of

Tests a
Vocational e

LANGUAGE, LITERATURE AND
LUNGUISTICS

longeee

Ancient .
L nguistic
Modern ...
Literah.re
*cal
Classical

Asian ..

Canadian {English}
Canadian (French)
English ............
Germonic ... .
Latin American ...
Middle Eastern .. .
Romance ...
Slavic and East European ...

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
Agriculture

Agronom

Animal Culture and

Nutrition ...............
Animal Pathology ...
food Science and

Plant Culture

PlunvPc'holoé;.

Plant Physiology ...
Range Management .
Wood Technology

Biola/ |
neral ...

Angtomy ... ..
Biostatistics

Veterinary Science
8 Zh°°',ogy
<3
'OpGancy‘lgml
ical
EARTH SCIENCES

Biogeochemi

ydrology e
inerclogy . ... ..

Paleobotany

Palececology
Paleontology
Paleozoology

Palynology . ...
Phys&co?&grophy._ .

0427
0368
Physical Oceanography ... 0415

HEALTH AND ENVIRONMENTAL

SCIENCES
Environmental Sciences . 0768
Health Sciences
General .. ... ... ... 0566
Audiol?y. i .......0300
Chemotherapy ... 0992
Dentistry ... . 0567
E{dt,vccni?r;/\‘.:i TSR 8;28
lospital nagement ...
Human Development ...........0758
Immunol G 0982
Medicine and Surgery ......... 0564
Mentol Health . =7 0347
Nursing ... ...............0569
Nutrition ... ....................0570
Obstetrics and Gynecology .. 0380
Occupational Health an
Theror:y S .........0354
Ophthalmology ... ... ... 0381
Pathology ... ... ... . .....057]
Phormacology ... .........0419
armocy . ... ... . 0572
Physical Therapy . . ... . ... 0382
Public Health .. 0573
Radiology o .. ..0574
Recreation 0575

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy ...

Religion

Clergy ..........

Hi::ogryy of ...

Philosophy of
Theology

SOCIAL SCIENCES
AAmor'h lcanl Studies ..ot 0323
nthropo
Archoeclogy
Cultural ..
Physical ..
Business Ad

General ... ...
Agricultural ...
Commerce-Business .
Finance ................
History ...
Lobor ... 0510

Theory ... . ...
Folklore.H ..... TR
Geography ................
Geron!o’l)ogy U
History

Genercl .

Speech Pathology
Toxicology .
Home Economics

PHYSICAL SCIENCES

Pzre Sciences

Chemis

Ger:rgrol
Agricultural
Analytical
Biochemistry .. .
Inorgonic ...
Nuclear ...........
Organic.........
Pharmaceutical .
Physical ... ...
Polymer .......
Radiation .. ... TR

Mathematics ......................

Physics
General ... .
Acoustics ...l
Astronomy and

Astrophysics .....................

Atmospheric Science .
Atomic .
Electronics and Electriclg' ....0607
Elementary Particles an

High Ener, 0798
Fluic?and Pigsymo 0759
Molecular ... .0609
Nuclear ... L0610
Optics ... 0752
Radigtion . ..0756
Solid State ...0611

Stalishcs ....oooooiiin 0463
ied Sciences

Applied Mechanics .................. 0346

Computer Science ... 0984

SUBJECT CODE

0
Asia, Australia and Oceania 0332
Conadian ..........cccoees e 0334
£ -ropean ...
Lotin American
Middle Eastern
United States ...
Il:;s'ory of Science .

International Law and

Relations .............cc..coeee. 0616
Public Administration . 0617
Recregtion
&io’ Work
iol
Geongg;'d .............................. 0626
Criminology and Penology ...0627
Demography ....... ... 0938

Ethnic and F{ocio| Studies .....0631
Individual and Family

Studies ... 0628
Industrial and Lobor
Relations ... ................... 0629

Public and Sociol Welfare ...
Social Structure and
Development
Theory and Methods
Transportation
Urban and R

iona! Plannin
Women's Stud'es ... ......... ..

Engineerin,
General ... ... ciie...0537
Aerospace ... ... .0538
Agricultural ... 0539
Automotive ... .......0540
Biomedicol ................... . 0541
Chemicol ... ................ 0542
Civil 0543
Electronics and Electrical ... 0544
Heat and Thermodynamics .. 0348
Hydraulic ..........0...... . 0545
Industrial .
Marine ... ...
Moterials Science
Mech]?nicol
Metallur .
Mining gy
Nucleor ...
Packaging
Petroleum ...........

Sonitary ond Munici
System Science
Geotechnology ...
Operations Research ..
Plastics Technology

pal .

Textile Technology ..................
PSYCHOLOGY

General ................ ... 0621
Behavioral ..0384
Clinical ....... 0622
Developmental . ..0620
Experimental ..0623
Industrial ... ..0624
Personality ... ..0625
Physiological ... ..0989
Psychobiology . ..0349
Psychometrics ... ..0632
Social ... 0451



UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Deborah May Gillard

TITLE OF THESIS: Identification of Power System Transfer Functions
Using Neural Networks

DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: Fall, 1994

Permission is hereby granted to the University of Alberta Library to
reproduce single copies of this thesis and to lend or sell such copies for

private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association
with the copyright in the thesis, and except as hereinbefore provided
neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatever without the author’s

prior written permission.

SIGNED: R d

ADDRESS: 8725 - 152nd Street
Edmonton, Alberta

DATE: PR AnEd




UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the
Faculty of Graduate Studies and Research for acceptance, a thesis
entitled Identification of Power System Transfer Functions Using Neural
Networks, submitted by Deborah May Gillard in partial fulfillment of the

requirements for the degree of Master of Science.

K. E. Bollinger (Supervisor)

Q-H. M. Meng

’ N/
sl Jh
S. L. Shah (External Examiner)

Date: _tdoyed 29, (93 Y




Abstract

This thesis describes an investigation into the use of a multilayered
neural network for measuring the transfer function of a power system.
The objectives are to quickly and accurately measure the transfer
function of a system with the plant operating under normal conditions.
In addition, the excitation signal used in the identification procedure will
not affect the quality of the power output or the frequency of the system
under test.

This research emphasized the development of a neural network
that is easily trained and robust to changing system conditions.
Performance studies of the trained neural network are described. In
addition, wvariations in the neural network architecture are also
investigated for the purpose of increasing the speed of identification
without compromising the accuracy of the results.

Simulation studies suggest the practical feasibility of the algorithm
as a stand-alone identification package, even though the algorithm can
form part of a feedback control strategy. Finally, the same technique

applied to a forward modelling scheme could be used to test the effect

of control strategies.
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Chapter 1

Introduction

Identification theory is a vast subject of considerable interest to
the power industry. Due to increasingly complex power systems, the
need to quickly and accurately identify the important system
characteristics is of prime importance.

In order to apply any type of control action to a power system,
whether it be adding controllers or stabilizers, or tuning existing
elements, an accurate model of the system is necessary. The model may
be obtained either analytically where the model is derived from basic
equations and the parameters are assumed, or experimentally using
direct measurements.

The following section presents an overview of some of the various
methods used in the identification of power systems. This is followed by

a review of relevant work utilizing neural networks.



1.1 l1dentification Methods Applied to Power Systems

A wide range of methods exist for determining the parameters of
a synchronous machine. Some test methods require that the machine be
isolated from the rest of the system [1,2,4,5,13,38], however the focus
here is on identification while the machine is under normal operating
conditions.

The Least Squares and Generalized Least Squares time-domain
identification techniques were applied to a two-machine-infinite-bus
system by Bollinger and Norum [9]. Using Pseudo-Random Binary
Sequence (PRBS) excitation and Fast Fourier Transform (FFT) analysis,
the frequency responses of the models were compared. The Least
Squares identification technique was unable to identify the interarea
mode even with pre-filtering of the excitation signal. The Generalized
Least Squares technique was able to identify both oscillatory modes but
only with the addition of pre-filtering.

On-line frequency response tests were done on a 555 MVA unit by
Manchur et al [27]. The turbogenerator was tested over the frequency
range of 0.005 to 10 Hz using small sinusoidal perturbations as the
exciting input signal. The transfer function was derived from the
frequency response, although the method used was not reported. Good

correlation between the derived mode! and the field tests was also



reported.

The Least Squares method of identification was used by Le and
Wilson [25] to determine the equivalent circuit parameters of a multi-
machine-infinite-bus system. Data simulated using a transient stability
program was used to determine the parameters. Good agreement
between the model and actual responses was reported, however the
addition of random noise showed increased deviation, which indicated an
ill-conditioned model under noisy measurement conditions.

Two techniques for deriving transfer functions for automatic
voltage regulators (AVR) of power system generators were presented by
Bollinger et al [7]. The PRBS excitation and FFT technique were used
to obtain frequency response information in the presence of noise. The
second technique utilized a Least Squares Parameter Estimation scheme
to identify the transfer function parameters. Reasonably accurate
parameters were obtained even when initial estimates of 5-10 times the
true value were used.

The Least Squares Parameter Estimation scheme of [7] was
extended to allow on-line identification in the presence of noise by
Bollinger et al in [6]. Comparisons with and without a random
disturbance were done on both a second order system and a seventh

order system. Good convergence properties were reported and



additional on-site tests produced positive results.

Pseudo-random ternary noise injection was used by Lang et al [23]
as an on-line identification technique. Testing was done on a single-
machine-infinite-bus system and oa an open-circuited machine with an
AVR. The system transfer functions were estimated from the results of
an impulse response. The effects of random noise were minimized using
crosscorrelation techniques. Experimental and theoretical parameters
were compared showing reasonable accuracy.

The Generalized Least Squares method of identification was
applied to a two-machine-infinite-bus system by Norum [33]. A PRBS
input signal with FFT analysis was used to obtain the frequency response
model. Comparisons were made using Batch Least Squares identification
on the same test system. Improvements for keeping the parameter
identification algorithm alert were developed and tested.
Implementation under field test conditions were encouraging.

On-line frequency response tests were done on a 60 MW
hydroelectric generator by Bollinger et al [10]. The excitation signal was
a PRBS with FFT analysis used to obtain the frequency response.
Benefits of the PRBS approach over the discrete sinusoidal injection
technique were discussed. The system transfer function was derived by

making straight-line approximations from the frequency response data.



Time domain averaging was used to demonstrate the noise suppression
capabilities of the method.

Transfer function identification in power systems was presented by
Smith et al [37]. The paper was a tutorial presentation of identification
methods using least squares approaches. An overview of the auto-
regressive moving average model and an extension of the Prony signal
identification method were discussed. Application examples were given

along with the advantages and disadvantages of each method.

1.2 Background on Neural Networks

Considerable work has been done in the past decade using neural
networks for the identification and control of power systems. Many
different types of neural network architectures and models exist [20,21],
however the focus of this research is on static multilayered neural
networks.

Much of the existing work done using neural networks is their
application as controllers or power system stabilizers on synchronous
generators at power plants. Inherent in its use as a controller or
stabilizer, is the need for the neural network to first identify the system.

In order to achieve power system identification and control, different



researchers have investigated various neural network architectures and
training configurations. One such training configuration is the inverse
model where the neural network is trained to identify the inverse of the
power system. Once the neural network is trained as the inverse of the
power system, it can then be put in the forward path so that the gain of
the neural network and power system is unity. The plant output can then
track a reference input signal.

In transfer function form, a stable system requires all the roots of
the denominator polynomial to be located on the left-hand side of the
s-plane. In addition, a physically realizable system has a denominator
of equal or greater order than the numerator polynomial. A number of
problems can result when a model identifies the inverse of such a system.

For the system with numerator roots located in the right-hand side
of the s-plane (nonminimum-phase), the inverse would need to have
unstable poles. Although the transfer function investigated in this thesis
does not have this characteristic, in general the system transfer function
is unknown. Widrow and Bilello [41] addressed the nonminimum-phase
problem with the use of delayed inverse identification. This involved the
use of an adaptive FIR filter with appropriate delay.

Regardless of the numerator term, the denominator polynomial

can also cause problems. Since the denominator of the system is of



equal or greater order than the numerator, the inverse will have a
numerator term of equal or greater order than the denominator. This
produces an infinite amount of derivative action. For this reason, strict
pole/zero cancellation, one-step-ahead control, and inverse modelling
schemes are not generally proposed outside of academic papers. In
practice, these methods are modified by adding a number of denominator
terms to the inverse model so that the denominator polynomial is of
greater order than the numerator. By carefully choosing the placement
of these additional poles, the control action will not be adversely
compromised while the negative effects of noise due to derivative action
will be filtered out.

An additional consideration in the use of neural networks for
identification and control is the use of some form of backpropagation
algorithm during training. Since backpropagation is a slow method of
training, it is usually used as an off-line procedure. Although in theory
the trained neural network can either continue or restart training once
operating conditions change, the inherent slowness in updating the
neural network weights makes on-line applications more difficult. This
difficulty results in research focused on neural networks that are
adaptive only during the training phase and have fixed weights during

operation. A review of some of the existing strategies is discussed



below.

A detailed analysis of the use of neural networks for the
identification and control of dynamical systems was given by Narendra
and Parthasarathy [31]. Theory on both static and dynamic
backpropagation methods was presented. A number of different plant
models that utilize interconnected multilayer and recurrent networks are
simulated with promising results regarding the practical feasibility of the
schemes.

A neural network based speed control system for a dc motor was
presented by Weerasooriya and El-Sharkawi in [39]. Two different
identification schemes were investigated with each dependent on the
availability of certain motor parameters. Trial and error was used to
select all training parameters except the number of neural network
inputs and outputs which were problem dependent. The neural network
was :rained to identify the inverse dynamics of the motor with lecast-
squared error used as the training stopping criteria. Testing was done
in the time-domain using tracking of an input reference signal as a
measure of successful performance.

An extension of this work was done by Weerasooriya and El-
Sharkawi in [40]. The focus of this paper was on the laboratory

implementation of a neural network controller for a dc motor. A second



order system was modelled using the same scheme as [39] with training
parameters determined by experience. Cross-validation techniques were
used as the training stopping criteria and the ability of the neural
network to track various reference signals was the performance measure.

A different method of training a neural network power system
stabilizer was presented by Zhang et al [42]. A fourth order discrete
time input signal was used for the neural network with a single output
signal resulting. The neural network was trained to learn the control
strategy of an adaptive power system stabilizer (APSS). The APSS was
connected to a generator unit which in turn, was connected to an infinite
bus. By operating the generator unit under varying conditions, the
neural network was trained to respond as the APSS. Time domain tests
under varying disturbances were done with comparisons made between
the responses of the neural network, the APSS, a conventional stabilizer,
and the system without a stabilizer. The neural network provided some
advantage over the APSS due to computational considerations, and
considerable advantage over the conventional stabilizer and no stabilizer
conditions.

Generalized and Specialized architectures for neural network
inverse modelling were studied by Psaltis et al [34]. It is the authors’

contention that the general learning architecture (referred to as Series-



Parallel in [31]) may result in overtraining since it requires training over
a large operational range for generalization. Specialized learning is a
method of propagating the error through the plant in order to train the
neural network over the more restricted operational range of the plant.
Although initial simulations using a combination of both methods failed
to provide consistent evidence of improvement, results did point to
further research.

Characteristics of error surfaces for multilayer neural networks
were presented by Hush et al [22]. The complexity of error surfaces
composed of numerous flat and steep regions contribute to the slowness
of backpropagation learning. Algorithms with fixed learning rates
require small steps so as to avoid oscillations. This contributes to slow
learning on relatively flat plateaus. Examples were investigated by
simulation. Results also suggested the initialization of weights to small
random values about the origin.

A model-reference inverse control system was presented by
Widrow and Bilello in [41]. Theory for both forward and inverse
identification methods was given. Attention was focused on obtaining a
stable inverse for a nonminimum-phase plant. Nonlinear inverse control
was achieved by first training the neural network to behave as a forward

model of the plant, and then training a separate neural network as an

10



inverse controller. A nonlinear plant was simulated with the objective
of testing the neural network controller’s ability to track a command
signal. Although the time-domain plots showed good agreement between
the command input and the plant output, detailed design parameters and
:rror values were not given.

The layered feedforward neural network was used for synchronous
machine modelling by Chow and Thomas [12]. A single-machine-infinite-
bus system with known parameters was used for simulation purposes.
Two different neural network structures were investigated: one with 10
hidden nodes, and the other with 20 hidden nodes. Each neural network
was trained with comparisons between the two methods done using a step
response test. The authors conclude that extra hidden nodes increase
the model’s accuracy. No details regarding neural network parameters,
training iterations or performance error were given.

Neural network identification and control of a nonlinear dc
brushless motor was investigated by El-Sharkawi et al in [15]. A
modified neural network structure was used for the inverse identification
of the motor that utilized a speed error term as an input to the neural
network and a voltage error term as one of the neural network outputs.
Model reference control was then used to test the ctfzctiveness of the

trained neural network as a trajectory tracking controiler. Comparisons
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were made between a PID controller and the neural network for speed
tracking, with the neural network providing excellent results. A

description of the laborarary setup was included.

1.3 Outline of Thesis

This thesis presents the results of research investigating the
development and use of a neural network for system identification with
application to a two-machine-infinite-bus system. An inverse model is
investigated for implementation and practical use as an identification
tool. Performance studies were simulated using both changes in
operating conditions and changes in neural network configuration in
order to improve the neural network’s convergence properties.

A review of the theory pertaining to the training of neural
networks is given in Chapter 2. The architecture of the multilayer
feedforward neural network is described. The theory of the generalized
delta rule for minimizing the error by the method of gradient descent is
also given. In addition, the use of an inverse neural network as a
controller in the forward path of the system is presented, along with the
various architectures and control concepts used.

In Chapter 3, the frequency response of the two-machine-infinite-
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bus system used in the simulation is given. The results of the inverse

feedforward model of the system is presented in both the frequency and

time domain.

The results of performance studies of the trained neural network
are presented in Chapter 4. Variations in operating conditions include
changes to the damping and frequency of the local mode and testing the
neural network on a third order system. The effect of changes to the
neural network configuration is investigated by using a Feedforward
model versus a Feedback model, by altering the number of nodes and
interconnections between the nodes, and by changing the normalization
range of the input. The trained neural network is also tested on a
single-machine-infinite-bus model.

Chapter 5 presents conclusions gained from the performance

studies, and suggests areas for additional research.
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Chapter 2

Review of Pertinent Theory

This chapter presents a review of the theory of a class of neural
networks known as static multilayer feedforward neural networks. The
first identifying feature of this type of neural network is the feedforward
flow of information in operational mode, as opposed to recurrent neural
networks which encompass feedback at each node. The second feature
is the method used for training. The generalized delta rule which
minimizes a cost function by the method of gradient descent is
presented, and its implementation in the form of error backpropagation
is given. Finally, the use of an inverse neural network as a controller in

the forward path of the system is discussed, along with the various

architectures and control concepts used.
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2.1 Training of Neural Networks
2.1.1 Static Multilayer Feedforward Neural Network

The static multilayer feedforward neural network is a specific
architecture of the neural network where three or more layers are used.
Each layer is comprised of any number of node: or neurons. The terms
static and feedforward refer to the fact that the output of each node is
not dependent on past or future outputs, and thus information is only
propagated through the network in a forward direction once the neural
network has completed training and is in the recall stage.

The number of hidden layers and the number of nodes per layer
are not definitive. Although some interesting research and suggestions
exist on this problem [14,20,21], it is generally accepted that each
specific problem is unique and the configuration must be determined by
experience. The number of nodes in both the input layer and the output
layer are determined by the system to be identified.

After passing through the input layer, each signal is multiplied by
its respective connection weight while fanning out to each node in the
next layer. At each node in the next layer, all incoming signals are
summed together, along with a bias for that particular node. The output

of each node is a nonlinear function, typically a sigmoid or hyperbolic
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tangent. The structure of an individual node is shown in figure 2.1.

input

bias

Z summation

nonlinear function

output

Figure 2.1. Structure of individual node.

For the three-layered neural network shown in figure 2.2, given an
input signal, x, the output, y, of each node in the first layer can be

expressed as

Y=X; (2.1)

since the first layer is linear. The input to each node of the hidden layer

16



is then

X = ;Wﬂ it b (2.2)

where,

w, is the weight connection between the j* node of the hidden

Ji

layer and the i* node of the input layer, and,
b, is the bias of the ji%* node of the hidden layer.
The output of each node in the hidden layer is passed through a

nonlinear function. Using the logistic sigmoid results in the output,

.1
% T o) (2.3)

The input to each node of the final layer is then,
X = Ewﬁ y; + b (2.4)
i

The output of each node of the last layer is,
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Figure 2.2. Three-layered neural network.

2.1.2 Generalized Delta Rule and Error Backpropagation

The generalized delta rule is one of many least-mean-square
methods of learning. The least-mean-square method of learning seeks

to minimize a performance error. The generalized delta rule uses this
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performance error to find a minimum by gradient descent [35]. Error
backpropagation is the specific method of assigning this error for the
adjustment of the neural network weights.

Defining the error to be minimized as,

E-YE - % Y Y 00 (2.6)
P P k

where,
y; is the desired output, and,
y, is the actual output.

The error is summed over all & output nodes and all p input
patterns presented for training.

In order to assign this error to each weight in the network, the
gradient is calculated, beginning with the output node, and
backpropagated through the various layers. The backpropagation of the
error ends at the input layer because the output of the first (linear) layer
is a constant which produces a gradient of zero. This is why the gradient
descent method necessitates a continuous function as the output of each
node. In order to backpropagate the error through each layer, a non-
zero gradient is needed in order to update the weights of the network.

The logistic sigmoid function is particularly well-suited for
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gradient descent algorithms, because it is a bounded, monotonic, non-

decreasing function with a positive derivative. It is described by,

)= ——— (2.7)

1+ exp™®*

where a denotes the steepness of the transition period. The value of a
is usually taken to be unity, as seen in figure 2.3, and that value is used

throughout this work.

(<0
M
1.0

Figure 2.3. Logistic sigmoid function.
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Using the chain rule for partial derivatives, the error for the

output layer with respect to the output layer’s weights can be expressed

as,

Taking each partial derivative separately yields,

oE

= = ~047)

y, 4 7k

oy,

X = y(1-

ax' yg( )’1)
ax,,

(2.8)

(2.9)

(2.10)

(2.11)

This determines the steepest ascent of the gradient, and thus to

find the minimum, the required error is the negative of the gradient.

_OE

Wy

= 0¥ ¥ A-y)

21
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In the same manner, the error can be assigned to the hidden layer

weights using the chain rule of partial derivatives.

dE _ OE 9, ox; 3yj_ai

_— = —— = = (2.13)
ow; Oy, Ox, Jy;, 0x; Owy
The resulting negative of the gradient is then given by,
~ 2 gy Y -y Wy y, (1-y) 2.14
. a Y Yi Y Wi Y Y Yi (2.14)
Ji
The change in each weight is then assigned according to,
oE
Aw,. =1 [- ] (2.15)
) l aWﬁ,
and,
JoE
iji =1 [“—a—‘;—} (216)
Ji

where n is a constant that determines the step size. There are no
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definitive rules for determining the value of n. The greater the step
size, the faster the network can theoretically reach a minimum, however

too high a number can lead to oscillations while too low a number can

result in slow convergence.

Some research exists proposing adaptive learning rates [11,19] but

caution that results may be problen: dependent.

The change in each bias is also assigned according to the same
procedure. For the bias in the output layer, the chain rule of partial

derivatives gives,

OE _ JE MO (2.17)

which results in a negative gradient given by,

_3E

3, = ;YD) ¥ (1-y) : (2.18)

In the same manner, the chain rule for the bias in the hidden layer

gives,
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3b, 9y, x, dy; ax, b,

which results in a negative gradient as follows,

JoE

"3 O y) ¥ -y wy y; 1-3) (2.20)
k

The change in each weight is assigned by the following rule,

JoE
Ab, = el 2.21
p =M [ ab, ( )
and,
JoE
Ab, = -= 2.22
a l abj} 20

Once an input is presented, the signal is propagated through the
network until an output is generated. This actual output is compared to
the desired output, and the required gradients are calculated. After all

of the input patterns have been presented, one training iteration is
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complete. The weights are then adjusted using the sum of all the weight

changes over one training iteration. This can be expressed as,

Wyme1) = T 8wy + wy(m) (2.23)

and,

wim+1) = L Aw; + w(m) (2.24)
[

where m is the iteration number.

Similarly, the bias values are adjusted using the sum of all the bias

changes over one training iteration and is given by,

b,(m+1) = £ Ab, + b,(m) (2.25)
P .

and,

b(m+1) = T b, + bm) (2.26)

25



This is termed learning be epoch [29], however if the learning rate
is small, the weights may be adjusted after the presentation of each
pattern [29,32].

This forward propagation of signals and backpropagation of error
is continued until a stopping criteria is met. For example, a set number
of iterations or a threshold error may be used as the training stopping
criteria.

In order to speed up learning without causing oscillations, the
addition of a momentum term is often used. The momentum term, a,
stresses past weight changes in determining current movement. This

allows the change in weight calculation to be expressed as,

Awb.(m+l) = -n [;if

&

+ Aw‘v.(m)

(2.27)

Although the same solution may be reached with d smaller step
size, McClelland and Rumelhart have found that systems learn quicker
by increasing the learning rate and using a momentum term [29]. In
[35]), Rumelhart et al recommend a learning rate of 0.25 and a
momentum term of 0.9 as a starting point.

The weights and biases of the neural network must be set before
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training begins. It is generally accepted that low initial weights allow
the network to start learning in a relatively safe position, thus ensuring
convergence over a wide range of problems. Although high initial

weights can accelerate learning, values in the interval [-0.3,0.3] ensure

that reliable learning is maintained [24].

2.2 Identification as Part of Neural Network
Controller

The motivation for utilizing an inverse neural network for
identification purposes, is its subsequent use as a controller in the
forward path of the system. Although many different architectures and
configuraticns have been proposed, only a few that are particularly
relevant to the identification strategy in this thesis will be discussed in
detail below.

A neural network controller based on indirect Model Reference
Adaptive Control was presented by Weerasooriya and El-Sharkawi in
[40]. Inverse plant identification was accomplished by assuming a

functional relationship (f), of the plant as follows,

Y, (0= f [, k-1), y,(k-1), y,(k-2)] (2.28)
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where,
yp(k) is the plant output, and,
u,(k-1) is the past plant input.
In order to represent the inverse dynamics of the plant, the output
of the neural network can then be expressed in the form of a functional

relationship (g),

u,(k-1)= gly,®), y,(k-1), y,(k-2)] (2.29)

where,
u,(k-1) 1is the neural network output.

The relationship described by equation (2.29) avoids any problems
with additional past plant input terms in the functional relationship. An
additional past input term, u,(k-2) in equation (2.28) would require
either up(k-2) (feedforward model) or u,(k-2) (feedback model) in
equation (2.29). The feedforward and feedback models are discussed
further in Chapter 3.

The training input sequence was a sum of sinusoids set to excite
the frequencies of interest. Training was stopped by using cross-

validation techniques, where the training error was compared with the
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error of an independent data set of the same form.

The identification procedure was done off-line, with the resulting
fixed weights used in the neural network controller. The control concept
is shown in figure 2.4 with on-line identification, however only off-line
training was done. Also shown is the addition of a fixed gain feedback

loop used to compensate for the effects of dead-band.

reference
modet

reference
Ignat
bt welghts

error
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Iden'Sif ler control
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error
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Jl gain l[ 7T

Figure 2.4. Neural network control configuration.

A suitable reference model was chosen which determined the

detailed design coefficients and time delays used in the controller, but
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not shown in figure 2.4. Controller performance was tested by evaluating
the tracking performance of the system and included the effects of noise.
The neural network controller performed high speed tracking accurately,
however, the steady state error in the position tracking indicated the
need for integral gain in the control loop. The authors [40] also felt that
better control performance could be achieved with on-line training.

A specialized learning architecture was proposed for on-line
training of a neural network controller by Psaltis et al in [34]. A
discussion of the disadvantages of other training architectures preceded
the proposed method. The authors [34] refer to the typical procedure of
off-line learning as the general learning architecture, as seen in figure

2.5.

v
X

A plant . 2

- error

_t n ral

net K

N

Figure 2.5. General learning architecture.
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Success of this method requires training the neural network over a broad
operating range to ensure generalization of the neural network to inputs
not specifically seen in training. They believe that this method could be
inefficient and less accurate than a method where a specific operating
range is focused on.

The second method of training discussed was the indirect learning
architecture which is shown in figure 2.6. This method does allcw
training over the specific region of interest since all signals are

generated from the desired response.

d ccn-)eller ! plant
\ evJL il

NN
identifier

Figure 2.6. Indirect learning architecture.
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However, the possibility exists that by mapping all the desired signals
d , to a single control signal wu=u, , then the output signals y would
be mapped to a single neural network control signal ¢=u, , thus

minimizing the identification error e, , but not minimizing the control
error e, .

Instead, they proposed an on-line method of training that

minimized the control error, as seen in figure 2.7.

u

neupal
d v ne)&/rk pk‘(

error

Figure 2.7. Specialized learning architecture.

However, since the plant is now between the error and the neural
network, a method of determining the Jacobian of the plant would be
necessary. If the plant is unknown, which is usually the case, the partial

derivatives of the plant output at a particular operating point can be
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estimated, thus allowing the error in the output to be backpropagated to
the neural network. This configuration then allowed the neural network
to be trained over a specialized region of interest.

The authors {34)] believe that a combination of both generalized
learning and specialized learning might be best. Initial training over a
general region could set the weights to values that facilitate better
learning using the specialized learning architecture. Although they were
unable to determine what conditions would yield consistently improved
performance, results were promising.

Saerens and Soquet [36] tested the specialized learning
architecture proposed by Psaltis et al [34] for the entire training
procedure, as opposed to a combination of generalized and specialized
training. They also proposed different methods of approximating the
partial derivatives of the plant. Simulations were done comparing the
proposed schemes with standard backpropagation. Both methods
performed equally well.

Nguyen and Widrow [32] also proposed a method of training the
neural network controller in the forward path of the system, as shown in
figure 2.8. Based on optimal control, the neural network controller was
trained to produce the required control signal u, , to drive the plant to

the desired state z, , given the current state of the plant Z, .
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Figure 2.8. Plant and neural network controller.

In order to backpropagate the error at the plant output, they
proposed to first train a separate neural network to identify the forward
model of the plant. The error between the final state and the desired
final state can be backpropagated through the neural network forward
model of the plant to the neural network controller with only the weights
of the neural network controller being adjusted.

The proposed scheme was simulated by training a neurai network
controller to steer a trailer truck to back up to a loading dock. Once
training was completed, the controller was able to successfully back up

the trailer truck from a variety of initial positions.
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Chapter 3

System Identification of the Two-Machine-
Infinite-Bus System

The ability to adequately represent the important dynamics of a
system, over a wide bandwidth, is of paramount importance for all
identification schemes. Any control action or stabilizer design for a
power system will only be as good as the model it is based on.

The power system used in the simulation studies is very similar to
that used by Norum [33]. Parameters were chosen to give characteristics
commonly found in the real world. A block diagram of the power system
is shown in figure 3.1.

This representation simulates a single generator in the form of the
test machine, connected to a large generation/load pool in the form of
the equivalent machine. In addition, the infinite bus represents the

interconnection to an even larger generation/load pool.
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Figure 3.1. Block diagram of two-machine-infinite-
bus system.

The system’s two oscillatory modes are the local and interarea
modes. The local mode of oscillation corresponds to the test machine
swinging relative to a large generation pool. The interarea mode of
oscillation is that of the large generation/load pool swinging relative to
the infinite bus. The damping and frequency terms of the local and
interarea mode were selected to give reasonable relative oscillations
between them.

The neural network was used to obtain the inverse model of the
power system. The accuracy of identification was then tested using

frequency response techniques, and the results are presented in the
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following section.

3.1 Frequency Response Model

The two-machine-infinite-bus model can be approximated by a fifth
order transfer function linking the electric power output (P,) to its

AVR PSS reference voltage input (¥,,) . This is given by,

3.1
P, 255(s2+0.15+25) (3.1)

Vg  (s+12.5)(s2+0.15+144)(s2+0.15+9)

This transfer function was used as a starting point for testing the
various neural network architectures.

As a basis for comparison, the frequency response of (3.1) was
simulated using PRBS excitation and FFT analysis [3]. The PRBS signal
was composed of 512 points from a random number generator with a
minimum clock pulse width of 0.2 seconds. The sampling r’ate was set to
40 Hz.

The frequency response of (3.1) could also have been calculated
using the substitution s=j w, and then calculating the magnitude and
angle at various frequencies over the bandwidth of interest. However,

since the frequency response of the neural network was done using PRBS
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excitation, it was arbitrarily decided to use the same technique for the
frequency response of the power system model.

In order to establish periodicity of the input signal, a quarter
period of the PRBS signal was applied as a leading signal to the plant
[8]. This allows the initial transient response of the system to decay to
approximately zero. Thus, one and a quarter periods of PRBS excitation
signal were applied to the power system model, with only the final
period of input/output time domain data used in the spectral analysis.

All tests were done without the benefit of a low-pass filter,
however, for the purpose of illustration, a 4096 point PRBS excitation
signal was put through a sixth-order low-pass butterworth filter with a
cut-off frequency of 5 Hz and sampled at 40 Hz. The spectrum of the
PRBS excitation input signal and the frequency response of the fifth
order transfer function model (P, v,,p are shown in figures 3.2 and 3.3
respectively. The spectrum of the PRBS excitation signal shows a fairly
uniform energy content over the frequency range of interest, with the
first null determined by the clock pulse width.

The frequency response of the fifth order transfer function model
clearly shows both the local and interarea modes of oscillation. The
interarea mode is evident at 0.48 Hz. as is the local oscillatory mode at

1.9 Hz.
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Figure 3.2. Spectrum of PRBS excitation signal.
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Figure 3.3. Frequency response of fifth order system.
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3.2 Off-line Time-Domain Identification

The difficulties associated with the identification of a lightly
damped fifth order model, where the local and interarea modes are
closely located in the frequency domain but differ by more than 10 dB,
are considerable. In [33], Norum tested a similar system and found that
neither the Batch Least Squares algorithm nor the Generalized Least
Squares technique were able to identify the interarea mode with only a
low-pass filtered PRBS as the excitation input. In order to provide more
energy in the excitation sequence near the interarea mode, Norum found
it necessary to employ both a low-pass filter and a notch-filter for
excitation shaping. Additional information on the role of pre-filters is
given by Ljung in [26].

The same idea has been employed in this work. Since the
simulated test system is known, and because the neural network is set to
identify the inverse of the test system, the ultimate pre-filter was
employed by putting the PRBS excitation signal through tl;e test system,
and then using the test system output as the input signal to the neural
network. The test system acts like a pre-filter so that a higher energy

level is applied at the oscillatory modes. No other filtering was used

during testing.
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3.2.1 Inverse Feedforward Model

The base case neural network used was an inverse feedforward
model. The fifth order test system of (3.1) is re-written in terms of the

power system output y, , and input u, , as follows,

(4

Y(8) 255(s2+0.15+25) (3.2)
U(8)  (s+12.5)(s+0.15+9)(s?+0.15+144)

which results in a difference equation of the form

s

s
Y0 =Y a k-0 +Y b uk-p) (3.3)

i=1 j=1

Since the test system output is a function of five delayed inputs
and five delayed outputs, it follows that (3.3) can be rearranged in terms
of u,(k-1) and some function (f). This results in the following

relationship,

o up(k-Z),up(k—f&),...,up(k—5), 34
KD =Ly 0y, k-1, (k-5) (34
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In order for the neural network to identify the inverse dynamics
of the test system, the output of the neural network can also be written

as a function (g) of its inputs.

U, (-2)4 (k-3),...,(k~5), s
k1) =81y )y, 1),y k-5) (32)

The Feedback Identification Method can be drawn in general block
diagram form as shown in figure 3.4, and in figure 3.5 for the specific

case given by equation (3.5).
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Figure 3.4. Feedback identification model.

43



0 $ > test Yo
—  _»Ssystem I

newral
ne twork

/\
A

—e
el—1)

Figure 3.5. Detailed block diagram of
feedback identification model.

However, although the test system can be assumed to be bounded-
input bounded-output stable, the neural network cannot. In fact, no
theory currently exists which can guarantee convergence of the feedback
model parameters [31]. This necessitates the use of the Feedforward

Identification Method, which is shown for the general case in figure 3.6,
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where the power system input is also fed as an input into the neural
network instead of using the neural network output as a feedback term.

This results in the following relationship,

PN k-2),u (k-3),...,up(k-5), 3.6
k=) = 8 |y ),y Ge-1),....y,(k-5) (36

Thus, all the input signals used in the identification process are

bounded. The block diagram specific to (3.6) is shown in figure 3.7.
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Figure 3.6. Feedforward identification model.
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Theoretically, once the neural network output, u, ,approaches the
power system input, u, , (the error tends to a small value

asymptotically), the feedforward model can be replaced by the feedback
model.
From the functional relationship form of the inverse model given
in (3.6), it can be seen that in order to generate the single output
u (k-1) , the neural network must have one node in the output layer.
From the same equation, it is also necessary to have ten "uputs to the
input layer of the neural network. This representation accounts for all
four delayed power system inputs, the one present power system output,
and all five past power system outputs. It was decided to have the
neural network configuration with one hidden layer and twenty hidden
layer nodes. The number of hidden layer nodes was set by comparing
the sum of the squared error for eight training iterations using ten,
twenty, and thirty hidden layer nodes. Additional consideration was
given to the fact that added nodes would increase computational time,
since more weights would need to be updated at each iteration. Twenty
hidden layer nodes produced the lowest error while maintaining a

reasonable iteration time. The neural network architecture can be seen

in figure 3.8.

47



%
a-p%
€-p%
@p%
D™

op%
-ph
a-pth
-t
@ph

Neural network architecture.

Figure 3

48



The training input signal was of the same form used by

Wecrasooriya and El-Sharkawi in [40] and is given by,

u, (k)= 500 sin [2’;"7] +450 sin [2";7] +250 [1 -exp (LO’ESZ” (3.7)

The sampling time was set to 30 ms and 600 points were
generated. The parameters a and B are chosen here to be 2.1 and 0.52
respectively, so as to excite the local and interarea oscillatory modes.
The sinusoidal form of the training input is set to give the neural
network a broad range of operating conditions.

Since the nonlinear function chosen is the logistic sigmoid of (2.7),
the inputs must be normalized between zero and one (the output range).
Therefore, the data file containing the test system input and output are

normalized by using the maximum and minimum values as shown below,

u (norm) = 4, min,) (3.8)

4 max(x,)~ min(u,) '
and,

y,(norm) = Yy min0,) (3.9)

max(y,)- min(y,)

49



The values for the learning rate and momentum term are chosen
to be 0.25 and 0.9 respectively.

The weights and biases of the neural network are chosen using a
random number generator and are set in the interval [-0.1,0.1] so that
none of the nodes start too close to saturation.

The neural network is then trained in the inverse feedforward
model configuration with the weights updated after the presentation of
each pattern.

The base case test system was allowed to train for a number of
iterations to see what the error function looked like relative to the
iteration number. Typically, research that utilized neural networks for
the identification and control of power systems have focused on the
control aspect. Thus the identification procedure consisted of thousands
of iterations to minimize the time-domain error. Anywhere from 1000-
500,000 iterations are generally used [15,17,18,28,30,31,32,34,39,40].

Referring to figure 3.9, the sum of the squared error appears to
decrease gradually throughout the training. A closer inspection of the
training error reveals a local minimum at the eighth iteration, as seen in
figure 3.10.

The time-domain output signal of the neural network is plotted

against the desired output signal at the eighth iteration and is shown in
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figure 3.11. It can be seen that although the frequency of the two signals
is the same, there is a considerable difference between the neural
network output and the desired output. The least squares error summed
over all 600 input patterns is calculated for the test system using the
error function defined by equation (2.6). For the sinusoidal training
input of (3.7), the resulting least squares error is 0.406 for the weights
that were frozen at the eighth iteration.

The same comparison is again made after 10,000 training
iterations. Referring to figure 3.12, the difference between the output
of the neural network and the desired output is indiscernible. The sum
of the squared error has row decreased to 0.00459 over all 600 points.

An examination of the frequency responses of the neural network
and the fifth order system was done after eight iterations and after
10,000 iterations. Since the neural network is set to identify the inverse
of the test system, all frequency responses were done on the inverse of
the neural network. The frequency response was done using the PRBS
input signal and FFT analysis described in section 3.1 of this thesis. The
results of both the test system and the inverse neural network are shown
in figures 3.13 and 3.14. There is basically no difference between the
frequency response of the neural network when the training is stopped

after eight iterations and when the training is stopped after 10,000
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iterations. No obvious improvement has resulted from the increased
training. Clearly the neural network has captured both oscillatory modes
of the test system after only eight iterations. In addition, the plots show
that any difference in the magnitude of the peaks is indiscernible. The
amount of dB per decade drop-off of the local mode is slightly more for
the inverse neural network than the fifth order test system.

Since it is necessary for a viable identifier to converge quickly,
while capturing the important characteristics of the plant, it was decided
to do all testing using eight iterations as the benchmark for this system.
It is at this point that weights are frozen for testing the relative

convergence to the known model of the plant.
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Figure 3,11, Comparison of time-domain signal after
eight training iterations (solid=actual output of neural
network, dotted=desired output).
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Figure 3.12. Comparison of time-domain signals after
10,000 training iterations (solid=actual output of
neural network, dotted=desired output).

55



freq resy of fifth order us NN 8 iter

28

a8

-48 |-

68 -

-38 : . NN ; ; S -
181 159 14t

Hz

Figure 3.13. Comparison of frequency response after
eight training iterations (sclid=inverse neural network,

dotted=fifth order system).
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Figure 3.14. Comparison of frequency response after
10,000 training iterations (solid=inverse neural
network, dotted=fifth order system).
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Chapter 4

Performance Studies of the Trained Neural

Network

A number of performance tests were done on the trained neural
network to determine how well it could adapt to varying conditions while
continuing to correctly identify the power system.

Particular attention was given to the neural network’s ability to
identify the system when training was stopped after only eight iterations.
In order to present itself as a viable identification tool, the neural
network must be able to capture the system’s important characteristics
in a short period of time. This necessitates an iteration constraint.

The first group of tests involve changes to the test system’s
operating conditions. Given that the test system was already a lightly-
damped system, the damping of the local mode was decreased further
while either increasing or decreasing the frequency. In addition, a third
order traasfer function was tested.

The second group of tests investigated the effect that network
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configuration changes had on the neural networks ability to identify the
fifth order transfer function. Training was done using a feedforward
model, a feedback model, and a feedforward model while varying the
number of nodes and node interconnections. Testing was then done by
operating each neural network in either feedback mode or feedforward
mode using different normalization procedures for the input.

The final test examined the ability of the neural network trained
on a two-machine-infinite-bus system (fifth order transfer function), to

correctly identify a single-machine-infinite-bus system (sixth order

transfer function).

4.1 Changes in Operating Conditions

The following tests involved the identification of a fifth order
power system transfer function with different transfer function
coefficients from that used in the original training model. The frequency

responses of the new power system and the neural network model are

then compared.

The neural network was trained using the feedforward model.
There were ten nodes in the input layer representing four delayed values

of the power system input, one present value of power system output and
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five delayed values of power system output. There were twenty nodes in
the hidden layer, and one output node. The learning rate and
momentum term were set to 0.25 and 0.9 respectively. The input
training signal was the sinusoid of (3.7), with the input normalized
between zero and one. The weights were frozen after eight iterations of
training on the base case transfer function of (3.2).

In each case, the neural network was tested using a 512 point
PRBS with pulse width of 0.2 seconds and a sampling rate of 40 Hz. The
PRBS was passed through the new plant using the feedforward
configuration and then through the fixed weight neural network.

A summary of the time-domain error for each configuration is
included in table 4.1 at the end of this section. The least squares time-
domain error of equation (2.6) was also calculated for each of the tests
using the sinusoidal input of (3.7) and compared to the error of the base

case fifth order transfer function.

4.1.1 Third order System

The first test involved setting the zero term equal to the interarea
mode in the fifth order transfer function of (3.2), so that cancellation of

the two results. The power system transfer function is now given by,
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P, _ 25s (4.1)
Vig (s+12.5)(s2+0.15+144)

Figure 4.1 shows the frequency response of the third order system
with a mode of oscillation at 1.9 Hz. The frequency response of the
inverse neural network clearly shows that the neural network has
captured the single oscillatory mode. Equally important is the fact that
the magnitude of the plots are equal. Again, the dB per decade drop-off
after the mode of oscillation is greater for the inverse neural network.

In the time-domain, the sum of the error squared has increased

from 0.406 to 0.598 over all 600 patterns.

4.1.2 Decreased Damping and Reduced Frequency of
Local Mode

The second test involved halving the frequency of the local mode
and reducing the overall damping by a factor of five. This results in the

following fifth order transfer function,

P, - 25s(s%+0.15+25) (4.2)
Vie  (5+12.5)(s2+0.15+9)(s2+0.015+36)
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Figure 4.2 shows the frequency response of the fifth order system
with modes of oscillation at 0.48 Hz and 0.95 Hz. Figure 4.2 also shows
the frequency response of the inverse neural network. Both oscillatory
modes of the system have been identified. Again, the frequency
response of the fifth order transfer function and the inverse neural
network have the same magnitude plots. The neural network’s dB roll-
off of the local mode is somewhat steeper than that of the fifth order
system.

The time-domain least-squared error has increased considerably

more from 0.406 in the test system to 1.64 for this test.

4.1.3 Decreased Damping and Increased Frequency of

Local Mode

The final test involved doubling the frequency of the local mode
while reducing the damping by a factor of twenty. The following transfer

function resx:lts,

P, _ 255(s2+0.15+25) (4.3)
Vg (s+12.5)(s2+0.15+9)(s2+0.015+576)

Referring to figures 4.3, the system’s two modes of oscillation can
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be seen at 0.48 Hz and 3.8 Hz. The frequency response of the inverse
neural network also shows both the local and interarea modes correctly
identified. Along with the higher frequency of the local mode, aliasing
problems are more evident. The use of a low pass filter would minimize
the effects of aliasing due to the high frequency components.

The time-domain error has increased from 0.406 during training

to 1.46 for the final test.
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Figure 4.1. Comparison of frequency response of inverse
neural network and third order test system (solid=neural
network, dotted=third order model).
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Figure 4.2. Comparison of frequency response of inverse
neural network and fifth order test system with
decreased damping and frequency (solid=neural network,
dotted=fifth order model).
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Figure 4.3. Comparison of frequency response of inverse
neural network and fifth order test system with
decreased damping and increased frequency (solid=neural
network, dotted=fifth order model).
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Transfer Function

25s(s2+0.15+25)

(s+12.5)(s%+0.15+9)(s 2+0.015+576)

0.406
(s+12.5)(s%+0.15+9)(52+0.15s+144)
255 0.598
(s+12.5)(s2+0.1s+l44)
25s5(s%+0.15+25) 1.64
(5+12.5)(s240.15+9)(s2+0.015+36)
oL +
25s(5+0.15+25) 1.46

Table 4.1. Least squares time-domain error for sinusoidal input.
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4.2 Changes to Neural Network Configuration

The following tests involve changes to either the neural network
training configuration, the testing configuration, or both. In all cases,
the training input was the sinusoid described by (3.7) and the learning
rate and momentum term were 0.25 and 0.9 respectively. Each neural
network was trained for eight iterations at which time the weights were
frozen for testing. All of the various architectures were tested on the
base case fifth order transfer function described by (3.1). In all cases,
a 512 point PRBS input signal with a minimum pulse width of 0.2
seconds and 40 Hz sampling were used to obtain the frequency response.

The training and testing included various combinations of input
normalized in the range zero to one, input normalized in the range
negative one to positive one, and testing in both feedforward mode and

feedback mode. Table 4.2 at the end of this section is a summary of the

various tests.

4.2.1 Feedforward Training

A neural network was trained in feedforward mode with ten input
nodes, twenty hidden layer nodes, and one output node. The sinusoidal

input was normalized from zero to one for both training and testing, and
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then the y, inputs were normalized from negative one to positive one
for both training and testing. Testing was then done by using the
feedforward mode and then by using the feedback mode for each case.

Referring to figures 4.6 and 4.7, the neural network was able to
identify both oscillatory modes when tested using the feedforward mode,
regardless of the normalization factor used. The magnitude of the peaks
is comparable, although the neural network has a slightly lower dB roll-
off on the local mode. The negative one to positive one input range
produced the same neural network frequency response as the zero to one

input range except a bias has been added.
As seen in figures 4.8 and 4.9, the neural network was unable to

identify the system oscillatory modes when tested in feedback mode.

4.2.2 Feedback Training

The neural network was trained using the feedback configuration
with ten input nodes, twerty hidden layer nodes, and one output node.
Although there was no guarantee of convergence, of interest was whether
the neural network could capture any of the test system’s important
characteristics. The same procedure as given in section 4.2.1 was
followed for training except the output of the neural network becomes

a delayed input for training as shown in figure (3.5).
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The time-domain training errors are much higher for this test:
10.797 and 13.618 for input range zero to one and range negative one to
positive one respectively, as compared to 0.406 and 0.793 for the test
case. In spite of this, it can be seen from figures 4.10 and 4.11 that the
neural network has identified both oscillatory modes when tested in the
feedforward mode, even though the frequency response is not clearly
defined. However, the slopes and the magnitudes of the oscillatory
modes of the neural network frequency response are not the same as the
fifth order system. The negative one to positive one input range again
causes a bias in the frequency response of the neural network.

As shown in figures 4.12 and 4.13, when tested in the feedback
mode, the neural network is unable to identify either the local or

interarea mode of oscillation.

4.2.3 Number of Nodes and Node Interconnections

In this section, various architectures with fewer nodes and node
interconnections are investigated. The motivation for doing so is to
reduce the computational effort necessary for identification, resulting in
less time needed. Although the accuracy of the model may be reduced
as a result, the purpose of the identification scheme presented here is

for subsequent controller design rather than exact modelling.
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The first node reduction test was done by reducing the number of
inputs into the neural network. From the functional relationship given
in equation (3.6), the output of the neural network is a function of the
power system’s past inputs and past outputs. Since the past inputs only
determine the numerator term of the power system transfer function,
only the two most recent input terms were used for training. This results

in the following functional relationship,

u k-1 = g [u,(k-2)u,(k=3), y,00,7,k-1),....y,(k-5)] (4.4)

In order to account for all the inputs defined by (4.4), eight inputs
are necessary for the neural network. In light of the reduced number of
input nodes, it was arbitrarily decided to reduce the hidden layer nodes
from twenty to sixteen. All other training and testing parameters

remained as before.

As can be seen from figures 4.14 and 4.15, the neural network
clearly captures both oscillatory modes, regardless of the normalized
input range wnen tested in feedforward mode. When tested using the
input range of zero to positive one, the only difference between the

neural network’s frequency response and that of the fifth order system
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is the slightly higher roll-off of the local mode identified by the neural
network. The negative one to positive one input range has again
resulted in a positive bias on the neural network’s frequency response.
Again, the neural network is unabie to identify the fifth order system
when tested in feedback mode, as seen in figures 4.16 and 4.17.

The number of weight and bias connections has been reduced from
241 in the base case test system to 161 for the eight input node/sixteen
hidden node case. This resulted in a 29% reduction in computational
time per iteration, as compared to the iteration time of the base case

test system.

The second test was to reduce the weight interconnections by
separating the coupling between the neural network input terms. This
was accomplished by removing the interconnected weights between the
first layer and the hidden layer. This resulted in the four past u, terms
feeding from the input layer into eight hidden layer nodes, and the six
past y, terms feeding from the input layer into twelve hidden layer
nodes. As can be seen from figure 4.4, the number of interconnections
(weights) have been reduced considerably. This results in a decrease in
computational time since fewer weights have to be updated on each

iteration.
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u, &-1)

Figure 4.4. Uncoupling of input and output terms.

The same training and testing procedure was again followed.
Referring to figures 4.18 and 4.19, the neural network is able to identify
both the local and interarea modes when tested in feedforward mode,
regardless of the normalized input. The zero to positive one input range
results in a frequency response that closely matches the fifth order
system in magnitude, except for the slopes of the local mode, which are

slightly different. The negative one to positive one input range produces
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the same frequency response with the addition of a positive bias for the
neural network plot.

As seen in figures 4.20 and 4.21, the neural network is again
unable to identify the fifth order test system when tested in feedback
mode, regardless of the range of the input excitation.

The number of weights has now been reduced from 241 in the base
case test system to 145 in this test. This resulted in a decrease in

computational time of 37% over the base case.

The third reduction test is a combination of tests one and two
where both the number of past plant input terms used as input to the
neural network has been reduced to two, and the coupling between
inputs and outputs has been separated. This resulted in two u, terms
feeding into four hidden layer nodes, and six y, terms feeding into
twelve hidden layer nodes, with all 16 nodes joining at the output node
of the neural network. This new architecture is shown in figure 4.5.

The same training and testing procedures were followed as before.
As can be seen from figures 4.22, and 4.23, the neural network is able to
identify both oscillatory modes when tested in feedforward mode. The
input normalized in the range zero to positive one results in a fairly

close maich in the magnitudes of the plots. The roll-off of both t. =
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interarea mode and the local mode are slightly lower for the neural
network, but the magnitude of the peaks are the same. Again, the input
range negative one to positive one results in a positive bias on the
frequency response plot of the neural network. Although the roll-offs of

the oscillatory moces more closely match, the magnitude of the peaks

does not.

As can be seen in figures 4.24 and 4.25, although the frequency
response of the neural network has the general shape of the fifth order
system’s frequency response, it is unable to identify system clearly,

regardless of the input range used.

The number of weights has decreased from 241 in the base case

test system to only 113 in this test, resulting in a 51% reduction in

computing time per iteration.
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Test 1: Feedforward Training

Feedforward Testing
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Figure 4.6. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= 0 to +1 (solid=neural
network, dotted=fifth order system).

inverge WK - testi: nofb, itol

28

an

—-48 3

-68 -

...“ 3 : L " - . " s . s
pU e 1p¥ 19t

Figure 4.7. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= -1 to +1 (solid=neural
network, dotted=fifth order model).
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Test 1: Feedforward Training

Feedback Testing
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Figure 4.8. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= 0 to +1 (solid=neural
network, dotted=fifth order model).
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Figure 4.9. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= -1 to +1 (solid=neural
network, dotted=fifth order system).
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Test 2: Feedback Training

Feedforward Testing
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Figure 4.10. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= 0 to +1 (solid=neural
network, dotted=fifth order model).
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Figure 4.11. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= -1 to +1 (s2lid=neural
network, dotted=fifth order systam).
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Test 2: Feedback Training

Feedback Testing

{nverse KN - testZ: fh, Atnt

4 —
24
8+ ]
T -2
48} _
-64
-0 . 4 + . - . S i U
w1 18¥ frt

Hz

Figure 4-.12. Comparison of frequency response
of inverse neural network and fifth order test
system = input range= 0 to +1 (solid=neural
network, dotted=fifth order model).
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Figure 4.13. Comparison of frequency response
of inverse neural network and fifth crder test
system - input range= -1 to +1 (solid=neural
network, dotted=fiftn order system).

80



Test 3: Node Reduction Feedforward Training

Feedforward Testing
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Figure 4.14. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= 0 to +1 (solid=neural
network, dotted=fifth order model).
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Figure 4.15. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= -1 to +1 (solid=neural
network, dotted=fifth order system).
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Test 3: Node Reduction Feedforward Training

Feedback Testing
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Figure 4.16. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= 0 to +1 (solid=neural
network, dotted=fifth order model).
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Figure 4.17. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= -1 to +1 (solid=neural
network, dotted=fifth order system).
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Test 4: Uncoupling Feedforward Training

Feedforward Testing
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Figure 4.18. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= 0 to +1 (solid=neural
network, dotted=fifth order model).
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Figure 4.19. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= -1 to +1 (solid=neural
network, dotted=fifth order system;.
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Test 4: Uncoupling Feedforward Training

Feedback Testing
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Figure 4.20. Comparison of fregquency response
of inverse neural network and fifth order test
system - input range= 9 to +1 (solid=neural
network, dotted=fifth order model).
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Figure 4.21. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= -1 to +1 (solid=neural
network, dotted=fifth order system).
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Test §: Node Reduction and Uncoupling Feedforward Training

Feedforward Testing
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Figure 4.22. Comparison of fregquency response
of inverse neural network and fifth order test
system - input range= 0 to +1 (solid=neural
network, dotted=fifth order model).

28 inverge NN - tastS: nofb, ftol

an

.GB '- i x n 1 L -~ L e . : 4
P 14Y 194

Hz

Figure 4.23. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= =1 to +1 (solid=neural
network, dotted=fifth order system).
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Test §: Node Reduction and Uncoupling Feedforward Training

Feedback Testing
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Figure 4.24. Comparison of frequency response
of inverse neural network and fifth order test
system - input range= 0 to +1 (solid=neural
network, dotted=fifth order model).
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Figure 4.25. Comparison of frequency response

of inverse neural network and fifth order test

system - input range= -1 to +1 (solid=neural

network, dotted=fifth order system).
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Number Y,

Training = 8 iterations of Input Train
- Network| Range -in
Test Input |Hidden |Qut- Weights & Errfr

Nodes (Nodes |[put

Node
Test 1 0to +1 0.406

Feedforward 10 20 1 241 -1to+1 |0.793
Training
Test 2 0to +1 [10.797
Feedback 10 20 | 241 -1to +1 [13.618
Training
Test 3 2.062
0to +1
Node 8 16 1 161
Reduction -1 to +1 0933
Test 4 0to +1 1.026
Uncoupling 4 8 1 145 -1to +1 | 2.429
6 12
Test §
0to +1 0.418
Reduction & 2 4 1 113
Uncoupling p 12 -1to +1 | 5.274

Table 4.2. Summary of changes to neural network configuration for

feedforward testing.
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4.3 Test on Single-Machine-Infinite-Bus Model

As a final test, the neural network trained on the fifth order
transfer function from the two-machine-infinite-bus system, was tested
cn a sixth order transfer function derived from a single-machine-infinite-
bus system (SMIB). The SMIB model was taken from [16], and the state

space model technique was used to derive the transfer function as,

P, 3345(s+12.6)(s+6.24)(s +1.48) (4.5)
Vie  (s+17.9)(s+11 6)(s+8.5)(s+2.5)(s2+0.635+228)

A 128 point PRBS with a minimum pulse width of 0.2 seconds and
40 Hz sampling was used as the excitation input with FFT techniques
used to obtain the frequency response. The fixed neural network weights
were used from the base case fifth order transfer function model trained
for eight iterations in feedforward configuration. Testing was also done
in feedforward mode with the results displayed in figure 4.26. The
neural network has clearly identified : ¢ single oscillatory mode of the
SMIB at 2.4 Hz. The magnitude of the peak is slightly higher for the
frequency response of the neural network. The dB per decade roll-off
after the mode of oscillation is the same, however, the frequency

response of the neural network has approximately a 3 dB bias evident
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before the oscillatory mode.

Test on Single-Machine-Infinite-Bus System
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Figure 4.26. Comparison of frequency response of
inverse neural network and single-machine-infinite-bus
system (solid=neural network, dotted=SMIB).
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Chapter §
Summary and Conclusions

The main emphasis of this thesis is the development of a neural
network for measuring the transfer function of a power system. In order
to provide a viable alternative identification scheme, the neural network
must quickly and accurately provide a model indicative of normal
operating conditions without upsetting t’.e system.

A fifth order transfer function with lightly-damped complex poles
was chosen as the test system due to the difficulties associated with
identifying two oscillatory modes that are close in frequency but differ
by more than 10 dB in the amplitude of each mode. The frequency
response of the simulated power system served as a standard of
comparison for the frequency response of the trained neural network.

Typically, research that utilizes neural networks for the
identification and control of power systems, is focused on the control
aspect, and thus the identification procedure consists of thousands of

iterations to minimize the time-domain error.
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This research emphasizes a quick, accurate transfer function
identification scheme with comparisons done in the frequency domain
between the simulated system and the neural network.

Pseudo-Random-Binary-Sequence excitation and Fast Fourier
Transform analysis were used to obtain the frequency response models.
In order to provide a higher energy level to the modes of oscillation,
pre-filtering of the excitation signal was used.

A static multilayered neural network was trained to identify the
inverse dynamics of the fifth order transfer function. An examination of
the sum of the squared error showed a local minimum at the eighth
training iteration. Rapid convergence is a desirable quality of any
identification scheme, and since the frequency response of the inverse
neural network at the eighth iteration varied little from that at the ten
thousandth iteration, eight training iterations was used as a benchmark
for the simulation studies. It is recognized that a more exact model
would require considerably more training time. However, the focus of
this work was to provide a sufficiently accurate mode! for subsequent
controller design.

The benchmark neural network provided good agreement with the
fifth order transfer function model. Both modes of oscillation were

correctly identified, both for the frequency and amplitude of each
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oscillatory mode, and for the slopes of each mode.

The results of the simulation studies were presented in Chapter 4.
The robustness of the neural network was investigated by simulating
changes in operating conditions. A third order transfer function, and a
fifth order transfer function with decreased damping and either increased
or decreased frequency were tested utilizing the fixed weights from the
benchmark neural network. Given that the weights of the neural
network were fixed during testing, the sum of the squared error did
increase, however, all frequency responses displayed reasonable accuracy
in identifying both modes of oscillation and in the amplitude of the
modes.

Also investigated were changes to the neural network architecture
to see how well it could identify the fifth order transfer function while
decreasing the computational time needed to do so. This was done by
either decreasing the neural network inputs, the number of hidden layer
nodes, or by separating the coupling between the neural network input
terms. Although network architecture is system specific, computational
times were decreased between 29% and 51% with respect to the time
needed for the benchmark neural network, while retaining a reasonably
accurate model of the system.

The effects of the normalization procedure were tested by
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increasing the normalization of the input to the range negative one to

positive one from the training range of zero to positive one. This

resulted in a positive bias in the frequency response.

The differences between using a feedforward model and a
feedback model for either training or testing was briefly investigated.
Testing using the feedforward model provided fairly reasonable
frequency responses in all cases, whereas the feedback model did not.

Finally, the benchmark neural network was tested on a sixth order
transfer function that was based on a single-machine-infinite-bus model.
Good agreement resulted from the comparison of their respective
frequency responses.

In summary, the main contributions of this research were:

(1) The development of an alternative identification tool for power
systems. Reasonable convergence was obtained in eight iterations
for this system. Simulation studies showed the neural network to
be robust to changes in operating conditions.

(2) Methods of reducing the computational time necessary for the
identification procedure included both reducing the number of
neural network inputs and separating the coupling between the
inputs. Computational times were decreased by up to 51% over

the benchmark neural network model.
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§.1 Recommendations for Further Research

Simulations studies have suggested areas worthy of further study.
Test results suggest the feasibility of the neural network as a
viable identification tool, however the effects of noise were not
investigated. Practical considerations require that the effects of noise
be studied before conclusions regarding the neural network’s

identification capabilities are made.

In addition, whether the neural network could successfully identify
a multi-mode system containing machines with different inertia constants

without the benefits of a pre-filtered excitation signal would be of

interest.

Finally, efforts devoted towards a robust on-line identifier would

improve the tracking ability of an adaptive controller based on neural

network concepts.
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