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ABSTRACT

Xylia xylocarpa is an economically important tree species in Thailand. In the
present study, one-month-old X. xylocarpa seedlings, from three different seed sources in
Thailand, were grown at 25/20°C, 30/20°C, 35/20°C and 40/20°C day/night temperatures
for two months and their ability to acclimate to high temperature was evaluated. Results
indicate that acclimation involved changes in leaf morphology, gas exchange patterns,
protein expression and chloroplast lipid composition. Seeds from Kanchanaburi and
Maehongson produced plants with higher overall growth than seed from
Nakornratchasima. Seedlings from different seed sources had similar photosynthetic
rates. and water relation when measured at their day growth temperatures. When
measured at 25°C, seedlings grown at 40/20°C day/night had higher net photosynthetic
rates. transpiration rates and stomatal conductance than seedlings from the remaining
growth temperatures.

Seedlings grown at 40/20°C had higher net photosynthetic rates at all tested
temperatures. At high temperature (50°C), transpiration rates and stomatal conductance
increased sharply, suggesting that transpirational cooling was a primary mechanism of
heat dissipation in Xylia xylocarpa seedlings.

Seedlings from different seed sources grown under a range of different growth
temperatures appeared to have different chloroplast lipid compositions, however,
unsaturated to saturated fatty acid ratios did not change significantly.

The increase in stability of photosynthesis and thermotolerance of seedlings

acclimated to high temperature was correlated with changes in protein expression.



Quantities of several leaf proteins either decreased or increased in plants acclimated to

high temperature, including the HSP18.1 low molecular weight heat shock protein.
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CHAPTER ONE

General Introduction

Temperature is an important climatic factor which should be taken into account
when selecting tree species for reforestation programs. High temperature can directly or
indirectly influence survival and growth of seedlings in tree nurseries and after planting
in the forest (Colombo et al. 1992). Although there are few places in the tropics where
temperature extremes limit vegetative growth, plants differ in their temperature
requirements and high temperature tolerance (Evans 1992). Destruction of forests.
expansion of land use. and other human activities lead to changes in forest ecosystems
and may affect the environment. The “greenhouse effect” is a term used to describe the
effects of increased atmospheric pollutants resulting in an increase in temperatures
worldwide. Based on the concentration increment of CO, in the last 100 years, it is
projected that an increase in mean global temperature of 4°C might be expected by the
year 2100 (Watson et al. 1990). High temperature stress is not limited to tropical and
subtropical environments. Larcher (1980) reported that seedlings can experience
temperatures exceeding 70°C at mountain sites where the sun’s rays fall nearly
perpendicularly to exposed areas of dry dark raw-humus soil. At the soil surface of
boreal forest sites, temperatures have been reported to exceed 50°C, leading to high
mortality of conifer seedlings (Koppenaal and Colombo 1988).

In Thailand, most species of tree seedlings are raised in the nursery and are
exposed to full sunlight and drought before transplanting into the field. This hardening

method is believed to improve drought and high temperature tolerance and lead to
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increased survival after planting. A new problem has recently emerged with the
introduction of exotic tree species to Thailand. These exotic species were intended to
replace the native tree species lost through logging practices and were selected according
to their tolerance to both drought and high temperature. These species include the rapidly
growing Eucalyptus spp. and Acacia spp. The practice of introducing non-native species
is controversial in terms of environmental impact, biodiversity and ecosystem
management issues. In order to promote the native tree species for use in reforestation. it
is important to know more about their heat tolerance, and understand more about the
mechanisms of heat tolerance and acclimation methods. It would be beneficial to select
a native species or genotype which is adapted to the local climatic extremes of a
particular area. instead of planting exotic species whose long-term adaptation is
unknown.

Xylia xylocarpa was reported by Phukittayacamee et al. (1993) to grow well in
dry areas where the maximum temperature can reach 39°C. As a result of its adaptability
to high temperature, this species might be a potential candidate for planting programs
aimed at environmental conservation, agroforestry, and watershed protection in high
temperature environments. However, the effects of high temperature on this species and
its ability to acclimate are largely unknown. This information is important due to the
relatively high sensitivity of young seedlings to heat stress. The objectives of this study
were 1) to examine responses to high temperature stress of Xylia xylocarpa seedlings
from different seed sources, and 2) to study the mechanisms of high temperature

acclimation in seedlings by a) measuring changes in photosynthesis and water relations,
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b) examining protein expression, and c) examining changes in chloroplast membrane
lipids.
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CHAPTER TWO

Literature Review

2.1 Biology of Xylia xylocarpa Taub. var. kerrii Nielsen

A common name of iron wood, Xylia xylocarpa, is Daeng in Thai. This tree
species belongs to the Mimosaceae family. It is an economically important tree species
distributed throughout northern, western, and northeastern Thailand in mixed deciduous
and dry dipterocarp forests. These forests cover land from sea level to 500 m with an
annual rainfall of about 1000-1500 mm and sandy loam, sandy clay loam and clay loam
soils (Boonyavetchevin 1982).

Xylia xylocarpa are deciduous trees, 20-37 m in height at maturity and 30-120 cm
in diameter at breast height (Keating and Boza 1982), usually with a straight clear bole
(>12 m). The bark is grey to red with small lenticels. Leaves are compound. bipinnate and
paripinnate and are spirally arranged. The leaflet is ovate with an acute tip and oblique
leaf base. The tree flowers during March and April at the time of leaf emergence,
producing small, yellow, compound flowers. Seeds mature from February to March
(Phukittayacamee 1993) in pods that are red brown colored, 3.5-6 cm wide, 12-17 cm
long. hard and smooth. Each pod normally contains 7-10 seeds. The seed is flat, brown
colored, about 1-cm wide and 1.2-cm long (Smitinand and Larsen 1985).

Iron wood is extremely hard and dense. It is used in construction of bridges, house
flooring and structural posts, boats, railway ties, and agricultural implements (Smitinand
and Larsen 1985). Bark is used as a red dye for fabrics_and the leaves are used for

medicinal purposes (Santisuk and Niyomthamma 1983).



As a result of its slow growth, there are no large scale reforestation programs
using Xylia xylocarpa in Thailand. However, it has been reported that in Sabah.
Malaysia, experimental trials using Xylia xylocarpa exhibited high growth rates in the
first year following planting. Phukittayacamee et al. (1993) also suggested that X
xylocarpa is a potentially suitable species for planting in dry areas with high temperature.
2.2 High temperature stress and high temperature acclimation in plants

2.2.1 Introduction

Plants growing in nature or in plantations are frequently exposed to various
environmental stress factors, which limit their growth and distribution (Hale and Orcutt.
1987. Lang 1993). Biotic and physicochemical stresses are especially detrimental to
young seedlings. Biotic stresses such as herbivory, can result in a pronounced reduction
in growth rates (Treshow 1970). Physicochemical factors, including extremes of
temperature and availability of water, constitute the most serious limitation for optimal
growth of both crop plants and forest trees (Kramer 1980, Boyer 1982). There is
evidence that temperature is one of the most important factors limiting plant distribution
and it may affect to plant evolution. Daubenmire (1974) showed that rates of mutations
increased with increased temperature under experimental conditions. Woodward (1983)
suggested that differences in specific leaf area between upland and lowland species may
be due to differences in air temperature. Plants are sensitive to changes in ambient
temperatures and they cannot escape stressful temperatures (Nitch 1963). Therefore,
plants must have mechanisms to prevent damage from undesirable temperature by either

avoiding or tolerating stress.



Plants dissipate heat to the surrounding atmosphere by radiation, conduction. and
convection (Larcher et al. 1973). However, transpiration is considered to be the most
efficient mechanism for heat dissipation from plants. Plants which are adapted to
different habitats have different mechanisms to control leaf temperature under high
temperature conditions. Desert species, like cacti and agave (Agave shawii ), close
stomata during the day to reduce water loss through transpiration (Ehrler 1975). In
addition, leaf temperature is controlled by air circulation around the leaf. Transpiration
rates in many plants. including maize (Zea mays L.) and mesquite (Prosopis chilensis
Stuntz) are high when these plants are exposed to high temperatures (Ehrler 1975). Itis
difficult to provide an adequate quantitative estimate of heat stress in plants since this
response depends on a number of factors including the thermal adaptation of the
particular species to their habitat, genetic make-up among different species and within
species (Krishnan et al. 1989), the duration of the exposure to high temperature, and the
activity or stage of growth of the exposed tissue (Levitt 1972, Larcher et al. 1973.
McWilliam 1980, Landis et al. 1992). For example, Koppenaal and Colombo (1988)
reported that the current year’s shoots of Picea mariana were more sensitive to heat stress
than older shoots. Clonal variation with respect to heat tolerance of black spruce root
cuttings, has been observed (Colombo et al. 1992). Higher plants from thermally
contrasting habitats show considerable differences in photosynthesis, membrane fluidity.
water relations, stomatal responses, floral fertility, and protein synthesis (Berry and
Bjorman 1980, Cherry et al. 1987).

Heat stress affects many plant processes and can alter the permeability of cellular

membranes (Berry and Bjorman 1980). In addition, high temperature alters enzyme



stability (Burke et al. 1988, Burke 1990), photosynthesis, and respiration (Bjérman et al.
1980). Even slight increases above the optimum temperature, may affect the
physiological and biochemical processes of plants (Singla et al. 1997). Growth and vield
of plants are often reduced (Burke 1988, Harding et al. 1990).
2.2.2 Photosynthesis and growth

Temperature plays a significant role in controlling metabolic activity. chemical
reactions, gas solubility, mineral absorption, and water uptake (Treshow 1970).
Photosynthesis is among the most sensitive mechanisms in plant cells to high temperature
(Havaux 1993). However, the mechanism of plant resistance to high temperature and the
process of photosynthetic inhibition by high temperatures have not been thoroughly
studied. One reason for the scarcity of research data is that photosynthesis is a complex
process in the plant cell. Hypotheses explaining the decline in photosynthetic activity
include loss of photosynthetic pigments, changes in electron transport capacity. and a
decline in phosphophorylation and CO, fixation efficiency (Stoddart and Thomas 1982).

Studies of isolated membrane systems have shown that heat treatment of
chloroplasts results in the inactivation of photochemical reactions in thermolabile
thylakoid membranes, leading to the cessation of photosynthesis (Santarius 1975, Berry
and Bjsérkman 1980, Santarius 1980, Thebud and Santarius 1982). Thebud and Santarius
(1982) also demonstrated that changes in the permeability of the tonoplast and
plasmalemma in protoplasts from spinach (Spinacia oleracea) occur at temperatures
above those which are sufficient to inactivate photosynthesis. Other studies suggest that
high temperature limitations to photosynthesis are related to the inhibition of

photosynthetic electron transport in photosystem II (Stidham et al. 1982, Quinn and



Williams 1985, Grover et al. 1986). Inhibition of photosynthesis may also result from
slow regeneration of ribulose [,5-bisphosphate (RuBP) following high temperature
exposure (Farquhar 1979, Farquhar et al. 1980, Sage and Reid 1994).

Numerous studies have shown an upward shift in optimum temperature for
photosynthesis in plants that have been acclimated to temperatures that are higher than
their natural habitat (Berry and Bjsrman 1980). For example, the optimum temperature
for photosynthesis in Atriplex hymennelytra, Atriplex lentiformis (Pearcy 1977a, 1977b)
and Larrea divaricata (Mooney et al. 1978, Bjorman et al. 1980) increased by 2-5°C
when plants were grown at high temperature. Berry and Bjérman (1980) concluded that
plants that normally grow in cold environments appear to have a fairly limited potential
to acclimate to high temperatures, while those that grow in warm climates tend to
acclimate more easily to high temperature, but have limited ability to acclimate to low
temperature.

Temperature optima for net photosynthesis are often lower than the optima for
growth of trees (Doehlert and Walker 1981). The optimum temperature range for
photosynthesis in Douglas-fir was reported to vary from 10-22°C (Larcher 1969, Duehlert
and Walker 1981) while the optimum temperatures to growth were reported to range from
18-24°C (Brix 1971). Red alder (4/nus rubra) grown under controlled environment in a
growth chamber had an optimal photosynthetic rate at 20°C while the temperature
optimum for total dry weight increase was at 25°C (Hawkins and McDonald 1994). It is
not surprising that the temperature optimum for photosynthesis also shifts during the

growing season as illustrated by study with Viola species (Mishio 1995).



2.2.3 Membranes and lipids

Leaf cell membranes are injured by extreme temperatures (Thebud and Santarius
1982). The overall rate of photosynthesis might be affected by changes in the properties
of the chloroplast membranes (Berry and Bjérman 1980). Recently, a new concept of
thermal stress in plants has been developed that links the biochemical characteristics of a
plant to its optimal growth temperature range (Ferguson and Burke 1991). Mishra and
Singhal (1992) studied the effects of high temperature on the structure and photosynthetic
activity of wheat (Triticum aestivum) chloroplasts. Photosynthetic activity was reduced in
stressed leaves, suggesting that lipid integrity was required for sustained photosynthetic
activity under heat and irradience stress. Cell membranes consist of a lipid bilayer with
various associated proteins (Horton et al. 1992). Therefore, protein denaturation. loss of
enzyme stability, and loss of lipid stability can alter an overall membrane function. These
processes are frequently affected by high temperature (Langridge and McWilliam 1967.
Levitt 1972, Heber and Santarius 1973, Pearcy 1978, , Bjorman et al.1980, Santarius
1980. Raison et al.1982a, Raison et al. 1982b, Santarius and Weis 1988, Tuquet and
Sallé 1996). Heat injury in cell membranes is correlated with both protein denaturation
and lipid phase transition resulting in increased membrane permeability at high
temperatures (Levitt 1972, Raison et al. 1980). This increased permeability could be due
to either 1) excessive fluidity of membrane lipids, leading to the disruption of the lipid
bilayer. or 2) denaturation and aggregation of membrane proteins, leading to “holes” in
the membrane or functional loss of channel and carrier proteins (Levitt 1980).
Examination of protein distribution in the thylakoid membranes of Anacystis nidulans

confirmed that the shifts in temperature induce major changes in both lipid-lipid and
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lipid-protein interactions in biological membranes (Raison et al. 1980). However,
depending on the functions of each membrane system in plant cells, responses to high
temperature stress and inactivation temperatures can vary. Zhang et.al. (1993) suggested
that two stages may be involved in heat injury to plants. An alteration of membrane
function may lead to electrolyte leakage to extracellular spaces, and structural damage
may lead to fatal membrane disintegration. Thebud and Santarius (1982) reported that the
plasma membrane loses its permeability at temperatures above those which cause
inactivation of photosynthesis. Other potential causes of injury to membranes include the
loss of photophosphorylation capability and changes in the organization of chlorophyll
within the membrane (Raison et al. 1980).

The composition of membrane lipids from leaves and chloroplasts of high
temperature acclimated plants were studied in several plant species. Raison et al. (1982b)
reported that chloroplast membranes of Nerium oleander showed no significant changes
in the proportion of neutral lipids, galactolipids and phospholipids during acclimation.
but the proportion of linolenic acid (18:3) in total chloroplast lipids decreased in
chloroplasts acclimated to high temperature (Raison et al. 1982a). On the other hand,
Raison et al. (1982a) found that the proportion of unsaturated to saturated fatty acids in
polar lipids decreased when Nerium oleander plants were grown at 45/32°C day/night
conditions. Pearcy (1978) also reported that saturated fatty acids in leaf lipids of Atriplex
lentiformis increased following an increase in growth temperature and showed that heat
treatment of isolated chloroplasts from high temperature growth regimes caused no

reduction in photosystem II, possibly due to an increase in saturated lipids. Berry and
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Bjorman (1980) and Raison (1980) concluded that these decrease in the proportion of
unsaturated fatty acids to saturated fatty acids of polar lipids is consistent with changes in
fluidity, and provided evidence that chloroplast membrane lipids play a major role in
photosynthetic acclimation to high temperature. Similar observations were also reported
in algae and bacteria (Gaughran 1947, Holton et al. 1964, Kleinshmidt and McMahon
1970). In contrast, Santarius and Miiller (1979) and McCourt et al. (1987) demonstrated
that unsaturated fatty acids of chloroplast membranes were not associated with the
increase in photosynthesis observed during heat acclimation and Gombos et al. (1994)
demonstrated that saturated fatty acids of the thylakoid membranes do not enhance
photosynthesis in heat-stressed Synechocystis sp.

2.2.4 Heat shock proteins

Plants respond to high temperature stress by synthesizing an assortment of
proteins. termed heat shock proteins (HSP). These HSPs are usually not detectable at
optimal growing temperatures (Krishnan 1989). However some HSPs that function as
chaperones may be present in small amount in cells at all temperatures (Taiz and Zeiger
1991, Lin et al. 1984). High temperature hardening treatment induces several HSPs in
developing plant tissues including germinating embryos (Kraus et al.1995, Helm and
Abernathy 1990, Helm et al. 1989, Howarth 1989), mid-maturation seeds (Altschuler and
Mascarenhas 1985), imbibed seed (Brodl et al. 1990, Kraus et al. 1995), and young roots
(Cooper and Ho 1983, Necchi et al. 1987). Although some of the functions of HSPs in
plant cells are still obscure, evidence has shown that they play a significant role in heat
tolerance (Lin et al. 1984, Vierling 1991, Nguyen et al. 1994, Singla 1997). Plants

exposed to a period of non-lethal high temperature, were able to tolerate higher, normally
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lethal temperature (Lin et al. 1984). Helm et al. (1989) suggested that HSP expression of
imbibed embryos might be related to seed vigor of wheat. Another possible role of HSPs
is an association with protein synthesis during heat stress in order to sustain proteins
already present and recycle other proteins (Cooper and Ho, 1983). Linquist and Craige
(1988) and DeRocher et al. (1991) suggested that HSPs might play a role in preventing or
repairing damage caused during stress. Singla et al.(1997) hypothesized that HSPs have
4 possible roles at the molecular level: 1) facilitating maturation of newly-synthesized
proteins in their capacity as molecular chaperons (HSP 70s, HSP 60s and HSP 90s). 2)
proteolysis of denatured proteins, 3) helping in disaggregation of protein aggregates
forrne‘d during heat stress (HSP 100s), and 4) stabilizing mRNA molecules in the form of
heat shock granules during heat shock conditions (HSP 70s and HSP 20s).

In plants, HSPs can be induced by chilling stress (Cabane et al. 1993). cold
acclimation (Neven et al. 1992), cold and salt stress (McElwain and Spiker 1992),
oxidative stress (Donati et al. 1990), metals (Neumann et al. 1994), arsenite (Lin et al.
1984. Kimpel and Key 1985, Ederman et al. 1988), water stress, abscisic acid, wounding
(Heikkila et al.1984) and insecticides (Ree et al. 1989). Expression of HSPs in plants is
not only found in controlled conditions, but can also occur in natural environments
(Kimpel and Key 1985, Hernandez and Vierling 1993, Nguyen et al. 1994). These
observations indicate that plants may cope with many stresses in a similar manner.
However, the production of HSPs is not a universal response to stress (Vierling 1991).
Moreover, HSPs have been found in non-stressed plant organs such as flowers, seeds and

seed pods (Hernandez and Vierling 1993, Vierling and Sun 1987).
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HSPs have been localized in many compartments of plant cells including the
chloroplast stroma of barley (Hordeum vulgare) (Clarke and Critchley 1992), cytoplasm,
plastids and endoplasmic reticulum of maize (Vierling 1991, Helm et al. 1993, Cooper
and Ho 1987), golgi, mitochondria, and plasma membrane of maize and soybean (Glycine
max) (Cooper and Ho 1987, Lin et al. 1984), nuclei and ribosomes of soybean (Lin et al.
1984). Most HSPs are encoded by nuclear genes and synthesized in the cytoplasm prior
to translocation into the interior of specific organelles (Clarke and Critchley, 1992. Nover
et al, 1989, Vierling, 1991). Fractionation of stromal and thylakoid membrane
components showed that all chloroplast heat shock proteins were synthesized on
cytoplasmic ribosomes and translocated into the stroma of the chloroplasts (Nover et al.
1989).

HSPs have been divided into 6 classes according to their molecular weights and
homology of amino acid sequence (Neumann et al., 1989, Clarke and Critchley 1992):
class 1. HSP 110 (95-110 kDa), class 2, HSP 90 (80-95 kDa), class 3. HSP 70 (63-79
kDa), class 4, HSP 60 (53-62 kDa), class 5, HSP 20 (10-30kDa), and class 6, HSP 8.5
(ubiquitin). Low molecular weight (LMW) HSPs (10-30 kDa) are abundant in plants
during heat stress conditions and they are actively involved with thermotolerance (Lin et
al.,1984, Hsieh et al. 1992, Hernadez and Vierling, 1993). Although all the functions of
HSPs in plants cell have not yet been defined, the induction of HSPs appears to coincide
with an increase in tolerance to several stresses (Lafuente et al. 1991).
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CHAPTER THREE

Gas Exchange of High Temperature Acclimated Xylia xylocarpa Seedlings in

Response to Air Temperature

3.1 Introduction

Poor seedling establishment after field planting is an important reforestation
problem in tropical regions. Seedlings are often raised in tree nurseries under conditions
that are optimal for growth. However, these conditions do not reflect field conditions.
where seedlings may experience temperature extremes and drought. Heat stress can
affect many physiological and biochemical processes including photosynthesis. enzyme
activities. hormone production and membrane permeability (Treshow 1970. Berry 1975.
Levitt 1980. Bjorman et al. 1980, Sage and Reid 1994). Havaux (1993) demonstrated that
an increase in temperature to 32°C can inhibit photosystem II reactions in potato
(Solanum tuberosum L.) leaves. Plants grown at moderately high temperatures were more
tolerant of subsequent stress conditions and had increased thermal stability of their
photosynthetic apparatus (Chen et al. 1982). In several studied shrub species.
preconditioning to high temperature over both short and long periods of time shifted the
photosynthetic optimum either upward or downward (DePuit and Caldwell 1975, Pearcy
1976, Pearcy 1977, Mooney et al. 1978). The response depended on species adaptability
to natural habitats and their ability to acclimate to the environmental temperature (Mishio
1995). This photosynthetic adaptation and variation in the ability to acclimate to high

temperature within species and among different species has been shown for several
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herbaceous plants, shrubs and forest trees (Fryer and Ledig 1972, Mooney et al. 1975,
Slatyer 1977, Mooney et al. 1978, Chaisompongpan 1990, Mishio 1995). Although the
relationship between temperature, optimal growth and optimal photosynthesis have been
extensively studied in numerous species of trees (Hellmers and Sandahl 1959, Brix 1971,
Hawkins and McDonald 1994), the literature describing variations in acclimation
potential to high temperature is still limited, especially for tropical trees.

Xylia xylocarpa is an economically important native tree species in Thailand. This
tree has been recognized and endorsed by the Royal Forest Department of Thailand as a
silvicultural species suitable for reforestation programs. A mature tree of Xylia xylocarpa
grows well under high temperatures in natural stands (Phukittayacamee et al. 1993) and.
therefore, it appears to be suitable for the reforestation of hot and dry sites. However, the
effects of high temperature and high temperature acclimation mechanisms in seedlings
have never been studied.

The principal objectives of the present study were to examine gas exchange
patterns and growth of X xplocarpa seedlings derived from 3 seed sources and
acclimated to different growth temperatures.

3.2 Materials and Methods

3.2.1 Seed sources and seed collection

Seed of Xylia xylocarpa were collected from 3 different locations in Thailand:
Maehongson (latitude 19° 48’ N and longitude 97° 55° E), Kanchanaburi (latitude 14° 01°
N, longitude 99° 32’ E), and Nakornratchasima (latitude 14° 30’ N, longitude 101°57" E),

representing northern, western, and northeastern Thailand respectively. The mean
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annual temperatures averaged over 35 years are 25.5, 28.1 and 26.4 for Machongson.
Kanchanaburi and Nakornratchasima respectively. The relative humidity ranged from 50-
90% throughout the year with the annual rainfall of 1115 to 1274 mm (Table 3-1). All
sites have similar soil properties with sandy to sandy clay loam soil of moderate to low
fertility (Table 3-2).

Mature pods were collected in March and April, 1992 from a minimum of 10
parent trees per seed source. The parent trees at each source were spatially separated by a
minimum of 100 m (Table 3-3). Seed pods were opened following 5-7 days of sun
drying and seeds were kept at -2°C in plastic bottles before air shipment to the
University of Alberta in 1994.

3.2.2 Seed germination

Seeds were scarified by soaking for a few seconds in boiling water to enhance
germination and assure its uniformity (Phukittayacamee, 1993). Pre-soaked seeds were
placed on moist sand in clear polycarbonate germination boxes under the following
conditions: 30/25°C day/night temperatures, 12-hour photoperiod (PAR 400 pmolm™s™)
and 40-60% relative humidity in a growth chamber. The boxes were closed at all times
during germination to maintain high humidity.

3.2.3 Growth conditions

When the first two leaves had emerged (seedlings about one-week-old), plants
were transplanted into 7.5-cm diameter pots filled with Terra-Lite 2000 Metro-Mix 290
soil (Grace Horticultural Products Ltd.). The seedlings were placed in Conviron CMP

3244 growth chambers which were set at 25°C day temperature for 8 hours and 20°C



26

temperature for 16 hours, 12-hour photoperiod (PAR 400 pmol m™s™).Relative humidity
ranged from 50to 70 %.

After 4 weeks, seedlings were divided into two groups and placed for 8 weeks in
growth chambers under different growing regimes as follows: 25 and 30°C temperature
for 8 hours and 20°C temperature for 16 hours, and 35 and 40°C temperature for 6
hours and 20°C temperature for 18 hours. All treatments were given 12-hour photoperiod
(PAR 400 pmolm“s™). Seedlings were fertilized weekly with 50 mL of 0.5g/L 20:20:20
(N-P-K) commercial fertilizer.

3.2.4 Gas exchange and growth

After two months, diameter at root collar and seedling height were measured. Net
photosynthetic rates. transpiration rates, stomatal conductance and water use efficiency
(WUE) was measured using an ADC LCA-4, infrared gas analyzer with a PLC4 (&)
cuvette. Water use efficiency was calculated as the pmoles of absorbed CO, divided by
the mmoles of transpirational H,0. A quartz halogen lamp was positioned adjacent to the
leaf surface to boost light intensity to approximately 900-1300 pmol m™s”. Plants were
removed from growth chambers immediately before the measurements. Seedlings from
each seed source were measured sequentially to minimize the impact of diurnal variation.

Measurements of gas exchange were performed by two different methods. In first
method, gas exchange was measured at the actual day temperature of the individual
growth regime (25, 30, 35 and 40°C ) the second method, measurements were made at

25°C. Seedlings were placed at 25°C for at least an hour before the measurements. One
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fully developed leaf from each seedling was taken for the measurements. Leaf areas were
measured using a LI 3100 leaf area meter (LiCor Instruments Corp.).

3.2.5 Temperature treatments

Responses of acclimated seedlings to different temperatures were examined by
placing seedlings from each growth temperature treatment in a growth chamber at 20°C
for 30 minutes and increasing the temperature of the growth chamber to 50°C in 5°C
increments every 30 minutes. The seedlings were removed from the growth chamber
several minutes prior to the measurements and placed at room temperature (25°C). The
same leaf was used for gas exchange measurements throughout the entire experiment.

For electrolyte leakage, two leaf discs. 1.5 cm in diameter, from each temperature
treatment. were cut with a cork borer. Leaf discs were washed for 1 hour in 10 mL of
deionized water to remove eletrolytes from cut cells. The leaf discs were then incubated
in fresh deionized water at room temperature for another 5 hours and the conductivity of
the solutions was measured. Total electrolyte content was determined in leaf discs
plunged for 10 minutes in liquid nitrogen and then placed at -80°C over night. The next
day, frozen leaf discs were incubated for 24 hours in deionized water and the total leaked
electrolytes were measured using a portable electrical conductivity meter (Model C33,
Fisher Scientific Ltd.).

All experiments were replicated twice with 6 seedlings per replicate and plants
were placed in different growth chambers to minimize effects of growth chamber

variations.
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3.2.6 Data analysis

General linear model (SAS 6.1 computer package) was used to perform the
analysis of variance among seed sources, growth temperatures, temperature treatments
and replications for net photosynthesis, transpiration, stomatal conductance, water use
efficiency, height, stem diameter, and electrolyte leakage. Seed sources, growth
temperature, and temperature treatment were considered as fixed factors, while replicates
were denoted as a random factor. The analysis of variance (ANOVA) model for gas
exchange of acclimated seedling is :

Yiu=u + R +5;+(RS);+ G, +(RG), + (SG) + (RSG)y, + Errory,
while the model for gas exchange of acclimated seedlings responses to temperatures is:

Y =u+R+8§ +(RS); + T, + (RT)y + (ST) + (RST), + G, + (RG), + (SQ), +
(TG)y + (RTG)yy + (STG)y + (RSG); + (RSGT)yy + Errory,,.
Where

Y = observed mean:

u = population mean;

R; = number of replications (i =1.2);

S, = seed source (j =1,2,3),

G, = growth temperature (k = 1, 2,3,4),

T, = temperature treatment (I1=1, 2, 3,...7)

Student-Newman-Keuls test at P< 0.05 was used to determine statistically significant

differences within the seed sources.



3. 3 Results
3.3.1 Growth and leaf morphology

Different growth temperatures induced significant differences in seedling height
(P<0.00385), stem diameter squared times height (D’H) (P<0.0181), but not stem
diameter (Table 3-4). Height, diameter and D’H among seed sources were also
significantly different at P<0.0105, P<0.0303 and P<0.0215 respectively (Table 3-4).
Seedlings from Maehongson and Kanchanaburi grew taller and had higher D’H at
35/20°C and 30/20°C compared to 25/20°C and 40/20°C (Table 3-4, Fig.3-1). Seedlings
grown from the Nakornratchasima seed source were smaller compared with
Kanchanaburi and Maehongson seed sources (Fig. 3-1) in all growth temperatures. Leaf
morphology of seedlings was affected by growth temperature. Seedlings grown at
25/20°C had different leaf shapes than those grown at 30/20°C and 35/20°C (Fig.3-2).
Leaves of seedlings grown at 40/20°C had a distinctive shape and were smaller and
thicker (Fig. 3-2).

3.3.2 Gas exchange

When measured at their day growth temperatures, there were no significant
differences in net photosynthesis, transpiration rates, stomatal conductance, and water use
efficiency in seedlings grown at different growth temperatures (Table 3-4. F ig. 3-4). In
contrast, when measured at 25°C seedlings grown at higher temperature had higher net
photosynthetic rates (P<0.0041), transpiration rates (P<0.0089) and stomatal conductance
(P<.0064) but not water use efficiency (Table 3-4, Fig. 3-4).

In temperature treatments, net photosynthetic rates responded similarly to

different temperatures in the studied seed sources. However, seedlings from different
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growth temperatures differed with respect to net photosynthesis at all temperatures (Table
3-5, Fig. 3-6, 3-7, 3-8). Seedlings grown at 40/20°C day/night temperature had higher
photosynthetic rates than the other growth temperatures for all temperature treatments.
Net photosynthesis gradually decreased with increased temperature and was negative at
50°C in seedlings grown at 25/20°C, 30/20°C and 35/20°C. However, the seedlings
grown at 40/20°C maintained positive net photosynthesis as temperatures reached 50°C
(Fig. 3-6, 3-7, 3-8).

Transpiration rates and stomatal conductance were also influenced by growth
temperature (P<0.0163, P<0.0001, respectively) (Table 3-5, Fig. 3-6, 3-7, 3-8). but there
were no significant differences between the different seed sources. Seedlings grown at
40/20°C day/night temperature had higher transpiration rates and stomatal conductance
at 20°C compared with the plants grown at lower temperatures (Fig. 3-6. 3-7, 3-8).
Transpiration rates gradually decreased with increasing air temperature followed by a
sharp increase again at 50°C. However, at 50°C, transpiration rates and stomatal
conductance of seedlings grown at 40/20°C were lower than those of seedlings grown at
the lower growth temperatures (Fig. 3-6, 3-7, 3-8).

Seedlings from the Nakornratchasima source grown at 30/20°C day/night
temperature had higher water use efficiency than that in other growth temperatures but
their water use efficiency declined sharply at 50°C (Table 3-5 and Fig. 3-6, 3-7, 3-8). In
contrast, plants from the Kanchanaburi and Maehongson grown at 40/20°C day/night

temperature had higher water use efficiency over the full range of temperature treatments
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compared with the seedlings from the lower growth temperatures (Table 3-5 and Fig.3-6.
3-7, 3-8).

There were no significant differences in electrolyte leakage between the different
seed sources but there was an interaction effect between different seed sources and air
temperature (P<0.0002) (Table3-5). Seedlings grown at 40/20°C day/night temperature
did not show increased electrolyte leakage throughout the range of experimental
temperatures from 20 to 50°C, whereas seedlings grown under 25/20°C, 30/20°C, and
35/20°C had significantly increased electrolyte leakage at 50°C (P<0.0001) (Table 3-5
and Fig. 3-6, 3-7, 3-8).

3.4 Discussion

Xylia xylocarpa seedlings had the highest height growth and D*H when grown at
the day temperature of 35°C. This is higher than the optimum growth temperature
recorded for seedlings of temperate trees (Hellmer 1966a, Hellmer 1966b, Larson 1967,
Brix 1971, Habj@rg 1972, Slatyer and Ferrar 1977, Hawkins and McDonald 1994).
Seedlings from all three seed sources responded in the same manner to growth
temperatures.

Seedlings did not show any signs of injury when grown at 40/20°C day/night
conditions, but interestingly, changed their leaf morphology. This could be interpreted
as a heat avoidance mechanism (Levitt 1980). Leaf dimorphism is thought to be induced
by abscisic acid (ABA) (Young et al. 1990, 1995) and it is possible that high temperature
induced ABA synthesis in X. xylocarpa, in turn, affected leaf morphology. Many plant

species can acclimate to extreme temperatuare conditions by modifying leaf
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characteristics and leaf orientation (Mooney et al. 1975, Wainwright 1977, Ehleringer and
Mooney 1978, Rawson et al. 1978). Temperature has been shown to have a pronounced
influence on specific leaf area and leaf shape in both field and controlled systems
(Bensink 1971, Woodward 1983). It was shown that temperature affects growth mainly
by influencing the leaf area and number of leaves rather than by changing the rate of
photosynthesis per leaf unit (Brix 1967, 1969). In Xylia xylocarpa, the number of leaves
per seedling from 25/20°C and 40/20°C growth temperatures was lower than that in
30/20°C and 35/20°C growth temperatures (data not shown). However, at their growth
temperatures, net photosynthesis of seedlings grown at 25/20°C, 30/20°C, 35/20°C.
40/20°C was not significantly different. The small decrease in net photosynthesis in
seedlings grown at 40/20°C compared with other growth temperatures was statistically
significant only when the data were combined from seedlings of all three seed sources.
Interestingly. when measured at 25°C, seedlings grown at 40/20°C day/night
temperature had higher net photosynthesis than those in other growth temperatures. This
adjustment in photosynthesis of seedlings grown at 40/20°C day/night temperature may
be important for growth in high temperature environments where temperatures fluctuate.
This could explain why X xylocarpa seedlings from Kanchanaburi and
Nakornratchasima grown under high temperature regimes had the same height as
seedlings grown at 25°C and 30°C day temperature even though they had fewer and
smaller leaves. Seedlings grown at 40/20°C photosynthesized at higher rates in the

morning before the temperature rose to 40°C.



Photosynthetic temperature response curves tend to shift as a result of acclimation
to growth temperature, seasonal changes, and previous adaptations to habitat (Fryer and
Ledig 1972, Pearcy 1977, Mooney et al. 1978, Mishio 1995). When plants from the same
habitat were grown under different temperatures, there were differences in the optimum
temperature for photosynthesis (Mooney et al. 1978). Plants and environment have
complicated interactions which may involve plant genetic and metabolic adjustment
(Terri 1980, Long 1985). In this study, seedlings that were grown under different
temperature regimes were subjected to a range of temperatures from 20 to 50°C, which
resulted in decreased net photosynthesis as temperature increased. The data obtained for
Xylia xylocarpa did not fit a parabolic graph shown in previous studies (Slatler 1977),
probably due to a high starting temperature. However this might also represent a unique
photosynthetic response of Xylia xylocarpa seedlings or tropical tree species in general.

Seedlings grown at 30/20°C day/night temperature from the Nakomratchasima
seed source had higher net photosynthetic rates and water use efficiency than plants from
the remaining growth temperatures. The differences in photosynthetic temperature
response are probably due to the adaptation of trees from this seed source locations to the
natural habitat. Nakornratchasima has the lowest maximum temperature average of the
three seed sources (Table 3-1). This is in agreement with other studies which
demonstrated that plants from cooler climates have poor ability to acclimate to warm
climate and vice versa (Mooney et al. 1975, Mooney et al. 1978, Berry and Bjsrman

1980).
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When exposed to moderate temperatures, transpiration rates and stomatal
conductance of X. xylocarpa grown at different temperatures appeared to follow a trend
similar to net photosynthesis. Similar observations were recorded for another tropical
tree species, Manilkara sp., from the evergreen forest in Venezuela (Mullerstael 1987)
However, when subjected to 50°C, seedlings grown at 25/20, 30/20 and 35/20°C
day/night temperatures had negative net photosynthesis while transpiration rate and
stomatal conductance increased. This indicates that CO, limitation were not responsible
for the observed decline in photosynthesis at 50°C. The increase in transpiration likely
consisted of a heat dissipation mechanism, characteristic of a number of mesophytic and
xerophytic plants (Ehrler 1975).

At 50°C. seedlings from 25/20°C, 30/20°C, and 35/20°C day/night growth
temperatures showed signs of membrane damage, indicated by increased electrolyte
leakage. Seedlings grown at 40/20°C day/night temperatures were able to maintain
positive net photosynthesis and did not show an increase in ion leakage, suggesting that
the increase in thermotolerance may, in part be due to increased thermostability of cell
membranes (Chen et al. 1982, Chaisompongpan et al. 1990). Other changes including
enzyme activities, hormone production, and the synthesis of new proteins may also
contribute to an increase in thermostability (Berry and Bjsrman 1980, Levitt 1980,
Caemmerer and Farquhar 1981, Verling 1991).

In summary, the present study showed that gas exchange processes in X
xycocarpa were altered by different growth temperatures. Seedlings grown at 40/20°C

day/night temperature showed improved thermotolerance and increased photosynthetic
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stability when exposed to high temperature stress. At moderate temperatures,
transpiration rate and stomatal conductance responded similarly to photosynthesis, but
50°C induced an increase in transpiration and stomatal conductance and a decline in net
photosynthesis.
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Table 3-1. Weather conditions in each seed source location averaged over 30-35 years

Seed source Temperature°C Relative humidity (%) Rainfall Year
(mm)

Max. Min. Mean Max. Min. Mean
(Apr.) (Jan) (annual)

Maehongson 37.7 139 255 91.7 50.6 738 1273 (1951-1985)°
Kanchanaburi 379 17.7 28.1 87.6 51.0 68.0 1115 (1951-1980)°
Nakornratchasima 36.5 162 264 90.5 52.0 73.0 1137 (1951-1980)°

! Tansiri B. et.al. 1989,
? Anapanurak W. et.al.1987,
* Arayarangsarit S. and Khawsut P. 1987

Table 3-2. Altitude and soil properties of the three seed source locations

Seed source Altitude (m) Soil type pH
Maehongson 300-500 Sandy soil, shallow, parent material sandstone 6-7
Kanchanaburi 100-200 Sandy, sandy loam soil mixed with granular, 6-7

shallow, low to moderate fertility

Nakornratchasima  200-300 Sandy loam, sandy clay loam mixed with 6-7
granular, moderate deep to shallow, low
fertility

Table 3-3. Seed collection

Seed source No. Girth Height Age Dist. among trees
of trees (cm) (m) (Yrs) (m)

Maehongson 10 70-160 20-30 20-60 2100

Kanchanaburi 10 75-150 20-30  20-50 100-500

Nakornratchasima 10 50-100 10-20 15-30 <100
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Figure 3-1. Effect of different growth temperatures (25/20°C, 30/20°C, 35/20°C and
40/20°C day/night) on Xylia xylocarpa seedlings from Maehongson (a), Kanchanaburi (b)
and Nakornratchasima (c) seed sources.






Figure 3-2. Typical leaves from Xylia xylocarpa seedlings grown at 25/20°C, 30/20°C,
35/20°C and 40/20°C day/night temperatures (Kanchanaburi seed source)
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Figure 3-3. Diameter (D), height (H) and D’H of 3-month-old Xylia xylocarpa
seedlings from Maehongson (M), Kanchanaburi (K), and Nakornratchasima (N)
grown at 25/20°C, 30/20°C, 35/20°C and 40/20°C day/night temperatures

* indicates significant difference at P<0.05. Means and SE are shown.
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Figure 3-4. Gas exchange of 3-month-old Xylia xylocarpa seedlings from
Maehongson (M). Kanchanaburi (K), and Nakornratchasima (N) seed sources

grown at 25/20°C, 30/20°C, 35/20°C and 40/20°C day/night temperatures.
Measured at the day growth temperatures. Means and SE are shown.
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Figure 3-5. Gas Exchange of 3-month-old Xylia xylocarpa seedlings from
Maehongson (M). Kanchanaburi (K), and Nakornratchasima (N) seed sources

grown at 25/20°C. 30/20°C, 35/20°C and 40/20°C day/night temperatures.

Measured at 25°C. * indicates significant difference at P<0.05. Means and SE
are shown.
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CHAPTER FOUR
Protein and Lipid Changes in High Temperature Acclimated Xylia xylocarpa

Seedlings

4.1 Introduction

The importance of high temperature stress has long been recognized for
agricultural crop plants (McDaniel 1982, Krishnan et al. 1989, Burke, 1990, Ristic et al.
1991. Nguyen et al. 1994). However, the effects of high temperature stress on forest trees
have received little attention. Colombo et al. (1992) speculated that heat tolerance of
black spruce (Picea mariana Mill. B.S.P.) is heritable within families and is likely
influenced by production of heat shock proteins. If this is true, these heat shock proteins
may be able to increase the survival of seedlings during nursery stock production,
transportation, and after planting in the forest.

Morphological, physiological, and biochemical changes occur in plants grown at
high temperature (Mooney et al. 1975, Burk 1991). Photosynthesis is considered to be
more thermally sensitive than other biochemical processes (Bjérman et al. 1980, Nash et
al. 1985). Thebud and Santatius (1982) suggested that chloroplast membranes are the
primary site of photosynthetic inactivation by heat stress. The tonoplast and
plasmalemma remain stable at temperatures above those at which photosynthesis ceases
(Thebud and Santarius 1982). The main factors determining the ability of plants to adapt
to different growth temperatures are believed to be the composition of membranes (Quinn
and Williams 1985), metabolic capacity (Mooney et al. 1975), and the control of enzyme

activity (Larcher 1969). Changes in the properties of chloroplast membranes under high
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temperature stress have been studied in many plant species and include both changes lipid
composition and changes in lipid-protein associations (Langridge and McWilliam 1967,
Heber and Santarius 1973, Pearcy 1978, Levitt 1980, Raison et al. 1982a. 1982b).
Changes in the proportions of various lipids under high temperature stress are believed to
stabilize membrane integrity, decrease membrane fluidity and decrease permeability to
electrolytes (Quinn and Williams 1985). Raison et al. (1982a) reported that membrane
fluidity in Nerium oleander grown at 20/15°C day/night temperature was higher
compared to plants grown at 45/32°C day/night temperature. Changes in membrane
fluidity were correlated with changes in the proportion of oleic and linolenic acids
relative to other chloroplast polar lipids (Raison et al. 1982b).

In addition to changes in membrane lipid, increased thermotolerance of plants has
been associated with the synthesis of heat shock proteins (HSPs) (Vierling 1991).
Changes in protein expression in plants subjected to high, sub-lethal temperatures have
been reported in many plant species both in the field and under controlled environments
(Cooper and Ho 1983, Colombo et al. 1992, Nguyen et al. 1994). Soybean (Glycine max
var. Wayne) seedlings subjected to 45°C for as little as 15 minutes produced a new set of
proteins (Lin et al. 1984). A study of two wheat (Triticum aestivum L.) cultivars showed
that the more heat tolerant cultivar produced more HSPs under identical conditions
(Nguyen et al. 1994). It is possible that some of the acclimation effects in X, xylocarpa
reported in Chapter 3 could be due to HSP production.

The main objective of this study was to examine the changes of heat stress

tolerance of Xylia xylocarpa seedlings by examining the composition of chloroplast lipids
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and the protein expression in chloroplasts and leaves acclimated to different growth
temperatures and subjected to heat shock conditions.
4.2 Materials and Methods

4.2.1 Plant material

Three-month-old seedlings from the Maehongson, Kanchanaburi, and
Nakornratchasima seed sources were grown under 4 different temperature regimes:
25/20°C, 30/20°C, 35/20°C and 40/20°C day/night as described in Chapter 3.

4.2.2 Chloroplast isolation

Four leaf samples (lg fresh weight each) from four individual seedlings
representing each growth regime were used in chloroplast isolation. Seedlings were kept
in the dark for 2-3 hours before harvesting to reduce chloroplast starch levels. The leaves
were cut into 1-2 mm wide strips and homogenized 2 X 10 seconds at 24 000 RPM in an
IKA Ultra Turrax homogenizer in 20 mL of buffer consisting of 0.33M sucrose. 0.03M
Tris-HCl pH 7.8. 0.1% (w/v) fatty acid-free bovine serum albumin. The homogenate
was filtered through 4 layers of cheesecloth and the filtrate centrifuged at 100 X g for 1
minute. The pellet containing cell debris was discarded and supernatant was centrifuged
at 1500 X g for 5 min. to pellet the chloroplasts. The chloroplast pellet was resuspended
in medium consisting of 0.33M sucrose and 0.03M Tris-HCI pH 7.8, and the suspension
was layered on top of a step gradient of 10 mL 35% (w/v) sucrose over 10 mL 70% (wrv)
sucrose. The gradient was centrifuged at 2 000 X g for 20 minutes and the chloroplasts
were recovered from the 35%/70% interface. Chloroplasts were collected and suspended

in washing medium containing of 0.33M sucrose and 0.03M Tris-HCI pH 7.8, and
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pelleted at 10 000 X g for 10 min. The resulting chloroplast pellet was resuspended in
washing medium and examined under the microscope to confirm chloroplast purity. The
chloroplasts were stored at -80°C before lipid extraction. All steps of chloroplast isolation
and purification were carried out at 3-5°C.

4.2.3 Lipid extraction

Chloroplast lipids were extracted as described by Crespi et al. (1989). Methanol (2
mL) and chloroform (1 mL) were added to chloroplast pellets followed by 1.6 mL
distilled water and 200 uL HCl resulting in a ratio of CHCl;/MeOH/H,0 of 1:1:0.9. The
solvents were vigorously mixed for 30 seconds and centrifuged for 5 minutes at 100 X g
to separate phases. The lower. chloroform phase was saved and the extraction was
repeated by adding 2 mL chloroform to the remaining mixture. The chloroform layers
were combined and evaporated under a streamn of nitrogen to near dryness.

4.2.4 Lipid purification

Lipid samples suspended in 0.5 mL chloroform were loaded on a column of
activated silicic acid (Sigma. 325 mesh). The column was sequentially eluted with 10
column volumes of chloroform to elute sterols and other neutral lipids, 10 column
volumes of chloroform-acetone (1:1, v/v) to elute monogalactosyldiacylglycerols;
MGDG, 30 column volumes of acetone to elute digalactosyldiacylglycerols; DGDG, and
10 column volumes of methanol to elute phospholipids; PL (Zwiazek and Blake 1990).
The solvents were evaporated using a vacuum evaporator and separated lipids were

suspended in 0.5 ml chloroform.
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4.2.5 Lipid analysis

Fatty acid composition was determined in purified MGDG, DGDG, and PL
fractions. Heptadecanoic acid (17:0) was added to all samples as an internal standard for
fatty acid quantification. Chloroform was removed from samples under a stream of
nitrogen to minimize oxidation and the samples were trans-esterified with 0.5 M sodium
methoxide for 20 minutes at 70°C. Fatty acid methyl esters were extracted 3 times with 3
mL hexane, pooled and dried under a stream of nitrogen to approximately 10 pL. The
samples were injected into a Hewlett Packard gas chromatograph equipped with a 30-m
long and 0.25-mm inside diameter DB225 capillary column. The initial oven temperature
of 180°C was increased 2°C/min to the final temperature of 210°C. The injector and
detector temperatures were set at 250°C and the carrier (helium) flow was 15 mL/min
with head pressure set at 150 kPa. Integration of chromatographic peaks was performed
using a 3390A Hewlett Packard electronic integrator. Chromatographic peaks were
identified by gas chromatography-mass spectrometry (GC-MS) and retention times were
used to calculate the equivalent chain length of fatty acid methyl esters as described by
Jamieson and Reid (1969). Fatty acid composition of lipids was calculated as percent
weight of total fatty acids. Two-way ANOVA was used to test for significant differences
among seed sources and growth regimes. The means represent 4 independent chloroplast
isolations. Student-Newman-Keuls test at P< 0.05 was used to determine statistically

significant differences.



4.2.6 Plant materials for chloroplast isolation following heat shock

Leaves of Xylia xylocarpa from each seed source and growth temperature were
collected before and after seedlings were subjected to heat shock conditions (47°C) for 1
hour. Mature, fully expanded leaves were selected from each seedling to minimize
variation due to leaf age. Chloroplast isolations followed the same procedure as for lipid
analyses. Two independent chloroplast isolations were done.

4.2.7 Total leaf and chloroplast protein extraction

Leaves or isolated chloroplasts were crushed in a mortar with liquid nitrogen.
Samples containing 40 mg dry weight of leaves or isolated chloroplasts. were washed
three times with diethyl ether to remove lipids and other organic compounds interfering
with electrophoresis. The dried powder was suspended in extraction buffer containing 2.5
mM Tris pH 6.8, 2-4% (w/v) sucrose, 8% (w/v) SDS. 10% (w/v)
polyvinylpolypyrrolidone. Five percent (v/v) B-mercaptoethanol was added just before
use. Samples were heated for 2 minutes at 70°C, and cooled to room temperature.
Protamine sulfate (0.01%) was added prior to 2-D electrophoresis and samples were
centrifuged at 12 000g for 10 minutes. Proteins in the supernatant were precipitated at -
80°C for 2 hours with 90% (v/v) acetone containing 10 mM dithiothreitol. Protein pellets
obtained by centrifugation were vacuum-dried prior to processing for SDS PAGE.

4.2.8 Electrophoresis

Dried protein pellets were solubilized in 200 uL sample buffer containing 0.0625
M Tris HCL (pH 6.8), 1.25% SDS, 12.5% glycerol, 1.25% PB-mercaptoethanol, and

0.001% bromophenol blue. Protein concentrations were determined using the
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bicinchoninic acid (BCA) assay (Pierce Chemical Co.) using bovine serum albumin as a
standard. Samples containing 10 pg of total protein were separated by 10% and 12.5%
polyacrylamide gels using the buffer system of Laemmli (1970) and a mini-gel
electrophoresis system (Bio-Rad).

Two-dimensional polyacrylamide gel analyses of total leaf and chloroplast
proteins from the Kanchanaburi seed source were performed following the method of
O’Farrell (1975). 20 pg of total protein were used for two-dimensional polyacrylamid
gel. Separated proteins were visualized by silver staining (Merrill and Goldman 1984).

4.2.9 Analysis of protein profiles

Silver stained gels were scanned at 1200 dpi using a Microtek Scanmaker Il
scanner equipped with a transparent media adapter. Image files were analyzed using
Molecular Analyst software from Bio Rad.

4.2.10 Expression of HSP 18.1

Protein samples from each of the three seed sources grown at different growth
temperatures and subjected to heat shock were separated on 12.5% acrylamide gels and
electroblotted to nitrocellulose (Towbin et al. 1979). The blotted proteins were probed
with rabbit anti-HSP 18.1 antiserum in 1:500 dilution (Hernandez and Vierling 1993).
Alkaline phosphatase conjugated antibodies (Sigma) raised against rabbit were used to

detect immunoreactive bands.



4.3 Results

4.3.1 Chloroplast lipids

The predominant fatty acids in total chloroplast lipids were linolenic acid (18:3). 4
linoleic acid (18:2), and palmitic acid (16:0), which together comprised about 80-90 % of
the total lipids (Table 4-1). Growth temperature affected the total amount of chloroplast
lipids measured on a fresh weight basis. The effect was statistically significantly for the
MGDG (P<0.0001) and DGDG (P<0.0053) but not for PL (Table 4-1, 4-2). The amount
of MGDG per gram fresh weight of leaves was higher for the Nakornratchasima seed
source than for the other two seed sources grown at 35/20°C day/night temperature
(P<0.0048). In addition, total MGDG and DGDG chloroplast lipid content in seedlings
grown at 40/20°C day/night temperature was higher compared to that of in the remaining
growth temperatures (P<0.05).

Oleic acid (18:1) content of the MGDG in the Kanchanaburi seed source was
significantly higher than the other seed sources (P<0.0001). In contrast, linolenic (18:3)
content was lower for the Kanchanaburi than for Nakornratchasima and Maehongson
seed sources in all of the studied growth temperatures (P<0.0098) (Table 4-1, 4-2) . In all
three seed sources, 18:2 showed an increasing trend with increasing day temperature
(Table. 4-2).

In all three seed sources, seedlings grown at 25/20°C day/night temperature had
the lowest content of 18:0 in the DGDG lipids, followed by 40/20°C, 30/20°C, and
35/20°C day/night temperature (Table 4-2). However, the Kanchanaburi seed source had

a higher content of 18:1 in DGDG lipids than the other two seed sources (P<0.0001)
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(Table 4-1, 4-2). Linolenic acid (18:3) was significantly influenced by growth
temperature (P<0.0024), and seedlings grown at 25/20°C had the greatest content of 18:3
followed by 30/20°C, 40/20°C, and 35/20°C (Table. 4-1, 4-2). The content of 16:0 from
the three seed sources was similar in the different growth temperatures and in all lipid
classes. The ratio of unsaturated to saturated fatty acids did not show significant
differences between growth temperature and among seed sources in any of the lipid
classes (Table 4-1, 4-2). There were also no significant changes in the chloroplast
phospholipid content between growth temperatures and among seed sources (Table 4-1.
4-2).

4.3.2 Gel electrophoresis

Leaves from the three seed sources grown at 40/20°C day/night temperature
contained a distinct 27-kD protein band as shown in the 1-D gel (Lane 4 on Fig. 4-1a. 4-
1b and 4-1c) and 2-D gel (indicated with a small square on Fig. 4-3d). Interestingly, the
27-kD protein band disappeared under heat shock conditions (Fig. 4-1, 4-3d, 4-4d). A 50
kD and a 39 kD protein band also increased in staining intensity in seedlings grown at
40/20°C day/night from the Maehongson seed source but not in the Kanchanaburi and
Nakornratchasima seed sources (Fig. 4-1). Chloroplast protein profiles from all growth
temperatures and HS treatments appeared similar in all three seed sources (Fig. 4-2).

Two dimensional PAGE gels of leaf proteins from the different growth
temperatures and HS treatments from Kanchanaburi seed source are showed about 10

protein spots, mostly below 45 kD (indicated with small circles on Fig. 4-3), which could
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not be detected after heat shock. The quantities of several proteins at approximately 90
kD and 28 kD increased after heat shock (indicated with small triangles on Fig. 4-4).

4.3.3 HSP 18.1

The HSP 18.1 protein was present in leaves grown at the 35/20°C and 40/20°C
day/night temperatures and in heat-shocked leaves(Lanes 3, 4, 5, 6, 7, 8 in Fig. 4-5a, 4-5b
and 4-5c respectively). HSP18.1 was not detected in leaves grown at the 25/20°C and
30/20°C temperatures, except after heat shock (Lanes 1, 2 in Fig. 4-5a, 4-5b, 4-5¢).
Leaves from the 40/20°C growth temperature contained more HSP18.1 protein compared
with 35/20°C temperature (Fig. 4-5). Purified chloroplast proteins from the different
growth regimes and heat shock treatment did not react with the HSP18.1 antiserum (data
not show).
4.4 Discussion

Changing the physical properties of membranes may play an important role in
plant acclimation mechanisms to either high or low temperatures (Pearcy 1978). Raison
et al. (1982a) reported that membrane lipids of Nerium oleander grown at 20/15°C
day/night temperature, had higher fluidity than those in plants grown at 45/32°C
day/night temperature likely due to the higher ratio of unsaturated to saturated fatty acids
(Raison et al. 1982b). Similar changes have also been observed in bacteria and algae
(Gaughran 1947, Holton et al. 1964, Kleinschmidt and McMahon 1970). In contrast,
Gombos et al. (1994) suggested that under heat stress, the proportion of unsaturated fatty
acids increases and it likely enhances the stability of the photosynthetic system. Santarius

and Muller (1979) also demonstrated that increased high temperature tolerance of
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photosynthesis during high temperature acclimation in spinach was not related to the
levels of saturated fatty acids in membrane lipids. In the present study, X. xylocarpa
seedlings grown at 40/20°C showed an increase in the photosynthetic tolerance of high
temperature (Chapter 3). In all three seed sources similar changes in fatty acid profiles
occurred, including an increased content of 18:2 in MGDG and DGDG of chloroplasts
from 40/20°C growth temperature. However, the ratio of unsaturated to saturated fatty
acids in MGDG, DGDG and PL of chloroplasts did not show significant changes.
Therefore, in X. xylocarpa, the overall proportion of unsaturated and saturated fatty acids
does not appear to be directly associated with the photosynthetic response to temperature.
The increase in the stability of photosynthesis under elevated temperature and in
thermotolerance of X. xylocarpa seedlings grown at 40/20°C day/night temperature is
probably due to other mechanisms than simply changes in the chloroplast lipid
composition.

Heat shock proteins, predominantly of low molecular weight, are produced by
plants in response to elevated temperature. Xylia xylocarpa seedlings accumulated low
molecular weight (LMW) heat shock protein during high temperature acclimation. One of
the accumulated proteins belongs to the class I LMW HSPs (DeRocher et al. 1991,
Hernandez and Vierling 1993). Antibodies against HSP18.1 were shown to recognize
multiple polypeptides in some plants (Hernandez and Vierling 1993). In X. xylocarpa, a
single immunoreactive protein band was present in seedlings grown at 35/20°C and
40/20°C day/night temperatures and in seedlings of all growth temperatures subjected to

47°C heat shock for 1 hour. However, seedlings grown at 40/20°C did not appear
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synthesize increased amounts of HSP18.1 after heat-shocked, compared to unshocked
growth temperatures. The production of HSP18.1 coincided with the increase in high
temperature tolerance of X. xylocarpa grown at 40/20°C day/night temperature as
evidenced by low electrolyte leakage and thermostable photosynthesis. Hernandez and
Vierling (1993) reported that the LMW HSP18.1 was also found in the flowers and seeds
of several pea species and Acacia constratricta at optimum growth temperatures.
Hernandez and Vierling (1993) concluded that the possible role of this protein might be
in developmental regulation. Another possible role of HSP18. may involve the
prevention of cellular damage under high temperature stress (DeRocher et al. 1991). The
absence of HSP18.1 from the chloroplast samples indicates that, in X. xylocarpa, this
protein is likely not directly involved in the photosynthetic mechanisms. However, it is
possible that seedlings grown at higher temperatures also produced other HSPs which
may have a direct role in thermoprotection of photosynthesis. Seedlings grown at
40/20°C produced a unique 27 kD protein which was not found in seedlings grown at
other temperatures. Unlike HSP18.1, this protein decreased after heat shock. It is
possible that this protein is a heat shock protein, but has a very narrow induction
temperature range. The presence of this protein also coincides with increased
thermotolerance of X. xylocarpa. Further study will be needed to determine the function
and structure of this protein.

In the present study, several proteins, from X. xylocarpa seedlings grown at
different growth temperatures, decreased or disappeared and several proteins increased in

quantity following heat shock. Although the reduction of existing proteins during heat
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shock has been reported (Cooper and Ho 1983 and Lin et al. 1984), the mechanism of
how this phenomenon might benefit plants under stress conditions is still unclear. Pea
seedlings synthesized HSP18.1 at temperatures as low as 30°C. After the removal of heat
shock conditions this protein disappeared within a few days (DeRocher et al. 1991).
Changes in protein expression have been demonstrated for a number of other heat-
shocked higher plants (Cooper and Ho 1983 and Lin et al. 1984). In soybean (Glycine
max var Wayne), the amount of normal proteins decreased while a new set of proteins
was produced when the temperature was shifted from 28°C to 40°C (Lin et al. 1984).
Cooper and Ho (1983) also reported that maize (Zea mays L.) seedlings produced 10
identifiable HSPs within 20 minutes of exposure to 40°C. When seedlings were left at
40°C for longer than 20 minutes, the 10 HSPs increased in quantity to a maximum while
another set of new HSPs was produced.

In summary, growth temperatures had a pronounced effect on the composition of
leaf proteins but little affect on chloroplast lipids and chloroplast proteins in X. xylocarpa.
These changes coincided with the increased thermotolerance observed. The predominant
heat-induced proteins observed in X. xylocarpa were those of 18.1 kD, and 27 kD and
there were several proteins identified by silver staining, that decreased or disappeared
following heat shock exposure of 47°C for 1 hour.
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Figure 4-1. 10% SDS PAGE gel analysis of total leaf proteins (10 pg per lane) from
3-month-old .XVlia xylocarpa seedlings from Maehongson (A), Kanchanaburi (B). and
Nakornratchasima (C) grown at 25/20°C. 30/20°C, 35/20°C, 40/20°C day/night
temperatures (lanes 1. 2. 3. and 4 respectively). Lanes 5. 6. 7. and 8 show leaf proteins
of seedlings grown at 25/20°C. 30/20°C. 35/20°C, and 40/20°C day/night
temperatures. respectively. after they were subjected to 47°C heat shock for 1 hour.
Molecular weight markers from Bio-Rad are indicated on the left. Proteins that
changed under experimental conditions are indicated by arrows. Protein bands were

visualized with silver stain.
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Figure 4-2. 10% SDS PAGE gel analysis of chloroplast proteins (10 ng per lane)
from 3-month-old Xvi/ia xylocarpa seedlings from Maehongson (A). Kanchanabur
(B). and Nakormnratchasima (C) grown at 25/20°C. 30/20°C. 35/20°C. 40/20°C
day/night temperatures (Lane 1. 2. 3. and 4 respectively). Lanes 5, 6. 7, and 8 show
chloroplast proteins from seedlings grown at 25/20°C. 30/20°C, 35/20°C. and 40/20°C
day/night temperatures. respectively. after they were subjected to 47°C heat shock for
| hour. Molecular weight markers from Bio-Rad are indicated on the left. Protein

bands were visualized with silver stain.
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Figure 4-3. 2-D PAGE gel analysis of 20 pg total leaf protein from 3-month-old Xylia
xylocarpa seedlings from the Kanchanaburi seed source grown at 25/20°C (A).
30/20°C (B). 35/20°C (C). and 40/20°C (D) day/night temperatures. Molecular weight
makers from Bio- Rad are shown on the left. Protein spots which changed in staining
intensity when seedlings were subjected to 47°C heat shock for | hour are circled
(Fig.4-4). The square shows a 27 kD protein produced only in seedlings grown at

40,/20°C day/night temperature. Protein bands were visualized with silver stain.
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Figure 4-4. 2-D PAGE gel analysis of 20 ug total leaf proteins from 3-month-old
Xvlia xylocarpa seedlings from the Kanchanaburi seed source grown at 25/20°C (A).
30/20°C (B). 35/20°C (C). and 40/20°C (D) day/night temperatures after they were
subjected to 47°C heat shock for 1 hour. Molecular weight markers from Bio-Rad are
shown on left. Triangles indicate spots that changed in staining intensity following

heat shock. Protein bands were visualized with silver stain.
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Figure 4-5. Western blots of 10 g total leaf proteins from the Mahongson (A).
Kanchanaburi (B). and Nakornratchasima (C) seed sources following
immunodetection with an HSP18.1 antiserum. Preimmune antiserum shown for
Kanchanaburi proteins (D). Lanes 1. 2. 3. and 4 are total leaf protein samples from
seedlings grown at 25/20°C. 30/20°C. 35/20°C. 40/20°C day/night temperatures
respectively. Lanes 5. 6. 7. and 8 are leaf protein samples from seedlings grown at
25/20°C. 30/20°C. 35/20°C. 40/20°C day/night temperatures following treatment at
47°C heat shock for 1 hour. Molecular weight markers from Bio-Rad are indicated on

the left. Alkaline phosphatase conjugated secondary antibody was used for detection.
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CHAPTER FIVE

General Discussion

Responses of plants to high temperature have been studied at different levels of
plant organization (Paull 1992). Cell processes and structures known to be altered by high
temperature include membrane integrity and fluidity (Raison et al 1982), electrolyte
leakage (Chen et al. 1982, Inaba and Crandall 1988), photosynthetic electron transport,
carbon fixation (Berry 1975), and metabolic rates (Burke 1990). Changes at the whole
plant level range from growth, gas exchange, and nutrient distribution to those in plant
morphology. However, there have been few studies that combined both whole plant and
biochemistry approach to examine plant responses to high temperature stress.

The present study demonstrated that X. xylocarpa seedlings grown in high
temperature can tolerate potentially injurious heat stress. The acclimation of plants to
40°C increased the stability of photosynthesis, increased plasma membrane integrity.
altered chloroplast lipid composition, and produced HSP 18.1 and other heat stress
proteins. Lipid composition of chlordplasts was affected by growth temperature while
chloroplast proteins remained unchanged. Changes in chloroplast galactolipids. especially
those in linolenic acid could directly influence photosynthetic reactions. In the present
study, heat-acclimated plants produced HSP18.1 protein which could also indirectly
affect photosynthetic processes and protect the integrity of the plasma membranes.

The present study suggests that long-term acclimation can increase
thermotolerance of X. xylocarpa seedlings. Therefore, long-term acclimation of X.

xylocarpa seedlings to high temperatures is recommended in nursery practices. However,
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further studies should be conducted in both a controlled environment and the field to
examine the recovery of seedlings from long-term heat stress.

In this study, seedlings from different seed sources showed differences in growth
and photosynthesis during the acclimation to various growth temperatures. Based on
these results I suggest that Maehongson and Kanchaburi seed sources should be used for
planting at moderate and high temperature sites.

In summary, the conclusions and recommendations of the present study are:

1. Plants from Kanchanaburi and Maehongson seed sources were able to adapt to
high temperature conditions.

2. Growth temperature significantly affected seedling growth, leaf morphology
and protein and lipid composition of Xylia xylocarpa seedlings.

3. Xylia xylocarpa seedlings had the optimum day growth temperatures ranging
from 30-35°C. Seedlings from the Maehongson and Kanchanaburi seed sources had
higher growth rates than the seedlings from the Nakornratchasima seed source. When
measured at the actual ambient treatment temperature, seedlings from all three seed
sources did not show significant differences in gas exchange. Seedlings grown at 40/20°C
day/night temperature significantly changed their gas exchange patterns. Net
photosynthetic rate, transpiration rate, and stomatal conductance increased when the
seedlings grown at 40/20°C day/night temperature were subjected to 25°C.

4. At moderate temperatures, transpiration and stomatal conductance of X
xylocarpa responded similarly to photosynthesis. When measured at 50°C, seedlings

grown at 25/20°C, 30/20°C and 35/20°C had increased transpiration rates and stomatal
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conductance, while net photosynthesis declined below zero. Seedlings grown at 40/20°C
day/night temperature had higher net photosynthesis after exposure to various short-
duration temperatures compared with seedlings from other growth temperatures. At 50°C,
net photosynthesis was still positive.

5. Seedlings grown at 40/20°C day/night temperature and subjected to heat stress
showed significantly increased thermotolerance and reduced leaf electrolyte leakage.

6. Changes in chloroplast lipids occurred mainly in the galactolipid fraction with
little changes in phospholipids. The major changes included those in the contents of oleic,
linoleic and linolenic acids. Different seed sources grown under different growth
temperatures appeared to have different chloroplast lipid compositions. However. the
overall ratio of unsaturated to saturated fatty acid remained constant in all temperature
treatments.

7. Leaf protein expression varied in plants grown at different temperatures.
Leaves from plants grown at 35/20°C and 40/20°C day/night temperatures contained the
HSP18.1 protein.

8. To prepare X. xylocarpa seedlings for planfing at high temperature sites, high
temperature growth conditions could be used to increase thermotolerance. A follow-up
study should be conducted to determine how seedlings grown at high temperatures in tree
nurseries perform under field conditions where they are likely to encounter both high
temperatures and drought.

9. For the future study, samples and replications should be increased to reduce the

impact of exposure time under heat stress during the measurement and the variation



among individual seedlings. More seed sources should be included since numerous
studies of crop species have demonstrated that high temperature tolerance is genetically
controlled (Chaisomponpan 1990). Other economically important native tree species
should be examined for high temperature tolerance using the conductivity test of
electrolyte leakage (Martineau et al 1979, Chen 1982).
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