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AAbbssttrraacctt  

Ultrasound has been widely used in medical diagnostic imaging to image soft 

tissues. Compared with other methods, ultrasound is superior with no ionizing-

radiation, easy portability, low cost, and the capability to provide elasticity 

information. Conventional ultrasound images provide distorted image information 

when the ultrasound beam is not normal to the bone structures. In this thesis, we 

present two imaging algorithms: reverse time migration (RTM) and split-step 

Fourier migration (SSFM), to image long bones using ultrasound. The methods 

are tested using simulated data sets. The reconstructed images show accurate 

cortical thickness measurement and provide the correct fracture dip. The images 

also clearly illustrate the healing process of a 1-mm wide crack with different in-

filled tissue velocities simulating fracture healing. Two in-vitro examples using 

fractured bones are also presented. The study has showed that the migration 

methods have great potential to quantify bone fractures and monitor the fracture 

healing process. 
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CChhaapptteerr  11..  IInnttrroodduuccttiioonn  

1.1 Background 

It was estimated that more than 2 million fractures occurred in the United States 

in 2005. This figure is projected to increase by 50% by 2025 (Burge et al., 2007). 

Fracture accounts for about 24% of injury-related cost, with billions of dollar loss 

in the United States (Finkelstein et al., 2006). Therefore, fracture diagnosis and 

care are a major health priority. Although conventional radiography is still the 

most common means to assess fracture healing, ultrasound assessment is 

emerging as a promising diagnostic tool for substitution (Atkinson and Lennon, 

2003; Legome and Pancu, 2004; McManus et al., 2008). 

1.2 Bone fractures and fracture healing process 

Bones provide the mechanical support for the body. They are different in shapes 

and can be categorized as long bones, short bones, flat bones, irregular bones, 

sesamoid bones, and accessory bones (Martini et al., 2005). There are two basic 

types of bone in the human skeleton. The outer surface of the long bone such as 

femur, tibia and humerus is coated with dense cortical bone, while spongy 

cancellous bone locates at the ends of the long bones and in the axial skeleton. 

Bovine long bones have similar structures to human long bones, except a thicker 

cortex. A cross sectional image of a long bovine bone is shown in Figure 1.1.  
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Figure 1.1: A cross section of a bovine long bone. 

There are two different mechanisms for bone fracture (Doblar et al., 2004; 

Gupta and Zioupos, 2008). The first mechanism appears when accidental loads 

on the bone exceed a certain threshold. This may happen through a fall or a 

sudden muscular contraction of elderly people with osteoporosis, a disease that 

will decrease bone mass and deteriorate micro-architecture of bone tissues. The 

other type of fracture happens due to creep or fatigue. Bones may produce micro-

cracks when constant or cyclic loads are applied for prolonged periods of time. 

Bones can also repair such micro-fractures by bone remodeling. However, if the 

micro-damage accumulates faster than the repairing, micro-cracks will be 

deteriorated to produce macro-cracks resulting in fractures.  

Fracture healing is a complex and dynamic regenerative process that 

gradually restores the structural integrity and mechanical function of the bone. 

Fracture healing can be divided into two major categories: primary bone healing 

and secondary bone healing (Phillips, 2005; Schindeler et al., 2008). Primary 

bone healing is also called direct or cortical bone healing, which requires rigid 
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stabilization of the bone ends. As a result, it is rare in real cases, since most 

fractures occurring, either treated or untreated, will cause motion to some degree. 

It is the secondary bone healing that is most common in the repairing process. 

Secondary bone healing is characterized by spontaneous fracture healing without 

rigid fixation of the fracture site. The bone healing process has three overlapping 

phases: inflammatory phase, reparative phase, and remodeling phase (Dimitriou 

et al., 2005; Phillips, 2005). The first phase starts immediately after bone fracture. 

The fracture gap is quickly filled with blood from hemorrhage, dead tissue is 

removed, and initial callus is originated. In the next phase, callus is gradually 

filled with cartilage. After that, cartilage continues to ossify and is finally 

replaced by bone. A bony bridge surrounds the fracture gap so that the fracture 

can be completely stabilized. Bone remodeling may last much longer time than 

the previous two phases, in which the original structure and shape of the bone is 

restored. In general, fracture healing can be completed in 6-8 weeks after the 

initial injury. 

1.3 Diagnosis of fracture and monitoring methods for fracture 

healing 

The universally adopted method in diagnosis of fractures is radiography, which 

will show the status of bone fracture in an X-ray image. Over the years, 

researchers have tried to involve ultrasound in the fracture diagnosis process, 

especially for fractures in children. Not only is ultrasound free of ionizing 
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radiation, but also it is an important complementary approach to X-ray because 

X-ray is not perfectly correct in the diagnosis. Controlled experiments have been 

carried out by researchers to detect fractures in children using both ultrasound 

and X-ray (Moritz et al., 2008). Results showed that the sensitivity was 92.9% for 

ultrasound and 93.2% for X-ray, and ultrasound was superior to X-ray on 

detecting clavicle fracture. Although different sensitivity values were obtained by 

several groups (Ackermann et al., 2009; Weinberg et al., 2010), they have 

unanimously come to a conclusion that ultrasound is a valuable and safe 

alternative to X-ray in the diagnosis of bone fractures. For children with trauma, 

ultrasound was even proposed to be the imaging method of choice. If compound 

fracture exists, X-ray should be used to scan the region of interest predefined by 

ultrasound (Hubner et al., 2000; Moritz et al., 2008; Ackermann et al., 2009), 

which will certainly reduce the radiation exposures.  

In an attempt to apply ultrasound to diagnose fractures, standard medical 

phased array ultrasound scanners were used with frequency ranging from 5-10 

MHz. Typical images obtained are shown in Figure 1.2. Figure 1.2(a1) is the 

image of a fractured turkey leg bone in an in-vitro study, while (a2) and (a3) are 

the sonographs of the bone in the longitudinal and cross-sectional directions 

respectively (Heiner and McArthur, 2009). Figure 1.2(b) and (c) are the in-vivo 

radiograph and sonograph of a fractured distal radius of a nine-year-old boy 

respectively (Hubner et al., 2000). We can see that the in-vitro images in Figure 
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1.2(a) are much clearer than the in-vivo image in Figure 1.2(c) due to the soft 

tissue diffractions in the in-vivo measurement. In all the experiments taken above, 

either in-vivo or in-vitro, knowledge in ultrasound physics and experience in 

operating ultrasound scanners are required. Without any knowledge about 

medical ultrasound, it is hard to interpret the sonographs. Also, ordinary 

sonograph will not provide the geometry of the internal structure because they are 

the signals in time domain (depth axis with a constant velocity of tissue). Even 

with the in-vitro case shown in Figure 1.2(a), we can tell there are fractures in 

bone, but the fracture positions might not be correctly imaged.  

 

Figure 1.2: Images of fractured bones. (a) Sonograph of a fractured turkey leg bone (in-

vitro study) (Heiner and McArthur, 2009); (b) Radiograph of a fractured distal radius of a 

nine-year-old boy; (c) The sonograph of the fracture shown in (b) (Hubner et al., 2000). 



CHAPTER 1. INTRODUCTION 

6 

In clinical studies, conventional radiography is perhaps the gold standard to 

assess fracture healing. For years, researchers have developed many other ways 

to monitor the healing process. They are dual energy X-ray absorptiometry 

(DXA), quantitative computed tomography (QCT), vibration analysis, and 

biomechanical testing (Morshed et al., 2008). DXA provides an accurate method 

of quantifying the changes in bone mineral density (BMD), which occurs during 

fracture healing (Cattermole et al., 1996; Blokhuis et al., 2000). QCT has 

expanded the benefits of computed tomography and is able to image structures 

more accurately than conventional radiography especially in assessing 

metaphyseal and periarticular fractures. Besides imaging, QCT will provide a 

quantitative assessment of callus volume as well as bone density (Augat et al., 

1997; Fardellone, 2008). Vibration analysis works by measuring the resonant 

frequencies of a vibration pulse which transmits across the fracture. Resonant 

frequencies are then analyzed to get bending rigidity and torsion stiffness, 

parameters that are related to fracture mechanical properties (Nakatsuchi et al., 

1996). Biomedical testing truly measures the stiffness and strength in bending 

and torsion. However, it requires the removal of the fixation device and may 

cause pain to the patient (Moorcroft et al., 2001; Matsuyama et al., 2008).  

Ultrasonography was also applied at the beginning of the healing process (six 

to nine weeks) when X-ray could not detect the non-ossified callus formed in the 

first stage of healing (Maffulli and Thornton, 1995; Moed et al., 1998; Craig et 
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al., 1999). There was 97% success rate in predicting the status of union in a study 

involving 47 patients with tibial fracture (Moed et al., 1998). To obtain a 

quantitative measurement of the fracture healing, computerized sonometry, a 

technique based on ultrasound axial transmission across a bone fracture is used 

(Morshed et al., 2008). Typically, an ultrasound transmitter and receiver were 

placed on each side of the fracture, directly contacting with the skin, as shown in 

Figure 1.3 (Protopappas et al., 2008). Then the velocity of ultrasound propagating 

from the transmitter to the receiver through the fracture part was measured, which 

could be compared with baseline measurement on an intact bone. The 

measurement result would determine the stage of the healing process. Apart from 

velocity, other parameters, such as fracture transmission loss and signal 

attenuations, were also simulated and experimentally measured to assess bone 

strength and monitor fracture healing (Dodd et al., 2007a; Dodd et al., 2007b; 

Dodd et al., 2008). 

 

Figure 1.3: A schematic diagram of using axial transmission technique to evaluate 

fracture healing in long bone. 



CHAPTER 1. INTRODUCTION 

8 

Another method to use ultrasound in monitoring bone fracture healing is 

based on guided waves (Prosser et al., 1999). Developed for nondestructive 

evaluation (NDE) of engineering materials, the guided wave method analyzes 

ultrasound data to obtain different guided wave modes. The modes for fractured 

and intact bones were measured and compared for the healing status (Protopappas 

et al., 2006; Protopappas et al., 2007; Gheduzzi et al., 2009). 

1.4 Imaging methods in geophysics 

Seismic imaging methods, such as travel-time tomography, diffraction 

tomography and seismic migration, are methodologies to obtain detailed images 

of the Earth’s subsurface structures. Seismic migration is the most commonly 

used tool to image the Earth’s structure. It is a process of mathematically 

transforming the observed data, which is acquired on the Earth’s surface by 

seismometers or geophones, into images of the subsurface structures. In case of 

offshore, acquisition hydrophones will be used. The imaging process will 

transform or “migrate” the seismic events to their correct spatial locations by 

refocusing the diffraction energies back to their scattering sources.  

In some sense, seismic modeling and seismic imaging are inverses of each 

other (Santos et al., 2000). Modeling describes the forward process of generating 

observed data given an Earth model, showing seismic waves propagating from 

sources to scatterers, then from scatterers to receivers. While imaging, on the 
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other hand, attempts to undo the wave propagation effects to produce a model of 

the Earth (Gray et al., 2001), which is the inverse of forward modeling.  

Migration backprojects the scattered wavefields into the Earth backward in 

time to find where they were generated. Implemented as early as 1920s, 

migration techniques have been developed into a variety of seismic tools to 

image complex structures, in time and space, in two and three dimensions, pre-

stack and post-stack, etc. Time migration moves events to the correct time, but it 

does not provide a correct geometrical model of the subsurface structures. Depth 

migration requires some knowledge about the Earth’s velocity structure to find 

locations of the reflectors. Post-stack migration uses zero-offset data (data 

acquired with source and receiver at the same position) or stacked data. Post-

stack migration is computationally fast but may deteriorate image quality because 

of the loss of information in the stacking procedure. As computers become faster, 

pre-stack migration using offset data (data acquired with source and receiver at 

different position) has become more and more popular. It requires no stacking of 

data, provides better image of the subsurface but it is more time consuming. 

Migration techniques can be divided into two categories: ray-based migration 

and wave-equation based migration. Kirchhoff migration is the dominant 

procedure in ray-based migration (Schneider, 1978; Fehler and Huang, 2002). It is 

widely used in industry because of low computational cost. It is generally a high-

frequency approximation using primary signals. The other secondary signals, such 
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as multiple reflections, will negatively affect the accuracy of the imaging results 

and will therefore be ignored in the imaging process. Wave-equation based 

migration (Claerbout, 1985) uses all wavefields to image the interior structure of 

the Earth. It is generally more accurate than ray-based Kirchhoff migration 

because there is no high frequency approximation and all primary and secondary 

arrivals are automatically considered.  

Wave-equation migration consists of two steps: downward continuation of 

the recorded wavefields into the Earth and application of imaging condition 

(Claerbout, 1985; Fehler and Huang, 2002). Finite difference (FD) and Fourier 

transform (FT) are two major numerical techniques to downward propagate the 

wavefields. In the FD-based algorithms, there are finite difference migration, 

which is a downward continuation in depth (Claerbout, 1985; Mufti et al., 1996), 

and reverse time migration (RTM), which is a downward continuation in time 

(Baysal et al., 1983; McMechan, 1983; Whitmore, 1984; Bording and Lines, 

1997). Finite difference migration uses one-way wave-equation and considers 

only the primary reflections for imaging. The RTM, on the other hand, uses the 

two-way wave equation, considers all wavefields and has the advantage of 

handling all dip angles. In FT-based algorithm, the derivatives in the wave-

equations are calculated in the frequency-space or frequency-wavenumber domain, 

rather than in a time-space domain. The FT-based migration methods, such as 

phase-shift migration (Gazdag, 1978; Gazdag and Sguazzero, 1984a), phase-shift 
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plus interpolation migration (Gazdag and Sguazzero, 1984b), and split-step 

Fourier migration (SSFM) (Stoffa et al., 1990; Huang et al., 1999), can minimize 

the artificial numerical dispersion effects commonly occurred in FD-based 

methods, and have the advantage of fast computational speed because of the fast 

FT (FFT) algorithm. However, approximations about the velocity variations such 

as ignoring the lateral velocity change are made in these methods, which may 

affect the migrated image quality. There are also hybrid migration methods, such 

as the Fourier FD method (Ristow and Ruhl, 1994), which has the advantages of 

both the FD and FT based algorithms. 

The imaging condition specifies where the reflectors are located in the 

subsurface. A commonly used imaging condition is a cross-correlation method, 

which is assessed by cross-correlating the source wavefields and receiver 

wavefields and summing over all sources (Claerbout, 1971). More technical 

details will be provided in Chapter 2. 

1.5 Application of imaging methods in other areas 

Beyond geophysics, researchers have extended the application of migration 

imaging methods to other areas, such as material testing and medicine. 

Nondestructive evaluation (NDE) techniques, which are used to detect anomalies 

in materials or work pieces, take the advantages of ultrasound, such as deep 

penetration and high resolution, in material testing. For NDE, researchers have 

attempted to use Kirchhoff migration and frequency wavenumber migration, 
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developed in the field of reflection seismology, to image embedded cracks and 

holes in concrete structures (Chang and Chern, 2000; Chang et al., 2001; Chang 

and Ton, 2001). In medical imaging, researchers have been exploring the 

application of wave-equation migration to image breast tissues (Huang et al., 

2003). They tried RTM, SSFM and Fourier finite-difference migration and 

achieved better imaging results than conventional sonography (Huang et al., 2006; 

Huang and Quan, 2007; Huang et al., 2008).  

The idea of reversing the time series also applies in other areas besides 

geophysics. Time reversal mirror (TRM), a concept introduced by Fink et al. 

(Fink et al., 1989), and widely researched in medicine for years (Derode et al., 

1995; Fink et al., 2003; Fink, 2006; Bavu et al., 2007; Fink et al., 2009), is an 

example. TRMs are used to focus wavefields through inhomogeneous media on a 

reflective target. A TRM consists of one- or two-dimensional transducer array, 

with each element connected to its own electronic circuitry. The circuitry includes 

a receiving amplifier, an A/D converter, storage memory and a programmable 

transmitter able to synthesize time-reversed version of the signals stored in the 

memory (Wu et al., 1992). The focusing process requires three steps. In the first 

step, the transmitter array illuminates the wavefields through the inhomogeneous 

medium to the target. The echoes from the target are distorted or modulated by 

the medium and recorded by the array in the second step. In the last step, the 

transducer array synthesizes the time reversed wavefields, which propagate 
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through the medium and are focused on the target (Fink, 1992). Iterative time-

reversal process can be used if the target is spatially extended or there are several 

targets to focus. The TRM techniques have been applied to medicine in lithotripsy, 

stone destruction, and trans-skull brain therapy, etc (Fink et al., 2003). Besides 

medicine, time reversal acoustics have been applied in nondestructive testing 

(NDT) (Claire, 2002; Chun, 2004) and signal communications (Heinemann et al., 

2003; Edelmann et al., 2005).  

The RTM and Fink’s TRM method are closely related. They both take the 

advantage of time reversal invariance of the acoustic wave equation to obtain 

images of reflectors in the medium. Through the images, the position of the 

anomalies and reflecting strength can be determined. The RTM achieves the 

reconstruction of the image in a virtual way. In other words, the image is 

reconstructed via a computational process, not through measurement. While for 

the TRM method, a real measurement is needed to detect the reemitted time-

reversed signals and find the point with the strongest pressure, where the 

anomalies should locate. The RTM is used to obtain the whole image of the 

subsurface layers, while the TRM performs better in locating anomalies through 

non-uniform medium. For the purpose of imaging bone fracture structure, the 

RTM is more appropriate, since we need to image the reflecting surfaces, not 

localized anomalies and the measurement can be much faster. 
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1.6 Motivation 

As being mentioned above, X-ray based technologies are the gold standard to 

image bone fractures in clinical application. The X-ray technique has the 

advantage of high resolution and fast imaging. However, ionizing radiation in the 

X-ray testing is harmful to patients, especially when long imaging or scanning 

time is required, such as CT. Moreover, X-ray devices are large and expensive, 

and professional training is required before using them. Magnetic Resonance 

Imaging (MRI) technique is an alternative to eliminate radiation, but it is much 

more expensive and time consuming for imaging bone fractures. Ultrasound, on 

the other hand, is a radiation-free technique and has been widely used in medical 

imaging, especially in soft tissues. Medical ultrasound scanners are small and 

portable. They are easy to use and affordable. To reduce radiation exposure to 

patients especially children and the medical expenses, we here present a method 

of using ultrasound to image bone fractures and to monitor the fracture healing 

process. Although some attempts have been made to use B-mode medical 

ultrasound to image bone fracture; the resulting images do not provide correct 

geometrical and structural information of the fractures. The use of seismic 

migration techniques has the potential to overcome this shortcoming and to 

reconstruct a more detailed image of the bone structure. 
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1.7 Thesis overview 

In Chapter 2, we introduce the relevant imaging theories. Exploding reflector 

model will be introduced as the basic model for zero-offset imaging. Reverse-time 

imaging and split step imaging will be discussed respectively. 

In Chapter 3, numerical simulations will be carried out using some simple 

bone models. We establish a stratified bone model to mimic long bones. Fractures 

in bones are also simplified to have regular shapes, in order to make easy 

comparisons between different cases. We demonstrate the ability of the migration 

methods in determining cortical bone thickness. Fractures with different dip 

angles are also reconstructed using migration. Noises are added to test the 

robustness of the method. In order to obtain more accurate images, iterative 

migration method is applied. At the end, we also introduce a possible way to 

detect fracture healing process using migration. In the numerical simulations, both 

RTM and SSFM methods are used and comparisons of the results will be shown 

for each case.  

Chapter 4 shows the application of migration to real data. We acquire data 

from a Plexiglas phantom, a deer cortical bone plate and a bovine long bone. The 

recorded signals are filtered, amplified and interpolated before being migrated. 

SSFM is used to focus the reflections to the exact positions where they originate. 

The reconstructed image presents the structural information of the tested samples. 

Some possible ways to obtain better experimental results are also discussed.  
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Chapter 5 will summarize the thesis and conclude the possibility of using 

migration imaging techniques to detect bone structures. 
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CChhaapptteerr  22..  TThheeoorryy  ooff  wwaavvee  eeqquuaattiioonn  mmiiggrraattiioonn    

2.1 Introduction 

The propagation of elastic waves is mathematically represented by the wave 

equation. In the imaging process, we attempt to achieve two goals. One is to 

locate the reflectors by back-propagating the wavefields recorded on the surface 

of the sample and the other is to retrieve the amplitude during the back 

propagation to estimate the reflection coefficients of the reflectors. In wave 

equation migration, one can either use the one-way or two-way wave equation. 

The one-way wave equation propagates energy in one direction, usually 

downward. It is superior to ray-based migration if multi-path exists such as 

surrounding salt bodies (Operto et al., 2000; Mulder and Plessix, 2004), but the 

method is not so accurate when the structure has sharp lateral velocity changes, 

steep slopes or dips (Albertin et al., 2002). The two-way wave equation migration, 

also called full wave equation migration, can describe wave propagation more 

accurately in a complex medium. Unlike the one way wave equation, it generally 

has no dip limitations, but the computational cost is larger; however the 

computational cost is not so much for two-dimensional (2D) cases (Mulder and 

Plessix, 2004).  
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2.2 Acoustic wave equation 

In a lossless three-dimensional (3D) medium, the linearized equation of motion in 

Cartesian coordinate is given by 

  
2 3

2
1

1,2,3
iji

j j

u
i

t x







 

 
 　 　 (2.1) 

where ( , )i iu u t x is the particle displacement in the ith direction, which is a 

function of position x and time t , ( , )ij ij t  x is the stress tensor representing the 

jth component of the traction acting across the plane normal to the ith axis, and 

is the material density, which is spatially varying.  

For an isotropic medium, the stress-displacement equation is: 

 2 ,ij ji ij ij      u  (2.2) 

where ij is the Kronecker delta,  and  are the position-dependent Lamé 

constants (Wapenar and Berkhout, 1989). The divergence is
3
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the stain tensor ij is 
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uu

x x


 
     

 (2.3) 

The bulk compression modulus ( )K x and the bulk shear modulus ( )G x are 

related to the Lamé constants by 
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(2.4a) 

(2.4b) 

In an isotropic acoustic medium, the shear stress components in the stress 

tensor reduce to zero due to 0  and K  . Equation (2.2) can be simplified to 

    ( 1,2,3).ii K i   u  (2.5) 

Substituting equation (2.5) into equation (2.1), yields 
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2

2
.K

t



 


u
u  (2.6) 

where 2 is the Laplacian operator. 

For a 2D isotropic medium with the source term added, equation (2.6) will 

turn into what is called the Helmoholtz wave-equation: 

 

2
2

2 2

1
( , , ) ( , , ) ( ) ( ),

( )
s s su t u t f t

c t



   


x x x x x x

x
 (2.7) 

where ( , , )su tx x is the acoustic wave-field at position x due to the source located 

at sx at time t, 
( )

( )
( )

K
c




x
x

x
is the spatially varying phase velocity, ( )f t is 

the source function at time t, located at sx , and  is the Kronecker delta. 

2.3 Linear scattering theory 

Due to the spatially varying velocity, it is difficult to solve directly the nonlinear 

equation shown in equation (2.7). As a result, a linearization procedure is seeked 
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to simplify this problem. The Born approximation is commonly used to linearize 

the nonlinear wave equation by decomposing the nonlinear term to a sum of 

background and perturbation components based on the assumption that the 

perturbation is much smaller than the background contribution. 

In order to derive the scattering wavefields and compute the forward signals, 

we first Fourier-transform equation (2.7) as  

 

2
2

2
( , , ) ( ) ( )

( )
s su F

c


  

 
     
 

x x x x
x

 (2.8) 

where ( )F  is the Fourier representation of the source function at the angular 

frequency . Define the acoustic velocity potential ( ) x as 

 2 2

0

1 1
( )

( ) ( )c c
  x

x x
 (2.9) 

where 0( )c x is the constant background velocity. Substituting equation (2.9) into 

equation (2.8), yields 
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 (2.10) 

The Green’s function 0G satisfies the wave equation with a background 

velocity: 
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As a result, based on the Green’s theorem, the total wavefields at receiver point rx

are a combination of the background wavefields and the scattered wavefields 

(Taylor, 1972): 

 
2

0 0( , , ) ( , , ) ( ) ( ) ( , , ) ( ) ( , , ) ,r s r s r su G F F G u d         x x x x x x x x x x  (2.12) 

where 0( , , )r sG x x is the background wavefield and the latter part is the scattered 

wavefield, which is an integration over the scattered volume. So we have changed 

the differential equation (2.10) into an integral equation (2.12).  

The scattered wavefields scu can be written as: 

 
2

0( , , ) ( ) ( , , ) ( ) ( , , )sc r s r su F G u d      x x x x x x x x  (2.13) 

which is still hard to solve since the total wavefield is not known. The first order 

Born approximation states that if the scattered wavefield is small, i.e., scu u , 

the total wavefield can be replaced by background wavefield, which means 0u G . 

As a result, the scattered wavefield can be linearized as follows:  

 
2

0 0( , , ) ( ) ( , , ) ( ) ( , , ) .sc r s r su F G G d      x x x x x x x x  (2.14) 

We write the Green’s function as a wave propagation between any two 

arbitrary points (Beylkin, 1985): 

  
( , )

0( , , ) ( , ) iG A e   x y
x y x y  (2.15) 
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where ( , )A x y is the amplitude of the ray that travels from x to y and ( , ) x y is the 

travel time for the wave to propagate between the two positions. The amplitude 

and the travel time for a ray to travel from a fixed position y  to any position x  

satisfy the transport equation and eikonal equation, respectively: 
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(2.16a) 

(2.16b) 

where   is the gradient operator. By substituting equation (2.15) into equation 

(2.14), the scattered wavefields will be written as 
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x xx x
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If we define the amplitude and travel time for the incident and scattered 

wavefields respectively as 
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(2.18a) 

(2.18b) 

then equation (2.17) becomes 

 
( , , )2( , , ) ( ) ( , , ) ( ) .r si

sc r s r su F A e d
    

x x x
x x x x x x x  (2.19) 

Using inverse Fourier transform, equation (2.19) can be transformed into time 

domain, 
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  
2
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t
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where the symbol  represents convolution. The second order derivative in 

equation (2.20) can be shifted to the source wavelet as follows (Tarantola, 1984): 

  
2
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In the 2D case, the Green’s function for any points in the far field 

( ( , ) 1 x y ) is given by (Beylkin, 1985; Miller et al., 1987): 
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where 
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As a result, equation (2.19), (2.20), and (2.21) can be simplified as: 
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Equations (2.24) are the basics for computing the scattered signals in the linear 

Born scattering theory. 

2.4 Reverse time migration (RTM) 

2.4.1 Exploding reflector model 

The exploding reflector model (Loewenthal et al., 1976), can help us understand 

the concept of migration for zero-offset or post-stack data. According to this 

model, the acoustic waves emanated from a source, travel through the medium at 

velocity v. After being reflected at an interface, part of the waves will travel back 

along the initial path to the receiver located at the same position as the source. 

Alternatively, according to the Huygens’ principle, we can consider the reflected 

waves to be generated by a series of point explosions along the reflecting surface 

at time zero and travel one way to the recording surface at half velocity v/2. For 

the zero-offset case, where source and receiver are at the same position, the 

exploding reflector response is considered equivalent to the wavefield 

propagating downward from the source to the reflector and then back to the 

receiver along the same path at the medium’s velocity. 

2.4.2 Zero-offset reverse time migration 

By using the exploding reflector model, researchers explained the idea of 

RTM through a point diffractor example, as shown in Figure 2.1 (McMechan, 

1983). This figure shows the snapshots of wavefield for a point diffractor at times 
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0,  jt t t  and
it t , respectively. The signal recorded on the surface is shown on 

the top displaying an expected diffraction hyperbola. The reflection is obvious. In 

order to image the point diffractor, MeMechan reversed the time order of the 

recorded wavefields. By using this reversed wavefield as source, the signals are 

back propagated with half the medium velocity to time zero, when the wavefield 

shows the exact position and reflection strength of the point diffractor. This 

process has the same effect as running the wavefield movie backwards in time.  

Due to Huygens’ Principle, a seismic section can be considered as the 

superposition of responses from a set of point diffractors. So when it comes to a 

reflecting surface, the procedures are exactly the same. 

 

Figure 2.1: Reverse time migration (RTM) from a point diffractor model (McMechan, 

1983). 
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An explicit FD approach is naturally applied to equation (2.7). Based on the 

second order centered FD operator in space-time (x-t), the equation is discretized 

as follows: 
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 (2.26) 

where x and z are the grid sizes in the x and z directions, t is the time step, the 

superscript n means the nth time step, while the subscripts xi and zi , are the index 

of the grid points in the x and z axes, and ( )f n is the source function at time step n. 

From equation (2.26), we can derive the expression for the forward modeling 

procedure, using the wavefields at time step n  and 1n  to obtain the wavefields 

at time step 1n  : 
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 (2.27) 

Notice that we take the increment in x and z direction the same, i.e., x z h    . 

The condition for local stability of the FD approach is / 2h t c  , which means 

that the information cannot propagate across the mesh faster than the mesh 

velocity (Strikwerda, 1989). The first order absorbing boundary conditions are 

used in the model: 
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where n̂ is the normal to the boundary. Also, to avoid aliasing effects, Nyquist 

criteria requires at least two grid points per wavelength (Liu, 1997). 

For the RTM, the procedure is almost the same, except in this case, we 

should reverse the time backward. The wavefields at time step n and n+1 are used 

to deduce the wavefields at n-1, i.e., 
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where ( )g n is the wavefields recorded by the receivers at time step n. The 

velocity ,x zi ic , an input for the migration procedure, is a preliminary assumption of 

the velocity model, which is required to be smooth and can be refined in an 

iterative process (Whitmore, 1984). Remember that only half the medium velocity 

will be needed according to the exploding reflector model. The stability 

conditions mentioned above are still required in migration. The imaging condition 

for the zero-offset case is simply achieved when the time equals to zero (Baysal et 

al., 1983). So when time is extrapolated to time zero, the wavefields will give us 

the information of the reflecting surface. 

The application of RTM to the pre-stack data is different from that for the 

post-stack (zero-offset) data set. Time extrapolation of the received data is still 
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required. However, in the pre-stack case, the exploding reflector model will no 

longer apply, so the wavefields will be back propagated to original time using full 

assumed velocity model. And the imaging condition will be achieved by cross-

correlating the source wavefields and receiver wavefields and summed over all 

sources (Bording and Lines, 1997), 

 ( , ) ( , ; ) ( , ; ).s s

s t

I z x S x z t R x z t  (2.30) 

The computing flow chart is shown in Figure 2.2. 

 

Figure 2.2: Flow chart for forward modeling and reverse time migration. 

2.5 Split step Fourier migration (SSFM) 

Because of the three different loops with respect to x, z, and t in the migration 

process, the RTM, although accurate in imaging, can take a long computational 

time. SSFM, on the other hand, is also a wave equation based migration method 
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Apply image condition
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and has the ability to compute at a much faster speed, because the computing 

procedures are performed in the Fourier domain, thus eliminating the time 

consuming FD process.  

SSFM was developed by researchers in 1990 (Stoffa et al., 1990). The 

method takes into account the laterally varying velocity by defining a reference 

slowness as the mean slowness in the migration slowness interval and a 

perturbation term that is spatially varying with position. Slowness, s is the 

reciprocal of half of velocity c according to the exploding reflector model, i.e.,

2 /s c . Following Stoffa’s paper, the acoustic wave equation (2.7) can be 

written as 

 
2

2 2

2
0p s p

t


  


 (2.31) 

where ( , )p p t x is the pressure wavefield. Here we neglect the source term in 

equation (2.7). By Fourier transforming in t, Equation (2.31) becomes 

 2 2 2( , , ) ( , , ) 0P z s P z    r r  (2.32) 

where ˆ ˆx y r i j is the horizontal position vector and ( , , )P z r is the FT of the 

wavefields ( , )p tx .  

We further decompose the slowness ( , )s zr into background and perturbation 

slowness: 
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 0( , ) ( ) ( , )s z s z s z  r r  (2.33) 

where 0( )s z is defined as the reference slowness. All variations are 

accommodated by the ( , )s z r term. Substituting (2.33) into equation (2.32), 
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If we define a term
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equation (2.34) can be simplified as 
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As a result, the inhomogeneity or perturbation in slowness will be included only 

in the source-like term ( , , )S z r . 

The split step Fourier method can be used to solve equation (2.35) by 

ignoring the 2s term in ( , , )S z r . The procedure is summarized in several steps 

as follows. First, FT the up-going wavefields at depth nz , ( , , )nP z r , from r to

rk space: 
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where ˆ ˆ
r x yk k k i j

 
is the horizontal wave vector. The second step is to apply a 

phase shift based on the vertical wavenumber using the reference slowness 
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where  

   2 2 2 2

0 0 00
1 ( / )z r rk s k s k s       (2.38) 

and 
0s is the mean slowness for the interval between nz  and nz z  . The next step 

is to inverse FT the phase shifted data 1( , , , )r nP z z k back from rk tor : 

 

2

1 1

1
( , , , ) ( , , , ) .

2
ri

n r n x yP z z P z z e dk dk 


 
 

 

 
   

 
 

k r
r k  (2.39) 

Then a second phase shift due to the perturbation in the slowness is applied, 

that is 0( , ) ( , ) ( )s z s z s z  r r  in the interval between nz and nz z  : 

 
( , )

1 1( , , ) ( , , , ).i s z z

n nP z e P z z  

  r
r r  (2.40) 

Then if we integrate 1( , , )nP z r over the frequency range of interest, the 

migrated data for the current depth will be obtained, i.e., 

 
1

2

2

1 1

1
( , ,0) ( , , ) .

2
n nu z P z d




 


 

 
  
 

r r  (2.41) 

The steps iterate and we will obtain the wavefields at all the depth sections. The 

flow chart for SSFM is shown in Figure 2.3. 
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Figure 2.3: Flow chat for the split step Fourier migration (SSFM). 

2.6 Summary  

In this chapter, we introduced the basic theory of acoustic wave equation, RTM, 

and SSFM. Acoustic wave equation is derived directly from the equation of 

motion. The exploding reflector model is the basic assumption for the zero-offset 

RTM and one-way SSFM. RTM is achieved through the FD process, which is 

quite time consuming but can provide a more accurate reconstructed image, 

especially when the velocity is spatially dependent. SSFM, on the other hand, 

performs the reconstruction in the Fourier domain and works very fast. However, 
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because of the intrinsic assumption about the slowness, some artifacts in the 

reconstructed image will be expected in a complex velocity model.  

As stated in the introduction, although these migration methods originated 

and have been actively applied in geophysics, applications of migration imaging 

in other areas are also being explored in recent years. In the next two chapters, we 

will use migration methods to image bone structures using simulated and 

experimental data sets. 
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CChhaapptteerr  33..  IImmaaggiinngg  ooff  lloonngg  bboonneess::  aa  nnuummeerriiccaall  

ssttuuddyy  

In this chapter, we simulate ultrasound data to study the migration algorithms. We 

first use the migration methods to reconstruct an intact long bone image and 

estimate the thickness of the cortical layer. Then we change the intact models to 

fractured ones. Different fracture angles and fracture sizes are simulated. A 

possible process to determine fracture healing is also studied. In each case, both 

RTM and SSFM methods are used. While the former is accurate but time 

consuming, the latter one gives us a fast way to get a decent image. 

3.1 Bone model for simulation 

A cross-sectional X-ray computed tomographic (CT) image of a bovine tibia is 

shown in Figure 3.1. As stated in Chapter 1, a long bone is mainly composed of 

cortical bone in the outer part (white area in the mid shaft), marrow in the middle 

cavity (gray area), and cancellous bones (mainly at each end of the sample). 

 

Figure 3.1: An X-ray CT image of a bovine tibia. 
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Cortical bone and marrow are two distinct materials and their ultrasound 

characteristic impedances Z are quite different. The characteristic impedance of a 

medium is defined by the product of its density,  and the speed of ultrasound, c

within it, i.e., 

 Z c  (3.1) 

If the characteristic impedances of the two media are equal, there is no reflection 

and all the incident ultrasound energy is transmitted across the boundary. If the 

characteristic impedance differs, some of the energy is reflected. When a wave is 

incident normally on the interface separating two media, the fraction of the 

incident energy which is reflected is given by the reflection coefficient: 

 

2

2 1

2 1

Z Z
R

Z Z

 
  

 
 (3.2) 

where 1Z  and 2Z  are the characteristic impedances of medium 1 and medium 2 

respectively. As a result, if 1Z  and 2Z  are very different and the contrast is large, 

almost total reflection will occur. 

The ultrasound characteristic impedance of cortical bone and marrow are 

around 6 25 10 / ( )kg m s and 6 21.5 10 / ( )kg m s  respectively. The soft tissue and 

marrow have similar impedance. This means only around 29% of the energy will 

be reflected from the cortical bone-marrow interface (Wells, 1983). Besides, 

absorption occurs when ultrasound travels in the bone. The primary reflections are 
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mainly from the first layer of the cortical bone (Le et al., 2010). So in our 

theoretical model, we use a one layer cortical bone model to mimic the mid shaft 

of a long bone.  

 

Figure 3.2: A numerical bone model for simulation. 

A numerical bone model is shown in Figure 3.2. The model has 6 mm thick 

cortical bone with 2 mm of water above and below the bone. Here we use water to 

mimic the soft tissue and marrow. A pulse echo transducer is used to send and 

receive signals (zero-offset case), and moved along a straight line from one end of 

the model to the other at a spacing increment of 0.05 mm. The signal we used is a 

Ricker wavelet (Bording and Lines, 1997) with a central frequency of 2.25 MHz 

(Figure 3.3). The ultrasound velocities are 1500 m/s for marrow and 3500 m/s for 

cortical bone (Laugier and Haiat, 2011). The model is discretized into a 600×200 

meshgrid in the x-z plane with a 0.05 mm × 0.05 mm cell size. The sampling 

frequency is 100 MHz, satisfying the requirement of Nyquist without introducing 
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aliasing. Other stable requirements of finite difference algorithms mentioned in 

Chapter 2 are also satisfied. 

 

Figure 3.3: A 2.25 MHz Ricker wavelet. 

3.2 Estimation of cortical bone thickness 

3.2.1 Forward modeling in numerical simulation 

For forward modeling, we numerically compute the signals. In our case, a finite 

difference approach is used to compute the observed signals via equation 2.27. 

Since the finite difference approach simulates full wavefields, the waves 

travel in all directions along with the wave fronts. The recorded signals will 

include the signals reflected from the interfaces and signals reflected from a 

background velocity profile. If we denote the recorded signals as U , reflected 

signals as Ur, and background signals as Ub, then the reflected signal will be Ur = 
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U - Ub. The velocity model for computing U is shown in Figure 3.4(a), which is 

composed of a layer of cortical bone bounded above by soft tissue and below by 

marrow. For the background velocity, we use the model in Figure 3.4(b), a 

smoothed version of the velocity in (a), to compute the background signal
 
Ub. 

Then the reflected signal will be the subtraction of the two. We use a disk filter 

with radius of 1 mm and a moving average of 11 points to smooth the original 

velocity model (Figure 3.4a), creating a smoothed velocity model with a blurred 

area of about 2 mm wide (Figure 3.4b). 

 

Figure 3.4: Velocity models for forward modeling: (a) a true velocity model; (b) a 

smoothed version of (a) obtained by a disk filter and moving average. 

The simulated data is shown in Figure 3.5. Each record has 1500 data points 

with time increment of 0.01 µs.  It is clear to see from the figure that the main 
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reflections are at 2.5 µs and 6 µs. The first reflection is from the soft tissue/cortex 

interface and the second one is from the lower marrow/cortex interface. The first 

reflection is much stronger than the latter one for each record as expected due to 

attenuation by distance travelled. Also, we see some artifacts in the computed 

signals, which are caused by the imperfect absorbing boundary conditions we 

used. 

 

Figure 3.5: The simulated wavefields rU using velocity models shown in Figure 3.4. The 

first reflection is from the cortex/soft tissue interface and the second one is from the 

lower marrow/cortex interface. 

The data thus simulated by this simple flat-layer model will be used to test 

the migration algorithms. One might argue that the position of the reflections can 

be calculated if we know the velocity, i.e., by multiplying the velocity of the 
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medium by half of the corresponding traveling times. However, for a complex 

velocity structure with non-parallel interfaces, simple calculation will fail and 

depth migration is able to focus the scattered wavefields to their sources, which 

are the locations of the reflectors. 

3.2.2 Imaging and thickness estimation 

The first model is intended to test the ability of the methods to measure the intact 

cortical bone thickness. For the migration part, since we assume that the true 

velocity model is unknown, the best velocity model we can use is based on the 

calculation of travel distance from velocity and travel time, which is provided in 

the signal recorded. Also, we will smooth the reflecting interfaces to eliminate the 

calculation error. As a result, the smoothed velocity shown in Figure 3.4(b) is 

used as the migration velocity model in the numerical simulation, which is the 

best guess about the velocity we can get without any knowledge of the true 

velocity distribution. 

The migrated depth images are shown in Figure 3.6. We use both methods of 

RTM (Figure 3.6a) and SSFM (Figure 3.6b). The images of the reflecting 

interface are shown by dark black and dark brown colors, where black stands for 

positive values and brown for negative values. Comparing with the velocity 

model in Figure 3.4(a), although some migration artifacts can be seen on the 

corners of the images, both methods reconstruct the images of the reflecting 

interfaces very well, showing the correct positions. In addition, the amplitude also 
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provides information about impedance contrast. For instance, the black amplitude 

is positive; showing the layer below the interface has a larger velocity than the 

layer above. The brown amplitude, on the other hand, shows exactly the opposite, 

i.e., the layer below the interface has a smaller velocity than the layer above. The 

relative velocity contrast information derived from the image is consistent with 

the original velocity model. 

 

Figure 3.6: Depth migration of intact bone model: (a) results by RTM and (b) results by 

SSFM. 

To estimate the cortical thickness, we plot the migrated depth series at a 

distance of 15 mm (Figure 3.7b) and compare it with the true velocity model 

(Figure 3.7a). The black curve in Figure 3.7(a) is the true velocity model where 

the sharp edges represent the positions of the interface. In Figure 3.7(b) the curves 
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of the migrated image are self normalized, so that the relative amplitudes fall 

within ±1. According to the exploding reflector model, the migrated images are 

the wavefields at the reflector position and the amplitude is proportional to the 

reflection coefficient of the reflector. So the self normalized curves show the 

relative reflectivity at the reflectors. The red dashed and blue dotted curves are 

migrated depth series from the RTM and SSFM respectively. If we pick the peak 

and trough as the positions of the first and second cortical interfaces, the error of 

the thickness estimate will be less than 0.5 mm. The reconstructed edges of the 

SSFM looks sharper than those of the RTM. But the latter one is smoother in the 

region between two interfaces, while the former has a lot of bumps in between. 

The second interface will have smaller amplitude than the first one because of the 

energy loss due to longer distances travelled and further partitioning of energy at 

the second interface. The change of polarity is obvious in the image, especially 

for the RTM case, showing the changes in polarity of velocity contrast. 
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Figure 3.7: Estimation of cortical thickness and comparison of the migrated depth series 

with the true velocity model: (a) the true velocity model; (b) the relative reflectivity in the 

migrated results. 

3.3 Detection of small fractures 

3.3.1 Imaging a 45 degree dip fracture 

We first establish a fracture model with a small fracture at 45 degree dip angle 

from the horizontal in the cortical bone. The apparent width (measured across the 

fracture horizontally at fixed depth) of the fracture is around 0.2 mm, as shown in 

Figure 3.8. The velocity in the fracture is 1500 m/s. Considering the first few 

weeks of bone healing when the fracture is filled with soft callus and tissue fluid, 

this assumption is valid.  
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Figure 3.8: A velocity model for a fractured cortical bone. 

 

 

Figure 3.9: The simulated signals from a 0.2 mm fracture model with 45 degree dip angle. 

A and B are reflections from the top and bottom interfaces; C is the reflection from the 

fracture; D indicates the computational artifacts. 

The simulated data is shown in Figure 3.9. Although some boundary artifacts 

and multiples exist in the image, we can still see the strong reflections from the 

different interfaces: the skin-cortical interface, cortical-marrow interface, and the 

fracture. There should be two reflections associated with the interfaces of the 
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fracture; however, since the fracture is too small, the two reflections cannot be 

resolved and appear as a single reflection. 

From Figure 3.9, one can predict that there is a fracture in the bone between 5 

mm to 17 mm. But is this inference correct? Besides, we cannot get any 

information about the depth of the fracture and the dip angle. So in order to 

collect more details about the geometric information of the fractured bone, depth 

migration is needed here. 

 

Figure 3.10: Depth migration of the 45 degree dip and 0.2 mm fracture model: (a) results 

by RTM; (b) results by SSFM. 

For the migration, since the fracture position and dip angle are unknown, I 

use the velocity model shown in Figure 3.4b as my best guess. The model is a 

smoothed velocity model without any information about the fracture. As before, 
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the RTM and SSFM methods are applied. The results are shown in Figure 3.10. 

Compared with the original model in Figure 3.8, the fracture position is exactly 

reconstructed.  There is amplification of the fracture size, which is due to the 

small dimension of the fracture and wave dispersion as the energy decreases. 

However, the locations as well as the dip angle are all correctly imaged. To detect 

small size fractures, migration methods are superior to the axial transmission 

ultrasound, which is only effective when the fracture size is much larger, around 

20 mm (Lowet and Van der Perre, 1996). 

3.3.2 Imaging 70-degree dip and 80-degree dip fractures 

We change the dip angle to be 70 degrees and 80 degrees respectively with 

respect to the horizontal direction, while maintaining the fracture size to be 0.2 

mm, same as in the previous case. The calculated signals are shown in Figure 3.11. 

Compared with Figure 3.9, as the dip angle becomes more vertical, the recorded 

echoes get weaker. Most energy reaching the fracture is reflected at close to the 

horizontal direction according to Snell’s law, which means the receiver at the 

same position as the source records little reflected energy. In fact, from Figure 

3.11, we can see that the reflected signal is so weak that its strength is even 

smaller than the amplitude of artifacts in the numerical model. So it is difficult to 

predict if there is a fracture in the bone based on the simulated data. Also, as the 

dip angle becomes larger, the multiples and some artifacts get stronger, making it 
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hard to distinguish the reflected signals due to the fracture from these unwanted 

effects. 

 

Figure 3.11: The simulated wavefields when the fracture dip angles are (a) 70 degrees 

and (b) 80 degrees respectively. 

In the migration process, we again use the smoothed velocity model shown in 

Figure 3.4(b), which does not take into account the presence of the fracture. 

Migrated results are shown in Figure 3.12. In the 70-degree dip case (Figure 

3.12(a) and (b)), both migration methods reconstruct the fracture at its correct 

position and dip angle. However, when the dip angle changes to 80 degrees, we 

can see that the reconstructed images are not as clear as before. The area of the 

fracture is blurred and the wavefields are not completely refocused, creating many 
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ringing artifacts. Zero-offset migration methods are not appropriate to image large 

dip angles, especially when the fracture is almost vertical (>80 degrees). 

 

Figure 3.12: The migrated results: (a) 70-degree dip using RTM, (b) 70-degree dip using 

SSFM, (c) 80-degree dip using RTM, and (d) 80-degree dip using SSFM. 

3.3.3 Signals with noise 

The stability of the method is tested by adding noise to the simulated signals. We 

use the 45 degree dip angle fracture model. Gaussian noise is generated and added 

to the signals, with a mean of zero and standard deviation same as the signal (peak 

signal to noise ratio about 2). Figure 3.13 shows the noise contaminated signals. 

Compared with Figure 3.9, the added noise makes the signals a little fuzzy. Not 

only the small signals are immersed in the noise, but also large reflected signals 

look less sharp as before. Fortunately, although faint, the weak signals reflected 
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from the fracture and the lower layer of the cortical can still be distinguished from 

the noisy background. So from the simulated section, we can predict that a 

fracture exists in the cortical bone model, although we cannot tell the exact 

position of the crack. 

 

Figure 3.13: The simulated signals with Gaussian noise. 

Using the smoothed velocity model (Figure 3.4b) as the initial guess, the 

migrated image by the RTM and SSFM methods are shown in Figure 3.14. 

Compared with the noise free results (Figure 3.10), we see that the reconstructed 

image can still present the structure of the original velocity model (in Figure 3.8) 

correctly. However, the images here seem noisier and the reconstructed lower 

layer is not as sharp as before. On the other hand, those noises also eliminate the 
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migration artifacts as shown in Figure 3.10, emphasizing the major reflection 

interfaces. 

 

Figure 3.14: Depth migration of 45-degree dip angle and 0.2 mm fracture model (Figure 

3.8) with Gaussian noise added (Figure 3.13): (a) results by RTM; (b) results by SSFM. 

Both migration methods are quite stable in the presence of noise. Although 

adding noise to the signals can make the reconstructed image a little blurred, some 

migration artifacts are also eliminated to highlight the reconstructed interfaces in 

the noisy background. 

3.4 Iterative imaging when fracture is large 
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For the same fracture with dip angle of 45 degrees, we enlarge the width of 

the crack to 0.5 mm, 1 mm, and 2 mm to see how good the migration results will 

be. The velocity models are shown in Figure 3.15. As before, the ultrasound 

velocity is 3500 m/s for cortical bone, and 1500 m/s for soft tissue, marrow, and 

the fracture tissue. 

 

Figure 3.15: The velocity models for different fracture sizes: (a) 0.5 mm, (b) 1 mm, and 

(c) 2 mm. These are the apparent widths measured horizontally across the fracture at 

fixed depth. 

The simulated signals are shown in Figure 3.16. As the size of the fracture 

increases, the signals reflected from the cortical bone-soft tissue interface are 

almost the same. For the echoes from the left and right boundaries of the crack, 

we can see that they fall into two separate reflections as the size of the fracture 

increases. The separation becomes evident in Figure 3.16b, when the fracture size 
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increases to 1 mm. However, due to the velocity differences between the cortical 

bone and fracture tissue, the reflected signals from the cortical bone-marrow 

interface beneath the fracture area are delayed and this effect becomes much more 

obvious when the fracture size is larger, as shown in Figure 3.16c. 

 

Figure 3.16: The simulated wavefields: (a) 0.5 mm fracture, (b) 1 mm fracture, and (c) 2 

mm fracture. 

The presence of the fracture adds complexity to the echograms as compared 

to the simple one layer cortical bone model. We find that as the fracture size 

increases from 1 mm to 2 mm, the reflected signals become much more 

complicated, as shown in Figure 3.16(b) and (c). Simple calculations using 

velocity multiplication with travel time will be hard to estimate the crack 
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thickness. Fortunately, migration methods give us an alternative and relatively 

precise way to do the model reconstruction. 

 

Figure 3.17: The reconstructed fracture images by RTM (a, c, and e) and SSFM methods 

(b, d, and f). The fracture sizes are 0.5 mm (a, b), 1 mm (c, d), and 2 mm (e, f). 

Using the input velocity model shown in Figure 3.4(b), the reconstructed 

models are presented in Figure 3.17. We can clearly see the fracture in each case. 

Compared with the original models in Figure 3.15, however, there is an 

amplification effect in the reconstructed images, which shows that the 

reconstructed fractures widths are larger than their original model widths. 

Taking a closer look at the interfaces bounding the fracture, the left interface 

is always correctly imaged for both the dip angle and the position. The right 
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interface, however, is reconstructed to a position slightly lower than the true 

position. As the fracture size becomes larger, the right interface becomes much 

further from its correct location. That is to say, the sizes of the imaged fracture are 

bigger than the model size. This amplification effect is due to the velocity model 

we used in the migration. Because we do not know any prior information about 

the fracture in the cortical bone, the first guess of the velocity model will be the 

simplest one, as shown in Figure 3.4(b). The initial model does not consider the 

fracture and assigns 3500 m/s for the whole cortex layer. Therefore in the fracture 

area, the assumed velocity is much larger than true velocity, 1500 m/s. As a result, 

the reflected signals that travel in the fracture part will be migrated to a further 

reflecting position, which lowers the position of the interface and make the 

fractures look larger. 

In order to better image the bigger fracture and reduce the amplification 

effect of the migration using the simple velocity model without information about 

the fracture, an iterative migration method should be used.  The iterative approach 

will take the results from the first migration pass and rebuild a more precise 

velocity model as the input for the second-pass migration. As we have analyzed, 

the soft tissue-cortical bone interface as well as the left interface between cortical 

bone and fracture tissue are both correctly imaged. We can use these two 

interfaces to build a more precise velocity model. Figure 3.18 shows the process 
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to reconstruct a better velocity model from the first-pass migrated images. Figure 

3.18(a) and (c) are just the same migration results as Figure 3.17(d) and (f).  

 

Figure 3.18: Rebuilding a better velocity model from the first-pass migrated images: (a) 

same as Figure 3.17(c) with the outlines of the interface boundaries; (b) the 

corresponding new velocity model of (a); (c) same as Figure 3.17(d) with the outlines of 

the interface boundaries; (d) the corresponding new velocity model of (c). See text for the 

description of the colored lines. 

The rebuilding procedure of the velocity model is as follows. First, from the 

migrated results in Figure 3.18(a) and (c), we find the correctly imaged interfaces. 

It is inferred that the soft tissue-cortical bone interface, left cortical bone-fracture 

interface and part of the cortical bone-marrow interface are correctly located in 

the migrated image. We highlight these interfaces with red lines, as shown in the 
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figures. To locate the right fracture-cortical bone interface, we use the 

discontinuity of the upper soft tissue-cortex interface as guidance. We draw the 

parallel line to represent the assumed location of the interface, as is shown by the 

blue lines in the figure. As a result, we use the interfaces contoured by the red and 

blue lines to rebuild a better velocity model, as shown in Figure 3.18(b) and (d). 

Another migration procedure is then applied based on these new velocity models. 

 

Figure 3.19: The second-pass migrated images by RTM (a and c).and SSFM (b and d) of 

the 1 mm fracture (a, b) and 2 mm fracture (c, d). 

The second-pass migration results for the 1 mm and 2 mm fractures are 

shown in Figure 3.l9. For both fracture sizes, compared with Figure 3.17(c), (d), 

(e), and (f), the second-pass migrated results are better, with the fractures more 
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precisely imaged, especially the right fracture-cortical bone interfaces. When the 

fracture size is small, the migration result by both reverse time and split step 

migration methods are almost the same. However, when the fracture size is 2 mm, 

we notice that the RTM method tends to achieve a better result than SSFM, as 

compared between Figure 3.19(c) and (d). This is because in the SSFM, an 

averaged velocity will be used in the migration process, whereas in RTM, there is 

no such approximation. 

After a simple iterative migration, the migrated results will get better 

compared to the original model. Here we only do the migration two times and 

actually more iteration steps can be preformed if needed. In a general case, the 

SSFM method will need more iterations than the RTM method to achieve a 

desired resolution for a large-size fracture case.  

3.5 Monitoring of the fracture healing process 

The fracture healing process, as described in Chapter 1, involves complex 

biological and chemical reactions. In this section, we simulate the healing process 

by changing the ultrasound velocity of the fracture zone, from the tissue velocity 

at the beginning of the healing process to the cortical velocity at the end of the 

process. The basic idea behind this assumption is simple. As the fracture heals, 

the material in the fracture will gradually change from blood and tissue fluid 

(Phillips, 2005; Schindeler et al., 2008) to cortical bone as a result of callus 

mineralization and ossification. 
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Figure 3.20: The simulated signals at various stages of the healing process. Velocities at 

the fracture are (a) 1500 m/s, (b) 2000 m/s, (c) 2500 m/s, and (d) 3000 m/s, respectively. 

To simulate the healing of a 1 mm 45 degree dip fracture, we change the 

ultrasound velocity of the fracture tissue from 1500 m/s to 2000, 2500 and 3000 

m/s, respectively while holding all parameters the same. The simulated signals for 

each case are shown in Figure 3.20. We see that as the velocity in the fracture 

increases, the reflected signals from the left and right interface are less obvious. 

This is consistent with equation 3.2, which tells us that as the velocity difference 

decreases, the reflection coefficient also decreases. In fact, for the model where 

ultrasound velocity in the fracture equals 3000 m/s, the signal strength of 
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reflections around the fracture area are extremely weak and even smaller than that 

of the multiple reflections (Figure 3.20d). 

 

Figure 3.21: The reconstructed images at various stages of the healing process using 

SSFM. Velocities at the fracture are (a) 1500 m/s, (b) 2000 m/s, (c) 2500 m/s, and (d) 

3000 m/s, respectively. 

Using a general velocity model without a fracture (Figure 3.4b), we 

reconstruct the four images using the simulated data shown in Figure 3.20. Both 

migration methods are used, and here we present only the results of SSFM in 

Figure 3.21. We can see that when the fracture velocity increases, the shape of the 

reconstructed image changes significantly. The width of fracture decreases, which 

eliminates the amplification effect in fracture size shown in Figure 3.21(a). Also, 
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the migration artifacts will become smaller at larger fracture velocities. Although 

the signals are small in Figure 3.20(d), the migrated image in Figure 3.21(d) is 

still clear enough to see the healing fracture. Using the migrated images, we can 

tell the healing status as fracture heals. In a true amplitude case, it is possible to 

calculate the reflection coefficients from the amplitude, and use the reflection 

coefficients to calculate the true velocity of fracture, which may be used as a 

mechanical property to determine the fracture healing process. 

3.6 Summary 

In this chapter, numerical simulations were performed to demonstrate the 

possibility of using migration methods to detect bone structures. First, a 

theoretical model of an intact bone was established, and we used migration to 

estimate the cortical bone thickness, a parameter very useful in osteoporosis 

diagnosis. Then some fracture models were constructed for various fracture dip 

angles and fracture sizes. Using these models, simulated data sets were generated 

to validate the imaging methods and their robustness in the presence of Gaussian 

noise. The method worked well if the fracture dip angle was less than 80 degrees 

from the horizontal axis. It could resolve the small fractures, such as 0.2 mm, and 

was quite robust in the presence of noise. For larger fractures, an iterative 

migration strategy should be used to improve the imaging accuracy. Lastly, we 

fabricated a model to monitor the fracture healing process, by increasing the 
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ultrasound velocity of the fracture tissue as it heals. All the computing results 

seemed very encouraging. 

Both zero-offset reverse time migration and split step Fourier migration were 

used in reconstructing the images. The results of both migration methods seemed 

quite similar for all the cases, except the one with larger-size fracture, but the 

difference was small. Generally speaking, the RTM method provides better results 

than the split step method, since the latter involves an average velocity 

assumption in the computing. However, because the split step method works in 

Fourier domain to avoid time consuming space-time computation, it works much 

faster than RTM. For a simple model in our simulation, such as the simple 45-

degree 0.2 mm fracture model, the SSFM method takes no more than 1 min, while 

RTM takes about 10 hours on a 4-core, 3GB-memory computer (Windows XP, 

Intel Core Q6600 2.40 GHz). Given that both migration methods give us similar 

results and the split step Fourier method has a much faster computational speed, 

we will apply SSFM to image real bone fractures in the next chapter. 

In the migration process, the background velocity is required as one of the 

inputs along with the signals. This velocity is an initial guess of the velocity 

distribution in the bone. It does not have to contain the details in the media, such 

as the fracture positions or accurate velocity value in the bone. If we have the true 

velocity model, migration is not needed. In the case when the velocity model is 

unknown, the smoothed background velocity is useful in eliminating computing 
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errors of the false velocity assumption. However, the initial guess of the 

background velocity should be as accurate as possible in order to obtain the 

correct positions of the reflecting surfaces. For example, we can sign other 

velocities to the cortex part, such as 3000 m/s or 4000 m/s in the migration. In 

such cases, we can still achieve the migrated results showing the cortical bone and 

fracture interfaces. However, the cortical bone thickness will get smaller (3000 

m/s) or larger (4000 m/s) than the real thickness. Fortunately, since the ultrasound 

travel time in cortical bone is small, the induced error in these two cases is less 

than 1 mm. So the migration methods are quite stable in the presence of bone 

velocity estimation errors. 
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CChhaapptteerr  44..  IImmaaggee  rreeccoonnssttrruuccttiioonn  ooff  pphhaannttoomm  aanndd  

bboonnee  ddaattaa  

4.1 The experiment setup 

In the previous chapter, all data were simulated using the finite difference 

approach. In this chapter, we further our research to reconstruct images of some 

phantom and real bone data acquired through experiments. The experimental 

setup is composed of the measuring system, the transducer, and the mechanical 

system. 

 

Figure 4.1: A sketch of the experimental setup. 

A sketch of the experiment setup is shown in Figure 4.1. The measurement is 

taken in the water. The sample is placed in a water-filled tank and rests on two 

rubber holders. A transducer is connected to the pulser and the oscilloscope. The 
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mechanical system is designed to hold the transducer and be able to translate the 

transducer along the sample at 1 mm per step.  

The measuring system is composed of an ultrasonic pulser-receiver 

(Panametrics
®
 computer controlled pulser/receiver, Model 5800) and a 200 MHz 

oscilloscope (Lecroy
®

 Wavesurfer, Model 422). The pulser/receiver activates the 

transducer to transmit a pulse and the echoes are recorded by the oscilloscope. 

The pulse echo mode is used. The transducer (Olympus Panametrics-NDT C323) 

we use is an immersion transducer, with central frequency 2.25 MHz and nominal 

element size 0.25 inches (6 mm). Each record is internally averaged 128 times. 

Also, the original data is decimated to 1/20, making the time interval increased 

from 1 to 20 nano-seconds. 

4.2 Image reconstruction using phantom 

The first sample is a Plexiglas phantom of rectangular prism. The phantom has a 

dimension of 22.5 cm×10 cm×2.5 cm, and is used to mimic a cortical bone 

fracture with a 45-degree dip crack in the middle, as shown in Figure 4.2. There 

are tracks on both sides of the phantom, enabling us to change the width of the 

fracture by sliding two sides apart. The phantom is 24.72 mm thick and the 

ultrasound velocity of the Plexiglas is measured to be 2667 m/s. 

We move one of the two blocks of the phantom along the track and set the 

width of the fracture to be 2 mm (measured horizontally). Measurement starts 
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from about 4 cm left of the fracture to 1 cm right of it and then move backward 

from right to left, at 1 mm spacing interval with 102 records acquired. 

 

Figure 4.2: The rectangular phantom with a 45-degree dip fracture in the middle: (a) top 

view and (b) side view. 

The recorded signals are shown in Figure 4.3. In the image, we can clearly 

see the first reflection from the top of the phantom, located around 25 µs. 

Reflections from the bottom of the phantom (around 43 µs) are also strong but 

broken into several sections. The reflections from the fracture are quite small 

signals and hardly seen. Part of the reflections from the fracture is enlarged in the 

subfigure. The signals at around 50 µs are the multiple reflections from the top 

interface and the other later signals are the reflections from the bottom of the 

water tank. 
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Figure 4.3: The echogram of the Plexiglas phantom. A and B are reflections from the top 

and bottom surfaces; C are reflected signals from the fracture, which are really weak; D is 

the multiple of A. The arrow illustrates an enlarged image of C. 

The reflections from the fracture are quite small, compared with the 

numerical simulation. The underlying reason is that in the experiment, the 

ultrasound source is a transducer, which transmits ultrasound mainly within a 

finite aperture, which is quite different from the numerical simulation, where we 

assume the source to be a point source, sending signals radially to all directions. 

Considering that the directions along which the ultrasound wavefront propagates 

can be represented by a ray, Snell’s law takes effect, and therefore the majority of 

the signals are reflected horizontally in the 45-degree dip case. As a result, the 

echoes received by the transducer at the same position as the source are very weak. 
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Several signal processing steps are required for the data before migration. 

The first step is to apply a band-pass filter (0.5/1.0/3.0/3.5 MHz) to eliminate the 

low frequency bias and high frequency noise. Then the reflected signals from the 

fracture are amplified with a simple gain by multiplying the signals between the 

top and bottom interfaces with a constant. The result after the gain process is 

shown in Figure 4.4, where we can see a big improvement of the reflections from 

the fracture compared with Figure 4.3. The spacing interval between records is 1 

mm, which is quite large. To achieve a better resolution, an interpolation is 

carried out to make the spacing resolution to be 0.25 mm, one quarter of the 

original interval. I apply Spitz’s F-X domain interpolation (Spitz, 1991). After 

that, normalization of amplitudes is carried out for each record in order to 

eliminate some artifacts in the acquisition procedure. The signals after all these 

signal processing steps are shown in Figure 4.5. Compared with Figure 4.4, an 

improvement in the signals is achieved, with better resolution and higher contrast. 

Compared with the numerically simulated signals, the signals we have here 

are much more complicated. It seems that the fracture zone delineated by the 

reflected signals is much wider, which is due to the smooth reflecting surface and 

the ray property of the finite ultrasound beam in application. The lack of signal 

resolution will probably affect the migrated image resolution. 
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Figure 4.4: The echogram of the Plexiglas phantom after constant time gain 

compensation. 

 

Figure 4.5: Signals after filter, gain, interpolation, and normalization. 
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To sum up, experiment data require some processing before the migration. 

The signal processing steps are summarized in Figure 4.6. 

For the migration process, an initial velocity model is required. As discussed 

in the previous section, the velocity model is established using traveled distance, 

which is a multiplication of ultrasound velocity in the medium with the 

corresponding travel time of the echoes in each record. Remember that the travel 

time should be divided by 2 in order to change from the two-way to the one-way 

travel time. A stratified layer velocity model is established through this method 

and then smoothed to decrease the computational error. The smoothing process is 

described in Section 3.2.1. The velocity model is shown in Figure 4.7. 

 

Figure 4.6: Signal processing flow chart. 

Original data

Band pass filter

Gain

Interpolation

Normalization



CHAPTER 4. IMAGE RECONSTRUCTION OF PHANTOM AND BONE DATA 

70 

 

Figure 4.7: The initial velocity model for the migration process of the phantom: (a) the 

stratified velocity model, and (b) the smoothed version of (a).  

The SSFM method is used to reconstruct the image of the phantom. As 

shown in Figure 4.8, the reconstructed image provides the exact depth 

information of the model. From the image, we obtain the thickness of the 

phantom, which is about 2.4 cm as shown in blue arrow with an error of 3% 

(compared with a measured thickness of 2.472 cm). The error is less than 0.1 mm. 

Also, the reconstructed fracture dip angle is 45 degrees, which is consistent with 

the actual dip angle. The two fracture parts are almost the same, showing that the 

measuring directions will not affect the image reconstruction. However, the 

reconstructed fracture is much wider and measured to be slightly less than 4 mm. 

As discussed in the previous chapter, this amplification partly comes from the 

rough velocity model without any prior information of the fracture. For the 
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experimental data, another reason is due to the character of the signals. From 

Figure 4.5, we see that the reflected signals are not as sharp as the simulation case. 

The poor resolution in the signal will also affect the reconstructed result. For the 

first reason, we can use an iterative migration to get a better image, but for the 

second one, iteration will not help. We tried a second pass migration but the result 

does not improve much. So the amplification here is mainly due to the poor signal 

resolution. 

 

Figure 4.8: The reconstructed image of the cracked phantom. 

4.3 Image reconstruction of the fractured bone plate 

A long bone from deer was cut along the axial direction to obtain a cortical bone 
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bone plates are supported by a copper plate and immersed in water. From the 

image, we can see that the fracture is irregularly shaped, which corresponds 

comminuted type of fractures. The blue ellipse outlines the fracture area we will 

focus on. The width of the fracture is around 2-5 mm. The transducers, acquisition 

parameters, and setup are the same as the phantom experiment. 

 

Figure 4.9: The experiment setup for the bone plate. 

As the transmitter moves along a straight line, the reflected signals will 

provide the cross-sectional information of the bone plate. The signals recorded are 

shown in Figure 4.10. The reflections from the upper surface of the cortical bone 

are much stronger than the reflections from the lower surface. Because the 

cortical bone thickness is small, around 5 mm, the reflected signals from the two 

surfaces of bone are close to each other, with a time interval less than 5 µs. 

Multiple reflections can be found around 30 µs; However, they are even smaller 

than the reflections from the lower cortical bone surface, indicating that the 

reflection coefficient is small. The echogram shows a fracture in the bone plate 
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between 3 and 4 cm distance. However, it is difficult to obtain the shape of the 

fracture from a time-distance frame coordinate. Migration offers us an 

opportunity of changing the frame to a distance-depth view. 

 

Figure 4.10: The recorded echogram for the cortical bone plate. The rectangle outlines 

the multiple reflections. 

Before migration, the reflected signals are processed using the steps given in 

Figure 4.6 to enhance the signals after the first reflection in each record. The 

processed echogram is shown in Figure 4.11. Compared with the original signals 

in Figure 4.10, we can see an enhancement of the signals from the lower surface 

of the bone. Also, some details emerge in the processed signals, like the small 

reflections between the two surfaces, circled in blue in the figure. There are some 

side effects of the signal processing, since the signal enhancement will inevitably 

amplify noise as well, especially in case when the reflected signals are very small. 
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Therefore, for the noisy data, the original signals should be consulted to determine 

the fracture shapes. 

 

Figure 4.11: The processed echogram for the bone plate. 
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Figure 4.12: The velocity model of the fractured bone plate used for migration: (a) the 

original stratified velocity model and (b) a smoothed version of (a). 

The velocity model (Figure 4.12) for the migration is established based on the 

reflected signals. The reflections are timed with the velocity of water and cortical 

bone being 1500 m/s and 3600 m/s, respectively. The velocity model does not 

include a crack. Using the SSFM method, the reconstructed depth-offset image is 

shown in Figure 4.13. We use blue dots to emphasize the different reflecting 

interfaces in the image. For experimental data, the reconstructed depth image 

gives us information about the location and shapes of the fracture. From the image, 

we measure the thickness of the bone plate to be around 5 mm and the shape of 

the fracture can also be detected. From the previous chapter, the numerical 

experiments demonstrated that for the zero-offset measurements, the imaging 
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technique fails to image vertical or near vertical reflecting interfaces. It is also 

confirmed in the experimental cases that the vertical fracture cannot be 

reconstructed properly. As a result, the fracture interface is partly reconstructed. 

That is, the vertical fracture part becomes invisible under this zero-offset 

migration method. Comparing with the fracture shape in the subfigures (a) and (b), 

we can find some similarity in the reconstructed image with the real bone plate. 

From the top to the bottom of the plate, the fracture has a vertical break, an 

oblique surface and another vertical break. 

 

Figure 4.13: The reconstructed image of the fractured bone plate. The subfigures point 

out the corresponding fracture parts: (a) the flipped left part of the fracture and (b) the 

right part of the fracture. 



CHAPTER 4. IMAGE RECONSTRUCTION OF PHANTOM AND BONE DATA 

77 

For the irregular shaped bone plate and fracture, all the reflected signals 

change significantly compared to the regular shaped phantom. In addition, the 

attenuation in the bone plate is so large that the reflected signals decrease quickly. 

However, the reconstructed depth-offset image can still provide us better 

information about the geometry of the bone plate and the fracture, such as the 

thickness, position, and shape, which is more accurate than the information 

provided by the original time-distance echograms. 

4.4 Image reconstruction of the fractured bone 

Another measurement is conducted on a cracked bovine long bone, with marrow 

in the middle cavity as shown in Figure 4.14. The blue line outlines the track 

along which the transducer moves. We can see that the fracture size is small 

around 1-2 mm. 

 

Figure 4.14: Image of the cracked bovine long bone: (a) top view and (b) side view. 
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The recorded echogram is shown in Figure 4.15. As we discussed earlier, 

only one cortical bone layer can be detected in the reflected signals. Due to the 

energy absorption and scattering, reflected signals from the lower cortical bone 

are too small to be seen. Because the bovine cortical bone is thicker (around 7 mm) 

than the deer bone (around 5 mm), the echoes from the lower surface of the cortex 

become smaller in amplitude than those of the bone plate. From the image, we 

circle the areas where there is a break in the recorded signals. We suspect those 

areas are the fracture locations.  

 

Figure 4.15: The recorded echogram for the cracked bovine long bone. Blue circles 

highlight the suspected fractured areas. 

The recorded signals are processed before migration. After gain, interpolation 

and normalization, the signals are enhanced, as shown in Figure 4.16. Compared 
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with Figure 4.15, a big improvement is achieved for the weak reflected signals, 

especially the reflections between the upper and lower interfaces of the cortical 

bone. For the lower cortical bone surface reflections, there is a gap in the signals 

between 3.2 and 4.5 cm, which also indicates that a fracture locates just above this 

area. So after the signal processing, the position of the fracture can be estimated. 

Migration will give us more accurate information where the fracture locates, 

including both depth and distance. 

 

Figure 4.16: The processed echogram, with the enhancement of the weak reflections. 

Blue rectangle outlines the fracture area. 

For the migration process, a velocity model is first constructed, as shown in 

Figure 4.17. Ultrasound velocity in cortical bone is set to be 3600 m/s and the 

velocity of water and marrow is 1500 m/s. The interfaces between different 

velocities are smoothed, making the transition area around 5 mm thick to 
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eliminate the computational error. The velocity model is used directly in the 

migration process. 

 

Figure 4.17: Velocity model for the reconstruction of the bovine long bone image: (a) the 

original velocity model and (b) a smoothed version of (a). 

Using the SSFM method, we migrate the data and the reconstructed image is 

shown in Figure 4.18. Blue dots contour the interfaces from the reconstructed 

image. From the image, we obtain the thickness of the cortical bone, which is 

about 6-7 mm. The shape of the fracture part is also obtained in the image. Due to 

the small size and the irregular shape of the fracture, it is difficult to get an exact 

contour of the fracture. However, the blue dotted curve still provides a rough idea 

about the fracture shape. Compared with the real fracture shape in the subfigure, 

the reconstructed image yields a fairly accurate result. We notice that as the 
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cortical bone thickness becomes larger, the reflected signals from the top surface 

of bone have many cycles, lose resolution, causing the reconstructed surface 

thicker. This is due to the inhomogeneity of the cortical bone. However, this 

effect will not affect our imaging results, as long as the interface is well imaged.  

 

Figure 4.18: The reconstructed image for the top cortex of the bovine long bone. The blue 

dotted curve outlines the fracture. The subfigure presents a side view image of the 

fracture. 

4.5 Summary 

In this chapter, we described the experiment setup and discussed the experiment 

on a Plexiglas phantom, a deer bone plate, and a bovine long bone. All the 

received data are processed before migration. The processing steps include band-

pass filter, time gain compensation, interpolation and normalization. The SSFM 
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method was used to reconstruct the fracture images. From the image, we 

attempted to retrieve the information such as the sample thickness, fracture shapes, 

and dimensions. 

 

Figure 4.19: A schematic of the zero-offset and offset measurement. 

The results have demonstrated a possibility of using ultrasound to image real 

bone. However experiment results can be further improved in a future study. First, 

the acquired signals are quite weak. It is partly due to the zero-offset measurement, 

where the source and receiver are at the same location and the beam is not normal 

to the fracture surface. If the offset case is used as shown in Figure 4.19, more 

receivers will be used to receive echoes at an oblique angle from the fracture 

interface. The signal quality and strength can be improved. Also, the transducer 

element size is too big in the experiment (6 mm), which will definitely lower the 

resolution of the signals due to averaging. Besides, the acquisition spacing 

interval of one millimeter per record is too large to get a good resolution image. 

So to improve the data quality in the experiment, we must reduce transducer 
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element size, try an offset measurement configuration, and also reduce spacing 

intervals.  
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CChhaapptteerr  55..  CCoonncclluussiioonnss  

Ultrasound techniques have been widely used in many fields. Ultrasound imaging 

is becoming an increasingly important diagnostic method in medical fields. 

Compared with other diagnostic imaging methods, such as X-ray, CT and MRI, 

ultrasound is less expensive so that it is affordable in even less developed regions. 

Also, ultrasound has no ionizing radiation, making it a preferable tool in 

diagnostics on infants and children. Besides, ultrasound diagnostic equipment is 

small and portable, and thus is suitable for emergency use. Over the years with the 

pulse-echo technique and the Doppler technique, ultrasound has played an 

important role in diagnostic imaging, especially on soft tissue, vessels and blood.  

In this thesis, we examined the possibility of using ultrasound to image long 

bone structure, such as cortical bone thickness and shape of bone fractures. The 

seismic migration method, a method mainly applied in Geophysics to image 

subsurface structures, was introduced in our study. Numerical experiments using 

both zero-offset reverse time migration (RTM) and split step Fourier migration 

(SSFM) were performed. The results were used to assess the possibility of 

utilizing migration to reconstruct bone internal structures, both intact and 

fractured, test the robustness of the method, and explore the limitations of the 

method. Experiments were also carried out on phantoms and real bones to 

illustrate the migrated results on real data. 
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From the studies using numerical and experimental data, several conclusions 

can be drawn as follows. 

Wave-equation based migration technique is a promising tool that can be 

used to image long bones. The numerical experiments discussed in this thesis 

have provided us with some justification of the methodology. Although some 

information can be derived directly from the recorded time signals such as the 

existence of an anomaly (the scatterers which cause the reflected signals), or the 

proximal offset position of the anomaly, we cannot obtain depth information or 

the exact position of the reflectors. The imaging method discussed in this thesis is 

able to refocus the reflected energy back to the originating points, providing the 

structural information of the reflectors. From the migrated image, we can tell 

where the reflections originate from and depict the internal structures. The 

thickness of the cortical bone can be obtained directly from the migrated image. 

The shapes and dimensions of the fractures can be estimated. Experimental data 

pose some challenges as the data is not as well presented as the numerical 

simulations due to the transducer condition as well as the complexity in real bone. 

However, the migrated images have provided us with more detailed and direct 

information about the sample structure.  

Two different migration methods were examined. For the choice of reverse 

time migration and split step Fourier migration, the RTM has a better migrated 

result than the SSFM. However, the RTM method is much more time consuming 
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than the SSFM method and thus is not suitable for real time application in clinical 

cases unless a fast computing method such as parallel computing is used. The 

drawback of the SSFM method comes from the approximation of velocity in its 

algorithm. This can be eliminated through an iterative migration method, in which 

the migrated image of the first pass is used to reconstruct a new velocity model 

for the second pass. Several iterations may be necessary before achieving a 

desirable result.  

The zero-offset data acquisition configuration is simple and has provided 

comparatively good results using numerical simulation and experimental data. 

However, the zero-offset configuration cannot handle vertical interfaces due to 

the lack of reflection signals. An offset data acquisition configuration, which has 

one transmitting transducer and multiple receivers located at different offsets, is 

more suitable as the offset transducers will receive the obliquely reflected energy 

from the material defects.  Active element size and measurement spacing interval 

should be as small as possible in order to achieve better resolution.  

To summarize, we have presented a possible way of applying seismic 

migration methods to image long bone structures, including cortical bone 

thickness, bone fracture and fracture healing. Through numerical modeling on 

various idealized models and experiments on phantom and real bones, we have 

demonstrated that wave equation based migration is a promising way to image 

long bones and the reconstructed images can provide us with more direct and 
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accurate information of the sample’s internal structure than the traditional 

ultrasound reflection time-distance echograms. 
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