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Abstract 
 

The simultaneous quantification of all biological molecules, from metabolites to proteins, 

holds the key to discovering molecular signatures that can diagnose diseases before irreversible 

damages have occurred in the body.  

Recent advances in the field of liquid chromatography coupled mass spectrometry (LC-MS) 

have fueled the development of two fields pursuing disease diagnosis: metabolomics, the study of 

metabolites; and proteomics, the study of proteins. Prior to LC-MS, it was difficult to quantify 

more than several metabolites or proteins in a single analysis; now, thousands of molecules can be 

monitored in a single LC-MS assay, making it possible to detect minute abundance patterns that 

are characteristic of diseases. The key for metabolomics and proteomics is sensitivity and efficient 

processing of large amounts of data. 

The goal of my research was to improve LC-MS based methodology for the detection of 

both metabolites and proteins. For method development in proteomics, my thesis focused on two 

areas: improvements to a database search engine used to identify peptides, and increased peptide 

ion intensity by introducing chemical vapours. Firstly, by implementing a machine learning 

algorithm that better distinguishes correct and incorrect peptide identifications from database 

searching results, more valid peptide were recovered in proteomic experiments. Next, vapours of 

various chemicals were introduced to the source region of a mass spectrometer; both the absolute 

ion intensities and number of peptide detected were increased.  

In the field of metabolomics, my work focused on solving the problem of unknown 

identification and improving sensitivity of chemical-isotope-labeling (CIL) metabolomics. With 

thousands of unknown metabolites being measured in every metabolomic experiment, confident 
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high-throughput identification is required. A high-quality human metabolite reference tandem MS 

spectral library was created for 800 compounds. The data in this library has higher resolution and 

higher accuracy than any other available library; therefore, LC-MS identification can be more 

confident. Reversed phase retention time information was also added to this library, which helps 

to distinguish isomers and further improve identification confidence.  

Lastly, nanoliter flow rate LC-MS was optimized for the analysis of CIL metabolomics. 

CIL metabolomics, is a metabolite labeling strategy that uses stable isotope encoded labeling to 

improve quantification by LC-MS. The labels used in this technique already improved sensitivity 

of metabolite detection; however, when samples are limited or dilute, more sensitive 

instrumentation is needed. By reducing the flow rate and column dimensions, sensitivity of LC-

MS was improved, and more metabolites can be detected per sample. 
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Chapter 1  
 
Introduction 

1.1 History of Mass Spectrometry  

The age of the atom has shaken the foundation of humanity. This era has brought with it 

innovations, but also tragedies. Despite trials and tribulations, humanity is thriving today because 

of the discoveries that were made in this era. Modern analytical mass spectrometry (MS) evolved 

through a winding path of incremental breakthroughs in the study of the atom.  

There were few indications from those first experiments on charge particles that the ability 

to manipulate these particles would be a powerful tool for the study of molecules.  Due to the 

pioneering work of early mass spectrometrists, such as Alfred Nier,1 mass spectrometry spread 

beyond the confines of the physics laboratory and into fields like biology and chemistry. Since that 

time MS has been used to study chemical systems that were once impossible to observe—in the 

human body, underwater,2 or on the surface of planets hundreds of millions of kilometers away.3 

New developments in mass spectrometry promises lifesaving discoveries for understanding and 

treating diseases.  

The following sections will introduce the concepts of MS based “omics” that is the 

foundation of this thesis.  

1.2 Proteomics 

All living organism rely on proteins as the engine of life. Proteins are 3D polymers made 

of amino acids monomers; the sequences of amino acids are encoded according within the genetic 
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materials of organisms.4 Proteins take on crucial roles such as providing structural integrity, 

signaling, and catalyzing biochemical reactions.5 

As with all engines, there must be the correct number of parts—with the correct 

specifications—in order for the system to run smoothly. Proteins that do not perform their function 

cause problems in the system that eventually become diseases. Therefore, monitoring the level of 

proteins in the body can help diagnose diseases. However, proteins shouldn’t be studied 

individually, as they are part of a complex machinery of other proteins.6 The identity, quantity, and 

interactions of all the proteins within a system at one point in time can give us an accurate picture 

of the condition of that system. For this purpose, the field of proteomics was born.7 

Proteomics is the comprehensive study of all proteins in an organism. To achieve this goal, 

there are several principal challenges. Firstly, proteins  cannot be amplified through a process like 

polymerase chain reaction (PCR) that can make exponential copies of the DNA fragment of 

interest.8 Therefore, proteomic techniques are limited by the sensitivity of the chosen method of 

detection. Secondly, the structure, function, and identity of a protein are determined by its amino 

acid sequence, and this sequence cannot be easily determined compared to genomic sequencing 

techniques.9 Lastly, all the proteins in an organism are encoded in their genes; therefore, genomics 

can already provide a comprehensive list of all the proteins that can be produced in the organism. 

With these challenges in mind, why do we still pursue the study of the proteome? 

While genomics provides sequence information for all possible proteins, it cannot tell us 

the quantity and identity of proteins at any given time. Diseases often occur after an organism’s 

DNA is already set, and disturbances to the proteome is not reflected in the genome.   Another 

issue is the prevalence of post translation modification (PTM) of proteins,10 which also cannot be 

predicted by genomics. PTM are small functional groups that are added to the amino acid residues 
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of proteins, and they change the function of the protein as needed by the organism. The most 

common, and most studied, is the phosphorylation.11,12 PTM is a highly dynamic process under the 

control of other proteins, and a large variety of functional groups can be attached; as a result, PTM 

analysis cannot be studied by genomics. For these reasons, researchers have taken up the challenge 

of analyzing the proteome of cells and higher organisms to understand the role of proteins in 

diseases.13-15 

The tools used to piece together the proteome has evolved in sophistication over time—and 

progressively increased in cost. The first system wide studies of proteins were completed using 

polyacrylamide gel electrophoresis (PAGE), where the entire protein content was separated on a 

slab of polyacrylamide gel based on charge or size of the proteins and visualized by staining with 

dyes.16 The pattern on the gel gave information on the quantity and the types of proteins present; 

this allowed for comparison of the proteome between different samples. However, this technique 

was labour intensive and had poor reproducibility between analyses.17 Rapid identification of large 

number of proteins on the gel was impossible, which added to the challenges of the technique. 

In the past two decades, advances in the field of mass spectrometry and increases in 

computing power allowed researchers to overcome the deficiencies in PAGE.18 In MS based 

proteomics, the first major step is to digest all of the proteins with proteases, such as trypsin, into 

small peptides. Because the starting analyte are peptides instead of proteins, this technique is 

termed bottom-up proteomics; analyzing the protein without digestion is termed top-down 

proteomics. The resulting mixture of peptides are injected onto a liquid chromatography instrument 

(LC) with a reversed phase (RP) column, and separated according to hydrophobicity (Section 1.5). 

The purpose of this separation is to reduce the sample complexity, and the retention mechanism is 

not important. The small peptides are more compatible with separation on RP-LC columns than 
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intact proteins, and can be detected within the optimal mass range of most MS. Peptides eluting 

from the HPLC are ionized by an atmospheric pressure ionization (API) source and enter the MS. 

Within the MS, peptides are fragmented by collision-induced-dissociation (CID MS2) process in a 

collision cell to determine the sequence of the peptides and proteins (Section 1.7.1). Quantification 

of proteins can be done by measuring the intensity of the peptide signals,19-21 counting the number 

of times a peptide is identified by a fragment spectrum,22-24 or through the use of isotope encoded 

labels.25-28 

Biological samples typically contain thousands of proteins. After protease digestion, the 

number of peptides increase to create a complex mixture. In a typical liquid chromatography 

coupled mass spectrometry (LC-MS) experiment, more than 5000 fragment spectra can be recorded. 

If samples are fractionated, and each fraction analyzed separately, the total number of spectra can 

be in the 10’s to 100’s of thousands.29 Each fragment spectrum needs to be interpreted to determine 

the peptide sequence, which makes manual data processing impossible, due to the large number of 

data. Therefore, majority of proteomic studies rely on automated search engines to quickly process 

and identify the large amount of fragment data from each experiment (Section 1.8.1).  

The development of proteomic technology has enabled the in-depth study of proteins in 

many biological systems, including human diseases. Continued breakthroughs depend on 

improvements made in all steps of the workflow outlined above. One of the most important aspect 

is the computer processing of LC-MS data. Chapter 2 outlines a method of improving the accuracy 

and sensitivity of peptide and protein identification, by implementing a machine-learning algorithm.  
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1.3 Metabolomics 

MS has not only lead the revolution in the investigation of proteins, it has also fueled the 

developments in the field of metabolism. While proteins make up the biological engine, small 

molecules under 1000 Da are the fuel and the building blocks. A single metabolite is usually 

utilized in an entire pathway comprised of multiple metabolic reactions, catalyzed by enzymes; the 

metabolite is transformed at each step in order to perform some useful work for the organism. For 

example, there are approximately 50 reactions in central carbon metabolism that transforms 

glucose into cellular building blocks.30 These crucial pathways are often highly conserved between 

organisms, changing very little throughout evolution. Knowledge on model systems can be 

extrapolated to human metabolism.   

Since metabolism and metabolites are the foundation of cellular activity, dysregulation in 

the metabolic flux can result in life-threatening conditions. Due to progress made in this field, 

hundreds of treatable metabolic diseases can be tested for in the blood of newborn babies, and 

corrective actions can be taken. These tests have now become routine, and contain measurements 

for anywhere between 10-30 metabolites depending on the country.31 

Metabolic pathways are highly diverse and interconnected, with a large variety of 

metabolites taking part in this system.30,32 Targeting a few metabolites for fundamental research on 

metabolic diseases is difficult; with so many possible metabolites, the chances of finding the few 

that plays dominant roles in diseases are vanishingly low. Also, much like proteomics, genomic 

data plays a useful part in modeling the metabolic phenotypes in cells,33,34 but they are still far too 

inaccurate to make significant contribution to our understanding of complex diseases in higher 

organisms like humans. Therefore, the ability to directly quantify and identify large numbers of 
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metabolites in the entire system—the metabolome—is crucial for major discoveries in metabolism 

research. This field is now known as metabolomics.  

Prior to the proliferation of MS in labs that study metabolism, metabolites were measured 

on at a time using traditional chemical reactions and titrations. Often, these tests were laborious 

and time consuming; furthermore, they could only target one metabolite at a time, and cannot give 

a system wide perspective on the metabolic processes.  The introduction of nuclear magnetic 

resonance spectroscopy (NMR) allowed researchers to quickly quantitate 10-100 metabolites 

within a sample in one analysis.35,36 The advantages of NMR are: universal response towards all 

chemical classes, and usually highly robust and reproducible due to low instrument drift. However, 

signals from metabolites are often convoluted, which limits the number of metabolites that can be 

accurately analyzed. Researchers have to rely on spectral pattern recognition tools to quantify 

metabolites.37,38 Furthermore, sensitivity of NMR is low when comparing with MS. As a result, 

while NMR is a powerful tool for metabolomics, it cannot cover the entire metabolome sufficiently.  

LC-MS changed the depth at which the metabolome can be studied. It advanced the 

metabolomics field in similar ways it advanced proteomics, by quantifying thousands of 

metabolites with one analysis. This allowed studies to collect comprehensive data on disease 

metabolism across large number of samples, so conclusions can be based on sound statistical basis. 

For these reasons, LC-MS has mostly replaced NMR in metabolomic laboratories around the world. 

The workflow of LC-MS based metabolomics is similar to that of LC-MS based proteomics, 

but with several differences in sample preparation, data acquisition, and data processing. Since 

proteins are not the target for metabolomics, their presence complicate the interpretation of 

collected data—they must be removed prior to analysis. Samples are first deproteinated using 
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organic solvent.39 The proteins precipitate and are packed into a pellet with micro-centrifugation. 

The supernatant, containing metabolites, are collected for study.  

Total metabolite concentrations in biological fluids (especially urine) can be highly variable 

due to water intake, and does not reflect a dysregulation of metabolism. In order to compare 

metabolite levels between individuals, the metabolite concentrations must be first normalized. The 

total metabolite concentration can be normalized to an endogenous reference compound (e.g. 

creatinine40) or by total signal (e.g. total ion count (TIC),41 ultraviolet (UV) absorption area42). 

Following normalization, samples are ready to be analyzed by LC-MS.  

Samples are first injected on an LC for metabolite separation, which reduces sample 

complexity and provide identification information based on retention time (RT). Different column 

types can be used to alter the RT behavior of LC columns, allowing different classes of metabolites 

to be targeted (Section 1.5). The LC is coupled to the MS by an API source, and mass to charge 

ratio (m/z) of ionized metabolites are measured as they elute from the LC. Data extraction software 

then aligns the metabolite abundance information across multiple samples based on accurate m/z, 

correcting for small retention time drifts, and reports intensity data for all samples.43-46 The 

intensity information for all common metabolites found in the sample set are then input into a 

multivariate analysis software that will find the largest variation in the data. Most commonly, 

multivariate analysis, such as principal-component-analysis (PCA) or partial-least-squares 

discriminant-analysis (PLS-DA), is used to find metabolites that can be used to distinguish between 

healthy and diseased patients.47 These significant metabolites can then be identified by using 

tandem mass spectrometry, or by accurate mass.  

Without identification, researchers cannot place the significant metabolites within the 

context of the metabolic pathway, and answer the question of how these metabolites cause or 
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indicate diseases. This context is important because LC-MS data are complex multidimensional 

data, with many sources of noise. These noises can be either instrumental—such as 

contamination—or biological—such as patient treatments being mistaken for biomarkers of 

diseases. Without the logical validation based on correct identity of the metabolites, the chances of 

wasting resources on spurious noise as biomarkers increase. The projects reported in Chapters 4 

and 5 utilized the large library of human metabolite standards at the University of Alberta to create 

a large metabolite spectral and retention time library to improve metabolite identification in future 

studies.  

1.4 Chemical Isotope Labeling 

An extension of metabolomics described in the section above is to use derivatizing reagents 

to improve the quantification and sensitivity of metabolites. The derivatizing reagents can carry 

enriched carbon or hydrogen isotopes to create a heavy label, while derivatizing reagent without 

enriched isotopes are light labels. A sample can be labeled with the heavy label, and a reference 

can be labeled with the light label; after combining the two, sample and reference can be measured 

in the same MS spectrum—reducing the analytical variation. This type of metabolomics analysis 

has been referred to as chemical-isotope-labeling (CIL) metabolomics. Our group has been at the 

forefront of this technique in the field of metabolomics.  

CIL metabolomics is conducted by labeling a sample with a derivatizing reagent targeting 

a broad submetabolome, such as amines and phenols when using dansyl chloride48 or carboxylic 

acids using DmPA.49 In parallel, a reference sample of very similar composition but distinct from 

the sample (most commonly made by pooling all available samples) is labeled with a 13C2 

isotopologue of the derivatizing reagent. The derivatized sample and reference are then mixed 

together and injected into an LC-MS. Each distinct metabolite appears as a doublet of peaks of 
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exactly 2.00672 m/z units apart (Figure 1.1). Accurate relative and absolute quantification results 

for thousands of metabolites can be obtained from a single experiment. Related isotopic labeling 

techniques exist for proteomics; up to 10 peptide samples can be quantified in a single mass 

spectrum with isobaric labeling (iTRAQ,50 ICAT,51 TMT27).  

 

Figure 1.1 An illustration of a CIL labeled metabolite’s peak doublet. Relative quantification is 
calculated as a ratio of individual sample peak height over pooled standard peak height. 

The elegance of CIL lies in its ability to improve metabolome quantification through not 

just one but several key mechanisms. Signal intensity is enhanced through the inclusion of a 

hydrophobic naphthalene moiety that increases ESI surface activity and a tertiary amine that 

increases protonation. For certain analytes, the dansyl label was shown to increase signal intensity 

between 10 to 1000-fold.48 The hydrophobic moiety also normalizes retention time behaviour on 

RP-LC columns so that polar compounds and non-polar compounds can be separated on the same 

C18 column, allowing for column standardization.  

With differential isotope labeling there is an internal isotopic standard for each detected 

metabolite; the resulting peak doublet further improves quantification, and can be used for filtering 

out chemical and instrument noise. Finally, this technique is easily accessible to any mass 
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spectrometry lab. Standard labeling procedures, sample normalization procedures,42 reagents, and 

data processing software (IsoMS52) are available and can be integrated into existing workflows. 

All of these factors improve detection sensitivity and boosts data quality of metabolomic studies.  

1.5 Liquid Chromatography 

Prior to the ionization of proteomic or metabolomic samples, an LC system is used to 

separate the metabolites or peptides in the sample. In this crucial step, sample is pushed by the 

mobile phase solvent from a liquid pump onto a LC column.  The analytes then interact with the 

stationary phase, which are anchored on micrometer-sized particles packed in the column.  

The mobile phase and the stationary phase compete for the analyte; if there is a stronger 

interaction with the mobile phase than stationary phase, the analyte will be carried along by the 

solvent and eluted from the column quickly. If interaction with the stationary phase is stronger, 

then the analyte will be held in the stationary phase more and elute much later in time. Separation 

occurs because different analytes have different amount of interaction between the two phases, and 

will migrate through the column at different rates.  

Due to the additional analysis time required to perform LC separation, certain applications 

such as lipidomics53,54—where the samples are pretreated and have reduced complexity—can be 

directly analyzed by MS without LC separation. This is not the case for most complex biological 

samples, and the primary purpose of LC separation is to reduce the chemical complexity.  

Without reducing complexity, high abundance analytes can cause the suppression of lower 

abundance analytes in API sources.55 By separating with the LC, high abundance analytes can be 

eluted away from low abundance ones, reducing suppression. Furthermore, because analytes of 



11 
 

interest are retained on the RP-LC column, they elute far away from biological matrix components 

such as inorganic salts that can cause suppression.  

Analytes elute from the LC column as Gaussian peaks, and the goal of LC is to ensure that 

these peaks are separated from each other. Although it is impossible to completely separate all 

metabolites or peptides in a complex mixture, it is still desirable to minimize the amount of overlap. 

The degree of LC separation is often described as resolution (Rs ), described by Equation 1.1.56 
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k is the retention factor; larger k indicates the analyte is retained more on the column. α is the 

selectivity; greater retention time difference results in larger α. N is the plate number; the narrower 

the peaks the larger the N. Equation 1.1 shows that resolution can be improved in several ways: 

increase in retention (k), increase in selectivity (α), and increasing N. These parameters can be 

optimized by changing the mobile phase solvent composition and column selection and stationary 

phase type. The detailed methods of optimizing these parameters have been thoroughly covered by 

Snyder et al.56  

In the field of metabolomics and proteomics, there are two main types of LC column 

stationary phases, each with different retention mechanisms. The first type, RP-LC, is the primary 

stationary phase type used for proteomics, and the majority of metabolomics. It retains hydrophobic 

compounds and does not retain highly hydrophilic compounds. The second is hydrophilic 

interaction liquid chromatography (HILIC), which retains hydrophilic compounds that are 

prevalent in metabolomics analysis. Due to the wide variation of analyte polarity, the two stationary 

phase types can offer complementary data, and the choice of one over the other depends on the 
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hydrophobicity of the analytes of interest. The following two sections describes the two phases in 

more detail. 

1.5.1 Reversed Phase  

The base for the majority of modern day LC column packing material are porous fused 

silica particles of 1.7 to 5 µm in diameter; they act as a solid support for the stationary phase. 

Porous organic polymer solid supports have also been tested and they are more resistant to 

hydroxide attacks than normal silica particles.  

The stationary phase is first chemically bonded onto the support.57 Careful control during 

the chemical bonding step is crucial in determining the retention behavior, because it can affect 

surface coverage of the particles by stationary phase.58 After successful bonding of stationary phase 

with the solid support, the finished packing material is then packed into stainless steel columns at 

high pressures to ensure the even distribution of particles within the column.  

For RP-LC stationary phases, alkyl chains of varying lengths are commonly used (C4, C8, 

C18). The alkyl chains form a thick layer in which the hydrophobic analytes can partition or adsorb, 

depending on size.56 C18 shows good retention of peptides and hydrophobic metabolites; as a result, 

it has become ubiquitous in the field of metabolomics and proteomics.   

In the reversed phase separations, the strong mobile phase solvent that competes for the 

hydrophobic analytes is commonly acetonitrile. By adjusting the percentage of acetonitrile in water 

(φ), the strength of the mobile phase can be increased to elute more hydrophobic analytes. Due to 

the wide range of polarities in proteomic and metabolomic samples, very hydrophobic analytes 

takes too long to elute from the column when lower φ is used. If higher percentages are used, the 



13 
 

hydrophobic analytes will elute in the optimal time, but the less hydrophobic analytes will be 

unretained and co-elute at the beginning of the column.   

To solve this issue, φ is often ramped up during the analysis, and this is referred to as 

gradient elution. The low φ at the beginning of the analysis ensures that less hydrophobic analytes 

are retained and elute far away from the unretained sample matrix. As φ increases during the 

analysis, more hydrophobic analytes elute from the column. By using gradient elution, analysis 

time can be shortened and can be applied to the analysis of a wide variety of analytes. For these 

reasons, the majority of LC-MS omics research take advantage of gradient elution.   

Compounds with different chemical properties elute at different times; therefore, elution 

times can be used as a parameter for the identification of a compound. The challenge for using 

retention time for this purpose is the lack of reproducibility between labs and even between LC 

instruments. Small changes in tubing volume of the LC, or changes in gradient generation at the 

pump, can all have large impacts on the retention time. For these reasons, the use of retention time 

as an identification tool is still limited in the field of metabolomics. Chapter 5 describes the 

development of a library of retention times for human metabolites, and the creation of retention 

time normalization protocol to help make this library more portable to other labs. 

1.5.2 HILIC  

Metabolites have wide-ranging hydrophobicity; therefore, it is not possible to apply only 

reversed phase columns to separate them all. Hydrophilic compounds (e.g. sugars, nucleic acids, 

and amino acids) are biologically important and are important in metabolomics analysis. These 

Hydrophilic compounds cannot be analyzed by RP-LC, and crucial metabolic information would 

be missing. To retain and separate these classes of metabolites, polar stationary phase can be used 
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in HILIC mode. Due to its complementary separation mechanism, HILIC is often used in addition 

to RP-LC separation to provide comprehensive analysis of the metabolome.   

In HILIC mode, the polar stationary phases commonly used is bare silica. Other polar 

bonded phases like amino, diols, zwitter ionic, and amides, have also been used with slightly 

different selectivity.59,60 The mobile phase composition is the reverse of RP-LC. In HILIC, the 

strong solvent is water and the weak solvent is often acetonitrile. The acetonitrile percentage is 

lowered as the gradient proceeds and eluting the strongly retained hydrophilic compounds. 

Evidence has shown that the most likely mechanism of this retention is the formation of a thin 

water layer over the polar stationary phase, and analytes retain on the stationary phase by either 

partitioning into or adsorbing onto the water layer. Polar hydrophilic compounds retain strongly on 

this water layer, while non-polar hydrophobic compounds are not retained.  

While HILIC separations are already widely used in metabolomics studies,60,61 the large 

variety of stationary phase chemistries that have slightly different selectivity makes the selection 

of a “standard” HILIC phase will be unlikely in the future. Without a standard column, inter-

laboratory sharing of data will be difficult. 

1.5.3 Nano-LC 

The most wide spread LC technique is high performance liquid chromatography (HPLC). 

Analytical columns used in HPLC are typically between 2 mm to 4.5 mm in inner diameter, and 

are referred to as microbore columns. Flow rates can be anywhere between 200 µL/min to 1 

mL/min. When there are sufficient amount of sample that can be injected onto the HPLC, this 

dimension of columns is perfectly suitable for metabolomic and proteomic analysis. However, 

there are situations in which samples are limited, HPLC is not sensitive enough. In order to increase 
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the sensitivity, the dimensions of the HPLC columns can be reduced to µm sizes, and flow rate 

down to nL. At these dimensions, HPLC becomes nano-LC (nLC) 

The typical internal diameter of nLC columns is 75 µm, made possible by packing 

stationary phase in fused silica capillaries. The length and packing materials are kept the same as 

a standard analytical column. Flow rate is slowed down in proportion to the decrease in column 

dimensions, to 200 to 500 nL/min. The lower flow rate and smaller inner diameter reduces analyte 

dilution by the mobile phase, which increases the detection sensitivity. The linear velocity is kept 

the same as an analytical column, so column efficiency is similar to conventional HPLC columns. 

Due to the slower flow rates, the transfer of analyte ions into the gas phase becomes more efficient 

(Section 1.6.2), which also improves sensitivity.  

Unlike HPLCs, nLC are usually performed with a sample trapping step prior to the 

analytical separation. In this step, samples in the microliter range are pushed through a short trap 

column and into the waste at high flow rates—usually in the µL/min range. Analytes retain on the 

stationary phase in the trap column, while matrix is diverted to waste. The analytes are slowly 

eluted onto the analytical column as the analysis begins. The purpose of this step is twofold: first, 

if microliter sized samples are injected directly onto the analytical column, it would take more than 

10 minutes to load the sample onto the column at nanoliter flow rates—which increase analysis 

time; secondly, the trapping can remove most matrix material prior to ionization, which reduces 

ion suppression and source contamination. Therefore, sample trapping is a crucial step in nLC 

analysis. 

nLC is used almost exclusively in the field of proteomics,62,63 because of its higher 

sensitivity. The downside of small column and tubing dimensions is the fragility of nLC systems 

for day-to-day use. For this reason, nLC has not seen routine use outside of research institutions. 
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However, the sensitivity of nLC can of great use in fields other than proteomics. Chapter 6 

leverages the advantages of nLC to develop a sensitive method for CIL metabolomics. 

1.6 Mass Spectrometry 

1.6.1 ESI Source  

As analytes elute from the LC they are still dissolved in the mobile phase; before they can 

be analyzed by the mass spectrometer, they must be ionized and transferred into the gas phase. Due 

to the LC being in atmospheric pressure, the ionization source for the mass spectrometer are usually 

operated at atmospheric pressure. The majority of API sources utilizes electrospray ionization 

(ESI).64 ESI’s ability to produce intact ions of analytes (such as peptides and metabolites) and be 

compatibility with RP-LC and HILIC mobile phases, have been the reasons for its dominance as 

the main ionization source for the proteomic and metabolomic research. 

The goal of ESI is to generate fine droplets that can transfer analyte ions into the gas phase. 

The ESI source is simple in design, consisting of a thin inner metal capillary housed within a larger 

metal tube (Figure 1.2). LC eluent flows through the inner metal capillary, and N2 gas passes 

through the larger metal tube to aid in solvent evaporation. A high voltage potential (3-5 kV) is 

applied between the inner needle and the inlet of the mass spectrometer. In the metal capillary, the 

LC eluent contains protonated positive ions from the higher pH generated by formic acid mobile 

phase additive, and also from the electrochemical reaction at the electrode.65,66 The applied electric 

field causes the ions to build up at the tip of the metal capillary, and distorts the liquid in the metal 

capillary to form the characteristic “Taylor cone” (Figure 1.2). A jet of ion rich liquid is emitted 

from the tip of the Taylor cone, towards the MS skimmer. Due to the columbic repulsion between 

ions, the thin jet soon destabilize and break apart into smaller micrometer sized droplets.  
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Figure 1.2 Electrospray ionization process in the positive mode. Adapted from Kerbarle et al.55 

The exact mechanism of how ions are transferred from micrometer sized droplets into the 

gas phase and ultimately end up in the MS, has been the subject of many studies and reviews.55,65,67 

There are two prevailing theories on the matter, and both have been shown to occur depending on 

the type of analytes. The first theory is the ion evaporation model (IEM). As the solvent in the µm 

sized droplets evaporate, the droplets decrease in size and the ions contained in the droplets come 

in closer proximity to each other. Once the sizes have shrunk down to the Rayleigh Limit, the 

repulsive forces causes droplet to break apart and ions to be ejected from the droplets.  

The second theory is the charge residue model (CRM) which was found to be more 

applicable to large polymers or biomolecules. In this theory, as the solvent evaporate from the 

droplets, charges adhere to the analytes. After all of the solvents evaporate, the charged analyte is 

left in the gas phase.  This theory better explain the ionization process for larger biomolecules 

because it is energetically unfavorable for them to undergo IEM.67 
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1.6.2 Nano-ESI Source  

In order to cope with the much lower flow rate of the nLC, the normal ESI source is shrunk 

down to smaller dimensions. The typical ESI metal capillary are usually in the hundreds of µm 

range; this large diameter will add too much post-column volume at nLC flow rates of around 300 

µL/min—causing severe peak broadening. In nano-ESI (nESI), the metal capillary is switched with 

a pulled fused silica tip that can reach a tip diameter of less than 10 µm. This not only reduces the 

volume in the nESI source, it also improves the ionization of analytes. Smaller tips and lower flow 

rates can generate smaller droplets that evaporate quickly and yield more ions than ESI.68,69 

Studies have shown that additives in the analyte solvent affects the nESI ionization process, 

mostly changing the charge of the analyte.68,70,71 Chapter 3 improved the nESI process, by 

increasing ionization efficiency through the use of gas phase chemical in nano-spray ESI. 

1.6.3 High-Resolution Mass Analyzers 

The ionized analytes enters the low-pressure region inside the mass spectrometer, where 

m/z is measured and recorded. The m/z values are measured as Gaussian peaks; the resolution of 

the peaks determine the accuracy of the m/z value and the ability to distinguish similar masses. The 

accuracy and resolution of mass analyzers play a large part in the correct identification of peptides 

and metabolites.  

High-resolution mass analyzers,72 as defined in this thesis, are instruments capable of less 

than 5 ppm of mass error and greater than 30,000 full-width-at-half-maximum (FWHM) resolving 

power. Time-of-flight73 (TOF), Fourier Transform Ion Cyclotron Resonance74 (FT-ICR), and 

Orbitrap75 instruments fit the definition of high resolution. However, all work in this thesis were 

conducted on a hybrid quadrupole time-of-flight (QTOF) instrument.76  
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QTOFs are, as their name suggests, a combination of a quadrupole and TOF in one 

instrument (Figure 1.3). The first quadrupole (Figure 1.3b) resides in the front of the instrument 

and acts as a gatekeeper, controlling the ions that enter; it does not function as a mass analyzer and 

is not used to record any data.  

 

Figure 1.3 Simplified schematic of a QTOF mass spectrometer. Ion focusing funnels, and ion 
transfer hexapoles and lenses are not shown for simplicity. (A) Ion Inlet (B) Analytical 
quadrupole (C) Collision cell filled with nitrogen (D) Ion pusher/puller assembly (E) 
Reflector (F) Detector. Dotted line represents the ion path. 

The quadrupole is a section of four parallel metal rods that are machined to be precisely 

uniform in dimensions, and held in parallel by ceramic spacers to create the quadrupole electric 

field; ions travel along the length of the quadrupole, in its center.   A positive superimposed direct 

current (DC) and alternating current (AC) are applied to a pair of rods that are facing each other on 

the y-axis (Figure 1.4a). The combined potential takes on the formula of U+Vcos(ωt), where U is 

the DC voltage, V is the AC voltage, and ω is the angular frequency of the AC component. 
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Assuming we are operating in positive mode with positive ions; the constant positive DC voltage 

pushes all the ions to the center as they travel along the z-axis. The positive AC current destabilizes 

the smaller ions by pulling ions toward the rods, while heavier ions travel through along the z-axis 

undisturbed. These two rods act as the high-pass filter, removing all light ions.  

The other two rods have the same superimposed AC and DC potentials, but of the opposite 

polarity. The negative DC voltage destabilizes heavier ions, while the negative AC voltages 

stabilizes lighter ions; this forms a low-pass filter that removes heavier ions, allowing the lighter 

ions to pass. By controlling the DC and AC potentials, the combined effect of the two polarities is 

that only a small selection of m/z are allowed to pass the quadrupole,76,77 as shown in Figure 1.4b. 

This is how a single analyte can be isolated and fragmented to give a MS2 spectrum. If no DC 

potential is applied (U=0), ions of all m/z are able to pass through the quadrupole. 

 

Figure 1.4 Simplified schematic of a quadrupole and its mechanism. (A) Schematic of a 
quadrupole. A superimposed AC and DC potential is applied to rods opposing each 
other. The rods adjacent to each other are of the opposite polarity. (B) A simplified 
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stability diagram illustrating the effect of the two sets of rods. The rods with the net 
positive polarity (U + V cos(ωt)) transmit high masses only. The negative rods (-U - V 
cos(ωt)) transmit low masses only. The grey area shows the masses that are stable and 
are pass through the quadrupole – due to the combined effect of the quadrupole. 

As the ions exit the quadrupole they enter the collision cell (Figure 1.3c). The collision cell 

is another quadrupole held at higher pressure, between two accelerating plates. The cell is usually 

filled with either N2 (g) or Ar(g). Ions are accelerated through the length of the collision cell, towards 

the exit and into the TOF analyzer. At low accelerating voltages the ions pass through unaffected, 

but at higher acceleration the ions collide with the gas molecules with enough force to fragment 

into smaller ion pieces (Section 1.7).  

Once the ions enter the TOF region of the MS, they are pushed orthogonally by an 

accelerating voltage into the flight tube (Figure 1.3d). The amount of time (t) required by the ion 

to reach the detector is determine by the mass to charge ratio (m/z), the accelerating voltage (U), 

and length of the entire flight path (Leff), as described by Equation 1.2.76  

 
𝑡𝑡 =

𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒
√2𝑒𝑒𝑒𝑒

�𝑚𝑚/𝑧𝑧 (1.2) 

 

Most modern day QTOF MS includes a section of closely spaced metal plates, referred to 

as the reflectron, at the end of the flight tube to reflect ions to the detector (Figure 1.3e); this 

increases the resolution by increasing the flight path and reducing the spread of ions. The reflectron 

first decelerate a packet of ions of the same m/z, collapsing them into a tighter formation. The 

reflectron then accelerate the tight packet to the detector. Because the ions are packed tighter, a 

peak of reduced width is detected. With the reflectron, modern QTOFs have reached greater than 

80,000 FWHM resolving power.  
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Once the ion reaches the detector, the flight time is recorded and converted into the m/z of 

the measured ion. Because flight time is dependent on the length of the flight tube, small changes 

in tube length will affect the accuracy of the measured m/z. Temperature changes in the lab changes 

the length by minute amounts, but they affect the QTOF’s accuracy. In order to achieve less than 

5 ppm of mass accuracy, every analysis needs to be internally calibrated. This can be accomplished 

by the periodic infusion of calibrant solution into the source region, as done by the Water’s 

“Lockmass” system. Alternatively, a plug of calibrant solution can be injected at the beginning of 

every LC-MS run with a switching valve and additional pumps.  

The success of QTOF in the scientific community is due to a combination of mass accuracy, 

fast scan speed, high resolution, and low initial and maintenance costs. QTOFs have been 

successfully used for both metabolomics and proteomics.  

1.7 Tandem Mass Spectrometry 

The accurate mass of the intact metabolite or peptide is not enough to ensure identification, 

even at below 1 ppm accuracy.78 Tandem mass spectrometry (MS2) is often performed to identify 

molecules through interpreting the unique fragment spectra after CID fragmentation. This is a 

simple and convenient identification method, because most modern MS have MS2 function built 

into the instrument. The name and resulting spectra appears slightly different for each class of MS; 

CID for QTOF, collisional activation dissociation (CAD) for ion traps, and higher-energy 

collisional dissociation (HCD)79,80 for Orbitraps. CID was used in this thesis because all data were 

acquired on QTOF instruments with CID. 

In most cases, MS2 is generated in the data dependent acquisition mode (DDA); the MS 

first scans the intact ions eluting off the LC (the precursor scan), then the analytical quadrupole 
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isolates a chosen ion for fragmentation. The resulting fragment spectrum contains only the 

fragments of the chosen ion, and not from any other sources. Only the target ion passes through the 

analytical quadrupole with a stable trajectory and enters the collision cell; it is accelerated by a 

user-defined energy (10-50 eV) and collides with the gas molecules. Kinetic energy is converted 

into internal energy, and the bonds break. The resulting fragment ions are then pushed into the TOF 

region to generated fragment spectra.  

An alternative method would be fragment all ions coming into the mass spectrometer, and 

then deconvolute the resulting mixed fragment spectra with software81. This was difficult with 

older, lower resolution MS; however it has been gaining wider use and development with higher 

resolution data. All MS2 work done in this thesis was done with DDA acquisition, because it is still 

the most accurate method of obtaining a fragment spectrum. 

CID MS2 is a crucial step in the metabolomics or proteomics workflow to identify 

unknowns. The following two sections describes how MS2 is used for identification in the two 

omics fields. 

1.7.1 MS2 in Proteomics 

In proteomics, the analytes are almost exclusively protonated peptides analyzed in positive 

mode. These medium sized polymers are made up of a relatively small number of monomer amino 

acid units; because of this, the fragmentation of peptides are predictable and reproducible. Through 

experimental and theoretical data, researchers have compiled a list of fragmentation rules82 for 

peptides that enabled automated large-scale sequencing of peptides in LC-MS proteomic 

experiments. 
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The fragmentation of peptides mostly occurred in the backbone—between the carbon and 

nitrogen in the amide bond. Often, bond breakage generates useful b and y-ions (Figure 1.5). By 

comparing the mass difference between successive b or y-ion, the amino acid residue sequence can 

be determined. Additional fragmentation along the sidechains of the amino acids can be observed, 

but these fragments do no offer additional sequence information.  

 

Figure 1.5 Schematic of a peptide fragmentation in MS2. Bond cleavage occurs in the peptide 
backbone; x,y,z-ions are fragments that contain the C-terminal of the peptide, while 
a,b,c-ions are contain the N-terminal. In this three-residue peptide example, y1 is the 
smallest y-fragment containing the C-terminal amino acid, and y2 adds on one 
additional residue. 

The location of the bond breakage along the peptide backbone is described by the mobile 

proton model.83 In this model, the extra proton on the peptide ion will migrate to the nitrogen on 

the amide bond  to initiate bond cleavage.82 The production of either b or y-ion depends on proton 

affinity of the resulting b and y fragment. This effect occurs most favorably in doubly charged 

peptides with C-terminal basic residues such as lysine or arginine; one proton is sequestered on the 

basic residue, while the other proton is free to direct backbone cleavages. Trypsin digestion cleaves 

at lysine or arginine to leave peptides with a C terminal basic residue, and is the preferred protease 

for proteomic work. 
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Most of the time, not all predicted fragments along the backbone amide bonds are observed. 

This leaves some ambiguity towards the accurate assignment of peptide sequence when trying to 

interpret the spectra manually. This means that, for most peptides, incomplete b/y-ion ladder 

prevents automated de novo sequencing—obtaining a complete peptide sequence only with the 

MS2 data. Therefore, proteomics relies on prior knowledge of protein sequences derived from 

genome data. The experimental data is then matched against the predicted fragmentation pattern to 

determine the peptide sequence, as described in Section 1.8.1.  

1.7.2 MS2 in Metabolomics 

Small molecules that make up the metabolome in organisms do not have fragment patterns 

that are as easy to predict as peptides. This is because small molecules have many different 

chemical structures and functionalities. With a vast diversity of small molecules, it is difficult to 

develop a universal fragmentation rule that can be used to predict fragmentation patterns, like in 

proteomics.  

Although difficult, some work has been done with fragmentation prediction. Most in silico 

predictions are based on bond splitting algorithms that cleave all possible bonds to generate all 

possible unique fragment structures.84-87 These algorithms do not take into account gas phase 

rearrangements and other reactions of the fragments, and they predict far more fragments than is 

empirically observed.88 As the fragmentation rules of CID MS2 of small molecules become well 

understood—through the collection of high quality reference data—these algorithms might be 

improved. However, as of now, these tools are not sufficient to give unambiguous results.  

Instead, reference CID MS2 spectral libraries of small molecule standards are the norm for 

identification in metabolomic experiments. To create these libraries, synthesized standards are 
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injected into the MS to generate CID MS2 spectra. These spectra are then processed and entered 

into a database, so future experimental MS2 spectra can be searched against the library (Section 

1.8.4). Although this is the only way to obtain accurate fragmentation spectra of small molecules, 

synthesizing standards is very labour intensive. Despite the difficulty, building high quality 

libraries for metabolites and other small molecules is valuable for the entire metabolomics 

community.  

1.8 Unknown Identification 

Due to the large number of MS2 spectra generated in one LC-MS experiment for both 

proteomics and metabolomics, the introduction of computer assisted unknown identification is the 

only way of dealing this flood of information. Due to the different fragmentation observed between 

metabolites and peptides (Section 1.7), the approaches for MS2 spectral identification are very 

different between metabolomics and proteomics. The latter relies exclusively on genome derived 

database search engines, while the former relies only on reference library spectral matching. The 

following subsections explain the nuisances of LC-MS unknown identification in the two fields. 

1.8.1 Proteomics 

Peptide and protein identification from MS2 data are almost exclusively done with database 

search engines. These search engines take predicted protein sequences from genomic data of the 

organism of interest, and performs in silico digestion based on the protease used in the experiment. 

The in silico digestion generates a list of peptides by cleaving according to experimentally 

determined cleavage rules of the protease. The search engine then matches the precursor mass of 

an experimental peptide to the list of all in silico peptides. Once a list of possible peptides are found, 

predicted b/y-ions (a/x,c/z-ions as well depending on conditions) are generated and compared to 
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the experimental MS2 spectrum. Each MS2 spectrum is matched to at least one peptide sequence, 

to generate one peptide-spectrum-match (PSM). Up to this step, the two search engine used in this 

thesis, Mascot (Matrix Science, London, UK) and X!Tandem89,90 are very similar. Where the two 

differ is in the way that each search engine assigns the significance of the above PSM matching. 

For Mascot,91 its scoring algorithm is probability based. The score assigned to each PSM is 

based on the probability (p) of that match being a random one. The probability is then converted 

into a readable score with the following equation:−10 ×  log10(𝑝𝑝). The probability is derived 

from factors such as how many MS2 peaks were matched and their intensities. Confident matches 

have low probabilities of being random, and their resulting score would be large. However, the 

exact algorithm showing what parameters were included in the score calculation was never 

published.  

X!Tandem’s matching score is referred to as a hyperscore. For each candidate peptide, 

X!Tandem sums the intensities of the matched fragment ions and multiplied by the factorial of the 

number of matched ions. A distribution of scores for all matches are made, including all low scoring 

random matches. From this distribution, the number of random match having a score of the top-

scoring match is extrapolated (Figure 1.5). The extrapolated value is referred to as the E-value; the 

more negative the E-value, the more significant the PSM.   
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Figure 1.6 Schematic of the X!Tandem scoring algorithm to statistically generate the final E-value 
score. For one MS2 spectrum, there are multiple PSMs, most are low scoring random 
match and a few high scoring “correct” matches. X!Tandem extends the distribution of 
low scoring random matches (solid line) to predict what is the likely number of random 
PSM to have the same score as the “correct” PSM. This is the E-value, and the lower 
the number the less likely the “correct” PSM is random. 

While there are small variation in the algorithm for scoring PSMs, both search engine 

performs similarly in terms of number of matches.92 However, X!Tandem is free to use and 

accessible because it is open-sourced—the exact algorithms are known to the user. Mascot is 

expensive for an academic group, and it is close-sourced. In addition, recent developments allowed 

X!Tandem to be used with a cluster of computers, greatly increasing the processing power when 

dealing with large high resolution data files.93 For these two reasons, X!Tandem remains an 

important search engine in the proteomic community. 

1.8.2 False Discovery Rate in Proteomics 

The scoring algorithms described above can give a good indication of matching probability 

on the single PSM level. It would also be informative to obtain information on the confidence of 

the entire search result, in terms of the number of false positives (the number of wrong 

identifications that are scored as correct). Since the correctness of the identifications is not known 
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with certainty, the false-discovery-rate (FDR) needs to be estimated. A popular method of 

estimation is the target-decoy strategy.94  

The target-decoy strategy estimates the FDR by searching a decoy database—a database 

that is purposely made to contain incorrect protein sequences. Any matches to this decoy database 

can be assumed to be a false positive, and will provide an estimate of the FDR. The number of 

matches to the decoy database divided by the total number of matches to the real (“forward”) 

database gives the FDR.  

The composition of the decoy database affects the result of the estimated false positives. 

Studies have shown that the best strategy for generating the decoy database is to reverse the target 

database, as opposed to randomizing the sequence.95,96  

The value of performing decoy database searching is that it gives an estimation of the error 

rate. In addition to this use, decoy searching can be used for increasing the sensitivity of search 

engine results by using machine learning, as described in the next section.   

1.8.3 Percolator 

The properties between true and false positives should be quite different. A true match have 

better scoring statistics and less fragment mass errors than a false positive. Percolator is an 

algorithm that takes advantage of this property in order to filter out the false positives and to recover 

the false negatives from a search engine result set.  

To accomplish this, Percolator trains a support vector algorithm to recognize the features 

of a true match by looking at all the higher scoring forward protein sequence database matches. 

These features are predetermined by the user, and can include the matching score, the number of 

fragments matched, and so on. The support vector algorithm then looks at the high scoring matches 
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to the reversed sequence database—theoretically identical to the false positives—and is trained to 

recognize the false positive matches in the forward database results. The algorithm creates a 

classifier to separate all of the true positives from the false positives in the forward search result. 

With the newly filtered list of results, Percolator repeats the above learning and classifying, until 

the false positive rate has been reduced to an acceptable level that is set by the user.  

Chapter 2 optimizes this algorithm for coupling with the popular open-source search engine 

X!Tandem. Percolator has been shown to improve sensitivity and selectivity in peptide spectrum 

matching with other search engines, like Mascot97 and SEQUEST.98 By implementing Percolator 

with X!Tandem, there would be more choice for the proteomic community.  

1.8.4 Metabolomics 

Unlike proteomic database searching, spectral identification for metabolomics has seen 

little change since the first spectral matching algorithms appeared for electron impact (EI) spectra 

from gas chromatography coupled mass spectrometry (GC-MS) experiments. This is because small 

molecules do not have predictable fragmentation patterns and associated genome data to predict 

the structure of metabolites. Currently, metabolomics still relies on spectral matching with 

reference libraries as the most reliable method of correct identification.  

Most algorithms calculate the spectral similarity between the reference spectrum and the 

experimental spectrum by calculating a dot product of the peaks between the two spectra. The 

greater the overlap between the two spectra, the higher the dot product, and the higher the final 

score. Formula 1.3 shows the calculation of the “Purity” score – measuring how exactly the two 

spectra matches. This type of algorithm is employed in the data processing and library program 

used in this thesis, DataAnalysis (Bruker Daltonics, Bremen, Germany).  
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 = 1000

(∑𝑃𝑃 × 𝑙𝑙)2

∑𝑃𝑃2 × ∑ 𝑙𝑙2
 (1.3) 

 
u – the intensity of the unknown peak 

l – the intensity of the library peak 
 

If there is an exact match between the unknown and the library spectrum, the numerator 

and the denominator would be equal; a perfect match would have a purity score of 1000.  

However, metabolomic samples are complicated and there is often chemical interference in 

the MS2 of small molecules, because two or more metabolites can be isolated by the quadrupole. 

It is not always possible to have high purity scores even though a match is correct. Extra peaks 

might appear from co-isolated molecules. To counter this effect, two other scores are commonly 

used that are more robust against interference—the fit and the reversed fit score.  

The fit score indicates whether all the peaks in the library spectrum are found in the 

unknown spectrum. Extra peaks from inference will not reduce the fit score, unlike the purity score. 

Formula 1.4 shows how the fit score is calculated: 

 
𝐹𝐹𝑃𝑃𝑡𝑡 = 1000

(∑𝑃𝑃 × 𝑙𝑙)2

∑ 𝑃𝑃2𝑙𝑙>0 × ∑ 𝑙𝑙2
 (1.4) 

 
u – the intensity of the unknown peak 

l – the intensity of the library peak 
 

The only difference, compared to the purity score, is in the summation of the denominator. 

The fit score will only sum the intensities of unknown peaks if they have a corresponding peak in 

the library spectrum. If an unknown spectrum contains the entire library spectrum and some extra 

peaks, the numerator will be larger than the denominator for the Fit score calculation – giving a 

high score. While in the purity score calculation, the denominator will be larger than the numerator 

– which gives a low score.  



32 
 

The reversed fit score is calculated in a similar way as Formula 1.4. The difference is that 

reversed score looks for whether peaks in the unknown spectrum is contained in the library 

spectrum; any extra peaks in the library spectrum will not affect the score. This is valuable in case 

the library spectrum is low quality and contains interferences; or if the experimental spectrum is 

low-intensity and has missing peaks.  

Due to the large data quality variation possible in one single LC-MS metabolomic 

experiment, all three scores are useful for deciding matching confidence. The usual practice is to 

calculate and report the purity, fit, and reversed fit scores. Figure 1.6 illustrates the differences 

between the three scoring schemes. 

 

Figure 1.7 Illustration of the purity, fit, and reversed fit scoring schemes. All experimental spectra 
are of the same compound as the reference spectrum. (A) An experimental spectrum of 
the pure analyte. Perfect match, so all scores are high. (B) A low quality spectrum, 
where one of the peak is missing due to low ion abundance. Reversed fit is high, while 
the other scores are low. (C) Contains extra co-isolated fragments (in red). Only the fit 
score is high, others are low. 
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1.9 Scope of thesis 

The main objective of this thesis was to develop tools and methods for LC-MS based 

metabolomics and proteomics, and it spans a wide range of topics from peptide database searching 

to nLC metabolomics.  

In Chapter 2, Percolator algorithm was interfaced with the X!Tandem protein search engine 

to increase the sensitivity and confidence of protein discovery, while reducing the number of false 

positives—without having to redo time consuming experiments. Chapter 3 also increased the 

sensitivity of proteomic experiments by modifying the nESI source of the MS. By adding vapours 

of common chemical, the number of discovered peptide was increased.  

Chapters 4 and 5 moves on to metabolomics, where we developed a large metabolite library 

that was used to identify unknowns from metabolomic experiments. This library is the highest 

resolution metabolite library commercially available. It is also the largest retention time library of 

metabolites available.  

Chapter 6 continues with method development for metabolomics. In this chapter, a common 

proteomic technique (nLC) was combined with our group’s CIL method. Metabolite sensitivity 

was higher than using traditional LC, and less samples were required.  
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Chapter 2  
 
Combining Percolator with X!Tandem for Accurate and 
Sensitive Peptide Identification* 

2.1 Introduction 

During the past decade MS2 has progressed to be a popular and powerful tool to generate 

proteome profiles for studying complex biological systems.1-3 In conjunction with LC separations, 

thousands of tandem mass spectra are routinely acquired and then correlated to peptide sequences 

and eventually protein identifications. Instead of manual interpretation of each spectrum, search 

engines, such as Mascot4 and X!Tandem,5 were developed to match the spectra with peptide 

sequences by comparing the experimental spectrum with the theoretical fragmentation patterns of 

individual peptide sequences derived from the protein sequences in a proteome database. To 

measure the reliability of each individual PSM, some statistical analysis of the match is usually 

carried out.  For example, a probability-based Mascot ion score and identity threshold are 

implemented in the algorithm of Mascot (www.matrixscience.com). When the significance 

threshold of 0.05 (p = 0.05) is applied, it ensures that the probability of an identified PSM being 

random in the identification list is no more than 5%. Meanwhile, X!Tandem adopted the concept 

of reporting expectation values (E-values) of PSMs. In its algorithm, X!Tandem first calculates the 

number of matched fragment ions between the experimental spectrum and several candidate 

                                                 
*A version of this chapter has been published as “Combining Percolator with X!Tandem for Accurate and 
Sensitive Peptide Identification.” Xu, M.; Li, Z.; Li, L. J. Proteome Res. 2013, 12, 3026-3033. Also 
published as Chapter 6 in Mingguo’s thesis: Xu, M. (2012). Development of a spectral searching strategy 
for peptide and protein identification (Order No. NR98542). Available from ProQuest Dissertations & 
Theses Global. (1458438348). I contributed towards design, programming and partially towards data 
processing. 
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theoretical peptide fragmentation patterns, generates hyperscores (the sum of matched fragment 

ion intensities multiplied by the N factorial for the number of matched ions), plots a distribution of 

hyperscores for the spectral search and extrapolates an E-value to provide a statistical evaluation 

for each identification. E-value is defined as the number of random matches that would be expected 

to have the same or better scores. This X!Tandem scoring scheme is an empirical measure of 

whether the match is an outlier.6  

After the analysis of individual MS2 matches, the concept of global FDR was proposed7 as 

the standard to regulate the reporting of search results. The most common approach to estimate the 

global FDR of a search result is the target-decoy approach,8 which is based on the use of 

randomized decoy proteome databases. The target-decoy approach enables the error control at the 

peptide level for different results from different search engines. However, the global FDR 

estimation cannot provide any statistical evaluation on the reliability of each individual PSM. 

In addition to the target-decoy strategy, more sophisticated algorithms were developed to 

provide both global FDR estimation as well as individual assessment of PSMs. They re-evaluate 

the qualities of PSMs from the original search result and assign new probability to each PSM by 

examining the properties of correct and incorrect PSMs. For instance, PeptideProphet9 uses an 

expectation-maximization algorithm to fit the bimodal distribution formed by discriminant scores 

of correct and incorrect PSMs in the histogram and thus computes the probability of each PSM and 

global FDR of the entire result. Alternatively, Percolator10 implements a different machine learning 

approach. After searching all the spectra in both target and decoy databases, Percolator extracts a 

vector of features that are related to the quality of the match (e.g., mass error and PSM score) from 

both target and decoy PSMs. Assuming that the features of correct matches (represented by high 

scoring target matches) differ from the features of incorrect matches (represented by decoy 
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matches), an iterative classification process is applied to find the best separation between correct 

and incorrect matches. After several iterations, the system converges and generates a robust 

classifier that can be used to calculate the probability of each PSM being random (posterior error 

probability, PEP) and the minimal FDR at which a PSM is accepted (q-value).11,12 

Among all the statistical strategies, Percolator is one of the most sensitive and accurate 

tools to evaluate PSMs. Due to the adaptive nature of Percolator, Percolator has been successfully 

extended from the application of SEQUEST and Inspect13 results to the use of Mascot results,14 

and more recently to X!Tandem.15 When implementing Percolator with Mascot, the selection of 

the features used by Percolator was shown to be vitally important to the performance of Percolator. 

When the authors included extra features that represent information such as intensity and fragment 

ion mass error, the sensitivity was boosted by 17%. 

In this work, Percolator program has been successfully interfaced with X!Tandem using a 

PHP program. Since it is critical to select the best discriminating features for Percolator as to 

achieve the best performance, a set of experimentally validated PSMs were used to optimize and 

validate our choice of features. This approach is different from the other statistical means to extend 

Percolator to a search engine. For example, Yang et al15 used a cascade learning to filter the training 

dataset iteratively to classify PSMs into true and false groups from which feature selection was 

done and evaluated. The major question here is how one can be sure about the true and false PSM 

assignments, which can affect the feature separation. In a previous study,16 Xu and Li described a 

method of using 15N-labeling for validating the spectrum-to-sequence assignments and 

constructing a more reliable MS2 spectral library. Due to the advantages of this experimental 

validation method, not only are a large set of spectrum-to-sequence assignments justified, the 

annotation of the spectra are also validated, giving us an opportunity to examine the spectral 
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characteristics of true peptide identifications. By comparing the features of these experimentally 

validated PSMs (34,993 MS2 spectra) with those of false identifications, a comprehensive set of 

features can be chosen for Percolator in an objective and rational manner. Next, the accuracy of 

X!Tandem Percolator was demonstrated by comparing the estimated false-discovery rate of the 

validated dataset with the factual false-discovery rate. By comparing the results from our 

X!Tandem Percolator and the original X!Tandem, superior sensitivity and specificity of the 

X!Tandem Percolator result was demonstrated. Lastly, X!Tandem Percolator was applied to results 

with various search conditions, such as large MS2 datasets from different species, human (46,494 

MS2 spectra) and E. coli (88,306 MS2 spectra) to examine robustness. 

2.2 Experimental Section 

2.2.1 Sample Preparation.  

Three different MS2 datasets were used in this study. They were collected using a QTOF 

Premier mass spectrometer (Waters, Manchester, U.K.) equipped with a nanoACQUITY Ultra 

Performance LC system (Waters, Milford, MA). The experimental workflows are outlined below 

while the detailed procedures used to generate these datasets are the same as those reported in a 

previous publication.16 

2.2.2 E. coli Dataset.  

The E. coli K12 cells (E. coli, ATCC 47076) were cultured, collected and disrupted. They 

were subsequently subjected to reduction, alkylation, acetone precipitation, trypsin digestion and 

strong cation exchange (SCX) chromatographic fractionation.  All the peptide fractions were then 

desalted and analyzed by reversed phase (RP) LC-QTOF to generate the MS2 spectra. In total, 

88,306 spectra were collected and searched with both Mascot (version 2.2.1) and X!Tandem (The 



44 
 

Global Proteome Machine Organization, 2007.07.01, version Cyclone) using the same search 

parameters including: enzyme, trypsin; fixed modifications, carbamidomethylation (C); variable 

modifications, acetylation (N-term), ammonia-loss (N-term C), pyro-Glu (N-term Q), pyro-Glu (N-

term E), and oxidation (M); precursor mass error, 30 ppm, fragment mass error, 0.2 Da, maximum 

missed cleavages, 2. The lists of peptides and proteins identified from the E. coli dataset are 

provided in Supplemental Table S1. 

2.2.3 Human Dataset.  

Similar to the E. coli dataset, SU-DH-L1 cells17 (A human lymphoma cell line) were 

cultured, harvested, disrupted by cell lysis buffer and subjected to acetone precipitation, reduction, 

alkylation, protein reversed phase chromatographic fractionation and trypsin digestion. Then RP-

LC-QTOF-MS2 analysis was performed on all the desalted peptide fractions to collect the MS2 

spectra. Overall this human dataset contained 46,494 MS2 spectra and was searched by Mascot and 

X!Tandem using the same parameters aforementioned in the E. coli dataset section.  The lists of 

peptides and proteins identified from the human dataset are provided in Supplemental Table S1.  

2.2.4 Validated E. coli Dataset.  

This dataset consists of 34,993 experimentally validated spectral identifications. Each of 

them was examined using a 15N-metabolic labeling validation process. This approach has been 

described in detail in the reference.16 Briefly, unlabeled and 15N-labeled E. coli spectra were 

collected independently and further compared by overlaying the spectra of unlabeled and labeled 

matches of the same peptide sequence for validation. In the validation process, two cut-off filters 

were developed. One was based on the number of common fragment ions found in the overlaid 

spectra; a minimum of 5 common ions were found to be needed to judge the fragmentation pattern 
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matches. The second filter was based on the similarity of the fragmentation patterns of the 

unlabeled and labeled peptide pairs. A similarity score was calculated by using the fragment ion 

intensity dot-product, and the cut-off score was found to be 0.96 out of 1.00, with 1.00 to be a 

perfect score. This isotopic labeling approach provided experimental evidence to validate the PSMs 

generated by sequence-database searching and ensured the reliability of peptide identifications.  

2.2.5 Databases.  

Target-decoy search strategy proposed by Elias and Gygi in 20078 was applied by searching 

the MS2 spectra against two separate databases (target and decoy databases) to calculate the q-

value. The target databases used for E. coli and human datasets were E. coli K12 proteome 

sequences (size ≈ 2 MB, 4,339 sequences) and international protein index human database (IPI 

human database, version 3.68, size ≈ 48 MB, 87,061 sequences), respectively. The construction of 

a decoy database in this study was done by reversing all the protein sequences found in target 

database.  

2.2.6 Percolator Processing.  

The raw search results from Mascot (*.dat file) and X!Tandem (*.xml file) were imported 

to Percolator program (version 2.01). The original result files were then parsed. Scoring features 

were extracted accordingly and sent to Percolator for further training steps.  

In Mascot Percolator, the default features were used, including precursor mass, charge, 

Mascot score, score difference between the best and second best match, precursor mass error, 

fraction of variable modification sites that was modified, the number of missed cleavages, fragment 

mass error, total intensity of the spectrum, total intensity of peaks that were used to identify a 
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peptide, relative total intensity of peaks that were used to identify a peptide, fraction of ions that 

were matched in an ion series, and others.  

X!Tandem has a different scoring scheme than Mascot. Instead of reporting the probability 

of a PSM being random, X!Tandem first plots a distribution of calculated hyperscores from a 

specific search and then extrapolates E-values to provide an statistical evaluation for each 

identification. It was therefore found that the features extracted from X!Tandem were not exactly 

the same as the ones from Mascot or SEQUEST. All the features used in the X!Tandem Percolator 

were listed and explained in Table 2.1. As shown in Table 2.1, all these features can be categorized 

into three different groups, namely spectral quality, scoring and PSM statistics. In the category of 

spectral quality, all three features represent the intrinsic quality of an MS2 spectrum regardless of 

its peptide assignment. In the category of scoring, all of the eight features come from the original 

X!Tandem scoring algorithm and are used to measure how reliable the sequence to spectrum 

assignment is. Lastly, all the features in the PSM statistics category are the collective statistical 

information that are not directly used by X!Tandem but still might indicate the difference between 

true and false PSMs. They all can be switched on or off based on different requirements of 

applications.  

2.2.7 Comparison.  

In order to evaluate the performance of X!Tandem Percolator, various comparisons among 

Mascot, Mascot Percolator, original X!Tandem and X!Tandem Percolator were carried out. For the 

experimental validated dataset, empirical q-value was proposed to measure the error rate of search 

results. Because of experimental validation of sequence assignments, correct and incorrect PSMs 

can be isolated by comparing the X!Tandem or Percolator result with the validated result. Therefore, 

empirical q-value were accurately calculated by dividing the number of total PSMs with the number 
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of incorrect PSMs. For real shot-gun proteomic data, estimated q-values were used instead. By 

definition, q-value is the minimal global FDR at which a PSM is accepted. To demonstrate the 

improved performance of X!Tandem Percolator, performance curves were plotted by examining 

the number of estimated correct PSMs at different levels of q-value for the results obtained from 

different data processing tools (e.g., Mascot, Mascot Percolator and SEQUEST Percolator). 

Protein identifications were inferred from peptide identifications. A protein was considered 

to be identified when at least one associate unique peptide sequence was identified with q-value of 

lower than the threshold. The Occam’s razor approach18 was applied to deal with degenerate 

peptides by finding a minimum subset of proteins that covered all the identified peptides.  

2.2.8 X!Tandem Percolator.  

X!Tandem Percolator was developed based on a mix of PHP and Perl scripts in an Apache 

server (the interface program and installation instruction can be downloaded from Supplemental 

Folder 1 in on-line Supporting Information) and it is integrated directly into X!Tandem. A simple 

click at the interface was all that needed to begin calculating features, re-ranking peptide 

identifications, assigning statistical values and exporting results in Percolator. X!Tandem 

Percolator can calculate features at 57 PSM per second on a quadcore 3.20GHz Phenom II  955 

AMD processor. 
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Table 2.1 List of features extracted from X!Tandem search results. 

Index Feature  

name 

Feature type Feature description 

1 Mass Spectral quality The observed mass [M+H]+ 

2 - 5 Charge Spectral quality Four Boolean features indicating the charge state 

6 MaxI Spectral quality The maximum fragment ion intensity 

7 PSMSumI Spectral quality The log10 value of the sum of all of the fragment ion 
intensities 

8 Log(E) Scoring The log10 value of the expectation value for the peptide 
identification 

9 - 10 IonScore Scoring The summed intensities of different types of fragment ions 
(y, b ions) 

11 - 12 IonNo Scoring The number of peaks that matched between the theoretical 
and the test mass spectrum  

13 HyperScore Scoring X!Tandem's score for the peptide Identification 

14 NextScore Scoring The HyperScore of the second best peptide match of the 
spectrum 

15 DeltaScore Scoring The difference of HyperScore between the best and the 
second best peptide matches 

16 DeltaM PSM statistics The difference in calculated and observed mass (Th) 

17 RelDeltaM PSM statistics The relative difference in calculated and observed mass 
(ppm) 

18 - 19 IonFrac PSM statistics The fraction of fragment ions being matched in an ion series 
(y, b ion series) 

20 MissClea PSM statistics The number of missed internal enzymatic (tryptic) sites 

21 FragError PSM statistics The average mass error of all the fragment ions 

22 AnnoPeaks PSM statistics The fraction of high intensity peaks being annotated as 
fragment ions 

23 ModNo PSM statistics The number of variable modifications 

24 ModFrac PSM statistics The fraction of modifiable residues being found modified 
(variable) 

25 EnzN PSM statistics Boolean value: is the peptide preceded by an enzymatic 
(tryptic) site? 

26 EnzC PSM statistics Boolean value: does the peptide have a C-terminal enzymatic 
(tryptic) site? 

27 PepLeng PSM statistics The length of the peptide identification 
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2.3 Results and Discussion 

2.3.1 Feature Evaluation 

Although Percolator is a semi-supervised learning method that does not need to construct a 

manually curated training set, in order to train a support vector machine, a variety of specific 

features that are capable of discriminating between true and false PSMs is still required. 

Understandably, the choice of features is vitally important. In this work, a list of features were 

composed that were deemed to be capable of differentiating true and false PSMs. As shown in 

Table 2.1, there are 27 features that are able to measure the intrinsic quality of the spectra and the 

quality of PSMs. The rationale of doing this is that spectral level information might indicate what 

types of MS2 spectra (e.g., precursor charge states and fragment ion intensities) are more likely to 

lead to correct identifications. Next, the features in the scoring category, such as Log(E) values, 

measure how reliable PSMs are individually from the perspective of the search engine. Finally, the 

features in the category of PSM statistics suggest how likely one PSM is to lead to a true 

identification from a global perspective. Different from the original and Mascot Percolator, it was 

decided not to include features that exploit protein-level information (e.g., protein E-values) 

because we found that protein-level  information led to a significant increase in the number of 

spurious PSMs in the search results. This might be attributed to the fact that protein-level feedback 

changes the score distribution of spurious PSMs, resulting in PSM misclassification.19,20  

To determine if these features will actually discriminate between true and false positives, a 

set of experimentally validated PSMs from a previous study on E. coli cell lysates were used as 

standards. The advantage of using this dataset is that every one of the 34,993 PSMs was both 

correctly annotated and experimentally validated. In addition, unlike the limited number of peptides 

from several standard proteins, the greater number of peptide identifications from this E. coli cell 
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lysates made the analysis more statistically robust. In terms of the negative training set, the matches 

from the decoy search would be good representatives of false PSMs. Figure 2.1 shows the 

discriminatory power of the individual features examined. Using a selected feature as the only 

scoring metric, each curve in Figure 2.1 was generated by plotting the number of true PSMs as the 

function of the number of decoy PSMs under different thresholds. The comparison shown in Figure 

2.1 was important for all the chosen features, considering that they are the key to differentiate the 

true and false PSMs.  

 

 

Figure 2.1 Discriminatory power of various features selected. 

For all the features in the scoring category, features 8 – 15 in Table 2.1, in principle, should 

be able to show good discriminatory power. For instance, feature 8, log(E), is the log10 value of the 

expectation value for the peptide identification calculated by X!Tandem. As the main X!Tandem 

scoring metric to determine the reliability of PSMs, it was not surprising to see that true PSMs have 

a distinctively different distribution of log(E) than decoy PSMs. Figure 2.1A shows that log(E) 
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value is a good candidate to separate the true and decoy PSMs. Similarly, the same conclusion can 

be drawn for features including hyperscore, delta hyperscore, y ion score and y ion number. On the 

other hand, the discriminatory power of the rest of the features shown in Figure 2.1A is still visible, 

but not as great as the other features. However, this does not mean that they should not be included 

in the X!Tandem or Percolator  algorithm. In fact, they all can be explained. For the "next highest 

hyper score" feature, considering that the next best match is supposed to be a random match, it was 

reasonable to see little difference between true and decoy PSMs for this feature. As for the B ion 

number and B ion score, the little difference between true and decoy PSMs can be ascribed to the 

intrinsic fragmentation preference of tryptic peptides to the Y ions.  

Apart from the features that were directly used by the X!Tandem algorithm, a set of features 

that indicate PSM statistics and a set of spectral features were also used (see Figure 2.1B). Take 

the feature "fragment error" as an example. In its definition, it represents the average absolute mass 

error of all the matched fragment ions. Generally, in a sequence database search, in an attempt to 

fully annotate an MS2 spectrum, a wide mass tolerance window for fragment ions is used. 

Unfortunately, it inevitably increases the possibility of random matches from falsely matching 

fragment ions. However, in principle, the true fragment ions should have a smaller average absolute 

mass error than the false one, especially when MS2 spectra were acquired with good accuracy (e.g., 

30 ppm in QTOF data). Based on this concept, the fragment error should be able to provide a unique 

perspective to pin down false PSMs, which are primarily identified by detection of false fragment 

ions in MS2 spectra. As illustrated in Figure 2.1B, true PSMs have a distinctively different 

distribution of fragment ion mass errors than decoy PSMs do. In addition, a new feature called 

AnnoPeaks was created, which was defined as the fraction of high intensity peaks (at least 70% 

intensity of the most intense peak) that were matched as fragment ions. Since peptides fragment in 



52 
 

a reasonably predicable manner, most high intensity peaks in an MS2 spectrum should be accounted 

for in a true PSM. Meanwhile, in a false PSM, the fragment ions are matched by random peaks 

regardless of their intensities. Thus the feature AnnoPeaks should be able to provide another 

distinct perspective to distinguish the true and false PSMs.  As illustrated in Figure 2.1B, 

AnnoPeaks is indeed a good feature. Similarly, the same conclusion can be drawn for features 

including Precursor Mass Error, B, and Y IonFrac (see their definitions in Table 2.1). 

In the category of spectral features, it was conventional for Percolator programs (SEQUEST 

and Mascot Percolator platforms) to include them in the process of differentiation. The rationale 

was that spectral level information might indicate what types of MS2 spectra (e.g., precursor charge 

states and fragment ion intensities) are more likely to lead to correct identifications. Since these 

features are not a direct measurement of the goodness of a sequence assignment, they might not be 

powerful discriminators to differentiate true and false positives when used individually. This was 

exactly what has been observed in this study (see Figure 2.1B). As shown in Figure 2.1B, the 

distributions of the quasi-molecular ion masses were very similar between the true and decoy PSMs. 

The median values of their quasi-molecular ion masses were not distinguishable. Similarly, the 

same conclusion can be drawn for both the total fragment intensity and the maximum fragment ion 

intensity features. However, even though the spectral features individually were not very indicative 

in terms of differentiating PSMs, they still might contribute to the task when working 

collaboratively with each other or with features from the PSM category (see below).  

2.3.2 Performance on Validated Dataset  

After building a list of useful features based on an experimentally validated dataset, a 

comparison was carried out on the performance of X!Tandem and X!Tandem Percolator on the 

same dataset to examine X!Tandem Percolator’s accuracy. Unlike most normal shot-gun proteomic 
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data in which only a part of spectra (30 to 70%) are identifiable, all the un-identifiable spectra were 

filtered out in this validated dataset. This means that any robust statistical tool should be able to 

recover close to 100% of all the pre-validated PSMs. In fact, it was found that X!Tandem alone 

was able to re-identify 98.9% of all the pre-validated PSMs when a lenient E-value threshold (E-

value = 1) was applied. Since X!Tandem Percolator was designed to minimize the number of false 

positives and negatives of the original X!Tandem result, it was reasonable to observe a similarly 

high recovery rate with better sensitivity and specificity trade-off. As expected, for X!Tandem 

Percolator the recovery rate was found to be 99.9% when a q-value of 0.4% was applied. Due to 

the advantage of validated dataset, empirical q-values were calculated by dividing the number of 

PSMs with the number of incorrect PSMs. When comparing the X!Tandem result with X!Tandem 

Percolator results at different empirical q-values, the superior sensitivity and specificity that 

X!Tandem Percolator provided was quite apparent (see Figure 2.2A). In order to assess the 

accuracy of the statistical evaluation by X!Tandem Percolator, the number of estimated incorrect 

PSMs was compared to the number of empirical incorrect PSMs. The same analysis was also 

applied to X!Tandem, Mascot and Mascot Percolator results for comparison. Ideally, the number 

of incorrect PSMs estimated by a perfect statistical evaluation will always be equal to the number 

of empirical incorrect PSMs. As shown in Figure 2.2B, all lines closely resemble the 45° diagonal 

line. This similarity between the number of estimated PSMs and the number of empirical incorrect 

PSMs indicates that X!Tandem Percolator is able to provide accurate statistical assessment of a 

search result with similar performance to that of Mascot Percolator.  
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Figure 2.2 (A) Performance comparison between X!Tandem and X!Tandem Percolator at 
different empirical q-values. (B) Comparison between the number of empirical and 
estimated incorrect PSMs by X!Tandem Percolator, X!Tandem, Mascot and Mascot 
Percolator. 

The relative contributions of the PSM statistics features and spectral features to the 

discriminatory power were also investigated. The best way to examine their contributions is 

through feature removal analysis on real shotgun proteomic data. The E. coli dataset was searched 

with X!Tandem and run on Percolator, eliminating one subset of features at a time. As shown in 

Figure 2.3, spectral features did make contribution in the process of differentiation, even though 

individually they did not show strong discriminatory power. The number of estimated correct PSMs 

at a q-value of 0.01 was summarized in Table 2.2, as well as the percentage decrease in estimated 

correct PSMs relative to using all the features. As shown in Table 2.2, removing spectral quality 

features led to a 1% drop in performance, while removing PSM statistics features resulted in a 9% 

drop. However, comparing to the original X!Tandem result, X!Tandem Percolator equipped with 

all the features can significantly improve the number of PSMs. 
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Figure 2.3 Performance of X!Tandem (XT) and X!Tandem Percolator (XP) when fed with 
different features. 

Table 2.2 Performance of X!Tandem Percolator when fed with different features. 

 Number of estimated correct PSMs Drop in performance 

All features 11478 - 

Spectral quality features removed 11314 1% 

PSM statistics features removed 10442 9% 

Original X!Tandem 8786 23% 

 

2.3.3 Exemplary Experimental Data 

In order to examine X!Tandem Percolator’s robustness, Percolator was applied to 

X!Tandem search results of E. coli and human lymphoma cell data, which are representatives of 

typical proteomic datasets, to demonstrate the superior sensitivity and specificity. As indicated 

earlier, using our validated dataset, true and false positives were detected and the empirical q-value 

was calculated accordingly. But in typical shotgun proteomic datasets, there is no validation of 

sequence assignments. Researchers therefore rely on the X!Tandem and Percolator programs or 
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other programs to provide statistical assessment for each PSM, e.g., by calculating the q-value (the 

minimal global FDR at which a PSM is accepted) for each PSM.  

First, a performance comparison between Mascot, Mascot Percolator, SEQUEST 

Percolator, X!Tandem and X!Tandem Percolator was carried out on the shotgun E. coli dataset. 

The E. coli system was selected because of its relatively simple proteome complexity (only about 

4300 predicted proteins) and its popularity as a model system in biological studies. The dataset was 

first searched by both X!Tandem and Mascot, and then processed by Percolator programs, 

respectively. Figure 2.4A shows the number of estimated correct PSMs for X!Tandem, Mascot, 

Mascot Percolator, SEQUEST Percolator and X!Tandem Percolator at different levels of q-values. 

A maximum q-value of 0.05 was chosen because performance at this level is the most relevant to 

the proteomic community, where the usual FDR is controlled to a maximum  of 5% (equivalent to 

q-value 0.05). As indicated in Figure 2.4A, all the Percolator programs offer much better sensitivity 

and specificity trade-off than Mascot and X!Tandem. To be exact, at q-value of 0.01, X!Tandem 

Percolator managed to identify 11594 PSMs, corresponding to 1393 proteins. Compared to the 

X!Tandem result (8875 PSMs and 1209 proteins), this represents 31% and 15% increase in the 

number of PSMs and proteins, respectively. The same trend was also observed in the comparison 

between Mascot Percolator and Mascot, which had been reported by Brosh et al. as well.14 Overall, 

this result demonstrated the performance advantages of X!Tandem Percolator over the original 

X!Tandem scoring method when dealing with a simple proteomic system. Moreover, after the 

statistical analysis by Percolator, X!Tandem and Mascot results became more much agreeable to 

one another. At q-value of 0.01, the percentage of PSMs appeared in both Mascot and X!Tandem 

results constituted only 46% of total PSMs that were identified by both search engines. However, 
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the percentage increased to 82% after Percolator was applied. This can be attributed to the 

improved sensitivity and more unified statistical assessment of Percolator.  

 

Figure 2.4 Performance comparison between Mascot, Mascot Percolator, SEQUEST Percolator, 
X!Tandem and X!Tandem Percolator on  (A) the shotgun E. coli dataset and (B) the 
shotgun human dataset.  (C) The influence of precursor mass tolerance setting on the 
performance of X!Tandem and X!Tandem Percolator. 

The same analysis was applied to the human dataset to see how X!Tandem Percolator would 

respond to the searches with a much larger proteome database (87061 protein sequences). 
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Understandably, a much larger proteome database provides more combinations of amino acids.  It 

is therefore an even bigger challenge to differentiate true and false PSMs. Figure 2.4B shows the 

number of estimated correct PSMs for X!Tandem, Mascot, Mascot Percolator, SEQUEST 

Percolator and X!Tandem Percolator at different levels of q-values for the human dataset. As 

indicated in Figure 2.4B, all the Percolator programs still offer much better sensitivity and 

specificity trade-off than Mascot and X!Tandem. In fact, at q-value of 0.01, X!Tandem Percolator 

was able to improve the number of PSMs and protein identifications of the original X!Tandem 

result by 51% and 29%, from 7477 PSMs and 1419 proteins to 11314 PSMs and 1831 proteins, 

respectively. The improvement on the human dataset was even greater than the improvement on 

the E. coli dataset, indicating that Percolator was less easily influenced by the complexity of 

proteome databases.  

2.3.4 Sensitivity to Search Space Change.  

Sometimes, relaxed searching parameters are chosen by researchers in order to match as 

many peptide sequences as possible in a proteomic study. For instance, a wide precursor mass 

tolerance window is often used so as to capture all the potential identifications. Contrary to the 

original intention, it is often noted that when relaxed searching parameters are set up for a sequence 

database search engine, a noticeable drop in the number of PSMs is often observed. This is simply 

due to the fact that increased search space creates more possible random matches. In order to avoid 

a decrease in accuracy, sensitivity is often sacrificed. In this study, in order to test how well 

X!Tandem Percolator is able to handle this issue, different precursor mass tolerance settings, 

including 15, 30 and 500 ppm were used in X!Tandem. After searching the human dataset with 

these settings, results were processed by Percolator. As shown in Figure 2.4C, as the precursor 

mass tolerance setting increases from 15 ppm to 30 ppm, an increase in PSM number for both 
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X!Tandem and X!Tandem Percolator is obvious. In fact, at q-value of 0.01, the improvement in 

PSM and protein identification were 8% and 1% for the X!Tandem result, and 11% and 4% for 

X!Tandem Percolator result, respectively. This result indicates that 30 ppm was more appropriate 

mass accuracy window for this dataset. When increasing the setting from 30 ppm to 500 ppm, little 

change is observed for either X!Tandem results or X!Tandem Percolator results (see Figure 2.4C). 

However, at q-value of 0.05, another commonly used identification threshold, a decrease in 

X!Tandem performance (5% less PSMs, 2% less proteins) can be easily spotted in Figure 2.4C. At 

the same time, almost no decrease in X!Tandem Percolator is observed. Thus, we can conclude 

that X!Tandem Percolator is a highly robust statistical tool and less easily influenced by search 

space increase. 

 

2.4 Conclusions 

Percolator was previously shown as a very robust classifier that can dramatically improve 

sensitivity on various search engines, such as SEQUEST21 and Mascot.14 In this study, an interface 

has been built for Percolator and X!Tandem, a very popular open-source search engine. To 

successfully integrate Percolator with X!Tandem, a large number of features that define the quality 

of PSMs were first created. Since an experimentally validated dataset provided the opportunity of 

isolating the true PSMs from search results, by comparing the features from true and decoy PSMs, 

the individual discriminatory power of each feature was carefully examined. Moreover, a feature 

removal analysis was also performed to demonstrate the collective contribution of different subsets 

of features.  



60 
 

X!Tandem Percolator was then applied to shotgun proteomic data, including the E. coli and 

human datasets. Under various conditions, including different sizes of databases and relaxed search 

parameters, X!Tandem Percolator was found to substantially outperform the original X!Tandem, 

showing a similar or even better performance over Mascot Percolator. Overall, it appears that better 

classification of true and false PSMs can be achieved when multiple factors are working 

collaboratively instead of just using one or two scoring metrics (e.g., E-values or FDRs). Therefore, 

we envisage the use of X!Tandem Percolator either as a stand-alone software package or a key part 

of a sophisticated data analyzing platform in discovery-oriented proteomic studies. 
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Chapter 3  
 
Chemical-vapor-assisted Electrospray Ionization for 
Increasing Analyte Signals in ESI Mass Spectrometry*  

3.1 Introduction  

 Electrospray ionization mass spectrometry has been widely used for chemical 

analysis, particularly when it is combined with a solution based separation technique, such as LC.  

There is always a need to increase the detection sensitivity of the technique in application areas 

where trace amounts of analytes are analyzed, including nESI MS for proteomic profiling.1,2 

Improvement in detection sensitivity can come from more efficient LC separation3 or using 

capillary electrophoresis,2 increased ion transmission from the source to a mass analyzer,4 and 

better ion detection in a mass spectrometer.5 Another possible means of achieving higher detection 

sensitivity is to change the ESI conditions in order to generate gas phase ions more efficiently.6,7 

In this work, we report a simple technique to enhance the analyte signals by merely adding an 

appropriate chemical vapor to the electrospray source without changing any other conditions used 

in a conventional nESI mass spectrometer. We have investigated several experimental parameters, 

including the type of chemical vapors used, to achieve the optimal signal enhancement for this 

chemical-vapor-assisted ESI technique. 

Using a chemical additive to improve ESI detection can be done by dissolving it into a 

solvent or teeing the liquid post-column. For example, addition of 5% dimethyl sulfoxide (DMSO) 

                                                 
*A version of this chapter has been published as“Chemical-Vapor-Assisted Electrospray Ionization for 
Increasing Analyte Signals in Electrospray Ionization Mass Spectrometry.” Li, Z.; Li, L. Anal. Chem. 
2014, 86, 331-335. I was responsible for the design, data collection, analysis, as well as the manuscript writing. 
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into the eluent has been reported to increase the peptide identification rate from LC-MS 

experiments, largely due to the collapse of multiple charge states into one easy-to-detect peak.8 

However, a recent study found that the increase in peptide identifications was mainly due to more 

efficient production of ions in the ESI process, rather than charge state collapse.9 Post-column 

incorporation of organic acids such as formic acid has been shown to enhance signals suppressed 

by trifluoroacetic acid by several fold.10 Exposing a gas other than the nitrogen or air in the ESI 

source can also affect the ESI responses of analytes. For examples, gas phase addition of volatile 

acids,11 bases,12 and solvents,13,14 have been shown to change the charge state distribution in intact 

proteins or to reduce multiply charge chemical noise in plasma samples.15 Fenn et al. reported that 

the addition of water vapor in the counter flow gas could result in an increase in the signal intensity 

of peptides.16  

In this work, we systematically exposed nESI—the most widely used ionization technique 

for proteome analysis—to different classes of gaseous molecules, such as organic acids and 

alcohols. They were chosen to span a wide range of boiling points, surface tension, and the ability 

to form azeotropes with water. Each individual chemical was placed in a small container where 

nitrogen was flown over the headspace and into the sheath around the nESI needle of a Waters 

QTOF Premier mass spectrometer  

3.2 Methods 

3.2.1 Reagents and Instrumentation.  

Solvents for direct infusion and LC-MS experiments used LC-MS grade acetonitrile, water, 

and formic acid from Fischer Scientific (Fair Lawn, NJ). Leu-enkphalin and [Glu1]-fibrinopeptide 

were supplied by Anaspec (Fremont, CA). Alpha casein protein, reserpine, N,N-
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dimethyldodecylamine, phenylephrine, syringaldehyde were from Sigma Aldrich (St. Louis, MO). 

BSA tryptic digest standard was purchased from Waters (Milford, MA). Samples were analyzed 

by a Waters nanoAcquity UPLC (Milford, MA) and a Waters QTOF Premier mass spectrometer 

(Milford, MA). 

3.2.2 Vapour Introduction 

Two 1/16” holes were drilled into the cap of a 3-dram vial. A 1/16” O.D. and 0.020” I.D. 

tubing coming from the API gas outlet of the mass spectrometer was inserted into one hole, while 

the same size tubing connected the cap to the sheath around the nESI tip. Liquid was placed into 

an empty 3-dram glass vial and capped. Gas flow was controlled by setting the API gas pressure. 

All experiments were done at room temperature (~24°C) and relative humidity of <20%. 

3.2.3 Direct Infusion Experiments.  

A mixture of 0.2 µg/mL Glu-Fib (m/z 786, 2+) and 0.05 µg/mL Leu-Enk (m/z 556, 1+) was 

dissolved in 50% acetonitrile in water with 0.1% (v/v) formic acid. The 1+ peak of Glu-Fib and 2+ 

peak of Leu-Enk were not observed. Electrospray was conducted at 3.3 kV capillary voltage with 

a 10 µm nESI pico-tip from New Objective (Woburn, MA). Sample was infused at a flow rate of 

0.250 µL/min, using the auxiliary pump in the nanoAcquity. The N2 flow over the headspace of 

the apparatus was controlled by adjusting the gas pressure to 0.1 bar. The position of the pico-tip 

was optimized to give the best signal. Data was collected with gas on for ~1 min, then gas off for 

~1 min, and then repeated twice. For each section of data collection, 25 scans were summed, and 

the enhancement ratios were calculated by dividing the enhanced summed intensity and gas off 

summed intensity, using the monoisotopic peak. For the experiment using different acetonitrile 

content, the same concentrations of peptides were dissolved in different percentages of acetonitrile 
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and infused at 0.250 µL/min using the auxiliary pump after it was primed for 3 min and flushed at 

10 µL/min for 30 min.  

3.2.4 LC-MS for BSA and Alpha Casein Peptide Analysis.  

BSA tryptic digest was purchased from Waters. Alpha casein protein was digested in 25% 

trifluoroacetic acid using microwave-assisted acid hydrolysis. Eluent A was LC-MS water with 

0.1% (v/v) formic acid and eluent B was LC-MS acetonitrile with 0.1% (v/v) formic acid. For both 

experiments, a 75 µm x 150 mm Atlantis dC18 column with 3 µm particles (Waters), was used. 50 

fmol of BSA tryptic digest and 2 µg alpha casein hydrolysate were injected onto the column, 

respectively. For the BSA tryptic digest, a 50 min gradient at 0.350 µL/min flow rate was used 

with a 1 s MS scan time. For alpha casein hydrolysate, a 120 min gradient at 0.300 µL/min flow 

rate was used; MS survey scans were 1 s, followed by 6 data-dependent fragment scans with 0.5 s 

scan times. For BSA tryptic digest analysis, MassLynx software from Waters was used to integrate 

EIC after smoothing and peaks were detected with a peak-to-peak amplitude of 8. GRAVY scores 

for the peptides were calculated by GRAVY CALCULATOR (http://www.gravy-calculator.de/) 

and the isoelectric points were calculated by ExPASy’s Compute pI/Mw tool 

(http://web.expasy.org/compute_pi/). 

 Raw data for the alpha casein hydrolysate was lock-mass corrected, deconvoluted, 

and deisotoped by ProteinLynx from Waters. Database search was conducted on Mascot version 

2.2.06 (http://www.matrixscience.com) with the following settings: Nonspecified cleavage, ±30 

ppm precursor tolerance, 0.2 Da fragment tolerance, 1+, 2+, and 3+ peptide charges only, variable 

modifications include Oxidation (M), deamidation of asparagines and glutamine, phosphorylation 

(STY), and Gln->pyro-Glu (N-term Q),Glu->pyro-Glu (N-term E). The Mascot threshold score for 

identity was set at p < 0.05.  

http://www.gravy-calculator.de/
http://web.expasy.org/compute_pi/
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3.2.5 E. coli K12 digestion and LC-MS2.  

The E. coli K12 cells (E. coli, ATCC 47076) were cultured, collected and disrupted. 1 mL 

of the frozen lysate was thawed and subjected to reduction with dithiothreitol (Sigma), alkylation 

with chloroacetamide (Sigma), acetone precipitation, trypsin digestion, then desalting and 

quantification on a C18 column.  The desalted samples were then injected into the nanoLC-MS2 

system. Raw data was lock-mass corrected, deconvoluted, and deisotoped by ProteinLynx from 

Waters. Search was conducted on Mascot 2.2 with an E. coli K12 database (4337 sequences, 

1372643 residues) with the following parameters: enzyme, trypsin; fixed modifications, 

carbamidomethylation (C); variable modifications, Acetyl (Protein N-term),Deamidated 

(NQ),Gln->pyro-Glu (N-term Q),Glu->pyro-Glu (N-term E),Oxidation (M),Phospho (S),Phospho 

(T),Phospho (Y),Ubiquitination_GG (K),precursor mass error, 30 ppm, fragment mass error, 0.2 

Da, maximum missed cleavages, 1, number of 13C, 1. Reversed Decoy (default decoy) search was 

used for determining the false discovery rate (FDR).  
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3.3 Results and Discussion  

 

Figure 3.1 (A) Signal enhancement ratios obtained by using different vapors for CAESI. Error 
bars are 1 standard deviation (n=3). (B) Mass spectra showing the signal enhancement 
for Glu-Fib and Leu-Enk peaks upon exposure to BnOH. (*) at m/z/ 1552 is the water 
loss peak of Glu-Fib. 

Figure 3.1A shows the signal intensities relative to those with no vapor added (i.e., 

enhancement ratios) of two peptide ions, singly charged Leu-enkphalin (Leu-Enk1+) (m/z 556) and 
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doubly charged [Glu1]-fibrinopeptide (Glu-Fib2+) (m/z 786), detected when different chemical 

vapors were used. The singly charged Glu-Fib, and doubly charged Leu-Enk were not detected 

under the settings used. Prior to exposing the nESI spray with the vapors, blank runs with nitrogen 

flow alone showed a minor signal increase, compared to no gas flow (1.20±0.05-fold increase for 

Glu-Fib and 1.30±0.03-fold increase for Leu-Enk from triplicate results).  In contrast, alcohols and 

carboxylic acids enhance the signals of the two peptide ions by up to 4-fold, compared to no gas 

flow. Benzyl alcohol (BnOH) increased the signal by 4.08±0.05 times (n=3) for Leu-Enk, and 

3.06±0.04 (n=3) times for Glu-Fib. Figure 3.1B shows the comparison of the mass spectra obtained 

with and without the addition of BnOH. There was no increase in noise level when BnOH was 

added and thus the use of this chemical vapor resulted in a net increase in analyte signals. It should 

be noted that, in the initial discovery of the phenomenon that certain chemical vapors could enhance 

the ESI signals, chemical vapor was introduced directly to the area near the spray tip by placing a 

vapor inlet tubing orthogonal to the spray needle. However, it was found that adding the vapor to 

the sheath gas flow is a simpler solution and generated more reproducible results while achieving 

similar signal enhancement. 

At this stage, we cannot determine any strong correlation of chemical properties with the 

extent of signal enhancement. There appears to be some correlation with chain length and boiling 

point, especially for the carboxylic acids; however, there is only minor correlation observed in 

alcohols and a decrease of ionization efficiency was observed for one of the standard peptides as 

the boiling point increased. There is also little correlation of the proton affinity of the chemical 

vapors used and the extent of signal enhancement. For example, in Figure 3.1A, as the chain length 

of alcohols increases from methanol to ethanol and isopropanol, both Glu-Fib2+ and Leu-Enk1+ 

peak intensities increase. Using 1-butanol, the Leu-Enk1+ peak keeps increase, while there is a 
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decrease in Glu-Fib2+. For 1-pentanol, the Glu-Fib2+ signal becomes suppressed, compared to no 

vapor added, while the Leu-Enk1+ signal is more than doubled. Using carboxylic acids as the 

chemical vapors, similar trend can be seen in Figure 3.1A except that, in the case of Glu-Fib2+, 

there is no dramatic drop in signal intensity for longer chain acids as for alcohol series. Although 

the peptides were in a solvent that contained 0.1% formic acid, the addition of gaseous formic acid 

greatly decreased the peptide signals. This was due to the disruption of the Taylor cone in the 

presence of formic acid vapour. The spray quickly resumed after the removal of the formic acid 

vapours and restarting the spray voltage. Valeric acid gives 3.44±0.04 (n=3) and 4.77±0.04 (n=3) 

times signal increase for Glu-Fib2+ and Leu-Enk1+, respectively, which are greater than BnOH. 

However, the downside to valeric acid is that it produces extra peaks in the m/z 300-400 region of 

the spectrum. Isobutyric acid also produces extra peaks in the low mass region. In addition, these 

carboxylic acids smell unpleasant and are toxic. On the other hand, BnOH is known for its low 

toxicity17 and lack of strong odour. Thus, we chose BnOH for the subsequent studies. 
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Figure 3.2 Signal enhancement ratios (n=3) obtained at different (A) BnOH liquid temperature, 
(B) percent organic concentration, and (C) flow rate. 

Various conditions that may affect the extent of signal increase were optimized for BnOH-

vapor-assisted ESI. The first condition was the vapor concentration and Figure 3.2A shows the 

effect of heating the reservoir containing benzyl alcohol, thereby increasing the vapour 

concentration at the nESI spray tip. Between room temperature (23°C) and 60°C, there were only 

small enhancement of the Glu-Fib peaks and a decrease in the Leu-Enk enhancement. In addition, 

the enhancement ratio is not as reproducible as that at room temperature. Thus, room temperature 

operation was determined to be adequate to achieve optimal signal enhancement. Next, the effect 

of acetonitrile percentage in the mobile phase used to introduce the peptides into ESI was examined. 

Figure 3.2B shows the signal enhancement ratios of the peptide ions at different acetonitrile 

percentages. Adding BnOH vapors increases the signals in all cases and more signal gain is attained 

as the acetonitrile percentage increases. This result suggests that analyte signal enhancement can 

be achieved across the entire peptide elution time window in a typical LC-MS experiment. Lastly, 

the effect of LC flow rate was investigated using the solution containing 50% acetonitrile. Figure 

3.2C shows that the enhancement increases until 0.250 µL/min where it plateaus off. To summarize, 

it was found that BnOH produced the greatest signal enhancement when the BnOH reservoir was 
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set at room temperature and the mobile phase used to introduce the analyte into nanospray 

contained higher acetonitrile percentages with an optimal flow rate of 0.250 to 0.550 µL/min.  

 

Figure 3.3 Comparison of base peak ion chromatograms between the control run and run with 
BnOH vapour obtained from 50 fmol injections of BSA trypsin digest. 

After finding the optimal conditions, we first applied our technique to LC-MS analysis of 

a trypsin digest of bovine serum albumin (BSA) to see how peptides of different properties eluted 

out at different mobile phase compositions respond to BnOH. Figure 3.3 shows the base peak 

chromatogram with and without adding BnOH vapor. Qualitatively, peak intensities were increased 

across the entire chromatogram. We then measured the peak areas of extracted ion chromatograms 

of the BSA peptides, and determined the enhancement ratios. The enhancement ratio ranges from 

0.5 to 2.2 across all charge states, with an average increase of 45%. Nine out of 41 peptides show 

a peak area decrease (between ratios of 0.5 and 0.8) in one of its charge states, but with an increase 

in the other charge states. Plotting the enhancement ratio as a function of GRAVY score and 

isoelectric point of each peptide revealed that there was weak correlation (r < 0.5) between these 

factors with the signal increase (Figure 3.4). From these data, we conclude that signal enhancement 
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was observed for most peptides with no apparent property correlation, and was not a result of 

charge state shift.  

 

 

Figure 3.4 Effect of peptide propertie on the enhancement by BnOH vapour. (A) Effect of 
hydrophobicity (GRAVY score) on signal enhancement of BSA peptides. (B) Effect of 
pI on signal enhancement of BSA peptides. 

The mechanism of chemical-vapor-assisted ESI for increasing analyte signals is very likely 

related to the enhancement of the ionization efficiency of the analytes during the ESI process. 

Enhanced ionization, not merely charge-state shifting, by using DMSO has been proposed by 

 

 

(A) 

(B) 
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Hahne et al. in their work of using DMSO as a co-solvent added to the analyte solution.9 The major 

difference between our method and the DMSO-addition method is that in our method a proper 

chemical vapor is added to the spray area, not in the liquid stream, thereby there is no need to 

change any conditions related to sample injection (e.g., trap column operation may be affected by 

a chemical additive) and LC conditions. We tested DMSO as a chemical vapor and found that it 

only provided a small signal enhancement (1.4±0.4, n=3, for Leu-Enk and 1.6±0.4, n=3, for Glu-

Fib). However, when we added BnOH, instead of DMSO, to the solution of the peptide mixture, 

we observed a large signal enhancement. The average enhancement factors from triplicate 

experiments were found to be 4.5±0.1 for Leu-Enk and 3.7±0.1 for Glu-Fib when 1.0% BnOH (v/v) 

was present in the solution. The enhancement factors were 3.6±0.1 for Leu-Enk and 3.9±0.3 for 

Glu-Fib with 3.0% BnOH, and 3.49±0.06 for Leu-Enk and 1.62±0.03 for Glu-Fib with 5% BnOH. 

However, adding BnOH to the solution is not desirable as it would affect the LC separation.  

On the mechanism of enhancing ESI efficiency by BnOH vapors, if we assume that the 

vapors are condensed to the surfaces of the Taylor cone, filament and droplets during the ESI 

process, higher boiling point and lower surface tension of BnOH, compared to acetonitrile and 

water, would increase the sequestration of analyte molecules into nano-droplets and hence increase 

the efficiency of ion production9. However, this explanation would not readily apply to the case of 

isopropyl alcohol, which has a similar boiling point as acetonitrile and would have evaporated 

before water. On the other hand, if the vapors are not condensed to the surfaces in an appreciable 

amount, one plausible explanation may be related to the change of the energy barrier7 that a solution 

ion needs to overcome to escape the droplet to form a gaseous ion. The added vapor molecules 

might stabilize the intermediate species, thereby lowering the energy barrier (or destabilizing and 

increasing it in the case of 1-pentanol or for some peptides). In any case, we feel that the mechanism 
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of enhancing analyte signals using a chemical vapor may be different from that encountered in the 

case of adding a chemical modifier to the analyte solution. 

Table 3.1 Effect of BnOH on the detectability of peptides generated from microwave-assisted 
acid hydrolysis of alpha casein. 

 # PSM # Unique peptides Average match score 

Normal (n = 3) 2063±73 492±21 33.14±0.07 

BnOH (n = 3) 2752±42 714±10 33.4±0.2 

Change 689±84 222±23 0.3±0.2 

  

Table 3.2 Effect of BnOH on the detectability of peptides and proteins from a trypsin digest of E. 
coli K12 cell lysate. 

 # Spectra # PSM #Unique 
peptides 

# Unique 
proteins 

Average match 
score (peptide) FDR (peptide) 

Normal (n = 3) 4372±36 1941±22 1257±3 384±2 61.6±0.6 3.3%±0.4% 

BnOH (n = 3) 4958±10 2154±35 1422±18 439±7 66.2±0.1 2.8%±0.2% 

Change 585±37 212±41 165±18 55±7 4.6±0.6 0.5%±0.4% 

 

A microwave-assisted acid digest of alpha casein sample, using a procedure previously 

optimized by our group,18 was analyzed to see if BnOH-vapor-assisted ESI could substantially 

increase the number of identified peptides in the analysis of more complex protein digest samples. 

The results from the Mascot searches of the MS2 spectra generated are summarized in Table 3.1. 

The total number of peptide-spectrum-matches (PSMs) above the Mascot identity threshold 

increases from 2063±73 (n=3) to 2752±42 (n=3). The increased PSMs translates to an increase of 

222 unique peptides, or 45%. The average score for these non-trypic peptides remains unchanged, 
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suggesting that the increase in number of PSMs did not result from increase in spurious matches 

and the data quality remains similar. A trypsin digest of E. coli K12 cell lysate was also performed 

to examine whether peptide and protein identifications could be improved by using BnOH-vapor-

assisted ESI. Table 3.2 shows the results from triplicate LC-MS2 analyses of the digest. Application 

of BnOH vapors results in an increase of 165 unique peptides (13%) and 55 proteins (14%). The 

average score of these tryptic peptides increases by 4.6, showing that the stronger signals are giving 

more confident matches.   

Beyond peptides and protein digest samples, several small molecules were tested. N,N-

dimethyldodecylamine, reserpine, and syringaldehyde showed little increase in signal, while 

phenylephrine showed a 3-fold increase. More investigations on the use of the BnOH-vapor-

assisted ESI MS technique for possible signal enhancement in analyzing a variety of other 

molecules will be carried out in the future. In addition, the use of a combination of different 

chemical vapors to explore their complementarities for enhancing the signals of a wide variety of 

analytes will be explored.  

3.4 Conclusion 

In conclusion, we have developed a simple technique, chemical-vapor-assisted ESI, for 

increasing detection sensitivity of peptides and other molecules in nESI MS. This technique can be 

safely and readily implemented at minimum cost, i.e., using a solvent bottle, BnOH and a tubing 

connected to a sheath gas line in nESI MS or a tubing with its outlet placed close to the spray tip.   
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Chapter 4  
 
Construction of a High Resolution Human Metabolite 
MS2 Library* 

4.1 Introduction 

Liquid chromatography coupled mass spectrometry has started a revolution in the field of 

metabolomics. Thousands of metabolite mass features can be detected from a single sample, and 

hundreds of samples can be run in a week. The high-throughput analysis of metabolite features 

facilitates the discovery of biomarkers during metabolomics study of diseases.1-3 

After data acquisition of samples and multivariate analysis, the final results are metabolite 

features that can discriminate between healthy controls and patients. Due to the large number of 

metabolite features profiled in every study, the final list could be between 50 to 100 metabolite 

features long. In order to understand the important biological processes that is at work in the studied 

disease, these metabolite features must be identified and placed in their respective metabolic 

pathways.  

Using LC-MS, this identification process is usually done by searching the accurate mass of 

these unknowns against the measured or predicted accurate mass of metabolites in a repository, 

such as the Human Metabolite Database (HMDB).4-6 However, even with low error in the measured 

                                                 
*Mingguo Xu, Jaspaul Tatlay, Tran Tran Ngoc, Tao Huan, Dr. Yiman Wu, Dr. Ruokun Zhou, Dr. Chiao-Li 
Tseng, and Wei Han contributed to the collection of data in this chapter. HMDB standards were supplied by 
Professor Wishart and Edison Dong. 
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mass of 1 ppm, this approach often cannot give unambiguous identification due to a large number 

of metabolites that have nearly identical masses.7,8  

CID fragmentation can be used to improve the identification power of the LC-MS platform. 

In this process, unknown metabolite ions are isolated and accelerated through a cloud of gas 

molecules. Collision with the gas molecules imparts energy and causes bond breakage, generating 

many fragments. The fragment spectrum of each metabolite feature is unique, and their identity 

can be elucidated with manual interpretation, computer assisted interpretation, or matching with 

fragmentation spectra of standards.  

Due to a wide chemical variety of metabolites, manual interpretation is often too laborious, 

and sometimes unreliable for unambiguous identification of large numbers of unknowns. Computer 

assisted interpretation can process large number of unknowns; however, at the time of writing, they 

are also unreliable due to poor understanding of the fragmentation mechanism for many 

metabolites. There has been recent work in creating algorithms that aim to predict fragmentation 

using statistical methods,9-11 but they are still far from being useful as standalone tools for 

identification. 

Matching CID spectra with spectra from purified standard remains the method of choice. 

In this way, each fragment can be verified to be from the metabolite of interest and a perfect match 

usually guarantees the identity of an unknown. With batch searching mode, library programs can 

process hundreds of unknown spectra in a few seconds. There are large MS2 libraries already in 

existence, covering many different classes of chemicals from pharmaceuticals to natural products, 

and some are freely available on the internet.6,12-14 
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Due to the age of these libraries, many were built using low resolution ion-traps and triple 

quadrupoles mass spectrometers. Newer high-resolution mass spectrometers based on QTOF 

designs, such as the Bruker Impact HD, can generate spectra with better mass accuracy and higher 

resolution than older instruments. Better quality data increases identification confidence, because 

fragment peaks can be matched with less error tolerance.  

In order to take advantage of this QTOF platform for future human metabolome analysis, a 

new high resolution HMDB MS2 library, containing only endogenous human metabolites, was built. 

The library was built using rigorous data acquisition and data processing procedures that ensured 

the library was high quality and free from chemical noise.  

4.2 Methods 

4.2.1 Chemicals and Reagents 

All chemicals and reagents were purchased from Sigma-Aldrich Canada (Markham, ON, 

Canada) except those otherwise noted. LC–MS grade water and acetonitrile were purchased from 

Thermo Fisher Scientific (Edmonton, AB, Canada). 

4.2.2 Instrumentation 

All data was generated with an impact HD QTOF mass spectrometer (Bruker Daltonics, 

Germany). Flow injection analysis was performed with an 1100 HPLC (Agilent, USA) with no 

column attached.  

4.2.3 QC Samples 

The purpose of QC samples were to monitor the fragmentation reproducibility of the 

instrument and the sensitivity. Therefore, they were made of only a single compound at a low 
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concentration. Positive mode MS2 QC: 1 µM of melatonin in 1:1 (v/v) H2O:ACN 0.1% formic acid. 

Negative mode MS2 QC: 1 µM citric acid in 1:1 (v/v) H2O:ACN 0.1% formic acid. 

4.2.4 HMDB Standards 

Metabolite standards were obtained from Professor David Wishart at the University of 

Alberta, Canada. Roughly 1 mg of solid or liquid were used to prepare a stock solution of every 

standard in 1:1 (v/v) H2O:ACN. Stock solutions were then diluted approximately 500 fold with 1:1 

(v/v) H2O:ACN 0.1% formic acid. Diluted samples were transferred to 2 mL HPLC injection vials 

prior to analysis. 

4.2.5 Library Data Acquisition 

The 1100 HPLC autosampler was programmed as follows: 

1. 4 µL of 5 mM lithium formate 1:1 (v/v) H2O:ACN 0.1% formic acid (v/v) 

2. 3 µL of air 

3. 25 µL of sample 

4. Inject 

Flow injection conditions were:  

Mobile Phase A: H2O with 0.1% formic acid (v/v) 

Mobile Phase B: Acetonitrile with 0.1% formic acid (v/v) 

Entire run was 50% A, 15 µL/min for 1.4 minutes, followed by 110 µL/min until 2.2 

minutes. Total time 2.2 minutes. 
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Mass spectrometer source settings were: Nebulizer gas 2.0 bar, dry gas 8.0 L/min, 200 °C, 

capillary voltage 4.5 kV, capillary offset 0.5 kV, acquisition rate 8 Hz, mass range 20 – 1000 m/z, 

CID gas was nitrogen. 

There were 12 individual sections in the 2.2 minutes MS method. The first section was the 

MS precursor measurement, followed by 5 sections of MS2 with 6 m/z isolation window, and 

repeated with 5 more sections of MS2 with 1 m/z isolation window. For the 5 sections, different 

collision energies were used. Sections 1 to 5 used 10, 20, 30, 20-50, 40 eV collision energies, 

respectively. The last section measured the lithium formate signal in MS mode. The scan rate was 

0.25 Hz.  

A QC sample was run for every 20 HMDB standards. The fragment spectrum of the QC 

sample was searched against an initial measurement of the QC sample. The QC was passed as long 

as the fit score for the match was above 900.  

All samples were first measured in positive mode. Only those samples that were not ionized 

in the positive mode were then measured in negative mode. 

4.2.6 Library Data Processing 

Raw data was automatically processed by a script, written in house using the data 

processing program DataAnalysis (Bruker, Germany). This script automatically averages all of the 

scans within one section, and then labels each averaged scan with the name and collision energy. 

It then performs automated mass calibration based on the last section containing lithium formate 

signals.  

Each scan was then inspected manually for signal intensity and mass accuracy. Mass error 

must be less than 2 ppm, and intensity must be less than 3 × 106 counts. The 6 m/z window MS2 
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scans were compared with 1 m/z window MS2 scans, to remove noise; this process is detailed in 

the discussion. 2 fragment structures were assigned to the 2 most intense peaks in the 20-50 eV 

MS2 spectrum. Based on the chemical formula of the metabolite, DataAnalysis’ SmartFormula3D 

tool was then used to assign chemical formulas to all of the fragment peaks based on their accurate 

masses. Simulated fragment spectra for all collision energies were generated using the calculated 

formulas for each energy level.  

4.2.7 Apple juice experiment 

Human urine was collected from a healthy volunteer. Prior to drinking juice, the volunteer 

drank one cup of water in the morning and collected urine. Immediately following urine collection, 

one cup of apple juice was consumed. The first urine after drinking juice was collected. This urine 

sample was then filtered by 0.22 μm PVDF syringe filter (Milipore) and stored at -80 °C. Before 

injection, the samples were thawed, then diluted by half with 1:1 (v/v) H2O:ACN 0.1% formic acid. 

An Ultimate 3000 RS-LC system from Thermo Scientific (California, USA) was coupled 

to the impact HD QTOF mass spectrometer. Column was a Waters 1.7um 100x2.1 BEH C18 w/ 

VanGuard BEH C18 guard column (Waters, USA). Column was kept at 30 °C with a column oven. 

The final gradient chosen was: 0 min (1% B), 0-2.0 min (1% B), 2.0-17 min (1-99% B), 17 min 

(99% B), 17-20 min (99% B). The flow rate was 250 μL/min and the injection volume was 5 μL. 

A wash and equilibration injection was run between samples; the gradient was: 0-4.5 min (100% 

B), 4.5-10 min (1% B) at 350 μL/min. Mobile phase A was 0.1 % LC-MS formic acid in LC-MS 

water and mobile phase B was 0.1 % LC-MS formic acid in LC-MS acetonitrile.  

The instrument was operated in the MS1 mode, with no fragmentation. Each sample was 

injected in triplicate and in the positive MS mode. Raw data was calibrated and molecular features 
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were extracted with ProfileAnalysis 1.3 (Bruker Daltonics, Germany) software. The software then 

aligned each of the molecular features together, across all samples, and tabulated the molecular 

features’ peak areas for multivariate analysis. Each molecular feature’s peak area in one sample 

was normalized to the sum of the peak area of that feature across all samples. PLS-DA was 

performed with the ProfileAnalysis with 3 principle components. A clear separation was observed 

between the before and after drinking apple juice classes. The list of important metabolite features 

were then taken from the loadings plot generated by the software. 

An LC- MS2 experiment was performed on one of the urine sample. An MS2 inclusion list 

was used to ensure that CID spectra were obtained for the metabolite features. From the CID spectra, 

a library search was performed using DataAnalysis with a 5 ppm precursor mass tolerance, and 

results greater than >700 fit score were reported. 

4.3 Results and Discussion 

4.3.1 Library Construction Considerations 

In order to facilitate the MS acquisition of the 803 HMDB standards, it was decided to use 

flow injection analysis MS (FIA-MS) instead of performing LC-MS analysis. Each dissolved 

sample was picked up by the autosampler followed by 4 μL of lithium formate; this plug of sample 

and calibrant was then pushed into the ESI source of the QTOF-MS where data were acquired in 

positive or negative polarity. LC-MS analysis would have provided useful retention time 

information and removed interfering contaminants; however, performing gradient elution for all 

the standards would have taken too much time. An LC-MS analysis would have needed 30 minutes 

per sample, whereas FIA-MS required only 2 minutes. An advantage of FIA-MS was that the 

standard’s signal could be observed for the entire 2 minutes analysis (Figure 4.1). During this time, 
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10 different CID experiments can be performed; for each experiment, many spectra were averaged 

to give spectra of high intensity and signal-to-noise ratio. This would not have been possible in an 

LC-MS analysis where analytes elute over a time peaks widths are less than 6 seconds.  

 

Figure 4.1 An example of the flow injection analysis performed on a HMDB standard. Important 
sections of the analysis are labeled below. 

Five different collision energy conditions were collected for all of the HMDB standards: 

10 eV, 20 eV, 30 eV, 40 eV, and a combined spectrum of 20 eV and 50 eV. These collision energies 

ensured that compounds of different robustness towards CID fragmentation were able to generate 

at least one or more spectra that contained unique fragmentation patterns. Compounds that 

contained fragile bonds gave rich fragmentation patterns in the lower energy, but at higher collision 

energies they were completely fragmented and gave few signals that can be used for identification. 

Compounds that contained rigid structures, such as porphyrins, were found to be highly resistant 

to fragmentation. At the lower collision energy there were no observable fragment signals, and 

only higher energy spectra contained signals. These observations suggest that for metabolomic 
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analysis, different collision energies are needed in order to produce useful CID spectra for 

identification.  

The identities of metabolites are unknown in untargeted metabolomics, therefore it is 

difficult to select an optimal energy during the analysis. The combined 20 eV and 50 eV spectrum 

was collected as a generic setting that can be used in any untargeted metabolomic experiment so 

that there would be useful fragments for all compounds. During each MS2 scan, the isolated 

molecule was fragmented at 20 eV for half of the scan time and then fragmented for 50 eV for the 

other half of the scan time. The two spectra were then averaged together to give the 20-50 eV 

spectrum. By using this energy setting both fragile and robust compounds can produce unique MS2 

spectra. The trade-off for using this method was that only half the scan time was used for each 

collision energy. Compounds that fragment with only one of the energy level would have 

fragmentation signal for half the time, while no signal for the other half. When these two scans are 

summed together, it results in a lower quality fragment spectrum than if the optimal energy was 

used for the entire scan time. This was also the reason that only 2 collision energies were selected 

for the 20-50 eV CID experiment. Adding more collision energy steps to the combined spectrum 

might give a richer fragmentation pattern, because fragment signals can be collected at the 

intermediate energies; but more scans would have meant that less scans can be summed together 

for each collision energy, resulting in lower signals. In the end, it was found that the 20-50 eV was 

the most generic collision energy, and the most useful for untargeted metabolomic studies.  

The long acquisition time of FIA-MS also permitted the use of two different isolation 

windows for all 5 different collision energies. One wide isolation window of 6 m/z and one narrow 

isolation window of 1 m/z were used. During LC-MS2 analysis, there are many metabolite eluting 

from the column at any one time. The instrument isolates the compound ion of interest and then 
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adjusts the AC current in the first quadrupole to only allow that specific mass through to the 

collision cell to be fragmented. The isolation window has a finite width around the mass of interest, 

and is user adjustable. The choice of window width is a balance between selectivity and sensitivity. 

Due to the parabolic transmission profile of the quadrupole fields, the optimal mass windows are 

usually selected to be several m/z around the ion of interest. However, this usually means that other 

ions around the m/z of the ion of interest are co-isolated. The resulting fragment spectrum contains 

signal from many different ion species, which convolutes the identification process. Using smaller 

windows ensure that only the compound ion of interest enters the collision cell and the resulting 

fragments are specific to that compound. The sacrifices for increased specificity are: lower 

fragment intensity due to transmission losses with smaller transmission window; and loss of 

isotopic peaks, which can be used for chemical formula determination of the fragment peaks 

(Figure 4.2). 

 

Figure 4.2 MS2 spectra of 17-Hydroxyprogesterone, acquired with (a) 6 m/z isolation window and 
(b) 1 m/z isolation window. Red arrows show the loss of isotopic peaks at the two 
different window settings. 

In order to develop a high quality MS2 library, the advantages of both isolation window 

widths were combined. Some of the HMDB standards were not pure and contained side products 
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or contaminants that have masses close to the [M+H]+ of the standard and were co-isolated by the 

wide 6 m/z isolation window. The final data for the library cannot contain any co-isolated chemical 

noise peaks, and it cannot miss crucial isotopic peaks, which are used for formula calculation. To 

realize this goal, manual data processing was done by comparing the spectra from 6 m/z with the 

1 m/z isolation window. Spectra acquired with the 1 m/z isolation window were assumed to be 

pure, because interfering species were not co-isolated. Any fragment peaks in the 6 m/z window 

spectrum that did not appear in the 1 m/z window were due to co-isolated interferences and were 

deleted manually (Figure 4.3). The processed 6 m/z window spectra, which contained complete 

isotope pattern for all the fragment peaks without interferences, were imported into the final library. 

This labour intensive data processing yielded clean final library spectra that reduced the chance of 

spurious matches to chemical noise peaks in the library.  

 

Figure 4.3 MS2 spectra of 5-Methoxysalicylic acid, acquired with 6 m/z isolation window (a) and 
1 m/z isolation window (b). Red arrows show the contaminant peaks that were present 
in the 6 m/z isolation window spectrum, that were not present in the 1 m/z isolation 
window. 

One further data quality improvement were implemented through the simulation of 

fragment spectra based on the calculated molecular formulas for fragment peaks. This 
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“SmartFormula3D” algorithm was included in the DataAnalysis data processing software, and it 

calculated the chemical formulas of fragments using the accurate mass and isotopic distribution in 

the MS2 spectra. Only fragments with calculated formulas that were subsets of the parent 

molecule’s molecular formula were considered to be true fragments. The true fragments were 

simulated with the theoretical accurate mass and theoretical isotopic distribution, to create a new 

virtual copy of the MS2 spectrum. It was found that this algorithm did as good a job at identifying 

co-isolated interferences as the above two window method, however, it was often not able to 

identify low intensity fragment peaks that were experimentally confirmed to be real fragments due 

to bugs in the algorithm. Therefore, the utility of the final virtual MS2is limited, due to the missing 

peaks.  

Besides the protocols, the high resolution QTOF helped to generate spectra with high 

resolution and high mass accuracy. The peak FWHM from this instrument was in the range of 0.01 

m/z which converted to a resolving power of 60,000 at a mass of 622 m/z. The typical mass error 

of a calibrated spectrum is usually around 3 ppm. A previous version of the HMDB MS2 library, 

available on the HMDB website, was measured using an ion trap mass spectrometer capable 

producing data with a peak FWHM of 0.8 m/z mass error of greater than 100 ppm. The high 

resolution data was also able to be acquired on a time scale that was compatible with ultrahigh 

performance liquid chromatography (UHPLC) flow rates, commonly used in rapid metabolomic 

analysis. The acquisition rate can be increased to 8 Hz without the loss of resolution, unlike with 

other high resolution MS such as the orbitrap.15 At 8 Hz, peak of less than 6 seconds wide can be 

accurately reproduced, improving data quantification. 

Both the high resolution and high mass accuracy of the QTOF are essential for metabolite 

identification using CID MS2. Figure 4.4 shows the improved MS2 data quality acquired with the 
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QTOF when compared with ion trap MS (IT-MS) MS2 data. The high resolution spectrum showed 

greater detail in the busy low-mass region of the spectrum, and this detail will be crucial for 

identifying compounds from spectra that contain co-isolated fragment peaks. On a low resolution 

instruments co-isolated fragment peaks will be un-resolved, causing reduced matching scores with 

the MS2 library.  

 

Figure 4.4 MS2 spectra of 17-Hydroxyprogesterone, acquired with the (a) impact HD and (b) 
QTRAP 2000. 

High mass accuracy is used to narrow down the identity of unknowns with their measured 

[M+H]+ masses. For example, the accurate [M+H]+ mass of glutamine (147.076419 m/z) was 

searched in the HMDB database with a specified mass tolerance of 3 ppm, the same accuracy 

obtained on the QTOF, 5 matches were returned by the query. All 5 matches were isomers of 
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glutamine, and therefore indistinguishable from the correct identification. When searched with the 

IT-MS mass accuracy of 100 ppm there were 25 matches or 5 times more possible identities. The 

larger number of incorrect matches complicates the metabolite identification process, and requires 

more resources to validate.  

The performance contrast between the current generation QTOF and the older IT-MS 

showed that the QTOF would be the future platform for generating rapid LC-MS data for 

metabolomic analysis. Therefore, new MS2 data need to be generated using this platform in order 

to facilitate metabolite identification in metabolomic workflows using the new QTOF instrument.  

4.3.2 Final Library Analysis 

Table 4.1 Chemical Composition of the HMDB standards used to create the library. 

HMDB Classes   

Organic acids 55 

Lipids 151 

Aliphatic  83 

Carbohydrates and Carbohydrate Conjugates 69 

Amino Acids, Peptides, and Analogues 137 

Aromatic 230 

Organophosphorus Compounds 5 

Homogeneous Non-metal Compounds 10 

Nucleosides, Nucleotides, and Analogues 44 

Unspecified 20 

 

In total, 803 separate HMDB standards were measured on the QTOF platform, 

encompassing a wide range of classes of human metabolites that can be found in blood, urine, and 

cerebrospinal fluid. Table 4.1 summarizes the chemical variety of the HMDB standards. Out of the 

803, 101 compounds did not produce observable [M+H]+ or [M-H]- signal, and therefore yielded 
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no usable MS2 spectra. A closer investigation of the 101 compounds was conducted, and it was 

found that 62% were from the lipid and aromatic compound classes (Table 4.2). These two classes 

are difficult to ionize using ESI because they lack basic sites that facilitate protonation. In order to 

measure these compounds using MS, other ionization techniques such as atmospheric pressure 

photoionization (APPI) and atmospheric pressure chemical ionization (APCI) are required.16 

However, the majority of compounds ionized efficiently with ESI and ESI has been the ionization 

method of choice for a large number of MS labs conducting metabolomic studies. Thus, it was 

decided to complete the first version of the library with an ESI source only.  

Table 4.2 Composition of the standards that were not ionized. 

Non ionizable compounds  

Organic acids 5 

Homogeneous Non-metal Compounds 8 

Lipids 32 

Amino Acids, Peptides, and Analogues 3 

Aromatic 9 

Aliphatic  30 

Carbohydrates and Carbohydrate 
Conjugates 

9 

Nucleosides, Nucleotides, and 
Analogues 

3 

Organophosphorus Compounds 1 

 

For some organic acids and carbohydrates that did not ionize in positive mode, negative 

mode was used to obtain an [M-H]- signal and the negative mode MS2 spectra were acquired. 74 

compounds were detected in negative mode only. It was found that negative mode MS2 produced 

poor fragmentation, except for polymers such as polysaccharides. Out of 74 negative mode only 

compounds, 32 had no detected fragment ions at any collision energies, and 18 had measureable 
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fragment ions only in the lower collision energies. With compounds that had measurable fragment 

ions, they were generally of much lower intensity with respect to the parent ion intensity (Figure 

4.5); this behaviour was not observed in the positive mode data. Poor fragmentation of C-C bonds 

in negative mode was previously reported for lipids,17 and simple carboxylic acids.18 From these 

observations, it was concluded that negative mode was not suitable for untargeted metabolite 

profiling work because of poor fragmentation. The exceptions are cases where the compound 

contains negatively charged head groups or ester bonds that fragment in negative mode to give 

useful information, such as in the analysis of oligosaccharides19,20.  

 

Figure 4.5 Comparison of ion intensities of negative mode CID (a) versus positive mode CID (b). 
Compared to positive mode, fragment intensities in negative mode is substantially 
lower with respect to its [M-H]- precursor. 
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When the library was being built, metadata were kept on a variety of parameters such as 

standard concentration, solubility, parent ion intensity, amount of in-source fragmentation, and 

adduct formation. These information were tabulated in an excel file that was included with the final 

library package. Information such as in-source fragmentation, parent ion intensity, and adduct 

formation aid in the optimization of targeted metabolite analysis. When a compound is expected to 

have strong in-source fragmentation according to the metadata, the [M+H]+ ion would be of low 

intensity. Monitoring the [M+H]+ in such a situation would reduce the sensitivity of the method. 

Sensitivity can be improved by monitoring the in-source fragment, instead. If a compound was 

expected to form sodium adducts more readily than forming [M+H]+, sodium could be spiked into 

the sample to increase sensitivity.  
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Figure 4.6 CID MS2 spectra of sodiated (a) and protonated (b) 2-Isopropylmalic acid. Yellow dots 
marks peaks that can be explained by the SmartFormula3D algorithm. All peaks in the 
protonated MS2 spectra can be explained, whereas a large number of peaks are 
unexplainable in the sodiated MS2 spectrum. 

Due to the frequency of observing [M+Na]+ ions with higher intensity than the [M+H]+ 

ions, the fragmentation efficiency of these sodium adducts was investigated to see if they could be 

used to generate unique MS2 spectra for metabolite identification. Figure 4.6 shows sodiated ions 

of small molecules rarely provide useable fragmentation and require more energy to fragment. In 

this figure, 2-Isopropylmalic acid’s [M+H]+ ion generated peaks that were identified as fragments 

of the parent ion by calculating their molecular formula. The [M+Na]+ spectrum was filled with 

unidentified masses and masses above the [M+Na]+ mass, therefore the majority of the observed 
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signal were chemical noise, making the data unsuitable for spectral identification. Furthermore, the 

parent [M+Na]+ ion was more resistant towards fragmentation and was still present in the MS2 

spectrum, while the parent [M+H]+ ion was completely fragmented in the MS2 spectrum. 

The situation improves when fragmenting [M+Na]+ of polymers, such as oligosaccharides. 

These polymers produced clean MS2 spectra that were completely different from their [M+H]+ MS2 

spectra and the fragments were explainable by molecular formula calculation and can be used for 

identification. However, these large sodiated polymers did not make up a large portion of the 

library.  

From these observations, fragmentation of [M+Na]+ ions will not give useful experimental 

data and should be avoided for small molecule analysis. For this reason, sodiated MS2 spectra were 

not included in this version of the library.  

4.3.3 Searching Strategies 

The spectral matching algorithm for identifying experimental spectra with the library was 

built into the DataAnalysis. The algorithm employed was a classic fit and purity score calculation. 

The fit score reflected the presence of fragment peaks from the library standard in the experimental 

spectrum. Extra peaks in the experimental spectrum did not penalize the scoring, as long as all 

library standard peaks were found. The purity score looked for exact matching between library 

spectrum and experimental spectrum; extra unmatched peaks will reduce the score. Fit score was 

found to be the most useful metric for identification of unknowns with real complex samples such 

as urine. The reason was that due to the large number of metabolites in the body, each mass 

spectrum in the chromatogram contains many metabolites within the same MS2 isolation window 

of 2-3 m/z. These metabolites were co-isolated and contributed to extra fragment peaks in addition 
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to the fragments from the parent ion of interest. It was found that using the fit score was more 

resistant to this issue, because it did not take into account extra peaks in the experimental spectrum. 

As long as all of the library spectrum peaks were found, the fit score was high. This problem is 

also commonly encountered in LC-MS based proteomic analysis, and creative solutions were 

proposed.21,22 However, for metabolomics there are no predictable fragmentation rules that can be 

applied, so those solutions cannot be used.  

Unambiguous identification of a particular ion in a mass spectrum requires two parameters: 

a good match to the fragmentation pattern of a standard, and the precursor mass that gave rise to 

the fragmentation pattern must also match to the mass of the standard within an instrument specific 

mass tolerance. In untargeted metabolomics, matching both criteria limits the amount information 

that can be derived from the experimental data. In a typical biological sample there is a vast number 

of metabolites, certainly many times more than possible in any standards library. Most of these 

metabolites are built on similar chemical scaffolds and share parts of their chemical structures; 

while their intact precursor masses are different they will share certain fragment ions because the 

core structures are similar. In these cases, by finding similar fragmentation patterns without 

specifying the precursor mass can help elucidate the chemical class and provide some information 

of biological function. This expands the power of the library for metabolomic applications, without 

the need for additional standards.  

 

 

Table 4.3 Table of identified metabolites in human urine. 

Biofluid MS2 Spectra Putative ID Similar Fragments 
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Plasma 4544 45 151 

Urine 2558 49 163 

Saliva 3392 18 101 

 

The spectral matching algorithm comes with the ability to toggle off the requirement to 

match the precursor mass and perform only fragment pattern matching. These functions were tested 

with human urine samples. A short LC-MS2 experiment yielded 45 putatively identified 

metabolites (Table 4.3) with a 3 ppm precursor mass tolerance, and a fit score of above 700 which 

represents a good match. By removing precursor matching, the metabolite number was tripled to 

151 matches, with a fit score of above 700. Figure 4.7 shows an example of this type of match. 

Precursor ion 369.1710 m/z was selected for fragmentation and the resulting pattern matched 

closely with the pattern from the dehydroepiandrosterone standard. From this information it was 

concluded that the unknown was closely related to the steroid, but it was 80 m/z heavier. Upon 

literature search it was found that dehydroepiandrosterone was usually found to be sulfated to 

induce a negative charge and modify the transport behavior in the body.23 By using this strategy, 

identification power of the library can be expanded beyond the standards that were measured.   
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Figure 4.7 Experimental MS2 spectrum of ion 369 m/z compared with the library MS2 spectrum of 
dehydroepiandrosterone. 

4.3.4 Proof-of-Concept 

A major advantage of the Bruker suite of post-processing software was its tight integration 

for the entire metabolomic workflow. Large batches of raw data from an untargeted metabolomic 

study can be seamlessly calibrated, processed, and then passed on for multivariate analysis, such 

as PCA or PLS-DA, without complicated file format conversions required when using popular 

open-source software.24-27 Important masses can be determined from the multivariate analysis, and 

the library annotates the identity of the unknown mass features. The entire workflow was 

demonstrated by a proof-of-concept study in which LC-MS2 was used to discover apple juice 

metabolites from a healthy volunteer’s urine. 
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Figure 4.8 PLS-DA scores plot for the apple juice metabolite data set. Clear separation of urine 
samples from before and after drinking apple juice was observed. 

Figure 4.8 shows that the PLS-DA was able to fully separate the before and after drinking 

juice samples. The Bruker multivariate analysis software also produced a list of masses that was 

ranked based on how much it contributed to the separation. Higher rank means the mass changed 

abundance the most between urine samples before and after drinking apple juice. The library was 

used to identify the compounds that were on the list, and the results are shown in Table 4.4. When 

exact mass and fragmentation pattern were used for the identification, 4 unknowns were identified, 

including the top 3 metabolites that contributed to the difference between before and after juice 

samples. With fragment pattern matching only, 3 additional unknowns were identified to be all 

carnitine related compounds. All identified metabolites were found to have metabolic relevance to 

apple juice consumption as reported in previous studies. Uric acid was reported to be the major 

metabolite of fructose,28 which is in high abundance in apple juice. Hippuric acid was linked to the 

metabolism of polyphenols that were found in apple juice.29 L-carnitine and acetyl-L-carnitine 

were found to be involved in the regulation of glucose metabolism,30 and could be affected by 
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glucose contained in the apple juice. This proof-of-concept study showed that the new library 

allowed rapid features identification and facilitated biologically relevant hypothesis from a simple 

urine study.  

Table 4.4 PLS-DA results. Metabolites Up-Regulated After Drinking Juice (ordered by PLS 
loading score ranking) 

 Purative Identification Measured m/z 

1 Uric Acid 169.0347 

2 Hippuric Acid 180.0642 

3 L-Acetylcarnitine 204.1229 

4 2-Octenoylcarnitine (partial match to acetylcarnitine, 
manually interpreted) 

286.2010 

5 No ID 193.0370 

6 Alpha-N-phenylacetyl-L-glutamine 265.1180 

7 No ID 84.9600 

8 Isobutyryl-L-Carnitine (Partial match to carnitine, 
manually interpreted) 

232.1540 

9 No ID 337.0650 

10 Carnitine Derivative (partial match to carnitine, no 
accurate ID can be proposed) 

310.2010 

 

4.4 Conclusion 

The high resolution HMDB MS2 library was demonstrated to be capable of confidently 

identifying important metabolites in human urine samples. The identification process is easily 

integrated into the metabolomic workflow, and will facilitate future metabolomic studies using the 

Bruker platform.  

From this work, several guidelines were developed for future metabolomic studies. It was 

found that negative mode MS2 was not as efficient as positive mode in generating useable spectra 

for identification. Therefore, negative mode should not be the first method to use in exploratory 
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work unless negative mode friendly chemical classes are targeted. Sodiated adducts also reduced 

MS2 quality, but their abundance is often difficult to control due to the prevalence of sodium in the 

lab. Lastly, more unknowns can have their chemical structures narrowed down by performing a 

fragmentation pattern match without specifying the precursor mass.  

MS2 library is still only one part of the identification workflow. MS2 alone is not sufficient 

at distinguishing the differences between some structural isomers and the majority of stereoisomers. 

Their masses are exactly the same and fragmentation patterns are similar. LC separation is already 

performed prior to MS2 analysis, mostly for reducing ion suppression due to sample complexity. 

However, retention time information is also another crucial physical property that can be used for 

unambiguous identification. The current MS2 library can be supplemented with retention times for 

each standard in the future. 

Standards are still crucial for the building of the library. As new metabolite standards 

become available, the library can be expanded with new data. However, this process is expensive 

and time consuming. It will be infeasible to synthesize enough standards to cover the entire 

metabolome. The future for metabolomics and small molecule identification lies in the precise 

understanding of the CID process, so that chemical structures can be derived de novo from 

fragmentation spectra. Progress is being made in these methods, however more accurate algorithms 

are required before metabolite MS2 library can be retired for good.  
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Chapter 5  
 
Construction of a Metabolite Retention Time Library  

5.1 Introduction 

CID MS2 libraries have been instrumental in facilitating the high-throughput identification 

of unknown metabolites in LC-MS metabolomics. As mass spectrometers become more 

advanced—with higher resolutions and higher mass accuracy—these identifications have also 

increased in confidence. From our experience, CID MS2 spectra contained in these libraries are 

reproducible between instruments of the same make and model, making them portable to labs that 

use the same make of MS. The reproducibility is adequate between different instrument vendors, 

especially after fragmentation calibration procedures.1,2 Major fragment peaks will be common 

between instruments, but differ in their intensities. While different instruments might not produce 

exact matches, partial fragment matches can still be useful for compound identification.  

Most of metabolomic studies using a mass spectrometry platform utilize LC separation 

prior to ionization—mostly for reducing sample complexity.3,4 The retention times reported for 

each unknown metabolite ion are used for aligning different samples of the same study, and not for 

compound identification. Despite the identification powers of CID MS2, there are situations in 

which it will be challenged; an orthogonal method of narrowing down the identity is needed, such 

as retention time. 

These challenging situations include when MS2 is performed on a low intensity precursor 

ion.5 The generated fragment spectrum will be of poor quality, with many peaks missing. There 

may be enough for a partial match to a library entry but that is not very confident on its own. If 
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there were a partial MS2 match, accurate precursor match, and retention time match, then the 

confidence of identification would increase.  

Another situation is if the MS2 spectrum were not unique to a standard. This occurs in a 

few chemical classes: First, this occurs when the unknown is a stereoisomer, which generates 

identical fragmentation patterns.6 Secondly, structural isomers with only a small difference to other 

isomers will not produce unique spectra. Lastly, some compounds fragment in a way to only give 

dominant ions that are not unique to that compound,5 such as acylcarnitines.7 In all of these 

situations, MS2 data are not conclusive and require retention time information for identifying 

metabolites.  

The challenge for metabolite identification with retention time is that metabolites have 

diverse chemical properties,8 and their behaviors on a LC column cannot be accurately predicted 

de novo. In limited situations, retention time can be predicted if the analyte of interest is part of a 

well characterized chemical class, such as peptides. Peptide sequence was used to predict retention 

time on reversed phase columns, and the correlation of prediction to experimental data had R2 of 

greater than 0.9.9 Currently, there has been no useable model for predicting metabolite retention; 

therefore, standards must be obtained and retention time must be empirically measured. Retention 

times also depend on many other factors, which will cause variability in measured data. These 

factors include: Stationary phase, mobile phase composition, tubing length, leaks, injector needles, 

gradient programming, etc. These variabilities cause retention time to shift tens of seconds between 

labs and even between runs; such shifts prevent accurate identification. For these reasons, LC 

retention time libraries have seen little use in the metabolomics community compared to GC 

libraries.10-12 



108 
 

With these challenges in mind, the purpose of this work is to generate a usable retention 

time library for HMDB metabolites. To reduce the variabilities described above, we provide a very 

specific, optimized LC-MS condition—one that is applicable to most metabolomic work flows. 

The end user is expected to follow these exact conditions, and only then can the library be used. 

However, there are still minor variables causing retention time shifts that cannot be accounted for. 

A LC calibration method was developed to counter these variables. With the final library, we 

demonstrate that metabolite identification from human urine was more robust using retention time 

information. Also, in-source fragmentation was revealed to be prevalent in metabolomic analysis 

and convoluted identification greatly. This final retention time library composed of 792 measured 

metabolites measured on a reversed phase column. 

5.2 Materials and Procedure 

5.2.1 Chemicals and Reagents 

All chemicals and reagents were purchased from Sigma-Aldrich Canada (Markham, ON, 

Canada) except those otherwise noted. LC–MS grade water and acetonitrile were purchased from 

Thermo Fisher Scientific (Edmonton, AB, Canada).  

5.2.2 Instrumentation 

All data were generated with an Ultimate 3000 RSLC system from Thermo Scientific 

(California, USA) and an impact HD high resolution QTOF mass spectrometer from Bruker 

Daltonics (Bremen, Germany). Mass spectrometer source settings were: Nebulizer gas 2.0 bar, dry 

gas 8.0 L/min, 200 °C, capillary voltage 4.5 kV, capillary offset 0.5 kV, acquisition rate 8 Hz, mass 

range 20 – 1000 m/z, CID gas is nitrogen, mass calibration with sodium formate. 
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5.2.3 Chromatography 

An Acclaim 120 C18 100 x 2.1 mm 2.2 µm column (Thermo Scientific) with a Vanguard 

BEH C18 1.7 µm guard column (Waters) was used for all experiments. Column was kept at 30 °C 

with a column oven. The final gradient chosen was: 0 min (1% B), 0-2.0 min (1% B), 2.0-17 min 

(1-99% B), 17 min (99% B), 17-20 min (99% B). The flow rate was 250 μL/min and the injection 

volume was 5 μL. A wash and equilibration injection was run between samples; the gradient was: 

0-4.5 min (100% B), 4.5-10 min (1% B) at 350 μL/min. Mobile phase A was 0.1 % LC-MS formic 

acid in LC-MS water and mobile phase B was 0.1 % LC-MS formic acid in LC-MS acetonitrile.  

5.2.4 Quality Control (QC) Mixture 

The following chemicals were used: Acetaminophen, Aminoacridine, Aminoanthracene, 

Caffeine, Dansyl Alanine, Dansyl Arginine, Dansyl Asparagine, Dansyl Aspartic acid, Dansyl 

Glutamic acid, Dansyl Glycine, Dansyl Histidine, Dansyl Isoleucine, Dansyl Leucine, Dansyl 

Lysine 2Tag (two dansyl groups were attached), Dansyl Methionine, Dansyl Phenylalanine, Dansyl 

Proline, Dansyl Serine, Dansyl Threonine, Dansyl Tryptophan, Dansyl Tyrosine 2tag, Dansyl 

Valine, N-decyl-N-N-Dimethyl-3-amino-1-propane-sulfonate, Nicotinic acid, P-coumaric acid, 

Reserpine, Sinapinic Acid, Sulfanilamide. These compounds were dissolved in 1:1 (v/v) H2O:ACN. 

100 μL from each stock solution were mixed together to make the QC stock mixture. 10 μL of 

stock mixture was diluted by 800 μL of 1:1 (v/v) H2O:ACN for the final QC mixture. 

5.2.5 Column Efficiency Calculation 

Equation 5.1 was used to calculate the column efficiency of the Thermo Acclaim column. 

N is the number of theoretical plates for a peak. tr is the retention time of the peak in minutes or 

seconds. W0.5 is the full width at half maximum of the peak in minutes or seconds. 
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5.2.6 HMDB Standards 

Pure standards were obtained from Professor David Wishart at the University of Alberta, 

Canada. Roughly 1 mg of solid or liquid was used to prepare a stock solution of every standard in 

1:1 (v/v) H2O:ACN. 10 μL from between 10-24 stock solution were mixed together, and 10 μL of 

this mixture was then diluted by 800 μL of 1:1 (v/v) H2O:ACN 0.1% formic acid. 10 μL of QC 

stock solution was added to the final solution. 

5.2.7 Library Data Acquisition 

HMDB standards mixtures were injected in triplicate, with QC injection every 10 samples. 

QC standards were monitored for retention time deviation of less than 0.1 minute. The retention 

time of the HMDB standards were extracted with TargetAnalysis 1.3 (Bruker Daltonics), and 

tabulated in an Excel (Microsoft) spreadsheet. Using a Visual Basic script (Microsoft), the retention 

times were imported into the existing Bruker HMDB MS2 library. 

5.2.8 Urine Samples  

One human urine sample was collected from a healthy individual. This urine sample was 

then filtered by 0.22 μm PVDF syringe filter (Milipore) and stored at -80 °C. Before injection, the 

samples was thawed then diluted by half 1:1 (v/v) H2O:ACN 0.1% formic acid. The same LC-MS 

method as described above was used for the analysis of urine. Data dependent MS2 acquisition was 

enabled in the mass spectrometer. The settings for this mode were: Active exclusion 3 scans, 

intensity threshold 1500, isolation window width 4 m/z, collision energy 20-50 eV.  
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DataAnalysis 4.2 (Bruker Daltonics) was used to automatically calibrate the samples, 

extract metabolite features, group MS2 spectra to their respective metabolite feature, and perform 

library search. 

5.2.9 Retention Time Calibration 

The QC mixture and urine were injected onto the column with guard column, then the 

injections were repeated after removing the guard column. The retention times of all QC standards 

in the mixture were extracted for both with and without guard column data using TargetAnalysis 

1.3 (Bruker). Metabolites with retention times were extracted from the urine data by the 

DataAnalysis 4.2 (Bruker Daltonics) molecular feature algorithm.  

The retention time correction factor (CF) was calculated for each QC standard using 

Equation 5.2, where RTno guard is the retention time of the standard using the column without guard 

column, and RTguard is the retention time of the standard using the column with guard column: 

 𝐶𝐶𝐹𝐹 = 𝑅𝑅𝑇𝑇𝑛𝑛𝑛𝑛 𝑔𝑔𝑔𝑔𝑔𝑔𝑟𝑟𝑔𝑔 − 𝑅𝑅𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑟𝑟𝑔𝑔 (5.2) 

 

The algorithm then looks through all of the metabolite from the urine analyzed on the 

column without guard column, and correct the retention time to be the same as the retention time 

in the data measured on the column with guard column. Each metabolite is bracketed by two QC 

standard in terms of retention time. Using both CF, Equation 5.3 is then applied to correct the 

retention time of the metabolite: 

 
𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑒𝑒𝐶𝐶𝑡𝑡𝑒𝑒𝐶𝐶 𝑅𝑅𝑇𝑇 = 𝑅𝑅𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 +

𝐶𝐶𝐹𝐹𝑖𝑖+1 − 𝐶𝐶𝐹𝐹𝑖𝑖
𝑅𝑅𝑇𝑇𝑖𝑖+1 − 𝑅𝑅𝑇𝑇𝑖𝑖

× �𝑅𝑅𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑅𝑅𝑇𝑇𝑖𝑖� (5.3) 
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RTexp is the uncorrected retention time of the metabolite. RTi and CFi are the retention time 

and correction factor for the standard that is before the metabolite. RTi+1 and CFi+1 are the retention 

time and correction factor for the standard that is after the metabolite. 

For metabolites that elute before the first standard, or elute after the last standard, a single 

CF was applied (Equation 5.4). 

 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑒𝑒𝐶𝐶𝑡𝑡𝑒𝑒𝐶𝐶 𝑅𝑅𝑇𝑇 = 𝑅𝑅𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐶𝐶𝐹𝐹𝑖𝑖 (5.4) 

 

Where RTexp is the metabolite retention time, and CFi is the correction factor of the first or 

last standard, depending on which end of the chromatogram the metabolite is on. 

5.3 Results and Discussion 

5.3.1 LC Conditions 

Conventionally, metabolomics is conducted with reversed-phase columns. These columns 

retain metabolites of weak to medium polarity in a wide variety of biological samples, but they 

show poor retention of high polarity metabolites. Reversed phase columns are widely available 

from a variety of vendors, and are popular within the pharmaceutical industry and academia. 

Reversed phase LC has been used for the analysis of hydrophobic metabolites for studies involving 

many different biological systems.13,14 

In this work, a C18 column with 2.2 µm porous particles was used for data acquisition, and 

we have accepted the fact that a number of polar metabolites will not be retained and are possibly 

lost due to ion suppression at the beginning of the analysis. The long-term plan was to continue to 
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build on this reversed phase data with other phases that will patch up the missing polar metabolite 

data.  

The elution system composed of water with 0.1% (v/v) formic acid in channel A, and 

acetonitrile with 0.1% (v/v) formic acid in channel B. This system was chosen to be compatible 

with electrospray ionization in mass spectrometer sources and also because the mobile phases are 

widely available in metabolomics laboratories. By choosing to prepare pure solvents with formic 

acid, instead of premixed solvents (i.e. 95% water and 5% acetonitrile in channel A), complexity 

and variation due to mobile phase preparation will be reduced.  

The large number of metabolites contained in biological samples requires the 

implementation of gradient elution to detect and quantify as large a number of metabolites as 

possible. A linear gradient of 99% A to 1% A over 15 minutes was chosen to allow a broad 

coverage of different polarities of metabolites. The starting composition of 99% A retained 

moderately polar metabolites, and the final composition of 1% A ensured that strongly retained 

non-polar compounds will be eluted from the column to prevent carryover.  

The gradient time of 15 minutes balanced the metabolome coverage and the sample cycle 

time. Due to the large number of samples required when conducting metabolomic studies, the entire 

analysis time of each sample must be as low as possible while offering enough separation power 

for the given sample. The analysis included an additional 2-minute hold at 99% A prior to the 

gradient, and a 3-minute hold at 1% A following the gradient; combined with a wash and 

equilibration of 10 minutes, the entire analysis was 30 minutes long. This meant that 44 samples 

can be ran during a 24-hour period, with 4 QC injection every 10 samples. A typical sample size 

of 200 can be analyzed in one week. This is in line with the recommendation of the optimal 180 

samples per week for reproducible LC-MS metabolomic data, proposed by Zelena et al.15 This 
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gradient profile and cycle time is sufficient in handling metabolomic studies in a reasonable amount 

of time, and was selected as the library method.  

Finally, an ESI based MS method optimized for the detection of metabolites between 50 – 

1000 m/z was selected. This was the same MS method previously optimized for the building of the 

Bruker HMDB MS2 library. Data acquired with this method was found to be compatible with the 

MS2 entries contained in that library. The only change was the increase in spectral acquisition rate 

from 1 Hz to 8 Hz, in order to produce better peaks on the UHPLC system.  

5.3.2 Column Performance 

The goal for this project was to build a library of retention times for the accurate 

identification of metabolites in addition to MS2 spectral matching. In order for the library retention 

times to be useful, the UHPLC-MS system chosen in this study must have sufficient retention time 

reproducibility. Based on previous experience, the chosen column from Thermo Scientific was 

known to have reproducible batch-to-batch retention times, and each column comes validated with 

a certificate of analysis. The UHPLC was recently installed prior to this work and passed 

installation and performance qualification. In order to assess the reproducibility of the entire 

UHPLC system with the method to be used in the library, a set of standards that elutes evenly 

spaced was selected to complete an operating qualification. Table 5.1 shows the complete list of 

standards and their retention time %RSD (n=14). The standards showed reproducible retention 

times with %RSD between 0.00% - 1.65%. Two early eluting compounds, sulfanilamide and 

nicotinic acid, showed the highest variation of 0.96% and 1.65%. The remaining standards that 

eluted after 3 minutes all showed good reproducibility between 0.00% to 0.48%, which was close 

to the theoretical predicted LC system variability of 0.29% proposed by Boswell et al.16  
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Table 5.1 Retention time of quality control standards and their standard deviations (n = 14). 

Name  Average 
(min) 

% 
RSD 

Standard Deviation 
(min, sec) 

Nicotinic acid 1.44 0.96 0.01(0.8 s) 

Sulfanilamide 2.98 1.65 0.05(3.0 s) 

Acetaminophen 6.46 0.32 0.02(1.2 s) 

Caffeine 7.33 0.26 0.02(1.1 s) 

Aminoacridine 7.67 0.44 0.03(2.0 s) 

Dansyl Histidine 7.85 0.34 0.03(1.6 s) 

Dansyl Arginine 8.33 0.36 0.03(1.8 s) 

P-coumaric acid 8.54 0.15 0.01(0.8 s) 

Dansyl Asparagine 8.66 0.14 0.01(0.7 s) 

Sinapinic Acid 8.74 0.14 0.01(0.7 s) 

Dansyl Serine 9.32 0.10 0.01(0.5 s) 

Dansyl Glutamic acid 9.52 0.08 0.01(0.5 s) 

Dansyl Aspartic acid 9.57 0.08 0.01(0.5 s) 

Dansyl Threonine 9.90 0.10 0.01(0.6 s) 

Dansyl Glycine 10.28 0.06 0.01(0.4 s) 

Dansyl Alanine 10.80 0.05 0.01(0.3 s) 

Reserpine 10.85 0.48 0.05(3.1 s) 

N-decyl-N-N-Dimethyl-3-amino-1-
propane-sulfonate 11.05 0.03 0.00(0.2 s) 

Dansyl Proline 11.99 0.04 0.00(0.3 s) 

Dansyl Methionine 12.23 0.03 0.00(0.2 s) 

Dansyl Valine 12.25 0.06 0.01(0.4 s) 

Dansyl Tryptophan 12.39 0.04 0.00(0.3 s) 

Aminoanthracene 12.41 0.05 0.01(0.4 s) 

Dansyl Phenylalanine 12.95 0.03 0.00(0.3 s) 

Dansyl Isoleucine 13.05 0.24 0.03(1.9 s) 

Dansyl Leucine 13.06 0.27 0.04(2.1 s) 

Dansyl Lysine 2Tag 14.31 0.03 0.00(0.3 s) 

Dansyl Tyrosine 2tag 15.98 0.02 0.00(0.2 s) 
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The average peak width (FWHM) of all the standards was found to be 0.085 min (n=3). 

These peak widths showed that this column was able to provide separation of complex mixture of 

metabolites, while allowing adequate time for data-dependent acquisition of 60-80 MS2 spectra per 

peak.   

With a particle size of 2.2 µm, this column can be considered as a borderline UHPLC-class 

column, where true UHPLC columns have particles below 2 µm. In exchange for slightly lower 

column efficiency than the sub-2 µm columns, this 2.2 µm was found to have substantially lower 

back pressure. During a run at 250 µL/min, the maximum pressure was 215 bar at the beginning of 

the gradient. This low pressure allows the column to be used on a variety of HPLC and UHPLC 

instruments, and there is a large margin until the column overpressures a typical HPLC at 400 bar. 

Meanwhile, 1.7 µm Agilent UHPLC columns of the same dimension typically gave maximum 

pressures of 280 to 300 bar at a slower flow rate of 180 µL/min. The column selected was robust 

for metabolomics studies and can be portable to many different LC instruments.  

5.3.3 Retention time Results 

To complete the acquisition of all 792 metabolites in a reasonable amount of time, between 

10 to 24 compounds were mixed together according to their chemical classification in order to 

prevent any unwanted reactions. Each retention time sample was also spiked with the previously 

mentioned QC mixture. Isobaric compounds were separated into different vials to prevent 

convoluting the measured retention times. Overall, there were 53 individual HMDB standard 

mixtures and they were all measured in triplicates, in both positive and negative modes.  

Table 5.2 Retention time distribution for the 800 compounds measured. 

Retention 
time (s) Frequency 
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100 296 
200 2 
300 2 
400 55 
500 79 
600 50 
700 48 
800 42 
900 18 

1000 6 
1100 4 
1200 8 
1300 0 

 

Table 5.2 shows the summary of the retention times for all 610 standards that were detected 

in the LC-MS method.  With a total gradient delay volume of approximately 390 µL (190 µL 

autosampler needle + 200 µL pump tubing), the actual gradient started at 214 seconds. 49% of the 

metabolites eluted before 100 seconds, which showed that the majority of the compounds in the 

library were highly polar and did not retain on the column. For these unretained compounds, the 

reversed phase column cannot separate them, and they will most likely be ion-suppressed in real 

samples because they elute with the complex unretained matrix plug. The rest of the metabolites, 

48% of total, eluted between 400 seconds and 900 seconds.  

In order to analyze the reason why half of the metabolites were unretained, the chemical 

classes of retained and unretained compounds are summarized in Table 5.3. The majority of the 

metabolites that were unretained were polar amino acids or their analogues (31%), carbohydrates 

(18%), and polar aromatic compounds (18%). It was well known that these compound classes are 

too polar to be retained on C18 columns,17 so this result was expected. For the metabolites that were 

retained, majority was composed of aromatic (49%), lipids (25%), and polypeptides (12%), which 

are hydrophobic and retained more on the C18 column.  
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Table 5.3 Chemical classes for unretained and retained compounds, as percentages of total 
unretained or total retained compounds. Unretained compounds had retention times <= 
100 seconds; retained compounds had retention times > 100 seconds and <= 900 
seconds. 

 

 

 

 

 

 

 

 

The 1:1 ratio of retained to unretained metabolites highlighted the need for a polar 

separation methods, such as HILIC, along with reversed phase C18 methods to study the 

metabolome. Studies have already shown that analyzing the same samples with both methods 

improves the metabolome coverage.18,19 For analysis that use reversed phase columns, this current 

library data provides an invaluable source of data to aid in the identification of metabolites.  

5.3.4 Analysis of Human Urine 

The retention time information was imported into the Bruker Library program, alongside 

the existing HMDB MS2 library. Searching with the new retention time information was 

straightforward and handled in the DataAnalysis program. The simple searching algorithm only 

requires an input of retention time tolerance windows in minutes. First, metabolites are identified 

 % Unretained % Retained 

Aliphatic*  13% 3% 

Amino Acids, Peptides, and Analogues 31% 12% 

Aromatic 18% 49% 

Lipids 2% 25% 

Carbohydrates and Carbohydrate 
Conjugates 

18% 1% 

Alkaloids and Derivatives 1% 1% 

Nucleosides, Nucleotides, and Analogues 9% 2% 

Organic acids 5% 5% 

Organophosphorus Compounds 1% 0% 

Unspecified 2% 2% 

Polyketides 0% 0% 

Homogeneous Non-metal Compounds 1% 0% 
*Small compounds with 3 or more carbons, and may contain other 
heteroatoms. 
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and filtered based on their MS2 spectrum match to the library. Then, experimental retention time 

of the valid matches from this step are compared with the library retention time; if the experimental 

retention time is within the tolerance window of the library data, then that match will show up in 

the final results. If the experimental retention time is outside of the window, they are removed from 

the final list no matter how perfectly the MS2 spectrum matched to the library.  

Human urine was used to test the number of matches possible in a typical sample. The urine 

was analyzed on the same column, with the same LC and MS methods used during the library 

construction. 1042 unknown metabolite features, each with a MS2 spectrum, were identified with 

the compound finding algorithm built into the data processing software, DataAnalysis. Searching 

those metabolite features with the library, matching both accurate precursor mass and MS2 

spectrum but without specifying the retention time, 89 features were matched with fit scores above 

500. Of that 89, 74 were unique compounds. The duplicates were mostly creatinine that appeared 

at different times on the chromatogram.  

Using the same data file, the search was repeated to include retention time information. 

Based on the QC sample retention time reproducibility, the retention time tolerance window was 

set to 0.1 min, and a broader tolerance window of 0.3 min. This meant that experimental retention 

time within ±0.1 min was considered to be a perfect match; between ±0.1 min and ±0.3 min there 

was a penalty to the Fit matching score; and beyond ±0.3 min, the results were eliminated from the 

final list.  

After specifying retention time matching, the number of matches reduced to 23 metabolites. 

20 of these 23 metabolites (87%) were very confident matches with fit scores above 900, whereas 

only 56 out of 74 (76%) were confident matches when no retention time information was used. By 
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using retention time information, the proportion of confident results were improved—albeit with a 

reduction in metabolite detection sensitivity.  
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Table 5.4 High scoring MS2 library matches for metabolites human urine data, without using 
retention time data, compared with the result from searching with retention time 
information (RT Result). 

Compound Name Fit' Found in RT 
Result 

Library RT 
(s) 

Experimental 
RT (s) 

In-Source 
Fragmentation 

5-Methylcytidine - 
HMDB00982 

1000 Not found 78.18 132 Did not observe 
in-source 

fragmentation 

1-Methyladenosine - 
HMDB03331 

1000 Not found 78.44 141 Did not observe 
in-source 

fragmentation 

Adenosine - HMDB00050 1000 Not found 78.18 309 Did not observe 
in-source 

fragmentation 

Cyclic AMP - 
HMDB00058 

1000 Not found 78.44 331.2 Did not observe 
in-source 

fragmentation 

Salicyluric acid - 
HMDB00840 

1000 Found - Wrong 
RT 

518.32 388.8 Did not observe 
in-source 

fragmentation 

Salicyluric acid - 
HMDB00840 

1000 Found - Wrong 
RT 

518.32 409.8 Did not observe 
in-source 

fragmentation 

5-Hydroxyindoleacetic 
acid - HMDB00763 

1000 Not found 447.78 492 Did not observe 
in source 

fragmentation 

Salicyluric acid - 
HMDB00840 

1000 Found 518.32 518.4 Correct 
Assignment 

Indoleacetic acid - 
HMDB00197 

1000 Found 586.74 586.8 Correct 
Assignment 

Trimethylamine N-oxide - 
HMDB00925 

999 Found 59.74 64.2 Correct 
Assignment 

L-Acetylcarnitine - 
HMDB00201 

999 Found 81 99 Correct 
Assignment 

2-Furoylglycine - 
HMDB00439 

999 Found 367.8 375 Correct 
Assignment 

Isovalerylcarnitine - 
HMDB00688 

999 Found 430.32 429 Correct 
Assignment 

Indoleacetic acid - 
HMDB00197 

999 Found - Wrong 
RT 

586.74 517.2 352.1029, 
176.0704* 

Creatinine - HMDB00562 999 Found - Wrong 
RT 

61.18 1180.8 Carryover 
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Ribothymidine - 
HMDB00884 

998 Not found 336.96 81 Did not observe 
in source 

fragmentation 

Glycylproline - 
HMDB00721 

998 Not found 79.08 98.4 Did not observe 
in source 

fragmentation 

Symmetric 
dimethylarginine - 

HMDB03334 

997 Found 65.08 70.2 Correct 
Assignment 

Betaine - HMDB00043 996 Found 61.88 62.4 Correct 
Assignment 

1,3-Dimethyluric acid - 
HMDB01857 

995 Found 371.4 371.4 Correct 
Assignment 

D-Glutamine - 
HMDB03423 

995 Not found 58.56 454.2 265.1179, 
147.0768* 

Creatinine - HMDB00562 994 Found  - Wrong 
RT 

61.18 83.4 Did not observe 
in source 

fragmentation 

4-Aminophenol - 
HMDB01169 

994 Not found 67.38 199.2 190.0166, 
110.0596 

Creatinine - HMDB00562 993 Found 61.18 67.2 Correct 
Assignment 

Creatinine - HMDB00562 993 Found - Wrong 
RT 

61.18 309.6 Did not observe 
in source 

fragmentation 
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In theory, high scoring matches to both the precursor and the fragmentation pattern should 

have been very high confident identifications; therefore, they should have also matched the 

retention times in the library. The numbers of confident matches utilizing retention time should be 

the same as that without using retention time. In order to find out why this was not the case, 25 

highest scoring matches from the searches without and with retention time information were 

closely examined. Table 5.4 shows the comparison of these high scoring matches. All of the 25 

highest scoring matches were very confident and their MS2 spectra perfectly matched the library’s 

with scores above 900. 15 out of the 25 had experimental retention times that differed from the 

library retention time by more than 18 seconds, and so they were not found in the RT result. Of the 

15 not-found, 9 had library retention times of less than 2 minutes, meaning that they were 

unretained polar compounds. However, in the experimental urine run, these metabolites were 

retained more. They eluted later but still near the gradient dead volume, around 2-5 minutes. One 

possible hypothesis is that these polar compounds were more susceptible to the matrix effect of the 

urine, causing greater retention time shift early in the gradient than later. Several previous research 

have shown biological matrix can affect retention time of columns. Another 3 out of the 15 were 

retained compounds, however their deviations were unexplained. The remaining 3 not-found 

metabolites had an interesting reason for their shifted experimental retention times: In-source 

fragmentation. 

5.3.5 In-Source Fragmentation 

After investigating the data, it was found that these 3 misidentified metabolites were 

artefacts from in-source fragmentation of larger metabolite conjugates. In a living organism, there 

are many metabolic processes that add chemical groups to small molecules to make metabolite 

conjugates, in order to change their properties. For example, addition of sulfate to cholesterol 
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increases polarity, and allows cholesterol to be excreted in the urine or feces.20 What was observed 

was that some of these conjugates are prone to cleavage during collision with gas molecules in the 

source region. Figure 5.1 shows how the in-source fragment is generated in the mass spectrometer. 

This type of conjugate in-source fragmentation generated a fragment with the exact same mass and 

MS2 spectrum as the unconjugated metabolite. This caused the conjugated metabolite to be 

misidentified, and because conjugation usually changes the chemical properties of the metabolite, 

the retention time was shifted from the unconjugated species. For this reason, high scoring exact 

mass and MS2 matches were made at retention times far away from the library retention times.  

 

Figure 5.1 Schematic of metabolite conjugates generating in-source fragmentation. The ionized 
conjugate is first accelerated through atmospheric gas molecules resulting in bond 
cleavage, indicated by the red dotted line. After breaking apart, the ionized indoleacetic 
acid fragment enters the mass spectrometer while the glucuronide is lost as a neutral. 
The resulting mass spectrum predominately shows indoleacetic acid, and not the 
conjugate. 

Due to the fragment and the metabolite being identical, it was impossible to determine when 

in-source fragmentation was occurring by examining the precursor spectrum. To find out if these 

4 misidentified metabolites were in-source fragments of larger conjugates, MS2 spectra of higher 

masses in the same precursor spectrum were inspected. In these MS2 spectra of larger precursors, 

if an exact mass corresponding to the suspicious metabolite was found, then that gives sufficient 
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evidence to putatively identify the larger mass as the conjugate that gave rise to the in-source 

fragmentation metabolite.   

The first conjugate was identified as indoleacetic acid with a fit score of 999, which 

indicated an exact match of the MS2 spectrum. Applying the procedure for conjugate identification, 

the exact mass of 176.0704 (indoleacetic acid) was found in the MS2 spectrum of 352.1029 m/z 

(Appendix Figure A5.1). The mass difference between the two precursor ions was 176.0325 m/z, 

which was determined to be glucuronidation. The theoretical mass of glucoronic indoleacetic acid 

was 1.2 ppm of the measured mass.  While glucuronidation of indoleacetic acid was not reported 

in literature to the authors’ knowledge, a drug with a similar indoleacetic acid structure was found 

to be glucuronidated for excretion by urine;21 therefore this observed conjugate was also likely to 

form in the body. It was found that the glutamine ion was generated by the in-source fragmentation 

of 265.1179 m/z, a mass increase of 118.0411 m/z. In literature, glutamine was found to conjugate 

with phenylacetic acid,22 and the theoretical mass of phenyacetyl glutamine was 1.5 ppm off the 

measured mass. The conjugation of phenylacetic acid would also explain the increase of retention 

time from less than one minute for glutamine standard to the experimental 7.5 minutes. Lastly, 4-

aminophenol was found to be an in-source fragment of 190.0166, a mass increase of 79.957, which 

was most likely due to the addition of a sulfate (mass error of 1.4 ppm). Out of 25 results, 12% 

were misidentified due to in-source fragmentation.  

In-source fragmentation has recently been recognized as prevalent source of error for 

untargeted metabolomics, where a large portion of identified metabolite features in a study might 

be artefacts generated by in-source fragments.23 In-source fragments are commonly thought of as 

extra noise that does not contribute real metabolite identification when using MS2; in this work, it 

was shown that in-source fragmentation of conjugated metabolites can produce the exact same 
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accurate mass and MS2 spectrum as the native metabolites. This phenomenon misidentified 

metabolites, which are difficult to distinguish without retention time information. Due to the 

prevalence of conjugates in biology, this problem is expected to occur often in LC-MS 

metabolomics and highlights the need for retention time libraries. 

5.3.6 Retention Time Calibration 

A requirement of retention time libraries is that it must be portable to other labs, which use 

different LC configurations. In order to ensure the reproducibility of the retention times, this library 

is to be used only with narrowly defined LC parameter, such as columns that are the same part 

number as the column used in this work, and the gradient conditions must be the same as the ones 

specified in the method section. Even with these precautions, there will be small differences in the 

instrument configuration that result in different dead volume and gradient delay. Such differences 

might still occur even if the same model of LC was used but the tubings have been changed to 

different dimensions. However, these changes are usually small, and retention time calibration can 

solve these problems.  

For this work, a pseudo retention time indexing strategy that involved calibrating the 

experimental data with the retention times of the QC standards was used—similar to GC retention 

time indexing.10 However, the aim is to correct for small retention time shifts using the exact same 

gradient conditions, rather than predicting retention time with different gradient profiles.16 The 

standards elute roughly every minute from the column, and forms a ladder of retention times. 

Retention time of this experimental QC data would then be compared to the QC data used to 

generate the library. Subsequent experimental retention times are then changed according to the 

calculated retention time differences. For the ease of calculation, retention time shifts between two 

adjacent standards are assumed to be linear. The calibrated experimental data would then be 
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compatible with the library. This method has been previously implemented in a similar manner for 

proteomic retention time correction.24 

In order to test if this method would be able to account for small volume changes in the 

flow path, the QC standard mixture and human urine were ran on the C18 column with and without 

a guard column. Retention times of several metabolites in the urine throughout the gradient were 

compared between the column configurations. By removing the guard column, the retention times 

were shifted by an average of -6.3 seconds, which reflected the reduction of dead volume. Figure 

5.3 shows that the shift was not linear throughout the entire analysis. The later eluting metabolites 

had larger retention time shifts than earlier peaks. Therefore, it would not have been possible to 

simply figure out the dead time difference and apply a linear correction to all of the data. After 

applying the retention time calibration method, the average retention time shift was greatly reduced 

to +0.25 second. This showed that after calibration, retention times of the experimental data should 

match closely with the data in the library and increase the identification confidence.  

 

Figure 5.2 Retention time shifts of selected metabolites throughout the gradient during urine 
analysis. Blue data points indicate the shift in the uncorrected data, and orange points 
indicate the shift after retention time calibration. 

The QC standard mixture and the retention time calibration algorithm would be supplied 

with the library. At the time of writing, the retention time calibration algorithm was not 
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implemented in the Bruker data processing software. Therefore, it was not possible to calibrate 

experimental data and test whether the calibration improved identification with the retention time 

library.  

5.4 Conclusion 

Following the completion of the Bruker HMDB MS2 library, work was under way to fill in 

retention time information to boost the library’s identification power. In the first part of this work 

a robust reverse phase gradient method was developed and validated. This method was applied to 

the collection of human metabolite retention time information, and the compiled library tested with 

real human urine data. Retention time information increased the confidence of the metabolite 

identifications by removing duplicates or incorrect identifications. As one of the largest retention 

time library for metabolites, this work will be a valuable resource to the metabolomic community 

around the world.  

It is clear from the findings in this study that more work is needed to address the issue of 

in-source fragmentation, which contributes toward misidentifying metabolites if retention time 

information were unavailable. For unknown metabolites not in the library, in-source fragmentation 

must be checked manually. Even with manual checking, it is sometimes impossible to determine 

if a peak is an in-source fragment or an intact metabolite, which obscures the identification process.  

Currently, data processing programs have the ability to reduce the chances of picking an 

in-source fragment as a metabolite. This is done by extracting all ions in a spectrum and plotting 

their EIC, and ions with chromatographic peaks that overlap are then considered to be all from the 

same compound. The problem with this approach is that in a complex sample with inadequate data 

acquisition rate, many chromatographic peaks from different compounds overlap perfectly. If these 
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peaks were to be grouped as one metabolite, then the detected number of metabolites would 

decrease. One way to counter this issue is to implement the manual inspection procedure described 

in this work as an algorithm to automatically identify in-source fragments. The MS2 spectrum of 

large ions are searched for the lower masses that are observed in the precursor spectrum. If a 

fragment matched an ion in the precursor spectrum, then that ion can be identified as an in-source 

fragment and grouped together with the larger parent ion. This is a more robust way of identifying 

the in-source fragments, and would lead to less sensitivity loss.  

Completing the reversed phase data was only the start of the project. Of the 792 compounds 

measured, nearly 50% were too polar to be retained on the reversed phase column. The next step 

would be to develop a generally applicable HILIC method that can separate these polar metabolites. 

With both reversed phase and HILIC data, this library would be able to coverage a large portion of 

the endogenous human metabolome.  
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Chapter 6  
 
Nanoflow LC-MS for Chemical Isotope Labeling 
Quantitative Metabolomics* 

6.1 Introduction 

The growth of metabolomics in the past decade has been directly linked to the development 

of modern analytical techniques that are able to quantitatively profile a wide range of metabolites 

in a sample. Liquid chromatography mass spectrometry (LC-MS) has become a powerful tool for 

metabolomic profiling.1,2 To increase the sensitivity of the LC-MS platform, researchers are 

continually developing more sensitive mass spectrometers, new LC techniques and improving 

ionization efficiency of metabolites. The latter can be done using chemical labeling such as isotope 

encoded chemical derivatization or chemical isotope labeling (CIL).3-10 In CIL, one isotopic form 

of a reagent is used to target a broad submetabolome (e.g., all amines and phenols when using 

dansyl chloride,4 or all carboxylic acids using DmPA5). In parallel, a reference sample of very 

similar composition but distinct from the sample which is most commonly made by pooling all 

available samples is labeled with another isotopic form of the reagent.11,12 The derivatized sample 

and reference are then mixed together and injected into LC-MS for analysis. Peak pairs detected 

from differentially labeled metabolites are used for metabolite quantification and identification. By 

using a proper labeling reagent,3-5 CIL LC-MS allows concomitant improvement in LC separation 

                                                 
* A version of this chapter has been submitted for publishing as Li, Z.; Tatlay, J.; and Li, L. “Nanoflow LC-
MS for Chemical Isotope Labeling Quantitative Metabolomics.” 
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and MS detection. Accurate relative and absolute quantification of thousands of metabolites can be 

obtained from a single experiment.12 

Further sensitivity increase in LC-MS is still highly desirable in handling samples of limited 

amounts, particularly those requiring multiple analyses. For example, in CIL LC-MS, each labeling 

reagent covers a selected submetabolome. Therefore, multiple labeling of the same sample using 

different aliquots needs to be carried out in order to increase the coverage of the overall 

metabolome. If multidimensional separation of a metabolome or submetabolome is used, the 

amount of metabolites in individual pre-fractionated aliquots for LC-MS analysis may be very 

limited,13-15 requiring a sensitive detection technique. In this regard, there exists a high sensitivity 

platform that is already widely used in proteomics,16 but less common in metabolomics: the 

nanoflow-LC MS. Only a few studies were reported using nLC-MS for metabolomic analysis.17-20 

This can be attributed to several reasons including technical challenges. In untargeted metabolomic 

profiling, four modes of LC-MS experiments using two different stationary columns (e.g., reversed 

phase (RP) and hydrophilic interaction (HILIC) columns) with each operated at positive and 

negative ion MS detection are often performed on a sample to detect both polar and nonpolar 

metabolites.21-25 In nLC-MS, it is a relatively time-consuming process to switch different capillary 

columns and then optimize their performances thereafter. In addition, injecting a large volume of 

sample to increase sample loading to nLC is a major challenge.18 nLC-MS systems used for shotgun 

proteome analysis is often equipped with a trap column to capture peptides in several microliters 

of volume prior to nLC separation. However, high efficiency trapping of all metabolites with wide 

variations in chemical and physical properties is very difficult in metabolome analysis.  

CIL metabolomic profiling can overcome these technical challenges, because chemical 

labeling increases hydrophobicity and allows polar metabolites to retain on RP columns.4,5 Both 
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RP trap column and analytical column can be used. There is no need to switch columns to handle 

different classes of metabolites. CIL also reduces the impact of larger retention time shifting in 

nLC than conventional LC, because quantification is not reliant on accurate chromatographic 

alignment between different samples and each metabolite is quantified with its own isotopic 

counterpart as a peak pair in a mass spectrum.11,12  

In this work, we report a workflow based on nLC-MS for routine analysis of chemical 

isotope labeled metabolomic samples and describe its performance, particularly in comparison with 

microbore LC-MS (mLC-MS) commonly used in metabolomics. Dansylation labeling was used 

for analyzing metabolite standards and the amine/phenol submetabolome of human urine and sweat 

to demonstrate the improvement of detection sensitivity and metabolome coverage by using nLC-

MS.  

6.2 Experimental Section 

6.2.1 Chemicals and Reagents 

All chemicals and reagents were purchased from Sigma-Aldrich Canada (Markham, ON, 

Canada) except those otherwise noted. The synthesis of 13C2-dansyl chloride has been reported 

(reference 4). LC-MS grade water and acetonitrile were purchased from Thermo Fisher Scientific 

(Edmonton, AB, Canada).  

6.2.2 Dansyl Labeling 

The labeling protocol has been reported (reference 4). Briefly, 25 μL of sample was diluted 

with 25 μL of water and 25 μL of sodium bicarbonate buffer (250 mM) was added, and the solution 

vortexed. 75 μL of 13 mg/mL 12C2 or 13C2-dansyl chloride was added and vortexed. Sample was 

incubated for 40 minutes at 45°C and then quenched with 10 μL of 250 mM sodium hydroxide. 
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Sample was heated for 10 minutes at 45°C for complete quenching. Finally, the sample was 

acidified with 50 μL of 425 mM formic acid. 

6.2.3 LC-UV Quantification 

The method for LC-UV quantification of total labeled metabolites was reported previously 

(reference 23). Briefly, a dansyl labeled sample was injected into Waters LC-UV instrument with 

a reversed phased column, and eluted with a step gradient. The peak area of the UV absorbance at 

338 nm was used to quantify the total labeled metabolites in the sample. 

6.2.4 nLC-MS 

All nLC-MS experiments were performed on a Waters nanoACQUITY UPLC (Milford, 

MA, USA) connected to a Waters Q-TOF Premier quadrupole time-of-flight (QTOF) mass 

spectrometer (Milford, MA, USA) equipped with a nano-ESI source. Mass spectrometer settings 

were: capillary voltage 3.5 kV, sampling cone 30 V, extraction cone 3.0 V, source temperature 

110°C, and collision gas 0.45 mL/min. A 5 μm I.D. PicoTip by New Objective (Woburn, MA, 

USA) was used with the nano-ESI source. Chromatographic separations were performed on an 

Acclaim PepMap RSLC C18 (75 μm x 150 mm, 2 μm) and Acclaim PepMap 100 trap column (75 

μm x 20 mm, 3 μm). A Waters nanoAcquity C18 (75 μm x 200 mm, 1.7 μm) column and 

nanoAcquity Atlantis trap column (180 μm x 20 mm, 5.0 μm) was also evaluated. Mobile phase A 

was 0.1 % LC-MS formic acid in LC-MS water and mobile phase B was 0.1 % LC-MS formic acid 

in LC-MS acetonitrile. The 45 minute gradient conditions were; 0 min (15% B), 0-2.0 min (15% 

B), 2.0-4.0 min (15-25% B), 4.0-24 min (25-60% B), 24-28 min (60-90% B), and 28-45 min (90% 

B). A wash and equilibration injection was run between samples; the gradient was: 0-10 min (90% 

B), 10-25 min (15% B). The flow rate was 350 nL/min and the injection volume was 5 μL (the 



136 
 

maximum volume of the sample loop used) in most cases except that of studying the trapping 

efficiency.  

6.2.5 LC-MS  

All LC-MS experiments were performed on an Agilent 1100 Series Binary LC System 

(Santa Clara, CA, USA) connected to the same Q-TOF Premier mass spectrometer used in the 

nLC-MS experiment, with the nESI source swapped out for an ESI source. Mass spectrometer 

settings were: capillary voltage 3.5 kV, sampling cone 30, extraction cone 3.0, source temperature 

110°C, desolvation temperature 220°C, desolvation gas 800 L/hr, and collision gas 0.45 mL/min. 

Chromatographic separations were performed on a Waters Acquity BEH C18 column (2.1 mm x 

100 mm, 1.7 μm) with the same mobile phases as the nano-LC. The 45 minute gradient conditions 

were; 0 mins (20% B), 0-3.5 min (20-35% B), 3.5-18 min (35-65% B), 18-24 min (65-99% B), 24-

37 min (99% B), and 37.1-45 min (20% B). The flow rate was 180 μL/min.  

6.2.6  nLC-MS Trapping Efficiency 

A mixture of amino acids at a concentration of 1 mM each was dansylated4 (see 

Supplemental Note N1). 12C2 and 13C2-dansyl labeled amino acids were mixed 1:1 by volume and 

diluted to 1000, 2000, 4000, 6000, 8000, and 10000 fold using serial dilution. Injection volume 

was varied for each diluted sample to ensure 120 fmol of dansylated amino acids are loaded onto 

the column for each injection. Data was de-noised, smoothed, centered and peak areas extracted 

using Waters QuanLynx software. 

6.2.7 Dynamic Range of Peak Pair Detection 

12C2-dansylated amino acids were diluted by half and mixed with undiluted 13C2-dansylated 

amino acids in a 1:1 volume ratio. The theoretical peak ratio of 12C2- to 13C2-labeled amino acid 
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should be 1:2. The sample was then diluted using serial dilution and increasing sample amounts 

were injected into the nLC-MS and mLC-MS. Ratios were calculated by dividing the 12C2-labeled 

amino acid peak area by the 13C2-labeled amino acid peak area. 

6.2.8 Urine and Sweat Analysis 

A human urine sample was split into two vials; one was 12C2-dansyl labeled and the other 

was 13C2-dansyl labeled. The 12C2-dansyl urine was quantified to be 48.2 mM using the LC-UV 

method26 (see Supplemental Note N1). The 12C2-dansyl urine and 13C2-dansyl urine were mixed 

1:1 by volume then diluted using serial dilution. These diluted samples were injected at increasing 

concentrations into the nLC-MS and LC-MS. Peak pairs were then extracted from the processed 

data using IsoMS.11 

A human sweat sample was treated the same way as the urine sample. The concentration of 

the sweat was determined to be 8.4 mM using the LC-UV method. The 12C2-dansyl sweat and 13C2-

dansyl sweat were mixed 1:1 (v/v) for injection into nLC-MS and mLC-MS for analysis.  

6.3 Results and Discussion 

6.3.1 Column Selection 

We recognize that some users may re-purpose an existing nLC-MS system used for shotgun 

proteomic analysis to analyze metabolomic samples for metabolomics. Various factors need to be 

considered to make such a switch including column selection. We initially used a set of Waters 

trap column and analytical column used for proteomic analysis to analyze the dansyl labeled urine 

samples. The resulting chromatogram showed wide peak widths of around 0.8 min with tailing (an 

example is shown in Appendix Figure A6.1A), compared to widths of ~0.06 min for peptides. This 

problem was found to be caused by the Waters Symmetry C18 trap which uses high purity silica 
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with end capping. Peak broadening was not observed when the sample was directly loaded onto 

the analytical column which uses a polymeric bonded phase. It is very likely that a substantial 

amount of residual silanol activity existed in the trap column that caused broadening for the basic 

dansylated metabolites but not the peptides. We then switched the trap and column set to the 

Thermo Scientific PepMap 100 C18 set which also used high purity silica. However, the PepMap 

100 set was found to give adequate peak widths of 0.2 minutes with reduced tailing (see Appendix 

Figure A6.1B). This set was thus selected for the subsequent experiments. This example illustrates 

the importance of selecting a proper column and trap combination for profiling labeled metabolites. 

6.3.2 Separation Parameters 

Several nLC parameters were optimized to achieve an optimal coverage of the 

amine/phenol submetabolome profile within the shortest run time. First, analytical flow rates of 

500, 350, 150 nL/min were tested. With the three different flow rates, we found no significant 

differences in the number of peak pairs or metabolites detected. However, while using 500 nL/min 

gave the shortest run time, it increased backpressure, resulting in popping the fused-silica 

capillaries out of their fittings. At the lowest flow rate of 150 nL/min, the analysis time was 

increased by 10 min. Thus the flow rate of 350 nL/min was chosen as a compromise for the work.   

Next we optimized the gradient separation condition. It was found that the majority of the 

labeled metabolites eluted between 15% and 60% mobile phase B (acetonitrile 0.1% formic acid). 

Thus, a shallow gradient from 25% to 60% over 20 min was used to improve separation.  

The solvent composition of the diluent used to prepare the dansylated samples was also 

optimized. Initially, the samples were diluted using the same solvent composition as that used for 

the dansylation labeling reaction, i.e., 1:1 acetonitrile:water (v/v) 0.1% formic acid, to prevent any 
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potential precipitation of highly non-polar dansylated metabolites. This sample plug with a high 

organic composition greatly reduced the retention of metabolites on the trap column, causing 

metabolites to be flushed out of the trap column and into the waste. As a result, a portion of early 

eluting peaks were reduced in intensity (see Appendix Figure A6.2A). After testing a number of 

different diluents, a diluent composed of 1:9 acetonitrile:water (v/v) 0.1% formic acid was found 

to give no sample loss or precipitation for the urine samples studied (see Appendix Figure A6.2B).  

6.3.3 Trapping Optimization and Efficiency 

 

Figure 6.1 nLC-MS chromatograms of a mixture of 18 dansylated amino acids obtained (A) 
without using a trap column and (B) with the use of a trap column. The peak at 23.63 
min was from dansyl-OH, a product of dansyl reagent after quenching with NaOH. 
This product did not retain on the RP trap column and thus did not show up in (B). 

A trapping column is an integral part of nLC-MS for injecting a relatively large volume of 

samples. It is not commonly used in mLC-MS, as injection of several microliters of sample is 

compatible with the high flow rate. In nLC-MS, prior to separating on the analytical column, the 

sample is first pushed through a short trap column, usually at a higher flow rate compared to the 

analytical flow rate. Analytes are retained on the trap while extra diluent and other non-retaining 

matrix components are flushed into the waste. This serves two functions: the first is to remove salts 
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and other interfering chemicals and the second is to reduce the time it takes for samples to reach 

the column. As a result, a large volume of sample can be loaded onto the column in a short time. 

Figure 6.1 shows the chromatograms of the separation of a mixture of dansylated amino acids using 

a 5 μL injection loop at a flow rate of 350 nL/min. Without the use of the trap column, there was a 

dead time of 16.67 min and the first retained analyte eluted in 23.63 min (see Figure 6.1A). With 

the trap column, at a trapping flow rate of 7.0 μL/min, the dead time of the sample loop was reduced 

to 0.71 min leaving only the dead time of the gradient delay which was 7.10 min (see Figure 6.1B). 

Overall, there was a reduction of 16.53 min in run time when the trap was used. Therefore, analyte 

trapping is essential for reducing the dead time of nLC-MS operating at nanoliter flow rates. 

In using the trap, the goal is to have metabolites completely retained on the trap while 

mobile phase is pushed through at the highest flow rate possible to wash out salts and other non-

analytes. The concern is that with higher flow rate there will be more metabolites that are flushed 

into the waste. Therefore, the trapping flow rate, trapping mobile phase composition and trapping 

time need to be carefully balanced. Several trapping flow rates ranging from 1 μL/min to 20 μL/min 

was tested; 20 μL/min was the highest flow rate possible without over pressuring the trap column. 

By increasing the trap flow rate, the number of peak pairs detected was reduced due to sample loss. 

Decreasing the flow rate caused a longer dead time and longer overall run time with no significant 

increase in peak pair number. The optimal flow rate was found to be 7 μL/min which was the 

highest flow rate without substantial sample loss. The trapping mobile phase composition was 

optimized to be 2% acetonitrile in water. Increasing the organic composition washed away the 

sample. Finally, the shortest trapping time to wash the entire sample out of the 5 μL sample loop 

and onto the trap, in addition to washing out salts, was set at 1 min. 
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While trapping can increase the detection sensitivity by allowing for the injection of a large 

volume of dilute sample, there is a greater chance that the analytes might be washed out with larger 

loading volume. After optimizing the trapping conditions, we investigated the trapping efficiency 

by injecting a series of diluted dansylated amino acid mixtures where the injection amount was 

kept constant at 120 fmol by adjusting the injection volume and concentration. No substantial 

sample loss was observed from 1000 to 10000 fold diluted samples when looking at the measured 

peak area for selected dansylated amino acids as shown in Figure 6.2. This shows that the nLC-MS 

trapping condition used was efficient at trapping low-concentration and high-injection-volume 

dansylated samples without affecting chromatographic separation or incurring large amounts of 

sample loss. 

 

Figure 6.2 Chromatographic peak areas of dansylated amino acids with the same sample injection 
amount (120 fmol). 

6.3.4 Chromatographic Reproducibility 

In untargeted metabolomic studies, reproducible retention time is required for data file 

alignment to generate accurate abundance information across hundreds of samples that are run on 

different days or even different weeks. Appendix Table A6.1 shows the intraday retention time 
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reproducibility of dansylated amino acids measured using the nLC and mLC. The average relative 

standard deviation (%RSD) of the nLC retention times was 0.48%, which was worse than 

the %RSD of the mLC at 0.06%. This confirms reports by other groups that nLC retention time is 

not as stable as mLC.27 The lower retention time reproducibility may be due to the reduced quality 

in stationary phase packing in preparing the nLC columns and a larger flow rate variation with nLC 

pumps vs. mLC pumps. Retention time stability has a negative effect on the quantification of 

unlabeled metabolites between different samples and several peak alignment methods have been 

reported to reduce the effect.28 However, with CIL, each 12C2 dansylated metabolite in a sample is 

quantified relative to the 13C2 dansylated metabolite in a control and thus precise alignment is not 

required for relative quantification.  

In addition to retention time, the intensity of the metabolites needs to be stable between 

sample runs for accurate quantification. Appendix Table A6.2 shows the intensity %RSDs of the 

dansylated amino acids. The average %RSD of nLC intensities was found to be similar to that of 

mLC (3.6% vs. 3.3%). Thus, the quantitative precision of the two systems is similar. 

6.3.5 Sensitivity Improvement 

 

Figure 6.3 (A) Chromatographic peak area as a function of sample solution concentration for 
dansyl alanine analysis. Error bar represents one standard deviation (n=3). (B) 
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Molecular ion region of the mass spectrum obtained from 1:2 mixture of 12C-dansyl 
alanine and 13C-dansyl alanine at 5 nM with an injection of 5 µL solution (i.e., 25 fmol). 
The extra peak next to the 12C-dansyl alanine was from a background species. 

Figure 6.3A shows the plots of peak areas as a function of sample injection amount for 

nLC- and mLC-MS using dansyl alanine as an example. Signal saturation was observed for nLC-

MS when the analyte concentration was over 48 µM, corresponding to 240 pmol with 5 µL 

injection. In contrast, even at 238 µM, the peak area obtained by mLC-MS was not very high. In 

fact, it was slightly lower than that obtained using the solution of 0.5 µM in nLC-MS. This result 

demonstrates a more than 476-fold increase in detection sensitivity. At the low limit, as Figure 

6.3B shows, mass spectral signals were still detectable at S/N 25 with the injection of the 0.005 

µM or 5 nM solution, corresponding to 0.025 pmol or 25 fmol amount. For other labeled amino 

acids tested (see Figure 4 and Appendix Figure A6.3), injections of 5 nM of dansylated glycine, 

glutamic acid, asparagine, phenylalanine, leucine and tryptophan gave signals with S/N 130, 120, 

11, 30, 150 and 7, respectively. These results illustrate that with a 5-µL loop injection we can now 

analyze metabolites at <5 nM concentrations with an analyte amount of <25 fmol. 

6.3.6 Dynamic Range for Relative Quantification 

Quantitative metabolomics relies on relative quantification of all the metabolites in 

comparative samples, not just one or a few metabolites. In CIL LC-MS, relative quantification of 

each metabolite is achieved by calculating the peak ratio of the 12C-labeled metabolite in a sample 

and the 13C-labeled same metabolite in a control. It is always desirable to detect as many peak pairs 

as possible in a mass spectrum to quantify the low and high abundance metabolites. However, if a 

peak pair becomes saturated in a mass spectrum, the highest peak in the pair will become 

compressed, distorting the measured peak ratio. In our work, the dynamic range for detecting peak 

pairs was evaluated by analyzing a series of diluted solutions of a 1:2 mixture of a 12C-labeled 
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amino acid and its 13C-labeled counterpart for several amino acids. The theoretical peak intensity 

ratio should be 0.5. However, the 13C-labeled peak should be saturated first when the concentration 

of the mixture increases. Thus, the measured peak ratio will be greater than 0.5 when the 13C-peak 

is saturated.   

 

Figure 6.4 Effect of detector saturation on the calculated peak pair ratio in mLC-MS and nLC-MS. 
Derivation from the expected 1:2 ratio is plotted as a function of the solution 
concentration of 1:2 mixture of 12C-dansyl amino acid and 13C-dansyl amino acid. 

Figure 6.4 shows the deviation of the peak ratios of glutamic acid and glycine at different 

mixture concentrations. Both mLC-MS and nLC-MS showed deviations from the theoretical ratio 

of 0.5 when the sample concentration increased, showing the effect of detector saturation on the 

quantification of metabolites. The trends were similar with the other dansyl amino acids (see 



145 
 

Appendix Figure S6.3). The mLC-MS dansyl peak ratios for glycine and glutamic acid deviated 

more than 20% at concentrations of > 5 µM, and below 0.5 µM the amino acids were not observed. 

This means that an accurate peak ratio can only be obtained within 1 order of magnitude in 

concentration for this mLC-MS setup. The nLC-MS deviated above 20% at 0.5 µM for glycine and 

0.1 µM for glutamic acid. The higher sensitivity allowed the lower end concentration to be reduced 

down to 0.005 µM, giving a concentration range increase of 2 and 1.3 folds for glycine and glutamic 

acid, respectively. 

To extend the dynamic range when the peaks become saturated, the natural-13C peaks can 

be used to recover the accurate peak ratio because they are of lower intensity and still reflect the 

sample ratios.29 Figure 6.4 shows that the natural-13C peak ratios were more resistant to deviation 

caused by detector saturation. In mLC-MS, the natural-13C peak ratios of glycine deviated above 

20% for glycine and glutamic acid at 24 µM, instead of 5 µM, when measuring dansyl peak ratios. 

The nLC-MS deviated past 20% at 2 µM for both amino acids which was between 4 and 20 times 

higher concentration than using the dansyl peak ratio. Combining the concentrations that deviated 

less than 20% using both dansyl and natural-13C peak ratios, the nLC-MS had a range of 2.6 orders 

of magnitude, while mLC-MS had 1.7, for both amino acids.  

The above results demonstrate that nLC-MS offers a greater dynamic range for detecting 

peak pairs with accurate quantification, compared to mLC-MS. If we relax the deviation to ~30%, 

instead of 20%, the quantitative dynamic range becomes 476-fold (i.e., 0.5 to 238 µM) for mLC-

MS and 47600-fold (i.e., 0.005 to 238 µM) for nLC-MS for a 1:2 mixture of 12C-/13C-dansyl glycine 

or 12C-/13C-dansyl glutamic acid. 
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6.3.7 Urine Submetabolome Profiling 

Dansylated human urine was used for the direct comparison of metabolomic analysis 

sensitivity between nLC-MS and mLC-MS. A urine sample was split and labeled with 12C- and 

13C-dansyl chloride, followed by mixing together in a 1:1 ratio. The total concentration of all 

dansylated metabolites in urine was quantified to be 48.2 mM. The 12C-/13C-labeled urine mixture 

was diluted up to 10000-fold and injected in triplicate in decreasing metabolite amounts. 

 

Figure 6.5 Number of peak pairs detected as a function of the sample injection amount from mLC-
MS and nLC-MS analysis of 12C-/13C-labeled human urine sample. 

Figure 6.5 shows that the maximum number of detected metabolites in urine using nLC-

MS was 4524±37 (n=3) at 26.076 nmol of metabolites injected, while mLC-MS gave a maximum 

number of 4019±40 at 52.151 nmol injection. Thus, nLC-MS detected about 13% more metabolites 

than mLC-MS, likely due to improved dynamic range of detecting peak pairs. At the optimal 

injection amount for nLC-MS of 26.076 nmol, mLC-MS detected only 67% of the metabolites (i.e., 
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3034±161). This means that the optimal injection amount for nLC-MS was 2 times lower than 

using mLC-MS. The improved sensitivity of nLC-MS was more apparent at lower sample loading 

amounts; below 0.522 nmol loading, nLC-MS detected at least 8 times more metabolites than mLC-

MS. It is clear that if sample amount is not limited, mLC-MS can still be used for metabolomic 

profiling without incurring too large drop in the number of metabolites detected. However, as 

Figure 6.5 shows, sample dilution has a much greater effect on mLC-MS than nLC-MS. For 

example, injecting 2.6 nmol detected less than 1/3 of the peak pairs found in the 26 nmol injection 

by mLC-MS, while injecting 0.26 nmol in nLC-MS detected more than half of the peak pairs found 

in the 2.6 nmol injection. Thus, nLC-MS would have a clear advantage in handling samples of 

limited amounts or diluted samples.    

6.3.8 Sweat Submetabolome Profiling  

 

Figure 6.6 Number of peak pairs detected as a function of the sample injection amount from mLC-
MS and nLC-MS analysis of 12C-/13C-labeled human sweat sample. 
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The advantage of nLC-MS for analyzing a limited amount of sample can be demonstrated 

in profiling the human sweat metabolome. Typically, only several microliters of sweat can be 

collected from a subject without needing a prolonged collection and using a very large collection 

area. For this study, about 10 µL of human sweat was collected after exercise from an arm of a 

healthy individual. The total concentration of the dansyl labeled metabolites in the sweat was 

determined to be 8.4 mM using LC-UV, which was 6 times lower than the total concentration of 

metabolites in urine. For sweat analysis, the lower total concentration and the lower volume require 

the extra sensitivity offered by the nLC-MS. Figure 6.6 shows that at the maximum injection 

amount of 5 nmol of dansylated sweat, 3908±62 peak pairs were detected for nLC-MS and 1064±6 

peak pairs were detected for mLC-MS, or a 4-fold increase in the number of metabolites detected. 

Due to the limited amount of sample, it was not possible to inject an optimal amount for mLC-MS 

like with the urine sample. The higher sensitivity was again observed at lower sample loading 

amounts of 1 nmol where nLC-MS has 11-fold higher peak pair values of 3098±16 compared to 

275±78 from mLC-MS. We envisage the use of nLC-MS for analyzing many types of metabolomic 

samples where the sample amount is limited, such as a microliter of sweat collected naturally, a 

droplet of blood from a finger prick, etc.   

6.3.9 Robustness 

For routine metabolomic analysis, an analytical tool needs to be robust in dealing with a 

large number of samples. Due to the small inner diameter of fused-silica capillaries, columns, and 

nESI emitters used in nLC-MS, the entire system is more finicky to maintain, compared to mLC-

MS. Firstly, all of the fused-silica components are much more fragile than the polymer and stainless 

steel components used in mLC-MS and must be handled with care. The small internal diameter 

also means that the capillaries are more prone to clogging from particles in the samples and silica 
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particles from poorly cut and ragged tubing edges. The small nESI emitters are more prone to 

clogging from sample matrix precipitation and silica particles from the fused-silica, and 

backpressure must be regularly monitored for clogging.  

There are a few precautions that can be taken to reduce the frequency of catastrophic 

clogging of nLC-MS. In our laboratory, a typical capillary internal diameter of 20 μm and outer 

diameter of 360 μm was found to be the optimal balance between robustness and chromatographic 

performance by reducing dead volume. For cutting fused-silica capillaries to the necessary lengths, 

a rotating diamond cutter is expensive but highly recommended for its ability to reproducibly give 

clean cuts that are free of capillary clogging particles. Following cutting, new fused-silica columns 

and capillaries must be flushed and their ends washed with clean solvent to remove any particles. 

Although the nLC-MS platform can be less robust than mLC-MS platform, by following these 

precautions and being careful, the system can be operated for months with little downtime. Recent 

advancements in nLC technology, such as the use of an integrated microfluidic column or capillary 

cartridge that can be conveniently connected to an MS interface,30 are expected to make nLC-MS 

more robust for routine metabolomic analysis.  

6.4 Conclusions 

We report a nanoflow LC-MS system combined with chemical isotope labeling of 

metabolites for metabolomic profiling with high coverage. A reversed phase trap column is used 

to capture the labeled metabolites at a flow rate of 7 μL/min, followed by separation on a capillary 

RPLC column at a flow rate of 350 nL/min. The sample injection volume is typically at 5 µL, 

allowing the analysis of a diluted sample solution. Dansylation CIL was demonstrated for sensitive 

profiling of the amine/phenol submetabolome in human urine and sweat; however, the technique 

should be applicable to other labeling chemistries where labeled metabolites can be retained on 
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RPLC. Because the configuration of the nLC-MS system described herein is similar to those widely 

used for shotgun proteome analysis, this metabolomic profiling platform should be readily adapted.  
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Chapter 7  
 
Conclusion and Future Work 

7.1 Thesis Summary 

The use of LC-MS in the field of biology, and analytical chemistry, has started a new era 

of protein and metabolite analysis. The ease-of-use and the sheer number of proteins and 

metabolites that can be analyzed on this platform is unrivaled by any other technique. Continued 

fundamental research and method development in the field is needed in order to produce reliable 

and impactful results.  

Chapter 1 outlined the fields of proteomics and metabolomics, and highlighted the 

instrumentation used in these fields. The chapter introduced areas that require further development 

and are of interest to the research community as a whole. These areas include metabolite 

quantification, sensitivity, peptide spectrum matching accuracy, and reference spectra for 

identification. The focus of the thesis was to improve these areas, so more metabolites and peptides 

can be accurately quantified. 

The thesis began with a projected aimed at improving the sensitivity and accuracy of 

peptide identification for proteomic database search engines. In Chapter 2, the Percolator machine 

learning algorithm was coupled with X!Tandem, a popular open-source search engine. An 

experimentally validated dataset was used to find the best combination of scores and other 

matching statistics as features to distinguish between true positives from false positives. After 

demonstrating that the list of features was optimized, E. coli and human LC-MS proteomic data 

were fed through the X!Tandem Percolator algorithm to show real sample performance. The final 
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number of correct PSMs for X!Tandem Percolator was higher than the original X!Tandem and as 

high as the commercially available Mascot Percolator. The use of X!Tandem Percolator improved 

the sensitivity of peptide identification, and it was an easy to implement software available to the 

general proteomic community. 

Chapter 3 showed that by pushing chemical vapours into the source region of nESI source 

can improve the sensitivity of peptide and small molecule detection. A variety of volatile 

compounds were screened for the largest sensitivity increase for two standard peptides, and it was 

found that benzyl alcohol gave the best performance and was non-toxic. This technique increased 

the number of unique peptides identified in the acid hydrolysate of α-casein increased by 45%; the 

number of peptides and proteins identified in a tryptic digest of E. coli cell lysate by 13% and 14%, 

respectively. The average PSM scores were also increased for both sample types. Again, this 

project showed another easy-to-implement method of improving protein detection for LC-MS 

proteomics. 

Chapters 4-6 marks a shift from proteomics to metabolomics research, another area that is 

dominated by LC-MS. Chapters 4 and 5 improved the way that unknowns are identified in 

metabolomics studies, and Chapter 6 improved the sensitivity of metabolites in CIL metabolomics. 

In Chapter 4, a high resolution QTOF instrument was used to create a new generation of 

MS2 spectral library using HMDB standards. The completed library was used to demonstrate the 

identification of biologically relevant apple juice metabolites from urine.  

Beyond the use of the library in identification, several crucial observations were made to 

improve future metabolomics studies. By observing the ionization behavior of all the standards, it 

was found that negative mode MS2 was not as useful as positive mode for identification due to low 
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fragmentation efficiency. Sodiated adducts were also commonly observed, and their levels were 

not easily controlled.  

Chapter 5 expanded on the work completed in Chapter 4, by acquiring RT information on 

RP-LC columns. It was found that in-source fragmentation occurred in metabolomics studies, and 

was a source of error; because an in-source fragment of a metabolite conjugate can be misidentified 

as the unconjugated metabolite. The additional RT information was shown to help correct this type 

of misidentification. 

Retention time shifts, due to instrumental or environmental effects when the same column 

and elution conditions are used, hinders the usefulness of the RT library. The measured retention 

times in the library can no longer be matched with the retention times measured for the experiment. 

A RT calibration scheme developed in our lab was used to demonstrate that small non-linear shifts 

in retention time could be corrected by a calibration mixture and a computer algorithm. After 

simulating a change in LC tubing, the average shift before calibration was found to be 6.3 seconds; 

after the calibration process, the average shift was found to be 0.3 seconds. After implementing 

with the RT library it should be able to improve RT matching accuracy by accounting for small 

shifts in retention time.  

Lastly, Chapter 6 described the optimization and implementation of nLC-MS in CIL 

metabolomics. The use of the more sensitivity technique detected 1000% more metabolites when 

the sample concentration was low, and 106% more metabolites when injecting the maximum 

amount of low-volume sweat, when compared with the traditional LC-MS methods.  
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7.2 Future Work 

Peptide identification using LC-MS is a field of ongoing software developments, and there 

are new versions of database search engines coming out continuously. One of the future work 

required for the X!Tandem Percolator project is to update the program code, so that the software 

is kept up-to-date with the latest versions of X!Tandem.  

As high resolution data is becoming more wide spread in the proteomic community, the 

features—those selected for the best discrimination between true and false positives—might need 

to be re-optimized for the new data. 

For the chemical vapour study, it and other research has pointed to a more nuanced process 

in the ESI mechanism. While the process of ion ejecting from ESI droplets are now well understood, 

there is still a gap of knowledge of what happens after ions are ejected and before entering the mass 

spectrometer. And, it is at this critical step that the vapours might be causing the increases in ion 

intensity. Further mechanistic studies are needed to fully understand this step. 

To make this vapour enhancement method widely available, a vapour introduction device 

needs to be devised for the variety of sources on mass spectrometers. This way, users in different 

labs with different instruments can take advantage of the higher sensitivity. 

Since MS2 spectral libraries are still the primary method for metabolite identification, the 

immediate future work is to expand the HMDB library with new compounds as soon as they are 

available. Long-term goal of metabolite identification would be to abandon the time consuming 

and costly library building process, and predict small molecule fragmentation to a level in which 

spectra can be identified with high confidence. This has been a long-term goal for mass 
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spectrometrists, and new work has improved on the topic; however, that stage is not likely to be 

reached for some time.  

Much like the MS2 spectral library, new standards are needed to expand the HMDB RT 

library so it will be even more useful. Again, this is a time consuming and costly endeavour and 

some sort of computer prediction of RT would be ideal. However, the likelihood of being able to 

accurate predict retention times on the variety of columns available to researchers, is even more 

unlikely than creating an accurate fragmentation prediction software.  

In the short term, the RT library need to be bolstered with additional HILIC RT information. 

The 50% of metabolites that were studied in Chapter 5 did not retain on the reversed phase column, 

and HILIC would be the perfect separation method to analyze these compounds.  

The RT normalization algorithm that was demonstrated in Chapter 5 was not implemented 

in the library searching program at the time of writing. Without the algorithm, small changes in the 

LC plumbing will have a large effect on the retention time. Currently, users are limited to using the 

exact same plumbing as the LC used to generate the RT; having the normalization algorithm would 

make the library more useful and flexible. 

Lastly, the nLC CIL analysis showed great promise of using metabolomics with the small 

nanoflow columns. Major drawbacks of current generation nLC are the practical issues. The 

columns and nESI sources are all small diameter that gets blocked very easily. Constructed from 

fused silica, anytime fluidic connections were made there is a likely chance of dislodging a piece 

of silica from the tubing that will plug the nESI source. The future development for nLC, to combat 

improve practicality, is to use integrated microfluidic chips. On these chips, the trap, column, and 

nESI emitter are all integrated and no manual fluidic connections need to be made. This reduces 
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clogging and reduces the time needed for connecting columns. Such devices are already available 

from Waters and New Objective, but they have not seen wide spread use in the community. The 

future work would be to test and optimize these new products for routine CIL metabolomics 

analysis. To further enhance sensitivity, the combination of the vapour enhancement with benzyl 

alcohol and nLC is worth investigating for CIL metabolomics.  

The promise of both metabolomics and proteomics are endless in the field of medicine and 

biology. With these technologies, we might be able to discover the mechanism of diseases and 

improve treatments or diagnosis. It is hoped that the work described in this thesis can play a part 

bringing that future to reality, and further the field.  
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Appendix 

Chapter 5 Construction of a Metabolite Retention Time Library  

 

Figure A5.1 In-source fragmentation of indoleacetic acid conjugate, and its fragmentation spectra. 
In the MS2 spectrum of the indoleacetic acid conjugate, the exact mass of indoleacetic 
acid can be seen. This is evidence that the 176 m/z, seen in the precursor scan, is an 
in-source fragmentation of the conjugate. 
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Chapter 6 Nanoflow LC-MS for Chemical Isotope Labeling Quantitative Metabolomics 

 

Figure A6.1 Chromatographic peaks of a dansyl analyte in labeled urine obtained by using (A) 
Waters nanoACQUITY column and (B) Thermo Acclaim PepMap column. 
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Figure A6.2 TIC comparison of (A) 1:1 ACN:H2O diluent  and (B) 1:9 ACN:H2O diluent. Large 
portion of the early eluting peaks are reduced in intensity when using the 1:1 
ACN:H2O diluent. 
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Figure A6.3  Effect of detector saturation on the calculated peak pair ratio in mLC-MS and nLC-
MS. Derivation from the expected 1:2 ratio is plotted as a function of the solution 
concentration of 1:2 mixture of 12C-dansyl amino acid and 13C-dansyl amino acid. 
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Table A6.1 List of relative standard deviations of retention times of dansylated amino acids 
measured by nLC-MS and mLC-MS (n=3). 

 
nLC mLC 

RSD (%) σ (s) RSD (%) σ (s) 

Asparagine 1.07% 7.30 0.00% 0.00 

Glutamic Acid 0.84% 6.61 0.18% 0.69 

Glycine 0.40% 3.52 0.00% 0.00 

Alanine 0.65% 6.26 0.00% 0.00 

Proline 0.34% 3.99 0.10% 0.69 

Tryptophan 0.21% 2.71 0.09% 0.69 

Phenylalanine 0.16% 2.16 0.00% 0.00 

Leucine 0.13% 1.83 0.11% 0.92 

 

 

Table A6.2 List of relative standard deviations of peak areas of dansylated amino acids measured 
by nLC-MS and mLC-MS (n=3). 

 
nLC mLC 

Average 
Area SD RSD Average 

Area SD RSD 

Asparagine 2238.0 153.5 6.9% 49.3 1.3 2.7% 

Glutamic Acid 6353.0 98.6 1.6% 121.7 1.4 1.2% 

Glycine 6553.0 138.4 2.1% 173.8 9.4 5.4% 

Alanine 5684.3 129.8 2.3% 126.7 5.6 4.4% 

Proline 5553.6 166.8 3.0% 156.2 1.4 0.9% 

Tryptophan 3560.9 99.6 2.8% 49.8 0.7 1.4% 

Phenylalanine 4483.3 268.8 6.0% 124.0 3.3 2.7% 

Leucine 5514.4 209.5 3.8% 184.0 14.4 7.8% 

Average 4992.6 158.1 3.5% 123.2 4.7 3.3% 
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