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ABSTRACT 

The published and unpublished data in this thesis address a crucial gap in the 

utilization of comprehensive automated methods for diagnosing periodontitis. This 

research focuses on the development of a clinical decision support system (CDSS) for 

analyzing text and image data to diagnose periodontitis, aiming to enhance accuracy and 

efficiency in periodontitis stage and grade classification. 

Periodontitis, a complex inflammatory disease affecting dental supporting tissues, 

poses significant risks to oral and systemic health, including tooth loss and associations 

with conditions like diabetes and coronary artery disease. Early detection is crucial to 

mitigate its impact and avoid invasive treatments. My thesis aims to predict periodontal 

disease stage and grade by integrating novel methods for measuring bone loss (BL) with 

natural language processing (NLP) analysis of patients' chart data.  

In Chapter 2, utilizing Bidirectional Encoder Representations from Transformers 

(BERT), an automated methodology was developed to extract critical information from 

textual clinical notes for the classification of periodontitis stages and grades. This process 

involved fine-tuning the BERT model on a dataset of 309 clinical notes, which 

encompassed a diverse range of unstructured and narrative texts containing patient 

histories, medical and dental histories, possible treatment plans, and diagnostic 

observations. 

Through meticulous pre-processing, including tokenization and normalization, the 

clinical notes were adequately prepared for the BERT model. The fine-tuned BERT model 

demonstrated a remarkable ability to accurately identify and classify periodontitis stages 

and grades based on the extracted information. The evaluation of the model's performance 
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indicated high accuracy, showcasing its potential to streamline the diagnostic process by 

providing precise classifications from unstructured clinical notes.  

In Chapter 3, advanced deep learning (DL) models were utilized to analyze 

periapical (PA) radiographs, automating the process of BL segmentation and quantifying 

BL percentage relative to root length for predicting the stage and grade of periodontal 

disease. This approach involved the integration of U-Net and YOLO-V9 models to address 

specific aspects of the diagnostic process. 

The U-Net model was trained to perform precise segmentation of BL areas within 

the radiographs. By leveraging its convolutional neural network (CNN) architecture, U-

Net demonstrated a high level of accuracy in delineating the boundaries of BL regions. 

This automated segmentation provided a reliable foundation for further analysis. 

Concurrently, the YOLO-V9 model was utilized to detect and localize the coordinates of 

the apex of teeth within the radiographs. The YOLO-V9 model's performance indicated 

that its detection capabilities were comparable to those of the specialists. This ensured that 

the model could accurately identify critical anatomical landmarks necessary for subsequent 

measurements. By combining the outputs of these models, the maximum BL was measured 

as a percentage of root length. This quantitative assessment was then used to classify the 

stage and grade of periodontal disease. Through this chapter, it became evident that the U-

Net model was successful in the correct segmentation of BL, and the YOLO-V9 model 

effectively detected the coordinates of the tooth apex. The integration of these models 

facilitated accurate classification of periodontal disease stages and grades, highlighting the 

potential of DL techniques in enhancing periodontal diagnostics and treatment planning.  
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Finally, in Chapter 4, by integrating these approaches through a multimodal 

transformer model, a comprehensive automated diagnosis system is proposed that 

enhances diagnostic accuracy and enables timely interventions to prevent adverse 

outcomes and costly treatments. This innovative system combines the strengths of textual 

clinical note analysis and PA radiograph examination through a multimodal transformer 

model. 

By combining these modalities, the multimodal transformer model synthesizes 

textual and visual data, enabling an accurate assessment of each patient’s condition. The 

model focuses on patients with the highest amount of BL, as identified through 

radiographic analysis, and correlates this data with the contextual information from clinical 

notes to classify the stage and grade of periodontal disease more accurately. 

The findings demonstrated that this integrated approach significantly outperforms 

previous single-modality models. While BERT was highly effective for text processing 

and the U-Net and YOLO-V9 models excelled in image processing, the model achieved a 

higher classification accuracy by combining these methodologies. The multimodal 

transformer model's ability to analyze and integrate diverse data types leads to a more 

precise and comprehensive diagnosis, facilitating timely and effective interventions in 

periodontal disease management. This advanced system not only improves diagnostic 

outcomes but also has the potential to reduce the need for extensive treatments by enabling 

early and accurate identification of periodontal disease stages and grades. 

In conclusion, this work demonstrates the potential for developing CDSS tools to 

improve periodontal disease management and patient outcomes. 
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Chapter 1- Introduction  

The dissertation aims to address the area of machine learning (ML) applications in 

dentistry, with a particular focus on periodontology. The overarching objective is to bridge 

existing gaps in knowledge by demonstrating the potential and efficacy of artificial 

intelligence (AI) in dentistry, highlighting its role in improving decision-making processes 

and patient care. Through comprehensive reviews and empirical studies, the thesis 

endeavours for broader adoption and integration of AI methodologies for clinical 

classification tasks in periodontal practice, which will ultimately advance the field and 

enhance treatment outcomes for patients. 

Periodontitis is a multifactorial and microbiome-associated inflammatory disease 

that occurs in the dental supporting tissues (periodontium, which includes gingiva, 

periodontal ligament, cementum, and alveolar bone presenting as bone loss (BL)). 

Progression of the disease can adversely affect oral and systemic health and result in tooth 

loss, reduction of masticatory performance as well as having association with diabetes, 

coronary artery disease and rheumatoid arthritis. Thus, periodontitis and its complications 

will impose substantially negative effects on oral health-related quality of life. Moreover, 

early detection and diagnosis of periodontitis can help in preventing the consequent costly 

and invasive dental treatment. 

The purpose of my thesis is to predict the stage and grade of periodontal disease 

by: 1) introducing a novel method of measuring BL and 2) integrating the outcomes with 

the output of a natural language processing (NLP) model for extracting information from 
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patients’ chart data (including medical/dental history and clinical findings obtained through 

examination). To achieve this purpose, I developed and implemented automated methods 

to: 

1) Extract the important latent information in patients’ charts (including the stage and grade 

of the disease), which are collected as text files in clinicians’ notes to classify patients with 

periodontitis through an NLP model using bidirectional encoder representations from 

transformers (BERT), and utilize the outcome for predicting the periodontitis stage and 

grade, 2) Analyze patients’ radiographs and measure the percentage of BL using the deep 

learning (DL) models to make predictions on periodontitis’ stage and grade, and 

3) Integrate the results obtained from the two steps above through a multimodal model to 

develop an automated approach for diagnosis of patients with periodontitis and predict the 

stage and grade of disease.  

My work demonstrates potential in the steps required for developing a clinical 

decision support system (CDSS) tool by automating and integrating the review of patient 

notes and conducting BL measurements. This approach enhances the accuracy of 

periodontal disease diagnosis within the CDSS framework. By incorporating these 

advancements, timely interventions can be facilitated to prevent complications such as 

tooth loss, systemic health risks, and the need for costly and invasive treatments. 
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1.1 PERIODONTITIS  

1.1.1 Definition 

Periodontitis or periodontal disease encompasses a spectrum of conditions affecting 

the periodontium, which includes the gingiva, periodontal ligament, cementum, and 

alveolar bone. This range of diseases varies from gingivitis to viral infections and tumors. 

Consequently, the causes can vary from straightforward single-factor agents like the herpes 

simplex virus to more intricate, multifactorial dysbiosis mediated by bacteria-host immune 

system interactions (1). 

1.1.2 Prevalence 

Periodontitis, the sixth most common type of inflammatory disease of the human 

body, affects the supportive tissues of the teeth and may cause extensive tooth loss if left 

untreated (2,3). Worldwide, it is the most common oral disease after dental caries 

(https://www.cda-adc.ca/stateoforalhealth/global/). Several meta-analyses have indicated 

that a significant proportion of adults are affected by mild to moderate periodontal disease, 

with the severest form impacting approximately 5–20% of any given population (4-6). Mild 

periodontal disease is characterized by its early onset, while severe cases typically arise 

from a chronic state of the condition (7). 

It has been reported that approximately 6% of the general adult population in 

Canada suffers from severe periodontal disease (8). Between March 2007 and February 

2009, Statistics Canada conducted the Canadian Health Measures Survey 

(CHMS)(https://www.canada.ca/en/health-canada/services/healthy-living/reports-

publications/oral-health/canadian-health-measures-survey.html), gathering data from 

approximately 6,000 individuals residing in 15 randomly chosen communities across 

https://www.cda-adc.ca/stateoforalhealth/global/
https://www.canada.ca/en/health-canada/services/healthy-living/reports-publications/oral-health/canadian-health-measures-survey.html
https://www.canada.ca/en/health-canada/services/healthy-living/reports-publications/oral-health/canadian-health-measures-survey.html
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Canada. This sample reflects 97% of the Canadian population aged six to seventy-nine 

years. The results showed that 21% of adults with teeth have, or have had, a moderate or a 

severe periodontal (gum) problem. In sum, periodontal issues are pervasive in the 

population and require accurate identification and treatment.   

1.1.3 Systemic Disease Connection 

Over the past few decades, multiple studies have investigated the connections 

between periodontitis and systemic diseases as potential risk factors (9). While certain 

diseases such as diabetes (10), obesity (11), and cardiovascular conditions (12) have 

established associations with periodontitis, many of these links are not particularly strong. 

It's crucial to recognize the importance of managing periodontal disease independently due 

to the significant impact on oral health-related quality of life (OHRQoL), which is mainly 

associated with tooth loss (13).  

A recent review by Fischer et al. (14) reported that the treatment of periodontitis 

could significantly improve OHRQoL and contribute to lowering systemic inflammation 

markers, including certain cytokines linked to cardiovascular diseases. Some included 

studies also indicated that periodontal treatment might lead to better glycemic control 

among patients with diabetes mellitus (15-17). 

1.1.4 Etiopathogenesis 

Dental plaque and calculus are recognized initiators of gingival inflammation, 

known as gingivitis, which can potentially progress to the more severe condition of 

periodontitis (18-20). Notably, while the presence of these local factors is consistent, 

individual variations in the host response play a significant role in determining disease 

progression (21). Central to understanding periodontal disease development is the concept 
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of dysbiosis, where an imbalance between host and bacterial factors disrupts the oral 

microbiome, leading to disease (22). Among the pathogens implicated in this process, 

Porphyromonas gingivalis stands out as a keystone species capable of inducing dysbiosis 

even at low levels (22). 

Furthermore, herpes viruses, particularly herpes simplex virus type 1 and human 

cytomegalovirus, have been associated with aggressive forms of periodontitis (23,24). 

However, the role of other herpes viruses, such as Epstein-Barr virus and herpes simplex 

virus type 2, remains less clear, with ongoing research attempting to elucidate their 

significance in periodontal disease (24). Besides, genetic and epigenetic influences, along 

with systemic conditions like diabetes and lifestyle factors such as smoking, have been 

identified as significant contributors to both the onset and progression of periodontal 

disease (25-28). Thus, understanding these multifaceted interactions is essential for 

developing effective strategies for prevention and management. 

1.1.5 Risk Factors 

1.1.5.1 Smoking 

Smoking is identified as the primary environmental risk factor for periodontitis. 

Studies have demonstrated that compared to non-smokers or former smokers, smokers 

exhibit a significantly higher prevalence of red-complex periodontal pathogens in their 

subgingival biofilm (29-31). Moreover, smoking has been linked to a potential negative 

impact on host immune cells, particularly neutrophils, rendering the host more susceptible 

to periodontitis (32-34).  
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Correspondingly, both light and heavy smokers face an increased risk of developing 

alveolar BL, with odds ratios of 3.25 and 7.28 respectively, compared to non-smokers. 

Similarly, light and heavy smokers have higher odds ratios of 2.05 and 4.07 respectively, 

for developing periodontal attachment loss compared to non-smokers (35). Additionally, 

smoking adversely affects the outcomes of both active periodontal therapy and long-term 

maintenance therapy (28,36). Hence, patients should be consistently advised on the 

significance of smoking cessation for the effective management of periodontitis (37). 

1.1.5.2 Diabetes 

Patients with uncontrolled diabetes face an elevated risk of developing periodontitis 

compared to systemically healthy individuals or those with well-controlled diabetes 

(38,39). The prevalence of periodontitis is notably higher among Canadians with diabetes, 

with around 18% experiencing moderate to severe periodontal disease, highlighting the 

importance of periodontal health in diabetic individuals (40).  

Plausible biological mechanisms supporting this association have been 

scientifically validated (39). This connection is partly attributed to alterations in the 

immune system of individuals with uncontrolled diabetes, leading to impaired neutrophil 

function or hyper-responsive macrophages producing pro-inflammatory cytokines (39). 

Furthermore, patients with uncontrolled diabetes demonstrate changes in connective tissue 

metabolism, influencing the resorptive and formative processes in the periodontium (39). 

1.1.6 Diagnosis 

Before conducting a periodontal assessment, it's essential to gather a patient's 

medical history. This step enables the identification of systemic or environmental risk 
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factors for periodontitis, such as diabetes and smoking (41). A thorough periodontal 

evaluation comprises various clinical parameters, including the biofilm index, periodontal 

probing depth, presence of bleeding on probing, gingival recession, mucogingival 

deformity, furcation involvement, tooth mobility, and occlusal trauma. Additionally, an 

initial periodontal evaluation should include a comprehensive radiographic assessment to 

ascertain the extent of horizontal and vertical alveolar BL (42). 

The 2017 World Workshop on the classification of Periodontal and Peri-implant 

Diseases and Conditions (2) defined the current method for classifying periodontitis based 

on staging and grading. Staging is determined through the severity of the disease and 

complexity of its management, while grade is an indicator of the rate of periodontitis 

progression assessed according to the history and the presence of risk factors for the disease 

(42).  

1.1.6.1 Periodontitis Staging 

Staging relies on the standard dimensions of severity and extent of periodontitis at 

presentation but introduces the dimension of complexity of managing the individual patient 

(Figure 1.1-A). Clinical attachment loss (CAL) and radiographic BL are the primary stage 

determinants. The goals of staging are to: 1) Classify severity and extent of an individual 

based on the currently measurable extent of destroyed and damaged tissue attributable to 

periodontitis, and 2) Assess complexity and specific factors that may determine complexity 

of controlling current disease and managing long-term function and esthetics of the 

patient's dentition. Periodontitis staging is categorized into four including stage I (a 

condition between gingivitis and periodontitis), stage II (established periodontitis in which 
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a carefully performed clinical periodontal examination identifies the characteristic 

damages that periodontitis has caused to tooth support), stage III (in which periodontitis 

has produced significant damage to the attachment apparatus and, in the absence of 

advanced treatment, tooth loss may occur), and stage IV (with considerable damage to the 

periodontal support that cause significant tooth loss) (2). 

 

Figure 1.1- A. Periodontitis staging: to classify the severity and extent of a 

patient’s disease based on the measurable amount of destroyed and/or damaged 

tissue as a result of periodontitis 

1.1.6.2 Periodontitis Grading 

Irrespective of the stage at diagnosis, periodontitis may progress at different rates 

with individuals, may respond less predictably to treatment in some patients, and may or 

may not influence general health or systemic disease (43). This information is critical for 

precision medicine but has been an elusive objective to achieve in clinical practice. In 

recent years, validated risk assessment tools, and presence of individually validated risk 
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factors have been associated with tooth loss (44), indicating that it is possible to estimate 

risk of periodontitis progression and tooth loss. Grading adds another dimension and allows 

the rate of progression to be considered. Figure 1.1-B illustrates periodontitis grading based 

on primary criteria represented by the availability of direct or indirect evidence of 

periodontitis progression. Direct evidence is based on longitudinal observation available 

for example in the form of older diagnostic quality radiographs. Indirect evidence is based 

on the assessment of BL at the worst affected tooth in the dentition as a function of age 

(measured as radiographic BL in percentage of root length divided by the age of the 

subject). Periodontitis grade can then be modified by the presence of risk factors.  Grade 

A, B, or C periodontitis is determined with direct or indirect evidence of progression rate 

in three categories: slow, moderate, and rapid progression. Also, risk factor analysis is used 

as a grade modifier (2). 

 

Figure 1.1- B. Periodontitis grading: the rate of periodontitis progression, 

responsiveness to standard therapy, and potential impact on systemic health 
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1.1.6.3 Assessment of Periodontitis Stage and Grade 

Periodontitis diagnosis can be established from a) Clinical examination by gently 

probing the gingiva using a standardized periodontal probe with reference to the cemento-

enamel junction (CEJ), or b) determine the extent of alveolar BL around the teeth during 

the radiographic examination (45). Alveolar BL, is defined as any distance from CEJ to the 

alveolar bone crest that is greater than 2mm (46). 

In recent decades, electronic dental records (EDR) have been introduced for 

collection of patient data, which are found to have superiority over paper charts in terms of 

higher storage capacity, time efficiency, ease of information retrieval and accessibility 

(47). However, manual evaluation of a huge amount of information collected from patients 

is prone to errors particularly by low-experienced clinicians as while there are drastic 

differences between initial/moderate stages of periodontitis (stage I/II) and 

severe/advanced forms (stage III/IV), there are often gray areas and overlapping criteria 

when clinicians are trying to narrow down a case to either stage III or IV category. Thus, 

the use of sound clinical judgment is crucial when classifying the disease according to its 

stage and grade (48). 

1.1.7 Prevention and Management 

1.1.7.1 Home Care  

Ensuring satisfactory home care is a crucial aspect of preventing periodontal 

disease, facilitating successful periodontal therapy, and maintaining the dentition over the 

long term (49-51). It is imperative for clinicians to educate patients about the significance 

of efficiently eliminating dental biofilm at home, particularly before embarking on active 
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periodontal therapy (52). The importance of maintaining adequate home care should be 

emphasized consistently during both the initial and subsequent stages of periodontal 

treatment. 

1.1.7.2 Scaling and Root Planing (SRP) 

Once adequate home care or biofilm control has been achieved, scaling and root 

planing should be conducted at sites exhibiting periodontal probing depths of 5 mm or 

greater (41). This treatment phase should be accompanied by addressing local contributing 

factors, extracting hopeless teeth, and treating active carious lesions (53). Automated 

instruments, such as piezoelectric or ultrasonic scalers, may be utilized alongside manual 

instruments (53). In areas where access is challenging, automated instruments might be 

more effective than curettes for eliminating subgingival biofilm and calculus (54). 

Clinically, the removal of subgingival calculus can be assessed using a periodontal 

explorer. Additionally, post-operative intraoral radiographs can aid in evaluating the 

removal of subgingival calculus, which was visible on pre-operative intraoral radiographs 

(41). 

1.1.7.3 Systemic Antibiotics 

Systemic antibiotics have demonstrated effectiveness as adjuncts to SRP in 

managing chronic periodontitis. The short-term use of a combination of amoxicillin and 

metronidazole, particularly in patients with periodontal pocket depths of 6 mm or more, 

has shown clinical significance (55). This combination has also proven useful in treating 

aggressive periodontitis (56). Azithromycin has shown improved clinical outcomes when 



 

 

12 

used alongside SRP (57,58), and it has been particularly effective in managing 

cyclosporine-induced gingival overgrowth (59). 

However, a recent systematic review conducted by Khattri et al. (60) concluded 

that there is limited certainty regarding the long-term effectiveness of adjunctive systemic 

antimicrobials in non-surgical treatment of periodontitis. Also, insufficient evidence exists 

to determine the superiority of specific antibiotics when used with SRP.  

1.1.7.4 Periodontal Re-evaluation 

Between 4-6 weeks following the completion of SRP, a re-evaluation should be 

undertaken (50). During this phase, a comprehensive periodontal charting should be 

updated, and the findings should be compared with the initial charting to assess the extent 

of improvement. Additionally, patient compliance, as determined by adherence to the 

prescribed home care regimen, should be meticulously assessed (50). Typically, for areas 

with relatively shallow probing depths (i.e., 1–5 mm), non-surgical management strategies 

could be considered, including repeated root planing if necessary, frequent periodontal 

maintenance therapy, and continuous reinforcement of home care (50). It is noted that the 

efficacy of subgingival calculus removal diminishes with increasing probing depth (61,62). 

Consequently, for areas exhibiting persistently deep periodontal probing depths (i.e., 6 mm 

or deeper), surgical periodontal therapy may be warranted. However, surgical therapy 

should be postponed until the patient demonstrates adequate biofilm removal (50). 
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1.1.7.5 Periodontal Surgical Therapy 

If initial nonsurgical treatments like SRP along with other adjuncts prove 

ineffective in resolving periodontitis upon reassessment, periodontal surgical therapy 

becomes necessary (63). Osseous surgery has been found to enhance CAL gain compared 

to SRP in deeper periodontal pockets measuring 7 mm or more (64). Additionally, 

regenerative periodontal therapy can be advantageous in specific cases, such as intrabony 

periodontal defects with well-contained osseous walls (65). 

1.1.7.6 Personalized Maintenance Protocols 

Patients with a history of periodontal disease require regular and recurrent 

periodontal maintenance, typically scheduled at intervals ranging from 2 to 6 months 

(66,67). However, the appropriate frequency should be determined after completing active 

periodontal therapy and should be adjusted based on continuously evaluating an 

individual's risk for periodontitis (67). A consistent recall schedule enables prompt 

detection and intervention if disease recurrence or reactivation occurs in patients previously 

treated for periodontitis (66). During maintenance therapy, periodontal charting should be 

updated, and radiographs should be obtained as necessary. Additionally, home care 

practices should be thoroughly reviewed. 

Various factors, including dysbiosis, genetic predispositions, environmental 

influences, and behavioral habits, contribute to the diverse onset, progression, and response 

to therapy in periodontal disease. The complexity of these factors makes it challenging to 

predict the prognosis of periodontally compromised teeth. Therefore, it is essential to 

establish personalized maintenance protocols based on individual risk factors (68).  
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1.2 Artificial Intelligence 

Artificial intelligence (AI) is a rapidly emerging field in computer science, which refers to 

the application of machines capable of performing tasks normally requiring human 

intelligence. ML, a subset of AI, uses algorithms to predict unseen data based on the 

learnings obtained from intrinsic statistical patterns and structures in data (69-72).  Neural 

networks (NN) are a popular type of ML structure, which have been proven to outperform 

predictive algorithms, particularly on complex data structures including images and texts. 

An artificial neuron –a mathematical non-linear model inspired by the human neuron- 

constitutes any type of NN. Stacking and binding these neurons in layers through 

mathematical functions is the structure of NN. Through this process, a network is 

developed for a defined specific task like image or text analysis (70,73).  

Deep learning (DL) and the term deep neural network (DNN) refers to NN architectures 

with more than one hidden layer that are capable of analyzing complex data structures such 

as images due to their ability to represent an image and its related features including edges, 

corners and shapes (70,74). The main aim of DNN is to obtain features from the input 

dataset through supervised, unsupervised or semi-supervised training approaches and 

transform the data in multiple layers. The output from each layer acts as the input for the 

subsequent layer and this iteration goes on until the final layer, which is used to fine-tune 

and train the whole network (75,76).  Strengthening the ML algorithm through self-

improvement and reinforced learning by evaluating more and more data, is one of the main 

advantages of DNN (69,74). 
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1.2.1 Natural Language Processing (NLP) 

Natural language processing (NLP) represents a technological advancement 

facilitating interaction between computers and humans using natural languages (77). NLP 

encompasses a wide range of methods enabling computers to engage with human text. This 

engagement spans various activities such as treating human text as data, understanding the 

significance and associations among words in the text, and employing this acquired 

knowledge to execute diverse text-oriented operations (78). At its core, NLP involves 

segmenting text corpora for analysis, utilizing tools like ontology dictionaries, word 

frequency analysis, and contextual semantic analysis to dissect the smallest units of 

meaning (79). 

The essence of NLP lies in enabling seamless communication between humans and 

computers, where computers can not only comprehend the meaning conveyed in textual 

language but also articulate intentions and ideas similarly (80). This dual capability is 

delineated into 'natural language understanding' or ‘linguistics’ and 'natural language 

generation,' which evolves the task to understand and generate the text (79). 

1.2.1.1 NLP Approaches 

1.2.1.1.1 Rule-Based Methods 

In the rule-based approach to NLP, extensive sets of sentences are often abstracted 

into rules tailored for specific human-computer interactions, incorporating essential 

information markers (81). These rules are then used to generate finite state automata, which 

convert linguistic input into a parameter sequence. This sequence guides subsequent 
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information processing methods, thereby enhancing the efficiency of natural language 

understanding and emphasizing the scalability of the rule set (82,83). 

Rule-based NLP models offer several advantages, such as transparency and 

interpretability, as rules are explicit and easily understandable by humans, facilitating 

quality control and modifications. They also require less training data compared to data-

driven models, saving time, resources, and computational power. Additionally, they can be 

robust and adaptable to new scenarios as long as the rules cover them, enhancing reliability 

across various contexts (84,85). 

However, these models also have drawbacks. Scaling and maintenance pose 

challenges due to complex, numerous, and overlapping rules, making them difficult to 

write, test, and debug. Rules may become outdated or irrelevant with language evolution 

or domain changes. Furthermore, they struggle with handling natural language's ambiguity, 

variability, and creativity, leading to errors and exceptions. Moreover, they can exhibit bias 

or inaccuracy, reflecting the assumptions and judgments of rule-makers (86,87). 

Regular expression (RegEx) is an example of a powerful tool for pattern matching 

and text analysis. By defining a sequence of characters in a string using literal text or 

special characters with specific meaning, the tool is able to search, match, and manipulate 

text data (88). 

1.2.1.1.2 Machine Learning-Based Methods 

ML-based approaches rely on annotated data to build systems, utilizing manually 

defined features. These systems employ learning techniques to determine parameters used 

during runtime for data processing and output generation. Notable successes have been 
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observed in applications like machine translation and search engines using statistical 

methods (77,89). 

NLP tasks encompass various subtasks, traditionally addressed using 

methodologies like support vector machines (SVM) (90). ML-based NLP techniques can 

be expressed as a model that is then applied to other texts, also known as supervised ML 

models. It also could be a set of algorithms that work across large sets of data to extract 

meaning, which is known as unsupervised ML (91,92).  

Despite the rapid advancement of DL algorithms in the modern era, traditional ML 

algorithms retain their distinct advantages. Traditional methods typically require fewer 

data points and offer greater interpretability. Moreover, numerous researchers are 

integrating traditional ML models with DL networks to enhance the interpretability and 

resilience of neural networks (93). However, practical applications have limitations, 

including high dependency on the quality of training data, the necessity for data labeling, 

domain-specific variations, and limitations in capturing nuanced features beyond 

predefined rules (94,95). 

1.2.1.1.3 Deep Learning-Based Methods 

Deep learning models are increasingly employed in NLP tasks, utilizing 

architectures such as Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) (96). When applying a fully connected network to NLP tasks, several 

challenges arise. Firstly, the variable input length of different samples makes it impossible 

to fix the number of neurons in the input and output layers. Secondly, the inability to share 

features learned from different positions in the input text leads to inefficiencies. Lastly, the 
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model complexity tends to increase significantly, resulting in a large number of parameters 

and requiring extensive computations (96,97). 

To address the above challenges, RNNs are employed. RNNs scan input data, 

facilitating parameter sharing across all time steps. They not only receive input from the 

current moment but also incorporate information from previous steps, allowing past 

information to influence current decisions effectively. However, traditional RNNs have 

limitations. They often pass all learned knowledge to the next time step without processing, 

potentially overwriting early knowledge with more recent information and struggling to 

capture long-range dependencies (96,98). Long Short-Term Memory (LSTM) models 

address this by introducing a gating mechanism to overcome the vanishing gradient 

problem during training with long sequences (99). 

DL, by learning word embeddings, enables natural language classification and 

understanding. Compared to traditional ML, DL-based NLP offers several advantages 

(93,100,101). Firstly, it facilitates continuous learning by continuously acquiring language 

features based on word or sentence vectorization, grasping higher-level and more abstract 

language features to accommodate various NLP tasks. Secondly, it automates feature 

learning, eliminating the need for manual definition of training sets by automatically 

acquiring high-level features through neural networks. 

1.2.1.1.4 Transformer-Based Models 

The significant advancement in NLP models was sparked by the publication of the 

paper "Attention is All You Need" in 2017 (102). This paper introduced the Transformer 

model for machine translation, pioneered by the Google Brain team. Transformer, as the 

fourth major type of DL model following multi-layer perceptron (MLP), CNN, and RNN, 
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is distinguished by its self-attention mechanism. It broke new ground by abandoning CNN 

and RNN architectures in the sequence-to-sequence domain, relying solely on a 

straightforward network structure with attention mechanisms. This led to a considerable 

acceleration in the training process for sequence tasks and enabled the development of even 

larger models (103).  

The introduction of the BERT model marked the application of pre-training 

techniques in NLP (104). BERT and subsequent models like GPT-3, RoBERTa, among 

others, have achieved notable success across various NLP tasks, and revolutionized large 

language models (LLM), surpassing the previously prevalent RNN-based methods. They 

demonstrate superior performance compared to sequential DL architectures such as 

LSTMs and CNNs across a wide range of natural language tasks, as well as in various non-

linguistic applications like image recognition (105). But what makes transformer-based 

models better for NLP tasks? 

1.2.1.1.4.1. Self-Attention Mechanism 

The self-attention mechanism is an attention mechanism utilized for modelling 

sequential data. It operates by computing attention weights, which gauge the similarity 

between various positions within the input sequence. When provided with a position in the 

input sequence, the self-attention mechanism calculates similarity scores between this 

position and others, normalizes these scores through the Softmax function, and derives 

attention weights associated with the other positions. Subsequently, these weights are 

employed on the corresponding Value vectors, typically feature vectors from the input 

sequence, to generate the ultimate attention output (102,106). 
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For instance, consider the scenario where a wolf refuses to eat a rabbit due to its 

slimness. Identifying whether the pronoun "it" refers to the wolf or the rabbit is 

straightforward for humans but presents a challenge for machines. The self-attention 

mechanism enables the machine to associate "it" with the rabbit. 

1.2.1.1.4.2 Multi-Head Attention 

Multi-head attention refers to the fusion of various distinct self-attentions. In the 

transformer model, 8 self-attentions are employed for amalgamation. This approach 

augments the richness of each attention layer without altering the parameter count. 

Consequently, parallel computations are facilitated, leading to increased computational 

efficiency (102). Multi-head attention enables models to acquire varied representations and 

features, thereby bolstering their expressive capacities and demonstrating superior 

performance in handling complicated tasks and lengthy sequences (107). 

1.2.1.1.4.3 Positional Encoding 

Positional Embedding plays a crucial role in the transformer model. While self-

attention effectively captures word dependency, it lacks the ability to extract absolute or 

relative word positions. Even if the key and value order are altered, the attention result 

remains constant. Given the significance of word order in NLP tasks, the transformer model 

integrates positional embedding to retain word information. Each position in the sequence 

receives a unique numerical identifier, corresponding to a specific vector. These vectors 

are then added to word embeddings, enriching each word representation with distinct 

positional information (102,104). 
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1.2.1.1.4.4 Advantages of Transformer-Based Models 

According to the above characteristics, transformer-based models offer several 

advantages. In RNNs, the hidden state at a specific time step relies on the output of the 

previous time step's hidden state, hindering parallel processing. Conversely, the 

Transformer model concurrently processes information from all contextual positions, 

thereby minimizing the loss of information propagation (103). 

Moreover, the transformer model effectively mitigates information propagation 

loss. RNN models, including advanced variants like LSTM, may encounter challenges such 

as gradient explosion, vanishing gradients, or difficulty in capturing long-range 

dependencies when handling extensive sequences. In contrast, the Transformer model 

efficiently accesses information from all positions within a sequence, effectively 

addressing these issues by maintaining a constant distance of one (105). 

Lastly, the transformer model adeptly integrates information from all positions. 

Unlike convolutional models, which typically consider smaller windows and necessitate 

multiple convolution layers to incorporate information from distant elements, the 

transformer model seamlessly gathers information from all positions within a distance of 

one, thereby enhancing information integration across the entire sequence (79). 

1.2.2 Automated Radiographic Image Analysis 

Despite the improvements in the dental imaging in terms of the quality of image 

and resolution over the past decade, interpreting them is primarily and subjectively 

conducted by the trained dentist based on the individual's judgement and experience (108-

110).  This subjectivity can lead to low consistency among different raters in measuring 
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BL, as demonstrated in a study conducted by Lanning et al. (111) where twenty-four 

clinical instructors rated BL for twenty teeth using a view box. The instructor group 

consisted of eight dental hygiene faculty members, four graduate students, and twelve 

periodontal faculty members. All of the dental hygiene faculty and most of the periodontal 

faculty had ten or more years of clinical experience, whereas all but one of the graduate 

students had less than five years of clinical experience. The study found varying levels of 

accuracy among the instructors. For teeth with no BL, 74.2 percent (89 of 120) of the 

clinical instructors’ ratings were accurate. For categories of <15 percent, 15–30 percent, 

and >30 percent BL, the accuracy of ratings was 50 percent, 52.1 percent, and 94.4 percent, 

respectively. Overall, the clinical instructors’ agreement with the correct choice was 70.0 

percent, and when corrected for chance agreement, this agreement was Kappa= 0.591 

(SE=2.8 percent). These results highlight the variability in measurements based on the 

experience and subjective judgment of the raters. 

This may result in misdiagnosis and, in the process of periodontitis evaluation, may  

lead to wrong measurement of BL (112). Currently, DL techniques are being widely 

applied for quick evaluation of dental radiographs, without subjective interpretations. The 

intelligent systems can perform these tasks through the process of medical image 

understanding (71). The process consists of 4 stages: 

1- Medical image detection with the purpose of classifying and localizing regions 

of interest by drawing bounding boxes around multiple regions of interest and labeling 

them. This helps in determining the exact locations of different organs and their orientation. 

2- Medical image localization, which predicts the object in an image, draws a 

bounding box around the object and labels the object. 
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3- Medical image segmentation that helps in image understanding, feature 

extraction and recognition, and quantitative assessment of lesions or other abnormalities. 

4- Medical image classification, which involves determining and assigning labels 

to medical images from a fixed set.  

Traditional methods of automated medical image analysis include large amounts of 

rule-based algorithms or manual preprocessing methods that are time-consuming with low 

quality and poor generalization capability (113-115). This underwent changes with the 

introduction of CNN algorithms using DL, which allow for direct interference, recognition 

and classification of medical images (116,117). The term “convolution” refers to the 

process of computing as well as the result function (118).  CNNs are types of DL methods 

consisting of a minimum of three layers: input, hidden and output layers (119). They apply 

a supervised learning technique called “backpropogation” and have been utilized for 

various image analysis tasks such as classification, segmentation and landmark detection 

(118,120,121).  

CNN has been utilized in various aspects of science including speech recognition, 

detecting objects, analyzing emotions and face recognition (122). However, its great 

breakthroughs in major image competitions have made it a popular technique for medical 

image analysis and computer visual tasks (123,124).  In the field of dentistry, CNNs have 

performed tasks such as caries, BL and apical lesions detection as well as classifying, 

segmenting and detecting anatomic hard- and soft-tissue landmarks (125).  

The process of classification in a CNN model  involve (71,126):  1) Convolutional 

layers (the first step) with the purpose of extracting features such as gradients or edges 
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from the input image using the mathematical transformations, 2) Non-linear activation 

functions, which is placed between any two layers and guides the input signals into output 

signals required for the NN to act, 3) Pooling layer, which reduces the number of 

parameters to learn and the amount of computation to summarize the features generated by 

the convolution layer, 4) Fully connected layers that are responsible for the interpretation 

of the feature representations learned by preceding layers.  

Due to its demonstrated efficiency in the field of image understanding (image 

segmentation, classification, localization and detection) through feature extraction of an 

input data, it is a widely used technique for solving medical image understanding (71). One 

main advantage of CNN over traditional NN models is in its architecture (127).  Depending 

on the task to be performed, various architectures of CNN models have been proposed so 

far. For instance, Long et al. (121) proposed a full convolutional network (FCN) in which 

the last fully connected layers are replaced by fully convolutional layers to obtain pixel-

wise predictions. Since then, many novel methods of image segmentation (such as U-Net) 

based on FCN have been utilized for medical image analysis (128-131). 

1.2.2.1 Object Detection and Localization 

The DL object detection and localization technique refers to determining where the 

object locations are within images (132). DL-based object detection using CNNs offers 

several advantages over traditional methods such as: 1. Hierarchical feature representation, 

which enables them to represent objects in a more detailed and meaningful way. 2. 

Increased learning and expressing capability, leading to more accurate and sophisticated 

object detection (133). There are two main structures for object detection models: 1) 
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Region proposal-based techniques that first generate region proposals in the initial stage 

and then classify each proposal into different object classes. Examples of such techniques 

are R-CNN, Fast R-CNN, and Faster R-CNN (134,135), and 2) Regression-based 

algorithms, which predict object classes and locations directly such as you only look once 

(YOLO), single shot multibox detector (SSD), and RetinaNet (136-138). 

1.2.2.1.1 You Only Look Once (YOLO) Series 

YOLO is an algorithm employing CNN principles, designed to precisely identify 

objects in real-time (139). Real-time object detection is a necessary component in computer 

vision systems for tasks like multi-object tracking. It is currently one of the state-of-the-art 

real-time object detectors (136,140). The requirements for being a state-of-the-art real-time 

object detector are as follows: (1) a more robust network architecture (consistent reliability 

and well-peroformance); (2) a more effective feature integration method (141-143); (3) a 

more accurate detection method (144-145); (4) a more robust loss function (146,147); (5) 

a more efficient label assignment method; and (6) a more efficient training method 

(148,149). 

YOLO transforms the detection problem into a regression problem. This 

transformation is fast since a single regression problem does not need a complex pipeline 

(150). Additionally, YOLO is faster to process than the R-CNN family because it looks 

through the entire image, unlike the R-CNN family. Furthermore, YOLO has fewer 

background errors compared to the R-CNN family (151). This is because the R-CNN 

family cannot process the surrounding information of the object. Moreover, one of the 
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characteristics of YOLO is to extract features from the entire image and predict bounding 

boxes (152). For each object that presents grid cells on the image, it divides the image into 

𝑆×𝑆 grid, and for each grid cell, it predicts the bounding box’s location and class 

probabilities. 

In the literature, older versions of YOLO have been widely used in the field of 

dental radiology to detect mandibular fractures in panoramic radiographs (153), primary 

and permanent tooth detection on pediatric dental radiographs (154), detection of cyst and 

tumors of the jaw (155), and detection of impacted mandibular third molar teeth (133). 

These deep learning techniques focus on how to align the model's predictions as closely as 

possible with the ground truth. Additionally, they aim to devise architectures conducive to 

gathering sufficient information for accurate predictions. However, current approaches 

overlook the substantial information loss incurred during layer-by-layer feature extraction 

and spatial transformation of input data.  

The newly introduced YOLOv9 by Chien-Yao Wang et al. on February 21st, 2024, 

marked a fresh installment in the YOLO series. This latest model takes a deeper look into 

data loss in deep network transmission, specifically tackling the challenge of the 

information bottleneck, a concern overlooked in prior iterations of the YOLO series (156). 

They proposed the use of programmable gradient information (PGI) to solve the 

information bottleneck problem and the problem that the deep supervision mechanism is 

not suitable for lightweight neural networks. PGI can provide complete input details for 

the target task to calculate objective function, so that reliable gradient information can be 

obtained for updating network weights (156). 
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In addition, they introduced a novel lightweight network architecture – Generalized 

Efficient Layer Aggregation Network (GELAN), based on gradient path planning. The 

results of the proposed GELAN and PGI on MS COCO dataset-based object detection 

demonstrated that GELAN, which is a highly efficient and lightweight neural network, has 

strong and stable performance at different computational blocks and depth settings. It can 

indeed be widely expanded into a model suitable for various inference devices. Moreover, 

PGI can be used for a variety of models from lightweight to deep to achieve considerable 

improvements in accuracy (156).  

Combining PGI and GELAN, the YOLOv9 has demonstrated remarkable 

competitiveness. Its ingenious design enables the deep model to reduce parameter count 

by 49% and calculation load by 43% compared to YOLOv8. Despite this, it manages to 

achieve a 0.6% increase in Average Precision (AP) on the MS COCO dataset (156). 

1.2.2.2 Image Segmentation 

Image segmentation -the process of identifying key components of an image and 

separating the image into individual sections or regions- is a fundamental task in medical 

image processing (157). In the field of dentistry, different segmentation methods exist: 

1.2.2.2.1 Manual Image Segmentation 

Manual segmentation involves the operator manually tracing or outlining the region 

of interest using a tool such as a mouse or stylus (158). Following this, a segmentation 

model is generated. This model allows for the visualization of the patient's dental anatomy, 

providing an accurate assessment of the position, size, and shape of individual teeth, arch 
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alignment, and inter-arch distances. Additionally, it enables the visualization of various 

tooth movements, assisting clinicians in formulating an appropriate treatment plan. 

However; the process is time-consuming, and it can be susceptible to fatigue and errors, 

particularly when the operator must perform repetitive tasks over an extended period. This 

can result in inaccuracies and inconsistencies in the segmentation outcomes, leading to 

inter- and intra-operator variability and low reproducibility (159). 

1.2.2.2.2 Semi-Automatic Segmentation 

Semiautomatic segmentation is a process that combines automatic segmentation 

with manual checking and editing of segment boundaries. It begins with the manual 

initialization of the model, followed by automated boundary detection by the software. The 

operator then manually corrects and refines these boundaries iteratively until the final 

segmentation result is achieved after multiple repetitions of both automated and manual 

refinement. 

1- Watershed Method: This technique segments objects or regions of interest in an 

image based on the concept of watersheds. The operator first selects an image slice 

containing all teeth and enhances the image, as the watershed algorithm relies on image 

enhancement to separate tooth regions correctly. The enhanced image is then processed by 

the watershed algorithm to produce the desired segmentation. The success of this method 

depends on the quality of the input image, preprocessing techniques, and accurate marker 

placement (160). 

2- Seed Pixels (Region Growing): This method involves selecting seed points or 

regions of interest within the image and growing these regions by adding adjacent pixels 

that meet specific criteria, such as color or intensity similarity (161). It is commonly used 
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in medical imaging, for example, in tumor segmentation, where a radiologist selects seed 

points within a tumor to initiate the segmentation process. 

3- Cluster-Based Segmentation: This technique segments an image into regions or 

clusters based on similarities between pixels or groups of pixels. It can detect small 

variations in intensity values and allows for the use of various grouping criteria. Common 

clustering algorithms used in tooth segmentation include K-means, Fuzzy C-means, and 

hierarchical clustering, with the choice of algorithm and feature extraction techniques 

varying depending on the dental image dataset and problem complexity (162). 

1.2.2.2.3 Automatic Segmentation 

Automatic segmentation is a process in which segment boundaries are assigned 

automatically by a program, without the need for user interaction. This method has the 

advantage of enabling rapid segmentation once the approach has been developed. 

Automatic segmentation can be categorized into two main types: 

1. Semantic Segmentation: Semantic segmentation involves assigning a specific 

label or category to each pixel within an image. The primary goal is to identify and 

differentiate groups of pixels that represent distinct and meaningful object categories. This 

approach focuses on distinguishing between categories, such as separating the teeth, jaws, 

and background, without differentiating between individual entities within each category 

(163, 164). 

2. Instance Segmentation: Instance segmentation combines semantic segmentation 

with object detection by identifying all instances of a particular category within an image. 

This method not only segments objects but also distinguishes individual instances of the 

same object class (165). The task of instance segmentation emphasizes the differences 
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between individuals within a category, requiring both the category label and an instance 

label (within the class), to distinguish between individuals in each category. 

Over the past few decades, the role of ML in medical applications has expanded 

significantly. In ML, mathematical models are utilized to allow computers to discover 

underlying patterns in data and apply this learned knowledge to make predictions on new, 

unseen data. In recent years, DL-based segmentation algorithms have gained popularity 

among researchers. These methods have demonstrated exceptional performance in image 

segmentation, offering greater flexibility and more powerful capabilities compared to 

traditional ML approaches, while also reducing the need for extensive expert analysis (158, 

166). 

Several DL models have been introduced for medical image segmentation like the 

U-Net and mask R-CNN (167). Most image segmentation DL models are based on CNNs 

(168). Among these models, Mask R-CNN stands out as a potent instance segmentation 

approach, combining semantic segmentation with the delineation of individual objects. It 

benefits from extensive computing resources, leveraging hundreds of thousands of images 

in its training. Despite its strengths, Mask R-CNN is a large model, which impacts its speed. 

Additionally, retraining the model can be time-consuming, and it does not guarantee that 

detected objects are free of overlapping. On the other hand, U-Net, which is a famous pixel-

based image segmentation model, offers a specialized CNN architecture tailored for 

medical imaging segmentation. It was employed by Ronneberger to analyze dental 

structure segmentation on bitewing radiographs (128,169), and is praised for its simplicity, 

ease of implementation, and control. Moreover, it excels in both training and detecting 

phases, being significantly faster than Mask R-CNN. 
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1.2.2.2.3.1 U-Net  

U-Net architecture has been thoroughly studied for the biomedical image 

segmentation due to its ability to produce highly accurate segmented images using limited 

training data (170,171) The popularity of this algorithm is evident from its widespread 

adoption across major primary imaging techniques, including computed tomography scans, 

magnetic resonance imaging, X-rays, and microscopy (171)  

The traditional U-Net architecture, designed to handle volumetric input, consists of 

two phases: the encoder section, which learns representational features while incorporating 

scale- and location-specific information, and the decoder section, which extracts 

knowledge from the recognized patterns and previously learned features. By employing 

jump links between corresponding encoder and decoder layers, deep parts of the network 

can be effectively trained, enabling a comparison of similar characteristics across different 

regions (128,169). Researchers have been actively investigating various aspects of the U-

Net structure, including enhancements to the encoder and decoder, improvements to 

convolutional layers, and advancements in skip connections (172). 

DL-based computer-aided diagnosis has effectively tackled numerous complex 

issues in dental radiography. However, there is a limited number of studies that use DL 

algorithms to perform comprehensive evaluation and measurement of bone level across all 

points on the tooth. More specifically, previous research utilizing deep CNN architecture 

for identifying and detecting BL had limitations due to the use of limited sample images, 

resulting in accuracy levels that did not match those of dentists’ diagnoses (173-177). 
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1.2.2.3 Image Classification 

Image classification involves separating pixels into distinct groups based on their 

data values (178). For a pixel to be categorized into a specific class, it must meet certain 

criteria that define that class (179). These classes can either be predetermined if the user 

has identified them based on training data, or they remain unknown (180,181). Typically, 

image classification begins with extracting features from the image and then categorizing 

these extracted features. Thus, the key-point of image classification lies in how image 

features are extracted and analyzed (182). 

Traditional classification approaches utilize low-level or mid-level features to 

represent an image. Low-level features are often derived from grayscale density, color, 

texture, shape, and spatial information, which are defined by humans and are commonly 

referred to as hand-crafted features. Mid-level features, as well as learning-based features, 

are frequently distilled using bag-of-visual-word (BoVW) algorithms, which have been 

effective and popular in image classification or retrieval frameworks in recent years (183). 

In a traditional image classification model, after feature extraction, a classifier such 

as SVM or random forest is typically employed to assign labels to different types of objects 

(184). In contrast, the DL approach integrates the processes of image feature extraction and 

classification into a single network. The advanced representation of high-level features in 

DL has demonstrated superiority over manually crafted low-level and mid-level features, 

yielding commendable results in image recognition and classification. Image classification 

methodologies are categorized into two branches: supervised and unsupervised techniques, 

depending on the prior knowledge of the classes (185). 
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1.2.3 Multi-Modality Approaches for Integrating Texts and Images 

The current state-of-the-art DL models applied in radiology consider only pixel-

value information without data collected in patients’ charts. However, in practice, accurate 

and relevant non-imaging data based on the clinical history and examination enable dentists 

to interpret imaging findings in the appropriate clinical context, which will lead to a higher 

diagnostic accuracy, informative clinical decision making, and improved patient outcomes 

(122).  

Fusion models are ML techniques that join data from multiple modalities with the 

aim of extracting complementary and more complete information for better prediction. 

(186,187). Thus, in the third phase of my study, I used a multimodal model to combine the 

radiographic data with the information latent in patients’ clinical notes to predict and 

diagnose the stage and grade of the periodontal disease. 

Approaches to multimodal data integration in healthcare can vary depending on the 

specific clinical application and the available modalities (188). Generally, there are three 

main categories for fusing information from multiple modalities: 

1- Early fusion (feature-level fusion): This method involves combining features 

extracted from different modalities to create a unified representation (189). Features are 

first extracted from each modality separately, capturing their unique characteristics, and 

then combined to form a joint feature representation (122). This fusion approach aims to 

capture complementary information from different modalities and enhance the overall 

representation (190). Early fusion can be divided into two groups, type I, which fuses the 

original features and type II, which joins extracted features, either from manual extraction, 

imaging analysis software or learned representation from another neural network. 
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Predicted probabilities are considered as extracted features, thus fusing these types of 

features from different modalities is also early fusion type II) (189,191). 

2- Joint fusion: Joint fusion model involves combining feature representations 

learned from intermediate layers of neural networks with features from other modalities as 

input to a final model. The key distinction from early fusion lies in how the loss is back-

propagated to the feature-extracting neural networks during training, leading to improved 

feature representations with each iteration of training.  

3- Late fusion (decision-level fusion): In this method, decisions or predictions made 

independently by each modality are combined to reach a final decision. Each modality 

provides its own decision based on its specific analysis, and these decisions are aggregated 

using various techniques such as voting, averaging, or weighted combinations (192). 

Decision-level fusion aims to leverage the diversity of information provided by different 

modalities and improve the overall decision-making process. This approach allows 

flexibility in choosing modalities without the need for end-to-end training but does not 

model interactions between modalities as feature-level fusion does (190). 

Ingesting pixel data along with other data types through the application of 

multimodal DL models has been successful in applications outside of medicine and 

dentistry, such as autonomous driving and video classification or social media video 

classification that combines both visual and textual features (193,194). The improvements 

in performance for these efforts justify the dental applications in addition to leveraging 

fusion strategies for medical imaging, which is also primarily motivated by the desire to 

integrate complementary contextual information and overcome the limitation of image-

only models (122). 
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1.2.3.1 Multimodal Transformer Model 

The primary inspiration behind AI is to replicate human sensory perception, 

including seeing, hearing, touching, and smelling. Typically, each modality is linked to a 

specific sensor that establishes a unique communication channel, such as vision and 

language (195). In humans, a crucial mechanism in sensory perception is the ability to 

integrate multiple modalities of sensory data collectively, allowing effective interaction 

with the world in dynamic and unconstrained environments. Each modality serves as a 

distinct source of information with unique statistical characteristics. Essentially, a 

multimodal AI system must ingest, interpret, and reason about multimodal information 

sources to achieve human-like perception capabilities. Multimodal learning (MML) is a 

comprehensive approach to developing AI models that can extract and relate information 

from multimodal data (195,196). 

In the era of DL, deep neural networks have significantly advanced the 

development of MML. The transformer architecture (102), in particular, has emerged as a 

highly competitive family, presenting new challenges and opportunities for MML. The 

recent success of large language models and their multimodal derivatives further 

underscores the potential of transformers in the creation of foundational multimodal 

models (150, 197-200). 

1.2.3.1.1 Transformers 

Transformers are emerging as promising learners. The Vanilla transformer (102), 

which benefits from a self-attention mechanism, represents a breakthrough model for 

sequence-specific representation learning initially proposed for NLP. It has achieved state-

of-the-art performance on various NLP tasks. Following the success of the Vanilla 
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transformer, numerous derivative models have been developed, including BERT and GPT 

(104,201). 

Transformers currently hold a dominant position in the NLP domain, motivating 

researchers to explore their application in other modalities, such as the visual domain. Early 

attempts in the visual domain often follow the pipeline of combining CNN features with a 

standard transformer encoder. Researchers have achieved BERT-style pretraining by 

preprocessing raw images, resizing them to a low resolution, and reshaping them into a 1-

D sequence 202). 

The Vanilla transformer model, which serves as the foundation of the transformer-

based research field, features an encoder-decoder structure. It processes tokenized input. 

Both its encoder and decoder are composed of stacked transformer layers or blocks. Each 

block consists of two sub-layers: a multi-head self-attention (MHSA) layer and a position-

wise fully-connected feed-forward network (FFN). In some transformer literature, the FFN 

is also referred to as a MLP (102). 

1.2.3.1.2 Vision Transformer (ViT) 

 The Vision Transformer (ViT) (203) is a seminal work that provides an end-to-end 

solution by applying the transformer encoder to image data. Both ViT and its variants have 

been widely utilized in various computer vision tasks, including recognition, detection, and 

segmentation (204-206). The ViT employs an image-specific input pipeline, where the 

input image is divided into fixed-size patches (e.g., 16 × 16 or 32 × 32 pixels). These 

patches are then linearly embedded, and position embeddings are added to form patch-wise 

sequences, which are subsequently encoded by a standard transformer encoder (196,203) 

(Figure 1.2).   
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Figure 1.2- Vision transformer (ViT) architecture 

1.2.3.1.3 Multimodal Transformers 

Recently, a significant number of transformer models have been extensively 

studied for various multimodal tasks, demonstrating their compatibility with diverse 

modalities in both discriminative and generative applications (196). The key 

requirements/designs of the existing multimodal transformer models are as below: 

Multimodal input: Given an input from any arbitrary modality, there is a need to perform 

two primary steps before inputting the data into transformers: (1) tokenize the input and 

(2) select an embedding space to represent the tokens. In practice, both tokenizing the input 

and selecting an embedding for the tokens are crucial for the performance of transformers 

but offer a high degree of flexibility, with numerous alternatives available for 

implementation. 

Self-attention variants in multimodal context: In multimodal transformers, cross-modal 

interactions are essentially processed by self-attention and its variants. The main 
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multimodal modelling practices of transformers, from a perspective of self-attention 

designs, include (1) early summation (token-wise, weighted), (2) early concatenation, (3) 

hierarchical attention (multi-stream to one-stream), (4) hierarchical attention (one-stream 

to multi-stream), (5) cross-attention, and (6) cross-attention to concatenation.  

1.3 Research Hypothesis and Objectives 

1.3.1 Hypothesis 

In this dissertation, I propose that similar to healthcare providers, automated 

detection and classification systems that effectively utilize both dental imaging data and 

clinical data from EDR — including patient demographics, previous diagnoses, clinical 

examination findings, and laboratory values — could achieve high diagnostic accuracy in 

dentistry. This integrated approach holds the potential to serve as a comprehensive CDSS 

tool, offering enhanced decision-making support for dental professionals in diagnosing and 

treating patients. 

1.3.2 Objective 1 

To extract the important latent information in patients’ charts, which are collected 

as text files in clinicians’ notes to classify patients with periodontitis through a NLP model 

using BERT, and utilize the outcome for predicting the stage and grade of periodontitis. 

1.3.2.1 Hypothesis 1 

Utilizing NLP techniques, particularly BERT, to analyze clinicians' notes text files 

can effectively extract latent information crucial for accurate classification of patients with 

periodontitis. Furthermore, leveraging the outcomes derived from this classification can 

aid in predicting both the stage and grade of periodontitis in patients 
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1.3.2.2 Rationale 

The rationale behind the proposed objective lies in demonstrating the vast potential 

in the application of NLP, particularly utilizing models like BERT, to unlock valuable 

insights from unstructured textual data. Clinicians' notes, often comprising rich narratives 

of patient encounters, serve as a treasure trove of information beyond structured data. These 

notes contain nuanced details about patient history, symptoms, diagnostic observations, 

and treatment plans, which can offer valuable context for understanding disease states such 

as periodontitis. 

BERT, being a contemporary NLP model, possesses advanced capabilities in 

contextual understanding and semantic representation. Its pre-trained embeddings enable 

the model to comprehend intricate nuances and context within dental narratives, allowing 

for more precise extraction and representation of latent information embedded within 

clinicians' notes.  

Furthermore, accurate classification of patients with periodontitis is crucial for 

effective treatment planning and patient management. By employing NLP techniques to 

analyze clinicians' notes and classify patients with periodontitis, the objective seeks to 

enhance the accuracy of patient stratification. This improved accuracy not only aids in 

identifying patients at risk or currently experiencing periodontitis but also serves as a 

foundation for predicting disease progression. 
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1.3.3. Objective 2 

To analyze patients’ radiographs using DL methods (image segmentation and 

object detection algorithms) to automate the measurement of BL percentage for predicting 

the stage and grade of periodontitis.  

1.3.3.1 Hypothesis 2 

Employing DL methods, specifically image segmentation and object detection 

algorithms, to analyze patients' radiographs can automate the measurement of BL 

percentage. This automated measurement has the potential to serve as an accurate predictor 

for determining the stage and grade of periodontitis. 

1.3.3.2 Rationale 

The rationale behind the proposed objective lies in the transformative capabilities 

of DL techniques in automating complex image analysis tasks. Radiographs provide crucial 

visual data for assessing bone level changes, a key indicator in diagnosing and monitoring 

periodontitis. By applying DL methods such as image segmentation and object detection, 

the objective aims to automate the measurement of BL percentage, which traditionally 

requires manual interpretation and measurement by clinicians.  

Automation of BL percentage measurement not only streamlines the diagnostic 

process but also enhances accuracy and consistency, mitigating the potential for human 

error. Additionally, by accurately quantifying BL percentage, DL-enabled automation can 

serve as a reliable predictor for determining the stage and grade of periodontitis. This 

predictive capability will facilitate early detection and intervention while enabling tailored 
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treatment strategies based on disease severity, ultimately improving patient outcomes in 

periodontal care. 

1.3.4 Objective 3 

To integrate the features obtained from image (through ViT) and text (through 

BERT) using a multimodal model to develop a comprehensive automated approach for 

predicting the stage and grade of disease. 

1.3.4.1 Hypothesis 

Integration of features obtained from both image and text processing methods 

through a multimodal model will lead to the development of a comprehensive automated 

approach for predicting the stage and grade of disease. This integrated approach is expected 

to enhance predictive accuracy and provide a more accurate understanding of disease 

progression. 

1.3.4.2 Rationale  

The rationale behind the proposed objective stems from the recognition that 

diseases often manifest through multifaceted symptoms and diagnostic markers, captured 

in both visual imagery and textual data such as clinical notes. By integrating information 

obtained from image and text processing methods, the objective seeks to capitalize on the 

complementary strengths of these modalities to create a more robust predictive model.  

The fusion of image and text data through a unified model is anticipated to yield 

synergistic benefits, enabling a more comprehensive understanding of disease progression. 

This integrated approach leverages the nuanced insights offered by both visual and textual 
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information, allowing for a more precise assessment of disease severity and progression. 

Ultimately, the development of a comprehensive automated approach holds promise for 

improving diagnostic accuracy, facilitating earlier intervention, and optimizing patient care 

outcomes. 

1.4 Scope of the Thesis 

Three hypotheses and objectives are tested in this study as outlined in three 

chapters (chapters 2-4), with two additional chapters for the introduction (chapter 1) 

and a final chapter (chapter 5) for general discussion and conclusion. 

Chapter 2 tested the first hypothesis and focused on the application of NLP method 

through BERT analysis to extract the information collected in patients’ textual notes for 

predicting the stage and grade of the periodontitis. The results related to this chapter were 

recently submitted to the Journal of PLOS Digital Health. 

Chapter 3 tested the second hypothesis and focused on the application of different 

DL models for analyzing PA radiographs to measure the percentage of BL. This 

measurement was used for predicting the stage and grade of the periodontal disease. The 

results related to this chapter were recently submitted to the Journals of Clinical and 

Experimental Dental research and Frontiers in Dental Medicine. 

Chapter 4 tested the third hypothesis and integrated the text as well as image data 

for introducing a comprehensive approach in determining the stage and grade of 

periodontitis. This study revealed that integrating the text data with their corresponding PA 

radiographs can improve the classification performance in determining the stage and grade 

of periodontitis. The results related to this chapter were recently submitted to the Journal 

of Clinical Periodontology.  
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Lastly, Chapter 5 discusses the outcome of these studies, their interrelationship, and 

their significance in the dental setting. Study limitations and future directions are 

highlighted as well. 
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Chapter 2- Classification of Periodontitis Stage and Grade Using Bidirectional 

Encoder Representations from Transformers, A Natural Language Processing 

Technique 

2.1 BACKGROUND 

Periodontitis is a multifactorial and microbiome-associated inflammatory disease 

that occurs in the dental supporting tissues. Progression of the disease can adversely affect 

oral and systemic health and result in tooth loss, reduction of masticatory performance 

(207) as well as having association with diabetes (208), and rheumatoid arthritis (209). 

Thus, periodontitis and its complications will impose substantially negative effects on oral 

health related quality of life (OHRQoL), while successful and timely diagnosis and 

management of the disease may improve patients’ OHRQoL (207,210). Moreover, early 

detection and diagnosis of periodontitis can help in preventing the consequent costly and 

invasive dental treatment (211).   

According to the 2017 World Workshop on the classification of Periodontal and 

Peri-implant Diseases and Conditions (2), the recent method for classifying periodontitis 

is based on staging and grading. Staging is determined through the severity of the disease 

and complexity of its management, while grade is an indicator of the rate of periodontitis 

progression assessed according to the history and the presence of risk factors for the 

disease. According to the criteria defined for stage and grade of the periodontal disease (2), 

clinicians traditionally analyze patients’ systemic, clinical, and radiographic data collected 

in periodontal charts over time to determine the stage and grade of periodontitis. In recent 

decades, electronic dental records (EDR) have been introduced for collection of patient 

data, which are found to have superiority over paper charts in terms of higher storage 
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capacity, time efficiency, ease of information retrieval and accessibility (9). In addition, 

new computerized techniques known as artificial intelligence (AI) and its subsets like 

machine learning (ML) provide opportunities to extract valuable information from 

complex data and analyze various relationships to benefit patients (212). AI is an evolving 

field that seeks to automate tasks that would require intelligence if it was done by humans. 

ML also has the potential to monitor and detect patterns of patient presentations and risk 

factors (105, 213).  

Recently, neural networks (NN) models- a powerful tool in ML- are gaining 

attraction and are being extensively used in the area of diagnosis (214), prognosis (215), 

classification (216), and predictions (217,218) due to their ability of modelling non-linear 

relationships among the hidden variables in different formats of data including images and 

texts.  Moreover, advancement in text mining and natural language processing (NLP) 

techniques - also a branch of AI techniques- such as Bidirectional Encoder Representations 

from Transformers (BERT), significantly improved the accuracy of text classification 

systems using deep learning models (DL) (219).  

NLP methods have been widely used for extracting information from the patient’s 

electronic records in medicine and dentistry (220-223). Chen et al., applied NLP techniques 

by implementing Sentence2vec and Word2vec approaches to learn sentence vectors and 

word vectors, and to extract information from Chinese EDR. They reported that their NLP 

workflow can efficiently structure narrative text from EDR (224). Patel et al. in a recent 

study developed and applied two automated NLP algorithms (approximate string-matching 

function and Levestein Distant Function) to extract information from clinical notes to track 

periodontal disease change over time using longitudinal EDR. They concluded that 
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utilizing longitudinal EDR data to track disease changes over 15 years was a feasible 

method that could be applied for studying clinical courses using AI and ML methods (225). 

The application of transformers in NLP tasks was accelerated with the advent of a 

specific transformer-based language model called the BERT (104). BERT is a transformer-

based encoder model for language representation that uses a multi-head attention 

mechanism and a bidirectional approach to learn the contextual relations between words 

and sentences in a text for an accurate representation of the entire text (226). BERT is a 

language model which uses transformers for text representation, and supports the 

pretraining and fine tuning of the model in the case of textual data. Application of BERT 

and related architectures have resulted in considerable improvements in multiple medical 

applications, including processing of electronic health records (227), outcome prediction 

(122) identification of medical terms and concepts (228), and others. Despite its success in 

the medical field, there are no studies that assess the BERT application in predicting the 

stage and grade of the periodontal disease using patients’ textual notes.  

It has been shown that AI techniques such as text mining and DL algorithms can be 

successfully applied for extracting semantic information from narrative patients’ charts in 

dentistry, classifying the periodontal disease and predicting the factors influencing the 

periodontitis occurrence (229). Compared to the rule-based approaches using NLP tools, 

DL models do not depend on the grammatical accuracy of sentences, so can extract implicit 

aspects following their identification (230).  However, the use of AI and DL techniques to 

review narrative patients’ charts and determine the contribution of its information to the 

stage and grade of periodontitis has not yet been studied to the authors’ knowledge. Thus, 
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in this study, we applied the BERT model to automate the process of classifying patients 

with periodontitis through unstructured patients’ notes.  

2.2 MATERIALS AND METHODS 

2.2.1 Study Population 

To demonstrate the applicability of the proposed method for accurate and timely 

classification of the stage and grade of periodontitis using the possible contributing factors 

mentioned in clinicians’ notes, we conducted a secondary data analysis on the intake 

patient textual notes from 2017 to 2021. The University Human Research Ethics Board 

approved this study (Pro00107743). A total of 1513 patients’ charts were extracted from 

which, 210 textual datasets (3 samples with stage I, 26 samples with stage II, and 181 

samples with stage III/IV. For grades, the distribution was 8 samples with grade A, 142 

samples with grade B, and 59 samples with grade C), each corresponding to patients with 

available PA radiographs for subsequent image processing, were reserved for the final 

model performance analysis to test the generalizability of the model. This selection 

facilitated the evaluation of the model's performance and enabled a direct comparison 

between the outcomes derived from text and subsequent image mining methodologies, 

utilizing an identical set of test samples. 

For training the BERT model, three hundred and nine patient clinical notes 

belonging to 309 patients referred to the University Periodontal Graduate Clinic were 

selected among the pool of 1513 patients’ charts. These clinical notes met the inclusion 

criteria, which involved having the stage and grade of the disease determined by a graduate 

student and confirmed by a periodontist. The prevalence of different periodontitis stage 
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and grades in the collected notes were as follows: stage I= 6, stage II= 36, stage III= 206, 

stage IV= 61, and grade A= 17, grade B= 202, grade C= 87 

2.2.2 Data Pre-processing 

The BERT training process for periodontitis staging was completed in two distinct 

levels. The objective of the first level was to train a model capable of categorizing 

periodontitis stages into four distinct groups, representative of the nuanced clinical 

presentation. The second level aimed to categorize these stages into three discrete groups 

denoted as I, II, and III/IV, aligning with a simplified classification schema intended for 

integration with the outcomes of image analysis. To achieve this objective, the gathered 

data pertaining to the stage of periodontal disease underwent re-coding, combining stage 

III and stage IV into a singular distinct group. 

 To complete the BERT analysis, we first imported the 309 textual patients' notes 

coupled with their stage and grade levels (as ground truth labels) into the Google 

Colaboratory environment (from https://colab.research.google.com/) and preprocessed the 

texts for computational analysis. In preprocessing, notes were tokenized at both word and 

sub-word levels to interpolate between word-based and character-based tokenization using 

the `tensorflow_text` package (from https://www.tensorflow.org/text) in Python. The 

hardware used for the experiments includes an NVIDIA Tesla T4 GPU, which features 

15,360 MiB (15 GB) of memory. The system was running CUDA Version 12.2, supported 

by NVIDIA Driver Version 535.104.05. 

Then, transformer-based special tokens, such as [CLS] and [SEP], were added to 

make each sentence’s beginning and ending understandable to the transformer system. 

Furthermore, in processing sequence data, it is prevalent for each input sentence to have 

http://www.tensorflow.org/text)
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different lengths. However, the input data for a DL model must have tensors with a specific 

shape. Therefore, padding and truncation strategies were used to make the shape of the 

sentences uniform to the tensor by adding zero values to sentences with fewer tokens (231). 

Finally, the dataset was split into a training set (70% of the data), a validation set (20% of 

the data), and a test set (10% of data).  

2.2.3 Data Augmentation 

The process of data augmentation involved enhancing the existing text data to 

enrich the training dataset for the BERT model. The aim of this approach was to improve 

the robustness and generalization capability of the BERT model by exposing it to a wider 

range of linguistic variations during training, ultimately enhancing its performance in 

various NLP tasks. Data augmentation was done after splitting the dataset to ensure there 

will be no data leakage into the test dataset. 

 To augment the textual patients’ information, we utilized a method called synonym 

replacement, wherein each word in the text was substituted with one of its synonyms, 

obtained from WordNet, a lexical database of English. This augmentation process was 

applied selectively to rows associated with specific labels (e.g., "stage I" and “grade A”) 

as there was less data related to these labels, ensuring relevance to the intended target and 

some balance among the classes. By iteratively replacing words with synonyms, 

augmented variations of the original text were generated, effectively diversifying the 

dataset. These augmented texts were then paired with their corresponding labels, forming 

a new dataset with increased volume and variability. The final result was 1416 texts 

belonging to 4 stages (stage I= 144, stage II= 360, stage III= 429, and stage IV= 484) and 

1447 texts belonging to 3 stages (stage I= 175, stage II= 630, and stage III/IV= 643) for 
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the 4-categories and 3-categories BERT models, respectively. Also, a total of 1431 texts 

belonging to 3 grades (grade A= 102, grade B= 581, grade C= 748) were obtained by 

applying text augmentation methods.  

2.2.4 Model Architecture 

2.2.4.1 BERT Model for Predicting Periodontitis Stage (4-Categories) 

After preprocessing and augmenting the data, the necessary libraries including the 

“class_weight” module from scikit-learn (232), which aids in addressing class imbalance 

issues in classification tasks, were imported. The model architecture employed in this 

chapter combines elements of BERT and LSTM (Long Short-Term Memory) layers to 

address the classification task. BERT, a pre-trained language model, serves as the 

foundation for understanding contextual information within textual data (226). 

Specifically, the "bert-base-uncased" model was utilized, known for its effectiveness in 

various NLP tasks. 

The input sequences were passed through the BERT model, and a recurrent network 

was used to aggregate the multiple embeddings into a single embedding after the 

transformer window swipes over the long text. The LSTM model was used as the recurrent 

layer to aggregate the BERT output at each time step. This model combines the data into a 

sequence of vectors having the same length relative to their temporal position and temporal 

dependency with respect to the features in the essays (233).  LSTM was selected over other 

potential operations because the LSTM layers tend to produce more accurate modelling 

results of deep connections between sequential features that can be used to improve score 

prediction for text classification tasks (233).  By combining BERT's contextual 
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understanding with LSTM's ability to model sequential data, the model aimed to capture 

both local and global dependencies within the input data, enhancing its predictive 

capabilities. 

The output of the LSTM layer was subsequently passed through additional dense 

and dropout layers with rectified linear unit (ReLU) activation functions. These layers 

enabled the model to learn higher-level features and prevent overfitting by introducing 

regularization. The final layer consisted of a fully connected neural network layer with 

softmax activation, producing classification probabilities for each class. For each input 

text, the selected text stage or text grade was the class with the highest probability in the 

neural network’s output. The number of units in this layer corresponds to the number of 

unique classes present in the training data (4 stages). 

For model compilation, the Adam optimizer was employed with a predefined 

learning rate of 5e-6. The choice of sparse categorical cross-entropy as the loss function 

was appropriate for multi-class classification tasks, facilitating the comparison between 

predicted and actual class labels. During model training, accuracy was used as the 

evaluation metric to provide insight into the model's performance across different epochs. 

To address potential class imbalance issues, class weights were computed and 

incorporated into the training process. These weights ensure that the model assigns 

appropriate importance to each class during optimization, thereby mitigating the impact of 

imbalanced data distributions. 

Additionally, early stopping was implemented as a regularization technique to 

prevent overfitting based on validation loss. Through monitoring the validation loss, the 

early stopping mechanism terminates training when the model's performance on unseen 
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data begins to deteriorate. By restoring the best weights observed during training, this 

approach helps to optimize the model's generalization ability and improve its performance 

on unseen data. 

The model was trained over 40 epochs using the `fit` method, which involves 

iterating over the training data in batches. The training process included data shuffling, 

batching, application of class weights, and monitoring of the validation set. By iteratively 

adjusting the model's parameters based on the optimization objective and evaluation 

metrics, the training phase aims to optimize the model's performance and enable it to 

generalize well to unseen data. Finally, the performance of the model was evaluated using 

evaluation metrics on an unseen new dataset comprising 210 new patients' charts. This 

assessment provided insights into the model's predictive accuracy and generalization 

ability when applied to previously unseen patient data. 

2.2.4.2 BERT Model for Predicting Periodontitis Stage (3-Categories) 

To train the BERT model for categorizing the stage of periodontal disease into 3 

groups, the same architecture of combined BERT and LSTM layers was implemented. Like 

the previous architecture, BERT remains pivotal for contextual understanding within 

textual data, utilizing the "bert-base-uncased" model pre-trained on large-scale corpora. 

However, a notable departure lies in the fine-tuning of BERT layers, denoted by setting the 

“trainable” parameter to “True”. This adjustment enables the model to adapt BERT's 

representations to the specific nuances of the classification task, enhancing its predictive 

capabilities. 
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Similar to the previous model, the output from the BERT layer underwent further 

processing through dense layers, albeit with the introduction of regularization techniques 

to mitigate overfitting. In this instance, each dense layer was accompanied by kernel 

regularization (“tf.keras.regularizers.l2”) with a specified regularization strength (0.01). 

By penalizing large weights in the model, regularization aids in preventing overfitting and 

improving the model's generalization ability. 

The model was then compiled using the Adam optimizer with a learning rate of 5e-

6, while sparse categorical cross-entropy served as the loss function for multi-class 

classification. The model's performance was evaluated based on accuracy during training. 

Similar to the previous model, class weights were incorporated into the training process to 

ensure equal consideration of each class. Furthermore, early stopping was employed as a 

regularization strategy to prevent overfitting by monitoring the validation loss. The model 

was trained over 8 epochs and the generalizability of the model was evaluated by testing 

on the same 210 new unseen patients’ charts (stage I= 3, stage II= 27, and stage III/IV= 

180) using the evaluation metrics. 

2.2.4.3 BERT Model for Predicting Periodontitis Grade 

To train the model for the classification of periodontitis grade, the "bert-base-

uncased" variant of a BERT model, which is pre-trained on a large corpus of text data, was 

utilized. This model was then adapted for the classification task, with the number of output 

labels set to match the unique labels present in the training dataset (3). The input layers 

consisted of two tensors: “input_ids” and “attention_masks”, both of shape (311,), which 

encoded sequences of text data. 
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The BERT model generated contextualized embeddings for each token in the input 

sequences. The output from the BERT model was further processed, with only the second 

output tensor retained. This tensor captures the pooled representation of the input sequence, 

which is then passed through a dense layer with 64 units and ReLU activation function, 

followed by a dropout layer with a dropout rate of 0.2 to reduce overfitting. 

Subsequently, the output was fed into another dense layer with a softmax activation 

function, generating probabilities for each class label in the dataset. This architecture 

formed the basis of a neural network model that learns to classify input sequences into 

different classes based on their contextual representations. 

The model was then compiled using the Adam optimizer with a learning rate of 5e-

6 and the sparse categorical cross-entropy loss function. The decision to use a relatively 

slow learning rate was made to carefully balance the training process, ensuring that the 

model converges effectively while avoiding potential challenges associated with higher 

learning rates. With a slow learning rate, the model can fine-tune its parameters more 

precisely, which is particularly beneficial in complex models, like BERT architectures, 

where fine-tuning pre-trained weights is crucial. 

Accuracy was monitored as a metric during training. Class weights were also 

computed similarly to the previous models to address any class imbalance present in the 

training dataset, ensuring that the model learns from all classes equally effectively. 

During training, the model was trained over 7 epochs, with a batch size of 20. Early 

stopping was applied as a regularization technique to prevent overfitting, monitoring the 

validation loss with a patience of 3 epochs. Finally, the generalizability of the model was 
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evaluated by testing on the same 210 new unseen patients’ charts (8 samples with grade A, 

142 samples with grade B, and 59 samples with grade C) using the evaluation metrics. 

Figure 2.1 represents a flowchart of the whole process from chart selection to the 

BERT application for feature extraction and classification. 

2.2.5 Evaluation of Model Performance 

 Evaluation metrics included accuracy, which is the ratio of correctly predicted 

observations to the total observations; recall, which is the ratio of true positives to the sum 

of true positives and false negatives; precision, which is the ratio of true positives to the 

sum of true positives and false positives; and the F1-score, which is the harmonic mean of 

precision and recall (234). These metrics range from 0 to 1, with 1 indicating perfect 

performance (235). 

2.2.6 Feature Understanding 

The Local Interpretable Model-Agnostic Explanations (LIME) method was also 

utilized to interpret and understand the key words and features that our BERT model 

identified as most probable for distinguishing between different stages and grades of the 

disease.  
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Figure 2.1- Flowchart of the text processing method for classifying stage and grade of 

periodontitis 

2.3 RESULTS 

Figure 2.2 (A and B) illustrates the most influential words and features contributing 

to the model's predictions for stage III and grade B as an example. 
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(A) 

 

(B) 
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Figure 2.2- LIME-based interpretation of BERT model predictions. (A) Key features for 

classifying stage III vs. non-stage III. (B) Significant words and features for 

distinguishing grade B vs. non-grade B 

2.3.1 Prediction of Periodontitis Stage (4-Categories) 

To predict the stage of periodontal disease, the preprocessed and augmented 

training dataset was shuffled to introduce randomness, with a batch size of 20 utilized for 

efficient training. Over the course of 40 epochs, the model was trained on the shuffled 

dataset, with validation data used to monitor performance and prevent overfitting. The 

results showed a high accuracy in predicting the stage of the disease using patients’ clinical 

notes (Figure 2.3). The model could predict the patients’ stage with 68.01% training, 

69.01% validation, and 66.2% test accuracy. Additionally, the model performance was 

evaluated on a set of 210 new patients’ charts (stage I= 3, stage II= 27, stage III= 139, and 

stage IV= 41) and showed higher accuracy in classifying stage III compared to other stages 

(64%). The precision column indicated that our model was successful in assigning 70% of 

the patients in stage III to the right class. The F1-Score column, which is usually used to 

judge the overall performance of the model and is defined as the average of precision and 

recall values in the previous columns, showed that our proposed model performed well in 

predicting the patients with stage III (F1-score=79%) compared to other stages (Table 2.1).  
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Figure 2.3- The results of the BERT model for predicting the 4-class stage of 

periodontitis 

 

Table 2.1- Model performance for predicting the stage of periodontitis on a new unseen 

dataset 

Stage Precision Recall F1-score 

I 0.00 0.00 0.00 

II 0.30 0.30 0.30 

III 0.70 0.91 0.79 

IV 0.00 0.00 0.00 

 

2.3.2 Prediction of Periodontitis Stage (3-Categories) 

To predict the stage of periodontal disease into 3 distinct categories for 

concatenating with image processing results, the preprocessed and augmented training 
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dataset was utilized for training a BERT model over the course of 8 epochs, with validation 

data used to monitor performance and prevent overfitting.  

The results showed a high accuracy in predicting the stage of the disease using 

patients’ clinical notes (Figure 2.4). The model could predict the patients’ stage with 

96.45% training, 98.62% validation, and 79.25% test accuracy. The model performance 

was evaluated on the same set of 210 new patients’ charts and it showed a high accuracy 

in classifying stage III/IV compared to other stages, and a higher accuracy compared to 4-

categories predictions (78% vs. 64%). The precision column indicates that the model was 

successful in assigning 87% of the patients in stage III/IV to the right class. The F1-Score 

column showed that our proposed model performed highly accurately in predicting the 

patients with stage III/IV (87%) compared to other stages (Table 2.2).  

 

 

Figure 2.4- The results of the BERT model for predicting the 3-class stage of 

periodontitis 
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Table 2.2- Model performance for predicting the stage of periodontitis on new unseen 

dataset 

Stage Precision Recall F1-score 

I 0.00 0.00 0.00 

II 0.22 0.22 0.22 

III/IV 0.87 0.87 0.87 

 

2.3.3 Prediction of Periodontitis Grade 

To predict the grade of periodontal disease, the training dataset was preprocessed 

and enriched by shuffling to ensure randomness. A batch size of 20 was utilized to enhance 

training efficiency. The model underwent 7 training epochs on the shuffled dataset, with 

validation data employed to monitor performance and counteract overfitting. 

The outcomes revealed promising results in predicting periodontitis grade using 

patients’ clinical notes (Figure 2.5). The model achieved 89.7% training, 88.9% validation, 

and 72.3% test accuracy in predicting patients’ periodontitis grades. Particularly, the model 

demonstrated high precision in classifying grade B compared to other grades, successfully 

assigning 72% of patients in grade B to the correct class. 

The performance of the model was evaluated on the same 210 patients’ chart, which 

had the image data available. One patient’s chart was excluded as the grade of the disease 
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was not determined by the periodontist (grade A= 8, grade B= 142, and grade C= 59). The 

proposed BERT model effectively predicted the grades of these new, unseen patients with 

an accuracy of 65%. Table 2.3 illustrates the model's performance on the new dataset, 

categorized according to the individual grades of the disease. The F1-Score column showed 

that the proposed model performed highly accurately in predicting the patients with grade 

B (77%) compared to other grades. 

 

 

Figure 2.5- The results of the BERT model for predicting the grade of periodontitis 

 

Table 2.3- Model performance for predicting the grade of periodontitis on new unseen 

dataset 

Grade Precision Recall F1-score 

A 0.14 0.12 0.13 

B 0.72 0.83 0.77 

C 0.45 0.29 0.35 
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2.4 DISCUSSION 

The increasing popularity of computerized dental records provides the opportunity 

to utilize AI-based technologies such as ML and DL models to improve patient care; 

however, a recent review has reported dentistry’s clinical integration of such techniques 

has lagged (70). To the authors’ knowledge, there have only been a few studies that have 

investigated the use of ML and DL techniques in the diagnosis of periodontitis. Most of 

these studies have focused on analysing panoramic radiographs/and or clinical 

examinations or the biomarkers/bacteria extracted from the saliva (211), which is costly 

and time-consuming. In this dissertation, an NLP approach was evaluated for automatically 

extracting patient data from textual notes and demonstrated its ability to classify the stage 

and grade of the periodontitis accurately.  

Currently, digital dental and medical records are gaining popularity for storing 

patient information. Data in electronic medical/dental records can be divided into three 

kinds: structured data, semi-structured data, and unstructured data. Unstructured text is 

defined as narrative data, consisting of clinical notes, discharge records, and radiology 

reports. Unstructured texts store a lot of valuable information however, common structural 

frameworks are usually lacking, and many errors including improper grammatical use, 

spelling errors, local dialects, and semantic ambiguities exist, which result in the 

complexity of data processing and analysis. Retrieval and application of such valuable 

information is possible through the application of text mining methods (222).  

In this chapter of the dissertation, the BERT model was applied to predict the stage 

and grade of the periodontal disease using the patients’ textual notes. The results 
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demonstrated that the BERT model was able to classify the correct stage and grade of the 

patients’ periodontal disease accurately. To date, no previous studies have used patients’ 

dental records collected as text files for analysis via BERT algorithms. In medicine, Haulcy 

and Glass compared the performance of five classifiers, as well as CNNs and LSTM 

networks on classification of Alzheimer’s disease using audio features and text features 

(236). They reported that the top-performing classification models were the SVM and 

random forest classifiers trained on BERT embeddings, which both achieved an accuracy 

of 85.4% on the test set. Recently, new domain-specific BERT models pretrained on large-

scale biomedical (BioBERT) and medical dictionaries (Med-BERT) have been introduced. 

These models have shown promising results in extracting valuable information from 

biomedical and medical literature, respectively, and outperformed the state-of-the-art 

methods on medical and biomedical tasks (237,238). However, we used a base architecture 

in the study’s BERT model, as the dental patients’ notes mostly include a detailed 

document of the dental history, physical examination, diagnosis, and treatment planning, 

which is different from the biomedical or medical records. Moreover, as the study is the 

very first application of the BERT model on patients’ dental notes, we decided to use a 

more generic architecture. 

As the current study aimed to examine several different health-related medical and 

dental possible contributing factors using patient data, NLP methods were best suited to 

address the complexity and multi-dimensional nature of each due to their known ability to 

detect complex relationships and classify the outcome accurately (70). NLP models 

outperform the traditional statistical methods as they can consider a broader range of 
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features without strict, predetermined predictor and outcome parameters and classify the 

output with impressive accuracy (239). 

In spite of its promising results in medical research, utilization of DL and NN in 

dental research generally and in periodontal field specifically, is relatively scarce. A recent 

review by Ossowska et al. (240) has shown that new technologies are developing very 

quickly in the field of dentistry and AI is spreading into periodontology with the greatest 

focus on evaluating the periodontal BL, peri-implant BL, and to predict the development 

of periodontitis due to the psychological features. 

The potential utility of applying ML and DL models to automatically classify the 

stage and grade of the periodontitis using patients’ notes have been found in the current 

study. The BERT method presented, relying on intelligent text mining, yielded promising 

results. However, these findings must be interpreted with caution according to the 

preliminary nature of this research as it is a novel method applied on unstructured patient 

notes recruited from a university periodontal clinic. Therefore, the DL technique used in 

the present study requires validation to confirm its efficiency on different types of 

medical/dental records from other centers. Due to the imbalanced input data, including 

more patients with stage III and grade B compared to stages I or II and grade A, the 

accuracy of the model was shown to be higher in these classes. This can be attributed to 

the higher number of referrals among patients in more severe periodontal conditions.  

Future studies should analyze larger and more balanced datasets using these ML/DL 

techniques to provide additional validation. However, while our method is novel, our 

findings showed a relatively high accuracy in correct classification of the stage and grade 

of the periodontitis, which suggests that our proposed method was successful in extracting 
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the relevant information from patient notes and classifying the stage and grade of the 

periodontal disease.  

2.5 CONCLUSION 

The new proposed model presented in this chapter is the preliminary application of 

NLP techniques to assign the stage and grade of the periodontal disease using patients’ 

notes compared to the previous models of utilizing radiographic images and salivary 

samples. This model can identify the stage and grade of the periodontitis without the need 

for a comprehensive clinical and radiographic examination, which is routinely required for 

disease diagnosis thus, hope to increase enrollment in clinical trials of new therapies, and 

improve patient outcomes by enabling periodontists to diagnose periodontal disease using 

the information collected in patients’ notes in an accurate and timely manner. This 

technique can be also applied to other health-care providers in need of using patients’ 

information as large amounts of unstructured texts to classify stages of a disease. It is also 

suggested that future studies compare various BERT models to identify the best performing 

one for extracting information from EDR. 
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Chapter 3- Automating Bone Loss Measurement on Periapical Radiographs for 

Predicting the Periodontitis Stage and Grade  

3.1 BACKGROUND 

Periodontitis is a multifactorial and microbiome-associated inflammatory disease 

that occurs in the dental supporting tissues (periodontium, which includes gingiva, 

periodontal ligament, cementum, and alveolar bone presenting as bone loss (BL)) 

(2,3,211). Progression of the disease can adversely affect oral and systemic health and 

result in tooth loss, reduction of masticatory performance (207) as well as having 

association with diabetes (208) and coronary artery disease (241). Thus, periodontitis and 

its complications will impose substantially negative effects on oral health-related quality 

of life (OHRQoL) (207,210). Moreover, early detection and diagnosis of periodontitis can 

help in preventing the consequent costly and invasive dental treatment (211).  

In clinical settings, the assessment of periodontal conditions involves visual and 

tactile examinations. The gold standard for examination includes measurements of 

periodontal pocket depth (PPD), bleeding on probing (BOP), and clinical attachment loss 

(CAL) (45). Radiographs are employed to confirm diagnosis and treatment plans. 

However, variations in probe tip diameter, angulation, probing force, and intra-examiner 

differences can result in divergent outcomes. Additionally, in instances of mild attachment 

loss or when determining the subgingival localization of the cementoenamel junction 

(CEJ), accurately determining CAL is challenging due to the difficulty in ascertaining CEJ 

location. In such cases, precise and reliable assessment relies on the interpretation of 
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radiographic bone levels radiographically (45,242). Alveolar BL, is defined as any distance 

from CEJ to the alveolar bone crest that is greater than 2mm (46). 

Despite the improvements in the quality of image and resolution over the past 

decade, interpreting dental imaging is primarily and subjectively conducted by the trained 

dentist based on the individual's judgement and experience (69,108,110). Inconsistencies 

in their interpretation may result in misdiagnosis and, in the process of periodontitis 

evaluation, may lead to wrong measurement of BL (112). Currently, deep learning (DL) 

techniques are being widely applied for quick evaluation of dental radiographs, without 

subjective interpretations.  

Traditional methods of automated medical image analysis include large amounts of 

rule-based algorithms or manual preprocessing methods that are time-consuming with low 

quality and poor generalization capability (114,115,243). This underwent changes with the 

introduction of convolutional neural networks (CNN) algorithms using DL, which allow 

for direct interference, recognition and classification of medical images (116,117). Due to 

its demonstrated efficiency in the field of image understanding (image segmentation, 

classification, localization and detection) through feature extraction of input data, it is a 

widely used technique for solving medical image understanding (71).  

Image segmentation is the process of identifying key components of an image and 

separating the image into individual sections or regions- is a fundamental task in medical 

image processing (157). Several DL models have been introduced for medical image 

segmentation like the U-Net and mask-RCNN (167). Most image segmentation DL models 

are based on CNNs (168). Specifically, the U-Net architecture has been thoroughly studied 

for biomedical image segmentation due to its ability to produce highly accurate segmented 
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images using limited training data (170,171). The popularity of this algorithm is evident 

from its widespread adoption across major primary imaging techniques, including 

computed tomography scans, magnetic resonance imaging, X-rays, and microscopy (171). 

An alternative method that employs CNN principles is You Only Look Once 

(YOLO), which is mainly designed to precisely identify objects in real time (139). A 

complex generalized approach toward object identification, YOLO combines concurrent 

processing of information at different convolutional layers with up-and-down sampling 

approaches similar to U-Net. One of the characteristics of YOLO is to extract features from 

the entire image and predict bounding boxes (152). In the literature, older versions of 

YOLO have been widely used in the field of dental radiology to detect mandibular fractures 

in panoramic radiographs (153), primary and permanent tooth detection on pediatric dental 

radiographs (154), detection of cyst and tumors of the jaw (155), periodontal BL detection 

(244), and detection of impacted mandibular third molar teeth (245). However, new 

versions of YOLO-v9, released in January 2024, demonstrate superior performance with 

respect to throughput and computational load requirements (156), and provide a network 

architecture that requires lower computing and training requirements, hence providing a 

more effective feature integration method, more accurate object detection performance, a 

more robust loss function, and an increased label assignment and model training efficiency 

(156).  

Several studies have utilized image mining approaches to detect the amount of BL 

for classifying periodontitis. While accurate identification and delineation of BL is crucial 

for periodontal treatment planning and monitoring disease progression, most studies have 

focused on measuring the BL at two points (mesial and distal) (167,234,246,247). Also, 
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panoramic radiographs have been used in most studies (173,244), despite it has been shown 

that the periapical (PA) or bitewing radiographs are the choice images for an accurate 

evaluation of BL (248,249).  

Given the importance of accurate measurement of the amount of BL, and 

considering that the amount of BL at any point between the mesial and distal aspects of the 

tooth may be greater than at these two specific sites, which will have the potential for 

underestimating the extent of BL, the objective of this chapter was to introduce automated 

approaches for segmenting BL for each tooth across its entire width and detect teeth apexes 

for measuring the root length in PA radiographs, and use above information to predict the 

stage and grade of periodontitis by computing the percentage of BL (BL ratio to the root 

length).   

3.2 MATERIALS AND METHODS 

3.2.1 Study Population 

After obtaining the University Human Research Ethics Board approval under the 

code Pro00107743, PA radiographs belonging to the same patients whose clinical notes 

were used in Chapter 2 were collected from the Periodontal Graduate Program in the 

School of Dentistry between 2017-2021. Two hundred and ten patients had PA radiographs 

in their records and a total of 1582 images were included in the study for testing the model 

performance. To obtain predictions from the model for images associated with 210 

patients, whose charts were utilized to assess the performance of the text processing model 

in the previous chapter, and to seamlessly integrate the predictions from both text and 

image modalities, training was conducted for both BL segmentation and apex detection 
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models utilizing a dataset comprising 1000 PA images sourced from a private dental 

radiology office in Iran. 

3.2.2 Bone Loss Segmentation 

3.2.2.1 Data Preprocessing  

To detect the amount of BL, the images were processed using an open-source tool 

called Roboflow (250) for annotation using polygons. Each radiograph was read by a 

dentist and a periodontist with more than 5 years of clinical experience. To manually 

determine the BL (the area between the CEJ of the teeth and bone level in tooth-bearing 

areas), a polygon passing through the CEJ of the teeth and the corresponding bone levels 

was drawn (Figure 3.1). The final label was determined based on consensus between the 

dentist and periodontist.  

 

Figure 3.1- A polygon indicating the BL area (between CEJ and bone level)  

The annotated area was then changed to a binary mask (BL as the mask area or 

region of interest and the background structures in black). The images and their 

corresponding binary masks were exported as Portable Network Graphics (PNG) format 
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for further analysis (Figure 3.2). The image dataset was preprocessed for future analysis, 

which included resizing to 160*320 pixels and enhancement using histogram equalization 

technique.  

 

Figure 3.2- An example of a PA image with its corresponding mask 

3.2.2.2 Data Augmentation 

Image augmentation continued after data splitting to ensure that data leakage would 

not occur. First, the total of 1000 PA images was randomly split into three parts: training, 

validation, and testing in an 80:10:10 ratio (251,252), respectively using scikit-learn library 

(232), then the augmentation was done through horizontal flipping and/or rotating at 

different angles (253) to increase out the dataset by two folds.  The final result was a total 

of 1600 PA images and their corresponding masks for training and 200 images and masks 

for validation. 

3.2.2.3 U-Net Architecture for Bone Loss Segmentation 

Following data augmentation, the image dataset was normalized by dividing by 255 

to scale down the pixel values of the images and their corresponding masks to a range 

between 0 and 1. The set of 1582 images obtained from 210 patients referred to the 

university periodontal clinic were finally used to evaluate the model performance and its 

generalizability.  
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Different variations of U-Net (128) were trained and evaluated to find the best 

architecture and hyperparameter settings for the segmentation model. Finally, a U-Net 

model featuring 4 encoder blocks with increasing filters (64, 128, 256, 528), a bridge of a 

convolutional block with 1024 filters, and 4 corresponding decoder blocks with decreasing 

filters (512, 256, 128, 64) was utilized for training. The model parameters are listed in 

Table 3.1, and the model architecture is provided as Appendix 1.  

Table 3.1- Parameters for U-Net model training 

Property Value 

Batch size 8 

Epochs 15 

Learning rate 0.0001 

Optimizer Adam 

Drop-out rate 0.2 

Loss function Dice coefficient 

Activation ReLU 

Sigmoid (final layer) 

 

3.2.2.4 Evaluation of Diagnostic Outcome 

Evaluation metrics include accuracy (the ratio of the correctly predicted 

observations to the total observations), recall (the ratio of true positives to the sum of true 

positives and false negatives), precision (the ratio of true positives to the sum of true 

positives and false positives), and F1-score (the harmonic mean of precision and recall 
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(234). Also, the Intersection over Union (IoU) and area under receiver operating 

characteristics (ROC) curve were used to evaluate the model performance on the validation 

dataset. The magnitude of these metrics ranges from 0 to 1 indicating a perfect performance 

(235).  

Additionally, the comparison was made between the maximum amount of BL 

predicted by the model for each tooth and the measurements obtained by the dentist and 

periodontist using several metrics that are the standard metrics in understanding the 

efficiency of the model in terms of error rate, including the mean absolute error (MAE) 

and root mean square error (RMSE). Also, the intraclass correlation coefficient (ICC) 

(254,255), which is a desirable measure of reliability that reflects both degree of correlation 

and agreement between measurements was used to assess the consistency and agreement 

among three raters (dentist, periodontist, and model predictions) concerning numerical 

measurements. For the MAE and RMSE the best value equals 0 while the worst value can 

be infinity (256). For ICC, values less than 0.5 are indicative of poor reliability, values 

between 0.5 and 0.75 indicate moderate reliability, values between 0.75 and 0.9 indicate 

good reliability, and values greater than 0.90 indicate excellent reliability (257).  

3.2.3 Apex detection 

3.2.3.1 Data Preprocessing 

A total of 1000 PA images were imported into Roboflow (250) for annotation. 

Annotation was performed by delineating bounding boxes around the apices, ensuring that 

the center of each box corresponded to the apex's anatomical point. The annotations were 
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carried out by a general dentist and subsequently reviewed and approved by a periodontist 

with over 10 years of experience (Figure 3.3).  

 

 

Figure 3.3- Annotating the apexes on PA images using bounding boxes   

Subsequently, the annotated images were exported in PNG format for subsequent 

analysis. The final determination of the bounding box was made through consensus 

between the dentist and the periodontist. Furthermore, the image dataset underwent 

preprocessing steps in preparation for future analysis. This preprocessing included resizing 

all images to dimensions of 160 x 320 pixels. This standardized format ensures consistency 

and facilitates subsequent computational procedures, ensuring the compatibility of the 

dataset for further analysis and model training.  

3.2.3.2 Data Augmentation 

The data was split using Roboflow (250) splitting tool into 70% training, 20% 

validation and 10% test datasets. Image augmentation was done afterwards during model 

training to ensure that data leakage would not occur.  
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3.2.3.3 YOLO-v9 Architecture for Apex Detection 

To detect the apexes of the teeth, the YOLOv9 model was utilized. 

Hyperparameters were defined to optimize training, with a learning rate set at 0.01. The 

model was trained for 75 epochs with a batch size of 16. During training, various 

techniques were employed to enhance model performance and robustness. These included: 

data augmentation using techniques such as blur, median blur, and Contrast Limited 

Adaptive Histogram Equalization (CLAHE) to introduce diversity and variability in the 

training dataset. Additionally, optimization was performed using the Stochastic Gradient 

Descent (SGD) optimizer with a learning rate of 0.01. The training process was monitored 

using metrics such as box loss, class loss, and DFL (distribution focal loss), which were 

computed and evaluated across multiple epochs. 

The training dataset consisted of annotated images and labels, which were scanned 

and preprocessed before training commenced. The dataset was divided into training and 

validation sets, with appropriate caching mechanisms implemented to optimize data 

loading and processing efficiency. Furthermore, performance evaluation was conducted 

periodically during training using metrics such as precision, recall, and mean Average 

Precision (mAP) calculated at various IoU thresholds. The model parameters are listed in 

Table 3.2. 

Table 3.2- Parameters for YOLO-v9 model training 

Property Value 
Batch size 16 
Epochs 75 
Learning rate 0.01 
Optimizer Stochastic Gradient Descent (SGD) 
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Loss function Box loss, Class loss, and DFL (distribution focal loss) loss 

Activation Leaky ReLU 

Sigmoid (final layer) 

3.2.3.4 Evaluation of Diagnostic Outcome 

To evaluate the model performance and generalizability in the correct detection of root 

apexes, precision, recall, and mAP were used on the validation dataset. Additionally, the 

model's performance on the new test dataset (1582 images) was evaluated using MAE (the 

average magnitude of the errors between the predicted values and the actual values), RMSE 

(the square root of the mean of the squared differences between the predicted and actual 

values), and ICC (two-way random effect, single rater, absolute agreement) (255, 258) to 

compare the agreement in the coordinates of the apexes in the ground truth with those 

predicted by the model. 

3.2.4 Measurement of Maximum Bone Loss Percentage 

3.2.4.1 Finding the Maximum BL Height 

The maximum BL for each tooth on 1582 new PA radiographs was independently 

measured by a general dentist and a periodontist, both with over five years of experience. 

These measurements were conducted using Adobe Photoshop 24.1.1, where the cursor was 

dragged to draw a line connecting the CEJ to the deepest bone level via the ruler tool. BLs 

less than 2 mm from the CEJ were not considered normal, as they were not detectable by 

the model.  
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To determine the maximum height of BL in every individual PA radiograph first, a 

custom Python function was developed to automate the process of quantifying BL height 

within the images. This function utilized established image processing techniques, 

including thresholding and connected component analysis, to identify regions of interest 

corresponding to areas of BL. 

Upon thresholding the input image, connected component analysis was applied to 

identify distinct regions representing areas of BL (white areas in the masks). Each 

identified region was then enclosed within a bounding box, facilitating the extraction of its 

maximum height. This process ensures that the height measurement accurately reflects the 

extent of BL within the region of interest. 

To evaluate the performance of the method in accurately quantifying maximum BL 

height across the dataset, the measured maximum BL heights by three raters were 

compared using the MAE, RMSE, and ICC utilizing the “pingouin” package in Python 

(259) to assess the reliability or consistency of measurements taken by computer, dentist, 

and the periodontist. 

3.2.4.2 Finding the Root Length 

3.2.4.2.1 Finding the Coordinates of the Segmented CEJ Center 

To accurately calculate the root length of lower and upper teeth from radiographs, 

a method was developed to locate the center point of the CEJ using OpenCV for image 

processing. Firstly, the mask images were preprocessed by thresholding to obtain binary 

images. The thresholding technique converts grayscale images into binary images, 

simplifying subsequent image analysis. 
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Subsequently, contours representing the segmented mask in the binary images were 

identified using the contour detection algorithm provided by OpenCV. Contours are 

continuous lines or curves that represent the boundaries of objects in an image. In this 

context, contours outlined the edges of the BL area in the mask images. 

For each identified contour, the bounding rectangle enclosing the contour was 

calculated. From the bounding rectangle, the center point of the upper border of the 

segmented area for lower teeth, and lower border of the segmented area for the upper teeth 

were determined. This center point corresponds to the approximate location of the CEJ 

center, a critical anatomical landmark for measuring root length. The coordinates were then 

recorded for further analysis.  

To evaluate the performance of the method in accurately locating the CEJ center 

points across the dataset, the values were compared to their ground truth using the MAE, 

RMSE, and ICC. 

3.2.4.2.1 Measuring the Distance Between CEJ and Detected Apex 

To calculate the root length for finding the percentage of BL, the Euclidean distance 

formula - enables the calculation of the straight-line distance between two points on the 

image grid solely based on their pixel coordinates- was utilized. The formula encapsulates 

these computations: 

Distance= √(𝑋2 −  𝑋1)2  +  (𝑌2 − 𝑌1)2 

in which, (x1, y1) and (x2, y2) denote the pixel coordinates of the two points respectively. 

(x1) and (x2) represent the x-coordinates and (y1) and (y2) represent the y-coordinates of 

the first and second points. By applying this formula, the exact distance between the 
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obtained CEJ center point and the root apex were determined. Finally, using the maximum 

BL height and the root length for each individual tooth, the BL percentage was calculated.  

Also, the BL percentage for each tooth on PA radiographs was independently 

measured by the same dentist and periodontist. These measurements were performed using 

Adobe Photoshop 24.1.1, where the cursor was used to draw a line connecting the CEJ to 

the root apexes (root length) with the ruler tool. The BL percentage was calculated by 

dividing the maximum BL by the measured root length. The BL percentages obtained from 

all three raters were then compared to evaluate consistency using RMSE, MAE, and ICC 

metrics to find the consistency in the BL percentage measurements. 

3.2.4.4 Determining the Stage and Grade of Periodontitis 

The calculated percentage of the maximum BL was then used to categorize the 

patients’ periodontitis stage as stage I (<15%), stage II (15-33%), and stage III/IV (>33%). 

Also, to assign the grade of the disease, the same value was divided by the patient’s age. 

The outcome values less than 0.25 were assigned to grade A, between 0.25 and 1 were 

assigned to grade B, and values greater than 1 were assigned to grade C. 

To evaluate the final results, evaluation metrics (accuracy, precision, recall, and F1-

score) were used to compare the output of this chapter with the ground truth stages and 

grades. Figure 3.4 represents a flowchart illustrating the process of bone loss measurement 

and the classification of periodontitis stage and grade. 
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Figure 3.4- Flowchart of bone loss measurement and periodontitis stage and grade 

classification process 
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3.3 RESULTS 

3.3.1 Bone Loss Segmentation 

3.3.1.1 U-Net Performance in Segmenting BL 

The U-Net model achieved an accuracy of 94.5%, 92.9%, and 95.5% on training, 

validation, and test datasets, respectively for segmentation of BL. Over the course of 15 

epochs, the model demonstrated a consistent improvement in both training and validation 

performance, as indicated by the metrics of loss and accuracy. The learning rate remained 

constant at 0.0001 throughout the training, ensuring a stable and gradual optimization 

process without drastic changes that could destabilize the learning dynamics. The results 

of the training process are shown in Figure 3.5. 

 

Figure 3.5- Training results of the U-Net model for segmentation of BL on PA 

radiographs 

In addition to the training and validation metrics recorded over the 15 epochs, the 

model's performance was further evaluated using several other metrics to provide a 

comprehensive understanding of its effectiveness. The ROC curve and Area Under the 

Curve (AUC) were used to assess the model's diagnostic ability for both validation and 

new test images.  
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The ROC curve plots (Figure 3.6-A and B) the true positive rate (sensitivity) against 

the false positive rate (1-specificity) at various threshold settings, offering a graphical 

representation of the model's performance. The AUC provides an aggregate measure, with 

an AUC of 1 indicating a perfect model and an AUC of 0.5 indicating no discriminatory 

power (259). For the validation dataset, a high AUC value of 0.95 demonstrated the model's 

strong ability to segment the BL area correctly. Similarly, evaluating the ROC curve and 

AUC (0.91) on the test dataset confirmed the model's generalization capabilities. 

Consistent high AUC values for both datasets indicated that the model performed well 

without overfitting to the training data. 
 

 

Figure 3.6- ROC curve and AUC, evaluating the model performance on the 

validation (red) and test (green) datasets 

The IoU, also known as the Jaccard Index, was used to further evaluate the 

segmentation performance. IoU measures the overlap between the predicted and true 

segmentation masks by dividing the intersection of these masks by their union. IoU values 

also range from 0 to 1, with 1 indicating perfect segmentation where the predicted mask 

exactly matches the ground truth. This metric is particularly valuable for assessing how 
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well the model predicts the boundaries and shapes of objects within an image. High IoU 

values confirmed the model's ability to accurately capture the details and contours of the 

segmented objects. 

The proposed model showcased a great performance across various metrics on the 

test dataset. Figure 3.7 represents a sample of the prediction made by the model for 

segmenting the BL area in a PA image. The overall accuracy of the model on the test dataset 

was 95.5%, indicating a high level of correctness in its segmentation task.  

 

Figure 3.7- Model segmentation performance on the test dataset compared to the 

ground truth label 

Table 2 depicts the evaluation metrics used for assessment of model performance 

on a set of 1582 new PA images. According to Table 3.3, precision, measuring the 

proportion of correctly predicted positive pixels among all predicted positive pixels, was 

notably high at 97.26%. This suggests that the model exhibits a strong capability to 

accurately segment the regions of interest while minimizing false positives (260).  

However, the recall metric was comparatively lower at 63.90%. This indicates that while 

the model accurately identifies many positive pixels, it misses slightly more than 1/3 of the 

actual positive pixels present in the images. In segmentation tasks, recall reflects the 

model's ability to capture the entirety of the target objects, highlighting areas where the 

model may need improvement. 
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Table 3.3- Performance metrics of the proposed U-Net model on 1582 new set of 

PA images for segmenting BL 

Metric Value 

Accuracy 95.51 

Precision 97.26 

Recall 63.90 

F1-score 77.12 

Intersection over Union (IoU) 81.69 

 

The F1-score was recorded at 77.12%. This metric provides a balanced measure of 

the model's segmentation performance, considering both false positives and false 

negatives. The F1-score underscores the need for a trade-off between precision and recall, 

indicating areas where the model may excel in delineating object boundaries while still 

needing enhancement in capturing entire objects. The IoU was measured at 81.69%, 

indicative of the effectiveness of the model in capturing the relevant regions of interest 

within the images. 

3.3.1.2 CEJ Centre Localization  

In assessing the consistency of locating the CEJ center of the teeth for measuring 

the BL percentage, a thorough analysis was conducted using the same set of 1582 new test 
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images. The CEJ center coordinates obtained through the application of OpenCV library 

on the segmented masks were compared against ground truth annotations, which were 

verified by a consensus between a dentist and a periodontist. 

To quantitatively evaluate the agreement between the predicted and ground truth 

coordinates, RMSE and MAE metrics were used for both the X and Y coordinates (Table 

3.4). Moreover, the ICC was utilized to assess the inter-rater reliability between the model 

predictions and the ground truth annotations. The ICC values for CEJ_X and CEJ_Y 

coordinates were calculated as 0.9468 and 0.9629, respectively, indicating excellent 

agreement between the model predictions and the ground truth (257).  

Table 3.4- Assessment of the agreement between the predicted and ground truth 

coordinates of CEJ center points on the test PA images 

Metric CEJ-X coordinates CEJ-Y coordinates 

RMSE 12.64 (1.07 mm) 10.93 (0.92 mm) 

MAE 4.55 (0.38 mm) 4.25 (0.36 mm) 

3.3.1.3 Maximum Bone Loss Measurement 

The results revealed that the dentist and periodontist exhibited the highest RMSE 

(16.8, errors in pixel values equal to 1.4 mm) and MAE (13.68 equal to 1.15 mm), 

indicating the greatest discrepancies between these raters. In contrast, the periodontist and 

model measurements showed the lowest RMSE (14.80 equal to 1.2 mm) and a moderate 

MAE (12.17 equal to 1.03 mm), reflecting the best agreement. Measurements between the 

dentist and the model demonstrated intermediate values, with an RMSE of 15.29 (equal to 



 

 

87 

1.29 mm) and the lowest MAE (10.70 equal to 0.90 mm), indicating good but slightly better 

agreement than that between the periodontist and the model. 

Also, ICC analysis was done to have a better understanding of agreement among 3 

raters. The results indicated that there is a very high level of consistency among the three 

raters for the maximum BL measurement. Both individual and average raters’ scores 

showed strong agreement, with ICC values consistently above 0.94. This suggests that the 

ratings are reliable and that the maximum BL measurement done by model can be 

confidently used for further analysis or decision-making processes. 

Pairwise ICC comparison was done to find the agreement between every two raters 

(Table 3.5). According to the table, the best agreement was observed between the 

periodontist and the model measurements with the highest ICC1 (0.945) and F-value 

(35.71), and the 95% confidence interval (CI) of [0.92, 0.96]. A p-value of less than 0.001 

indicates that the observed correlation between the raters is highly statistically significant 

and unlikely to have occurred by chance. In other words, the null hypothesis (that there is 

no correlation between the raters) is rejected with high confidence. The extremely low p-

values support the reliability of the ICC values, reinforcing that the model’s predictions are 

consistent with both the dentist and periodontist’s measurements. 

Table 3.5- Inter-examiner reliability in maximum BL measurements among periodontist, 

GP, and the model 

Raters ICC F-value 95% CI p-value 

Dentist vs. model 0.944 34.73 0.92-0.96 < 0.001 
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Dentist vs. periodontist 0.937 30.88 0.91- 0.96 < 0.001 

Periodontist vs. model .945 35.71 0.92- 0.96 < 0.001 

3.3.2 Apex Detection 

The YOLOv9 model, employed for detecting the apexes of teeth, was trained for 

75 epochs, leveraging a range of hyperparameters to optimize its performance. The training 

results are shown in Figure 3.8.  

 

Figure 3.8- Training results of the YOLO-v9 model for apex detection  

A sample of the model performance in detection of root apexes has been shown in 

Figure 3.9.  
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Figure 3.9- An example of the model performance in detecting apexes on PA 

images 

The evaluation revealed that the model achieved a mAP of 66.7%. Additionally, 

the precision (P) metric stood at 79.6%, indicating the model's accuracy in correctly 

identifying apexes. The recall (R) metric, which measures the model's ability to capture all 

relevant instances, was recorded at 62.4%, showcasing less than two third of the true 

positives being correctly identified. 

Figure 3.10 demonstrates the P-R and F1-curves indicating the performance of the 

model in detecting root apexes. 

 

Figure 3.10- Performance analysis of YOLO-v9 model for apex detection: (A) PR 

and (B) F1-Score curves 
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To evaluate the performance of the YOLO-v9 model in accurately detecting tooth 

apexes, a comprehensive analysis was conducted using a new set of 1582 images sourced 

from patients whose periodontal charts had been previously analyzed through BERT 

analysis. The coordinates of the detected apexes by the model were compared against 

ground truth annotations, which were meticulously curated by a qualified dentist and 

subsequently confirmed by a periodontist to ensure accuracy and reliability. 

To quantitatively assess the agreement between the predicted and ground truth 

coordinates, RMSE and MAE for both the X and Y coordinates were used (Table 3.6).  

Furthermore, the ICC measure for absolute agreement was utilized to measure the 

inter-rater reliability between the model predictions and the ground truth. For the Apex_X 

coordinate, the ICC value was calculated as 0.9832 with a 95% confidence interval of 

[0.98, 0.99], indicating nearly perfect agreement between the model predictions and the 

ground truth. Similarly, for the Apex_Y coordinate, the ICC value was found to be 0.9936 

with a 95% confidence interval of [0.99, 1.00], demonstrating excellent agreement between 

the model predictions and the ground truth. 

Table 3.6- Assessment of the agreement between the predicted and ground truth 

coordinates of detected apexes on the test PA images 

Metric Apex-X coordinates Apex-Y coordinates 

RMSE 1.25 (0.1 mm) 4.8 (0.4 mm) 

MAE 4.8 (0.4 mm) 1.6 (0.13 mm) 
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3.3.3 Bone Loss Ratio 

The results indicated that the model has higher consistency with the periodontist 

(lower RMSE values) compared to the dentist. Specifically, the RMSE (3.98, 0.34 mm) 

values for the periodontist and measurements made by the model comparison were lower 

than those for the dentist and model comparison (4.64, 0.39 mm), suggesting that the 

model's predictions align more closely with those of the periodontist. Additionally, the 

comparison between the periodontist and the dentist revealed that there is a moderate level 

of consistency between their measurements (RMSE= 4.28, 0.36 mm). However, the 

slightly higher MAE and RMSE values in the dentist and periodontist comparison indicated 

some variability in their BL percentage evaluations. 

Additionally, the ICC analysis indicated an excellent consistency among the three 

raters for the BL percentage measurement. Both individual and average raters' scores 

demonstrated excellent agreement, with ICC values consistently exceeding 0.94.  

Pairwise ICC comparison was done to find the agreement between every two raters 

(Table 3.7). According to the table, the pair with the best agreement was the model vs. 

periodontist, with the highest ICC (0.9588) and F-value (47.5692), and a CI of [0.94, 0.97]. 

A p-value below 0.001 demonstrates that the observed agreement between the raters is 

statistically significant and not a result of random chance. This allows us to confidently 

reject the null hypothesis, which asserts that there is no correlation between the raters. The 

remarkably low p-values affirm the dependability of the ICC values, underscoring the 

consistency of the model’s predictions with the assessments made by both the dentist and 

the periodontist. 
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Table 3.7- Inter-examiner reliability in BL percentage measurements among 

periodontist, GP, and the model 

Raters ICC F-value 95% CI p-value 

Dentist vs. model 0.943 34.33 0.92- 0.96 < 0.001 

Dentist vs. periodontist 0.954 42.54 0.93- 0.97 < 0.001 

Periodontist vs. model 0.959 47.57 0.94- 0.97 < 0.001 

 

3.3.4 Prediction of Periodontitis Stage 

The performance of the proposed method for predicting the stage of periodontitis 

was evaluated on a new test dataset comprising 210 samples (181 stage III/IV, 27 stage II, 

and 3 stage I). The overall metrics for stage prediction demonstrated promising results, as 

shown in Table 3.8. The method achieved a precision of 0.7805, an accuracy of 0.7952, a 

recall of 0.7952, and an F1-score of 0.7878. These metrics indicate a robust performance 

in identifying the correct stage of periodontitis across the test dataset. 

The detailed analysis of the individual stage categories revealed varying degrees of 

prediction accuracy, as summarized in Table 3.7. For stage III/IV, the method exhibited 

excellent performance with a precision, recall, and accuracy of 1.0, 0.8950, and 0.8950, 

respectively, resulting in a high F1-score of 0.9446. This indicates that the model was 

particularly effective in identifying advanced stages of periodontitis. 

Conversely, the method's performance for stage II was significantly lower, with 

precision, recall, and accuracy of 1.0, 0.1923, and 0.1923, respectively, and an F1-score of 
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0.3226. This suggests difficulties in correctly identifying stage II cases, potentially due to 

overlapping features with other stages. 

For stage I, the method failed to correctly identify any cases, resulting in precision, 

recall, accuracy, and F1-score all being 0.0. This highlights a significant limitation in the 

model's ability to predict early-stage periodontitis, likely due to the insufficient number of 

training samples for stage I, with only three samples available. To enhance the model's 

performance in this category, further refinement and the inclusion of a larger, more 

representative dataset for early-stage periodontitis are necessary. 

 

Table 3.8- Metrics for individual stage categories 

Stage Precision Accuracy Recall F1-Score 

I 0.00 0.00 0.00 0.00 

II 1.00 0.19 0.19 0.32 

III/IV 1.00 0.89 0.89 0.94 

 

3.3.5 Prediction of Periodontitis Grade 

The performance of the proposed method for predicting the grade of periodontitis 

was assessed on a separate new test dataset of 209 samples (8 with grade A, 58 grade B, 

and 144 grade C). The overall metrics for grade prediction showed a precision of 0.67, an 

accuracy of 0.66, a recall of 0.66, and an F1-score of 0.66. These results indicate a 
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reasonable ability to predict the grade of periodontitis, although there is room for 

improvement. 

An in-depth examination of the individual grade categories provided further 

insights, as detailed in Table 3.9. For grade B, the method performed excellently with 

precision, recall, and accuracy of 1.0, 0.7083, and 0.7083, respectively, and an F1-score of 

0.8293. This reflects a strong capability in identifying grade B periodontitis cases. 

For grade C, the method also showed good performance with a precision, recall, 

and accuracy of 1.0, 0.6207, and 0.6207, respectively, and an F1-score of 0.7660. This 

suggests that the model is fairly accurate in predicting more advanced grades of 

periodontitis. However, the method struggled significantly with grade A predictions. The 

precision, recall, accuracy, and F1-score for grade A were all 0.0, indicating a complete 

inability to correctly identify any cases in this category. This underscores the need for 

further increase in the size of data by utilizing a larger, more diverse training dataset to 

capture the nuances of early-grade periodontitis. 

Table 3.9- Metrics for individual grade categories 

Garde Precision Accuracy Recall F1-Score 

A 0.00 0.00 0.00 0.00 

B 1.00 0.71 0.71 0.77 

C 1.00 0.62 0.62 0.83 
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3.4 DISCUSSION 

This chapter aimed to enhance the accuracy and efficiency of diagnosing and 

grading periodontal disease using advanced ML models. Specifically, a U-Net model for 

segmenting BL on PA images and a YOLO-v9 model for detecting the apexes of teeth were 

employed. These methods were chosen for their recent advancements and high 

performance in medical imaging tasks (156,161,162). Comparing our results with those 

from existing literature highlights both our achievements and the areas where our approach 

offers distinct advantages. 

3.4.1 Bone Loss Segmentation  

The proposed U-Net model achieved high performance in segmenting BL, with an 

accuracy of 95.62%, precision of 94.67%, recall of 66.06%, F1-score of 78.16%, and IoU 

of 80.74%. These metrics are competitive with those reported in similar studies, such as 

the work by Shon et al. (261), where the U-Net model was used to segment the boundary 

of periodontal BL (PBL) and CEJ on panoramic radiographs. In their approach, the U-Net 

algorithm was applied separately to detect PBL and CEJ boundaries by creating 

segmentation masks for each structure. The model was trained independently for PBL and 

CEJ segmentation, with training conducted for 30 epochs and a batch size of 16 on a dataset 

of 1044 panoramic radiographs. Shon et al. reported training and validation accuracies of 

98.6% and 98.9% for PBL and CEJ segmentation, respectively. 

In this chapter, PA radiographs, which are the standard for detecting periodontal 

disease (262-264), were utilized. The method for segmenting the boundaries of the BL and 

CEJ involved a single U-Net model, applied to segment the boundaries of both structures. 
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This approach simplifies the segmentation process and is tailored to the specific 

radiographic modality used in periodontal diagnosis. 

Chang et al. (105) also applied a hybrid DL approach for detecting the radiographic 

bone level on panoramic radiographs. The aim of their study was to develop an automated 

method for diagnosing PBL (of individual teeth) for staging the periodontitis according to 

the 2017 World Workshop criteria (2) on dental panoramic radiographs using the DL 

hybrid method. They applied a modified CNN from the Mask R-CNN based on a feature 

pyramid network (FPN) and a ResNet101 backbone to detect the PBL and CEJ on 330 

panoramic radiographs which were increased by 64 times using the augmentation 

techniques. Similar to the approach by Shon et al., the model was applied twice to segment 

the boundaries of PBL and CEJ separately. Their results demonstrated a Jaccard index of 

0.92, pixel accuracy of 0.93, and DC of 0.88 for PBL detection. For CEJ level 

segmentation, the Jaccard index, pixel accuracy, and DC values were 0.87, 0.91, and 0.84, 

respectively. These results are comparable to those obtained in our study, highlighting the 

effectiveness of automated models for detecting PBL on radiographs. However, in this 

study, PA radiographs were used instead, and a single U-Net model was trained to segment 

both the PBL and CEJ. This approach represents a more efficient method for determining 

the extent of PBL on dental radiographs. 

Ezhov et al. (266), applied U-Net with CNN architecture to segment the alveolar 

BL on 1135 CBCT scans. The PBL sensitivity and specificity were 0.95 and 0.97, 

respectively with the highest values obtained for severe PBL (0.93 and 0.99, respectively). 

Although CBCT can provide three-dimensional information, there are still some 
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limitations caused by artifacts, noise and poor soft tissue contrast (267). Additionally, 

CBCT is not routinely prescribed for the detection of periodontitis due to its relatively high 

radiation dose compared to PA radiographs. 

In a recent study conducted by Li et al. (268), the authors systematically reviewed 

papers to identify the application of DL for the classification of periodontitis and assess the 

accuracy of this approach. In terms of dental imaging modalities, the studies included 

primarily utilized PA images, panoramic images, and CBCT images for periodontitis 

classification. PA radiograph images capture the teeth and surrounding alveolar bone, thus 

providing comprehensive information on PBL. However, this modality has a limited view, 

typically showing only three to four teeth per image (269). Regarding the task of 

classification using DL models, classical models such as U-Net and YOLO were often 

utilized in the included studies (128,270), regardless of the specific diagnosis task chosen. 

The authors reported that U-Net has been proven to quickly and accurately identify targets 

in medical images and generate high-quality segmentation results. Additionally, the 

structure of U-Net can be flexibly adjusted according to the specific needs of the task 

(268,271). 

Dujic et al. evaluated several transformer models for the automated detection of 

periodontal BL using a dataset of 21,819 anonymized PA radiographs from both the 

upper/lower and anterior/posterior regions. The areas were initially assessed by calibrated 

dentists based on periodontal BL and categorized into minor, moderate, and severe BL 

regions. Five vision transformer networks (ViT-base/ViT-large from Google, BEiT-

base/BEiT-large from Microsoft, and DeiT-base from Facebook/Meta) were employed and 
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assessed. The overall diagnostic accuracy ranged from 83.4% to 85.2%, with the ViT-base 

model achieving the highest accuracy. The authors noted only minor differences in BL 

detection across the evaluated transformer networks (272). 

Several studies have utilized image mining approaches to detect the amount of BL 

for classifying periodontitis. While accurate identification and delineation of BL is crucial 

for periodontal treatment planning and monitoring disease progression, most studies have 

focused on measuring the BL at two points (mesial and distal) (112, 234, 246, 247). The 

novelty of this research lies in segmenting the BL across each individual tooth rather than 

focusing solely on mesial and distal points. This approach mitigates the potential for 

underestimating the extent of BL, providing a more comprehensive and accurate 

assessment. 

3.4.2 Apex Detection 

A fundamental component of computer vision, object detection drives advances by 

leveraging a variety of DL and ML models. Historically, two-stage object detectors have 

been popular and effective in the field of object detection. However, recent advancements 

in single-stage object identification methods and their underlying algorithms have led to 

performance improvements, surpassing many traditional two-stage detectors. The 

introduction of the YOLO models has further revolutionized the field, with applications 

across diverse contexts demonstrating remarkable performance relative to their two-stage 

counterparts (273). 
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For detecting the apexes of teeth, the proposed YOLO-v9 model exhibited minimal 

errors. This precision is critical for accurate root length measurements. The YOLO-v9 

algorithm represents a significant advancement in the field of object detection, providing 

real-time performance with remarkable accuracy (156, 273). The recent YOLO-v9 builds 

upon its predecessors by incorporating enhancements that further improve both accuracy 

and speed. Notable improvements in YOLOv9 include the integration of advanced 

backbone networks, which facilitate richer feature representation and enhanced context 

perception. Additionally, the introduction of PANet (Path Aggregation Network) enables 

effective feature fusion across different scales, leading to improved localization accuracy. 

Comparative analysis with previous YOLO versions and other object detection algorithms 

demonstrates the efficacy of YOLOv9 in achieving a favorable balance between accuracy 

and speed (156, 274, 275). 

A systematic review conducted by Li et al. (268), has shown that various versions 

of YOLO, from YOLOv3 to YOLOv5, have been utilized for detecting the PBL and 

classifying the periodontitis stage on various dental images. Consistently, Uzun Saylan et 

al. (235), utilized a YOLO-v5 algorithm to detect the BL across 685 panoramic 

radiographs. In addition to general evaluation, models were grouped according to 

subregions (incisors, canines, premolars, and molars) to provide a targeted assessment. 

Their findings revealed that the lowest sensitivity and F1 score values were associated with 

total alveolar BL (0.75 and 0.76, respectively), while the highest values were observed in 

the maxillary incisor region (1 and 0.95, respectively). They concluded that YOLO 

architecture has significant potential in analytical studies detecting PBL conditions. 
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3.4.3 Bone Loss Measurement and Validation 

The BL ratio was calculated by dividing the maximum BL by the length of the root, 

yielding high agreement with clinician assessments. The ICC values were 0.943 for dentist 

vs. model, 0.954 for dentist vs. periodontist, and 0.959 for periodontist vs. model, 

indicating strong reliability of the proposed model's measurements. These results 

underscore the reliability of these models in providing accurate BL measurements, 

comparable to those of experienced clinicians. 

Additionally, the strong ICC values for the coordinates of detected apexes and 

segmented CEJs, indicating a high level of agreement between both models’ predictions 

and the ground truth values. This demonstrates the accuracy and reliability of the proposed 

integrated model in detecting these key anatomical landmarks, further validating its 

potential utility in clinical applications. 

3.4.4 Stage and Grade Prediction 

The stage and grade prediction results showed varying performance across different 

categories. For stage III/IV, the model achieved a precision of 1.0 and an F1-score of 0.945, 

indicating high accuracy for severe cases. However, performance for stage I was poor, with 

an F1-score of 0.0. This discrepancy is similar to challenges reported in other studies, such 

as the work by Chang et al. (105), who also found lower accuracy in classifying early stages 

of periodontitis. However, the results of this chapter emphasize the need for more robust 

models and larger, more diverse datasets to improve early-stage detection. 

Chen et al. (276) also utilized U-net and mask-RCNN models to stage periodontitis 

using 336 dental PA radiographs. They reported a loss degree deviation of 6.5% between 

their proposed method and the ground truth drawn by the three periodontists. In addition, 



 

 

101 

the total diagnostic accuracy of their proposed method was 72.8 % with the highest 

accuracy for stage III (97.0 %). 

In grade prediction, the model performed well for grades B and C, with F1-scores 

of 0.829 and 0.766, respectively. However, it failed to accurately predict grade A. In this 

study, the distribution of the test dataset was significantly imbalanced, with the highest 

frequency of teeth classified as stage III and grade B. While the imbalance in the training 

dataset was partially mitigated by augmenting the images of minority stages and grades, 

this issue needs further attention through additional data collection in future research. 

The overall metrics for grade prediction were found to be lower compared to those 

for stage prediction. This finding aligns with the results of Ertas et al. (234), who reported 

lower clinical accuracy values for classifying the grade of periodontitis using panoramic 

images (64.5% vs. 88.2%). This could be explained by the fact that the progression of 

periodontal disease (grade) is influenced by multiple factors. While some individuals may 

develop severe periodontitis rapidly, others may maintain a mild stage of the disease 

throughout their lives. Additionally, the progression of periodontitis is less predictable in 

certain patients, necessitating diverse treatment plans. Established risk factors that 

accelerate BL include smoking and poorly controlled diabetes, alongside obesity, genetics, 

physical activity, and nutrition (5, 240).   

In contrast to the staging of periodontitis, there are a few studies that determine the 

grade of periodontal disease solely based on PBL percentage. Shon et al. (261), selected a 

YOLO-v5 architecture for detecting the teeth objects and classifying them according to the 

teeth numbering system. The detected tooth numbers were then integrated with the 

boundaries identified using U-Net to determine the length of the roots and stage of 
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periodontal disease for each tooth. They reported that the integrated framework had an 

accuracy of 0.929, with a recall and precision of 0.807 and 0.724, respectively, in average 

across all four stages. 

Similarly, Jiang et al. (246), applied a YOLO-v4 model integrated with U-Net to 

determine the stages of periodontitis according to the percentage of PBL. After segmenting 

each tooth using the U-Net model, YOLO-v4 was utilized to detect the 6 key points for 

each posterior tooth (CEJ mesial and distal, bone level mesial and distal, and root apexes 

mesial and distal), based on which the PBL% was mathematically calculated on a set of 

2560 panoramic radiographs. They concluded that the performance of the model was 

entirely acceptable, with an overall accuracy of 0.77, although it varied across different 

teeth.  

Comparing our findings with existing literature, several differences and advantages 

of our approach become evident. In the present chapter, the latest iterations of U-Net and 

YOLO models (YOLO-v9), were utilized, which have demonstrated superior performance 

in recent benchmarks. This choice likely contributed to higher accuracy and precision 

observed in our results, particularly in segmentation and apex detection tasks. The high 

ICC values and minimal errors in apex detection highlight the precision and reliability of 

the proposed models, making them suitable for clinical application. These metrics are 

consistent with or superior to those reported in studies using older model versions or 

alternative approaches. 

Additionally, by integrating U-Net for segmentation and YOLO-v9 for detection, 

we leveraged the strengths of both models, resulting in a comprehensive approach to 

diagnosing and grading periodontal disease. This hybrid approach is supported by studies 
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that have shown improved performance using combined models (105, 267). A novel hybrid 

framework combining DL architecture demonstrated high accuracy and excellent 

reliability in the automatic diagnosis of PBL percentage for individual teeth.  

The proposed methodology, which aligns well with clinical practices and provides 

high agreement with clinician assessments, underscores the practical applicability of our 

models. By using the most recent versions of U-Net and YOLO, this study benefits from 

the latest advancements in DL, resulting in higher accuracy and precision. In addition to 

evaluating segmentation and detection performance, the models were validated against 

clinician assessments, thereby providing a comprehensive evaluation of their clinical 

utility. This method utilized the percentage rate of PBL to automatically stage and grade 

periodontitis, following the new criteria proposed at the 2017 World Workshop (2).  

3.5 CONCLUSION 

This chapter demonstrates the significant potential of utilizing advanced ML 

models, specifically U-Net and YOLO-v9, for the accurate segmentation and detection of 

periodontal disease markers on PA images. The results indicate that these models can 

achieve high precision and reliability in identifying PBL and detecting apexes, crucial for 

calculating PBL percentages and subsequent disease staging and grading. The comparative 

analysis with existing literature highlights the superior performance of this approach, 

particularly due to the use of the latest model iterations.  

The high concordance between the proposed model's measurements and clinician 

assessments underscores the practical utility of these AI tools in real-world clinical settings. 

By leveraging the strengths of U-Net and YOLO-v9, a comprehensive approach that 

enhances the accuracy and efficiency of periodontal disease diagnosis and grading is 
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developed. This method can systematically and precisely assist dental professionals in 

diagnosing and monitoring periodontitis using PA radiographs. Consequently, it has the 

potential to significantly enhance dental professionals' performance in the diagnosis and 

treatment of periodontitis. Future research should aim to expand the dataset size and 

diversity and refine the models further to improve early-stage detection capabilities.  
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Chapter 4- Multimodal Deep Learning for Automated Classification of Periodontitis 

Stage and Grade using Patients’ Notes and Periapical Radiographs 

4.1 BACKGROUND 

Traditionally, healthcare has depended on single-modality approaches, where 

medical decisions are derived from analyzing one type of data, such as radiology images 

or clinical records (278). Nevertheless, advancements in technology and the increased 

availability of diverse data sources have made the integration of multiple modalities 

increasingly feasible and promising (279, 280). Medical scanners are now capable of 

producing higher resolution digital images across various modalities, such as MRI and CT 

(281). Additionally, electronic health records compile a wide range of clinical data in 

structured formats (282). Furthermore, advanced analytical methods, including DL, are 

adept at modeling complex multi-modal relationships (283). 

Multi-modality approaches involve the fusion and analysis of various data types, 

encompassing medical images, clinical records, and other relevant sources, to achieve a 

more comprehensive understanding of patients' conditions (284). Each modality reveals a 

particular aspect of physiology and pathology, and the effective aggregation and analysis 

of multimodal data present both unique opportunities and challenges (285). For instance, 

in diagnosing Alzheimer's disease, relying exclusively on structural MRI scans or speech 

analysis yields approximately 80% detection accuracy (286). However, by integrating 

complementary modalities such as audio features, speech transcripts, genomic data, and 

clinical assessments, multi-modality models have attained diagnostic accuracy exceeding 

90% (287, 288). 
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In the field of dentistry, a recent study conducted by Pfander et al. (289), the authors 

demonstrated how multimodal learning can assist assembling PA radiographs into an 

anatomically correct status. Multi-modal DL outperformed both unimodal image-based 

learning (p<0.001) and time-based learning (p<0.05). Similarly, Ertas et al. (234) applied 

traditional ML models to integrate clinical data with features extracted from panoramic 

radiographs to classify the stage and grade of periodontitis. They achieved the highest 

clinical accuracy of 0.645 for grade classification using a combination of VGG16 and a 

support vector machine (SVM), and an accuracy of 0.882 for stage classification using a 

combination of ResNet50 and SVM.  

The current DL models applied in radiology consider only pixel-value information 

without data collected in patients’ charts. However, in practice, accurate and relevant non-

imaging data based on the clinical history and examination enable dentists to interpret 

imaging findings in the appropriate clinical context, which will lead to a higher diagnostic 

accuracy, informative clinical decision making, and improved patient outcomes (283). 

Multimodal learning (MML) is a comprehensive approach to developing AI models that 

can extract and relate information from multimodal data. 

In the era of DL, deep neural networks have significantly advanced the 

development of MML. The transformer architecture, in particular, has emerged as a highly 

competitive family, presenting new challenges and opportunities for MML. Bidirectional 

encoder representations from transformers (BERT) (219) and vision transformers (ViT) 

(203) are state-of-the-art transformer-based models that have shown promising results in 

the fields of text and image understanding, respectively. BERT (a transformer-based 

encoder model for language representation) uses a multi-head attention mechanism and a 
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bidirectional approach to learn the contextual relations between words and sentences in a 

text, providing an accurate representation of the entire text, and ViT is a seminal work that 

applies the transformer encoder to image data, offering an end-to-end solution for image 

understanding (104, 196, 203, 226). 

To the authors’ knowledge, there have been no studies that integrate PA images of 

patients with their clinical unstructured notes using the multimodal transformer models for 

classifying the stage and grade of periodontal disease. Therefore, this chapter aims to 

introduce a novel method for combining the information derived from PA radiographs with 

the latent information from clinical notes, including patients’ history and clinical findings 

obtained through examination, to predict and diagnose the stage and grade of periodontitis.  

We propose that similar to health-care providers, automated detection and 

classification systems that can successfully apply both dental imaging data together with 

clinical data collected as electronic dental records, such as patient demographics, previous 

diagnoses, clinical examination findings, and laboratory values, may result in better 

performing and more clinically relevant models. 

4.2 MATERIALS AND METHODS 

4.2.1 Study population 

Two hundred and ten patients’ data, including the unstructured clinical notes 

alongside their corresponding PA radiographs indicating the maximum BL (obtained from 

the previous chapter) were collected from the Periodontal Graduate Program in the School 

of Dentistry between 2017-2021. The distribution of periodontitis stages was as follows: 3 

samples with stage I, 26 samples with stage II, and 181 samples with stage III/IV. For 
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grades, the distribution was 8 samples with grade A, 142 samples with grade B, and 59 

samples with grade C. 

4.2.2 Multimodal Transformer Model 

This model was designed to combine text and image data using transformers to 

classify periodontitis stages and grades into three categories (I, II, and, III/IV or A, B, and 

C, respectively). It integrated the BERT model for processing text data and the ViT for 

handling image data. 

4.2.2.1 Vision Transformers (ViT) for Image Processing  

4.2.2.1.1 Data Preprocessing 

To prepare the images for input into the ViT model, a detailed preprocessing 

pipeline was implemented using the ViTFeatureExtractor from the “transformers” library. 

Instead of defining a custom preprocess_image function, the feature extractor was 

employed to ensure consistency with the ViT model's requirements. This extractor 

performed several essential transformations on the images, including resizing them to 

224x224 pixels, which is the input size expected by the ViT model. The images were then 

normalized to match the distribution of pixel values the model was trained on, ensuring 

that the inputs are scaled appropriately for optimal performance. 

The images were loaded from paths generated based on patient IDs stored in the 

dataset, ensuring that each image corresponded accurately to its respective patient. To 

address potential class imbalance in the dataset, class weights were computed using the 

compute_class_weight function. These class weights, calculated based on the frequency of 

each class in the dataset, were used to balance the importance of underrepresented classes 
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during the model’s processing, ensuring that the model does not become biased towards 

more frequent classes. To ensure data integrity, any entries without corresponding images 

were filtered out before proceeding. The preprocessed images were converted into tensors, 

stacked into a single tensor, and made ready for input into the ViT model. 

4.2.2.1.2 ViT Model  

 First, the ViT configuration with the correct number of input channels was loaded. 

This is done using the “ViTConfig.from_pretrained” ('google/vit-base-patch16-224') 

command, which loads the pre-trained configuration for the ViT model. The ViT model 

itself was then loaded with the modified configuration using “ViTModel.from_pretrained” 

('google/vit-base-patch16-224', config=vit_config). This architecture is pre-trained on 

ImageNet1K (IN1k) (124) with an input image size of 224 × 224 pixels and output size of 

Ds = 768D representations. This pre-trained model is capable of understanding and 

processing image data by leveraging the transformer architecture. 

Image paths were generated based on patient IDs, which were stored in the dataset. 

The images were selected based on the highest amount of BL among all PA radiographs 

that a patient had. The preprocessing function then loaded each image from the generated 

paths, applied the transformations, and converted the images into tensors. The preprocessed 

images were stacked into a single tensor, making them suitable for input into the ViT 

model.  

The ViT model processes images by dividing them into small patches of 16x16 

pixels and treats each patch as a token, similar to how words are processed in natural 
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language models. These patches are passed through multiple layers of the ViT model, 

where the model learns to focus on different aspects of the image at different layers. The 

output from the model is a feature representation associated with the [CLS] token, which 

serves as a summary of the entire image. 

These extracted features, which are 768-dimensional vectors, were then converted 

into a NumPy array and subsequently into a PyTorch tensor, making them ready for further 

processing. This approach allowed the features from the ViT model to be integrated 

seamlessly with features extracted from patients’ clinical notes, facilitating a 

comprehensive multimodal analysis. Unlike traditional training processes, the ViT model 

was used purely for feature extraction, and no classification or further training was 

performed. This ensures that the extracted features remain consistent with the pre-trained 

model’s capabilities and can be effectively used in combination with other data modalities. 

4.2.2.1.3 Feature Visualization 

To visualize the feature that the model attended to most, activations from the fifth 

encoder layer were extracted for analysis, as this intermediate layer captures more nuanced 

patterns, such as early signs of BL or subtle periodontal changes. Although this was not 

the primary focus of this thesis, this approach was used to gain a visual understanding of 

the features the model attended to most during its internal processing. 

Principal component analysis (PCA) was employed to reduce the dimensionality of 

the activation vectors from this layer, condensing the most significant components into a 

form that could be visually represented as a heatmap. The first principal component was 
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then mapped back onto the original radiograph to create a heatmap overlay, where the color 

intensity represents the relative importance of each image region in the model's decision-

making process. 

4.2.2.2 BERT for Text Processing  

4.2.2.2.1 Data Preprocessing 

After importing 210 textual patients’ notes coupled with their stage and grade levels 

(as ground truth labels) into the Google Colaboratory (from 

https://colab.research.google.com/), the texts were preprocessed for computational 

analysis.  In the preprocessing stage, notes were tokenized at both word and sub-word 

levels using the function, preprocess_text from the “tensorflow_text” package 

(from: https://www.tensorflow.org/text) in Python. The dataset was carefully cleaned by 

dropping any rows with missing values to ensure data integrity. Special tokens like [CLS] 

and [SEP] were added to mark the beginning and end of sentences for the transformer 

model. Since sentences often vary in length, padding and truncation were applied to 

standardize the input shape by adding zeros to shorter sentences. It returns the processed 

data as tensors, which are the input format required by the BERT model.  

To address potential class imbalance, class weights were computed using the 

compute_class_weight function from the “scikit learn” library (232), ensuring that 

underrepresented classes received appropriate emphasis during training. These weights 

were later incorporated into the model's loss function.  

https://colab.research.google.com/
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4.2.2.2.2 BERT Model 

After data preprocessing, the BERT model ('bert-base-uncased') was loaded with 

TFBertModel.from_pretrained. This model, pre-trained on a large corpus of text, is capable 

of understanding the contextual relationships between words in a sentence. BERT operates 

on the transformer architecture, which includes 12 layers of self-attention mechanisms and 

feedforward networks in the “bert-base-uncased” variant. These layers allow BERT to 

process text bidirectionally, capturing meanings by considering the context of each word 

from both preceding and following words.  

Once the text data is tokenized, it was passed through the BERT model to extract 

features. This was done using the model's call method, which takes the input IDs and 

attention masks produced by the tokenizer. The model outputs a tensor representing the 

hidden states of the tokens in the input sequence. Specifically, the [CLS] token's hidden 

state (which serves as a summary representation of the input text) was extracted using 

last_hidden_state [:, 0, :]. 

The [CLS] token is a special token added at the beginning of the input sequence. 

The vector corresponding to this [CLS] token is a 768-dimensional vector that contains the 

aggregated information from the entire sequence. This vector is often used as the summary 

representation for classification tasks, as it captures the essence of the input text in a 

compact form. 

To address the class imbalance in the dataset, class weights were calculated using 

the compute_class_weight function from sklearn.utils.class_weight (232). These weights 
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are inversely proportional to the frequency of each class, ensuring that underrepresented 

classes are given appropriate importance during training. The class weights were 

incorporated into the cross-entropy loss function, which was used to train the model.  

The BERT model processes text by first tokenizing it into smaller units called 

tokens (which could be words, subwords, or characters). After tokenization, each token is 

represented by a vector, and as the tokens pass through the BERT model's layers, their 

representations are updated based on both the token itself and its surrounding context. Each 

of these tokens is represented by a hidden state vector of size 768, where 768 is the hidden 

dimension of the “bert-base” model. These vectors capture various linguistic and 

contextual features learned by the model, making them rich representations of the text. 

The extracted features were initially in a NumPy array format. To prepare these 

features for further processing and concatenating with those of images, they were converted 

into PyTorch tensors. This involves first converting the features to a NumPy array with 

text_features.numpy () and then to a PyTorch tensor with torch.tensor (text_features_np). 

These tensors, each containing rich semantic information from the input text, are 768-

dimensional vectors (one for each token, with the [CLS] token being of primary interest 

for classification tasks). These vectors are then ready to be combined with the image 

features extracted by the ViT model.  

4.2.2.3 Feature Concatenation and Periodontitis Classification 

The ViT model processed the images and extracted features from the CLS token of 

the final hidden state. Similarly, the BERT model processed the preprocessed text data and 
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extracted features from the CLS token of its final hidden state. These extracted features 

represent the high-level information from both modalities. Since both the ViT and BERT 

models in their base configurations output 768-dimensional vectors, the process of 

concatenating the features was straightforward. The matching dimensions of 768 from both 

models allowed for a simple and direct concatenation of the features along the feature 

dimension. 

After extracting features from both text and image data using the BERT and ViT 

models, the next step involved combining these features and using a neural network for 

periodontitis stage and grade classification. This process integrates the rich, contextual 

features from the text with the detailed visual features from the images to create a 

comprehensive representation for each sample, which is then used for predicting the class 

labels. 

The text and image features, which have been converted into PyTorch tensors, were 

concatenated along the feature dimension to form a single combined feature tensor. This 

concatenation integrated the information from both modalities, allowing the model to 

leverage both textual and visual data for more accurate predictions. The combined features 

were then converted to a floating-point tensor to ensure compatibility with the subsequent 

neural network layers.  

In neural network (NN) computations, especially within DL frameworks like 

PyTorch, tensors are typically represented in floating-point format. This format allows the 

representation of a wide range of values with a high degree of precision, which is essential 

for the accurate processing and learning capabilities of NN.  
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A NN was defined to process the combined features extracted from both text and 

image data. The architecture of this network consisted of several key layers designed to 

transform, normalize, and ultimately classify the input data. The first layer in the network 

was a fully connected layer, also known as a dense layer, which contained 256 neurons. 

This layer's primary function was to transform the high-dimensional combined input 

features into a more manageable size, facilitating further processing in the subsequent 

layers. 

To prevent overfitting, a dropout layer with a dropout rate of 0.5 was applied. This 

layer randomly sets a fraction of the neurons to zero during each training step, which helps 

enhance the model's generalization capability by ensuring that it does not become too 

reliant on any particular subset of neurons. Following the dropout layer, a batch 

normalization layer was included to stabilize and accelerate the training process. Batch 

normalization normalizes the output of the previous layer, reducing internal covariate shift 

and making the network more robust and efficient. 

The final layer of the network was a fully connected output layer with 3 neurons, 

corresponding to the three classes for classification (A, B, C for periodontitis grade, and I, 

II, III/IV for periodontitis stage). This layer produces the final classification logits, which 

are then used to predict the class labels for the input data. 

The model was then trained using a stratified 10-fold cross-validation approach to 

ensure robustness and generalization. Cross-validation is a technique used to maximize the 

use of limited datasets by iteratively training multiple models on different data portions. 

K-fold cross-validation is a common approach where the data is divided into K parts. A 

model is trained on K-1 parts and validated on the remaining part. This process repeats 



 

 

116 

until all data has been used for validation. The overall model performance is averaged 

across all folds (290). Because there can be significant variation in the accuracy obtained 

with different train/test splits, this method provides a more generalizable estimate of model 

performance than taking just a single split (291). 

In this chapter, instead of splitting the data into training and testing groups, the 

stratified 10-fold cross-validation method was applied. The dataset was split into 10 folds, 

and the model was trained and validated on each fold. This process was repeated for each 

fold, and the results were averaged to obtain an overall performance measure. Figure 4.1 

provides a detailed illustration of the 10-fold cross-validation method. 

 

Figure 4.1- Schematic of 10-fold cross-validation method to evaluate the model 

performance 

The loss function used was cross-entropy loss, which is well-suited for multi-class 

classification tasks. The Adam optimizer was employed, with an adjusted learning rate to 

balance convergence speed and stability. When the validation loss plateaus, the scheduler 

reduces the learning rate, helping the model to fine-tune its parameters and achieve better 
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convergence. To further prevent overfitting, L2 regularization was applied, which adds a 

penalty term to the loss function based on the magnitude of the model's weights. 

The training process was organized into epochs, where each epoch involves training 

the model on the training data and evaluating its performance on the validation data. To 

store and analyze the results, the training and validation losses and accuracies for each fold 

were recorded. Additionally, classification reports and confusion matrices were generated 

for each fold to provide detailed performance metrics. These metrics help in understanding 

the model's strengths and weaknesses and guide further improvements. 

Finally, the model performance was tested on a set of 21 new, unseen datasets 

(including texts and images). These datasets included 18 samples in stage III/IV, 2 samples 

in stage II, and 1 sample in stage I for stage classification. For grade classification, the 

datasets consisted of 6 samples in grade C, 14 samples in grade B, and 1 sample in grade 

A. 

Figure 4.2 depicts a flowchart outlining the process for extracting features from 

texts and PA images using transformer models (BERT and ViT, respectively) to classify 

periodontitis stage and grade. Each box represents a 768-dimensional feature vector 

corresponding to a specific patch of the PA radiograph, capturing visual characteristics for 

the ViT model, and a 768-dimensional feature vector corresponding to a specific token (or 

group of tokens) in the clinical notes, capturing semantic and contextual information for 

the BERT model. 
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Figure 4.2- Flowchart of the multimodal transformer model used for classifying the stage 

and grade of periodontitis 

4.3 RESULTS 

In this chapter, clinical notes obtained from 210 patients, along with their 

corresponding PA radiographs with the highest amount of BL, were used to train a 

transformer-based multimodal model to classify the stage and grade of periodontal disease.  

Figure 4.3 represents a PA radiograph with a heatmap overlay, generated using 

PCA applied to the activation vectors from the ViT model, specifically from the output of 

its fifth encoder layer. This heatmap visually highlights the regions of the radiograph that 

the model identified as most significant during its internal processing. 

In the heatmap overlay, different colors represent varying levels of importance or 

attention that the ViT model assigned to specific regions of the radiograph. These colors 

reflect how much weight the model placed on each patch of the image during its analysis. 

The areas of high activation, depicted in red or orange on the heatmap, represent the regions 

where the model's focus was strongest, indicating that these are the areas the model deemed 

most significant for its analysis. In contrast, the yellow or green areas show moderate 
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activation, meaning the model still finds these regions important but to a lesser extent. 

These could be indicative of earlier stages of periodontitis or regions adjacent to more 

affected areas. Lastly, areas with low activation, displayed in blue, are deemed less 

important by the model for classifying the severity of periodontitis.  

 

Figure 4.3- Sample PA radiograph and the heatmap showing key regions 

identified by the ViT model  

4.3.1 Multimodal Transformer Model for Prediction of Stage 

The text and image features extracted from the ViT and BERT models were 

concatenated along the specified dimension into a single tensor, which is then used as the 

input for the subsequent neural network layers for classification. In terms of training 

accuracy, the model showed a general improvement over the 20 epochs (Figure 4.4). The 

average accuracy for training and validation was found to be 87.88% and 73.33%, 

respectively across all 10 folds. 
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Figure 4.4- Training results for the 10-fold multimodal transformer model for 

classifying the periodontitis stage 
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The performance of the final model on a set of 21 new test data (stage I: 1, stage II: 

2, and stage III/IV:18) are shown in Table 4.1. Overall, the model demonstrated an 

accuracy of 0.86, indicating that 86% of the total instances were correctly classified. For 

stage I, the precision, recall, and F1-score were all 0.00, indicating that the model failed to 

correctly identify any instances of this stage. This result is likely due to the very small 

number of instances (only 1) in this class in both training and test dataset, which can make 

it challenging for the model to learn distinguishing features.  

In contrast, the model's performance for stage II was moderately better, achieving 

a precision and recall of 0.50, resulting in an F1-score of 0.50. This suggests that the model 

correctly identified half of the instances in this stage. However, the most notable 

performance was observed in stage III/IV (severe periodontitis), where the model achieved 

a precision of 0.89, recall of 0.94, and an F1-score of 0.92. This indicates that the model 

was effective at identifying instances of more severe periodontal disease. 

Table 4.1- Multimodal transformer model performance on the test dataset for 

predicting the periodontitis stage 

Stage Precision Recall F1-Score 

I 0.00 0.00 0.00 

II 0.50 0.50 0.50 

III/IV 0.89 0.94 0.92 
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4.3.2 Multimodal Transformer Model for Prediction of Grade 

 Similar to the previous step, the text and image features extracted from the ViT and 

BERT models were concatenated along the specified dimension into a single tensor. This 

combined tensor was then used as the input for the subsequent neural network layers for 

classification. Over the course of 20 epochs, the model demonstrated a general 

improvement in training accuracy (Figure 4.5). The average accuracy for training and 

validation across all 10 folds was found to be 84.75% and 65.61%, respectively. 
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Figure 4.5- Training results for the 10-fold multimodal transformer model for 

classifying the periodontitis grade 



 

 

124 

 The performance of the final model on a set of 21 new test data (grade A: 1, grade 

B: 14, and grade C: 6) is shown in Table 4.2. Overall, the model achieved an accuracy of 

0.76, meaning it correctly classified 76% of the instances. For grade A, the precision, recall, 

and F1-score were all 0.00, indicating that the model failed to correctly identify any 

instances of this grade. This outcome is likely due to the very small number of instances 

(only 1) in this class in both the training and test datasets, making it difficult for the model 

to learn distinguishing features.  

In contrast, the model's performance for grade C was moderately better, with a 

precision and recall of 0.67, resulting in an F1-score of 0.67. This indicates that the model 

correctly identified two third of the instances in this grade. However, the most notable 

performance was observed in grade B, where the model achieved a precision of 0.80, a 

recall of 0.86, and an F1-score of 0.83.  

Figures 4-4 and 4-5 show consistently low validation loss from the start across all 

10 cross-validation folds for both stage and grade classification tasks, which may seem 

unusual but is likely due to several factors. The small validation set size (only 40 samples 

per fold) likely causes the model to quickly memorize the validation data, leading to 

artificially low loss values that do not represent the broader data distribution. Additionally, 

the validation set may contain simpler or more homogeneous samples than the training 

data, making it easier for the model to achieve low loss early on, even as training 

performance improves more slowly. This pattern across all folds suggests the model finds 

it easier to predict the validation samples, possibly due to an imbalance in data complexity 

or early overfitting caused by the limited validation set. 
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Table 4.2- Multimodal transformer model performance on the test dataset for 

predicting the periodontitis grade 

Grade Precision Recall F1-Score 

A 0.00 0.00 0.00 

B 0.80 0.87 0.83 

C 0.67 0.67 0.67 

 

4.4 DISCUSSION 

In clinical practice, neither imaging nor clinical data alone are sufficient for the 

diagnosis of many clinical diseases (292-294). This underscores the importance and utility 

of multimodal fusion techniques in clinical applications. Multimodal approaches in even 

less complex clinical applications have also demonstrated improved performance over 

single-modality models. This includes areas where single-modality models have already 

achieved high performance, such as pixel-based models for automated skin cancer 

detection (216). A systematic review by Salvi et al., (190) also highlighted the importance 

of multimodality approaches in healthcare. Researchers have asserted that integrating 

multiple data modalities enhances medical decision-making, and that personalized 

medicine significantly benefits from the combined consideration of imaging, and clinical 

data.  

Multimodal transformers are becoming the leading option in multimodal learning 

for various tasks (203), such as classification (295, 296), segmentation (297), and cross-
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modal retrieval (298). They are proving to be highly effective in enhancing performance 

on these tasks by utilizing a pre-train-and-transfer approach (298). These models provide 

several advantages over conventional backbones in terms of flexibility and training load 

(300). In this chapter, multimodal transformers were used for feature-level fusion to 

integrate PA radiographs with patients' clinical notes, aiming to predict the stage and grade 

of periodontitis.   

Feature-level fusion offers several significant benefits. This architecture allows for 

the early integration of information obtained from radiographic images with clinical notes, 

including patient history, and other relevant clinical indicators. This early fusion enables 

the model to learn complex correlations between visual features and clinical metrics, 

leading to more accurate predictions of the stage and grade of periodontitis (301). A 

systematic review by Huang et al. (283) reported that in the healthcare field, the majority 

of studies evaluating multimodal approaches (11 out of 17) used early fusion to combine 

the multimodal input. 

In this chapter, a ViT-base architecture was applied for extracting image features 

from PA radiographs. ViTs divide an image into a series of non-overlapping small blocks, 

which are analyzed as elements similar to words (203). It has been shown that ViTs 

outperform other models in certain X-ray, computed tomography (CT), and MRI 

classification tasks (302-304). Dujic et al. (305) compared the diagnostic performance of 

five different transformer networks for automated detection of the periodontal BL on 

21,819 anonymized PA radiographs. The main differences between the transformer 

networks were in their size, training strategy and fine-tuning approach. They reported only 
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minor differences among the tested networks, with overall accuracy ranging from 83.4% 

to 85.2%. The ViT-base model demonstrated the highest accuracy. 

The results showed that integrating patients’ clinical notes with their PA radiograph 

that has the highest percentage of BL from the full-mouth PA series through a multimodal 

transformer model can achieve an accuracy of 86% and 76% for predicting the stage and 

grade of periodontitis, respectively. To our knowledge, this is the first study to concatenate 

patients’ clinical notes with their PA radiographs to classify the periodontitis stage and 

grade using a multimodal transformer (ViT and BERT) model. 

Abiyev et al. (306) applied the text and image embedding state-of-the-art models 

(ViT and BERT) to assess their efficacy in extracting the hidden and distinct features from 

the surgery video frames of laparoscopy surgeries. These features were then used as inputs 

for convolution-free transformer architectures to extract comprehensive multidimensional 

representations. They concluded that the utilized multimodal model represents remarkable 

performance regarding the recognition of laparoscopic surgical videos.  

Lyu et al. (307) proposed a multimodal transformer to fuse time series data from 

structured electronic health records (EHR) with textual information from clinical notes to 

improve performance of in-hospital mortality prediction. They applied Clinical BERT 

(308) as their pre-trained language model to learn clinical specific contextual embeddings 

because it is a more appropriate domain-specific model, trained on a comprehensive set of 

medical clinical notes. The results demonstrated that their model outperforms other 

methods applied for prediction of in-hospital mortality rate with the F1-score of 0.490. 

In the oral health field, Zhao et al. (309), developed a multimodal DL method to 

predict systemic diseases and disorders based on oral health conditions. In the first phase, 
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a dual-loss autoencoder was employed to extract features related to periodontal disease 

from 1,188 panoramic radiographs. In the second phase, these image features were fused 

with demographic data and clinical information from EHR to predict systemic diseases. 

They also made a comparison among the panoramic-only, EHR data-only, and the 

combination features to further evaluate whether combining images and EHR data features 

could enhance model performance. The AUC results showed that the model trained with 

the combined features outperformed those trained with only one type of feature. 

Hsieh and Cheng (310) also evaluated the effectiveness of DL methods and 

multimodal feature fusion techniques in improving automated dental condition 

classification. The research utilized a dataset of 11,653 clinically sourced images 

representing six common dental conditions: caries, calculus, gingivitis, tooth discoloration, 

ulcers, and hypodontia. Features were extracted using five CNN models and fused into a 

matrix. Classification models were then constructed using Support Vector Machines 

(SVM) and Naive Bayes classifiers. The results showed that the SVM classifier integrated 

with feature fusion demonstrated superior performance, achieving a Kappa index of 0.909 

and an accuracy of 0.925. This significantly surpassed the performance of individual CNN 

models, which achieved a Kappa index of 0.814 and an accuracy of 0.847. The authors 

concluded that the amalgamation of feature fusion with advanced ML algorithms can 

significantly bolster the precision and robustness of dental condition classification systems.  

The proposed model also demonstrated promising accuracy in predicting the stage 

and grade of periodontitis. Despite utilizing a sample size of only 210, which is 

considerably smaller than the sample sizes in previous studies employing multimodal 

approaches (289, 311), the results were comparable. However, these findings must be 



 

 

129 

interpreted with caution due to the preliminary nature of this research. However, obtaining 

a large number of samples is not always feasible in dental studies due to various constraints, 

including patient availability and the nature of referral practices (70). So, future studies 

should analyze larger and more balanced datasets using different multimodal techniques to 

provide additional validation.  Additionally, collaborations across multiple dental centers 

to pool data can help in achieving larger, more balanced datasets.  

The accuracy of the model was higher for stages III and grade B compared to stages 

I or II and grade A, which can be attributed to the imbalanced input data, including more 

patients with more severe periodontal conditions. This imbalance likely results from the 

higher number of referrals among patients with severe conditions. Future studies should 

analyze larger and more balanced datasets using different multimodal techniques to provide 

additional validation. Similarly, the study by Alawaji et al. (312) found that the majority 

of patients referred to periodontal clinics (78.4%) have moderate to severe periodontitis, 

which can explain the fewer number of patients with mild stages of periodontal disease 

recruited in this study. 

4.5 CONCLUSION 

The newly proposed model represents a preliminary application of a multimodal 

transformer model to determine the stage and grade of periodontal disease by combining 

clinical notes with PA radiographs. Unlike previous models that utilized only radiographic 

images, text data, and salivary samples, this approach integrates multiple data sources for 

a more comprehensive analysis. This model can identify the stage and grade of 

periodontitis without requiring a comprehensive clinical and radiographic examination, 

which is typically necessary for diagnosis. By streamlining the diagnostic process, this 
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approach offers a valuable clinical support decision tool for dental professionals, enhancing 

diagnostic accuracy of periodontitis diagnosis, and ultimately improving patient outcomes. 

This technique can also be applied by other healthcare providers who need to use large 

amounts of unstructured text and images to classify disease stages. Future studies should 

compare various multimodal models to identify the best-performing one for extracting and 

integrating information from EDR. 
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Chapter 5- General Discussion and Conclusion 

5.1 DISCUSSION 

Periodontitis, a multifactorial inflammatory disease affecting the supporting 

structures of the teeth, presents a significant challenge in dental healthcare due to its 

potential for causing tooth loss and systemic health complications (2,3,212). Up to 47% of 

North American adults experience some form of periodontal disease (313,314) and, as the 

population ages, this prevalence is predicted to increase (315). Accurate and timely 

diagnosis is critical in mitigating its adverse effects on oral health-related quality of life 

(OHRQoL) (207,210). Traditional diagnostic methods, which rely heavily on clinical 

measurements and radiographic analysis, often suffer from variability and interpretation 

inconsistencies, underscoring the need for advanced diagnostic tools (48). 

The increasing adoption of electronic dental records (EDR) has provided an 

opportunity to utilize artificial intelligence (AI) and deep learning (DL) techniques for 

improving periodontal diagnostics (69-71, 298). In this dissertation, AI techniques, 

particularly those involving natural language processing (NLP) and image analysis, have 

shown promising results in automating the classification of periodontitis stages and grades. 

This chapter aims to discuss the applied methodologies, results, and implications of using 

AI to enhance periodontal disease management. 

The second chapter focus was on using Bidirectional Encoder Representations from 

Transformers (BERT), an advanced NLP model (219), to classify periodontitis stages and 

grades from unstructured clinical notes. BERT's ability to understand and interpret 

contextual information within text data makes it highly effective for extracting relevant 

details from medical applications (104,122,227), where patient records often consist of 
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narrative notes. By extracting meaningful information from these notes, BERT can help 

clinicians make informed decisions about diseases. 

In this dissertation, 309 clinical notes obtained from a cohort of patients were 

preprocessed and augmented using various augmentation techniques, including synonym 

replacement, to balance the dataset, ensuring the model was trained on a diverse and 

representative sample. The BERT model was trained to categorize periodontitis into three 

and four stages as well as three grades. The results demonstrated that BERT could 

accurately classify the stage and grade of periodontitis, with training and validation 

accuracies reaching high percentages. The model's performance was evaluated using new 

patient charts as a test dataset, showing particularly strong accuracy in classifying more 

advanced stages of the disease. This highlights the potential of NLP techniques in dental 

diagnostics, offering a method to leverage the rich information contained in clinical notes 

to aid in disease classification. A significant strength of Chapter 2 lies in the high accuracy 

achieved by the BERT model in classifying advanced stages of periodontitis. However, the 

model showed lower accuracy in classifying earlier stages of the disease, which could be 

attributed to the fewer samples available for these stages. Furthermore, while BERT 

effectively extracted critical information from clinical notes, these notes alone may not 

include essential details about key radiographic changes, such as BL, which are crucial for 

a comprehensive diagnosis. 

Complementing the textual analysis, image analysis plays a crucial role in 

periodontal diagnostics (316). Automated measurement of periodontal bone loss (BL) 

using DL models including U-Net and YOLO-v9 in chapter 3 has shown significant 

potential. Radiographs, specifically peri-apical (PA) images, which are known to be the 
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standard radiographs for detecting periodontal disease, provide critical information about 

the extent of disease (317), and accurate interpretation of these images is essential for 

proper diagnosis and treatment planning. The use of U-Net for segmenting BL on PA 

radiographs and YOLO-v9 for detecting apexes represents a significant advancement in 

the automation of image analysis in dentistry.  

U-Net, a well-known architecture for biomedical image segmentation (128,318), 

was employed to segment BL on PA radiographs. This model's architecture, which includes 

encoder and decoder blocks with convolutional layers and batch normalization (169-171), 

was optimized to enhance its segmentation accuracy. YOLO-v9, a real-time object 

detection model (139), was utilized to detect the root apexes essential for calculating BL 

percentages. The integration of these models provided a comprehensive approach to 

diagnosing and grading periodontitis. The U-Net model achieved high accuracy in 

segmenting BL, while the YOLO-v9 model demonstrated precision in detecting apexes, 

crucial for accurate root length measurements. The results indicated high agreement 

between the model's measurements and those of experienced clinicians, underscoring the 

models' reliability in providing consistent BL assessments. 

Chapter 3 demonstrated significant advancements in the automation of dental 

image analysis through the successful application of U-Net and YOLO-v9 models. The 

models achieved high accuracy in both segmenting BL and detecting root apexes, with 

results closely matching those of experienced clinicians, which underscores their 

reliability. However, while radiographic analysis is essential, relying solely on radiographs 

can be insufficient for assessing the full progression of periodontitis. Radiographs may not 

fully capture the dynamic progression of the disease or reflect the impact of systemic 
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factors and patient history that are critical for grading the disease. This limitation highlights 

the need for integrating radiographic data with clinical notes to achieve a clear view of the 

patient's condition. 

The final chapter was the integration of textual and image data using a multimodal 

transformer model, which represents a novel approach to periodontal diagnostics. This 

method utilized both BERT for processing text data and Vision Transformer (ViT) for 

analyzing image data, offering a comprehensive approach capable of learning complex 

correlations between different data types, resulting in more accurate and reliable diagnostic 

outcomes. Multimodal learning (MML) allows for the integration of various data types, 

providing a thorough understanding of complex health conditions (309,310). By 

integrating clinical notes with PA radiographs, the multimodal model enhances the 

accuracy of periodontitis classification. 

Chapter 4's integration of BERT and ViT in a multimodal framework represents a 

cutting-edge approach to periodontal diagnostics. This chapter's strength lies in the 

significantly higher accuracy achieved through the combination of textual and image data, 

outperforming the individual modalities. The multimodal approach closely mirrors the 

comprehensive evaluation process used by periodontists, who typically rely on both 

clinical notes and radiographic evidence to assess the stage and grade of periodontitis. By 

combining these data types, the model can more accurately reflect the real-world clinical 

setting, providing a more complete diagnostic picture. This integration also addresses the 

limitations identified in the previous chapters, particularly the challenges of relying solely 

on text or radiographic data. The multimodal model offers a more detailed and precise 

diagnosis, which is crucial for effective treatment planning. 
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Feature-level fusion was employed to merge the text and image features, allowing 

the model to learn complex correlations between clinical and radiographic data (321). This 

integrated approach achieved high accuracy in classifying the stage and grade of 

periodontitis, highlighting the importance of combining diverse data types in medical 

diagnostics. Consistent with previous studies utilizing multimodal approaches in the 

healthcare area, the multimodal model's performance, evaluated using a dataset of patients 

with both clinical notes and PA radiographs, demonstrated significant improvements in 

diagnostic accuracy compared to the two single-modality approaches. 

In Chapter 2, the accuracy of predicting periodontitis stage and grade using clinical 

notes alone was determined to be 79.25% for the three-category stage classification, 66.2% 

for the four-category stage classification, and 72.3% for grade classification. When using 

BL percentage and radiographic images alone, the accuracy for stage and grade predictions 

was 79.5% and 66%, respectively. Both modalities—text analysis and image processing 

techniques—demonstrated similar accuracies when used independently for stage and grade 

predictions. The lower accuracy of radiographs in predicting the grade of the disease, 

compared to patient notes, can be attributed to several factors. The grade of the disease is 

primarily related to its progression, which may not always be visible on radiographs (2). 

Additionally, the grade is often influenced by risk factors such as systemic diseases or 

habits like smoking, which are typically documented in patient notes rather than detectable 

through imaging (2). Similarly, Machado et al., in their study comparing the accuracy of 

panoramic radiographs with clinical examinations and periodontal charts for diagnosing 

periodontitis, reported that imaging modalities do not replace clinical periodontal 
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evaluation. Instead, they serve as a screening tool to guide patients towards a definitive 

diagnosis of periodontitis (322). 

However, the integration of clinical notes and PA images through a multimodal 

transformer model demonstrated higher accuracy rates of 86% for stage prediction and 

76% for grade prediction. This indicates that the multimodal transformer model, which 

combines clinical notes and radiographs, is the most effective approach for diagnosing 

periodontitis. These findings confirm that accurate diagnosis of health-related conditions 

benefits from a multimodal technique that integrates information from various modalities, 

as opposed to relying on a single modality (190, 323-326). 

Oh et al. (327) conducted a study to identify discrepancies in periodontitis 

classification among dental practitioners with different educational backgrounds. The 

study included two cohorts: dental practitioners with periodontal backgrounds (n1 = 31) 

and those with other educational backgrounds (n2 = 33). The survey instrument featured 

three periodontitis cases (one with stage III grade C, one with stage II grade B, and one 

with stage IV grade B), along with guidelines for classification and a questionnaire 

comprising both closed and open-ended questions. The study evaluated the accuracy of 

correct classification and the agreement between the two cohorts. The findings revealed a 

fair level of agreement in periodontitis classification among practitioners from different 

educational backgrounds. The periodontal cohort demonstrated better accuracy in 

classifying the stage (71.33%) and grade (64%) compared to the non-periodontal cohort 

(61.67% and 49.33%, respectively).  

In comparison, the results of the single modality approaches (image and text) and 

the multimodal approach show higher accuracy in determining the stage and grade of 
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periodontitis than those observed in Oh et al.'s study (327) involving human evaluators. 

The primary objective in Chapter 3 was to measure BL by segmenting the affected areas 

on radiographs using U-Net and detecting critical anatomical landmarks like apexes with 

YOLO-v9. This precise measurement was crucial for understanding the extent of the 

disease, but the approach remained focused on radiographic data alone. In contrast, Chapter 

4 aimed to take the analysis a step further by utilizing ViT to extract the most relevant 

features from the radiographs with the highest amount of BL. The extracted features were 

then concatenated with the BERT output from the clinical notes to classify the stage and 

grade of periodontitis. This shift from U-Net/YOLO to ViT reflects an evolution from 

simple segmentation and detection tasks to a more sophisticated feature extraction process 

that integrates both text and image data, ultimately providing a more comprehensive 

diagnostic tool. 

The findings of this dissertation have significant implications for the field of dental 

diagnostics. The application of AI to automate the classification of periodontitis stages and 

grades can greatly enhance diagnostic accuracy and efficiency, ultimately leading to 

improved patient outcomes. By minimizing dependence on subjective interpretations and 

increasing the consistency of diagnostic assessments, these AI models hold the potential to 

revolutionize periodontal disease management. Moreover, integrating these techniques into 

Clinical Decision Support Systems (CDSS) can further augment clinical workflows and 

decision-making processes, providing real-time, evidence-based recommendations and 

enhancing overall patient care. 

The implications of these findings for clinical practice are substantial. By 

automating the classification of periodontitis stages and grades, AI models can reduce the 



 

 

138 

workload on clinicians and minimize the potential for diagnostic errors. The increased 

accuracy and consistency of these models can lead to more effective treatment planning 

and better patient outcomes. Furthermore, the integration of AI technology in dental 

diagnostics can help streamline workflows, making the diagnostic process more efficient 

and accessible. 

The discoveries made in the three chapters of this dissertation underscore the 

transformative potential of AI in dental diagnostics. Methodologically, the use of BERT 

for NLP and U-Net and YOLO-v9 for image analysis, followed by the integration of these 

models in a multimodal transformer framework, represents a comprehensive and 

innovative approach to periodontitis classification. The results from each chapter highlight 

the effectiveness of these methodologies, with high accuracies achieved in both single and 

multimodal approaches. 

Despite the challenges posed by data imbalance, the results of this research are 

clinically useful. The high accuracies observed, especially in advanced stages of 

periodontitis, suggest that these AI models can provide reliable diagnostic support, even 

when faced with unbalanced datasets. Clinically, this means that AI can assist in identifying 

severe cases that require immediate attention, thereby improving patient management and 

outcomes. 

This work can be applied to different contexts by adapting the AI models to other 

dental or medical conditions that require accurate classification and diagnosis. For instance, 

the methodologies used in this dissertation can be extended to other inflammatory diseases 

or conditions detectable through clinical notes and radiographic images. Moreover, the 

integration of NLP and image analysis in a multimodal framework can be utilized in 
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broader healthcare settings, providing comprehensive diagnostic support for various 

diseases, thereby enhancing the overall quality of patient care. By incorporating these 

insights, the dissertation not only contributes to the field of periodontal diagnostics but also 

opens new venues for the application of AI in healthcare, demonstrating the value of 

multimodal approaches in improving diagnostic accuracy and patient outcomes. 

5.2 LIMITATIONS  

5.2.1 Study 1 

The potential limitations of the second chapter, which utilized the BERT-base 

model for predicting the stage and grade of periodontitis using patients' clinical notes, 

include several key factors. One major issue is the quality, quantity, and consistency of the 

data. Clinical notes, written by various residents and confirmed by different periodontists, 

exhibited significant variation in quality and detail. Inconsistent documentation, use of 

abbreviations, and variations in terminology could affect the model's performance. 

However, robust preprocessing pipelines were applied to address many of these issues. 

Another limitation is related to the domain-specific language. BERT-base is 

pretrained on general language corpora and may not fully capture the nuances of dental 

terminology and specific medical jargon related to periodontitis, potentially impacting 

prediction accuracy. Clinical notes often contain complex contextual information that can 

be difficult for the model to fully comprehend, particularly when references to patient 

history or other implicit information are present. Fine-tuning the BERT model on a more 

domain-specific corpus could partially mitigate this limitation. 

Data imbalance also posed a significant challenge. The dataset was imbalanced, 

with the majority of training data pertaining to patients in stage III and grade B. An 
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imbalanced dataset can cause the model to become biased towards predicting more 

common categories, reducing its effectiveness for rarer conditions. To address this, data 

was selectively augmented with a higher augmentation rate for minority classes, and class 

weights were computed during BERT training. Additionally, model performance was 

analyzed on 210 new patients’ notes to assess generalizability, and regularization 

techniques, such as dropout, were utilized during training to prevent overfitting. 

Interpretability of the BERT models is another concern. These models are complex 

and often considered black boxes, making it difficult to interpret specific predictions. This 

lack of interpretability can be a limitation in clinical settings, where understanding the 

rationale behind a prediction is important for decision-making. 

Finally, the computational resources required for training and deploying BERT 

models are significant. This high demand for computational power and resources might not 

be feasible for all institutions, potentially limiting the widespread application of this 

approach in clinical practice. 

5.2.2 Study 2 

In the third chapter of this study, BL was segmented using a U-Net model, and apex 

coordinates were determined using a YOLO-v9 model, demonstrating excellent 

consistency with the ground truth. Using this information, the BL percentage was 

calculated to determine the stage and grade of periodontal disease.  

A significant challenge encountered was obtaining an adequate and diverse set of 

images for training and testing. A robust ML model requires a large dataset that captures 

the variability in patient anatomy and disease presentation. Without sufficient images, the 

models may not generalize well to new data, leading to inaccurate predictions and 
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potentially undermining the study's findings. For this chapter, 1000 PA images were 

acquired from a private practice in Iran to train the models, and data augmentation 

techniques were employed to artificially increase the dataset size. The final models were 

validated on a set of 1582 images obtained from another center, enhancing the 

generalizability of the results. 

Another limitation involves the use of the latest versions of ML models, such as 

YOLO-v9. While leveraging state-of-the-art models can enhance performance, these 

models are often computationally intensive and require significant resources for training 

and deployment. Furthermore, the most recent versions of these models may not have been 

extensively validated in clinical settings, leading to potential uncertainties in their 

application to medical imaging tasks. 

The study would also benefit from employing cross-validation methods and 

comparing different segmentation models. Cross-validation ensures that the model's 

performance is consistently reliable across various subsets of the data, reducing the risk of 

overfitting. By comparing different segmentation models, researchers can identify the most 

effective approach for their specific application. However, implementing cross-validation 

and model comparison requires additional computational resources and time, which may 

not always be feasible within the study's constraints. 

Lastly, the quality of the images and annotations plays a crucial role in the study's 

success. High-quality images with precise annotations are necessary for training accurate 

models. Any inconsistencies or errors in the annotations can lead to incorrect predictions 

and misclassification of periodontal disease stages and grades. To mitigate this limitation, 

multiple annotators, including dental professionals with expertise in periodontal disease, 
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were engaged to ensure accurate image annotations. Additionally, preprocessing methods 

such as Contrast Limited Adaptive Histogram Equalization (CLAHE) were used to 

standardize image quality and address diversity in image quality. 

5.2.3 Study 3 

In chapter four, clinical notes alongside PA images with the highest percentage of 

BL were used to train a transformer multimodal model to predict the stage and grade of 

periodontal disease. Several potential limitations of this approach need to be considered. 

First, the quality and quantity of data are critical factors. Same as the second 

chapter, clinical notes, written by various residents and confirmed by different 

periodontists, exhibited significant variation in quality and detail. The limited availability 

of high-quality, well-annotated datasets can prevent the model from generalizing 

effectively to new data. Robust preprocessing pipelines were implemented to address many 

of these issues, but inconsistencies in the data can still impact the model’s performance. 

Another important aspect is the comparison of various multimodal techniques. 

While transformer models are powerful, their performance can vary depending on how 

well they integrate and process different types of data, such as text and images. Exploring 

and comparing different multimodal techniques could provide insights into the most 

effective methods for combining clinical notes and PA images. This process requires 

significant computational resources and time, which may not always be feasible. 

Data imbalance is also a significant challenge. The dataset was imbalanced, with a 

disproportionate number of samples representing certain stages and grades of periodontal 

disease (majority with stage III and grade B). However, the study by Alawaji et al. (302) 

found that the majority of patients referred to periodontal clinics (78.4%) have moderate 
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to severe periodontitis, which can explain the fewer number of patients with mild stages of 

periodontal disease recruited in this study. This imbalance can lead to biased predictions, 

where the model is more likely to predict the more common categories, reducing its 

effectiveness for rarer conditions.  

Generalizability is another critical concern. Testing the model on a new, large 

dataset obtained from other clinics is essential to assess its robustness and applicability in 

different clinical settings. Differences in patient demographics, clinical note styles, and 

imaging techniques across various clinics can impact the model’s performance. Ensuring 

that the model generalizes well to these new datasets is crucial for its practical application. 

However, this requires access to diverse datasets from multiple sources, which can be 

challenging to obtain. 

5.3 RECOMMENDATIONS 

Future research should focus on expanding the dataset to include a more diverse 

patient population and different clinical settings. This would help validate the 

generalizability of the models and refine their performance further. Additionally, 

addressing the challenge of imbalanced datasets is crucial for improving the model's early-

stage detection capabilities. Techniques such as oversampling, synthetic data generation, 

and advanced data augmentation methods can help address these issues (328-330). 

Furthermore, validation studies across different healthcare centers are necessary to 

confirm the robustness and applicability of these AI models in varied clinical 

environments. Collaboration between academic institutions, healthcare providers, and AI 

researchers can facilitate the development of standardized protocols and datasets, 

enhancing the reliability and adoption of these technologies in clinical practice. 
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It is also important to compare various models for both text and image processing 

to identify the best-performing algorithms. Evaluating different transformer architectures, 

CNNs, and multimodal fusion techniques can provide insights into which approaches are 

most effective for integrating clinical notes and PA images. This comparative analysis is 

essential for optimizing model performance and ensuring the highest accuracy in predicting 

periodontal disease stages and grades. 

5.4 CONCLUSIONS  

The integration of AI and DL models in periodontal diagnostics presents a 

promising avenue for improving the accuracy and efficiency of disease classification. The 

use of advanced NLP techniques like BERT to analyze clinical notes, coupled with 

sophisticated image analysis models like U-Net and YOLO-v9, provides a comprehensive 

approach to understanding and managing periodontitis. The multimodal fusion of textual 

and image data further enhances diagnostic capabilities, offering a robust framework for 

future research and clinical application. By leveraging these technologies, the field of 

dentistry can achieve significant advancements in patient care, ultimately leading to 

improved oral health outcomes. 

The transformative potential of AI in dental diagnostics is evident from the high 

accuracy and consistency achieved by these models in classifying periodontitis stages and 

grades. As the field continues to evolve, it is imperative to keep pace with technological 

advancements and integrate these innovations into routine clinical practice. The success of 

these AI models in periodontal diagnostics sets the stage for broader applications in other 

areas of dentistry and healthcare, paving the way for a new era of precision medicine. By 

embracing these advancements, dental professionals can enhance their diagnostic 
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capabilities, improve patient outcomes, and contribute to the overall advancement of the 

field. 
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Appendix 

 

APPENDIX 1. U-NET MODEL ARCHITECTURE FOR SEGMENTING BONE LOSS 

ON PERIAPICAL 

 

Layer (type) Output Shape Param 

# 

Connected to 

input_8 (InputLayer) (None, 160, 

320, 1) 

0 [] 

conv2d_133 (Conv2D) (None, 160, 

320, 64) 

640 ['input_8[0][0]'] 

batch_normalization_1

26 

(BatchNormalization) 

(None, 160, 

320, 64) 

256 ['conv2d_133[0][0]'] 

activation_126 

(Activation) 

(None, 160, 

320, 64) 

0 ['batch_normalization_126[0][0]'

] 

conv2d_134 (Conv2D) (None, 160, 

320, 64) 

36928 ['activation_126[0][0]'] 

batch_normalization_1

27 

(BatchNormalization) 

(None, 160, 

320, 64) 

256 ['conv2d_134[0][0]'] 

activation_127 

(Activation) 

(None, 160, 

320, 64) 

0 ['batch_normalization_127[0][0]'

] 

dropout_63 (Dropout) (None, 160, 

320, 64) 

0 ['activation_127[0][0]'] 

max_pooling2d_28 

(MaxPooling2D) 

(None, 80, 160, 

64) 

0 ['dropout_63[0][0]'] 
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conv2d_135 (Conv2D) (None, 80, 160, 

128) 

73856 ['max_pooling2d_28[0][0]'] 

batch_normalization_1

28 

(BatchNormalization) 

(None, 80, 160, 

128) 

512 ['conv2d_135[0][0]'] 

activation_128 

(Activation) 

(None, 80, 160, 

128) 

0 ['batch_normalization_128[0][0]'

] 

conv2d_136 (Conv2D) (None, 80, 160, 

128) 

147584 ['activation_128[0][0]'] 

batch_normalization_1

29 

(BatchNormalization) 

(None, 80, 160, 

128) 

512 ['conv2d_136[0][0]'] 

activation_129 

(Activation) 

(None, 80, 160, 

128) 

0 ['batch_normalization_129[0][0]'

] 

dropout_64 (Dropout) (None, 80, 160, 

128) 

0 ['activation_129[0][0]'] 

max_pooling2d_29 

(MaxPooling2D) 

(None, 40, 80, 

128) 

0 ['dropout_64[0][0]'] 

conv2d_137 (Conv2D) (None, 40, 80, 

256) 

295168 ['max_pooling2d_29[0][0]'] 

batch_normalization_1

30 

(BatchNormalization) 

(None, 40, 80, 

256) 

1024 ['conv2d_137[0][0]'] 

activation_130 

(Activation) 

(None, 40, 80, 

256) 

0 ['batch_normalization_130[0][0]'

] 

conv2d_138 (Conv2D) (None, 40, 80, 

256) 

590080 ['activation_130[0][0]'] 
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batch_normalization_1

31 

(BatchNormalization) 

(None, 40, 80, 

256) 

1024 ['conv2d_138[0][0]'] 

activation_131 

(Activation) 

(None, 40, 80, 

256) 

0 ['batch_normalization_131[0][0]'

] 

dropout_65 (Dropout) (None, 40, 80, 

256) 

0 ['activation_131[0][0]'] 

max_pooling2d_30 

(MaxPooling2D) 

(None, 20, 40, 

256) 

0 ['dropout_65[0][0]'] 

conv2d_139 (Conv2D) (None, 20, 40, 

528) 

121704

0 

['max_pooling2d_30[0][0]'] 

batch_normalization_1

32 

(BatchNormalization) 

(None, 20, 40, 

528) 

2112 ['conv2d_139[0][0]'] 

activation_132 

(Activation) 

(None, 20, 40, 

528) 

0 ['batch_normalization_132[0][0]'

] 

conv2d_140 (Conv2D) (None, 20, 40, 

528) 

250958

4 

['activation_132[0][0]'] 

batch_normalization_1

33 

(BatchNormalization) 

(None, 20, 40, 

528) 

2112 ['conv2d_140[0][0]'] 

activation_133 

(Activation) 

(None, 20, 40, 

528) 

0 ['batch_normalization_133[0][0]'

] 

dropout_66 (Dropout) (None, 20, 40, 

528) 

0 ['activation_133[0][0]'] 

max_pooling2d_31 

(MaxPooling2D) 

(None, 10, 20, 

528) 

0 ['dropout_66[0][0]'] 

conv2d_141 (Conv2D) (None, 10, 20, 

1024) 

486707

2 

['max_pooling2d_31[0][0]'] 
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batch_normalization_1

34 

(BatchNormalization) 

(None, 10, 20, 

1024) 

4096 ['conv2d_141[0][0]'] 

activation_134 

(Activation) 

(None, 10, 20, 

1024) 

0 ['batch_normalization_134[0][0]'

] 

conv2d_142 (Conv2D) (None, 10, 20, 

1024) 

943820

8 

['activation_134[0][0]'] 

batch_normalization_1

35 

(BatchNormalization) 

(None, 10, 20, 

1024) 

4096 ['conv2d_142[0][0]'] 

activation_135 

(Activation) 

(None, 10, 20, 

1024) 

0 ['batch_normalization_135[0][0]'

] 

dropout_67 (Dropout) (None, 10, 20, 

1024) 

0 ['activation_135[0][0]'] 

conv2d_transpose_28 

(Conv2DTranspose) 

(None, 20, 40, 

512) 

209766

4 

['dropout_67[0][0]'] 

concatenate_28 

(Concatenate) 

(None, 20, 40, 

1040) 

0 ['conv2d_transpose_28[0][0]', 

'dropout_66[0][0]'] 

conv2d_143 (Conv2D) (None, 20, 40, 

512) 

479283

2 

['concatenate_28[0][0]'] 

batch_normalization_1

36 

(BatchNormalization) 

(None, 20, 40, 

512) 

2048 ['conv2d_143[0][0]'] 

activation_136 

(Activation) 

(None, 20, 40, 

512) 

0 ['batch_normalization_136[0][0]'

] 

conv2d_144 (Conv2D) (None, 20, 40, 

512) 

235980

8 

['activation_136[0][0]'] 
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batch_normalization_1

37 

(BatchNormalization) 

(None, 20, 40, 

512) 

2048 ['conv2d_144[0][0]'] 

activation_137 

(Activation) 

(None, 20, 40, 

512) 

0 ['batch_normalization_137[0][0]'

] 

dropout_68 (Dropout) (None, 20, 40, 

512) 

0 ['activation_137[0][0]'] 

conv2d_transpose_29 

(Conv2DTranspose) 

(None, 40, 80, 

256) 

524544 ['dropout_68[0][0]'] 

concatenate_29 

(Concatenate) 

(None, 40, 80, 

512) 

0 ['conv2d_transpose_29[0][0]', 

'dropout_65[0][0]'] 

conv2d_145 (Conv2D) (None, 40, 80, 

256) 

117990

4 

['concatenate_29[0][0]'] 

batch_normalization_1

38 

(BatchNormalization) 

(None, 40, 80, 

256) 

1024 ['conv2d_145[0][0]'] 

activation_138 

(Activation) 

(None, 40, 80, 

256) 

0 ['batch_normalization_138[0][0]'

] 

conv2d_146 (Conv2D) (None, 40, 80, 

256) 

590080 ['activation_138[0][0]'] 

batch_normalization_1

39 

(BatchNormalization) 

(None, 40, 80, 

256) 

1024 ['conv2d_146[0][0]'] 

activation_139 

(Activation) 

(None, 40, 80, 

256) 

0 ['batch_normalization_139[0][0]'

] 

dropout_69 (Dropout) (None, 40, 80, 

256) 

0 ['activation_139[0][0]'] 

conv2d_transpose_30 

(Conv2DTranspose) 

(None, 80, 160, 

128) 

131200 ['dropout_69[0][0]'] 
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concatenate_30 

(Concatenate) 

(None, 80, 160, 

256) 

0 ['conv2d_transpose_30[0][0]', 

'dropout_64[0][0]'] 

conv2d_147 (Conv2D) (None, 80, 160, 

128) 

295040 ['concatenate_30[0][0]'] 

batch_normalization_1

40 

(BatchNormalization) 

(None, 80, 160, 

128) 

512 ['conv2d_147[0][0]'] 

activation_140 

(Activation) 

(None, 80, 160, 

128) 

0 ['batch_normalization_140[0][0]'

] 

conv2d_148 (Conv2D) (None, 80, 160, 

128) 

147584 ['activation_140[0][0]'] 

batch_normalization_1

41 

(BatchNormalization) 

(None, 80, 160, 

128) 

512 ['conv2d_148[0][0]'] 

activation_141 

(Activation) 

(None, 80, 160, 

128) 

0 ['batch_normalization_141[0][0]'

] 

dropout_70 (Dropout) (None, 80, 160, 

128) 

0 ['activation_141[0][0]'] 

conv2d_transpose_31 

(Conv2DTranspose) 

(None, 160, 

320, 64) 

32832 ['dropout_70[0][0]'] 

concatenate_31 

(Concatenate) 

(None, 160, 

320, 128) 

0 ['conv2d_transpose_31[0][0]', 

'dropout_63[0][0]'] 

conv2d_149 (Conv2D) (None, 160, 

320, 64) 

73792 ['concatenate_31[0][0]'] 

batch_normalization_1

42 

(BatchNormalization) 

(None, 160, 

320, 64) 

256 ['conv2d_149[0][0]'] 

activation_142 

(Activation) 

(None, 160, 

320, 64) 

0 ['batch_normalization_142[0][0]'

] 
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conv2d_150 (Conv2D) (None, 160, 

320, 64) 

36928 ['activation_142[0][0]'] 

batch_normalization_1

43 

(BatchNormalization) 

(None, 160, 

320, 64) 

256 ['conv2d_150[0][0]'] 

activation_143 

(Activation) 

(None, 160, 

320, 64) 

0 ['batch_normalization_143[0][0]'

] 

dropout_71 (Dropout) (None, 160, 

320, 64) 

0 ['activation_143[0][0]'] 

conv2d_151 (Conv2D) (None, 160, 

320, 1) 

65 ['dropout_71[0][0]'] 
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