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Abstract— Synchronous generators are normally rep-
resented in a simplified fashion to reduce computational
complexity in dynamic state estimation (DSE). In this
paper a dynamic state estimator for a sixth-order
synchronous generator model was developed on the
massively parallel graphic processing units (GPU) to
provide detailed and accurate Extended Kalman Filter
(EKF) based estimation of the generator states. The
estimation results are compared with the time domain
simulation results on the CPU to demonstrate the
accuracy of the proposed method. Also a speed-up of
10.02 for a 5120 generator system is reported.

Index Terms— Dynamic state estimation, extended
kalman filter, graphic processing units, large-scale sys-
tems, parallel programming, synchronous generator
model.

I. Introduction

Computational speed is a major concern for online
dynamic state estimation (DSE) of power systems. Tra-
ditional state estimators overcame this problem by using
simplified network modeling [1], [2], and by reducing the
size of the problem [3]–[5] whose state was being estimated.
Some approaches also focused on estimation accuracy by
increasing either modeling or algorithmic complexity [6]–
[8]. However, these methods were computationally oner-
ous limiting their practical applicability to small scale
systems. With widespread use of phasor measurement
units (PMUs), the computational demands on DSE have
increased. Accurate component modeling and large system
sizes have become important challenges that need to be
addressed.

Synchronous generator modeling in large-scale DSE
needs particular attention. Detailed representation of the
synchronous generator in online DSE would allow sys-
tem operators to accurately assess system condition and
take rapid control actions following major disturbances.
There is limited research on the state estimation of the
synchronous generator. For example, a dynamic state
estimation method for second-order synchronous machine
model, neglecting the field voltage dynamic equations,
was proposed in [9]. An unscented Kalman filter based
state estimation method for third-order generator model
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assuming the rotor angle as a measurable signal is repre-
sented in [10]. Also proposed in [6] is DSE with unknown
inputs for fourth-order generator model considering the
exciter output voltage as unknown input. Using the same
generator model, [11] proposed an optimal state estimation
of both generator internal dynamics and algebraic states.
However, in these works the number of synchronous gener-
ators in the state estimation process was limited to a single
generator which precluded the study of computational
performance of large-scale systems.

The objective of this paper is to investigate the impact
of detailed synchronous generator model on the accu-
racy and speed of state estimation using multi-core CPU
and many-core GPU architecture for large-scale systems.
An Extended Kalman Filter (EKF) based DSE utilizing
graphic processing units (GPUs) is introduced where the
synchronous machine is represented by a sixth-order dy-
namic model including the excitation system with auto-
matic voltage regulator (AVR) and power system stabilizer
(PSS) which increases the number of differential equations
and hence the complexity of the model. The mathematical
complexity and the substantial opportunity to exploit
parallelism on large data sets has made such DSE uniquely
suited for the GPU architecture. GPUs have been proven
to be efficacious in large-scale electromagnetic transient
and transient stability simulations [12], [13]. Fine grained
parallelism on GPU by distributing tasks among indi-
vidual compute unified device architecture (CUDATM )
threads accelerated the synchronous generators state es-
timation in comparison to multi-thread CPU implemen-
tation. Case studies containing up to 5120 synchronous
machines were utilized in this research, and the accuracy of
the state estimation is verified by time domain simulation.

The organization of this paper is as follows. Section II
describes generator modeling and the massively parallel
DSE algorithm. Section III presents the experimental
results and analysis, followed by conclusions in Section IV.

II. Extended Kalman Filter Based Parallel
DSE

A. Synchronous Generator Model

In this work a sixth-order model of synchronous genera-
tor including AVR and PSS is used. The complete system
representation is summarized here.
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Fig. 1. Synchronous generator excitation system with AVR and PSS.

Equations of motion and field voltage:

δ̇(t) = ωR.∆ω(t),

∆̇ω(t) =
1

2H
[Te(t) + Tm −D.∆ω(t)],

ė′q(t) =
1

T ′do
[Efd(t)− e′q(t)− (xd − x′d)Id(t)].

(1)

where δ, ω and e′q represent the rotor angle, rotor speed
and direct axis transient voltage, respectively. Te stands
for the electrical torque, Tm is the mechanical power, Efd

is the exciter output voltage and Id is the direct axis
current. Excitation system including an AVR and PSS:

v̇1(t) =
1

TR
[vt(t)− v1(t)],

v̇2(t) = Kstab.∆̇ω(t)− 1

Tw
v2(t),

v̇3(t) =
1

T2
[T1v̇2(t) + v2(t)− v3(t)].

(2)

where v1, v2 and v3 are excitation voltages. vt represents
the terminal voltage. Fig. 1 (b) shows ST1A type excita-
tion system [14]. ωR, H,D, T

′
do, xd, xq, x

′
d, x
′
q, TR, Tw, T1, T2

and Kstab are constant parameters whose definition can be
found in [15]. Neglecting the stator resistance Ra, electrical
torque Te will be equal to terminal active power Pt.

Te ∼= Pt = edid + eqiq. (3)

Using the definition of d-axis and q-axis voltages (ed, eq)
and currents (id, iq) from [15], electrical torque can be
expressed as:

Te ∼=
vtsin(δ)

x′d
e′q +

vt(x
′
d − xq)

x′dxq
sin(δ)cos(δ). (4)

B. Extended Kalman Filter Based Estimation

The sixth order state-space model can be rewritten as:

ẋ1 = ωRx2,

ẋ2 =
1

2H
[Te + Tm −Dx2],

ẋ3 =
1

T ′do
[Efd −

xd
x′d
x3 + (

xd
x′d
− 1)vtcos(x1)],

ẋ4 =
1

TR
[vt − x4],

ẋ5 = Kstabẋ2 −
1

Tw
x5,

ẋ6 =
1

T2
[T1ẋ5 + x5 − x6].

(5)

The measurement set M includes the electrical output
power given as:

M =
vtsin(x1)

x′d
x3 +

vt(x
′
d − xq)

x′dxq
sin(x1)cos(x1), (6)

According to the aforementioned formulations the vector
of state variables x for the synchronous generator is given
as:

x = [δ,∆ω, e′q, v1, v2, v3], (7)

The general form of the dynamic model is represented as:

ẋ = f(x,∆t,υ),

M = h(x,∆t, ε).
(8)

where υ and ε are system and measurements noises as-
suming normal distribution with zero mean, and 6 × 6
covariance Q and R, respectively. The estimation time
step is represented by ∆t. The Trapezoidal integration
method was used for discretization with respect to time.
Then linearization of (8) resulted in a new set of algebraic
equations:

x(t+∆t) = F txt + υt, υt∼N(0,Qt), (9)

where F t = ∂f
∂x |x(t−∆t)

represents the 6 × 6 state

transition between two time steps. Under normal
operating conditions it is possible to adjust F t such
that Qt remains constant. There are two main steps in
the implementation of EKF: state prediction and state
filtering.

1) State Prediction: Using the measurement and esti-
mated states at the time instant t, the predicted value
x̃t+∆t can be formulated as:

x̃(t+∆t) = F tx̂t, (xt − x̂t)∼N(0,ρt),

ρ̃(t+∆t) = F tρtF t
T +LtQtLt

T , (xt − x̃t)∼N(0, ρ̃t),
(10)

where Lt = ∂f
∂υ |x(t−∆t)

is a 6 × 6 matrix of partial

derivative of f with respect to system noise. ρ and ρ̃
are 6 × 6 error covariance matrices for estimated and
predicted values, respectively. x̃ represent the predicted
state and x̂ is the estimated state.
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Fig. 2. GPU implementation of detailed generator DSE based on EKF.

2) State Filtering: This step updates the predicted
values using the next set of measurements at the time
instant (t+ ∆t). The updated state through EKF can be
written as:

x̂(t+∆t) = x̃(t+∆t) +K(t+∆t)(M (t+∆t) − h(x̃(t+∆t))),

K(t+∆t) = ρ̃(t+∆t)H
T

(t+∆t)λ
−1

(t+∆t),

λ(t+∆t) = [H(t+∆t)ρ̃(t+∆t)H
T

(t+∆t) +M (t+∆t)RM
T

(t+∆t)],

ρ(t+∆t) = ρ̃(t+∆t) −K(t+∆t)H(t+∆t)ρ̃(t+∆t),

(11)
where H = ∂h

∂x |xt
and M = ∂h

∂ε |xt
are 1 × 6 vectors. K

is the 6 × 1 Kalman gain vector. Fig. 3 shows the over-
all massively parallel dynamic state estimation operation
flowchart.

State estimation based on EKF includes several matrix-
vector and matrix-matrix products which are computa-
tionally intensive jobs especially for large-scale systems.
There are also several independent tasks in state predic-
tion and state filtering stages which are good candidate for
parallelization. Computations of x̃(t+∆t) and ρ̃(t+∆t) are
independent of each other. Inside ρ̃(t+∆t), calculation of

F tρtF t
T and LtQtLt

T can be done simultaneously. For
state filtering it is necessary to first calculate K(t+∆t) and
λ(t+∆t) sequentially. At the final step x̂(t+∆t) and ρ(t+∆t)

are independent, too. Defining individual CUDA kernel
(functional program which generate a large number of
threads for data parallelism) for each independent task, all
of them can be run in parallel to reduce the computation
time. Also inside each kernel all threads execute the same
function in parallel. It should be considered that since
the GPU’s architecture is considerably different from that
of a traditional CPU, it requires a completely different
algorithmic approach for implementation. Fig. 2 explain
the proposed approach for a system with n generators.
For brevity only calculation of x̃(t+∆t) is shown in detail,
where on the GPU the states of all generators can be
estimated simultaneously. Moreover, for each generator all
the independent tasks can be run in parallel.

III. Case Study and Discussion

To evaluate accuracy and efficiency of the parallel DSE
algorithms, the results of state estimation were compared
with time-domain simulation in Matlabr and multi-thread

Fig. 3. Massively parallel dynamic state estimation operation
flowchart.

CPU-based estimation algorithm. Since the matrices are
highly sparse, all matrices and vectors are stored in com-
pressed row format to reduce the computational burden.
Large-scale test power systems were constructed to explore
the efficiency of the GPU-based program. Case 1 is the
IEEE 39-bus system which was duplicated and intercon-
nected to create large-scale systems. It is assumed that
PMUs are installed at all generator buses, so that the
states of each generator are estimated locally and in par-
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Fig. 4. Extended Kalman filter based parallel DSE block diagram.

allel. The refresh rate of PMU measurements is considered
as 60/s which is equal to the simulation time-step of 16.6
ms. The signals Tm, Efd, vt and the measurement signal Te
are used as the input for the GPU-based algorithm. The
block diagram of the proposed EKF based parallel DSE is
shown in Fig. 4.

A. Hardware Setup

The hardware used in this work is one unit of
TeslaTMS2050 GPU from NVIDIAr. It has 448 cores
which deliver up to 515 Gigaflops of double-precision peak
performance. This device contains 14 streaming multipro-
cessors (SMs), each with 32 streaming processors (SPs), an
instruction unit, and on-chip memory [16]. CUDA version
5.0 with compute capability 2.0 is used for programming.
The CPU is the quad-core AMDr PhenomTM II with
3.2 GHz core clock and 12 GB memory, running 64-
bit Windows 7r operating system. OpenMPr standard
and C++ was used for developing the multi-thread CPU
program.

B. Accuracy and Speed-up Analysis of the GPU-based DSE

Table I shows a summary of the results obtained using
double precision (64-bit) format for both CPU and GPU
codes as the system size increased. The execution time for
GPU-based program (TGPU

Ex ) is the total of execution and
communication time. Massively parallel implementation of
the DSE on GPU is done using the state-space model
presented in (5) and (6). Performance of the proposed
method, was evaluated for different case studies. The
estimated states for generator number 1 in Case 1 are
shown in Fig. 5 and Fig. 6. It is clear from the results that
the proposed approach can accurately track the system
dynamics. The small differences compared to the time
domain simulation results are justifiable considering the
fact that the order of block execution in each GPU grid
is undefined in kernel definition. Therefore, it leads to
slightly different results if different CUDA blocks per-
form calculations on overlapping portions of data. Small
oscillations in the results are due to using corrupted
measurements with Gaussian noise.

Fig. 5. Estimated states: (a) rotor angle, (b) rotor speed, (c) direct
axis voltage.

For the computational speed-up comparison, two sepa-
rate simulation codes were provided: one in C++ as multi-
thread program, and the other an integration of C++
and CUDA in GPU. The objective was to see how the
execution time for the CPU and the GPU increases as the
number of generators increased. As shown in Fig. 7, the ad-
vantage of utilizing GPU for parallelization is highlighted
as the size of the system increasing. The reason is that for
small size of data the communication overhead between
the CPU and GPU supersedes the execution time on the
CPU. Since the programming structure is one of the most
important factors which affects the processing time, it is
possible to obtain faster results with a different program-
ming style. However, the speed-up shown in Table I would
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TABLE I

Summary of Model Complexity and Execution Time Under Normal Operation Condition

Case No. of No. of No. of State transition TCPU
Ex TGPU

Ex TGPU
Ex Speed-up

generators Buses states F(x) Comp. Comm.

1 10 39 60 60× 60 6ms 4.3ms 2.7ms 0.85
2 20 78 120 120× 120 13ms 5.8ms 3.2ms 1.4
3 40 156 240 240× 240 23ms 9.8ms 5.2ms 1.53
4 80 312 480 480× 480 52ms 23.4ms 8.6ms 1.73
5 160 624 690 960× 960 2.1s 37.9ms 13.1ms 2.5
6 320 1248 1920 1920× 1920 4.15s 44.4ms 25.2ms 3.5
7 640 2496 3840 3840× 3840 8.67s 55.9ms 46.1ms 5.1
8 1280 4992 7680 7680× 7680 17.63s 1.48s 1.05s 6.96
9 2560 9984 15360 15360× 15360 36.96s 2.84s 1.32s 8.88
10 5120 19968 30720 30720× 30720 81.3s 5.99s 2.13s 10.02

Fig. 6. Estimated states: excitation voltage (a) v1, (b) v2, (c) v3.

Fig. 7. Execution time (TEx.) and speed-up (Sp) comparisons of
CPU-based and GPU-based DSE.

still be valid for increasing system sizes although with a
slightly different value.

IV. Conclusion

The increasing size and complexity of modern power
systems has made state estimation a slow and computa-
tionally expensive process. To alleviate this, most of the
existing DSE approaches neglect the detailed model of
the generator. This paper is an effort to implement DSE
of detailed synchronous generator on GPU-based parallel
computing platform by massive-threading programming.
Numerical experiments in this work proved that successful
parallelization reduces the execution time; 10.02 times
faster state estimation for a system with 5120 generators
is reported. For future work, the proposed generator state
estimation approach will be combined with the network
model for a comprehensive DSE.
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