CAPSTONE PROJECT: MINT 2017-2019

SDN: Controller Comparison with Implementation;

Security Concerns and Vulnerabilities

Under the guidance of:

Prof. Leonard Rogers

Submitted By:
Shveta Rai

MINT- 709

ABSTRACT

In this Capstone Project, | aimed at implementing a basic SDN structure with Mininet and two
controllers i.e. POX and Floodlight, learning over the period, how it is an advantage over
traditional network implementation and analyzing how the architecture of SDN is an

enhancement.

After implementation, | learned various short-comings and challenges of SDN, exploring their

effects, concerns and their solutions, some of them namely:

1. OpenFlow and related concerns: One of the main concerns pertaining OF protocol | would

incorporate is the scalability (TCP SYN flooding) and fault-tolerance issues in the design. Another
issue would the communication bottleneck between data and control plane which can be
manipulated in attacks related to traffic and how it is currently dealt with and what possible

solutions could be there in the future.

2. Controller Vulnerabilities: Controller/Network Hypervisor is the first step in a virtualized SDN

environment and a security consideration as well since it defines data flow that occurs in the Data
Plane. Prominent weakness of the controller that | would like to study, analyze its possible

solutions and how they are currently used in the industry.

3. Large network vulnerabilities like DDoS attack: Since SDN consists of three layers, namely

infrastructure layer, control layer and application layer, the potential DDoS attack can be
launched on any of the three. During the Capstone Project, | would research and analyze the
threats via the mentioned mediums and their defense and mitigation approaches currently used

and possible future solutions.

Via this Capstone Project, | have gained knowledge about SDN, its implementation, the security
vectors involved with addition to what possible concerns, shortcomings and challenges this highly

anticipated technology faces with the wide spread implementation.

ACKNOWLEDGMENT

It has been a great learning experience, this Capstone Project, not only in terms of knowledge

but devoting time and following the decided schedule with dedication.

For the experience, | want to thank the Program Coordinator for introducing Capstone Project as
a course in the MINT program. Also, a huge thank you to Prof. Mike Macgregor who has been a

great force behind MINT as a program.

Prof. Leonard Rogers has been instrumental not only in MINT 712, teaching us beyond the
qguintessential aspects of security but answering our questions concerning our projects and

otherwise with great depth and zeal.

I’'m indebted to my parents for giving me the push to pursue Masters in Canada, far away from
my home in India. And last but not the least my friends Kunjal Pundeer, for ensuring | was keeping

up with my set deadlines and Vaibhavi Kadam, for accompanying me in my study sessions.

INDEX

Table of Contents

LINErOAUCHION ... ettt e st e e st e e st e e s bt e s saseesenneesbeeenas 8
1.1 Traditional Network INfrastruCturecoceeieiiiieiieeeeeeee e 8
1.2 MOTIVATION .ttt e s e e 9

2. Software Defined NetWOIKINGcoooviiiiiiii e 11
2.1 Virtualization @s an @Nabler........oii i e e e 12
2.2 SDN ArChITECTUIE ...t 13
2.3 SDN COMPONENTS ooiiieiiiiiiiieeeeeeeee ettt e e e e et eeeeeeeees 15
P o AV T =Y <{=E o Y B L\ USSR 16
2.5 OpPOrtUNILIes FOr SDNccii it e e e e st e e e s earae e e s enaeeeeeeaneeeeennnens 17
2.6 Challenges fOr SDNcccuiiiee et e et e e e et e e e e et te e e e e saar e e e e easaeeesenaaeeesenneeeeennnens 17

B OPENFIOW...... ..o et e e e e e e e st e e e sttt e e e e ettt e e e e e abeeeeeaabeeeeeaaraeeeanns 19
3.1 OPeNFIOW ArChitECIUIE coovieei e e e e e e e e s ee e e e e e e e enanns 21
3.2 OPENFIOW IMIESSAEES. . .uiitiieeieeieiiiiitee e e e e e e eeccttrree e e e e sesetrateeeeeeeeesesstsaraeeeeesessasssrenneeesesannnns 22

B, 0PN VSWILCR ... et s e e e e e e e e ta e e e e areaa s 24

S.IMIININGL ... e 26
ST B [g1 1 oo [FTot o] o P TP PPRPPPRN 26
oA 0] o o Yo 1= o1 -3 27
5.3 FRATUIES ittt e 28
5.4 LIMITATIONS .eeeiiiiiiiiie e e 28

6. Setup MIININet ... 29
6.1 MININET FrOM GIT .o 29

7. SDN CONTIOIIIS ... s s ean e s esnae e 31
2% N [g1 o To [V Tot o] o PR PR T PP OPPRRPPPRON 31
7.2 Attributes Of CONTIOHErS ...c...oomiiiiieee e 31
7.3 POX INTrOQUCEION ...ttt e e e esneesnee s 32
2 T Y = U] o 3 e o T PSR 32

7.3.2 Connecting MiniNet @aNd POX......cceeiiiiiiiiiiireeeiee e ccitieeeee e e e eestrrreeeeeeesesanrreneeeeens 34

A3 S loTo Yo | 174 o | AR TSP UTTRRRPPP 43

4

7.4.1Installing FIOOdlight.....cccce i 44

8. Differences between Floodlight and POXccocoiiiiiiiiiii et 51
L Y T] 41 4V PP PPTT PP 52
9.1 VUINErabilities SDINc.cuuiiiiiiiiiiiee e s s 52
9.2 Virtualization and Security ChallE@Nges.........cuiiviiiiiiiiiiiie e 53
9.2.1 POSSIDIE SOIULION ..t 54

9.3 NEtWOIrK TOPOIOZY ...ttt e e e e e e e e e e s st e e e e e e e e seennseanneeeeeeennnns 55
9.3.1 Traditional Attacks and how they manifest in SDNccccccevviiiieiiniciiee e 55

9.3.2 SDN SECUIItY (SDSEC) ..uutiieieiiiieeeeeiieee e eiiete e e sttt e e ttee e e s sae e e e sbae e e s saaaeeeennaeaesennees 55

9.3.3 Control Plane and vulnerabilities..........cccoeiiiiiiiiiiieiee e 56

9.3.4 Data Plane and vulnerabilitiesccocueeeiiiiniieiiieeee e 57

9.3.5 Application Plane and vulnerabilitiescccccccveeiieiiiiiiiee e 58

10. Denial Of SEIVICE (DOS)uvvieiiiiiiiieiiieiieie et et e e e e s e bt bae e e e e e e sesssbbaranereeens 60
00 R VI o oY T 1 V- R 60
02 B 5 1o 1 PP URO SRRSO 62
11, CONCIUSIONS ...ttt e s e e e e e et e s sab e e s snb e e s naeesnae s 65
12, REFEIENCES ...ttt ettt 66

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24.
Figure 25:
Figure 26:
Figure 27:
Figure 28:

6

LIST OF FIGURES

Traditional Networks vs SDN NetWOIrKS......cccueiiiiiiiiiiiiiieeeiie e 12
ViIrtUGHSATION ...eiiiiiece e s 13
SDIN AFCRITECTUNE .ottt ettt e s bt e e sabe e s e e s enneeeenneeeas 14
SDIN PIANES .ttt et et 16
(0o 1T o = [1Y VAT T B] PSP 20
Packet Forwarding in Open vSwitch in OpenFIOW.......ccooviiciviiiiieiiie e, 20
(0] o1=] oY Lo VA N o S PPRSR 21
Flow of Messages in OPENFIOWceiiiiiiiieiiiiie ettt e e e s saae e e s aaneeeene 22
OPEN VSWItCN: FEALUIES oottt e e e e e erar e e e e s e e s naraereeeeeeeennnns 25

Mininet Emulated NETWOIKccocueiiiiiiiiiiieiie e s 27
L L o T =\ 1T 1 = TR 30
SDIN CONTIOIIEIS. ...eeeieieeee ettt ettt st st s e s st s et e s saneeseaneas 31
POX Controller FUNCLIONING ..ccciiiieiiiieeee et e e e e e e e e e e e e e e ennneaees 32
INSTAING POX . ettt ettt e e e e e s tae e e s sate e e e e ssaeeeessaeeeeesnsraeeeaans 33
POXDIESK ..ttt et e b e ae e s reenaeeeaee 34
POX fOrWarding.l2 ...ttt e e e e e s et ree e e e e e e e e e nnreees 35
IVIINTE DT e s 35
MINIEIt TOPOIOZY coeeiieeeeee et e e e e e e e e ree e e e e e e e e e nneaeees 36
Controller Preference MiniEdit.........ccocueiiiiriiinieneeeeee e 36
MiniEdit Controller Prefer@ncCe.. ... iiiiiiiiiicceeeeeee e 37
RUNNING MINIEIt TOPOIOZY .ceiiiiiiiiiiiiieeeee ettt e e e 38
SEarting POX CONErOll@r...cce e e e et ee e 39
Testing Connectivity amongst all NOAEScccuvvveeeeiiiiiiieee e 39
Starting Wireshark to capture packets........cooceevei e, 40
Wir€SNArK CAptUIEuuvieeeeieee ettt ettt e e e e e e e e e e e e abreaeeeeeeeeeesassrrereeeeens 40
PiNgall ; StANArd PN c..uuuveeeeeiiiiieiciieieeee ettt e e e e e e s eenrreeeeeeeeeessnnaraaees 41
Wireshark Capture for standard ping.......cccooeieeiei e 41

Ping for packet size greater than standard..........cccceeeeeieiiiiieeiiec e 42

Figure 29: Wireshark Capture for packet size greater than standardcccceeevveeeecieeecenneenn. 42
FIgUIe 30: MININET IPEIT «.eeeie e e s e e e st e e e s rbae e e s s abaeeeesnraeeas 43
Figure 31: Floodlight archit@Ctureevvvveeeiiee e e e 44
Figure 32: Installing FIOOAIGNT......cc.vviiiiiiiiie et 45
Figure 33: Installing Floodlight from Gitcuviiiiiiiiii e 46
Figure 34: Building Floodlight from jar filecoeeeeiiiei e 46
Figure 35: Starting FIOOAIIght.......ccoviiiiiiiie e e 47
Figure 36: Connecting Mininet with Floodlightccoiiiiiiiiii e 48
Figure 37: Floodlight GUI ShoWing all deVICeScccccviieiiiiiiieiciee et 48
Figure 38: Floodlight GUI TOPOIOEYuuvviiiiieeieiieciiiiee e e ettt e e e e e e et e e e e e e e e e eanraeeaeeaeeeennnes 49
Figure 39: Floodlight GUI SWItCHESccciiuiiiiiiiiiie et et e e e e s 49
Figure 40: FIOOdlight GUI HOSES ..eieeiieeiiiieeee ettt e e e e et e e e e e e e s anraeeeee e e e eennnns 50
Figure 41: Wireshark Capture for connectivity testccccvviiriiieiicie e, 50
Figure 42: Security VECtOrs iN SDINuuiuiiieiiiiiiiiiirirererureieierereerrrrrtee....————————————————————. 53
FISUIE 43: SDIN & SECUITY c.uuuviiiiieieeeieieiieetee e e ettt et e e e s e s st eee e e e e e s sessanbaaaeeeeeesesssnsntenaneeesesennnns 60
Figure 44: Connection Migration Module Stages........cceecuiiiiiiiieee s 62
LIST OF TABLES
Table 1: Differences between Floodlight and POX.........cooiiiiiiiiiieiei e 51

1. INTRODUCTION

In today’s expansively digital inter-connected world gathering information isn’t a herculean
task. To further extend on it, we have a burst of mobile devices, cloud, data center amongst
many others ensuring the transition, storage and accessibility of services and data is as

feasible as it could be.

Starting with the traditional Client-Server architecture which comprised of two or more
clients accessing the services the server was programmed to allow, we, today, can work with

masses of cross-server platforms and fetch whatever required at the ease of our homes.

But this intensive east-west machine-to-machine traffic needs only the requisites but also the

quality of all aspects of communications.

In this capstone project, | have put in efforts to learn where and how the traditional network
architecture lacks and how SDN covers up the shortcomings of the former, while having its
own vulnerabilities. In the process, | also go through basic components of SDN, trying to
implement Mininet based SDN environment using two controllers namely, Floodlight and

POX.

In the end, | venture into the vulnerabilities of SDN and what measures are currently in place

to tackle the issues and what prospects the future holds for Software Defined- Networking.

1.1TRADITIONAL NETWORK INFRASTRUCTURE

In traditional network infrastructure, the control plane and data plane were both integrated
together, making it a dedicated appliance, be it within a switch/router etc. Ethernet switches
are the best example of a traditional unit consisting of a combined control and data plane i.e.

a dedicated hardware.

The ports serve the inbound and outbound traffic and then the controller inbuilt processes
the control logic to forward the packets to their destination. The ARP table has the MAC
addresses mapped to corresponding ports. Based on the functionality needed, an Ethernet

switch can perform MAC filtering, device monitoring etc.

Traditional networks, although feasible, are tedious and complex to handle the enormous
inflow and outflow of data generated today. Manual configuring of networks, setting and
defining policies, ensuring proper routes and over-seeing the security of each route becomes
a nightmare for the network administration. Add on top, the number of devices connected
to the internet seeking information and manual configuration of each individual component,

being as accurate as vendor specific commands.

In addition to complexity, the traditional environment also must endure the faults and ensure
proper dynamic nature to adjust to load at any time. Authentication, access control lists,
VLANSs, firewall rules, topologies and QoS are some other part of the same problem arising
while handling changes in the daily traffic. And since automation in traditional setup is almost

non-existent, this makes the entire process even more challenging.

One of the main characteristics of this architecture was that the dedicated hardware is mostly
proprietary and needs to be configured individually and made compatible with each other.
This can be utterly time consuming and frustrating, in addition to the probability of being
error prone. Also, the evolution of the involved appliances could be slow since it is under the

control of the manufacturer.

Explicitly speaking about distributed control and transport layer network protocols, the
routers and switches are vertically integrated i.e. data plane and control plane are integrated
within the devices which further reduces flexibility when it comes to introducing new

abstractions to the evolution of the infrastructure, making the current implementation static.

1.2 MOTIVATION

For the above stated reasons and more, there is a need of an element of dynamic nature for

automation.

Elastic computing comes to the rescue. Virtualisation, being one of the most successful
enablers of the same, ensures connectivity amongst distributed nodes providing

differentiated QoS for plethora of applications, keeping provisioning of resources dynamic.

10

But it still requires manual labour to converge multiple networks, which results in inability to

dynamically adapt to changes in application traffic and user requirements.

One of the possible solutions currently in consideration is Software Defined Networking (SDN)

which aims at manipulating the basic structure of networks to overcome some of the

previously mentioned limitations.

11

2. SOFTWARE DEFINED NETWORKING

Software Defined Networking is an emerging architectural approach aiming to put in
automated processing of the network by segregating its control logic i.e. control plane from
the underlying hardware (routers and switches) forwarding the traffic (data plane), thus more
closely binding the interaction amongst applications and network devices with the services

being offered.

It centralises the logic decision taking component in the architecture. It is a set of manageable
networks hatched together with virtualisation being one of the prime foundations, at

present.

According to one of IEEE’s paper, SDN could be defined as a network architecture with the

following four pillars:

1) A network architecture where the control and data planes are decoupled thus removing
the control functionality from network devices which now will simply become forwarding

elements.
2) Forwarding decisions are flow-based, instead of destination-based.

3) Control logic is moved to an external entity called SDN controller or Network Operating

System (NOS).

4) The network is programmable through software applications running on top of the NOS

that interacts with the underlying data plane devices.

12

SDN Architecture

| app | apr | AP | arp | Traditional Architecture

AP APP | APP APP | APP

Cantrol Plane Control Plane Cantrol Plane

i i ; Data Plane Data Plane

CpenFlow] |intedace

MNetwark MNetwark

Dala Data Diata device A device B
Flane Plane Plane

MNetwark MNetwrark Metwrark
device A device B device C

Figure 1: Traditional Networks vs SDN Networks

2.1VIRTUALISATION AS AN ENABLER

Virtualisation is the logical abstraction of physical assets i.e. translating hardware into either
firmware or software or emulated software-based objects. It is one of the key enablers for
technologies like Cloud Computing, Network Function Virtualisation and even Software

Defined-Network.

It multiplexes the physical interface and creates multiple virtual objects from that interface,
with aggregation, it can create one virtual object from multiple physical objects and with

emulation, it can create a virtual object from different types of physical entities.

a hypervisor is the main entity responsible for the instantiation of virtual objects. It is a small
specialised operating system running on physical server that partitions and provisions
physical resources as virtual resources. It is also responsible for maintaining isolation amongst

all instances.

The main benefit of virtualisation is the maximum utilisation of resources, in addition to cost
reduction. It allows for elastic and scalable resource provisioning while sharing amongst many

users. Multi-tenacity is one of the biggest benefits of virtualisation.

https://www.researchgate.net/figure/SDN-vs-traditional-network-architecture_fig2_311496181

13

w ™

Application Apphication Applacation Applcation

Operation System Operation System

= v B " v B

£ 3 G ro W g Y N
B - | | -
vMemory vCPU vMemory vCPU

Operating System

—— Software-based virtual layer (Hypervisor)

Physical Infrastructure
L Physical Infrastructure

"D ls = "D | m =

cPU Graphic Storage
il CPU Memory Graphic

Without VM: Single OS owns all hardware resources With VM: Multiple OS share hardware resources
Figure 2: Virtualisation

2.2 SDN ARCHITECTURE

The SDN architecture can be divided into:

Control plane: It deals with the functionalities of changes in topology and service

provisioning, amongst others. It establishes a local data set, also called ROUTING
INFORMATION BASE (RIB) to form forwarding table entries which stores network topology
and is used by the Data Plane to direct inbound and outbound traffic. It has direct control

over the network’s data plane via APIs such as OpenFlow.

The Control Plane has another component in the form of a Management Plane dealing with
functions such as monitoring, configuring and management service provisioning to layers of

network stack and the rest of the system.
Benefits:

v' Security measures are put on top of the controller and this makes it easy to
dynamically add/cut off devices at various places in the network thus helping in
effective network monitoring.

v' Also, since we can keep an eye on the status of devices, any device susceptible to
attack can be filtered and removed in the initial stages itself. Example: A DDoS attack
can be detected and mitigated quickly by isolating the outbound and inbound traffic

of the malfunctioned device.

file:///D:/SDN/2017_Book_GuideToSecurityInSDNAndNFV.pdf

14

Infrastructure plane: Like in traditional networks, it is comprised of networking equipment.

The main difference is the equipment are just forwarding devices, without any embedded
control or ability to take in decisions as the logic intelligence is separated to form the

controller.

It includes the Data Plane. The Data Plane, also called the “Forwarding Plane”, deals with the
forwarding of network user traffic, built on the rules put in the system by the control plane.
It handles the incoming traffic and performs basic checks on the receiving packets such as

packet measurement, packet filtering, packet buffering amongst many.

Authenticated datagrams are then processed by lookups in the FIB table which is formed
from a well- established and stable RIB table in the control plane. In addition to FIB tables,

the Data Plane also implements certain small services such as Access Control Lists, QoS and

policies

Application Plane: It has the network behavior definition in the form of applications and

services offered. It hosts SDN applications while communicating with the controller through

APIs on the Northbound interface.

| Business Applications |

Application
Lyer |)
| Cloud Orchestration | | SDN Applications
Northbound
Interface
Control
Layer |:> [SDN Controller]

Southbound Interface
(ex. OpenFlow)

SDN Architecture

Network Infrastructure
'"fral_sat;';?'"e |:> (Core Network, Routers, Switches, Base-
stations, etc)

Figure 3: SDN Architecture

https://www.openairinterface.org/?page_id=466

15

2.3SDN COMPONENTS

Components of SDN based infrastructure would include:

v

Forwarding Devices: These are the data plane network devices capable of receiving

and sending data packets on its ports and they could be switches, routers and even
firewalls. These switches can be hardware(physical), software or virtual. The main
function of switches in SDN is to forward and process data.

Controller: Controller is a logical entity in the infrastructure that is responsible for
receiving instructions/pre-requisites from the application layer and further relays
them to the underlayer networking components. In remains in contact with the
infrastructure via the Southbound APIs, adding/updating or deleting flow entries and
with the application layer via the Northbound APIs.

Southbound Interface: Southbound APIs help in facilitating dynamic control over the

network to meet the real-time demands. OPENFLOW is one of the most well-known
southbound interface and industry standard defining the interaction of SDN controller
with the Data plane. Other southbound APIs include Lisp and NetConf, amongst
others.

Northbound Interface: It is the mode of communication between application layer

and the control layer. Based on the developer, it could be implemented in languages
like Python, java and C++. Currently, there is no standard protocol that exists for the
Northbound APIs. It is used to develop vendor independent applications, for load
balancing and monitoring of the applications implemented.

Network Applications: These are programs and applications communicating with SDN

via APIs to provide services to the end user.

OpenFlow: Industry standard for Southbound APIs, it defines the communication
between switching hardware and network controller. The OpenFlow switches are
basic forwarding elements accessible by the OpenFlow protocol and interface. These
switches consist of one or more flow tables, having header fields, that performs

packet lookups and forwarding and can perform as either a router, switch, firewall or

other roles as instructed by the controller. So, when the packet arrives, the header is

extracted to match it with the table and if found corresponding action is taken.

—
£

APPLICATION LAYER Business Applications

\ A A A y

| N

CONTROL LAYER

J
Control Data Plane Interface (OpenFlow)

p N
INFRASTRUCTURE LAYER “l |I . Il I” |I I l
J

Figure 4: SDN Planes

2.4 ADVANTAGES OF SDN

a. Directly Programmable: It is based on active networking which brings in
programmable functions in the network thus lowering the barrier to innovation. One
can implement new networking protocols in something as simple as a virtual machine.

b. Accessibility: It is vendor neutral since it is open standards-based. The network
managers can use features of SDN by writing their own programs that aren’t based on
proprietary standards.

c. Centrally managed: Having a logical centralised control plane has benefits including:

v’ Scalability and dynamic volatility of network is well adjusted and supported

with each managed device.

17

v’ High availability is ensured.
v' Geographically speaking, since the control plane is logical, it is easier to
manage.
d. OPEX: Operational efficiency and reduction in cost.
e. Agile: The logical centralization has several benefits including:
(i) Simpler and less error-prone to modifications
(ii) A control program can react to changes in the network state (traffic etc.) and
maintain the policies, working it all dynamically.
(iii) Simplification of development of sophisticated network services, applications
and functions.
(iv) It brings in Network Virtualisation and thus the ability to demultiplex software

programs based on packet headers.

2.50PPORTUNITIES FOR SDN

v" To support and enhance the movement for dynamic networks and ease the
replication and virtual resource allocation.

v To ease the administration responsibilities for the configuration and functionality

provisioning, involving something as tricky and sensitive as security with more

effectiveness.

To bring in the concept of easy and scalable network deployment and functioning.

To utilise network resources in a better way.

To significantly reduce Operational Expenditure (OPEX) and complexity.

D N NN

Enabling user applications for dynamic service requesting from the network.

2.6 CHALLENGES FOR SDN

v' Addressing dynamic change with accuracy: SDN, even though can automate
provisioning of newly converged network in less time but need of the hour is a

performance monitoring solution (with open APIs) which can enhance integration as

18

they can listen on event bus, look for new devices and instantly do the needful
changes.

Addressing rapid on-demand growth: Rapid increase in connected devices can pose
a risk to monitoring platforms in current SDN scenario. SDN needs extra performance
management capacity which can help spin up additional virtual appliances as the
demand increases, not affecting the performance or resource allocation.
Security: SDN being different than traditional network, brings along plethora of new
vulnerabilities. Moreover, SDN still being in R&D phase has many loopholes to be

considered before its wide spread implementation.

19

3. OPENFLOW

Considered one of the first SDN standards, it is a communication protocol mostly used as a
southbound API, enabling SDN controller to directly interact with the Data plane. The
Controller uses this interface to implement changes to the FIB (Forwarding Information Base)
to efficiently manage the traffic, implement new rules and or control flows for optimal

performance.

It was originally started to allow the creation and testing of experimental protocols for
research purposes at the Stanford University. According to Open Networking Foundation

(ONF), OpenFlow provides network programmability from a centralised view.

As a set of protocols and an API, it is divided into two parts, namely: Wire Protocol and

Configuration & Management protocol.

Wire Protocol: Is used for establishing a control session, for defining a message structure
used to exchange flow-mods and collect statistics while defining the fundamental structure

of a switch.

Configuration and Management Protocol: Is used to allocate physical switch ports, define

high availability and response on controller failure.
The OpenFlow APl handles L2-L4 network flow but to handle L5-L7 flow, it was extended.

Open vSwitches are one of the switches the OpenFlow protocol can use and the tables in the
switch consists of header fields, counters and actions. Header fields are matched with the
FIB and if a match is found, the counter is updated, and the concerned action is taken. Else, a
PACKET-IN message is sent to the controller over a TLS secured channel to notify about the

packet.

20

POX Controller
Ryu Controller

OpenDayLight Controller
Floodlight Controller

OpenFlow
Protocol

—_——————— e

| 3

Flow Table

OpenFlow Switch

Flow Table

| . |
.51 Rule Ac’uon_1 Counters

.......... B iyt by hyfifivarifiuidy Ryl
Rule ! Action | Counters

Figure 5: OpenFlow in SDN

Packet in
from network

Parsing header
fields

against

Table entry found

|I—eader fields |Ccun:er: | Actions I

Match

Perform actions
~ | on packet

tables

Mo match found

Notify controller
about packet using
PACKET-IN message

Figure 6: Packet Forwarding in Open vSwitch in OpenFlow

Benefits of OpenFlow include:

e Itis an enabler for innovation and accelerates new features and services.

e It has simplified provisioning, performance optimising.

e It has helped in abstraction by decoupling control and data planes.

https://www.udemy.com/
https://www.researchgate.net/publication/311496181

3.1 OpenFlow Architecture

The OpenFlow protocol has four interconnected layers, namely: message layer, state

machine, system interface and configuration.

Message Layer: It is used to define the semantics and syntax of messages shared and

supports manipulating messages to get the desired outputs.

e State Machine: It works at core low-level to attain actions as negotiations, flow control,
delivery etc.

e System Interface: It sets up instructions defining how OpenFlow identifies interfaces,

enabling interaction with the outside environment.

e Configuration: It ensures the configuration aspect such as buffer sizes, reply intervals etc.

Protocol

state Machine
revisnd

* tmyisnd
P

init/snd

Configuration

rcvt and J,

Messaqge Layer

im | clir

I EEstem Interface |

Figure 7: OpenFlow Layers

http://flowgrammable.org/sdn/openflow/

3.20penFlow Messages

The messages exchanged by the OpenFlow implementing controller and OpenFlow switch

can be of three types:

e Symmetric messages: Bidirectional; sent without solicitation.
e Asynchronous messages: Sent via switch without controller asking them.

e Controller messages: Initiated by controller to control/view switch’s state.

controller switch

HELLO

HELLo

FEATUREg REQUEST

X
CEATURES REPL

SET Conpg

pACKET

Figure 8: Flow of Messages in OpenFlow

e Hello (Controller -> Switch): after the TCP handshake, controller sends its version number
to switch.

e Hello (Switch -> Controller): switch replies to previous Hello message with its supported
version number.

e Features Request (Controller -> Switch): Controller requests for available ports.

23

Features Reply (Switch -> Controller): Switch replies with the list of available ports, port
speeds and supported actions and tables.

Set Config (Controller -> Switch): Controller asks the switch to send flow expirations.
Packet-In (Switch -> Controller): received packet didn’t match any entry in switch’s flow
table and hence was sent to the controller.

Flow-Mod (Controller -> Switch): controller instructs the switch to add the packet entry

to the flow table.

4. Open vSwitch

Often abbreviated as OVS, Open vSwitch is an open-source virtual multilayer switch. For
Virtualisation environments, it provides a switching stack whilst supporting multiple network
protocols and standards. They sit below the OpenFlow interface. It abstracts out underlying
server architecture and allows creation of cross-server switches, thus enabling transparent

distribution across multiple platforms.

Written majorly in platform independent C, it has a Linux kernel implementation, providing

easy portability to multiple environments.

Ovs-ofctl is a utility tagged along with Open vSwitch allowing to monitor and control a single
switch’s flow table, proving helpful for the debugging process. It helps examining OVS’s kernel

flow cache, which is a subset of full OpenFlow flow table.
Characteristics of Open vSwitch:

e Mobility: Open vSwitch supports both configuration and migration of slow as well as fast
network state between VM instances.

e Network Dynamics: Open vSwitch supports features which allow network control system
to adapt as quickly as the environment changes. Open vSwitch Database (OVSDB) is one
of the many features that supports remote triggers.

¢ Maintaining Logical tags: Tags are useful to uniquely identify VMs or hold some relevant
context in the logical domain. And Open vSwitch has multiple methods to specify and
maintain tagging rules, making it accessible to VMs at demand.

e Hardware integration: Open vSwitch is capable of offloading packet processing to
hardware chipsets which allows it to be able to control both hardware and software

switch and compatibility.

25

r h 4 3
[Security: VLAN Monitoring: Netflow,
~~ isolation, traffic filtering sFlow, SPAN, RSPAN

\ V. >

) § A dC | |
: 2 utomated Control:
(Gos: trafﬁc Ausing . OpenFlow, OVSDB
and traffic shaping
L A mgmt. protocol y

Figure 9: Open vSwitch: Features

https://www.sdxcentral.com/open-source/definitions/what-is-open-vswitch/?c_action=related_articles

26

5. MININET

5.1INTRODUCTION

Since SDN is the R&D phase, emulation tools are of utmost help while recreating deployment
scenarios, making it possible to have different performance metrics evaluated but without

the financial constraint and the complexity of an actual deployment.

Simulators, an alternative, could model a scenario on software to have performance
evaluated, being as close as possible to actual implementation, in addition to having full

knowledge of all factors, on and off stage, involved.

Mininet, a single Linux kernel-based system, is one of the network emulation orchestration
systems widely used for research on SDNs. It creates a realistic virtual network instantly, on

a single machine with a real kernel, switch and application running code.

The process-based lightweight virtualisation and network namespaces helps Mininet create
virtual networks easily and is the reason why the hosts have their own private network
interface and can only see their own processes due to isolation provided by virtualisation

instances.

The switches in Mininet are software based Open vSwitches or the OpenFlow reference
switches, giving a real feel of the OpenFlow protocol to the user. The links are live in Linux

and connect the emulated switches to the emulated processes that work as hosts.

27

SDN App

Controller
w.

-~ “a

- > . i

/ 5 L/ /]

/ - /7

I Switch]:/ Switch :/ﬁ

v
’

x ’

==/
[Switeh

|Ilosl

Physical Hardware Network

1
=
=

.
“a
v

\ ;
mn —topo linecar,d

> hl ping h3

.\
.

A

[—,/v =
L
hY

1
| I | | S | | I -
Mininer Emulared Nemwork ‘]

Figure 10: Mininet Emulated Network

5.2COMPONENTS

v lIsolated Hosts: The user-level processes(hosts) in Linux kernel are moved into a
network namespace and since process groups have exclusive ownership of
components like ports, interfaces, routing tables etc., each host is isolated.

v' Emulated Links: Linux Traffic Control manages the data rate of each link in the
emulated network. A virtual ethernet acts like a connecting wire for two or more
virtual interfaces.

v" Emulated Switches: Mininet amongst available resources, uses either default Linux

bridges or Open vSwitches which are responsible for handling inbound and outbound

https://www.semanticscholar.org/paper/Mininet-as-Software-Defined-Networking-Testing-Kaur-Singh/b1c7f8ac477a5553303802bb7785dd3b53372057

28

traffic through the interfaces available to Mininet, whether on VM or host.

5.3FEATURES
v’ It is a command-line instantiated network platform where we can run real programs.
v’ Being a python API, we can easily create networks of varying sizes and topologies and
the processing is fast.

v Open source and supported and developed by BSD Open Source License.

5.4LIMITATIONS
v' Resource limitations as when we run multiple instances on a single machine, the
resources need to be balanced and shared amongst the hosts the switches (virtual).
v" Mininet is a single Linux kernel and hence software vendor limitation can arise.
v" Mininet doesn’t come with a pre-written OpenFlow controller. One must develop
their own controller with the custom features.
v By default, Mininet network is isolated from the LAN and from internet but we can

use NAT options to connect them to the internet or LAN.

29

6. SETUP MININET

Mininet can be installed either on an Ubuntu machine, from scratch or we can import the

already built Mininet VM from the Mininet GitHub.

6.1 MININET FROM GIT

Install Ubuntu ISO on a VirtualBox Machine and update the system using:

$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get dist-upgrade

To get the Mininet source code from Git, we install Git:

$ sudo apt-get install git

Install Mininet from source code:

$ sudo git clone git://qgithub.com/mininet/mininet

We can tag all released versions of git and choose whichever version we want to install. In

our case, we have installed 2.2.0b3 version.

$sudo git checkout -b 2.2.0b3

Mininet project has an install script, so we run the script that would install Mininet 2.2

§ ~/mininet/util/install.sh -a

After the script runs completely, we can test the if the installation was successful. So, we

run:

$ sudo mn -test pingall

30

Mininet is up and running.

Terminal

(o)

sammie@ubuntu: ~/mininet/mininet
pkill -9 -f .ssh/mn

rm -f ~/.ssh/mn/*

*** Cleanup complete.
sammie@ubuntu:~/mininet/mininets$
sammie@ubuntu:~/mininet/mininets$
sammie@ubuntu:~/mininet/mininets$
sammie@ubuntu:~/mininet/mininet$ sudo mn --test pingall
[sudo] password for sammie:

*** Creating network

%% Adding controller

*** Adding hosts:

h1 h2

*** Adding switches:

s1

*** Adding links:

(h1, s1) (h2, s1)

*** Configuring hosts

h1 h2

*** Starting controller

co

*** Starting 1 switches

s1 .

*** Waiting for switches to connect

Figure 11: Starting Mininet

31

7. SDN CONTROLLERS

7.1INTRODUCTION

SDN controllers are the main brain of the architecture. They are master behind configuring
network devices and instructing switches, via Southbound Interfaces, of their actions and

feeds information to the application through the northbound interface.

Controller can be viewed as the centralized management in Software defined-networking. It
handles the flow tables in a switch. One of the two things can happen with a packet i.e. it’s
either in the flow table which can then proceed with the action associated with it or it isn’t
in the flow table which then controller can instruct the switch to add an entry via flow mod

option.

7.2 ATTRIBUTES OF CONTROLLER

v Centralised management and distribution of the network state to the switches and
network devices connected alongside.

v’ Itis a high-level data model providing a top-level view of relation between resources,
policies and other services offered.

v They can support further scalability via multi-controller environment.

Name Language Original Developers | Description

Ovs C Stanford/Nicira A reference controller. Act as a learning switch

NOX C++ Nicira The first OpenFlow controller

POX Python Nicira Open source SDN controller

Beacon Java Stanford A cross platform, modular OpenFlow controller

Maestro Java Rice Network operating system

Trema Ruby, C NEC A framework for developing OpenFlow controller

Floodlight Java BigSwitch OpenFlow controller that work with physical and
virtual OpenFlow switches

Flowvisor C Stanford/Nicira Special purpose controller

Ryu Python NTT Labs Ryu is a component based SDN framework

OpenDayLight| Java ONF It is open source project

Figure 12: SDN Controllers

https://www.udemy.com/

32

7.3POX: Introduction

POX is an OpenFlow controller which now is also extending to function as an OpenFlow

switch. A networking software platform, it is written in Python and can run on any platform

that has Python 2.7 and above installed on it.

The booting process for POX requires pox.py file that takes a list of module names on

command line, locates those modules and calls their launch function to put them through

their up state for functioning.

Features of POX:

v ltis a python based OpenFlow interface.

v' It has reusable sample components for many services like path selection, topology
discovery etc.

v It works on major platforms like Windows, Linux, Mac OS.

POX OpenFlow Controller
& i
|

|

|

|

I

|

|

I OpenFlow
| Protocol
|

|

|

|

|

|

I

Response

Contact controller when no
match found in flow tables

I
|
|
|

A4

F_’{a_c -k-%t-l-r?lf Flow Tables |---p] Execute Actions [- -F-,?-c-]ﬁe»t out

OpenFlow Switch

Figure 13: POX Controller Functioning

7.3.1 SETUP FROM GIT

Generally, POX comes installed along with Mininet, but we can also install POX on another

Host.

We first pull the POX repository

$ sudo git clone https://qithub.com/noxrepo/pox

Then we install POXDesk which is a web-based GUI for POX and makes it convenient to

monitor the switches and the network. Steps for the same are:

19N

cd pox

sudo git checkout betta (we’re choosing to branch out to betta)
cd ext

sudo git clone https://github.com/MurphyMc/poxdesk

cd poxdesk

sudo wget http://downloads.sourceforge.net/qooxdoo-2.0.2 sdk.zip
sudo unzip qooxdoo-2.0.2-sdk gx

cd poxdesk

sudo ./generate.py

TR ST AW W WL SR Y

Terminal =1) 4:41PM %

sam1@ubuntu: ~/poxfext/poxdesk/poxdesk

COPYING debug-pox.py L pox pox.py README setup.cfg t
saml@ubuntu:~/pox$ cd ex

1@ubuntu:~/pox/exts ls

] README

saml@ubuntu:~/poxfext$ cd poxdesk
saml@ubuntu:~/poxfext/poxdesks 1s
__init__.py 3 q terminal.py
__init__.pyo README tinytopo.py
sami@ubuntu:~/poxfext/poxdeskS cd poxdesk
sami@ubuntu:~/poxfext/poxdesk/poxdesks 1s
config.json generate.py index.html Manifest.json readme.txt
saml@ubuntu:~/pox/ext/poxdesk/poxdesk$ sudo ./generate.py
[sudo] password for sami:

Processing configuration
- Warning: ! Shadowing job "libraries" with local cne

Figure 14: Installing POX

$cd ../ ../ ../
$ sudo ./pox.py samples.pretty_Jlog web messenger messenger.log_service
messenger.ajax_trasnsport openflow.of_service poxdesk

33

https://github.com/noxrepo/pox
https://github.com/MurphyMc/poxdesk
http://downloads.sourceforge.net/qooxdoo-2.0.2%20sdk.zip

34

Now we can access POX controller on POXDesk at http://127.0.0.1:8000/poxdesk/source

5:09 PM

POXDesk - Mozilla Firefox 7 = «)

Figure 15: POXDesk

7.3.2 CONNECTING MININET & POX

v' POX uses the forwarding.I2_learning component in learning like a layer 2 device i.e.
switch. We run POX by running pox.py script and specifying the ‘forwarding.l2_learning’
component.

$ sudo ~/pox/pox.py forwarding.l12_Tlearning

http://127.0.0.1:8000/poxdesk/source

35

O S sammie@ubuntu: ~

sammie@ubuntu:~$ sudo ~fpox/pox.py forwarding.l2_learning
[sudo] password for sammie:

POX 0.5.0 (eel) / Copyright 2011-2014 James McCauley, et al.
INFO:core:POX 0.5.0 (eel) is up.

Figure 16: POX forwarding.I2

v" Next, we can either use Miniedit, which is a graphical component for building the

topology or use the Mininet command line to build up a topology to work with. Another
method could be writing a script in python that could implement the topology along with
routes and the scenario that needs to be implemented.
Miniedit version:

$ sudo ~/mininet/examples/miniedit.py

@& & sammie@ubuntu: ~

sammie@ubuntu:~$ sude ~/mininet/examples/miniedit.py
[sude] password for sammie:
topo=none

Figure 17: MiniEdit

v" And then we can build up a topology. In this scenario, I've built up a 3 switch (s1, s2 and

s3), one controller(c0) and four host (h1, h2, h3, h4) tree structure as topology.

File Edit Run Help

wﬂﬁ“B@t

s [
Figure 18: MiniEdit Topology

v' We edit preferences in the Miniedit so we can access and make changes to topology from

the CLI. We can also select the version of switch we wish to use.

o Preferences

IPBase: |10.0.0.0/g] | ~sFlow Profile for Open vSwitch
Default Terminal: xterm —-| Target:|
Start CLI: W Sampling:|400
Header: (128
Default Switch: Open vSwitch Kernel Mode — | Polling: |30
o] Switch
pen YSIEE ~NetFlow Profile for Open vSwitch
OpenFlow 1.0: v
pen ow - Target: |
OpenFm Lo - Active Timeout: 600
(o] Fi 1.2:
pen Add ID to Interface: [
OpenFlow 1.3: [
. dpctl port:

0K | Cancel

Figure 19: Controller Preference MiniEdit

36

v Also, since we’re using POX as the controller, we select Remote controller as the option

for the controller by going to Controller properties.

File Edit Run Help

|
Bl

c L Name:cO
Controller Port: 6633 _'
i
5 Controller Type: Remote Controller — B
Protocol: TCP — =
= "
e a— i C
\ IP Address: 127.0.0.1 ‘ c0
s2
f— oK ‘ Cancel |
[2 [[
h1

s

top]

Figure 20: MiniEdit Controller Preference

v In this implementation, | ran POX controller in the same VM as the switches and hosts in

Mininet, so the switches communicate with the remote POX controller using host

system’s loopback address and default OpenFlow port number (6633)

v" Next, we RUN the topology.

M S sammie@ubuntu: ~

sammie@ubuntu:~$ sudo ~/mininet/examples/miniedit.py
[sudo] password for sammie:

= {'ipBase': '10.0.0.0/8', 'sflow': {'sflowPolling': '30', 'sflowSampl
'sflowHeader': '128', 'sflowTarget': ''}, 'terminalType': 'xterm',
'1', 'switchType': 'ovs', 'netflow': {'nflowAddId': '@', 'nflowTarge
'nflowTimeout': '600'}, 'dpctl': '', 'openFlowVersions': {'ovsOfil': '@’
'ovs0f10': '1', 'owsOf13’ , 'ovs0ofi2': '0'}}
{'remotePort': 6633, 'controllerProtocol': 'tcp'
, 'hostname': 'c®', 'remoteIP': '127.0.0.1', 'controllerType': 'remote'}
Getting Hosts and Switches.
Getting controller selection:remote
Getting Links.
*** Configuring hosts
h4 h1 h2 h3
**** Starting 1 controllers
c@®
**** Starting 4 switches
s4 53 52 s1
No NetFlow targets specified.
No sFlow targets specified.

NOTE: PLEASE REMEMBER TO EXIT THE CLI BEFORE YOU PRESS THE STOP BUTTON. Not exi
ting will prevent MiniEdit from quitting and will prevent you from starting the
network again during this sessoin.

*#% Starting CLI:
mininet>

Figure 21: Running MiniEdit Topology

v We now need to start the POX controller.

$ sudo ~/pox/pox.py forwarding.12_pairs info.packet_dump
samples.pretty_Jlog log.level -DEBUG

This starts to show the logs as the controller starts and connects to the switches we set

in the topology.

oc sammie@ubuntu: ~

sammie@ubuntu:~$ sudo ~/pox/pox.py forwarding.l2_pairs info.packet_dump samples.
pretty_log log.level --DEBUG

[sudo] password for sammie:

POX 0.5.0 (eel) / Copyright 2011-2014 James McCauley, et al.

INFO: forwarding.12_pairs:Pair-Learning switch running.
INFO:1info.packet_dump:Packet dumper running

[core] POX ©.5.0 (eel) going up...

[core] Running on CPython (2.7.6/Nov 13 2018 12:45:42)

[core] Platform is Linux-4.4.0-142-generic-x86_64-with-Ubuntu
-14.04-trusty

[core POX 0.5.0 (eel) is up.

iopenflow‘of_ol Listening on 0.0.0.0:6633

Figure 22: Starting POX Controller

v Next, we try the connectivity amongst the nodes via ‘pingal1’ command.

O€ sammie@ubuntu: ~
sammie@ubuntu:~$ sudo ~/mininet/examples/miniedit.py
[sudo] password for sammie:

= {'ipBase': '10.0.0. 'sflow': {'sflowPolling': '30', 'sflowSampl
'400"', 'sflowHeader' : "'}, 'terminalType': 'xterm'
'startCLI': '1', 'switchType': y {'nflowAddid': 'e', 'nflowTarge
t': "', 'nflowTimeout': '608'}, '] 'openFlowVersions': {'ovsOfi1': '@’
, 'ovsofi@': '1', 'ovs0f13': '@’ 'e'}}
New controller details for c@ remotePort': 6633, 'controllerProtocol': 'tcp'
, 'hostname': 'c@', 'remoteIP': 27.0.0.1", 'controllerType': 'remote'}
Getting Hosts and Switches.
Getting controller selection:remote
Getting Links.
*** Configuring hosts
h4 h1 h2 h3
***x% Starting 1 controllers
cO
**** Starting 4 switches
s4 s3 s2 sl

No NetFlow targets specified.
No sFlow targets specified.

NOTE: PLEASE REMEMBER TO EXIT THE CLI BEFORE YOU PRESS THE STOP BUTTON. Not exi
ting will prevent MiniEdit from quitting and will prevent you from starting the
network again during this sessoin.

*** Starting CLI:
pingall
: testing ping reachability
h2z h3
h2 h3
h1 h3
-> h4 h1 h2
x Results: 0% dropped (12/12 received)
mininet>

Figure 23: Testing Connectivity amongst all nodes

v/ We start Wireshark to see what packets are being captured in terms of traffic.

sammie@ubuntu: ~

sammie@ubuntu:~S sudo wireshark &
[1] 3852
sammie@ubuntu:~$ I

Figure 24: Starting Wireshark to capture packets

Capturing from any
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

d @ G Q @ =

Destination Protocol Lengtt Info
TCHP 100 Echo (ping) request 1d=0x1026, seq=1/256, Lt1=64 (no response found!)
OpenFlow 184 Type: OFPT_PACKET_IN
penFlow 148 Type: OFPT_FLOW_WOD
100 Echo (ping) request 1d=0x1026, seq=1/256, ttl=6d (reply in 34163)

0HP 100 Echo (ping) reply 1d=0x1026, seqs1/256, (request in 34162)
OpenFlow 184 Type: OFPT_PACKET_IN
OpenFlow 148 Type: OFPT_FLOW_MOD

100 Echo (ping) reply 1d=0x1026, seqs1/256, 4
CHP 100 Echo (ping) request 1d=0x1021, seqs1/256, 4 (no response found!)
OpenFlow 184 Type: OFPT_PACKET IN
OpenFlow 148 Type: OFPT_FLOW_MOD

100 Echo (ping) request 1d=0x1021, seq=1/256, ttl=64 (no response found!)
TCHP 100 Echo (ping) request 5eq=1/256, 4 (no response found!)
OpenFlow 184 Type: OFPT_PACKET_IN
OpenFlow 148 Type: OFPT_FLOW_WOD

cHe 100 (ping) request 56q=1/256, 4 (no response found!)
CHP 100 860=1/256, 4 {no respanse Tound!)
OpenFlow 184
b penFlow 148
2 CHP 100 500=1/256, 4 (reply in 34179)
.2 CHP 100 500=1/256, 4 (request in 34178)
.3 OpenFlow 184 T
8.1 penFlow 148
0.3 0HP 100 500=1/256,
0.3 CHP 100 500=1/256,
05349404 0.3 OpenFlow 184
34185 452.054818052 127.9.6.1 OpenFlow 148
34186 452.054999160 10.0.0.3 0 Echo (pina) replv 1d=0x1021. seas1/256, ttls6d

Frane 32913: 1516 bytes on wire (12128 bits), 1516 bytes captured (12128 bits) on interface @
Linux cooked capture

Internet Protocol Version 4, Src: 10.0.0.4, Ds!
Data (1488 bytes)

10.0.0.1

©0 62 69 01 00 06 56 14 4c cc b9 9a 9a 9b 08 0O
45 00 05 dc 72 b4 24 5640 01 ca 12 0a 00 00 04
0a 00 00 a i bo 1

178 19 fa Th
04 05 05 07 08 09 Ba Ob
14 45 16 17 18 19 la db

Figure 25: Wireshark Capture

v | tried pinging between nodes taking different packet sizes. Standard Packet size of 64

bytes

ae sammie@ubunktu: ~
mininet> pingall
*** ping: testing ping reachability
h4 -> h1 h2 h3
-> h4 h2 h3
-> h4 h1 h3
h3 -> h4 h1 h2
*** Results: 0% dropped (12/12 received)
mininet> hl ping -c4 h2
PING 10.0.0.2 (10.8.0.2) 56(84) bytes of data.
from 10.0.0.2: icmp_seq=1 ttl=64 tim
from 10.0.0.2: icmp_seq=2 ttl=64 time
from 10.0.0.2: icmp_seq=3 ttl=64 tim
from 10.0.0.2: icmp_seq=4 ttl=64 tim

--- 10.0.0.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.029/5.724/22.706/9.804 ms

mininet> hl ping -c15 h2

PING 10.0.0.2 (10.8.0.2) 56(84) bytes of data.

bytes from 10.8.8.2: icmp_seq=1

bytes from 10.8.0.2: icmp_seq=2

bytes from 10.0.0.2: icmp_seq=3

bytes from 10.0.0.2: icmp_seq=4

bytes from 10.8.08.2:

bytes from 10.08.0.2:

bytes from 10.0.0.2:

bytes from 16.0.08.2:

bytes from 10.8.0.2:

bytes from 10.8.0.2: icmp_seq=180 =64 time=0.038
bytes from 10.0.0.2: icmp_seq=11 64 tim .242
bytes from 10.8.8.2: icmp_seq=12 ttl=64 tlmc 0.035
bytes from 10.8.0.2: icmp_seq=13 ttl=64 .036
bytes from 10.8.0.2: icmp_seq=14 ttl=64

bytes from 10.0.0.2: icmp_seq=15 ttl=64

10.0.0.2 ping statistics ---
15 packets transmitted, 15 received, : packet loss, time 14002ms
rtt min/avg/max/mdev ©.032/3.382/49.245/12.257 ms
mininet>

Figure 26: Pingall ; Standard Ping

v" And the Wireshark captured traffic is as follows:

Capturing from any
Fle Edit View Go Capture Analyze Statistics Telephony Wirsless Tools Help

== 5H
14 ks
No Protocol Lengtt Info
HONS. 109 Standard query 00080 PTR _1pps._tep.local, "QM" question PTR _1pp._tep.local, "QM" question
NS 199 Standard query 610980 PTR _ipps.tep.Jocal, "QH" question PTR “ipp. Lcp.local, "G question
OpentLow
OpenFlow
> Len=0 TSval=190303 TSecr=198303
S uestion PTR _ipp._tcp.local, "Qu" question
" Question PR “ipp.-tcp. local, "q" question
s ocal, "QH" question PTR _ipp. tcp.local, "QM" question
ICHPVE 33
Py
g OpenFlow
1768 115.470913068 fe8a: :2 2 ICHPVE
1769 115,486666963 127.9.0.1 127.9.0.1 openlow
1776 115.486679236 127.6.0.1 P =86 Len=0 TSval=190372 TSecr=198372
171 115.486 ifea 2 ICMPVE 3
CHPYE
e ICHPe
ifea 2 OpenFlow
openlow
1 > Len=0 TSval=190372 TSecr=198372
fea 2 ICHPve 3
1778 115.48875 17971 fea ICHPYE
1779 115. 4887980 ifea ff02::2 IcHPvs
! c , tt164 (no response found!)
1781 115. 515691354 10.9.9.1 10.8.9.2 1o 3840, tri=s4 (reply in 1782)

, tE1=64 (request 1n 1781)
, tel=64

1763 413, 15038420, 50, 10.6.0.1 3 m Echa (ping) reply
1784 115, 638115083 1eB0: 6402: 70T fer 1702112 ICHPVE Router So3icitation Tron 66-02.7a: fa:ee:5a
Erame 1: 76 bytes on wire (688 bits), 76 bytes captured (608 bits) on interface ©
Linux cooked captu
Tnternet Protocol Varsion 4, Src: 127.6.0.1, Dst: 127.8.0.1
Transaission Control Protocol, Src Port: 43172, Dst Port: 6633, Seq: 1, Ack: 1, Len: 8
6

69 61 o
80 18 00 56 fe 39 00 O 61
00 82 71 fd 61 02 00 08 60 60 00 00

Figure 27: Wireshark Capture for standard ping

42

v’ Packet size = 64382 bytes

(] sammie@ubunktu: ~

--- 10.0.0.2 ping statistics -
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.029/5.724/22.706/9.8064 ms
mininet> hl ping -c15 h2
PING 10.0.0.2 (10.8.0.2) 56(84) bytes of data.
64 bytes from 10.0.8.2: icmp_seq=1 ttl=64 ti

bytes from 10.0.0.2: icmp_seq=2 6

bytes from 10.8.8.2: icmp_seq=3

bytes from 10.8.0.2: icmp_seq=4

bytes from icmp_seq=5

bytes from icmp_seq=6

bytes from icmp_seq=7

bytes from icmp_seq=8

bytes from icmp_seq=9

bytes from icmp_seq=160

bytes from icmp_seq=11

bytes from icmp_seq=12

bytes from icmp_seq=13

bytes from icmp_seq=14

bytes from icmp_seq=15 time=0.151

10.0.0.2 ping statistics -

15 packets transmitted, 15 received, 8% packet loss, time 14082ms

rtt min/avg/max/mdev = ©.032/3.382/49.245/12.257 ms

mininet> hl ping -c15 -s 67000 h2

ping: packet size too large: 67000

mininet> hl ping -c3@ -s 64374 h4

PING 10.0.0.4 (10.0.0.4) 64374(64402) bytes of data.
bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=220
bytes from 1 icmp_seq=2 time=174
bytes from i . time=151
bytes from i _ time=168
bytes from 1 icmp_seq; time=125
bytes from 1 icmp_se time=160
bytes from icmp_seq= time=422
bytes from icmp_s
bytes from 1 icmp_seq=
bytes from 1 icmp_seq=18 ttl.

Figure 28: Ping for packet size greater than standard

v" The Wireshark traffic shows that the packets were fragmented.

Capturing from any

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
® FIE X6 Q&= SEaaafE
(W [2ply 2 display fiter __=cur
No. i s Destination Protocol Lengtt Info
27835 367.483255205 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=37608,
27836 367.483258992 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=38486,
27837 367.483250383 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=38480,
= 27838 367.483261542 10.0.0.1 IPv4 1516 Fragmented IP protocol (proto=ICMP 1, off=39960,
27839 367.483261861 10.0.0.1 IPv4 1516 Fragmented IP protocol (proto=ICMP 1, off=39960,
= 27840 367.483265689 10.0.0.1 IPv4 1516 Fragmented IP protocol (proto=ICMP 1, off=41440,
27841 367,483266019 19.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=41449,
27842 367483268289 10.0.0.1 Ipvd 1516 Fragmented IP protocol (proto=ICMP 1, off=42920,
27843 367483268702 10.0.0.1 IpPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=42920,
— 27844 367483272738 10.0.0.1 Pvd 1516 Fragmented IP protocol (proto=ICMP 1, off=44400,
27845 367.483273225 10.6.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=44400,
27846 367.483275238 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=45880,
27847 367.483275601 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=45880,
27848 367.483279251 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=47366,
27849 367.483279572 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=47366,
27850 367.483281658 10.0.0.1 IPv4 1516 Fragmented IP protocol (proto=ICMP 1, off=48840,
27851 367.483282001 10.0.0.1 IPv4 1516 Fragmented IP protocol (proto=ICMP 1, off=48840,
27852 367,483285001 19.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=50329,
27853 367,483286133 10.0.0.1 Ipvd 1516 Fragmented IP protocol (proto=ICMP 1, off=50320,
27854 367483288336 10.0.0.1 Ipvd 1516 Fragmented IP protocol (proto=ICMP 1, off=51869,
| | 2755 367483288670 10.0.0.1 Pvd 1516 Fragmented IP protocol (proto=ICMP 1, off=51809,
27856 367.483292337 10.6.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=53280,
—— 27857 367.483292680 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=53280,
27858 367.483294676 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=54766,
27850 367.483295041 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=54766,
27860 367.483298769 10.0.0.1 IPvd 1516 Fragmented IP protocol (proto=ICMP 1, off=56248,
27861 367.483299064 10.0.0.1 IPv4 1516 Fragmented IP protocol (proto=ICMP 1, off=56240,
8 Frame 7232: 102 bytes on wire (816 bits), 162 bytes captured (816 bits) on interface 0

Linux cooked capture
Internet Protocol Version 4, Src: 192.168.72.130, Dst: 151.101.65.69
Transmission Control Protocol, Src Port: 46764, Dst Port: 443, Seq: 1102, Ack: 4821, Len: 46
Secure Sockets Layer
000 00 04 [JEH 06 06 60 6c 29 c9 bd 42 00 00 08 60 - L) B

45 80 60 56 2b 21 40 00 40 86 2d ac o a8 48 82 E--V+'@ 0 - - H

97 65 41 45 b6 70 01 bb 90 49 77 dd 30 25 3e el eAEp - Iw-0%>

50 18 99 fC e2 1d 60 90 17 83 63 0O 29 60 60 60 P)

©0 09 08 0 B9 fd df ed 10 4a 92 9d d2 6 77 bl 3w
Qe cb 2c 89 5b 38 78 T8 18 4d 8b 67 80 e3 88 18 ,[8x Mg
b ab 22 5e 2b b6 st

Figure 29: Wireshark Capture for packet size greater than standard

D=708f)
D=708f)
D=708f)
D=708f)
D=708f)
D=708f)
1D=708f)
1D=708f)
1D=708f)
D=708f)
D=708f)
D=708f)
D=708f)
D=708f)
D=708f)
D=708f)
D=708f)
1D=708f)
1D=708f)
1D=708f)
D=708f)
D=708f)
D=708f)
D=708f)
D=708f)
D=708f)
D=708f)

43

v/ Mininet also gives us option to test the link strength between nodes via iperf.

sammie@ubuntu: ~

mininet=

mininet=

mininet=

mininet=

mininet=

mininet=

mininet=

mininet>

mininet>

mininet>

mininet>

mininet>

mininet>

mininet>

mininet>

mininet=

mininet=>

mininet>

mininet=

mininet=

mininet=

mininet=

mininet=

mininet=

mininet=

mininet=

mininet> iperf h1 h4
**% Iperf: testing TCP bandwidth between h1 and h4

: ['2.83 Gbits/sec', '2.84 Gbits/sec']

Figure 30: Mininet iperf

7.4FLOODLIGHT

Floodlight is a popular SDN controller from Big Switch Networks. Based on Beacon, it is a Java
based OpenFlow supporting controller.

The architecture includes modules such as topology management, MAC and IP tracking
components, GUI for web access, OpenFlow counters and storage abstraction developed into
SQL and NoSQL backend.

It uses REST API for event notification system and Java Event Listeners to allow applications
to know the state of the controller.

Floodlight has a module called Floodlight Provider that handles input and output stream from
switches, translating OpenFlow messages to events.

The Topology manager uses LLDP (Link Layer Discovery Protocol) to discover end points, both

OpenFlow based or non-OpenFlow based.

44

Unlike other Onix based controllers, including POX, it has a component called BigDB that is a

NoSQL based database used for storing information including configuration and element

state.
)
Big Virtual Switch
~—
EE—— . e NVirtuaIk
Ty : earning tatic Flow etwor
Appllcatlons BigTap Switch Hub Pusher Filter
—/ (Quantum)
)
VCenter
e —
(.] r(ontroller‘ OpenFlow End-Point Path REST
BigCLI Stats [Manager][Manager][Topology][Computation][Service]
[1 (log i Module Loader Storage
BigStatd Vieier
(: 1 Topology |
BigConsole Viciier
Memory Backend SQL Backend NoSQL Backend BigDB
Infra Core

Figure 31: Floodlight architecture

7.4.1 Installing Floodlight

v Since Floodlight is a Java based controller, we need Java Development kit which includes:
» JDK 8 for floodlight master
» JDK 7 for floodlight v1.2 and below

v For floodlight master, we download the dependencies:

$ sudo apt-get install build-essential ant maven python-dev

https://learning.oreilly.com/library/view/sdn-software-defined/9781449342425/ch04.html

45

O S sammie@ubuntu: ~

sammie@ubuntu:~$ sudo apt-get install build-essential ant maven python-dev

[sudo] password for sammie:

Reading package lists... Done

Building dependency tree

Reading state information... Done

build-essential is already the newest version.

python-dev is already the newest version.

maven is already the newest version.

ant is already the newest version.

The following package was automatically installed and is no longer required:
libqpdfi13

Use 'apt-get autoremove' to remove it.
©® upgraded, ® newly installed, ® to remove and 12 not upgraded.
sammie@ubuntu:~$ I

Figure 32: Installing Floodlight

v For Floodlight v1.2 and below, we download dependencies:

$ sudo apt-get install build-essential openjdk-70jdk ant maven python-
dev eclipse

Since we have the pre-requisites now, we download and build Floodlight from Github.
$ sudo git clone -b v1.2 git://github.com/floodlight/floodlight.git

(where -b v1.2 is the JDK version we’re using, to ensure compatibility)

-~

sammie@ubuntu: ~/floodlight

sammie@ubuntu:~$ 1s

Desktop examples.desktop mininet oftest pC emplates

Documents first example.mn Music openflow Public deos
wnloads floodlight oflops Pictures ryu

sammie@ubuntu:~$ cd floodlight

sammie@ubuntu:~/floodlight$ sudo git clone -b vi1.2 git:/fgithub.com/floodlight/f

loodlight.git

[sudo] password for sammie:

Cloning into 'floodlight'...

remote: Enumerating objects: 11, done.

remote: Counting objects: 100% (11/11), done.

Eeceiving objects: 6% (3372/52768), 9.05 MiB | 1.61 MiB/s

Figure 33: Installing Floodlight from Git

v’ Installation is complete. Now we must build the controller:

$ cd floodlight

$ sudo git submodule init
$ sudo git submodule update
$ ant

v

sammie@ubuntu: ~/floodlight/floodlight

sammie@ubuntu:~/floodlight/floodlightS sudo git submodule init
sammie@ubuntu:~/floodlight/floodlight$ sudo git submodule update
sammie@ubuntu:~/floodlight/floodlight$ sudo ant

Buildfile: /home/sammie/floodlight/floodlight/build.xml

Created di /home /sammie/floodlight/floodlight/target/bin
/home /sammie/floodlight/floodlight/target/bin-test

/home /sammie/floodlight/floodlight/target/lib

ir: [home/sammie/floodlight/floodlight/target/test

Compiling 529 source files to /home/sammie/floodlight/floodlight/tar

Note: Some input files use or override a deprecated API.
compile with -Xlint: recation for details.
some input files use unchecked or unsafe operations.
Recompile with -Xlint:unchecked for details.
Copying 54 files to /home/sammie/floodlight/floodlight/target/bin

[javac] Compiling 91 source files to /home/sammie/floodlight/floodlight/target/bin-test

Setting Floodlight version: 1.2

Setting Floodlight name: floodlight

Building jar: /home/sammie/floodlight/floodlight/target/floodlight. jar
Building jar: /home/sammie/floodlight/floodlight/target/floodlight-test.jar

BUILD SUCCESSFUL
: 44 seconds
:~/floodlight/floodlight$
~/floodlight/floodlight$
~/floodlight/floodlight$
sammie@ubuntu:~/floodlight/floodlight$ I

Figure 34: Building Floodlight from jar file

46

47

v’ After successfully building the controller, we need to make a floodlight directory with root

permission:

$ sudo mkdir svar/1ib/floodlight
$ sudo chmod 777 svar/1ib/flood]1ight

v" Now, we can run floodlight by:

$ sudo java -jar target/floodlight. jar

(The floodlight.jar file is produced by ant during the build)

Py

sammie@ubuntu: ~/floodlight/floodlight

15:12:31.752 INFO [n.f.c.i.0FSwitchManager:main] Clear switch flow tables on each transition to master: TRU

3

15:12:31.752 INFO [n.f.c.i.0FSwitchManager:main] Setting ©x1 as the default max tables to receive table-mis

s flow

15:12:31.760 INFO [n.f.c.i.0FSwitchManager:main] Setting max tables to receive table-miss flow to exi for D|
PID 00:00:00:00:00:00:00:01
15:12:31.761 INFO [n.f.c.i.0FSwitchManager:main] Setting max tables to receive table-miss flow to exi for D|
PID 00:00:00:00:00:00:00:02

15:12:31.900 INFO
15:12:31.962 INFO
15:12:31.903 INFO
15:12:31.905 INFO
15:12:31.976 INFO
15:12:31.976 INFO

1ling historical average

INFO
INFO
INFO
INFO
INFO

INFO
6 INFO
INFO
INFO

15:12:32.956 INFO

[n.f.f.
[n.f.f.
[n.f.f.
[n.f.f.
[n.f.f.

[n.f.f.

[n.f.s
[n.f.s
[o.s.5

[o.s.s.
2767=Node [hostname:

[n.f.c.i

OFSwitchManager:main] Computed OpenFlow version bitmap as [62]

ain] OpenFlow port set to 6653

ain] Number of worker threads set to 16

ain] Controller role set to ACTIVE
LinkDiscoveryManager:main] Link latency history set to 18 LLDP data points
LinkDiscoveryManag main] Latency update threshold set to +/-0.5 (50.08%) of rol

Forwarding:main] Default hard timeout not configured. Using @.

Forwarding:main] Default idle timeout not configured. Using 5.

Forwarding:main] Default priority not configured. Using 1.

Forwarding:main] Default flags will be empty.

Forwarding:main] Default flow matches set to: VLAN=true, MAC=true, IP=true, TPPT=t

Forwarding:main] Not flooding ARP packets. ARP flows will be inserted for known de
StatisticsCollector:main] Statistics collection disabled

StatisticsCollector:main] Port statistics collection interval set to 1@s
c.FallbackccProvider:main] Cluster not yet configured; using fallback local conf

i.SyncManag main] [32767] Updating sync configuration ClusterConfig [allNodes={3
ocalhost, por 642, nodeld=32767, domainId=32767]}, authScheme=CHALLENGE_RESPONSE, ke|
yStorePath=/etc/floodlight/auth_credentials. jceks, keyStorePassword is unset]

15:12:33.477 INFO [o.s.s.i.r.RPCService:main] Listening for internal floodlight RPC on localhost/127.0.0.1;
6642

15:12:33.547 INFO
15:12:33.584 INFO [n.f.l.i.LinkDiscoveryManager:main] Setting autoportfast feature to OFF

OFSwitchManager:main] Listening for switch connections on /0.0.0.0:6653

Figure 35: Starting Floodlight

v" We can connect it via mininet by going to floodlight directory and issuing a topology

command:

$ sudo mn -topo=tree,4 -controller=remote, ip=127.0.0.1,port=6653

sammie@ubuntu: ~/floodlight

mmie@ubuntu:~$ cd floodlight
buntu:~/floodlight$ sudo mn --controller=remote,ip=127.0.0.1,port=6653 -
=tr 4
o] password for sammie:
L Creating network
#%% Adding controller
*** Adding hosts:

h1 h2 h3 h4 h5 hé h7 h8 h9 h1® h11 h12 h13 h14 h15 hil6
**% Adding ‘-.lr.lltch 8

sammie@ubuntu:'~/Floodlight

(s5, ha) (s) (s, (s7, h5)

13) (s1@, s 9, s12) ho) (s11, hm)
(s13, s15) (s14, h13) (s14, h14) (s15, hi5) (s15,
A Cn)nﬁgurlng hosts

h1 h2 h3 h4a h5 he h7 h8 ho hie []

Figure 36: Connecting Mininet with Floodlight

v' We can use the Floodlight GUI (with topologies, hosts, switches and their information as

MAC addresses etc) at

http://127.0.0.1:8080/ui/index.html

=
e tes

_E FloodliQ’\tO‘O/fo Dashocard Topology Switches Hosts @
7

Controller Status

Hoaname: e

Hesitny: e

Ut 2mss

VM marory loak 541870 et f 1743572

Tesn

At

ar

a1t
. b el Frsaal. . pafron Peinerc s egTina,
o, gl

G0 R DD DL

st ot
Switches (15)
o - vander Pakets oy Flows Conmacid Since
mroorsss Nemis 0 I e
noorsEms memws o o e aasans, s
nroorse nemwes © P [E———
oot Mmoo o e s, s
mmonrssT wembe 0 I [E———
npoorsms Mmoo o e e —
mmonrse nemes 0 o e —
peoisE Nomee o o e -
wronesmT wemee 0 P [
npsorsEe Memwe o o e [—
- nmansse wemes 0 e -

Figure 37: Floodl/ght GUI showing all devices

http://127.0.0.1:8080/ui/index.html

49

Floodlight - Mozilla Firefox

€>Cc o 0 121001

[e—

FlMW%Cfo Dastboard Topalogy Swiches Hosts

Network Topology

CEELELLLFTE

il © Big Swilch Netwceks, 24, el. i, Pawered by Backbons 2, Bootstcg, [Ouery, 03 . e

Figure 38: Floodlight GUI Topology

Floodlight
o ce 127001 -9 n ne =
(—
= - Guve wases
Floodlight Dashboard Topology | Suitches
Switches (14)
é oei0 19 Addrezs Vendor Packels Byls Flows Comnecied Since
1:00.00.00,00,03.0004 12700155858 Nemie 0 o 3 2202019, 34886 P01
a :00:00.0000:09 12700155002 Nemm. 0 ° o 2282018, 34857 Pm
= 000000000 v vseans Nemme 0 o o 2ow20ns, 34907 P8
&
12700155848 Nembe. 0 o o 2252010, 34854 PM
wroovseas Nembe 0 o o re——
w2000 12700155874 Nemm 0 ° o 2202019, 34907 oM
H 00:00.00 127.0.0.1:58650 Nera. inc. 0 ° 0 2026/2019, 3.48:55 PV
{) 00:00:00:00:0 127.00.15665% Newm 0 o 3 2252010, 3485571
SETT—— 12700156875 Nemme 0 o a 282018, 3.4307 oM
000000000000 12700155852 Nerm i 0 o o 2202019, 34855 oM
R 12700138054 Nemme 0 o o 2wons, arsa em

Flocdignt © Big Swich Netwarss, I0M, ot a. Poered by Dackbone s, Dootsrap, (O

Figure 39: Floodlight GUI switches

50

Floodlight - Mozills Firefox

Il &

dlght Contralles

CSEP 561 Project #1 Floodlight

n @

9GS0 ED DD

N}

e
Floodl.lgh!OCCfo Dashboard Topology Switches Hosts
Hosts (20)
w»
WA Adgress Address Swich Port LostSeen
S 0000000000083 a2s2019, 35116
P
T vo0tno0taoaas
8200 000000000.0000023 2202000, 35124
P
2i6ssdae) 0020:00:0000.0002083 206201, 35119
o
e 00009000000002.051 2252019, 35119
P

00.00.00.00.00.00.00.083

00:00:00:00:00:00:09:08:3

00:90:00:00:00:00:00:09:1

00:00.00:00:00,00:03:0a 1 03:00.00:00.00:00:00:03 1

00.00:00:00:00:00.00.08:3

00:00:00:00:00:00:00:03:3

00000000000:02022

00.00.00.00:00:00:00.08:3

00:00:00:00:00:00:00:043

2267019, 35124
P

2282010, 35123
Pu
2262019, 35124
Y
22201, 35141
Y
2262019, 35557
ea
2282010, 35738
Py
2262019, 35648
™

Y

2282019, 35849

2262019, 41430
P

Figure 40: Floodlight GUI Hosts

v To check if the topology is working or not:

q a

3226 60 65 65 70 20

Bl © 7 Loopback: ko <e caphure in progresss

000

it o
oo

bst:

6.1,
STise, s

127

Protocal
i

e
Oponflaw
Oponk low
e,

captoren uu(0its) on nterface
96:69), Dst: 60:6:60_94:40:90 (08:00:00:40:09:80)

0.
rorc: s0eo, Seq: 2. ack: 1. Len: ag3

Longtf i

W
[wvucnkl /)5
gt

£os

A 190
fagpLication/son)

1073 win=2121 L

Topa: oGP ECHD ALY

2l
Type: OCPT_S1ATS_REQUEST
T

9275 win=o10 Ler

ac
S7ese [po nl:q s.q,

e s meec

i) e S3862 hck-SEANES Uin-4031 Len-365 Toval-10171423 15

1716
158 TSval-10171850 T
[ACK] 56-352260 ACK-581645 Wan-019 Lan-9 TSVAl-10171850 TSeor 19171950

pe OFPT_ECHD ¢
5K502 - B653 [ACK] SEQUI0SI7 ACK-L2070 WAR-2425 Len-D TSvA1-1P171060 TSser-10174560
Type: OEBT LoD ALPLY

TSval=10171060 Tee

sammie @ubuntu:

ho

s10,
h13)

h7

airiez

71623 Toeor-1p171823

927
370 ek SIALE HAEL) Lard Tovale oL bAS Toesr oIt TIaEs
190:06:00:00:87/dess /Jaon HITP/1.1

4 Tsocr—1017159

0171080

s

5Ua1=10171853 TSecr=10171583
ekeSe2sED Winedooh Lene 65 TovRII0LT 1664 ToIT-IOITIENS [TCP segnent

-[Floadlight

=12) (= (s11, h18) (si2,
(514, 5) (s15, his)

ho h1e h11 h12 h1s hia his ks

habt
ha ha h1o hi1 hiz h13 hie his his
h8 hs h1e h11 h1z h13 hi4 hi5 his

Packats: 12267 - Displayad: 12267 100.0%)

Figure 41: Wireshark Capture for connectivity test

cr-18171822 [TCP sognent of a reassenbled POU]

19171850 (TCP sognent of a reassemblod PRU]

o a resssamiea pou]

Profe: Dafault

51

8. DIFFERENCES BETWEEN FLOODLIGHT AND POX

For the two controllers implemented, the chosen criteria, for differentiating their

performance, concern Southbound and Northbound communication, OpenFlow and

OpenStack support, programming language, GUI, documentation and others.

Attribute

POX

Floodlight

Year

2011

2013

GUI

Python+QT4

Web based Java

Programming Language

C++, Python

Java, Python

Platform Support

Linux, Mac, Windows

Linux, Mac, Windows

OpenStack Support No No

Southbound API OpenFlow 1.0 OpenFlow 1.0, 1.3
Northbound API REST API JSON/Rest API
Centralised/Distributed Centralised Centralised
Multithreading Support No Yes

Documentation Poor, not updated Medium

Owned by Nicira Big Switch Networks

Table 1: Differences between Floodlight and POX

52

9. SECURITY

Security is one haul stop to protect and maintain the integrity of design and information
contained in any system, infrastructure, service or organisation. With the increasing

complexity of the technology, so has the sophistication of the attacks increased.

9.1SDN VULNERABILITIES

SDN relies greatly on the administrator to ensure that the entire network has been
programmed to function correctly and effectively while maintaining the security. Weak
security measures can compromise networks and that can be exploited to extract sensitive

information, bring the entire network structure down or even have targeted attacks.

With the design of the SDN based networks, in operational mode, any unmatched packet is
sent to the controller and this is one of the reasons why barriers for sophisticated attacks in
SDN is low, even with TLS authentication between switch and the controller. This could bring
in malicious switches and hosts packet spoofing to corrupt the controller state. This issue is

one of the biggest vulnerabilities in the Data Plane.

Also, SDN might be affected by traditional network attacks and even more since, in traditional
networks, switches can make decisions on their own but since in SDN, we have separated the
control and data plane and OpenFlow mandates sending unmatched packets from switches

to the controller, opening possibilities of malicious hosts tampering with SDN vulnerabilities.

Programmable soft switches such as Open vSwitches are a soft target for attackers as well.
The end hosts can start control plane flooding which can saturate controller in terms of their

network bandwidth and bring the entire network down.

The hosts can tamper with network topologies by forging packets that could go from switches
to controller since they didn’t match and/or implement denial of service and/or extract flow

rule information and/or traffic hijacking or re-routing.

53

Vulnerabilities
DoS pplicatio kpplluauon Applic alum
SDN controller @

ssssee E
Management

station

Attacks
to control plane

DoS Vulnerabilities ——

Figure 42: Security Vectors in SDN

9.2VIRTUALIZATION & SECURITY CHALLENGES

In SDN, virtualisation, acting as an enabler, provides one with underlying network resources
and every configuration is stored in a virtual image, in form of a file. Thus, virtualisation in

SDN brings vulnerabilities, with its own set of pros.
Some of the vulnerabilities can be:

v Hypervisor attacks
v' Guest operating system attacks or misconfiguration

v" Inter-VM attacks

Hypervisor attacks and security: Since Hypervisor is responsible for creating and maintaining
Virtual Images, there’s a risk that it may allow the ability to modify/view operational and

functional state of the images, including the possibility of HYPERVISOR HIJACKING.

The attacker is in full control of the hypervisor and can access all VMs and/or other
hypervisors in the same infrastructure. With that possibility, not far lies the idea of

misconfiguration of SDN controllers to play around with traffic.

https://www.researchgate.net/publication/311496181

54

Compatibility, configuration and trust relations amongst different hypervisor vendors could
be another issue. Also, errors/bugs and misconfiguration on the part of the administration

can allow an attacker to compromise the network easily and for even more serious attacks.

9.2.1 POSSIBLE SOLUTIONS

e Virtual machine guest hardening: Some of the ways to harden VMs and ensure their
isolation could be:

o Setting limits while resource allocation (reserves) for each VM can protect other
VMs from performance degradation in case one of the VMs on the host is facing
any attack, DDoS attacks in particular. Doing so, the limited shared resources don’t
interrupt other virtual machines.

o Applying standard infrastructure security measures in VM infrastructure such as
malware filters, IDS/IPS, firewalls and keeping them updated on a regular basis
can help minimise general security risks.

o Native Management services such as terminal services or ssh can be used to access
VMs and manage the operational state. This would reduce the possibility of
attacks via VM consoles that can help attackers to bring down the virtual
machines.

e Hypervisor Security: Some of the ways to ensure security of the hypervisor are:

o Thin hypervisors are OS independent hypervisors with minimal overheads and can
limit the ways malicious code can. It mostly checks for digital signatures to ensure
malware doesn’t reach the system’s internal.

o Regularly updating and patching the system, including firewalls and active
directory integration could enhance Hypervisor security.

o Strong log-in credentials can ensure management tools security. Also, system
roles configuration can help isolate system settings from regular users.

e Regular encryption of VM data.
e While transferring data or destroying VMs, one should ensure that no data is left behind
on the disk which could later be recovered. This could be ensured via few techniques such

as storage encryption and or Zeroing memory.

55

e Isolation in terms of traffic (VLANs), address space, performance and control can be

implemented more strictly to ensure corruption of one VM won’t affect the other.

9.3NETWORK TOPOLOGY

Various kinds of protocol implemented packets are sent by switches to controllers to have
the network topology and this can be used by compromised hosts to spoof IGMP messages
used for multicast groups and then temper with controller’s view of topology along with

installing self implemented flow rules to launch number of attacks on the network.

9.3.1 TRADITIONAL ATTACKS AND HOW THEY MANIFEST IN SDN

SDN is based on the foundations from the traditional network and hence while using entities
of the latter, same attacks can be triggered in SDN as well. And for preventive measures, it
might or might not work or could be extended to the former since SDN switches work

differently than the traditional switches.

For example, traditional network switches have verification via authentication against
spoofing using cryptographic mechanisms which might be heavy. In SDN, even with TLS
security levels, any packet that isn’t part of any rule would be directed to the controller

automatically and hence can result in a fake topology attack.

9.3.2 SDN SECURITY (SDSEC)

Traditional security mechanisms aren’t the best way to deal with virtualised environments
and hence SDSec approaches the design, deployment and management of security in a new
way by separating processing and forwarding plane, like separating control and data plane in

operational state.

This separation is useful as it gives a distributed security solution which is dynamic and

virtualises security functions and provides a way to manage them as a logical, single system.

56

SDSec mostly replaces security hardware appliances like IDS/IPS, firewalls with software

functions. Most of them have a control center at the middle of the network for policy

enforcement and ensure security controls are distributed across Virtual Machine Appliances.

9.3.3

CONTROL PLANE AND VULNERABILITIES

Control Plane could face the following VULNERABILITIES:

v Centralised controller could be a ‘single point of failure’

v' Communication interfaces

v' Policy enforcement: As the size of the routing information grows, so will the
responsibility of the advertising of the paths for reachability to destination and not
only in case of between the local instances of the data plane but also administration.

v" Dynamic flow rule modification

v’ Controller- switch communication flood

v' System level security challenges

v' Trust between controller and third-party applications

v Malicious SDN controller modules: SDN controller is the brain of the network which
helps running services and application. Malicious modules can add dubious
functionalities which can prevent an entire network to function properly and put data
in danger.

MEASURES:

v’ Installation of security applications or authentication systems on Northbound
Interface can be used to prevent unauthorised access to controller. Another way could
be role-based authorization and access control.

v Access lists can be used to filter the traffic reaching the controller.

v" Malicious SDN controller modules can be prevented/ taken care of using SDN
controllers that coordinate tasks to select a trusted configuration and keep a check on
their modules for the standards.

v' Heterogeneous network topologies can be adopted to survive disruptions and attacks.

v’ Artificial Intelligence, neural networks and data mining techniques can be used to
solve routing and optimisation problems in the dynamic environment.

v Access control can be defined by using Controller as the policy enforcer and basing
the policies on a role hierarchy where administrators assign roles to SDN applications.

v' Operations can be identified and then controlled via permissions to be able to
implement the minimum privilege principle that guides operational state with an
authority that authenticates and the caller and checks if they have access to a critical

operation or not.

INDUSTRY USED SOLUTIONS:

v Security Enhanced-Floodlight: BigSwitch Floodlight Controller Extension
Providing a role-based authorization system, this extension is one of its first
implementation of an SDN based security policy in OF protocol stack.

v Security Actuator: OF Security Directive actuation service
It helps enable network security tools that can start advanced security resolve logic

and thus rewrite network flow paths for attacked and infected hosts.

9.3.4 DATA PLANE AND VULNERABILITIES

Data plane can suffer from various security threats, namely:

v Malicious switches and hosts: Malicious hosts as well as switches can send bad
requests which can exhaust resources of the switches/controller and result in DoS
flooding in the network.

v" Flow rule discovery

v Flooding attacks

v Forged traffic: Communication between Controller and End devices is vulnerable and
could be taken advantage of by spoofing the device flow table and/or forging new
traffic rules or injecting/changing conversations, called as Man-in-the-middle-attack.

v' Credential management

MEASURES:

v" SDN SBI (Southbound Interface) and Protocols could use OpenFlow/Open vSwitch
Database Management Protocol or BGP-LS or SNMP as these have their own
algorithms to secure the network end devices.

v Regular internal or external audits can be put in place to check configurations and
flow rules regularly.

v Regular checks by the administration for intra-switch misconfiguration within single
flow-table.

INDUSTRY USED SOLUTIONS:

v' OpenFlow switches: It divides the network into small logical networks that can allow
users to use applications without affecting each other i.e. isolation. One of the most
useful switches to test and implement new experiments since it supports
encapsulation and encryption amongst many other options.

v" FlowChecker: Centralised server application
It receives queries from OF applications and that can include
verification/analysis/debugging configurations. It can help verify consistency of
switches and validate the correctness of the flow tables with the services and
protocols in place.

9.3.5 APPLICATION PLANE AND VULNERABILITIES

Application Plane can suffer from vulnerabilities such as:

v

v
v
v
v

58

Un-authorised applications or users
Potential trust issues because of third party
Fraudulent role insertion

Lack of authentication methods

Lack of secure provisioning

59

MEASURES:

v Agranular permission system with OpenFlow specific permissions can be set up which
can check for the potential caller and what all they can access.

v" Al/Machine Learning can help build ways that can dynamically analyse controller
program and can help channelize delays in input and receiving outputs.

v' Threat detection and security monitoring systems like IDS/IPS, firewalls can be

installed with regular patching and updating to ensure basic security.

INDUSTRY USED SOLUTIONS:

v" Procera: Computational language
Procera can be used for defining high-level network policies which can be used to
program how to react with a dynamic change in the network.

v Flover: Verification Tool
It can convert flow table into understandable format and detect anomalies for
network security.

v" OFTesting: Python based OF application
It can be used for debugging and automated testing of OF programs. Keeping

server updated could also help avoid application manipulation

SDN

.. Security Use
Characteristic :

— Wetwork-Wide Intrusion Detection

Global Network — Detection of Switch’s Malicious Behavior.

View - Network Forensics.
Self-Healing — Reactive Packet Dropping.
Mechanisms - Reactive Packet Redirection.

Increased Control

Capabilities - Access Control.

https://www.researchgate.net/publication/311496181

60

Figure 43: SDN & Security

10. DENIAL OF SERVICE(DoS)

DoS attack is a means of shutting down a machine/network, making it inaccessible to
legitimate users. DoS attacks generally have few popular methods, namely: Buffer Overflow

Attacks, ICMP flood and SYN flood.

Buffer Overflow: It’s the most common DoS attack. Via this method, traffic more than the

capacity of the server’s buffer is sent.

ICMP flood: It leverages misconfigured network devices by sending spoofed messages. These

are used to ping targeted hosts. This attack is also called smurf attack or ping of death.

SYN flood: In this the attacker sends a request to connect to the server but never completes
the TCP handshake, which leads to open port and resources bind to that port. The main part

is that multiple requests from multiple hosts is sent that can easily crash a system.

10.1 SYN FLOODING

TCP-SYN Flooding is one of the most popular amongst all DoS attacks which exploit the TCP

vulnerability on the Web Server side.

SYN flood is a type of denial-of-service attack which exploits the TCP three-way handshake
and once successful can consume resources on the server and render it unresponsive to other

clients.

During SYN flooding, huge quantities of TCP packets with only SYN flag set are sent to the
server. SYN flags are usually the first part of the three-way handshake which are responded

by the server using SYN-ACK packet.

Since web server is dependent on the TCP for it is the underlying transport protocol, it keeps

connections open or half-open until the final ACK arrives from the client side.

So, attackers usually open many incomplete connections, depleting SYN-Queue which will
ultimately deny or delays legitimate connection requests. Thus, any network service

associated with that TCP socket goes down.

61

This large quantity can clog bandwidth, further leading to resource depletion or worse

crashing of the server, leading to no services to any clients.
Some of the known measures for protection against SYN flooding are:

v SYN cookies, SYN cache and SYN proxy
v Updated Firewall through Access Control Lists

v’ IDS/IPS with signature-based mechanisms

INDUSTRY USED SOLUTIONS:

v" AVANT-GUARD: It is an extension of the data plane with two modules, namely:
connection migration module and actuating trigger module. Connection migration
adds intelligence to data plane and helps in differentiating sources that would
complete TCP handshake from those who won’t. The ones who complete the
handshake are further exposed to the control plane. Access tables collaborate with
the module and maintain TCP session information to provide session details later to
the control plane.

Connection migration module has a four-stage operational stage:

a) Classification: CM engages the client in a stateless TCP handshake using SYN
cookies and on completion, the client moves to the report stage.

b) Report: CM determines if the client is anyway associated with any entry in the
flow table. If not, the entry is passed on to the control plane else it’s passed
on to migration stage.

c) Migration: CM initiates a TCP connection with the client’s destination host and
if it responds, a successful connection is established.

d) Relay: After a successful TCP connection is established, CM module enters
relay stage and relays all TCP data packets between client and destination as

normal TCP session.

62

Established Migration or
TCP sessions ™. Failure

"

‘
TCF sessions Classification Migration
\ stage 4 stage
4

|
Failed
TCF sessions

\J
Ignore

Figure 44: Connection Migration Module Stages

Actuating trigger module collects network status information and packet payload. It
offers conditional flow rule activation that is the ability to activate flow rules when any

event occurs.

10.2 DDoS

Distributed Denial of Service attacks are an attempt to make a machine/network resource
unavailable to intended users. These could be initiated by two or more sources or bots. A bot

is a device used to penetrate a computed by software from a malware code.
DDoS attacks can be divided into two types based on their targeted protocols:

v" Network/transport-level: Mostly launched using TCP/UDP/ICMP/DNS protocol
packets and they focus on dropping legitimate requests as they exhaust network
resources.

v Application-level: These aim to exhaust server resources i.e. sockets, CPU, memory or

I/0 bandwidth.

63

In SDN, possible DDoS attacks can be in three categories:

v

Application layer: DDoS attack can either be on the launched application or an attack
on the Northbound API. And since isolation of application via resources is a weak link,
crashing of one application can affect the others.

Control layer: Controller in SDN is a single point of failure risk, so it attracts many
attack possibilities. Ways to attack Control layer could include via controller,
Northbound API, southbound API, westbound API or eastbound API.

Infrastructure layer: One can attack Infrastructure layer either via switches or via

Southbound API.

Some of the methods that could help SDN detect and comprehend DDoS attacks could be:

v

SDN has a centralised logical controller which can view the network and that can
dynamically quarantine compromised hosts and authenticate legitimate hosts based
on the traffic patterns/flow entries/authentication and other implemented security
measures.

Intelligence from existing IDS/IPS systems can be harnessed with SDN and flexible
system can be built up to detect DDoS attacks.

Software based traffic analysis using neural networks and Al/ML can be performed
which can help predict DDoS attacks and with help of IDS/IPS signatures can be set up
to alert/ prevent those attacks.

DDoS can also be prevented using packet dropping and rate limiting techniques.

SDN controllers can be set up at ingress traffic that can detect anomaly traffic, filter
malicious packets or validate source IP and then allow it further into the network.

A Flow collector module can be setup which could periodically request flow entries
from all flow tables and extract features like average of packets per flow, percentage

of pair-flows etc. for DDoS flooding attack detection.

INDUSTRY USED SOLUTIONS:

v Fresco: An OF security application development framework, it is used for different
detection and migration modules. It is useful in protecting network against detected
threat by constraining flow of data.

v Fortnox: It enables administration to define and implement strict network policies
which can override dynamic derived flow rules. It also supports OF application
authentication with the help of digital signatures.

v" Onix: Platform that helps implement control plane as a distributed system. Onix
provides an APl which allows control plane to make their trade-offs based on

consistency, durability and scalability amongst many.

CURRENTLY IN RESEARCH

v Cross-Layer Traffic Analysis: Cross-layer traffic analysis helps looking at information
at multiple protocol layer to detect/respond to DDoS. With an emphasis on L2-L4, SDN
can focus and extend traffic intelligence to L4-L7.

v' Multiple Locations Defensive: This method uses deployment of multiple defence
nodes at locations such as source, destination or networks. This deployment can help
detection at the sites it is placed. Also, the nodes initiate and distribute information

to other nodes.

65

11. CONCLUSIONS

From the Capstone project, | can conclude on the following learnings:

The basis of SDN as a concept has existed for more than 15 years but due to the
increase in network traffic and programmability of networks, we are becoming more
aware about it.

Controller, being the central building block of SDN is necessary yet ‘single point-of-
failure’.

Open Source community has had a lot of contribution to the concept building and
implementation of SDN.

SDN controllers vary in many magnitudes. This has both its pros and cons. With
handling multiple aspects, we also can face the issue when it comes to things like
programming languages, multi-threading and so on.

Existing research for controller as a subject is yet to fully develop.

SDN has handled many of traditional architectural issues but also has opened many

attack vectors that need to be focused on and improved.

66

12.

REFERENCES

https://www.citrix.com/products/citrix-adc/resources/sdn-101.html

https://learning.oreilly.com/library/view/sdn-

softwaredefined/9781449342425/ch02.html

https://www.nojitter.com/4-challenges-lying-wait-sdn

https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/

https://github.com/mininet/openflow-tutorial/wiki/Learn-Development-Tools

https://en.wikipedia.org/wiki/Open vSwitch

https://github.com/openvswitch/ovs/blob/master/Documentation/intro/why-ovs.rst

https://github.com/mininet/openflow-tutorial/wiki/Installing-Required-Software

https://github.com/mininet/openflow-tutorial/wiki

https://www.opennetworking.org/

https://github.com/mininet/mininet

http://mininet.org/download/

http://www.brianlinkletter.com/set-up-mininet/

https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/7750830

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

https://openflow.stanford.edu/display/ONL/POX+Wiki.html

http://www.brianlinkletter.com/using-pox-components-to-create-a-software-

defined-networking-application/

http://www.academia.edu/9021253/Simulation in an SDN network scenario usin

g the POX Controller

https://github.com/mininet/openflow-tutorial/wiki/Learn-Development-Tools

https://pradeepaphd.wordpress.com/2018/03/06/floodlight-controller-tutorial/

https://www.semanticscholar.org/paper/SPHINX%3A-Detecting-Security-Attacks-in-

Networks-Dhawan-Poddar/4f358dbee87adc305b3e983e5ff6dff1074d3cf6

https://wikisites.cityu.edu.hk/sites/netcomp/articles/Pages/HardeningStepstoSecure

VirtualisationEnvironment-VirtualMachine.aspx

https://www.citrix.com/products/citrix-adc/resources/sdn-101.html
https://learning.oreilly.com/library/view/sdn-softwaredefined/9781449342425/ch02.html
https://learning.oreilly.com/library/view/sdn-softwaredefined/9781449342425/ch02.html
https://www.nojitter.com/4-challenges-lying-wait-sdn
https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/
https://github.com/mininet/openflow-tutorial/wiki/Learn-Development-Tools
https://en.wikipedia.org/wiki/Open_vSwitch
https://github.com/openvswitch/ovs/blob/master/Documentation/intro/why-ovs.rst
https://github.com/mininet/openflow-tutorial/wiki/Installing-Required-Software
https://github.com/mininet/openflow-tutorial/wiki
https://www.opennetworking.org/
https://github.com/mininet/mininet/wiki/FAQ
http://mininet.org/download/
http://www.brianlinkletter.com/set-up-mininet/
https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/7750830
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://openflow.stanford.edu/display/ONL/POX+Wiki.html
http://www.brianlinkletter.com/using-pox-components-to-create-a-software-defined-networking-application/
http://www.brianlinkletter.com/using-pox-components-to-create-a-software-defined-networking-application/
http://www.academia.edu/9021253/Simulation_in_an_SDN_network_scenario_using_the_POX_Controller
http://www.academia.edu/9021253/Simulation_in_an_SDN_network_scenario_using_the_POX_Controller
https://github.com/mininet/openflow-tutorial/wiki/Learn-Development-Tools
https://pradeepaphd.wordpress.com/2018/03/06/floodlight-controller-tutorial/
https://www.semanticscholar.org/paper/SPHINX%3A-Detecting-Security-Attacks-in-Networks-Dhawan-Poddar/4f358dbee87adc305b3e983e5ff6dff1074d3cf6
https://www.semanticscholar.org/paper/SPHINX%3A-Detecting-Security-Attacks-in-Networks-Dhawan-Poddar/4f358dbee87adc305b3e983e5ff6dff1074d3cf6
https://wikisites.cityu.edu.hk/sites/netcomp/articles/Pages/HardeningStepstoSecureVirtualisationEnvironment-VirtualMachine.aspx
https://wikisites.cityu.edu.hk/sites/netcomp/articles/Pages/HardeningStepstoSecureVirtualisationEnvironment-VirtualMachine.aspx

67

https://www.ericsson.com/en/ericsson-technology-review/archive/2015/identifying-

and-addressing-the-vulnerabilities-and-security-issues-of-sdn

https://pdfs.semanticscholar.org/4ef3/92fe135271bbfbecflale9735aae80bc85d3.p
df

https://www.openairinterface.org/?page id=466

https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/8423699

https://dl-acm-org.login.ezproxy.library.ualberta.ca/citation.cfm?id=2516684

https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/7289347

https://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-

dos

https://searchnetworking.techtarget.com/tip/SDN-security-strategies-for-network-

attack-prevention

https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/8389262

https://www.researchgate.net/publication/304457462 SDN controllers A compar

ative study
IMAGES SOURCE

https://www.researchgate.net/figure/SDN-vs-traditional-network-

architecture fig2 311496181

2017 Book GuideToSecurityInSDNAndNFV.pdf

https://www.openairinterface.org/?page id=466

https://www.udemy.com/https://www.sdxcentral.com/open-

source/definitions/what-is-open-vswitch/?c action=related articles

https://www.semanticscholar.org/paper/Mininet-as-Software-Defined-Networking-

Testing-KaurSingh/b1c7f8ac477a5553303802bb7785dd3b53372057

https://learning.oreilly.com/library/view/sdn-software-

defined/9781449342425/ch04 .html

https://www.researchgate.net/publication/311496181

https://www.researchgate.net/publication/311496181

https://www.ericsson.com/en/ericsson-technology-review/archive/2015/identifying-and-addressing-the-vulnerabilities-and-security-issues-of-sdn
https://www.ericsson.com/en/ericsson-technology-review/archive/2015/identifying-and-addressing-the-vulnerabilities-and-security-issues-of-sdn
https://pdfs.semanticscholar.org/4ef3/92fe135271bbfbecf1a1e9735aae80bc85d3.pdf
https://pdfs.semanticscholar.org/4ef3/92fe135271bbfbecf1a1e9735aae80bc85d3.pdf
https://pdfs.semanticscholar.org/4ef3/92fe135271bbfbecf1a1e9735aae80bc85d3.pdf
https://pdfs.semanticscholar.org/4ef3/92fe135271bbfbecf1a1e9735aae80bc85d3.pdf
https://www.openairinterface.org/?page_id=466
https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/8423699
https://dl-acm-org.login.ezproxy.library.ualberta.ca/citation.cfm?id=2516684
https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/7289347
https://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-dos
https://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-dos
https://searchnetworking.techtarget.com/tip/SDN-security-strategies-for-network-attack-prevention
https://searchnetworking.techtarget.com/tip/SDN-security-strategies-for-network-attack-prevention
https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/8389262
https://www.researchgate.net/publication/304457462_SDN_controllers_A_comparative_study
https://www.researchgate.net/publication/304457462_SDN_controllers_A_comparative_study

68

