
1

CAPSTONE PROJECT: MINT 2017-2019

SDN: Controller Comparison with Implementation;

Security Concerns and Vulnerabilities

Under the guidance of:

Prof. Leonard Rogers

Submitted By:

Shveta Rai

MINT- 709

2

ABSTRACT

In this Capstone Project, I aimed at implementing a basic SDN structure with Mininet and two

controllers i.e. POX and Floodlight, learning over the period, how it is an advantage over

traditional network implementation and analyzing how the architecture of SDN is an

enhancement.

After implementation, I learned various short-comings and challenges of SDN, exploring their

effects, concerns and their solutions, some of them namely:

1. OpenFlow and related concerns: One of the main concerns pertaining OF protocol I would

incorporate is the scalability (TCP SYN flooding) and fault-tolerance issues in the design. Another

issue would the communication bottleneck between data and control plane which can be

manipulated in attacks related to traffic and how it is currently dealt with and what possible

solutions could be there in the future.

2. Controller Vulnerabilities: Controller/Network Hypervisor is the first step in a virtualized SDN

environment and a security consideration as well since it defines data flow that occurs in the Data

Plane. Prominent weakness of the controller that I would like to study, analyze its possible

solutions and how they are currently used in the industry.

3. Large network vulnerabilities like DDoS attack: Since SDN consists of three layers, namely

infrastructure layer, control layer and application layer, the potential DDoS attack can be

launched on any of the three. During the Capstone Project, I would research and analyze the

threats via the mentioned mediums and their defense and mitigation approaches currently used

and possible future solutions.

Via this Capstone Project, I have gained knowledge about SDN, its implementation, the security

vectors involved with addition to what possible concerns, shortcomings and challenges this highly

anticipated technology faces with the wide spread implementation.

3

ACKNOWLEDGMENT

It has been a great learning experience, this Capstone Project, not only in terms of knowledge

but devoting time and following the decided schedule with dedication.

For the experience, I want to thank the Program Coordinator for introducing Capstone Project as

a course in the MINT program. Also, a huge thank you to Prof. Mike Macgregor who has been a

great force behind MINT as a program.

Prof. Leonard Rogers has been instrumental not only in MINT 712, teaching us beyond the

quintessential aspects of security but answering our questions concerning our projects and

otherwise with great depth and zeal.

I’m indebted to my parents for giving me the push to pursue Masters in Canada, far away from

my home in India. And last but not the least my friends Kunjal Pundeer, for ensuring I was keeping

up with my set deadlines and Vaibhavi Kadam, for accompanying me in my study sessions.

4

INDEX

Table of Contents

1.Introduction ... 8

1.1 Traditional Network Infrastructure ... 8

1.2 Motivation ... 9

2. Software Defined Networking ... 11

2.1 Virtualization as an enabler ... 12

2.2 SDN Architecture ... 13

2.3 SDN Components .. 15

2.4 Advantages of SDN ... 16

2.5 Opportunities for SDN ... 17

2.6 Challenges for SDN ... 17

3. OpenFlow .. 19

3.1 OpenFlow Architecture ... 21

3.2 OpenFlow Messages .. 22

4. Open vSwitch .. 24

5. Mininet ... 26

5.1 Introduction ... 26

5.2 Components .. 27

5.3 Features ... 28

5.4 Limitations .. 28

6. Setup Mininet ... 29

6.1 Mininet from GIT ... 29

7. SDN Controllers .. 31

7.1 Introduction ... 31

7.2 Attributes of Controllers ... 31

7.3 POX Introduction ... 32

7.3.1 Setup from GIT ... 32

7.3.2 Connecting Mininet and POX ... 34

7.4 Floodlight ... 43

5

7.4.1 Installing Floodlight .. 44

8. Differences between Floodlight and POX ... 51

9. Security ... 52

9.1 Vulnerabilities SDN .. 52

9.2 Virtualization and Security Challenges .. 53

9.2.1 Possible Solution .. 54

9.3 Network Topology ... 55

9.3.1 Traditional Attacks and how they manifest in SDN ... 55

9.3.2 SDN Security (SDSEC) ... 55

9.3.3 Control Plane and vulnerabilities ... 56

9.3.4 Data Plane and vulnerabilities .. 57

9.3.5 Application Plane and vulnerabilities .. 58

10. Denial of Service (DoS) ... 60

10.1 SYN Flooding .. 60

10.2 DDoS .. 62

11. Conclusions ... 65

12. References .. 66

6

 LIST OF FIGURES

Figure 1: Traditional Networks vs SDN Networks ... 12

Figure 2: Virtualisation .. 13

Figure 3: SDN Architecture ... 14

Figure 4: SDN Planes ... 16

Figure 5: OpenFlow in SDN ... 20

Figure 6: Packet Forwarding in Open vSwitch in OpenFlow ... 20

Figure 7: OpenFlow Layers .. 21

Figure 8: Flow of Messages in OpenFlow ... 22

Figure 9: Open vSwitch: Features ... 25

Figure 10: Mininet Emulated Network ... 27

Figure 11: Starting Mininet ... 30

Figure 12: SDN Controllers .. 31

Figure 13: POX Controller Functioning ... 32

Figure 14: Installing POX ... 33

Figure 15: POXDesk ... 34

Figure 16: POX forwarding.l2 .. 35

Figure 17: MiniEdit .. 35

Figure 18: MiniEdit Topology .. 36

Figure 19: Controller Preference MiniEdit .. 36

Figure 20: MiniEdit Controller Preference .. 37

Figure 21: Running MiniEdit Topology .. 38

Figure 22: Starting POX Controller .. 39

Figure 23: Testing Connectivity amongst all nodes .. 39

Figure 24: Starting Wireshark to capture packets .. 40

Figure 25: Wireshark Capture ... 40

Figure 26: Pingall ; Standard Ping ... 41

Figure 27: Wireshark Capture for standard ping .. 41

Figure 28: Ping for packet size greater than standard .. 42

7

Figure 29: Wireshark Capture for packet size greater than standard .. 42

Figure 30: Mininet iperf .. 43

Figure 31: Floodlight architecture .. 44

Figure 32: Installing Floodlight .. 45

Figure 33: Installing Floodlight from Git ... 46

Figure 34: Building Floodlight from jar file ... 46

Figure 35: Starting Floodlight.. 47

Figure 36: Connecting Mininet with Floodlight .. 48

Figure 37: Floodlight GUI showing all devices .. 48

Figure 38: Floodlight GUI Topology .. 49

Figure 39: Floodlight GUI switches ... 49

Figure 40: Floodlight GUI Hosts .. 50

Figure 41: Wireshark Capture for connectivity test ... 50

Figure 42: Security Vectors in SDN ... 53

Figure 43: SDN & Security ... 60

Figure 44: Connection Migration Module Stages ... 62

 LIST OF TABLES

Table 1: Differences between Floodlight and POX ... 51

8

1. INTRODUCTION

In today’s expansively digital inter-connected world gathering information isn’t a herculean

task. To further extend on it, we have a burst of mobile devices, cloud, data center amongst

many others ensuring the transition, storage and accessibility of services and data is as

feasible as it could be.

Starting with the traditional Client-Server architecture which comprised of two or more

clients accessing the services the server was programmed to allow, we, today, can work with

masses of cross-server platforms and fetch whatever required at the ease of our homes.

But this intensive east-west machine-to-machine traffic needs only the requisites but also the

quality of all aspects of communications.

In this capstone project, I have put in efforts to learn where and how the traditional network

architecture lacks and how SDN covers up the shortcomings of the former, while having its

own vulnerabilities. In the process, I also go through basic components of SDN, trying to

implement Mininet based SDN environment using two controllers namely, Floodlight and

POX.

In the end, I venture into the vulnerabilities of SDN and what measures are currently in place

to tackle the issues and what prospects the future holds for Software Defined- Networking.

1.1 TRADITIONAL NETWORK INFRASTRUCTURE

In traditional network infrastructure, the control plane and data plane were both integrated

together, making it a dedicated appliance, be it within a switch/router etc. Ethernet switches

are the best example of a traditional unit consisting of a combined control and data plane i.e.

a dedicated hardware.

The ports serve the inbound and outbound traffic and then the controller inbuilt processes

the control logic to forward the packets to their destination. The ARP table has the MAC

addresses mapped to corresponding ports. Based on the functionality needed, an Ethernet

switch can perform MAC filtering, device monitoring etc.

9

Traditional networks, although feasible, are tedious and complex to handle the enormous

inflow and outflow of data generated today. Manual configuring of networks, setting and

defining policies, ensuring proper routes and over-seeing the security of each route becomes

a nightmare for the network administration. Add on top, the number of devices connected

to the internet seeking information and manual configuration of each individual component,

being as accurate as vendor specific commands.

In addition to complexity, the traditional environment also must endure the faults and ensure

proper dynamic nature to adjust to load at any time. Authentication, access control lists,

VLANs, firewall rules, topologies and QoS are some other part of the same problem arising

while handling changes in the daily traffic. And since automation in traditional setup is almost

non-existent, this makes the entire process even more challenging.

One of the main characteristics of this architecture was that the dedicated hardware is mostly

proprietary and needs to be configured individually and made compatible with each other.

This can be utterly time consuming and frustrating, in addition to the probability of being

error prone. Also, the evolution of the involved appliances could be slow since it is under the

control of the manufacturer.

Explicitly speaking about distributed control and transport layer network protocols, the

routers and switches are vertically integrated i.e. data plane and control plane are integrated

within the devices which further reduces flexibility when it comes to introducing new

abstractions to the evolution of the infrastructure, making the current implementation static.

1.2 MOTIVATION

For the above stated reasons and more, there is a need of an element of dynamic nature for

automation.

Elastic computing comes to the rescue. Virtualisation, being one of the most successful

enablers of the same, ensures connectivity amongst distributed nodes providing

differentiated QoS for plethora of applications, keeping provisioning of resources dynamic.

10

But it still requires manual labour to converge multiple networks, which results in inability to

dynamically adapt to changes in application traffic and user requirements.

One of the possible solutions currently in consideration is Software Defined Networking (SDN)

which aims at manipulating the basic structure of networks to overcome some of the

previously mentioned limitations.

11

2. SOFTWARE DEFINED NETWORKING

Software Defined Networking is an emerging architectural approach aiming to put in

automated processing of the network by segregating its control logic i.e. control plane from

the underlying hardware (routers and switches) forwarding the traffic (data plane), thus more

closely binding the interaction amongst applications and network devices with the services

being offered.

It centralises the logic decision taking component in the architecture. It is a set of manageable

networks hatched together with virtualisation being one of the prime foundations, at

present.

According to one of IEEE’s paper, SDN could be defined as a network architecture with the

following four pillars:

1) A network architecture where the control and data planes are decoupled thus removing

the control functionality from network devices which now will simply become forwarding

elements.

2) Forwarding decisions are flow-based, instead of destination-based.

3) Control logic is moved to an external entity called SDN controller or Network Operating

System (NOS).

4) The network is programmable through software applications running on top of the NOS

that interacts with the underlying data plane devices.

12

Figure 1: Traditional Networks vs SDN Networks

2.1 VIRTUALISATION AS AN ENABLER

Virtualisation is the logical abstraction of physical assets i.e. translating hardware into either

firmware or software or emulated software-based objects. It is one of the key enablers for

technologies like Cloud Computing, Network Function Virtualisation and even Software

Defined-Network.

It multiplexes the physical interface and creates multiple virtual objects from that interface,

with aggregation, it can create one virtual object from multiple physical objects and with

emulation, it can create a virtual object from different types of physical entities.

a hypervisor is the main entity responsible for the instantiation of virtual objects. It is a small

specialised operating system running on physical server that partitions and provisions

physical resources as virtual resources. It is also responsible for maintaining isolation amongst

all instances.

The main benefit of virtualisation is the maximum utilisation of resources, in addition to cost

reduction. It allows for elastic and scalable resource provisioning while sharing amongst many

users. Multi-tenacity is one of the biggest benefits of virtualisation.

https://www.researchgate.net/figure/SDN-vs-traditional-network-architecture_fig2_311496181

13

Figure 2: Virtualisation

2.2 SDN ARCHITECTURE

The SDN architecture can be divided into:

Control plane: It deals with the functionalities of changes in topology and service

provisioning, amongst others. It establishes a local data set, also called ROUTING

INFORMATION BASE (RIB) to form forwarding table entries which stores network topology

and is used by the Data Plane to direct inbound and outbound traffic. It has direct control

over the network’s data plane via APIs such as OpenFlow.

The Control Plane has another component in the form of a Management Plane dealing with

functions such as monitoring, configuring and management service provisioning to layers of

network stack and the rest of the system.

Benefits:

✓ Security measures are put on top of the controller and this makes it easy to

dynamically add/cut off devices at various places in the network thus helping in

effective network monitoring.

✓ Also, since we can keep an eye on the status of devices, any device susceptible to

attack can be filtered and removed in the initial stages itself. Example: A DDoS attack

can be detected and mitigated quickly by isolating the outbound and inbound traffic

of the malfunctioned device.

file:///D:/SDN/2017_Book_GuideToSecurityInSDNAndNFV.pdf

14

Infrastructure plane: Like in traditional networks, it is comprised of networking equipment.

The main difference is the equipment are just forwarding devices, without any embedded

control or ability to take in decisions as the logic intelligence is separated to form the

controller.

It includes the Data Plane. The Data Plane, also called the “Forwarding Plane”, deals with the

forwarding of network user traffic, built on the rules put in the system by the control plane.

It handles the incoming traffic and performs basic checks on the receiving packets such as

packet measurement, packet filtering, packet buffering amongst many.

Authenticated datagrams are then processed by lookups in the FIB table which is formed

from a well- established and stable RIB table in the control plane. In addition to FIB tables,

the Data Plane also implements certain small services such as Access Control Lists, QoS and

policies

Application Plane: It has the network behavior definition in the form of applications and

services offered. It hosts SDN applications while communicating with the controller through

APIs on the Northbound interface.

Figure 3: SDN Architecture

https://www.openairinterface.org/?page_id=466

15

2.3 SDN COMPONENTS

Components of SDN based infrastructure would include:

✓ Forwarding Devices: These are the data plane network devices capable of receiving

and sending data packets on its ports and they could be switches, routers and even

firewalls. These switches can be hardware(physical), software or virtual. The main

function of switches in SDN is to forward and process data.

✓ Controller: Controller is a logical entity in the infrastructure that is responsible for

receiving instructions/pre-requisites from the application layer and further relays

them to the underlayer networking components. In remains in contact with the

infrastructure via the Southbound APIs, adding/updating or deleting flow entries and

with the application layer via the Northbound APIs.

✓ Southbound Interface: Southbound APIs help in facilitating dynamic control over the

network to meet the real-time demands. OPENFLOW is one of the most well-known

southbound interface and industry standard defining the interaction of SDN controller

with the Data plane. Other southbound APIs include Lisp and NetConf, amongst

others.

✓ Northbound Interface: It is the mode of communication between application layer

and the control layer. Based on the developer, it could be implemented in languages

like Python, java and C++. Currently, there is no standard protocol that exists for the

Northbound APIs. It is used to develop vendor independent applications, for load

balancing and monitoring of the applications implemented.

✓ Network Applications: These are programs and applications communicating with SDN

via APIs to provide services to the end user.

✓ OpenFlow: Industry standard for Southbound APIs, it defines the communication

between switching hardware and network controller. The OpenFlow switches are

basic forwarding elements accessible by the OpenFlow protocol and interface. These

switches consist of one or more flow tables, having header fields, that performs

packet lookups and forwarding and can perform as either a router, switch, firewall or

16

other roles as instructed by the controller. So, when the packet arrives, the header is

extracted to match it with the table and if found corresponding action is taken.

Figure 4: SDN Planes

2.4 ADVANTAGES OF SDN

a. Directly Programmable: It is based on active networking which brings in

programmable functions in the network thus lowering the barrier to innovation. One

can implement new networking protocols in something as simple as a virtual machine.

b. Accessibility: It is vendor neutral since it is open standards-based. The network

managers can use features of SDN by writing their own programs that aren’t based on

proprietary standards.

c. Centrally managed: Having a logical centralised control plane has benefits including:

✓ Scalability and dynamic volatility of network is well adjusted and supported

with each managed device.

17

✓ High availability is ensured.

✓ Geographically speaking, since the control plane is logical, it is easier to

manage.

d. OPEX: Operational efficiency and reduction in cost.

e. Agile: The logical centralization has several benefits including:

(i) Simpler and less error-prone to modifications

(ii) A control program can react to changes in the network state (traffic etc.) and

maintain the policies, working it all dynamically.

(iii) Simplification of development of sophisticated network services, applications

and functions.

(iv) It brings in Network Virtualisation and thus the ability to demultiplex software

programs based on packet headers.

2.5 OPPORTUNITIES FOR SDN

✓ To support and enhance the movement for dynamic networks and ease the

replication and virtual resource allocation.

✓ To ease the administration responsibilities for the configuration and functionality

provisioning, involving something as tricky and sensitive as security with more

effectiveness.

✓ To bring in the concept of easy and scalable network deployment and functioning.

✓ To utilise network resources in a better way.

✓ To significantly reduce Operational Expenditure (OPEX) and complexity.

✓ Enabling user applications for dynamic service requesting from the network.

2.6 CHALLENGES FOR SDN

✓ Addressing dynamic change with accuracy: SDN, even though can automate

provisioning of newly converged network in less time but need of the hour is a

performance monitoring solution (with open APIs) which can enhance integration as

18

they can listen on event bus, look for new devices and instantly do the needful

changes.

✓ Addressing rapid on-demand growth: Rapid increase in connected devices can pose

a risk to monitoring platforms in current SDN scenario. SDN needs extra performance

management capacity which can help spin up additional virtual appliances as the

demand increases, not affecting the performance or resource allocation.

✓ Security: SDN being different than traditional network, brings along plethora of new

vulnerabilities. Moreover, SDN still being in R&D phase has many loopholes to be

considered before its wide spread implementation.

19

3. OPENFLOW

Considered one of the first SDN standards, it is a communication protocol mostly used as a

southbound API, enabling SDN controller to directly interact with the Data plane. The

Controller uses this interface to implement changes to the FIB (Forwarding Information Base)

to efficiently manage the traffic, implement new rules and or control flows for optimal

performance.

It was originally started to allow the creation and testing of experimental protocols for

research purposes at the Stanford University. According to Open Networking Foundation

(ONF), OpenFlow provides network programmability from a centralised view.

As a set of protocols and an API, it is divided into two parts, namely: Wire Protocol and

Configuration & Management protocol.

Wire Protocol: Is used for establishing a control session, for defining a message structure

used to exchange flow-mods and collect statistics while defining the fundamental structure

of a switch.

Configuration and Management Protocol: Is used to allocate physical switch ports, define

high availability and response on controller failure.

The OpenFlow API handles L2-L4 network flow but to handle L5-L7 flow, it was extended.

Open vSwitches are one of the switches the OpenFlow protocol can use and the tables in the

switch consists of header fields, counters and actions. Header fields are matched with the

FIB and if a match is found, the counter is updated, and the concerned action is taken. Else, a

PACKET-IN message is sent to the controller over a TLS secured channel to notify about the

packet.

20

Figure 5: OpenFlow in SDN

Figure 6: Packet Forwarding in Open vSwitch in OpenFlow

Benefits of OpenFlow include:

• It is an enabler for innovation and accelerates new features and services.

• It has simplified provisioning, performance optimising.

• It has helped in abstraction by decoupling control and data planes.

https://www.udemy.com/
https://www.researchgate.net/publication/311496181

21

3.1 OpenFlow Architecture

The OpenFlow protocol has four interconnected layers, namely: message layer, state

machine, system interface and configuration.

• Message Layer: It is used to define the semantics and syntax of messages shared and

supports manipulating messages to get the desired outputs.

• State Machine: It works at core low-level to attain actions as negotiations, flow control,

delivery etc.

• System Interface: It sets up instructions defining how OpenFlow identifies interfaces,

enabling interaction with the outside environment.

• Configuration: It ensures the configuration aspect such as buffer sizes, reply intervals etc.

Figure 7: OpenFlow Layers

http://flowgrammable.org/sdn/openflow/

22

3.2 OpenFlow Messages

The messages exchanged by the OpenFlow implementing controller and OpenFlow switch

can be of three types:

• Symmetric messages: Bidirectional; sent without solicitation.

• Asynchronous messages: Sent via switch without controller asking them.

• Controller messages: Initiated by controller to control/view switch’s state.

Figure 8: Flow of Messages in OpenFlow

• Hello (Controller -> Switch): after the TCP handshake, controller sends its version number

to switch.

• Hello (Switch -> Controller): switch replies to previous Hello message with its supported

version number.

• Features Request (Controller -> Switch): Controller requests for available ports.

23

• Features Reply (Switch -> Controller): Switch replies with the list of available ports, port

speeds and supported actions and tables.

• Set Config (Controller -> Switch): Controller asks the switch to send flow expirations.

• Packet-In (Switch -> Controller): received packet didn’t match any entry in switch’s flow

table and hence was sent to the controller.

• Flow-Mod (Controller -> Switch): controller instructs the switch to add the packet entry

to the flow table.

24

4. Open vSwitch

Often abbreviated as OVS, Open vSwitch is an open-source virtual multilayer switch. For

Virtualisation environments, it provides a switching stack whilst supporting multiple network

protocols and standards. They sit below the OpenFlow interface. It abstracts out underlying

server architecture and allows creation of cross-server switches, thus enabling transparent

distribution across multiple platforms.

Written majorly in platform independent C, it has a Linux kernel implementation, providing

easy portability to multiple environments.

Ovs-ofctl is a utility tagged along with Open vSwitch allowing to monitor and control a single

switch’s flow table, proving helpful for the debugging process. It helps examining OVS’s kernel

flow cache, which is a subset of full OpenFlow flow table.

Characteristics of Open vSwitch:

• Mobility: Open vSwitch supports both configuration and migration of slow as well as fast

network state between VM instances.

• Network Dynamics: Open vSwitch supports features which allow network control system

to adapt as quickly as the environment changes. Open vSwitch Database (OVSDB) is one

of the many features that supports remote triggers.

• Maintaining Logical tags: Tags are useful to uniquely identify VMs or hold some relevant

context in the logical domain. And Open vSwitch has multiple methods to specify and

maintain tagging rules, making it accessible to VMs at demand.

• Hardware integration: Open vSwitch is capable of offloading packet processing to

hardware chipsets which allows it to be able to control both hardware and software

switch and compatibility.

25

Figure 9: Open vSwitch: Features

https://www.sdxcentral.com/open-source/definitions/what-is-open-vswitch/?c_action=related_articles

26

5. MININET

5.1 INTRODUCTION

Since SDN is the R&D phase, emulation tools are of utmost help while recreating deployment

scenarios, making it possible to have different performance metrics evaluated but without

the financial constraint and the complexity of an actual deployment.

Simulators, an alternative, could model a scenario on software to have performance

evaluated, being as close as possible to actual implementation, in addition to having full

knowledge of all factors, on and off stage, involved.

Mininet, a single Linux kernel-based system, is one of the network emulation orchestration

systems widely used for research on SDNs. It creates a realistic virtual network instantly, on

a single machine with a real kernel, switch and application running code.

The process-based lightweight virtualisation and network namespaces helps Mininet create

virtual networks easily and is the reason why the hosts have their own private network

interface and can only see their own processes due to isolation provided by virtualisation

instances.

The switches in Mininet are software based Open vSwitches or the OpenFlow reference

switches, giving a real feel of the OpenFlow protocol to the user. The links are live in Linux

and connect the emulated switches to the emulated processes that work as hosts.

27

Figure 10: Mininet Emulated Network

5.2 COMPONENTS

✓ Isolated Hosts: The user-level processes(hosts) in Linux kernel are moved into a

network namespace and since process groups have exclusive ownership of

components like ports, interfaces, routing tables etc., each host is isolated.

✓ Emulated Links: Linux Traffic Control manages the data rate of each link in the

emulated network. A virtual ethernet acts like a connecting wire for two or more

virtual interfaces.

✓ Emulated Switches: Mininet amongst available resources, uses either default Linux

bridges or Open vSwitches which are responsible for handling inbound and outbound

https://www.semanticscholar.org/paper/Mininet-as-Software-Defined-Networking-Testing-Kaur-Singh/b1c7f8ac477a5553303802bb7785dd3b53372057

28

traffic through the interfaces available to Mininet, whether on VM or host.

5.3 FEATURES

✓ It is a command-line instantiated network platform where we can run real programs.

✓ Being a python API, we can easily create networks of varying sizes and topologies and

the processing is fast.

✓ Open source and supported and developed by BSD Open Source License.

5.4 LIMITATIONS

✓ Resource limitations as when we run multiple instances on a single machine, the

resources need to be balanced and shared amongst the hosts the switches (virtual).

✓ Mininet is a single Linux kernel and hence software vendor limitation can arise.

✓ Mininet doesn’t come with a pre-written OpenFlow controller. One must develop

their own controller with the custom features.

✓ By default, Mininet network is isolated from the LAN and from internet but we can

use NAT options to connect them to the internet or LAN.

29

6. SETUP MININET

Mininet can be installed either on an Ubuntu machine, from scratch or we can import the

already built Mininet VM from the Mininet GitHub.

6.1 MININET FROM GIT

Install Ubuntu ISO on a VirtualBox Machine and update the system using:

$ sudo apt-get update

$ sudo apt-get upgrade

$ sudo apt-get dist-upgrade

To get the Mininet source code from Git, we install Git:

$ sudo apt-get install git

Install Mininet from source code:

$ sudo git clone git://github.com/mininet/mininet

We can tag all released versions of git and choose whichever version we want to install. In

our case, we have installed 2.2.0b3 version.

$sudo git checkout -b 2.2.0b3

Mininet project has an install script, so we run the script that would install Mininet 2.2

$ ~/mininet/util/install.sh -a

After the script runs completely, we can test the if the installation was successful. So, we

run:

$ sudo mn –test pingall

30

Mininet is up and running.

Figure 11: Starting Mininet

31

7. SDN CONTROLLERS

7.1 INTRODUCTION

SDN controllers are the main brain of the architecture. They are master behind configuring

network devices and instructing switches, via Southbound Interfaces, of their actions and

feeds information to the application through the northbound interface.

Controller can be viewed as the centralized management in Software defined-networking. It

handles the flow tables in a switch. One of the two things can happen with a packet i.e. it’s

either in the flow table which can then proceed with the action associated with it or it isn’t

in the flow table which then controller can instruct the switch to add an entry via flow mod

option.

7.2 ATTRIBUTES OF CONTROLLER

✓ Centralised management and distribution of the network state to the switches and

network devices connected alongside.

✓ It is a high-level data model providing a top-level view of relation between resources,

policies and other services offered.

✓ They can support further scalability via multi-controller environment.

Figure 12: SDN Controllers

https://www.udemy.com/

32

7.3 POX: Introduction

POX is an OpenFlow controller which now is also extending to function as an OpenFlow

switch. A networking software platform, it is written in Python and can run on any platform

that has Python 2.7 and above installed on it.

The booting process for POX requires pox.py file that takes a list of module names on

command line, locates those modules and calls their launch function to put them through

their up state for functioning.

Features of POX:

✓ It is a python based OpenFlow interface.

✓ It has reusable sample components for many services like path selection, topology

discovery etc.

✓ It works on major platforms like Windows, Linux, Mac OS.

Figure 13: POX Controller Functioning

7.3.1 SETUP FROM GIT

Generally, POX comes installed along with Mininet, but we can also install POX on another

Host.

33

We first pull the POX repository

$ sudo git clone https://github.com/noxrepo/pox

Then we install POXDesk which is a web-based GUI for POX and makes it convenient to

monitor the switches and the network. Steps for the same are:

$ cd pox

$ sudo git checkout betta (we’re choosing to branch out to betta)

$ cd ext

$ sudo git clone https://github.com/MurphyMc/poxdesk

$ cd poxdesk

$ sudo wget http://downloads.sourceforge.net/qooxdoo-2.0.2 sdk.zip

$ sudo unzip qooxdoo-2.0.2-sdk qx

$ cd poxdesk

$ sudo ./generate.py

Figure 14: Installing POX

$ cd ../ ../ ../

$ sudo ./pox.py samples.pretty_log web messenger messenger.log_service

messenger.ajax_trasnsport openflow.of_service poxdesk

https://github.com/noxrepo/pox
https://github.com/MurphyMc/poxdesk
http://downloads.sourceforge.net/qooxdoo-2.0.2%20sdk.zip

34

Now we can access POX controller on POXDesk at http://127.0.0.1:8000/poxdesk/source

Figure 15: POXDesk

7.3.2 CONNECTING MININET & POX

✓ POX uses the forwarding.l2_learning component in learning like a layer 2 device i.e.

switch. We run POX by running pox.py script and specifying the ‘forwarding.l2_learning’

component.

$ sudo ~/pox/pox.py forwarding.l2_learning

http://127.0.0.1:8000/poxdesk/source

35

Figure 16: POX forwarding.l2

✓ Next, we can either use Miniedit, which is a graphical component for building the

topology or use the Mininet command line to build up a topology to work with. Another

method could be writing a script in python that could implement the topology along with

routes and the scenario that needs to be implemented.

Miniedit version:

$ sudo ~/mininet/examples/miniedit.py

Figure 17: MiniEdit

36

✓ And then we can build up a topology. In this scenario, I’ve built up a 3 switch (s1, s2 and

s3), one controller(c0) and four host (h1, h2, h3, h4) tree structure as topology.

Figure 18: MiniEdit Topology

✓ We edit preferences in the Miniedit so we can access and make changes to topology from

the CLI. We can also select the version of switch we wish to use.

Figure 19: Controller Preference MiniEdit

37

✓ Also, since we’re using POX as the controller, we select Remote controller as the option

for the controller by going to Controller properties.

Figure 20: MiniEdit Controller Preference

✓ In this implementation, I ran POX controller in the same VM as the switches and hosts in

Mininet, so the switches communicate with the remote POX controller using host

system’s loopback address and default OpenFlow port number (6633).

38

✓ Next, we RUN the topology.

Figure 21: Running MiniEdit Topology

✓ We now need to start the POX controller.

$ sudo ~/pox/pox.py forwarding.l2_pairs info.packet_dump

samples.pretty_log log.level –DEBUG

This starts to show the logs as the controller starts and connects to the switches we set

in the topology.

39

Figure 22: Starting POX Controller

✓ Next, we try the connectivity amongst the nodes via ‘pingall’ command.

Figure 23: Testing Connectivity amongst all nodes

40

✓ We start Wireshark to see what packets are being captured in terms of traffic.

Figure 24: Starting Wireshark to capture packets

Figure 25: Wireshark Capture

41

✓ I tried pinging between nodes taking different packet sizes. Standard Packet size of 64

bytes

Figure 26: Pingall ; Standard Ping

✓ And the Wireshark captured traffic is as follows:

Figure 27: Wireshark Capture for standard ping

42

✓ Packet size = 64382 bytes

Figure 28: Ping for packet size greater than standard

✓ The Wireshark traffic shows that the packets were fragmented.

Figure 29: Wireshark Capture for packet size greater than standard

43

✓ Mininet also gives us option to test the link strength between nodes via iperf.

Figure 30: Mininet iperf

7.4 FLOODLIGHT

Floodlight is a popular SDN controller from Big Switch Networks. Based on Beacon, it is a Java

based OpenFlow supporting controller.

The architecture includes modules such as topology management, MAC and IP tracking

components, GUI for web access, OpenFlow counters and storage abstraction developed into

SQL and NoSQL backend.

It uses REST API for event notification system and Java Event Listeners to allow applications

to know the state of the controller.

Floodlight has a module called Floodlight Provider that handles input and output stream from

switches, translating OpenFlow messages to events.

The Topology manager uses LLDP (Link Layer Discovery Protocol) to discover end points, both

OpenFlow based or non-OpenFlow based.

44

Unlike other Onix based controllers, including POX, it has a component called BigDB that is a

NoSQL based database used for storing information including configuration and element

state.

Figure 31: Floodlight architecture

7.4.1 Installing Floodlight

✓ Since Floodlight is a Java based controller, we need Java Development kit which includes:

➢ JDK 8 for floodlight master

➢ JDK 7 for floodlight v1.2 and below

✓ For floodlight master, we download the dependencies:

$ sudo apt-get install build-essential ant maven python-dev

https://learning.oreilly.com/library/view/sdn-software-defined/9781449342425/ch04.html

45

Figure 32: Installing Floodlight

✓ For Floodlight v1.2 and below, we download dependencies:

$ sudo apt-get install build-essential openjdk-70jdk ant maven python-

dev eclipse

Since we have the pre-requisites now, we download and build Floodlight from Github.

$ sudo git clone -b v1.2 git://github.com/floodlight/floodlight.git

(where -b v1.2 is the JDK version we’re using, to ensure compatibility)

46

Figure 33: Installing Floodlight from Git

✓ Installation is complete. Now we must build the controller:

$ cd floodlight

$ sudo git submodule init

$ sudo git submodule update

$ ant

Figure 34: Building Floodlight from jar file

47

✓ After successfully building the controller, we need to make a floodlight directory with root

permission:

$ sudo mkdir /var/lib/floodlight

$ sudo chmod 777 /var/lib/floodlight

✓ Now, we can run floodlight by:

$ sudo java -jar target/floodlight.jar

(The floodlight.jar file is produced by ant during the build)

Figure 35: Starting Floodlight

✓ We can connect it via mininet by going to floodlight directory and issuing a topology

command:

$ sudo mn –topo=tree,4 –controller=remote, ip=127.0.0.1,port=6653

48

Figure 36: Connecting Mininet with Floodlight

✓ We can use the Floodlight GUI (with topologies, hosts, switches and their information as

MAC addresses etc) at

http://127.0.0.1:8080/ui/index.html

Figure 37: Floodlight GUI showing all devices

http://127.0.0.1:8080/ui/index.html

49

Figure 38: Floodlight GUI Topology

Figure 39: Floodlight GUI switches

50

Figure 40: Floodlight GUI Hosts

✓ To check if the topology is working or not:

Figure 41: Wireshark Capture for connectivity test

51

8. DIFFERENCES BETWEEN FLOODLIGHT AND POX

For the two controllers implemented, the chosen criteria, for differentiating their

performance, concern Southbound and Northbound communication, OpenFlow and

OpenStack support, programming language, GUI, documentation and others.

Attribute POX Floodlight

Year 2011 2013

GUI Python+QT4 Web based Java

Programming Language C++, Python Java, Python

Platform Support Linux, Mac, Windows Linux, Mac, Windows

OpenStack Support No No

Southbound API OpenFlow 1.0 OpenFlow 1.0, 1.3

Northbound API REST API JSON/Rest API

Centralised/Distributed Centralised Centralised

Multithreading Support No Yes

Documentation Poor, not updated Medium

Owned by Nicira Big Switch Networks
Table 1: Differences between Floodlight and POX

52

9. SECURITY

Security is one haul stop to protect and maintain the integrity of design and information

contained in any system, infrastructure, service or organisation. With the increasing

complexity of the technology, so has the sophistication of the attacks increased.

9.1 SDN VULNERABILITIES

SDN relies greatly on the administrator to ensure that the entire network has been

programmed to function correctly and effectively while maintaining the security. Weak

security measures can compromise networks and that can be exploited to extract sensitive

information, bring the entire network structure down or even have targeted attacks.

With the design of the SDN based networks, in operational mode, any unmatched packet is

sent to the controller and this is one of the reasons why barriers for sophisticated attacks in

SDN is low, even with TLS authentication between switch and the controller. This could bring

in malicious switches and hosts packet spoofing to corrupt the controller state. This issue is

one of the biggest vulnerabilities in the Data Plane.

Also, SDN might be affected by traditional network attacks and even more since, in traditional

networks, switches can make decisions on their own but since in SDN, we have separated the

control and data plane and OpenFlow mandates sending unmatched packets from switches

to the controller, opening possibilities of malicious hosts tampering with SDN vulnerabilities.

Programmable soft switches such as Open vSwitches are a soft target for attackers as well.

The end hosts can start control plane flooding which can saturate controller in terms of their

network bandwidth and bring the entire network down.

The hosts can tamper with network topologies by forging packets that could go from switches

to controller since they didn’t match and/or implement denial of service and/or extract flow

rule information and/or traffic hijacking or re-routing.

53

Figure 42: Security Vectors in SDN

9.2 VIRTUALIZATION & SECURITY CHALLENGES

In SDN, virtualisation, acting as an enabler, provides one with underlying network resources

and every configuration is stored in a virtual image, in form of a file. Thus, virtualisation in

SDN brings vulnerabilities, with its own set of pros.

Some of the vulnerabilities can be:

✓ Hypervisor attacks

✓ Guest operating system attacks or misconfiguration

✓ Inter-VM attacks

Hypervisor attacks and security: Since Hypervisor is responsible for creating and maintaining

Virtual Images, there’s a risk that it may allow the ability to modify/view operational and

functional state of the images, including the possibility of HYPERVISOR HIJACKING.

The attacker is in full control of the hypervisor and can access all VMs and/or other

hypervisors in the same infrastructure. With that possibility, not far lies the idea of

misconfiguration of SDN controllers to play around with traffic.

https://www.researchgate.net/publication/311496181

54

Compatibility, configuration and trust relations amongst different hypervisor vendors could

be another issue. Also, errors/bugs and misconfiguration on the part of the administration

can allow an attacker to compromise the network easily and for even more serious attacks.

9.2.1 POSSIBLE SOLUTIONS

• Virtual machine guest hardening: Some of the ways to harden VMs and ensure their

isolation could be:

o Setting limits while resource allocation (reserves) for each VM can protect other

VMs from performance degradation in case one of the VMs on the host is facing

any attack, DDoS attacks in particular. Doing so, the limited shared resources don’t

interrupt other virtual machines.

o Applying standard infrastructure security measures in VM infrastructure such as

malware filters, IDS/IPS, firewalls and keeping them updated on a regular basis

can help minimise general security risks.

o Native Management services such as terminal services or ssh can be used to access

VMs and manage the operational state. This would reduce the possibility of

attacks via VM consoles that can help attackers to bring down the virtual

machines.

• Hypervisor Security: Some of the ways to ensure security of the hypervisor are:

o Thin hypervisors are OS independent hypervisors with minimal overheads and can

limit the ways malicious code can. It mostly checks for digital signatures to ensure

malware doesn’t reach the system’s internal.

o Regularly updating and patching the system, including firewalls and active

directory integration could enhance Hypervisor security.

o Strong log-in credentials can ensure management tools security. Also, system

roles configuration can help isolate system settings from regular users.

• Regular encryption of VM data.

• While transferring data or destroying VMs, one should ensure that no data is left behind

on the disk which could later be recovered. This could be ensured via few techniques such

as storage encryption and or Zeroing memory.

55

• Isolation in terms of traffic (VLANs), address space, performance and control can be

implemented more strictly to ensure corruption of one VM won’t affect the other.

9.3 NETWORK TOPOLOGY

Various kinds of protocol implemented packets are sent by switches to controllers to have

the network topology and this can be used by compromised hosts to spoof IGMP messages

used for multicast groups and then temper with controller’s view of topology along with

installing self implemented flow rules to launch number of attacks on the network.

9.3.1 TRADITIONAL ATTACKS AND HOW THEY MANIFEST IN SDN

SDN is based on the foundations from the traditional network and hence while using entities

of the latter, same attacks can be triggered in SDN as well. And for preventive measures, it

might or might not work or could be extended to the former since SDN switches work

differently than the traditional switches.

For example, traditional network switches have verification via authentication against

spoofing using cryptographic mechanisms which might be heavy. In SDN, even with TLS

security levels, any packet that isn’t part of any rule would be directed to the controller

automatically and hence can result in a fake topology attack.

9.3.2 SDN SECURITY (SDSEC)

Traditional security mechanisms aren’t the best way to deal with virtualised environments

and hence SDSec approaches the design, deployment and management of security in a new

way by separating processing and forwarding plane, like separating control and data plane in

operational state.

This separation is useful as it gives a distributed security solution which is dynamic and

virtualises security functions and provides a way to manage them as a logical, single system.

56

SDSec mostly replaces security hardware appliances like IDS/IPS, firewalls with software

functions. Most of them have a control center at the middle of the network for policy

enforcement and ensure security controls are distributed across Virtual Machine Appliances.

9.3.3 CONTROL PLANE AND VULNERABILITIES

Control Plane could face the following VULNERABILITIES:

✓ Centralised controller could be a ‘single point of failure’

✓ Communication interfaces

✓ Policy enforcement: As the size of the routing information grows, so will the

responsibility of the advertising of the paths for reachability to destination and not

only in case of between the local instances of the data plane but also administration.

✓ Dynamic flow rule modification

✓ Controller- switch communication flood

✓ System level security challenges

✓ Trust between controller and third-party applications

✓ Malicious SDN controller modules: SDN controller is the brain of the network which

helps running services and application. Malicious modules can add dubious

functionalities which can prevent an entire network to function properly and put data

in danger.

MEASURES:

✓ Installation of security applications or authentication systems on Northbound

Interface can be used to prevent unauthorised access to controller. Another way could

be role-based authorization and access control.

✓ Access lists can be used to filter the traffic reaching the controller.

✓ Malicious SDN controller modules can be prevented/ taken care of using SDN

controllers that coordinate tasks to select a trusted configuration and keep a check on

their modules for the standards.

✓ Heterogeneous network topologies can be adopted to survive disruptions and attacks.

57

✓ Artificial Intelligence, neural networks and data mining techniques can be used to

solve routing and optimisation problems in the dynamic environment.

✓ Access control can be defined by using Controller as the policy enforcer and basing

the policies on a role hierarchy where administrators assign roles to SDN applications.

✓ Operations can be identified and then controlled via permissions to be able to

implement the minimum privilege principle that guides operational state with an

authority that authenticates and the caller and checks if they have access to a critical

operation or not.

INDUSTRY USED SOLUTIONS:

✓ Security Enhanced-Floodlight: BigSwitch Floodlight Controller Extension

Providing a role-based authorization system, this extension is one of its first

implementation of an SDN based security policy in OF protocol stack.

✓ Security Actuator: OF Security Directive actuation service

It helps enable network security tools that can start advanced security resolve logic

and thus rewrite network flow paths for attacked and infected hosts.

9.3.4 DATA PLANE AND VULNERABILITIES

Data plane can suffer from various security threats, namely:

✓ Malicious switches and hosts: Malicious hosts as well as switches can send bad

requests which can exhaust resources of the switches/controller and result in DoS

flooding in the network.

✓ Flow rule discovery

✓ Flooding attacks

✓ Forged traffic: Communication between Controller and End devices is vulnerable and

could be taken advantage of by spoofing the device flow table and/or forging new

traffic rules or injecting/changing conversations, called as Man-in-the-middle-attack.

✓ Credential management

58

MEASURES:

✓ SDN SBI (Southbound Interface) and Protocols could use OpenFlow/Open vSwitch

Database Management Protocol or BGP-LS or SNMP as these have their own

algorithms to secure the network end devices.

✓ Regular internal or external audits can be put in place to check configurations and

flow rules regularly.

✓ Regular checks by the administration for intra-switch misconfiguration within single

flow-table.

INDUSTRY USED SOLUTIONS:

✓ OpenFlow switches: It divides the network into small logical networks that can allow

users to use applications without affecting each other i.e. isolation. One of the most

useful switches to test and implement new experiments since it supports

encapsulation and encryption amongst many other options.

✓ FlowChecker: Centralised server application

It receives queries from OF applications and that can include

verification/analysis/debugging configurations. It can help verify consistency of

switches and validate the correctness of the flow tables with the services and

protocols in place.

9.3.5 APPLICATION PLANE AND VULNERABILITIES

Application Plane can suffer from vulnerabilities such as:

✓ Un-authorised applications or users

✓ Potential trust issues because of third party

✓ Fraudulent role insertion

✓ Lack of authentication methods

✓ Lack of secure provisioning

59

MEASURES:

✓ A granular permission system with OpenFlow specific permissions can be set up which

can check for the potential caller and what all they can access.

✓ AI/Machine Learning can help build ways that can dynamically analyse controller

program and can help channelize delays in input and receiving outputs.

✓ Threat detection and security monitoring systems like IDS/IPS, firewalls can be

installed with regular patching and updating to ensure basic security.

INDUSTRY USED SOLUTIONS:

✓ Procera: Computational language

Procera can be used for defining high-level network policies which can be used to

program how to react with a dynamic change in the network.

✓ Flover: Verification Tool

It can convert flow table into understandable format and detect anomalies for

network security.

✓ OFTesting: Python based OF application

It can be used for debugging and automated testing of OF programs. Keeping

server updated could also help avoid application manipulation

https://www.researchgate.net/publication/311496181

60

Figure 43: SDN & Security

10. DENIAL OF SERVICE(DoS)

DoS attack is a means of shutting down a machine/network, making it inaccessible to

legitimate users. DoS attacks generally have few popular methods, namely: Buffer Overflow

Attacks, ICMP flood and SYN flood.

Buffer Overflow: It’s the most common DoS attack. Via this method, traffic more than the

capacity of the server’s buffer is sent.

ICMP flood: It leverages misconfigured network devices by sending spoofed messages. These

are used to ping targeted hosts. This attack is also called smurf attack or ping of death.

SYN flood: In this the attacker sends a request to connect to the server but never completes

the TCP handshake, which leads to open port and resources bind to that port. The main part

is that multiple requests from multiple hosts is sent that can easily crash a system.

10.1 SYN FLOODING

TCP-SYN Flooding is one of the most popular amongst all DoS attacks which exploit the TCP

vulnerability on the Web Server side.

SYN flood is a type of denial-of-service attack which exploits the TCP three-way handshake

and once successful can consume resources on the server and render it unresponsive to other

clients.

During SYN flooding, huge quantities of TCP packets with only SYN flag set are sent to the

server. SYN flags are usually the first part of the three-way handshake which are responded

by the server using SYN-ACK packet.

Since web server is dependent on the TCP for it is the underlying transport protocol, it keeps

connections open or half-open until the final ACK arrives from the client side.

So, attackers usually open many incomplete connections, depleting SYN-Queue which will

ultimately deny or delays legitimate connection requests. Thus, any network service

associated with that TCP socket goes down.

61

This large quantity can clog bandwidth, further leading to resource depletion or worse

crashing of the server, leading to no services to any clients.

Some of the known measures for protection against SYN flooding are:

✓ SYN cookies, SYN cache and SYN proxy

✓ Updated Firewall through Access Control Lists

✓ IDS/IPS with signature-based mechanisms

INDUSTRY USED SOLUTIONS:

✓ AVANT-GUARD: It is an extension of the data plane with two modules, namely:

connection migration module and actuating trigger module. Connection migration

adds intelligence to data plane and helps in differentiating sources that would

complete TCP handshake from those who won’t. The ones who complete the

handshake are further exposed to the control plane. Access tables collaborate with

the module and maintain TCP session information to provide session details later to

the control plane.

Connection migration module has a four-stage operational stage:

a) Classification: CM engages the client in a stateless TCP handshake using SYN

cookies and on completion, the client moves to the report stage.

b) Report: CM determines if the client is anyway associated with any entry in the

flow table. If not, the entry is passed on to the control plane else it’s passed

on to migration stage.

c) Migration: CM initiates a TCP connection with the client’s destination host and

if it responds, a successful connection is established.

d) Relay: After a successful TCP connection is established, CM module enters

relay stage and relays all TCP data packets between client and destination as

normal TCP session.

62

Figure 44: Connection Migration Module Stages

Actuating trigger module collects network status information and packet payload. It

offers conditional flow rule activation that is the ability to activate flow rules when any

event occurs.

10.2 DDoS

Distributed Denial of Service attacks are an attempt to make a machine/network resource

unavailable to intended users. These could be initiated by two or more sources or bots. A bot

is a device used to penetrate a computed by software from a malware code.

DDoS attacks can be divided into two types based on their targeted protocols:

✓ Network/transport-level: Mostly launched using TCP/UDP/ICMP/DNS protocol

packets and they focus on dropping legitimate requests as they exhaust network

resources.

✓ Application-level: These aim to exhaust server resources i.e. sockets, CPU, memory or

I/O bandwidth.

63

In SDN, possible DDoS attacks can be in three categories:

✓ Application layer: DDoS attack can either be on the launched application or an attack

on the Northbound API. And since isolation of application via resources is a weak link,

crashing of one application can affect the others.

✓ Control layer: Controller in SDN is a single point of failure risk, so it attracts many

attack possibilities. Ways to attack Control layer could include via controller,

Northbound API, southbound API, westbound API or eastbound API.

✓ Infrastructure layer: One can attack Infrastructure layer either via switches or via

Southbound API.

Some of the methods that could help SDN detect and comprehend DDoS attacks could be:

✓ SDN has a centralised logical controller which can view the network and that can

dynamically quarantine compromised hosts and authenticate legitimate hosts based

on the traffic patterns/flow entries/authentication and other implemented security

measures.

✓ Intelligence from existing IDS/IPS systems can be harnessed with SDN and flexible

system can be built up to detect DDoS attacks.

✓ Software based traffic analysis using neural networks and AI/ML can be performed

which can help predict DDoS attacks and with help of IDS/IPS signatures can be set up

to alert/ prevent those attacks.

✓ DDoS can also be prevented using packet dropping and rate limiting techniques.

✓ SDN controllers can be set up at ingress traffic that can detect anomaly traffic, filter

malicious packets or validate source IP and then allow it further into the network.

✓ A Flow collector module can be setup which could periodically request flow entries

from all flow tables and extract features like average of packets per flow, percentage

of pair-flows etc. for DDoS flooding attack detection.

64

INDUSTRY USED SOLUTIONS:

✓ Fresco: An OF security application development framework, it is used for different

detection and migration modules. It is useful in protecting network against detected

threat by constraining flow of data.

✓ Fortnox: It enables administration to define and implement strict network policies

which can override dynamic derived flow rules. It also supports OF application

authentication with the help of digital signatures.

✓ Onix: Platform that helps implement control plane as a distributed system. Onix

provides an API which allows control plane to make their trade-offs based on

consistency, durability and scalability amongst many.

CURRENTLY IN RESEARCH

✓ Cross-Layer Traffic Analysis: Cross-layer traffic analysis helps looking at information

at multiple protocol layer to detect/respond to DDoS. With an emphasis on L2-L4, SDN

can focus and extend traffic intelligence to L4-L7.

✓ Multiple Locations Defensive: This method uses deployment of multiple defence

nodes at locations such as source, destination or networks. This deployment can help

detection at the sites it is placed. Also, the nodes initiate and distribute information

to other nodes.

65

11. CONCLUSIONS

From the Capstone project, I can conclude on the following learnings:

▪ The basis of SDN as a concept has existed for more than 15 years but due to the

increase in network traffic and programmability of networks, we are becoming more

aware about it.

▪ Controller, being the central building block of SDN is necessary yet ‘single point-of-

failure’.

▪ Open Source community has had a lot of contribution to the concept building and

implementation of SDN.

▪ SDN controllers vary in many magnitudes. This has both its pros and cons. With

handling multiple aspects, we also can face the issue when it comes to things like

programming languages, multi-threading and so on.

▪ Existing research for controller as a subject is yet to fully develop.

▪ SDN has handled many of traditional architectural issues but also has opened many

attack vectors that need to be focused on and improved.

66

12. REFERENCES

• https://www.citrix.com/products/citrix-adc/resources/sdn-101.html

• https://learning.oreilly.com/library/view/sdn-

softwaredefined/9781449342425/ch02.html

• https://www.nojitter.com/4-challenges-lying-wait-sdn

• https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/

• https://github.com/mininet/openflow-tutorial/wiki/Learn-Development-Tools

• https://en.wikipedia.org/wiki/Open_vSwitch

• https://github.com/openvswitch/ovs/blob/master/Documentation/intro/why-ovs.rst

• https://github.com/mininet/openflow-tutorial/wiki/Installing-Required-Software

• https://github.com/mininet/openflow-tutorial/wiki

• https://www.opennetworking.org/

• https://github.com/mininet/mininet

• http://mininet.org/download/

• http://www.brianlinkletter.com/set-up-mininet/

• https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/7750830

• https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

• https://openflow.stanford.edu/display/ONL/POX+Wiki.html

• http://www.brianlinkletter.com/using-pox-components-to-create-a-software-

defined-networking-application/

• http://www.academia.edu/9021253/Simulation_in_an_SDN_network_scenario_usin

g_the_POX_Controller

• https://github.com/mininet/openflow-tutorial/wiki/Learn-Development-Tools

• https://pradeepaphd.wordpress.com/2018/03/06/floodlight-controller-tutorial/

• https://www.semanticscholar.org/paper/SPHINX%3A-Detecting-Security-Attacks-in-

Networks-Dhawan-Poddar/4f358dbee87adc305b3e983e5ff6dff1074d3cf6

• https://wikisites.cityu.edu.hk/sites/netcomp/articles/Pages/HardeningStepstoSecure

VirtualisationEnvironment-VirtualMachine.aspx

https://www.citrix.com/products/citrix-adc/resources/sdn-101.html
https://learning.oreilly.com/library/view/sdn-softwaredefined/9781449342425/ch02.html
https://learning.oreilly.com/library/view/sdn-softwaredefined/9781449342425/ch02.html
https://www.nojitter.com/4-challenges-lying-wait-sdn
https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/
https://github.com/mininet/openflow-tutorial/wiki/Learn-Development-Tools
https://en.wikipedia.org/wiki/Open_vSwitch
https://github.com/openvswitch/ovs/blob/master/Documentation/intro/why-ovs.rst
https://github.com/mininet/openflow-tutorial/wiki/Installing-Required-Software
https://github.com/mininet/openflow-tutorial/wiki
https://www.opennetworking.org/
https://github.com/mininet/mininet/wiki/FAQ
http://mininet.org/download/
http://www.brianlinkletter.com/set-up-mininet/
https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/7750830
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://openflow.stanford.edu/display/ONL/POX+Wiki.html
http://www.brianlinkletter.com/using-pox-components-to-create-a-software-defined-networking-application/
http://www.brianlinkletter.com/using-pox-components-to-create-a-software-defined-networking-application/
http://www.academia.edu/9021253/Simulation_in_an_SDN_network_scenario_using_the_POX_Controller
http://www.academia.edu/9021253/Simulation_in_an_SDN_network_scenario_using_the_POX_Controller
https://github.com/mininet/openflow-tutorial/wiki/Learn-Development-Tools
https://pradeepaphd.wordpress.com/2018/03/06/floodlight-controller-tutorial/
https://www.semanticscholar.org/paper/SPHINX%3A-Detecting-Security-Attacks-in-Networks-Dhawan-Poddar/4f358dbee87adc305b3e983e5ff6dff1074d3cf6
https://www.semanticscholar.org/paper/SPHINX%3A-Detecting-Security-Attacks-in-Networks-Dhawan-Poddar/4f358dbee87adc305b3e983e5ff6dff1074d3cf6
https://wikisites.cityu.edu.hk/sites/netcomp/articles/Pages/HardeningStepstoSecureVirtualisationEnvironment-VirtualMachine.aspx
https://wikisites.cityu.edu.hk/sites/netcomp/articles/Pages/HardeningStepstoSecureVirtualisationEnvironment-VirtualMachine.aspx

67

• https://www.ericsson.com/en/ericsson-technology-review/archive/2015/identifying-

and-addressing-the-vulnerabilities-and-security-issues-of-sdn

• https://pdfs.semanticscholar.org/4ef3/92fe135271bbfbecf1a1e9735aae80bc85d3.p

df

• https://www.openairinterface.org/?page_id=466

• https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/8423699

• https://dl-acm-org.login.ezproxy.library.ualberta.ca/citation.cfm?id=2516684

• https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/7289347

• https://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-

dos

• https://searchnetworking.techtarget.com/tip/SDN-security-strategies-for-network-

attack-prevention

• https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/8389262

• https://www.researchgate.net/publication/304457462_SDN_controllers_A_compar

ative_study

IMAGES SOURCE

• https://www.researchgate.net/figure/SDN-vs-traditional-network-

architecture_fig2_311496181

• 2017_Book_GuideToSecurityInSDNAndNFV.pdf

• https://www.openairinterface.org/?page_id=466

• https://www.udemy.com/https://www.sdxcentral.com/open-

source/definitions/what-is-open-vswitch/?c_action=related_articles

• https://www.semanticscholar.org/paper/Mininet-as-Software-Defined-Networking-

Testing-KaurSingh/b1c7f8ac477a5553303802bb7785dd3b53372057

• https://learning.oreilly.com/library/view/sdn-software-

defined/9781449342425/ch04.html

• https://www.researchgate.net/publication/311496181

• https://www.researchgate.net/publication/311496181

https://www.ericsson.com/en/ericsson-technology-review/archive/2015/identifying-and-addressing-the-vulnerabilities-and-security-issues-of-sdn
https://www.ericsson.com/en/ericsson-technology-review/archive/2015/identifying-and-addressing-the-vulnerabilities-and-security-issues-of-sdn
https://pdfs.semanticscholar.org/4ef3/92fe135271bbfbecf1a1e9735aae80bc85d3.pdf
https://pdfs.semanticscholar.org/4ef3/92fe135271bbfbecf1a1e9735aae80bc85d3.pdf
https://pdfs.semanticscholar.org/4ef3/92fe135271bbfbecf1a1e9735aae80bc85d3.pdf
https://pdfs.semanticscholar.org/4ef3/92fe135271bbfbecf1a1e9735aae80bc85d3.pdf
https://www.openairinterface.org/?page_id=466
https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/8423699
https://dl-acm-org.login.ezproxy.library.ualberta.ca/citation.cfm?id=2516684
https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/7289347
https://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-dos
https://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-dos
https://searchnetworking.techtarget.com/tip/SDN-security-strategies-for-network-attack-prevention
https://searchnetworking.techtarget.com/tip/SDN-security-strategies-for-network-attack-prevention
https://ieeexplore-ieee-org.login.ezproxy.library.ualberta.ca/document/8389262
https://www.researchgate.net/publication/304457462_SDN_controllers_A_comparative_study
https://www.researchgate.net/publication/304457462_SDN_controllers_A_comparative_study

68

