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Abstract 

Human genomic data are being generated at an increasing rate owing to the advancement of 

high-throughput technology. Wider availability of genomics, transcriptomics, proteomics and 

metabolomics data motivated complex study questions with the intention to gain higher degree 

of understanding of system biology. These study questions inspired novel study designs and 

demanded compelling statistical analysis. Although beneficial for understanding the disease 

progression, recently-proposed directions of integrative and longitudinal analysis of multiple 

omics call for advanced statistical methods. 

Phenotypes are not determined by merely presence of single or few genes, but by the 

interconnection of many genes and their downstream pathways. The regulation of human 

genome at multiple levels may be revealed by integrative analysis of omics and helps the 

establishment of personalized clinical practices. In our study of prostate cancer, tumor and 

healthy samples manifested the differential interdependency of oncogene expressions (MYC 

and AKT1) and metabolite pathways. We showed the inability of classic statistical analysis 

approaches to deal with this complex design and offered Linear Combination Test (LCT) as a 

solution for linking genomics and metabolomics, working directly with multiple continuous and 

correlated measurements. 

Despite promoting an insight into the temporal progression of the disease and providing more 

accurate data, the longitudinal design of genetic studies is out of reach for scientists, due to lack 

of adequate statistical methods that accounts for the within-subject correlation.  In this thesis, a 

Longitudinal Linear Combination Test (LLCT), a self-contained gene set analysis method, is 

proposed to detect the genes which are differentially expressed in association with different 
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trajectories of one or multiple phenotypes. LLCT is a high-dimensional data analysis method 

applicable to a wide range of longitudinal omics data. It allows adjusting for potentially time-

dependent covariates and works well with unbalanced and incomplete data. An extension of 

LLCT is applicable to family-based data with an additional layer of correlation between 

subjects.  The reasonable performance of LLCT for different sample sizes, gene set sizes, 

number of follow-up visits, within-gene-set correlation and within-subject correlation and the 

outperformance of LLCT compared to other methods were demonstrated in simulation studies. 

The application study illustrated the adequacy of LLCT to detect genes whose differential 

expression significantly alters the dynamic of blood pressure in related and unrelated datasets. 

We also proposed a generalization of LLCT that can handle time-course omics datasets  

Efforts to investigate the genomic network may be wasted by poorly designed studies and 

inappropriate analytical tools. The success of genetic investigations depends on the 

development of comprehensive analysis methods appropriate for complex studies, designed to 

minimize the potential error and biases in the hope of achieving a greater level of consistency 

among the study findings.  
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Chapter 1  

Introduction  
 

1.1 Review of High Dimensional Data Analysis 

Advances in high-throughput technology which allows for the exact and simultaneous 

measurements of thousands of gene expressions, proteins and metabolites are calling for novel 

statistical methods, specifically tools for analysis of high-dimensional diverse biological data.  

In case of high-dimensionality where the number of variables recorded for each sample(p) 

exceeds the sample size(n): p>>n, the classical statistical methods are unable to analyze the 

data. With this setting, the deviation from fundamental assumptions of statistical methods, e.g. 

the Law of Large Numbers and the Central Limit Theorem[1], the singularity and ill-condition 

matrices, unidentifiable distributions and low computational efficiency are important challenges 

facing the data analysis.  

Statisticians primarily proposed dimension reduction methods in dealing with high-

dimensional data. These methods vary from explanatory approaches, visualizing the possible 

associations and relationships, to hypothesis-testing approaches, testing the validity of 

observations[2].  Among the explanatory methods, clustering analysis proceeded with Principle 

Component Analysis (PCA) or Principle Coordinate Analysis (PCoA). These approaches have 

received much attention due to their graphical features[3]. PCA and PCoA de-noise the dataset 

and decrease the dimension. Clustering analysis such as k-means clustering with Euclidean 

distance and hierarchical clustering are  frequently used data analysis approaches in biological 

studies[4]. Penalized likelihood regression[5] is a popular regression-based method focused on 

dimension reduction. Later, Least Absolute Shrinkage and Selection Operator (LASSO) [6] was 
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developed to force models to be sparse by setting some effect sizes to be zero and, therefore, 

reduce the dimension. When the number of predictors far exceeds the sample size, it is not 

unrealistic to assume that some predictors do not contribute to describe the response, and 

therefore, the vector of effect sizes is likely to be sparse.  Once the direct estimation of the 

effect sizes for high-dimensional data through the classical methods is impossible, these 

methods impose some restrictions to make the effect sizes identifiable. Despite the popularity 

and efficiency in sparse estimation, LASSO is not appropriate for inference due to difficulty in 

characterization of the estimators’ distributions[7]. Among the solutions proposed [8–10], one 

instructs splitting the sample to two sub-samples with equal sizes, applying LASSO to the first 

half and using the selected variables for ordinary least square analysis of the second half and, 

thereby, providing inferential analysis[8].  This method,  is sensitive to the sub-sample selection 

and the p-values may vary substantially from one sub-sample to the other. To solve this 

problem, an iterative approach was presented by Fan and Lv[11].  Alternative method to find 

the estimations of coefficients is Empirical Bayesian Method which considers a priori for the 

distribution of coefficients with a variance depending on an unknown variance. Alternatively, 

the method of Global Test [12] employed a hierarchical modelling approach to transform high-

dimensional data to a low-dimensional data. In this method, the units of analysis are considered 

to be genes which are nested within subjects. As such, the p-dimensional data is turned to an n-

dimensional data and becomes more computationally efficient. 

 

1.2 Review of Microarray Data Analysis 

Correlation learning methods play a very important role in hypothesis testing of high-

dimensional data. These methods are very popular in DNA Microarray data analysis, helping 
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researchers detect differential gene expressions across two or more than two biological states, 

e.g. cases and controls. Phenotype-genotypes correlations are ranked and the most influential 

genotypes are detected[11]. In the case of binary phenotype, this method relies on the t-test 

statistics. Tibshirani et al. [13] used this approach to identify the subset of genes that optimally 

describe each state. Similarly, the commonly-used method, Significance Analysis of 

Microarrays (SAM) proposed by Tusher et al. [14], ranked the genes using a score similar to a 

t-statistic and determined the significant genes with the scores larger than a specific threshold. 

There are many more of these methods in the literature, some of them are discussed in the next 

paragraph. 

Correlation-based approaches constitute a large body of developed methods for analysis of 

DNA Microarray data. The initial attempts to analyze DNA microarray data were to investigate 

the effect of each gene, separately. In this so-called Individual Gene Analysis (IGA), the genes 

are assumed to express independently. This assumption is against the biological concept of 

genetic linkage and may lead to faulty results. While IGA always detects the genes with 

strongest effect, accumulation of the mild or moderate effects of multiple genes may in fact 

determine the phenotypic condition. IGA, usually, ends up in a long list of significant genes 

which may be difficult to interpret biologically. Quite often, a disease does not involve a single 

gene, but multiple genes, sharing a common biological function. Such collections of genes are 

called biological pathways [15]. This concept motivated a shift from analysis at a univariate 

gene level, or IGA to analysis at a multivariate level, or Gene set analysis (GSA). GSA 

wasinitially suggested by Mootha et al. in 2003 [15] and Subramanian et al.in 2005 [16]. GSA 

brought up the possibility to account for within-gene-set correlations and produced results with 

better replication across studies. GSA focuses on analysis of biological pathways.  The Cancer 
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Genome Atlas (TCGA) [17], Gene Expression Omnibus (GEO) [18], Kyoto Encyclopedia of 

Genes and Genomes (KEGG)[19], BioCarta [20], Molecular Signature Database of the Broad 

Institute [20] provide an archive for these a-priori defined gene sets. Gene Set Enrichment 

Analysis (GSEA)[16], the most popular GSA method, relies on a correlation-based approach. It 

utilizes the genotype-phenotype correlation to rank the genes and examines the significance of a 

given gene set by locating its members in the ranked list. The degree to which a gene set is 

overrepresented in the extremes is calculated by Kolmogorov-Smirnov-like Enrichment Score 

and used to indicate if the gene set is differentially expressed in association with phenotype.  

Later, Efron and Tibshirani[21] proposed maxmean statistic as a substitute for GSEA 

Enrichment Score with superior power characteristics. Significance Analysis of Function and 

Expression (SAFE)[22], as the other commonly used method, compares the measures of the 

association between the genes inside and outside of a given gene set. A considerable difference 

determines a significant effect.  SAM became a popular IGA method, soon after it was 

published. SAM was generalized to SAM-GS [24] to analyze multiple genes, organized in 

biological pathways. The SAM-GS statistic is derived from the summation of SAM statistic for 

all the genes within a gene set.  

Due to the difficulty in parametric determination of the test statistic distributions, these 

methods rely on permutation-based inferential analysis. Under the null hypothesis of no 

association, the labels of the study units are interchangeable. The distribution of the test statistic 

is approximated by random permutations of the labels. This approach assumes independency of 

the study units. GSA methods, such as GSEA, are termed “competitive” methods[23] if they 

employs gene permutation to test whether the association between a gene set and the outcome is 

equal to those of the other genes. Competitive methods have been criticized about their 
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untenable statistical independence assumption across genes. Ignorance of the correlation causes 

overstating of statistical significance[24]. Obviously, the results of competitive methods could 

be severely subjective regarding the choice of gene sets to enrol in the study. On the other side, 

there is the category of so-called “self-contained” methods[23] where a subject permutation 

method is employed to test if there is no gene within the gene set associated with the phenotype. 

Global test[12], SAFE[22] and SAM-GS[25] belong to this category. 

Analyzing the associations between multiple genes-sets and phenotypes requires an 

adjustment for multiple testing. False Discovery Rate (FDR) [26] is one of the most known 

tools for estimating the multiple test error and provides a good alternative to the traditional 

Bonferroni approach. In this thesis, we used FDR adjusted p-value, also known as q-value, 

which is the proportion of false significant tests.  

While there is a sufficient literature on development of methods for association of 

microarray data and binary or categorical phenotype, researchers believe that many biological 

variables (e.g. Blood Pressure and Cholesterol Level) are associated with the disease under 

study, in a continuous fashion[27]. As such, assigning any threshold to meet the requirement of 

an inappropriate analytical method may be very misleading in the genomic studies. The 

recently-developed method of Linear Combination Test (LCT), which is described in detail 

throughout the thesis, is unique in its ability to handle one or multiple continuous phenotypes 

despite its low computational cost. As this method brings lots of flexibility in terms of sample 

size, correlation structure, gene set size, proportion of missing values and number of 

phenotypes, it is a very good candidate for methodology developments for analysis of complex 

data. In this thesis, we took advantage of favorable features of LCT to link different omics 

measurements and investigate the temporal patterns of phenotype or omics data.  
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1.3 The Demand for Linkage Analysis of Omics 

As discussed before, the complexity of the research questions is directly related to the 

technological advancements. With increased availability of microarrays and high throughput 

sequencing of biological data, system biology emerged as a new and promising research area.  

System biology is a term assigned to mathematically understanding the interactions between 

biological networks. At the molecular level, understanding collaborative functioning of the 

DNA or genome, the RNA or transcriptome, the proteins or proteome and the metabolite 

profiles or metabolome in developing a phenotype is the focus of biological system studies. In 

general, the connection between genotype and phenotype is known to depend on how genes 

alone, or in combination with other genes, are expressed to messenger RNA and act through the 

proteins and metabolites. The importance of the study of complex biological system mediating 

the effects of DNA diversities on the phenotype has been emphasized by many authors [28] and 

should rely on a sophisticated analysis method. Inadequate statistical methods are frequently 

applied to handle challenging properties of this data, specifically the complex correlation 

structure. The second chapter of this thesis proposes a statistical method for investigation of 

system biology, which imposes minimal limitations on the analysis, compared to the commonly 

used methods. Previously, researchers dealt with the analytical limitations by employing 

clustering methods to dichotomize the continuous measurements of omics data, or simply 

ignore possible correlation structures. Beside the high dimensionality of data, we think that the 

correlation or even interaction structure within each genomic assay is the main challenge of 

combining several different omics to discover meaningful biological signatures. LCT brings 

great flexibility to accommodate these complexities. 
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In chapter 2, we linked metabolome and transcriptome in healthy and prostate cancer 

subjects, separately. Using LCT, we addressed the within-metabolome correlation present in 

different biological pathways, the within-transcriptome correlation and the within-transcriptome 

interaction, high dimensionality of the metabolome data and small sample size. 

 

1.4 Omics Data Analysis with Longitudinal Phenotype 

The differential gene expression profiles may not only indicate the phenotype value at a 

specific time point, but the variation of phenotype over time.  Motivated by the efficiency of 

longitudinal designs in enhancing the understanding of temporal progression of a phenotype 

and considering the feasibility of such studies by the recent advances in technology, 

longitudinal designs are becoming increasingly popular in genetic studies. Despite a rich 

literature on analysis of binary or categorical phenotype variables, there are few methods 

developed to handle a continuous phenotype and fewer to handle repeatedly measured 

phenotypes. When measuring a single subject repeatedly over time, the correlation between 

these measurements imposes a new layer of complexity to the data analysis. This analytical 

challenge was addressed by a correlation learning method developed by Adewale et al. [29]. In 

this method, the summation of the gene-specific regression coefficients estimated by a 

longitudinal model formed the enrichment score of a given gene set. This method assumed that 

the effect of gene expression is constant over time which may not always hold in the presence 

of complex molecular systems. Thus, novel approaches for providing longitudinal data analyses 

for omics studies are needed. We developed Longitudinal Linear Combination Test (LLCT) to 

detect differentially expressed gene sets associated with temporal trajectory of one or multiple 

phenotypes. LLCT is a two-step approach for explaining both within and between subject 
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variations. We believe and will show in chapter 3 that our method accounts for all the above-

mentioned complexities in correlation structure, at very low computational cost.  

 

1.5 Application on the Data of Genetic Analysis Workshop 19 

Starting from 1982, Genetic Analysis Workshops provided a forum for developing novel 

statistical methods and comparing existing methods for identification of genetic factors on 

complex diseases. GAW13, GAW16, GAW18 and GAW19 focused on analysis of longitudinal 

phenotypes. In GAW13, the joint and two-step models were applied on a genome data 

including 2885 subjects with the phenotypes measured as frequently as 21 times. Since the 

sample was large enough, classic analysis methods such as random effect modelling was 

applied[30]. The sample size for GAW16 was also large enough to practice more advanced 

classic methods of linear mixed models, generalized estimating equations, growth modeling and 

multivariate adaptive splines to analyze longitudinal data. GAW16 acknowledged the additional 

information provided by longitudinal design[31]. More recently developed methods such as 

Bayesian methods or LASSO were employed in GAW18. These studies found it difficult to 

tackle the challenges of missing data and high-dimensionality[32]. In all GAW18 studies 

(except one[33]), they failed to analyze the whole dataset because of the inability of the 

methods to handle high-dimensionality. However, they admitted the increased power gained by 

repeated measurements of the phenotype[34]. Similar to the previous GAWs, GAW19 

experienced inconsistent and incomparable findings due to heterogeneity in methodology and 

data [35]. In chapter 3, we present results of our proposed method on GAW19 data.  

Since many genetic studies are family-based, GAWs also attempted to discuss the 

applicability of their proposed methods on family-based data. With this data structure, 
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additional statistical consideration is required to account for the within-family correlations. The 

pedigree-based genetic studies benefit from decreased heterogeneity among subjects and 

increased power and control of Type I error[34]. However, this study design comes with a 

complex data correlation structure. In chapter 3, we will show the applicability of LLCT on the 

data with pedigree-based setting.  

 

1.6 Time-Course Omics Data Analysis  

Gene expression is a time-dependent process. Although examination of the gene expression 

at a single time point may reveal some genes contributing  to the development of a health 

condition, a time-course evaluation is required to recognise all the genes involved[36]. 

Moreover, time-course omics studies increase our understanding of the dynamic of biological 

processes. As such, these studies are becoming very popular in recent microarray literature. 

Large number of genes, small number of replicates, small sample size, and high rate of missing 

values are common analytical challenges of these studies. While small number of replicates and 

missing values prevent classical time-series analysis methods from functioning, large number of 

genes and small sample sizes present important challenges for classical longitudinal methods.   

In contrast to longitudinal phenotype methods, there is a large body of literature developing and 

reviewing the time-course microarray methods[36–38]. The proposed methods can be divided 

into two main categories, according to their objectives: 1. Identification of group of genes with 

a similar temporal expression fashion, and 2. Examination of differential time-course 

expression patterns corresponding to different biological conditions. Besides the primary goal 

of the first class which is learning from grouping the genes, these methods help future studies 

select an optimal subset from the entire gene set. Clustering approaches are very popular in this 
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category.   Distance-based clustering[39,40], splines and Hidden Markov Models (HMM) are 

some attempts for temporal pattern recognition. HMM results in high quality clustering.  In 

contrast to popular clustering approaches, HMM considers the temporal association of gene 

expression measurements[41]. Orthogonal polynomials and splines may also help explaining 

the non-linear variations over time[36].  

In the hypothesis testing category, there has been a rapid advance in developing the methods 

for identification of the genes differentially expressed over time in association with a biological 

condition. A review by Ruan and Yuan[37] classified these methods into three groups 

corresponding to “static experiments methodology”, “smoothing methods” or “time-series 

analysis approaches”. As an example, an extension of ANOVA for testing the differential 

expression over time was developed and took advantage of permutation method for tackling the 

deviation of independent observation assumption[42]. This method suffers from low sensitivity 

due to treating the time variable as a qualitative variable and therefore disregarding the 

temporal order of measurements.   In the second group, there are various methods proposed 

based on linear combinations of B-spline basis function which help compare the temporal 

patterns of gene expression among different classes of subjects[43]. A method developed by 

Bar-Joseph et al.[44] calculated the difference between two times series related to two 

biological conditions, previously smoothed by B-splines. This method fails to detect the 

similarity of the curves in case one curve is a noisy realisation of the other one.   This method 

was also criticized for improper handling of short time-course data[38]. Storey et al. estimated 

the spline curves under the null and alternative hypotheses and defined an F-test to compare 

their goodness of fit [45]. In the third category, gene expressions are analyzed as outputs of 

autoregressive process [46].   
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Besides the categories defined by the review of Ruan and Yuan[37], the regression-based 

approaches may constitute a separate category. The two-step method of maSigPro[47] fits each 

gene separately against the experimental group and time variables and identifies the significant 

genes at the first step. This procedure is followed by a stepwise selection for finding the 

condition for which significant genes are expressing differentially. In a recently-proposed 

method [48], the linear mixed models were fitted under null and alternative hypotheses and LR 

test was employed to compare them.   

The methods developed for temporal pattern discovery of the genes may also be applicable 

for hypothesis testing after some modification. Researchers utilized PCA to compare the 

fundamental patterns between two or multiple biological conditions[49,50]. Likewise, Hidden 

Markov Models helped detecting the genes with differential expressions. Assuming that the 

expression profile of each gene can be described by a Markov Chain, the most likely 

configuration of the states can be estimated by EM algorithm. These gene-specific probabilities 

are then compared to find the differential expressions[51].  

As described above, most existing methods analyze binary or categorical biological 

conditions. Hence, there is a need for development of a method to detect differentially 

expressed genes over time in association with a continuous biological condition. LLCT, which 

is primarily developed to analyze longitudinal phenotypes, is generalized to address this 

analytical gap in chapter 3. LLCT is derived from LLC which was developed for static 

experiments and thus classified into the first group reviewed by Ruan and Yuan[37]. 
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1.7 Application on Microbiome 

Outside the genomics, there are many other scientific fields which can benefit from advances 

in high-throughput analytical tools. Microbiome, which carries distinct DNA signatures, is 

sequenced via high-throughput technology and is measured in huge number and diversity. This 

is one of the potential areas of application for the methods reviewed in this section. Human 

microbiome is characterised by Operational Taxonomic Units (OTU) which are nearly identical 

16S rRNA-tagged sequences. OTUs, like genes, can be clustered to different taxonomic classes, 

based on their shared characteristics. The effect of human microbiome, specifically gut 

microbiota, on development of a variety of diseases is under active investigation. The temporal 

pattern of gut microbiota acquisition, which starts at birth, is introduced as a possible risk 

factor, and should be studied longitudinally. The application of novel time-course microarray 

analysis methods, such as LLCT, may benefit microbiota studies.  
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Chapter 2 

Association between Bivariate Expression of Key Oncogenes and 

the Metabolic Phenotypes of Patients with Prostate Cancer  

 

2.1 Abstract 

Background: AKT and MYC are two of the most prevalent oncogenes associated with 

prostate cancer. The precise effects of these two key oncogenes' overexpression on the 

regulation of metabolic pathways in Prostate Cancer are under active investigation.  However, 

few studies have looked into the joint effects on the Prostate Cancer patients' metabolic 

phenotypes in terms of their bivariate oncogene-pair expressions. This is primarily due to the 

lack of a suitable statistical method to analyse the data in the presence of the interaction 

between oncogenes and within-metabolite set correlation. 

Methods: We analysed data on the expressions of phosphorylated AKT1 and MYC and 

concentrations of 228 metabolites from 60 human prostate tumor samples and 16 normal tissue 

samples.  The metabolomics data allowed us to study not only the measurement of individual 

metabolites, which can exhibit a dynamic range, but the enriched phenotypes in terms of 

"metabolite sets" that come from known metabolic pathways. We studied 71 metabolite sets 

defined by KEGG annotation. We used generalized Linear Combination Test (LCT) for 

multiple continuous outcomes to find associations between metabolite sets and oncogenic 

expressions, after accounting for the correlation between AKT1 and MYC expressions and 
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correlation between the metabolites in a metabolite set. LCT performance was evaluated using a 

simulation study. 

Results: Through a comprehensive analytical method, our study linked onco-genomics and 

metabolomics data from the patients, to gain better understanding of the inter-connected 

mechanisms underlying prostate cancer. This study showed that dysregulations of AKT1 and 

MYC significantly alter the metabolic pathways activated by non-glucose nutrient sources and 

their downstream.  Our findings highlighted the role of MYC as the leading, but not the only, 

oncogene in prostate oncogenesis.  In our simulation study, LCT performed better than the 

known alternative method, Gene-Set Enrichment Analysis (GSEA). 

Conclusions: Overall, our study offers a solution for linking genomics and metabolomics, 

working directly with multiple continuous and correlated measurements. 

 

2.2 Background 

Prostate cancer (PCa) remains a leading cause of death in men [52], accounting for 6.6% 

(307,000 deaths) of male deaths and 14.8% (1.1 million cases) of male cancer incidence 

worldwide in 2012 [53].  The prostate cancer incidence rate increases by age and the risk of 

death caused by prostate cancer is higher in less developed countries and the highest in 

predominantly black population [54,55]. There is a high demand for biomarkers to detect 

prostate cancer in early stages[56]. The use of Prostate-Specific Antigen (PSA) as a prostate 

cancer biomarker has been criticized for low sensitivity and specificity[57–60]. Early diagnosis 

of prostate cancer is critical because prostate cancer is prevalently asymptomatic, unless it is in 

an advanced stage, and a proper therapy cannot be successfully administered unless the disease 
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is at an early stage (early detection increases the 5-year survival rate from 1% to about 50%) 

[61,62]. 

Encouraged by the recent advances in metabolomics technologies and motivated by findings 

that cancer alters cellular metabolism [63], metabolomics, which is the study of chemical 

processes involving metabolites, begins to serve a critical role in better understanding the 

complex nature of cancers [64,65]. Over the last few years, there has been an increasing number 

of publications aiming to introduce metabolomics as a means for early detection of cancer, 

determination of the cancer progression, identification of surrogate biomarkers for screening 

prostate cancer [66–69] and, more importantly, targets for therapeutic and preventive 

interventions [70–76].  

Compared to other “omes”, metabolome analysis can reveal ideal biomarkers. Metabolites 

are known to be a sensitive indicator of any alteration in a biochemical system, as they are the 

downstream of any changes in genes, transcripts and proteins [67,77] . As metabolomics 

profiling becomes cost and time efficient, high throughput and fully automated [68,70], 

discoveries about the metabolites’ role in cancer screening, detection, progression, therapy or 

prevention can significantly impact the clinical health practices. While the upstream gene or 

gene products may vary across different species, the corresponding downstream metabolites are 

more comparable and also robust to analytical approaches [77].  Furthermore, metabolomics 

data benefit from lower dimensionality in statistical analysis, as they are measured in fewer 

number than genes or proteins. However, the fact that the biochemical reactions within a cell 

are not independent and could be linked via metabolic pathways imposes complexity into the 

analysis of metabolite data. The way we should analytically address this challenge will be 

discussed later in this section. 
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Over the past decade, there has been a growing number of studies looking at metabolite 

profiling of prostate cancer [78–80], although the search for ideal biomarkers is yet unresolved. 

This has led researchers to adopt more approaches such as investigating metabolic markers of 

PCa in oncogene-specific contexts [81]. Future direction of metabolomics research tends to 

involve integration of other omics data, say, expressions of oncogenes and oncoproteins, to 

create a molecular-level understanding of the context for the development of a metabolic 

phenotype of a prostate tumor [67,82].  

As upstream regulators of metabolites, there are multiple genetic and epigenetic alterations 

in tumor cells required to activate the growth factor receptors and signal protein, kinases and 

transcription factors. Among these genetic alterations is the loss of Phosphatase and Tensin 

Homolog(PTEN) and subsequent activation of Phosphoinositide 3-Kinase (PI3K/AKT), the 

pathway controlling cell growth, migration, differentiation and survival; and among the earliest 

alterations is proto-gene MYC overexpression that codes the transcription factor. Amplification 

of MYC was detected in about 75% of the advanced prostate cancers [83]. In a study conducted 

by Clegg et al. [84], the possibility that these two oncogenes may cooperate in prostate 

tumorigenesis was evaluated and a significant association was observed. 

In the present study, our goal is to investigate the association between bivariate expression of 

the oncogene-pair (MYC and AKT1) and metabolite sets that are enriched in prostate tumors in 

patients. Significant associations can provide insights about the potential of oncogenic 

classification of PCa patients based on the observed tumor metabolic phenotypes. This 

hypothesis was previously tested in the study of Priolo et al., which was among the first 

attempts to explore this particular oncogene-pair associated metabolomics in PCa.  The current 

study aims to introduce a more reliable analytical tool to examine this hypothesis.  
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 The widely-used approach for analysis of metabolite sets,  also employed by Priolo et al., is 

Gene Set Enrichment Analysis (GSEA) [16] where metabolites involved in the same pathway 

are ranked and compared with the metabolites outside the pathway. The over-representation of 

a pathway at the extremes of the ranked list determines the significance of the pathway. GSEA 

suffers from ignoring the correlation structure within-metabolite-sets, which may result in 

overstating the statistical significance[24]. Also, the competitive methods are subjective as their 

result varies according to the researcher’s decision about the list of metabolite sets under study. 

Figure 2.1.a. illustrates GSEA and highlights its subjectivity and inability to accommodate 

within-pathway correlations. The other challenging feature of this data is to analyze the 

simultaneous effects of two oncogenes with continuous measures of expressions considering 

that they may interact. Since a method, like GSEA, is limited to comparing the effects of two 

(or more) variables, a frequent practice, as employed in Priolo et al.[81], is to classify the 

subjects according to their combined states and determine the metabolite signature in each 

subgroup separately. More specifically, Priolo et al.[81] handled the bivariate oncogenes 

outcome by using clustering algorithm to categorize the data into four groups: low AKT1 and 

low MYC, low AKT1 and high MYC, high AKT1 and low MYC, high AKT1 and high MYC. 

Then they ran separate GSEA analyses to identify metabolite sets different among paired 

groups.  Exclusion of data that does not classify well into discrete categories is the main 

drawback of this method. This can be avoided by taking a modeling approach to examine the 

linear combination of the continuous measurements. As illustrated in Figure 2.1.b, our analysis 

enables the oncogenes to suppress or complement each other’s effects.  We reason that an 

alternative method such as generalized Linear Combination Test (LCT) improves our 



18 

 

understanding of the associations between metabolite sets and multiple oncogene expressions. 

This method is described in detail in the next section. 

A. 

 

B. 

 



19 

 

Figure 2.1 An illustration of scenarios derived from real data where LCT can improve analysis of 

metabolites and oncogenes associations.  

A. According to GSEA analysis, metabolite set #1 is significant in the presence of metabolite set #2, 

while it is not significant in the presence of metabolite set #3. Assuming that M4 and M5 have a 

complementary effect, GSEA failed to detect this significant complementary effect. Another important 

limitation is that oncogenes expression values must be categorized and combined into a univariate value 

to comply with GSEA method. B. In contrast, LCT can handle multiple continuous oncogenes 

expression values: metabolite set #1 is significant and the result of LCT remains unchanged in the 

presence of other metabolite sets screened in the study. The complementary effect of M4 and M5 has 

been detected by LCT.  

 

2.3 Methods 

 2.3.1 Collecting Data 

The radical prostatectomy samples were obtained from fresh frozen tissues stored by 

Institutional Tissue Repository of Dana-Farber Cancer Institute/ Brigham and Women’s 

Hospital (60 tumors and 16 normal). The non-metastatic tumor tissues with more than 80% 

purity were cut to two or three 8-𝜇m sections. Deoxyribonucleic Acid (DNA), Ribonucleic 

Acid (RNA), protein and metabolite were isolated from these tissues. Phosphorylated AKT1 

and MYC expressions of tumor cells were detected by immunoblotting. A detailed description 

of data collecting methods is given in Priolo et al. [81]. 
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2.3.2 Statistical Method 

Many methods have been developed and introduced to analyze microarray data. These 

methods have been widely borrowed to analyze metabolite datasets. An example is a web-based 

tool called Metabolite Sets Enrichment Analysis (MSEA) which uses the “global test”, a gene 

set analysis (GSA) method for identifying the changing pattern of metabolite sets in a 

biologically meaningful context. Using the same strategy, we employed LCT, a method 

primarily defined for gene sets, to analyze the metabolite set data. LCT has many attractive 

features that will be described later. 

In early microarray data analysis, the differentially expressed genes were identified using 

statistical methods such as t-test, principle components analysis and discrimination analysis. 

Then, the most significant genes were selected based on a predefined threshold and inspected 

for biological patterns. However, biological interpretation of the results was sensitive to the 

choice of the threshold, and this subjectivity became an important concern in analysis of 

individual gene sets. In order to overcome this problem, Gene Set Analysis (GSA) uses existing 

biological knowledge of genes and their pathways and tests pre-defined gene sets, instead of 

individual genes. For the same reason, we borrowed a GSA method to analyze the metabolite 

data. After grouping metabolite data based on the biological pathways they activate, the method 

we used takes into account the correlations within each metabolite set. Liu et al.[85] performed 

simulation studies and showed how other GSA methods treating the members of the set as 

independent measurements exhibit larger type II errors, and therefore smaller power.  

While many GSA methods are designed for binary outcomes, such as cancer or control, 

LCT[86] is designed to work with continuous outcomes, and therefore allows us to look at an 

intermediate continuous phenotype, such as the oncogenes expressions.    
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LCT tests whether there is a significant linear relationship between the metabolite set 

𝑋 = {𝑥1, … , 𝑥𝑝} consisting of p metabolites and the two oncogenes expressions = {𝑌𝑀𝑦𝑐 , 𝑌𝐴𝑘𝑡} . 

The multivariate null hypothesis can be expressed linearly and univariately as 

H0 : There is no association between any of the linear combinations of  metabolites in a set 

and any  linear combinations of oncogenes. 

If 𝑍(𝑋, 𝐴) is a linear combination of metabolites within a metabolite set 𝑥𝑖s with coefficient 

vector of 𝐴 and 𝑍(𝑌,𝐵) is a linear combination of oncogenes expressions 𝑦𝑖s with coefficient 

vector of 𝐵, then we calculated the following statistic to test the null hypothesis: 

𝑇2 = 𝑚𝑎𝑥|𝜌((𝑍(𝑋, 𝐴), 𝑍(𝑌, 𝐵))2|     (2.1) 

In this method, the coefficient vectors 𝐴 and 𝐵 are estimated in a way that maximizes the 

Pearson correlation between  𝑍(𝑋, 𝐴) and 𝑍(𝑌,𝐵).  𝑇2can also be rewritten as: 

𝑇2 = 𝑚𝑎𝑥
(𝐴𝑇𝐶𝑜𝑣(𝑋,𝑌)𝐵)2

(𝐴𝑇𝐶𝑜𝑣(𝑋,𝑋)𝐴).(𝐵𝑇𝐶𝑜𝑣(𝑌,𝑌)𝐵)
= max

(𝐴𝑇Σ𝑋𝑌𝐵)2

(𝐴𝑇Σ𝑋𝑋𝐴) .(𝐵𝑇Σ𝑌𝑌𝐵)
       

(2.2) 

In the procedure of estimation of coefficient vectors, two problems arise: singularity caused 

by the high dimensionality of data (solved by shrinkage methods) and computational efficiency 

(solved by eigenvalue decomposition). Then, the p-value is calculated using sample 

permutations. Sample permutation method preserves the correlation structure within-

metabolite-set and the correlation structure within oncogenes expressions[86]. 

We analyzed the data of this study using R 3.2.1 and calculated p-values based on 10,000 

permutations. 
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2.3.3 Simulation Study Design 

A simulation study was designed to evaluate the performance of LCT and compare it with 

GSEA to test for enrichment of different metabolite sets using the expression of a gene as a 

continuous phenotype. We varied correlation structures among the metabolite sets, metabolite 

set sizes, number of metabolite sets, sample sizes, proportions of significant metabolites within-

metabolite-set and proportions of significant metabolite sets.  

Metabolites were simulated for N (N=10, 20, 30) metabolite sets of sizes n (n=10, 20, 30) 

from a multivariate normal distribution with mean of 1.1 and correlation matrix of R.  The 

correlation matrix was designed to maintain the within-metabolite-set correlation of ρ=0.5 and 

the correlation of r=0, 0.1 or 0.2 between all pairs of metabolite sets. The simulated continuous 

phenotype, gene expression here, satisfied the correlation of at least 0.6 with p×100% (p=0.2, 

0.4, 0.6, 0.8) of the n metabolites belonging to P×100% (P=0.2, 0.4, 0.6, 0.8) of the metabolite 

sets. We used a correlation of less than 0.2 with the remaining metabolites. We performed k-

means clustering method to cluster the continuous phenotype into two groups before running 

GSEA since GSEA uses discrete phenotype classes.  A significant metabolite set was detected 

by a p-value smaller than 0.05 and a False Discovery Rate (FDR) adjusted p-value (q-value) 

smaller than 0.3, calculated by GSEA or LCT methods. The simulation was designed and 

executed in R.3.2.1. The power was calculated based on 100 iterations. 
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2.4 Results 

2.4.1 Application 

We employed the LCT method to test 71 nominated metabolite sets (KEGG annotation - 

Dataset S1). We first evaluated if metabolite sets predict both oncogenes alterations at the same 

time and then assessed if they predict any of them independently. We then included the 

interaction of the oncogenes in the model of both oncogenes to examine the possible 

multiplicative effect. We repeated the analysis for the normal sample. The full results related to 

tumor and normal samples are shown in Appendices 1 and 2, respectively. A comparison of the 

analysis results of tumor and normal samples was summarized in Table 2.1.  We restricted the 

size of the sets to two or more metabolites. 

Table 2.1 showed the metabolite sets significantly associated with AKT1 and MYC in tumor 

samples: fructose and mannose metabolism (p-value=0.02; q-value=0.35), purine (p-

value=0.01; q-value=0.29) and pyrimidine metabolism (p-value<0.01; q-value=0.23). When the 

model considered the multiplicative effect of MYC and AKT1, in addition to all those pathways 

mentioned above, D-Glutamine and D-glutamate metabolism (p-value=0.01; q-value=0.31), 

fatty acid biosynthesis (p-value=0.01; q-value=0.31) and nitrogen metabolism (p-value=0.037; 

q-value=0.36) emerged as significant pathways. The contributions of oncogenes were described 

by estimating the coefficients presented in the last column. Based on the estimated coefficients, 

the metabolite set indicated alterations of oncogenes in similar or opposite directions. We note 

that the corresponding univariate level associations did not reach the significance level of 5% 

for most of the significant associations at the multivariate level in the tumor samples. This 

observation highlighted the advantage of the multivariate LCT method over the univariate 

analysis, and it was consistent to previous applications of LCT to other datasets [86]. 
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Comparison of the results of tumor and cancer cells was quite revealing in several 

ways.  First, none of the significant metabolite pathways in cancer samples was significant for 

the normal samples. In the analysis of tumor samples, we found no metabolite sets significantly 

associated with AKT1 alterations alone. In normal samples, the joint and separated effects of 

the oncogenes appeared insignificant in association with all the metabolite sets as the q-values 

were very high.  

Hierarchical clustering was used to describe the difference between the signature of 

significant and insignificant metabolite pathways among tumor and normal subjects. The 

subjects were first clustered by their similar metabolite set signature and then the distribution of 

clusters for different values of oncogene expressions was examined. Figure 2.2 revealed the 

association between the metabolite signature and PCa. As shown in dendrograms, most of the 

normal subjects belong to the same cluster of significant metabolite signature. It also showed 

the association between oncogene expressions and PCa as almost all the normal subjects were 

scattered around the low values of MYC. As an evidence for the association between oncogene 

expressions and metabolite clusters, different significant-metabolite-driven clusters were not 

uniformly scattered over all the expression values. While some of them concentrated in AKT1-

low area, some others appeared more frequently in MYC-low area. However, Figure 2.2-C, 

based on an insignificant metabolite set, illustrated a uniform distribution of different clusters 

over vertical and horizontal axes, indicating the lack of association between metabolite set and 

oncogenes expressions. Appendix A- Figure 1 provided the graphs related to other significant 

metabolite sets: nitrogen metabolism, fatty acid biosynthesis, D-glutamate metabolism, purine 

metabolism. 
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Table 2.1 The comparison of normal and cancer cells about the association between oncogenes (bivariate or univariate MYC and AKT1) and different 

metabolite sets. The data is analyzed using LCT.  

Metabolite Set† 

Size of 

Metabolite 

Set 

Type 

of Cell 

p-value 

for 

(MYC, 

AKT1) 

q-value 

for 

(MYC, 

AKT1) 

P-value 

for (MYC, 

AKT1) 

Interaction 

q-value 

for (MYC, 

AKT1) 

Interaction 

p-value 

for MYC 

only 

q-value 

for 

MYC 

only 

p-value 

for 

AKT1 

only 

q-value 

for 

AKT1 

only 

D-Glutamine and D-glutamate 

metabolism 
3 

Cancer 0.035* 0.472 0.01* 0.309** 0.070 0.799 0.619 0.887 

Normal 0.286 0.979 0.255 0.964 0.467 0.911 0.283 0.988 

           

Fatty acid biosynthesis 5 
Cancer 0.043* 0.472 0.014* 0.309** 0.062 0.799 0.462 0.887 

Normal 0.601 0.979 0.540 0.964 0.585 0.911 0.662 0.988 

           

Fructose and mannose metabolism 6 
Cancer 0.018* 0.348** 0.022* 0.319** 0.125 0.799 0.404 0.887 

Normal 0.421 0.979 0.481 0.964 0.769 0.911 0.238 0.988 

           

Nitrogen metabolism 5 
Cancer 0.057 0.472 0.037* 0.358 0.115 0.799 0.585 0.887 

Normal 0.320 0.979 0.246 0.964 0.510 0.911 0.214 0.988 

           

Purine metabolism 18 
Cancer 0.01* 0.29** 0.03* 0.348** 0.021* 0.799 0.929 0.945 

Normal 0.629 0.979 0.649 0.964 0.862 0.943 0.361 0.988 

           

Pyrimidine metabolism 12 
Cancer 0.004* 0.232** 0.016* 0.309** 0.837 0.885 0.780 0.887 

Normal 0.815 0.979 0.707 0.964 0.693 0.911 0.760 0.988 

† The metabolite sets significantly associated with oncogenes in tumor samples are listed here. Appendix A Tables 1 and 2 include the 

full analysis result for all metabolite sets.  

*Associations significant at p-value<0.05. 

**Associations significant at q-value<0.35.
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A. Fructose and mannose metabolism  

 

B. Pyrimidine metabolism  

 

C. Alanine, aspartate and glutamate metabolism 



27 

 

 

Figure 2.2 Cluster analysis of subjects based on significant (A and B), and insignificant (C) metabolite 

sets signatures: dendrogram of subjects clustered based on their metabolite set signature, and scatterplots 

of AKT1 vs. MYC with cluster-specified observations. 

 

2.4.2 Simulation 

 The results of simulation study were shown in Figure 2.3. A general observation was LCT 

outperformed GSEA for various data structures. LCT power was always well above 80%, while 

GSEA power hardly reached values above 60%. Referring to Figure 2.3.A, metabolite set size 

had a substantial effect on the performance of GSEA, but not on LCT. A similar finding was 

reported in the simulation study of Dinu et al. [25]. Figure 2.3.B showed the consistent 

performance of both methods in handling different number of metabolite sets. Power was 

improved by enrolling larger number of subjects into the study (Figure 2.3.C). A powerful 

GSEA required significantly larger sample size in comparison with LCT analysis. Figure 2.3.D 

depicted the insufficiency of GSEA when the metabolite sets were not independent. In the 

presence of very low between metabolite set correlations (0.1 and 0.2), the power of GSEA 

declined sharply by about 30%. The performance of LCT did not vary with different correlation 
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structure of metabolite sets. GSEA failed to detect the significant metabolite sets properly when 

they were prevalent in the data (Figure 2.3.E). The metabolite sets consisting of higher 

proportion of metabolites with moderate to strong correlations with the phenotype were more 

likely to be detected by both LCT and GSEA methods (Figure 2.3.F). 

 

Figure 2.3 Power comparison between GSEA and LCT analyses in the presence of different metabolite 

set sizes  

 

 

Figure 2.4 Power comparison between GSEA and LCT analyses in the presence of different number of 

metabolite sets  
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Figure 2.5 Power comparison between GSEA and LCT analyses in the presence of different sample size  

 

 

Figure 2.6 Power comparison between GSEA and LCT analyses in the presence of different between-

metabolite-set correlation  
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Figure 2.7 Power comparison between GSEA and LCT analyses in the presence of proportion of 

metabolite sets consisting significant metabolites (significant metabolite sets) 

 

 

Figure 2.8 Power comparison between GSEA and LCT analyses in the presence of proportion of the 

metabolites with moderate to strong association with phenotype within significant metabolite sets  
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2.5 Discussion 

More than half a century passed since Otto Warburg's theory of cancer cells was proposed. 

However, the characterization of metabolic alterations in tumors is still under investigation, and 

the involvement of pathways beyond glycolysis is being studied.  Many recent studies 

supported the significant role of metabolite discoveries in the future direction of cancer research 

[74]. While many such studies have focused primarily on the differential concentrations of 

specific metabolites, the contexts of such alterations have rarely been associated with oncogenic 

expressions, much less by bivariate oncogene-pair expressions. The complex structure of the 

data collected to investigate this hypothesis calls for utilization of advanced statistical methods 

which account for the correlation within-metabolite-set, interaction of oncogenes and 

continuous nature of the measurements. Our simulation study and real application showed that 

GSEA, one of the most popular methods for gene set analyses, may not be the best choice to 

handle complex data structure. We note that GSEA findings vary with the size of the pathway,  

even if the same level of linkage between the omics is maintained[87]. This observation can be 

explained by GSEA assigning higher enrichment scores to larger sets[25]. GSEA assigns 

significance to a set, in the context of other sets tested[87]. Therefore, researchers may come up 

with different findings regarding the same set, if they consider testing different collections of 

metabolite sets. In this simulation study, we focused on analysis of a single gene expression and 

LCT is expected to perform even better with multiple phenotypes because GSEA requires 

combined dichotomizing of multiple phenotypes and therefore, lose more information. The 

clustering of multiple phenotypes, in contrast, may lead to larger loss of information, and lower 

power of GSEA. 
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Our study takes advantage of the relatively new statistical method (LCT) by testing the 

association between alterations in the metabolite sets and those in oncogenes AKT1 and MYC 

in human prostate tumor samples. Although the excess use of glucose is well regarded as a 

hallmark of cancer cells, other metabolic pathways may also be affected by the myriad 

oncogenic processes. Glutamine metabolism is one of the most important dysregulated 

pathways during oncogenesis [88] and we found it significantly altered in prostate tumors. This 

pathway dysregulation is known to be MYC-induced as MYC contributes in glutaminolysis by 

regulating glutaminase and was frequently observed to be overexpressed in tumors [89]. 

The other altered pathway is nucleotide synthesis pathway. Glutamine, which supplies 

carbon and nitrogen for proliferative active cells, acts as a source of nitrogen [88] and catalysts 

(e.g. thymidylate synthesis and inosine synthesis [90] for nucleotide synthesis, specifically 

purines and pyrimidines. Our findings suggested significant alterations in nitrogen, purine and 

pyrimidine metabolism in prostate cancer, believed to relate to upregulation of MYC for up 

taking of glutamine.  

Fatty acid synthesis pathway was also found to be significant in our analysis. The cancer 

cells synthesize glucose and glutamine for de novo fatty acid synthesis in order to meet their 

energy needs, survive longer and increase proliferation.  Elevated level of multi-enzyme 

complex fatty acid synthesis and overexpression of many enzymes of fatty acid synthesis, such 

as acetyl-CoA carboxylase and ATP citrate lyase, are common events during oncogenesis, 

whose inhibition leads to tumor cell apoptosis[72]. Several attempts have been made to 

investigate the association between altered fatty acid biosynthesis pathway and AKT and MYC 

dysregulation. Although some studies highlighted the link between high levels of MYC and 
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increased fatty acid synthesis [91–93], there are some others who believe that PI3K-AKT 

signaling pathway controls this alteration [94]. 

While AKT regulates the glycolysis pathway and has no control over glutamine metabolism 

[95], MYC is able to switch to non-glucose nutrient source like glutamine and fatty acids [96]. 

These previous knowledges along with our observation about significant glutamine, fatty acid 

and mannose and fructose pathways underline the leading role of MYC in prostate cancer. This 

critical effect is also shown in Figure 2.2, where all the normal subjects have low levels of 

MYC expression. This finding may explain the inefficiency of mTOR inhibitors in treatment of 

prostate cancer [97]. Priolo et al. also linked the dysregulation of downstream of glutamine and 

lipid metabolism to MYC overexpression.  

In order to collect more evidence supporting our hypothesis that MYC is the master 

oncogene, we tested MYC and AKT1 as the sole oncogene altering the metabolite pathway. 

Although we found no pathway significantly altered by their separated effects, we noted an 

overall tendency of MYC p-values to be smaller than AKT1 p-values in the tumor samples 

wherever the association of pathway and multivariate outcome (MYC, AKT1) is significant. 

These findings are supporting our hypothesis that although MYC drives the mitochondrial 

function of the cells, its dysregulation may not be sufficient to complete a metabolite pathway 

alteration. This is where the main effect of AKT1, or moreover the interaction between AKT1 

and MYC should be taken into account. 

Several studies suggest that MYC and PI3K-AKT pathways indirectly interact [97,98]. If we 

accept that MYC is the leading, but not necessarily the only oncogene involved in developing 

prostate cancer, there could be two possible explanations of AKT action - either disjointly, e.g., 
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activated AKT guarantees survival of the tumor cell [99], or interactively, e.g., activated AKT 

inhibits the antagonistic effect of FOXO on MYC through phosphorylation [98,100,101].  

Consistently, many recent studies suggested different mechanisms for the inhibition of Myc-

related apoptosis by upregulation of AKT[102–104]. The second scenario is more likely based 

on our observation, as our model showed a significant interaction between the oncoproteins in 

tumor cells.  

Notably, we found that MYC and AKT1 did not appear to interact in a normal cell. This 

finding was in contrast with our observation in the tumor samples that the significantly enriched 

metabolic pathways were associated with oncogene-pair interactions.  

Our findings confirmed the presence of complex structure in the data and highlighted the 

necessity of utilizing an appropriate analytical method. Failure to take care of the correlated 

effects of multiple oncogenes as continuous measurement, may prevent us from revealing the 

underlying mechanisms of metabolic programming. 

 Despite the strengths of LCT in analysis of system biology data, there are few limitations 

that should be discussed. Firstly, not all the metabolites within a significant metabolite set are 

significantly associated with the expression phenotype. Identification of the “core metabolite 

set” which may contribute to the significance of the whole set can help biologists develop novel 

preventive or therapeutic strategies targeting the core. The SAM-GSR method proposed by 

Vatanpour et al.[105] can be applied to reduce the metabolite sets to their cores. LCT, a self-

contained method, assumes independence of the metabolite sets, an assumption not always 

valid. This weakness of self-contained methods needs to be addressed by future studies. 
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2.6 Conclusions 

The present study aims to take advantage of compelling analytical methods to obtain a better 

understanding of the molecular and biochemical alterations in prostate tumors by connecting 

data from genomics and metabolomics. Using LCT method, we uncovered the role of MYC as 

the leading, but not the only oncogene associated with human prostate cancer metabolic 

phenotypes. In particular, we showed how the multiplicative (interaction) effect of MYC and 

(phosphorylated) AKT1 expressions determines the context for differential metabolite sets in 

prostate tumors, but not the healthy samples.  

Our analytical approach can be applied to studies of other complex diseases where such 

contextual distinction among multivariate and correlated phenotypes would be useful.  

 

2.7 Summary 

The analysis of the multivariate effects of gene expressions on metabolite phenotypes is 

challenging due to the presence of high-dimensional continuous datasets, within-metabolite-set 

correlations and the possible interactions between the genes. The present study suggests an 

analytical solution for linking genomics and metabolomics. The association between bivariate 

expressions of AKT1 and MYC and metabolite signature of the prostate cancer patients was 

examined. MYC and significantly-altered metabolite sets were found to play an important role 

in the development of prostate cancer. 

  



36 

 

Chapter 3 

Longitudinal Linear Combination Test for Gene set Analysis  

 

3.1 Abstract  

Background: Although microarray studies have greatly contributed in the recent genetic 

advances, lack of replication has always been a continuing concern in this area. The complex 

study designs have good potential to address this concern. However, they appeared to be 

unwelcomed by genetic investigators due to lack of proper analysis method. A primary 

challenge of analysis of complex microarray study data is handling the correlation structure 

within data, while dealing with a large number of genetic measurements and a small number of 

subjects. Motivated by the lack of available methods for analysis of repeatedly measured 

phenotypic or genomic data, we developed longitudinal linear combination test (LLCT).  

Results: LLCT is a two-step method to analyze multiple longitudinal phenotypes when there 

is high dimensionality in response and/or explanatory variables. Dealing with within-subjects 

and between-subjects variations in two steps, LLCT examines if the maximum possible 

correlation between a linear combination of the time trends and a linear combination of the 

predictors given by the gene expressions is statistically significant. A generalization of this 

method can handle family-based study designs when the subjects are not independent. This 

method is also applicable to time-course microarray and identifies gene sets with significantly 

different expression patterns over time. Based on the results from a simulation study, LLCT 
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outperformed its alternative, the pathway analysis via regression method. LLCT was shown to 

be very powerful in analysis of large gene sets with low heterogeneity.   

Conclusions: This method offers many interesting flexibilities to the analysis. This self-

contained pathway analysis method is applicable to a wide range of longitudinal omics data, 

allows adjusting for potentially time-dependent covariates and works well with unbalanced and 

incomplete data.  An important application of this method can be time-course linkage of omics, 

an attractive perspective of future genetics. 

 

3.2 Introduction 

Longitudinal designs are fast becoming a key instrument in genetics studies as they advance 

understanding of disease progression and underlying biological mechanism. Longitudinal 

studies provide information about age of onset and time-varying covariates that helps 

investigate a complex disease more precisely. A primary concern of these study designs is to 

find a proper analysis method which deals best with the correlation structure imposed by 

longitudinal data. Within-subject correlation cannot be addressed by traditional statistical 

analysis methods.  

In recent years, there has been an increasing interest in microarray studies which has 

triggered rapid advances in microarray data analysis methods. From 2001, a considerable 

amount of literature has been published on methods of Individual Gene Analysis (IGA)[106] 

and Gene Set Analysis(GSA)[107–110]. Majority of these studies have proposed enrichment 

methods for binary and categorical phenotypes. Little attention has been paid on developing the 
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methods for other phenotypes, especially longitudinal. The current thesis contributes to fill this 

gap by proposing longitudinal linear combination test (LLCT).  

A frequent practice to deal with longitudinal phenotypes in genetics studies is to simply 

average the multiple measurements. With this approach, the temporal variation of the 

phenotype is discarded and part of the information  is lost[111]. To the best of our knowledge, 

the only GSA method developed to analyze longitudinal phenotype is the Pathway Analysis via 

Regression (PAVR) method proposed by Adewale et al. [29]. This method utilizes regression 

modelling to analyze binary, multi-class, continuous, count, rate, survival and longitudinal data 

and adjusts the results for potential covariates. In this method, the measure of association of a 

specific gene set with the phenotype is a sum of squares of Wald statistics from regression 

models fitted on the phenotype against the individual genes in the pathway of interest. We will 

compare this method with LLCT and discuss its limitations later in this thesis. 

Our goal is to develop a statistical method which not only tackles the limitations of available 

methods but addresses challenges of complex designs in recent microarray studies. The main 

function of this method is to recognize differentially expressed gene sets associated with a 

phenotype trajectory over time. It is also applicable to family-based study designs when the 

subjects are not independent. A generalization of this method can handle time-course 

microarray studies and identifies gene sets with significantly different expression patterns over 

time.  

Longitudinal microarray studies do not only consider the trajectories of phenotypes, but gene 

expression trajectories may also be the concern of many genetic studies. In time-course 

microarray studies, arrays are collected repeatedly over time, allowing one to examine the 
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dynamic behavior of gene expressions. GSA methods for time-course gene expressions 

received more attention than GSA methods for repeated measurements of phenotypes.   These 

methods are exploratory in nature by clustering genes to co-expressed groups[47]. However, 

this development was not sufficient to address biologists’ concerns about the association of 

gene expressions trajectories with one or more specific covariate(s).  Many procedures have 

been proposed for time-course microarray experiments, to test if specific genes exhibit different 

expression profiles significantly associated with covariates. ANOVA-based methods [112,113] 

and regression-based approaches are very popular in this field. Linear Mixed Models (LMM) or 

Generalized Estimating Equations (GEE) are more mature statistical models accommodating 

the correlations between repeated measurements. However, they are not directly applicable, as 

the time-course expression data is often collected for a large number of genes, but only for few 

subjects. To deal with the high dimensionality of the data, Turner et al.[114] modeled the genes 

separately and then rescaled the data using Variance Inflation Factor (VIF) estimates to 

accommodate the correlation between the genes within gene sets. LMMs were also used in the 

methods developed by Hejblum et al. [48], Zhang et al.[115], and Conesa et al. (maSigPro 

method)[47], but they only work with categorical predictor variables. Our proposed method, 

LLCT can handle both categorical and continuous predictors.  

Family-based data is another type of complex designs in microarray studies. Family-based 

study designs are advantageous compared to studies of unrelated subjects in terms of lower 

genomic or phenotypic heterogeneity. Also, we are more likely to detect any significant effect 

when we observe multiple copies of the significant effects in a family [116]. Over about the 

past 35 years, study designs incorporating information from related subjects have resulted in 

better scientific interpretations[117]. 
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LLCT is a GSA method. Incorporating information about the group of genes which are 

linked via biological pathways, LLCT aims to discover gene sets associated with the phenotype 

trajectories. These biological pathway, or a-priori defined gene sets are archived in online 

databases, available for download: The Cancer Genome Atlas (TCGA) [17], Gene Expression 

Omnibus (GEO) [18], Keyoto Encyclopedia of Genes and Genomes (KEGG)[19], 

BioCarta[19], Molecular Signature Database of the Broad Institute[20] . Although imposing 

additional complexity into the analysis, this feature of LLCT is biologically very appealing. In 

contrast to IGA, GSA works based on a biologically realistic assumption that the genes are not 

independent and a cell’s function can be accomplished by differential expression of a group of 

genes, even if all of them show only weak to moderate changes [118]. 

LLCT is a self-contained method. Reviews on GSA have attempted to draw distinction 

between self-contained and competitive GSA. A competitive method employs gene permutation 

to test whether the association between a gene set and the outcome is equal to those of the other 

gene sets (so-called “Q1 hypothesis”[23]). A self-contained method employs subject 

permutation to test the equality of the two mean vectors of gene set expressions corresponding 

to the two groups (so-called “Q2 hypothesis”[23]). Since competitive methods have been 

widely criticized for their inability to take care of the correlation within gene sets, we focus 

here on developing a self-contained method testing the Q2 hypothesis.   

The remaining part of the chapter proceeds as follow. Section 3.3 is concerned with an 

overview of LLCT method. Section 3.4 presents the results of simulation and an application of 

this method. Section 3.5 discusses the performance of LLCT and finally, section 3.6 gives a 

summary and discusses future areas of genetic applications and methodological developments.   
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3.3 Method 

3.3.1 Longitudinal Linear Combination Test (LLCT) 

We propose a two-step method to analyze multiple longitudinal phenotypes when there is 

high dimensionality in either response or explanatory variables. In the first step, within-subject 

variation is analyzed. For each gene set, the changing trend of outcomes over time is estimated 

using an appropriate model for the structure and type of the data. In the second step, LCT is 

applied to analyze the between-subject variation. In this step, LCT is employed to examine if 

the maximum possible correlation between a linear combination of the time trends and a linear 

combination of the predictors given by the gene expressions is statistically significant. Our 

method is generalized to accommodate data generated by two complex study designs: time-

course microarray studies and family-based studies.  A time-course study measures gene 

expression repeatedly over time and is designed to find the correlation between time trajectory 

of gene-expressions and covariates.  A family-based design collects the information from 

family members and examines the association between longitudinal phenotypes and gene 

expressions while taking care of the correlation between subjects within each family. 

We borrowed the main idea of this method from the mixed effect modelling. Through mixed 

effect modelling, the variation in the longitudinal phenotype is modelled taking two steps: first 

step, the within-subject variation is modelled; in the second step, the between-subject variation 

is modeled using the coefficients estimated in the first step[119]. Roughly the same strategy is 

also practiced by Conesa et al. [47] in their microarray significant profiles (maSigPro) method.  

The proposed method is designed to model continuous outcome variables. However, this 

method can be generalized to work with other type of data, such as binary or categorical 
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response variable, using an appropriate link function in the first step. This method is self-

contained, designed to accommodate the correlations between genes in the gene sets, works 

well in the presence of missing data at random and is efficient to work with high dimensional 

data. It can also adjust for time-variant covariates. Next, we describe the two steps of the 

method, followed by two generalizations. 

Analysis of Within-Subject Variation (Step 1): Consider a microarray study on I subjects 

where longitudinal phenotypes of size M is measured for 𝑛𝑖 times for the 𝑖 th subject, 𝑖 =

1,… , 𝐼. Let  𝑌𝑚𝑖𝑗 be the 𝑗 𝑡ℎ measurement (𝑗 = 1, … , 𝑛𝑖) of the 𝑚 th phenotype (𝑚 = 1,… ,𝑀) 

of the 𝑖 th subject that happened at time 𝑡𝑖𝑗 and let 𝑌𝑚𝑖 = (𝑌𝑚𝑖1, … , 𝑌𝑚𝑖𝑛𝑖
)𝑇 be the vector of 𝑛𝑖 

measurements of the 𝑚 th phenotype for the 𝑖th subject (∑ 𝑛𝑖
𝐼
𝑖=1 = 𝑛.) and 𝑌𝑖 = (𝑌1𝑖 , … , 𝑌𝑀𝑖) be 

the matrix of phenotype measurements of the 𝑖th subject. We also consider that the study 

measured the expressions of a predefined set of 𝑃 genes for the 𝑖 th subject, 

𝐺𝑖 = (𝐺𝑖1, … , 𝐺𝑖𝑃)𝑇, 𝑖 = 1,… , 𝐼; and we define the vector of the expressions of gene 𝑝 for 𝐼 

subjects as 𝐺𝑝 = (𝐺1𝑝, … , 𝐺𝐼𝑝)
𝑇
, 𝑝 = 1,… , 𝑃. We are interested to test if there is a significant 

linear relationship between the gene set 𝐺 and the longitudinal phenotype 𝑌. The null 

hypothesis is that the changes in Y over time are not dependent to the expressions of the genes 

in the predefined gene set G.  

In order to analyze within-subject correlation, we define the regression equation in matrix 

notation as below: 

𝑌𝑚𝑖 = 𝑍𝑖𝛽𝑚𝑖 + 𝑊𝑖𝛾𝑚𝑖 + 𝜀𝑚𝑖 (3.1) 

In this equation, 𝑍𝑖 is (𝑛𝑖 × 𝑄) matrix of 𝑄 potential time variables and it usually includes 

𝑡𝑖 = (𝑡𝑖1, … . , 𝑡𝑖𝑛𝑖
) and different polynomial functions of 𝑡𝑖 (e.g. 𝑡𝑖

2, 𝑡𝑖
3  ) if required. 𝑊𝑖  is 
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(𝑛𝑖 × 𝑄′) matrix of 𝑄′ potential time-variant covariates, and 𝛾𝑚𝑖(𝑄′ × 1) represents their 

corresponding coefficients.  Also,  𝛽𝑚𝑖 denotes a (𝑄 × 1) vector of coefficients for each 

specific phenotype (𝑚) with elements of 𝛽𝑚𝑞𝑖 . We define 𝛽𝑖a (𝑄 × 𝑀) matrix of regression 

coefficients generated by column-wise binding of 𝛽𝑚𝑖s:𝛽𝑖 = [𝛽1𝑖|𝛽2𝑖| … |𝛽𝑀𝑖].  

Analysis of Between-Subject Variation (Step 2): In our method, we used Linear 

Combination Test (LCT)[120] to detect significant gene sets associated with different 

trajectories of longitudinal phenotypes. If there is no gene set related variability in the subject-

specific regression coefficient estimated in the first step, there will be no relationship between 

the gene set expressions and the changing trend of M longitudinal phenotypes. In other words, 

there is no linear combination of the columns of 𝛽 = [𝛽1
𝑇| … |𝛽𝐼

𝑇]𝑇 associated to any linear 

combination of gene set expression measurements. The null hypothesis is that there is no 

association between any of the linear combination of 𝐺1, … , 𝐺𝑃 with any linear combination of 

columns of 𝛽. 

Let G be a ((𝐼 × 𝑄) × (𝑃)) matrix obtained by vertically merging the vectors of the gene 

expressions, 𝐺𝑝s, duplicating the rows for Q times. Then, let  

𝑍(𝐺, Α) =

[
 
 
 
 
 
 
 
 
𝐺11 … 𝐺1𝑃

⋮ ⋱ ⋮
𝐺11 … 𝐺1𝑃

𝐺21 … 𝐺2𝑃

⋮ ⋱ ⋮
𝐺21 … 𝐺2𝑃

⋮ ⋮ ⋮
𝐺𝐼1 … 𝐺𝐼𝑃

𝐺𝐼1 … 𝐺𝐼𝑃 ]
 
 
 
 
 
 
 
 

(𝐼.𝑄)×(𝑃)

× [

𝛼1

𝛼2

⋮
𝛼𝑃

]

(𝑃)×1

     (3.2) 

be a linear combination of the columns of matrix G, and, 
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𝑍(Β, Γ) = 𝛽(𝐼.𝑄)×𝑀 × [

𝛾1

𝛾2

⋮
𝛾𝑀

]

(𝑀)×1

 (3.3) 

a linear combination of columns of 𝛽. The null hypothesis can be written as an optimization 

problem, more precisely, identifying A and B to maximize the correlation of 𝑍(𝐺, Α) and (Β, Γ) 

, and then test if this maximum correlation is significant or not.  

Let ΣG,G = 𝑐𝑜𝑣(G, G) be the covariance matrix of G; and similarly, let ΣΒ,Β = 𝑐𝑜𝑣(Β, Β) be 

the covariance matrix of Β and ΣG,Β = 𝑐𝑜𝑣(G, Β) be the covariance matrix between G and Β. 

This leads to the proposed test statistic: 

𝑇2 = 𝑚𝑎𝑥𝐴,𝐵|𝜌(𝑍(G, Α), 𝑍(Β, Γ))|2 = 𝑚𝑎𝑥𝐴,𝐵
(Α𝑇ΣΒ,GΓ)2

Α𝑇ΣG,GΑ.  Γ𝑇ΣΒ,ΒΓ
        

(3.4) 

The problem of singularity of ΣΒ,Β and ΣG,G emerges when the dimensions of Β or G are 

large. This is very likely to happen as we usually measure the expressions of a large number of 

gene sets. A possible remedy for this problem is to utilize the shrinkage method [121]. 

Therefore, we need to replace the covariance matrices with their shrinkage versions, ΣΒ,Β
∗  and 

ΣG,G
∗ . 𝑇2∗ which is the shrinkage version of 𝑇2 is defined as below: 

𝑇2∗ = 𝑚𝑎𝑥𝐴,𝐵

(Α𝑇ΣΒ,GΓ)2

Α𝑇  ΣG,G
∗ Α.  Γ𝑇ΣΒ,Β

∗ Γ
 (3.5) 

We use the permutation method to calculate the p-value corresponding to this statistic. When 

the permutation method is employed, it would be computationally inefficient to maximize the 

right-hand side of the equation above. The remedy could be using two groups of normalized 

orthogonal bases instead of using the original observation vectors G and Β. We decomposed the 



45 

 

two shrinkage covariance matrices using eigenvalues ( ΣG,G
∗ = Ψ𝐷GΨ𝑇 and ΣΒ,Β

∗ = Ω𝐷ΒΩ𝑇) in 

order to have two groups of orthogonal basis vectors G̃ and Β̃. Thus, the test statistic becomes: 

𝑇2∗ = max𝜂,𝜃

(𝜂𝑇ΣG̃,Β̃𝜃)2

‖𝜂‖2
2.‖𝜃‖2

2    (3.6) 

where 𝜂 = 𝐷G
1 2⁄

Ψ𝑇Α  and 𝜃 = 𝐷Β
1 2⁄

Ω𝑇Γ. Optimizing this expression will be straightforward if 

we first optimize 𝜂 given 𝜃 and then optimizing 𝜃 at the next step. The value of 𝑇2∗ is equal to 

the largest eigenvalue of  ΣG̃,Β̃
𝑇 ΣG̃,Β ̃(or ΣΒ̃,G̃

𝑇 ΣΒ̃,G̃).  

The sample permutation method is employed to calculate p-values. The sample permutation 

changes neither the correlation structure within gene sets nor the correlation structure within 

phenotype. This feature brings a considerable computational advantage to the analysis because 

there is no need to repeat eigenvalue decomposition for each permuted version of the dataset.  

 

3.3.2 Generalization 1: LLCT for Family-Based Data  

Consider a microarray study on 𝐼 subjects in which 𝑀 longitudinal phenotype is measured 

for  𝐹 families. Also consider that the number of subjects in family 𝑓 is 𝐼𝑓  and the number of 

repeated measurements for subject 𝑖 in family 𝑓 is 𝑛𝑓𝑖 so that  ∑ ∑ 𝑛𝑓𝑖
𝐼𝑓
𝑖=1

𝐹
𝑓=1 = 𝑛..  is the total 

number of observations in the study. Let  𝑌𝑚𝑓𝑖𝑗  be the 𝑗 𝑡ℎ measurement (𝑗 = 1, … , 𝑛𝑓𝑖) of the 

𝑚 th phenotype (𝑚 = 1,… ,𝑀) recorded for the 𝑖th subject who belongs to family 𝑓 and 

measured at time 𝑡𝑓𝑖𝑗. Also consider that the study measured the expressions of a predefined set 

of 𝑃 genes for the 𝑖th subject of family𝑓, and we define the vector of the expressions of the 𝑝th 

gene as 𝐺𝑝 = (𝐺11𝑝, … , 𝐺1𝐼1𝑝, … , 𝐺𝐹1𝑝, … , 𝐺𝐹𝐼𝐹𝑝)
𝑇
, 𝑝 = 1,… , 𝑃. We are interested to test if 
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there is a significant linear relationship between the gene set 𝐺𝑓𝑖and the longitudinal trajectory 

of all longitudinal phenotypes 𝑌𝑚𝑓𝑖𝑗 . The null hypothesis is that the changes in 𝑌s over time are 

not dependent to the expressions of the genes in the gene set of interest.  

In the first step of our generalized method, we model the within-family variation for 

phenotypes separately using mixed effect model. So, in a matrix format, we define: 

𝑌𝑚 = 𝑋𝛽𝑚 + 𝑊𝛾𝑚 + 𝑍𝑏𝑚 + 𝜀𝑚          (3.7) 

In this equation, 𝑌𝑚 denotes a (𝑛.. × 1) vector of the 𝑚th phenotype measurements for all 

families and all subjects and   𝑋 (𝑛.. × 𝑅) denotes a matrix of time variables and it usually 

includes a vector of 𝑡 and different functions  , such as 𝑡2, 𝑡3, and 𝑍 is (𝑛.. × (𝐹. 𝑄)) matrix of 

the potential covariates for random effects with the format of 𝑍 = (
Z1 0 0
0 ⋱ 0
0 0 Z𝐹

) where 𝑍𝑓 ∈

ℝ𝐼𝑓×𝑄. Also,  𝛽𝑚 is a (𝑅 × 1)vector of family fixed regression coefficients for time variables 

corresponding to 𝑚th phenotype. 𝑊 (𝑛.. × 𝑅′) represents a matrix of potentially time-dependent 

and time-independent (but subject-variant) covariates for which the estimations are adjusted. 

The vector of coefficients is denoted by. 𝛾𝑚(𝑅′ × 1). The ((𝐹.𝑄) × 1) vector of random effects 

is defined as 𝑏𝑚 and varies by families. The (𝑛.. × 1) vector of residuals is 𝜀𝑚 and we have 

(
𝑏𝑚

𝜀𝑚
)~𝑁𝑄+𝑛..

((
0
0
) , (

Ψ 0
0 Ω

)) where Ω = (

Σ𝑛𝑓1
0 0

0 ⋱ 0
0 0 Σ𝑛𝑓𝐼𝑓

) and Ψ is the covariance matrix 

of random effects that must be estimated.   

 Gene expressions are also correlated within families. Therefore, we will take an additional 

step to accommodate the within-family association of gene expressions using random intercept 

model: 
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𝐺𝑝 = Ξ𝑝 + 𝜉𝑝 + 𝜀𝑝
∗      (3.8) 

In this model, 𝐺𝑝is (𝐼 × 1)  vector of gene expressions of 𝑝th gene for all families, 𝜀𝑝
∗is 

(𝐼 × 1) vector of residuals, Ξ𝑝is (𝐼 × 1) vector of fixed intercept, a constant for all families, 

𝜉𝑝is (𝐼 × 1)  vector of random intercepts and its elements vary for each family.  

In the second step of our method, we will use LCT for multiple phenotypes to examine the 

between-family variations. If there is no gene set related variability in the family-specific 

regression coefficient, there will be no relationship between the gene set expressions and 

changing trend of M longitudinal phenotypes. In other words, there is no linear combination of 

family-specific phenotype trajectories 𝑏 = [𝑏1
𝑇| … |𝑏𝑀

𝑇 ]𝑇 associated to any linear combination of 

family-specific gene set expression measurements 𝜉 = [𝜉1| … |𝜉𝑃]. The null hypothesis, here, is 

defined to be no association between any of the linear combination of  𝜉1, … , 𝜉𝑃   with any linear 

combination of columns of  . 

Let G be a ((𝐹. 𝑄) × 𝑃) matrix which is created by vertically merging the vectors of 𝜉𝑝s and 

duplicating each row for Q times. Then, let  

𝑍(𝐺, Α) =

[
 
 
 
 
 
 
 
 
 

𝜉11 … 𝜉1𝑃

⋮ ⋱ ⋮
𝜉11 … 𝜉1𝑃

𝜉21 … 𝜉2𝑃

⋮ ⋱ ⋮
𝜉21 … 𝜉2𝑃

⋮ ⋮ ⋮
𝜉(𝐹.𝑄)1 ⋯ 𝜉(𝐹.𝑄)𝑃

𝜉(𝐹.𝑄)1 … 𝜉(𝐹.𝑄)𝑃]
 
 
 
 
 
 
 
 
 

(𝐹.𝑄)×𝑃

𝐺𝐶(𝐹)×(𝑃) × [

𝛼1

𝛼2

⋮
𝛼𝑃

]

(𝑃)×1

 (3.9) 

be a linear combination of the columns of matrix G, and, 
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𝑍(B, Γ) = 𝑏(𝐹.𝑄)×(𝑀) × [

𝛾1

𝛾2

⋮
𝛾𝑀

]

(𝑀)×1

      (3.10) 

a linear combination of the columns of 𝑏s. As before, the null hypothesis can be written as an 

optimization problem, more precisely, identifying A and B to maximize the correlation of 

𝑍(𝐺, Α) and (Β, Γ) , and then test if this maximum correlation is significant or not.  

 

3.3.3 Generalization 2: Time-Course Microarray Data Analysis 

We considered this application as a special case of the general framework of analyzing 

multiple longitudinal data. In this special case, the longitudinal gene expressions measurements 

of a specific gene set are treated as multiple longitudinal phenotypes. Consider a microarray 

study on 𝐼 subjects where gene expressions of a specific gene set are measured for 𝑛𝑖 times for 

the 𝑖th subject, 𝑖 = 1,… , 𝐼. Let  𝐺𝑝𝑖𝑗 be the 𝑗 𝑡ℎ measurement (𝑗 = 1, … , 𝑛𝑖) of the 𝑝 th gene 

expression in the gene set (𝑝 = 1,… , 𝑃) for the 𝑖th subject that happened at time 𝑡𝑖𝑗 and let 

𝐺𝑝𝑖 = (𝐺𝑝𝑖1, … , 𝐺𝑝𝑖𝑛𝑖
)𝑇 be the vector of 𝑛𝑖 expression measurements of the 𝑝 th gene  for the 

𝑖th subject (∑ 𝑛𝑖
𝐼
𝑖=1 = 𝑛.) and 𝐺𝑖 = (𝐺1𝑖, … , 𝐺𝑃𝑖) the (𝑛𝑖 × 𝑃) matrix of phenotype 

measurements of the 𝑖th subject. We are interested to test if there is a significant linear 

relationship between the specific gene set 𝐺 and a set of time-invariant covariates 𝐶. The null 

hypothesis is that the changes in predefined gene set G over time are not dependent to the 

covariates C. In other words, the genes in a specific gene set are not differentially expressed 

over time in response to the changes of covariates.  
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In this application we only modify the first step of our proposed LCT method to analyze 

within-subject variations. The second step, where LCT is employed to analyze between-subject 

variations, remains unchanged.   

Consider the following model: 

𝐺𝑖𝑝 = 𝑍𝑖𝛽𝑖𝑝 + 𝑊𝑖𝛾𝑖𝑝 + 𝜀𝑖𝑝 (3.11) 

where 𝑍𝑖 is (𝑛𝑖 × 𝑄) matrix of the time variables and it usually includes  𝑡𝑖 = (𝑡𝑖1, … . , 𝑡𝑖𝑛𝑖
) and 

different functions of 𝑡𝑖 (e.g. 𝑡𝑖
2, 𝑡𝑖

3  ). 𝑊𝑖  is the matrix of potential time-dependent covariates 

for which we would like the estimations to be adjusted, with corresponding (𝑄′ × 1) vector of 

coefficients of 𝛾𝑖𝑝 . Also,  𝛽𝑖𝑝 denotes a (𝑄 × 1) vector of coefficients of time variables 

corresponding to 𝑝th gene, with components denoted as 𝛽𝑖𝑞𝑝 . We define 𝛽𝑖a (𝑄 × 𝑃) matrix of 

regression coefficients generated by column-wise binding of 𝛽𝑖𝑝s.  

In the second step, we use LCT to examine the relationship between the covariates and the 

changing trend of the longitudinal gene set expressions. If there is no covariate related 

variability in the gene set-specific regression coefficient, there will be no relationship between 

the covariates and the changing trend of the specific gene set expressions. In other words, there 

is no linear combination of the columns of 𝛽 = [𝛽1
𝑇|… |𝛽𝐼

𝑇]𝑇 associated to any linear 

combination of covariates measurements. Therefore, if 𝐶𝑖 = (𝐶𝑖1, … , 𝐶𝑖𝑈) is the vector of time-

invariant covariates for the 𝑖th subject and  𝐶𝑢 = (𝐶1𝑢 , … , 𝐶𝐼𝑢), 𝑢 = 1, … , 𝑈, the null hypothesis 

can be formulated as” no association between any of the linear combination of  𝐶1, … , 𝐶𝑈 with 

any linear combination of columns of 𝛽. 
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Let 𝐶∗ be a ((𝐼. 𝑄) × (𝑈)) matrix obtained by duplicating the covariates measurements of 

subject 𝑖 for 𝑄 times. Then, let  

𝑍(𝐶∗, Α) =

[
 
 
 
 
 
 
 
 
𝐶11 𝐶12

⋮ ⋮
⋯ 𝐶1𝑈

⋱ ⋮
𝐶11 𝐶12

𝐶21

⋮
𝐶21

⋮
𝐶𝐼1

𝐶𝐼1

𝐶22

⋮
𝐶22

⋮
𝐶𝐼2

𝐶𝐼2

⋯ 𝐶1𝑈

⋯
⋱
⋯
⋱
⋯
⋯

𝐶2𝑈

⋮
𝐶2𝑈

⋮
𝐶𝐼𝑈

𝐶𝐼𝑈 ]
 
 
 
 
 
 
 
 

(𝐼.𝑄)×(𝑈)

× [

𝛼1

𝛼2

⋮
𝛼𝑈

]

𝑈×1

        (3.12) 

be a linear combination of the columns of matrix 𝐶∗, and, 

𝑍(Β, Γ) = 𝛽(𝐼.𝑄)×𝑃 × [

𝛾1

𝛾2

⋮
𝛾𝑃

]

(𝑃)×1

 (3.13) 

be a linear combination of columns of  𝛽.  As before, LCT can be used to find out the 

maximum correlation between Z(C*, A) and Z(B,Γ), and test its significance.  

 

3.3.4 Design of Simulation Study 

A simulation study was designed to evaluate the performance of LLCT method and compare 

its performance with PAVR proposed by Adewale et al [29]. Several simulations were carried 

out by varying number of subjects, gene set sizes, number of repeated measurements, within-

gene set correlation, within-subject correlation and gene set effect sizes. The number of subjects 

and gene set size changed from 30,50 to 100. 

For each gene set, gene expressions are simulated from 𝑀𝑉𝑁(Μ𝐺 , Σ𝐺) where Μ𝐺is the mean 

vector of gene expressions, taken from a truncated exponential distribution with 𝜆 = 0.7. Σ𝐺  is 
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the variance-covariance matrix of genes within a gene set. The variances of the genes were set 

at 𝜎𝐺
2 = 0.5 and the correlations between genes were set at 𝜌𝐺=.0.1, 0.5 or 0.7The effect of 

within-gene set correlation on the performance of the method was evaluated. 

For each gene set, the longitudinal data was simulated based on the following model: 

𝑦𝑖𝑗 = Β1 × 𝐺𝑆𝑖 + Β2 × 𝑡𝑖 + Β3 × 𝐺𝑆𝑖 × 𝑡𝑖 + 𝑏0𝑖 + 𝑏1𝑖 × 𝑡𝑖 + 𝜀𝑖𝑗   (3.14) 

Where 𝑦𝑖𝑗  denotes the 𝑗th observation of the 𝑖th subject; 𝐺𝑆𝑖 is the vector of gene expression 

measurements for 𝑖th subject; Β1is the vector of fixed effects of the genes on the longitudinal 

phenotype, with values of 0.05,0.1 and 0.2 for all the subjects; 𝑡𝑖 is the measurement time 

vector of the 𝑖th subject varying from one subject to another. The length of 𝑡𝑖 is set at 3,4 and 5 

in different simulations, but the time points of measurement was uniformly distributed between 

1 and 10. Β2 is the vector of fixed effect of time on phenotype, set at 0.3 for all the subjects.  

Β3is the vector of fixed effects of interactions of gene expressions at time and was set at 

0.25,0.05 and 0.1 for all subjects in different simulations.  𝑏0𝑖~𝑁(0,1) and 𝑏1𝑖~𝑁(0,2) are the 

random constant and the random effect of subject 𝑖, respectively and are assumed to be 

independent among subjects. 𝜀𝑖𝑗 is the error term defining the variation of the 𝑗th observation of 

subject 𝑖. 𝜀𝑖𝑗 is assumed to be correlated within subjects. In this simulation, the correlation 

structure of 𝜀𝑖𝑗 is autoregressive and we assumed: 𝑐𝑜𝑟(𝜀𝑘, 𝜀𝑙) = 𝜌𝜀
𝑘−𝑙 where 

𝜌𝜀 = 0.2,0.5 𝑜𝑟 0.7.  

For LLCT simulation, we simulated 1000 gene sets in each run and each p-value was 

calculated based on 1,000 permutations. In simulations of PAVR, the results are based on 50 

permutation times. 
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3.4 Results 

3.4.1 Simulation Study 

We present here results of our simulation study on LLCT performance. Figures 3.1-3.5 show 

the power of LLCT analyzing diverse set of data, simulated by considering different within-

gene-set and within-subject correlations, sample and gene set sizes and number of repeated 

measurements. For each plot, the type I error was constant at 0.05 and the simulated data were 

similar for all characteristics except the one mentioned at the top of the plot. The power was 

calculated at the presence of different Β3 values, determining the effect of each gene within 

specific gene set over time. The power of LLCT increased by higher within-gene-set 

correlation, sample size and gene set size (Figure 3.1-3.3). However, it remains unaffected by 

within-subject correlation and number of repeated measurements (Figure 3.4-3.5). 

 

 

Figure 3.1 Calculation of the power of LLCT using simulated data generated with different within-gene 

set correlation. Type I error is set at 5%. For each plot, the simulation variables except the one 

mentioned on the title varies but remains comparable among the curves. 
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Figure 3.2 Calculation of the power of LLCT using simulated data generated with different sample size. 

Type I error is set at 5%. For each plot, the simulation variables except the one mentioned on the title 

varies but remains comparable among the curves.  

 

 

Figure 3.3 Calculation of the power of LLCT using simulated data generated with different gene set 

size. Type I error is set at 5%. For each plot, the simulation variables except the one mentioned on the 

title varies but remains comparable among the curves.  
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Figure 3.4 Calculation of the power of LLCT using simulated data generated with different number of 

repeated. Type I error is set at 5%. For each plot, the simulation variables except the one mentioned on 

the title varies but remains comparable among the curves.  

 

  

Figure 3.5 Calculation of the power of LLCT using simulated data generated with different within-

subject correlation. Type I error is set at 5%. For each plot, the simulation variables except the one 

mentioned on the title varies but remains comparable among the curves.  
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The power of LLCT was compared with the power of PAVR in Figure 3.2 where we let within-

gene set correlation, sample size, gene set size and number of repeated measurements change. 

PAVR does not distinguish between the gene effect and the gene effect over time. Therefore, 

two parameters of  Β1 and Β3were set at different values (other than zero for both) to define 

alternative hypotheses for this method. However, the power of LLCT was consistent over 

different values of  Β1 and altered by Β3 only. For small within-gene-set correlation values 

(𝜌 < 0.5), LLCT significantly outperformed PAVR. However, as the within-gene-set 

correlation increased, the difference between the power values of PAVR and LLCT became 

smaller (Figure 3.2 (A,B,C)). Comparing with LLCT, PAVR performed poorly when the 

sample was small (Figure 3.2 (D,E)). Furthermore, different gene set sizes did not make a 

considerable difference between the methods’ powers (Figure 3.2 (F,G)). LLCT exhibited a 

better ability in dealing with large number of repeated measurements over time (Figure 3.2 

(H,I)).  
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Figure 3.6 Comparison of powers of LLCT method and the method of pathway analysis via regression 

(PAVR) proposed by Adewale et a1, using simulated data generated with different within-gene-set 

correlation. 𝚩𝟏 denotes the gene effect and  𝚩𝟑 denotes the gene effect over time referring to equation 

3.14. 
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Figure 3.7 Comparison of powers of LLCT method and the method of pathway analysis via regression 

(PAVR) proposed by Adewale et a1, using simulated data generated with different sample size. 𝚩𝟏 

denotes the gene effect and  𝚩𝟑 denotes the gene effect over time referring to equation 3.14. 
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Figure 3.8 Comparison of powers of LLCT method and the method of pathway analysis via regression 

(PAVR) proposed by Adewale et a1, using simulated data generated with different gene set size. 𝚩𝟏 

denotes the gene effect and  𝚩𝟑 denotes the gene effect over time referring to equation 3.14. 
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Figure 3.9 Comparison of powers of LLCT method and the method of pathway analysis via regression 

(PAVR) proposed by Adewale et a1, using simulated data generated with different number of repeated 

measurements. 𝚩𝟏 denotes the gene effect and  𝚩𝟑 denotes the gene effect over time referring to 

equation 3.14. 
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unknown for more than 30% of patients, untreated for 50% of them and uncontrolled for 

75%[124]. 

Blood pressure is known as a highly-heritable complex trait[125] regulated by multiple 

environmental and genetic factors. The importance of understanding the genetics mechanism of 

blood pressure on identification of therapeutic and prevention targets has been emphasized in 

studies examining the variation of effectiveness of antihypertensive medications on different 

ancestral groups[126]. 

Hypertension is developed by small contributions of a large number of genes whose effects 

may be hard to detect. Facing this challenge, most studies on hypertension genetics failed to 

reach replication. Traditional approaches and small sample sizes may be the most probable 

reason explaining this deficiency. However, the novel statistical methods have come to help.  

Genetic Analysis Workshops (GAWs) are designed to evaluate the performance of different 

statistical methods applied on high density genotype. Among them, GAW13[127], 

GAW16[128], GAW18[129] and GAW19[130] have focused on analysis of longitudinal 

datasets. GAW19 [130], the focus of our work, is based on data from San Antonio Family Heart 

Study (SAFHS), conducted to investigate the genetics of cardiovascular disease in Mexican 

Americans. GAW19 researchers were divided into different teams to work on heterogeneous 

statistical methods dealing with longitudinal datasets. For analysis of gene expressions, these 

teams independently worked on different areas of individual or pathway gene analysis, 

unrelated or family-based analysis and joint or separated analysis of phenotypes. However, 

utilizing heterogeneous statistical methods prevented them from replicating their findings.     
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The subjects of SAFHS were born in a large, multi-generational family and their stated 

pedigree relationships were verified. The transcriptional profile data of 647 people was 

recorded, including 16,383 gene expression measurements, for each individual. For each 

subject, systolic blood pressure (SBP), diastolic blood pressure (DBP), hypertension status 

(HTN), use of antihypertensive medications and smoking status were measured at four time 

points and the subjects’ sex and age were recorded. By applying the proposed method to this 

family-based data, we detected differentially expressed gene sets significantly associated with 

blood pressure trajectories over time. We analyzed real dataset and considered DBP, SBP, pulse 

pressure (PP) (defined as PP = SBP − DBP), and hypertension (defined as blood pressure 

≥140/90 mm Hg) as the outcome variables.  

Table 3.1 Summary information (mean (standard deviation)) of covariates and outcomes at different 

time points: GAW19 application, studies of related and unrelated subjects 

  Age 
Antihypertensive 
Medication 

Smoking 
Status 

Systolic 
Blood 
Pressure 
(SBP) 

Diastolic 
Blood 
Pressure 
(DBP) 

Hypertension 
Status (HTN) 

Related Subjects 

First visit 39.58 (16.88) 0.1(0.3) 0.23(0.42) 121.73(18.98) 71.48(9.99) 0.18(0.39) 

Second visit 42.76(15.93) 0.19(0.39) 0.18(0.39) 124.96(19.34) 71.94(10.01) 0.28(0.45) 

Third visit 46.34(15.10) 0.29(0.45) 0.2(0.4) 125.21(18.04) 70.73(10.02) 0.36(0.48) 

Forth visit 50.88 (12.76) 0.43(0.5) 0.11(0.32) 128.24(17.63) 77.76(11.06) 0.52(0.5) 

       
Unrelated Subjects 

First visit 53.84(14.77) 0.22(0.42) 0.25(0.43) 130.3(23.36) 72.96(9.48) 0.37(0.48) 

Second visit 58.26(12.30) 0.36(0.48) 0.11(0.32) 135.01(20.17) 72.34(10.09) 0.59(0.49) 

Third visit 59.52(10.85) 0.53(0.50) 0.17(0.38) 130.46(19.24) 69.14 (9.74) 0.59(0.49) 

Forth visit 62.16(9.26) 0.63(0.49) 0.06(0.25) 135.5(23.44) 77.06(15.4) 0.71(0.46) 

 

We first analyzed the unrelated subjects by selecting the subjects with no shared parents. In 

this part of analysis, the repeatedly measured expressions of 10,072 genes for 64 subjects, 

belonging to 5,898 gene sets were examined by LLCT for unrelated subjects. The gene sets are 
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defined by Gene Ontology database. The size of gene sets varied from 2 to 1,417 with median 

of 22.  

In the second part of analysis, 647 related subjects in 17 family clusters were analyzed. The 

size of families varied from 21 to 62 with the median of 31. The total number of 10,072 genes 

contributing in 5,907 pathways was tested by LLCT for related subjects.     

The test of association was conducted after adjustment for either smoking status or 

antihypertensive medications intake. As some subjects were measured for two times only, the 

method was unable to adjust for both time-dependent covariates at the same time, unless we 

restricted our subjects to those with more than 2 measurements.  

Table 3.2 The number of significant gene sets found by LLCT at different levels of confidence, testing a 

variety of outcomes and datasets 

Datasets 
Type I 
Error 

SBP DBP 
SBP& 
DBP*  

SBP-
DBP** 

HTN 

Adjusted for smoking status 

Related 

Subjects 
1% 30 23 20 73 65 

 
5% 170 135 141 360 321 

 
10% 255 278 310 434 392 

  
     Unrelated 

Subjects 
1% 12 3 5 27 5 

 

5% 136 39 60 389 82 

 
10% 408 78 245 735 162 

       
Adjusted for antihypertensive medications 

Related 
Subjects 

1% 98 13 63 127 12 

 
5% 402 127 271 541 99 

 
10% 413 242 390 614 159 

  
     Unrelated 

Subjects 
1% 17 3 11 17 2 

 

5% 142 60 86 116 22 

 
10% 465 75 186 382 88 
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No Adjustment 

Related 
Subjects 

1% 18 17 14 43 54 

 
5% 158 141 122 259 327 

 
10% 263 273 277 386 417 

  
     Unrelated 

Subjects 
1% 9 2 3 17 2 

 

5% 234 37 70 273 71 

  10% 537 68 231 682 168 

 

*The multiple analysis of systolic and diastolic blood pressure. In this analysis, the outcome is a 

linear combination of SBP and DBP with the highest association with the linear combinations 

of gene expressions. 

** Pulse pressure which is the difference between systolic and diastolic blood pressures. 

 

LLCT was used to find the gene sets whose expressions are significantly associated with the 

outcome(s) and calculated 5,989 p-values for testing the gene sets in unrelated study and 5,907 

p-values for analysis of family-based dataset. Table 3.2 shows the number of significant gene 

sets in testing each outcome and each dataset separately. The pathways that were significantly 

associated with both pulse pressure and linear combination of SBP and DBP, after adjusting for 

antihypertensive medication consumption, were selected and shown in Tables 3.3 and 3.4. 

Exposure to blood pressure medication, compared to smoking, showed more considerable effect 

in changing SBP and DBP trajectories and the best model is the one adjusting for this effect.  

In Tables 3.3 and 3.4, the gene sets were classified based on their shared ancestral 

categories, derived from Gene Ontology Tree. We list here biological processes defined by 

gene sets identified significant by our studies of both unrelated, and related subjects: a few 

descendent pathways of immune system process, cellular response to stimulus, cell 
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communication, cellular metabolic process, multi-organism cellular process, multi-cellular 

organism process and metabolic process. Cell differentiation, cell activation, cell cycle, cellular 

component organization or biogenesis, biological regulation, system development, localization, 

metabolic process and response to stimulus are other parental classes of biological process with 

significant descending pathways in analysis of related dataset only. Aside from biological 

processes, few significant pathways in major classes of molecular function and cell components 

were found significant. The family-based analysis is expected to result in more accurate 

findings, as it works on the larger database.  

Blood pressure is a complex phenotype that is controlled by multiple biological process, 

multiple molecular functions and multiple cell components. Comparing the results of analysis 

of multiple phenotypes, pulse pressure displayed higher level of robustness and was less 

affected by covariates. Also, HTN failed to reflect the changes of SBP and DBP and mostly 

failed to agree with the analysis results of other phenotypes. From statistical perspective, the 

result of HTN analysis is limited because the information is lost by dichotomizing the 

continuous variables. Also, many biological studies doubted the reliability of this one-size-fits-

all stratification scheme[131]. The other noteworthy finding of this study was the difference 

between SBP and DBP trajectories in their association with gene expressions. There were larger 

number of pathways associated with SBP compared to DBP. This underlines the sensitivity of 

SBP, as a blood pressure measurement, to gene expression alterations.  

By discussing the list of significant pathways in Table 3.4, insights can be gained into the 

genetic of hypertension. However, we admit that an in-depth biological interpretation of the 

findings is beyond the scope of this thesis.  Below, we will discuss some processes underlying 

hypertension, whose presence was supported by more than one significant pathway in LLCT 

analysis.  
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Table 3.3 Results of LLCT of association between the expressions of different gene sets and various measures of blood pressure for UNRELATED 

subjects in GAW19 database 

    

Gene 

set size 

  adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  
  SBP DBP SBP&DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP DBP&SBP 

SBP-

DBP HTN 

                    

Molecular function 

                   

 

 Organic Hydroxy Compound 

Transmembrane Transporter 

Activity 

32 p-value 0.19 0.78 0.146 0.029** 0.899 

 

0.034** 0.768 0.039** 0.044** 0.519 

 

0.09* 1 0.106 0.027** 0.848 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 
 Snrna Binding 31 

p-value 0.297 0.96 0.321 0.111 0.891 

 

0.017** 0.632 0.017** 0.014** 0.293 

 

0.103 0.99 0.143 0.063* 0.684 

 

q-value 0.307 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 

 Voltage Gated Calcium 

Channel Activity 
21 

p-value 0.038** 0.62 0.044** 0.012** 0.532 

 

0.026** 0.365 0.044** 0.033** 0.143 

 

0.015** 0.48 0.026** 0.014** 0.425 

 
q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

                    

Cell Component 
 

                  

 
 Copi Coated Vesicle 22 

p-value 0.025** 0.093* 0.048** 0.052* 0.803 

 

0.007*** 0.044** 0.015** 0.009*** 0.928 

 

0.019** 0.072* 0.05* 0.071* 0.608 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.557 

 

0.392 1.000 0.376 0.167 0.991 

 
 Synaptonemal Complex 17 

p-value 0.082* 0.34 0.179 0.075* 0.259 

 

0.013** 0.148 0.036** 0.02** 0.178 

 

0.047** 0.16 0.121 0.123 0.296 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 

 Organellar Small Ribosomal 

Subunit 
25 

p-value 0.044** 0.27 0.115 0.06* 0.297 

 

0.033** 0.096* 0.044** 0.03** 0.404 

 

0.023** 0.1 0.056* 0.068* 0.307 

 
q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 
 Cytosolic Ribosome 97 

p-value 0.205 0.83 0.313 0.117 0.577 

 

0.03** 0.194 0.044** 0.026** 0.046** 0.071* 0.56 0.181 0.089* 0.451 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

                    

Biological Process 
 

                                      

Immune System Process 
 

                  

 

 Regulation Of Inflammatory 

Response To Antigenic 

Stimulus 

15 p-value 0.016** 0.19 0.033** 0.007*** 0.602 

 

0.015** 0.118 0.018** 0.011** 0.626 

 

0.004*** 0.087* 0.019** 0.017** 0.710 

 
q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 

 Negative Regulation Of Toll 

Like Receptor Signaling 

Pathway 

16 p-value 0.392 0.49 0.653 0.55 0.412 

 

0.018** 0.066* 0.045** 0.026** 0.251 

 

0.169 0.27 0.352 0.379 0.259 

 
q-value 0.315 1.000 0.393 0.212 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.194 0.991 

 

 Negative Regulation Of 

Osteoclast Differentiation 
16 

p-value 0.059* 0.18 0.113 0.107 0.279 

 

0.001*** 0.03** 0.009*** 0.007*** 0.089* 0.031** 0.17 0.074* 0.071* 0.272 

 
q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

  
 

                                      

Cellular Process  
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Gene 

set size 

  adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  SBP DBP SBP&DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP DBP&SBP 

SBP-

DBP HTN 

                    

Cellular Process: Cellular 

Response to Stimulus  
                  

 
 Response To Ph 22 

p-value 0.251 0.56 0.124 0.043** 0.623 

 

0.034** 0.586 0.046** 0.039** 0.71 

 

0.048** 0.96 0.048** 0.012** 0.328 

 
q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 
 Regulation Of Chemotaxis 119 

p-value 0.136 0.92 0.114 0.027** 0.465 

 

0.04** 0.624 0.039** 0.028** 0.153 

 

0.047** 1 0.068* 0.028** 0.341 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

                    

Cellular Process: Cell 

Communication  
                                      

Cellular Process: Cell 

Communication: Cell-cell 

Signaling 
 

                  

 
 Beta Catenin Destruction 

Complex Disassembly 
16 

p-value 0.094* 0.33 0.157 0.093* 0.424 

 

0.027** 0.078* 0.032** 0.03** 0.33 

 

0.038** 0.14 0.085* 0.109 0.375 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

Cellular Process: Cell 

Communication: Signal 

Transduction 
 

                  

 

 G Protein Coupled Receptor 

Signaling Pathway Coupled 

To Cyclic Nucleotide Second 

Messenger 

71 p-value 0.068* 0.62 0.088* 0.03** 0.473 

 

0.041** 0.379 0.045** 0.038** 0.271 

 

0.034** 0.63 0.064* 0.029** 0.422 

 
q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

                    

Cellular Process: Cell 

Communication: Others  
                  

 
 Cellular Response To 

Starvation 
83 

p-value 0.038** 0.28 0.079* 0.03** 0.766 

 

0.019** 0.079* 0.028** 0.02** 0.582 

 

0.02** 0.13 0.039** 0.032** 0.744 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

                    

Cellular Process: Cellular 

Metabolic Process  
                  

 
 Regulation Of Protein 

Deacetylation 
22 

p-value 0.086* 0.67 0.095* 0.031** 0.381 

 

0.018** 0.098* 0.041** 0.023** 0.202 

 

0.045** 0.33 0.105 0.052* 0.463 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 
 Regulation Of Receptor 

Internalization 
23 

p-value 0.267 0.95 0.277 0.128 0.948 

 

0.015** 0.188 0.023** 0.009*** 0.892 

 

0.068* 0.53 0.14 0.05* 0.722 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 
 Pteridine Containing 

Compound Metabolic Process 

24 p-value 0.092* 0.77 0.127 0.037** 0.221 

 

0.018** 0.294 0.038** 0.021** 0.691 

 

0.055* 0.65 0.118 0.047** 0.245 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 
 Peptidyl Lysine 

Trimethylation 
21 

p-value 0.086* 0.76 0.081* 0.019** 0.972 

 

0.022** 0.306 0.031** 0.019** 0.931 

 

0.021** 0.57 0.037** 0.009*** 0.779 

 
q-value 0.306 1.000 0.367 0.141 0.972 

 

0.578 1.000 0.531 0.579 0.557 

 

0.392 1.000 0.376 0.167 0.991 
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Gene 

set size 

  adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  SBP DBP SBP&DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP DBP&SBP 

SBP-

DBP HTN 

Cellular Process: Multi-organism 

Cellular Process  
                  

 

 Multi Organism Organelle 

Organization 
19 

p-value 0.101 0.35 0.177 0.11 0.629 

 

0.024** 0.155 0.039** 0.033** 0.833 

 

0.04** 0.22 0.11 0.078* 0.761 

 
q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

                    

                    

Cellular Process: Others  
                  

 
 B Cell Proliferation 20 

p-value 0.036** 0.22 0.075* 0.027** 0.395 

 

0.017** 0.093* 0.044** 0.025** 0.481 

 

0.019** 0.13 0.037** 0.046** 0.378 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 

 Negative Regulation Of 

Muscle Cell Apoptotic Process 
19 p-value 0.086* 0.73 0.095* 0.021** 0.807 

 

0.027** 0.524 0.042** 0.038** 0.336 

 

0.038** 0.63 0.069* 0.019** 0.877 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

 

 Positive Regulation Of T 

Helper Cell Differentiation 
16 p-value 0.032** 0.3 0.055* 0.021** 0.942 

 

0.027** 0.282 0.034** 0.036** 0.844 

 

0.013** 0.19 0.033** 0.022** 0.982 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.993 

                    

Multicellular Organismal Process  
                  

 
 Regulation Of Bone 

Resorption 
18 

p-value 0.538 0.2 0.07* 0.063* 0.950 

 

0.023** 0.27 0.018** 0.013** 0.904 

 

0.023** 0.98 0.04** 0.021** 0.387 

 
q-value 0.345 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

                    

Multicellular Organismal 

Process: System Process  
                  

  Regulation Of Vasodilation 
27 

p-value 0.059* 0.25 0.125 0.088* 0.924 

 

0.02** 0.222 0.025** 0.015** 0.838 

 

0.023** 0.18 0.065* 0.056* 0.883 

 

q-value 0.306 1.000 0.367 0.141 0.969 

 

0.578 1.000 0.531 0.579 0.555 

 

0.392 1.000 0.376 0.167 0.991 

                    

Metabolic Process  
                  

 
 Multicellular Organism 

Metabolic Process 
42 

p-value 0.132 0.52 0.228 0.135 0.851 

 

0.009*** 0.112 0.022** 0.012** 0.183 

 

0.055* 0.3 0.145 0.107 0.716 

  q-value 0.306 1.000 0.367 0.141 0.969   0.578 1.000 0.531 0.579 0.555   0.392 1.000 0.376 0.167 0.991 

 

*Significance level of 0.1 

**Significant level of 0.05 

***Significance level of 0.001 

† The multiple analysis of systolic and diastolic blood pressure measurements 

‡The pulse pressure: difference between systolic and diastolic blood pressure values 
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Table 3.4 Results of LLCT of association between the expressions of different gene sets and various measures of blood pressure for RELATED 

subjects in GAW19 database 

  
GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

Molecular fuction 

                   
Binding 

                   

 

 Flavin Adenine 

Dinucleotide Binding 
49 

p-value 0.568 0.161 0.105 0.051* 0.099* 

 

0.081* 0.218 0.031** 0.008*** 0.323 

 

0.507 0.171 0.152 0.063* 0.069* 

 

q-value 0.850 0.952 0.743 0.337 0.351 
 

0.287 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 
 Antigen Binding 65 

p-value 0.063* 0.303 0.162 0.065* 0.17 

 

0.006*** 0.283 0.012** 0.008*** 0.179 

 

0.067* 0.293 0.177 0.087* 0.159 

 

q-value 0.850 0.952 0.743 0.341 0.355 
 

0.234 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Basal Transcription 

Machinery Binding 
24 

p-value 0.78 0.014** 0.017** 0.081* 0.251 

 

0.604 0.031** 0.026** 0.048** 0.236 

 

0.738 0.023** 0.024** 0.125 0.187 

 

q-value 0.850 0.952 0.743 0.342 0.361 
 

0.388 0.997 0.424 0.088 1.000 
 

0.849 0.830 0.778 0.516 0.270 

 

 Single Stranded Dna 

Binding 
74 

p-value 0.417 0.007*** 0.021** 0.218 0.055* 

 

0.291 0.024** 0.025** 0.039** 0.236 

 

0.436 0.015** 0.027** 0.243 0.051* 

 

q-value 0.850 0.952 0.743 0.370 0.351 
 

0.332 0.997 0.424 0.087 1.000 
 

0.849 0.830 0.778 0.517 0.269 

 
 Integrin Binding 62 

p-value 0.066* 0.915 0.061* 0.009*** 0.329 

 

0.002*** 0.833 0.001*** 0.001*** 0.568 

 

0.087* 0.838 0.095* 0.017** 0.247 

 

q-value 0.850 0.952 0.743 0.334 0.369 
 

0.182 0.997 0.267 0.050 1.000 
 

0.849 0.831 0.778 0.516 0.279 

 
 Damaged Dna Binding 53 

p-value 0.113 0.797 0.204 0.106 0.34 

 

0.009*** 0.776 0.031** 0.02** 0.605 

 

0.141 0.798 0.307 0.134 0.263 

 

q-value 0.850 0.952 0.743 0.353 0.369 
 

0.234 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.279 

 
 Snap Receptor Activity 35 

p-value 0.207 0.161 0.012** 0*** 0.567 

 

0.085* 0.298 0.001*** 0*** 0.865 

 

0.239 0.201 0.016** 0.003*** 0.429 

 

q-value 0.850 0.952 0.743 0.000 0.391 
 

0.290 0.997 0.267 0.000 1.000 
 

0.849 0.830 0.778 0.516 0.292 

 

 Transcription Cofactor 

Binding 
18 

p-value 0.297 0.187 0.08* 0.019** 0.192 

 

0.053* 0.32 0.016** 0.004*** 0.872 

 

0.31 0.234 0.094* 0.033** 0.161 

 

q-value 0.850 0.952 0.743 0.337 0.355 
 

0.270 0.997 0.424 0.076 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 
 Growth Factor Activity 66 

p-value 0.003*** 0.37 0.012** 0.019** 0.417 

 

0*** 0.221 0*** 0.011** 0.03** 

 

0.002*** 0.303 0.01** 0.015** 0.414 

 

q-value 0.850 0.952 0.743 0.337 0.375 
 

0.000 0.997 0.000 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.291 

 

 Heat Shock Protein 

Binding 
74 

p-value 0.462 0.052* 0.084* 0.125 0.016** 

 

0.181 0.118 0.049** 0.015** 0.505 

 

0.425 0.068* 0.131 0.187 0.019** 

 

q-value 0.850 0.952 0.743 0.355 0.343 
 

0.314 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 
 Actin Binding 262 

p-value 0.189 0.512 0.399 0.208 0.3 

 

0.012** 0.519 0.049** 0.035** 0.669 

 

0.205 0.558 0.442 0.199 0.198 

 

q-value 0.850 0.952 0.743 0.369 0.368 
 

0.234 0.997 0.424 0.087 1.000 
 

0.849 0.830 0.778 0.517 0.271 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

                    

Catalytic Activity 

                   

 

 Hydrolase Activity 

Hydrolyzing N Glycosyl 

Compounds 

19 p-value 0.49 0.507 0.294 0.076* 0.219 

 

0.061* 0.676 0.049** 0.012** 0.633 

 

0.482 0.593 0.313 0.086* 0.207 

 
q-value 0.850 0.952 0.743 0.342 0.355 

 
0.280 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.273 

 

 Metalloendopeptidase 

Activity 
62 

p-value 0.224 0.265 0.086* 0.009*** 0.35 

 

0.214 0.301 0.042** 0.01** 0.902 

 

0.294 0.254 0.082* 0.013** 0.297 

 
q-value 0.850 0.952 0.743 0.334 0.369 

 
0.321 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.280 

                     
                    

Cell Component 

                   
                    

Organelle 

                   

 
 Vesicle Membrane 337 

p-value 0.414 0.271 0.229 0.04** 0.116 

 

0.2 0.445 0.033** 0.002*** 0.961 

 

0.432 0.26 0.242 0.04** 0.115 

 
q-value 0.850 0.952 0.743 0.337 0.352 

 
0.317 0.997 0.424 0.065 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Organellar Large 

Ribosomal Subunit 
31 

p-value 0.141 0.137 0.041** 0.007*** 0.35 

 

0.047** 0.13 0.039** 0.005*** 0.296 

 

0.14 0.121 0.039** 0.005*** 0.325 

 
q-value 0.850 0.952 0.743 0.334 0.369 

 
0.268 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.282 

 
 Vacuolar Membrane 441 

p-value 0.352 0.216 0.093* 0.023** 0.471 

 

0.169 0.317 0.043** 0.017** 0.074* 

 

0.355 0.24 0.131 0.044** 0.453 

 
q-value 0.850 0.952 0.743 0.337 0.382 

 
0.314 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.294 

                    

cell: intrecellular 

                   

 

 U2 Type Spliceosomal 

Complex 
24 

p-value 0.318 0.906 0.304 0.085* 0.14 

 

0.013** 0.92 0.023** 0.012** 0.803 

 

0.287 0.871 0.287 0.092* 0.122 

 
q-value 0.850 0.952 0.743 0.342 0.355 

 
0.237 0.997 0.424 0.085 1.000 

 
0.849 0.831 0.778 0.516 0.269 

 
 Inclusion Body 56 

p-value 0.029** 0.701 0.052* 0.01** 0.619 

 

0.004*** 0.698 0.016** 0.009*** 0.203 

 

0.037** 0.685 0.068* 0.022** 0.604 

 
q-value 0.850 0.952 0.743 0.334 0.396 

 
0.223 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.311 

 

 Coated Vesicle 

Membrane 
108 

p-value 0.06* 0.575 0.064* 0.004*** 0.807 

 

0.006*** 0.621 0.008*** 0.002*** 0.18 

 

0.073* 0.623 0.092* 0.018** 0.723 

 
q-value 0.850 0.952 0.743 0.316 0.426 

 
0.234 0.997 0.424 0.065 1.000 

 
0.849 0.830 0.778 0.516 0.327 

 
 Vacuolar Part 508 

p-value 0.022** 0.222 0.045** 0.025** 0.516 

 

0.01** 0.243 0.026** 0.024** 0.731 

 

0.016** 0.181 0.043** 0.04** 0.45 

 
q-value 0.850 0.952 0.743 0.337 0.386 

 
0.234 0.997 0.424 0.086 1.000 

 
0.849 0.830 0.778 0.516 0.294 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 

 Intrinsic Component Of 

Mitochondrial Inner 

Membrane 

17 p-value 0.016** 0.656 0.075* 0.057* 0.148 

 

0.007*** 0.665 0.022** 0.021** 0.237 

 

0.03** 0.714 0.086* 0.053* 0.151 

 

q-value 0.850 0.952 0.743 0.337 0.355 
 

0.234 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Cyclin Dependent 

Protein Kinase 

Holoenzyme Complex 

26 p-value 0.045** 0.602 0.078* 0.008*** 0.216 

 

0.016** 0.656 0.021** 0.009*** 0.397 

 

0.074* 0.542 0.088* 0.012** 0.223 

 
q-value 0.850 0.952 0.743 0.334 0.355 

 
0.262 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.276 

                    

cell: intracellular: 

intracellular organelle 

                   

 
 Intermediate Filament 52 

p-value 0.001*** 0.82 

0.006**

* 0.003*** 0.244 

 

0.001*** 0.781 0.003*** 0.006*** 0.266 

 

0.001*** 0.788 0.011** 0.002*** 0.333 

 

q-value 0.850 0.952 0.743 0.316 0.359 
 

0.144 0.997 0.424 0.081 1.000 
 

0.849 0.830 0.778 0.516 0.283 

 
 Centrosome 378 

p-value 0.071* 0.812 0.159 0.061* 0.516 

 

0.005*** 0.795 0.027** 0.018** 0.331 

 

0.069* 0.855 0.179 0.074* 0.445 

 

q-value 0.850 0.952 0.743 0.337 0.386 
 

0.234 0.997 0.424 0.085 1.000 
 

0.849 0.831 0.778 0.516 0.293 

 
 Synaptonemal Complex 17 

p-value 0.119 0.002*** 

0.004**

* 0.003*** 0.013** 

 

0.076* 0.011** 0.001*** 0.001*** 0.111 

 

0.119 0.006*** 0.009*** 0.006*** 0.016** 

 
q-value 0.850 0.952 0.743 0.316 0.343 

 
0.285 0.997 0.267 0.050 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Transcription 

Elongation Factor 

Complex 

45 
p-value 0.045** 0.485 0.097* 0.035** 0.628 

 

0.008*** 0.394 0.017** 0.015** 0.207 

 

0.027** 0.406 0.089* 0.059* 0.579 

 
q-value 0.850 0.952 0.743 0.337 0.398 

 
0.234 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.308 

 
 Cop9 Signalosome 30 

p-value 0.041** 0.846 0.018** 0.002*** 0.517 

 

0.048** 0.8 0.032** 0.01** 0.979 

 

0.046** 0.825 0.025** 0.004*** 0.523 

 
q-value 0.850 0.952 0.743 0.257 0.386 

 
0.268 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.301 

                    

endomembrane system 

                   

 
 Platelet Alpha Granule 52 

p-value 0.023** 0.7 0.059* 0.022** 0.699 

 

0*** 0.487 0.004*** 0.008*** 0.092* 

 

0.031** 0.662 0.075* 0.028** 0.664 

 
q-value 0.850 0.952 0.743 0.337 0.408 

 
0.000 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.319 

 

 Recycling Endosome 

Membrane 
28 

p-value 0.051* 0.846 0.146 0.037** 0.828 

 

0.007*** 0.744 0.03** 0.022** 0.096* 

 

0.065* 0.82 0.18 0.069* 0.767 

 
q-value 0.850 0.952 0.743 0.337 0.430 

 
0.234 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.334 

 
 Recycling Endosome 88 

p-value 0.073* 0.812 0.099* 0.033** 0.5 

 

0.004*** 0.693 0.01** 0.004*** 0.21 

 

0.091* 0.752 0.148 0.065* 0.354 

 
q-value 0.850 0.952 0.743 0.337 0.385 

 
0.223 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.283 

                    

membrane 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 
 Clathrin Coat 42 

p-value 0.147 0.583 0.033** 0.002*** 0.203 

 

0.064* 0.695 0.02** 0.001*** 0.955 

 

0.183 0.553 0.059* 0.006*** 0.167 

 
q-value 0.850 0.952 0.743 0.257 0.355 

 
0.280 0.997 0.424 0.050 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Extrinsic Component Of 

Cytoplasmic Side Of 

Plasma Membrane 

63 p-value 0.076* 0.093* 0.216 0.05* 0.013** 

 

0.013** 0.256 0.014** 0.002*** 0.253 

 

0.087* 0.156 0.222 0.052* 0.023** 

 

q-value 0.850 0.952 0.743 0.337 0.343 
 

0.237 0.997 0.424 0.065 1.000 
 

0.849 0.830 0.778 0.516 0.269 

                    

Others 

                   

 
 Excitatory Synapse 105 

p-value 0.026** 0.906 0.044** 0.01** 0.95 

 

0.012** 0.846 0.006*** 0.004*** 0.254 

 

0.03** 0.911 0.064* 0.006*** 0.92 

 

q-value 0.850 0.952 0.743 0.334 0.456 
 

0.234 0.997 0.424 0.076 1.000 
 

0.849 0.832 0.778 0.516 0.363 

 
 Lamellipodium 122 

p-value 0.123 0.281 0.037** 0.002*** 0.018** 

 

0.012** 0.434 0.002*** 0*** 0.98 

 

0.139 0.313 0.057* 0.007*** 0.016** 

 

q-value 0.850 0.952 0.743 0.257 0.343 
 

0.234 0.997 0.424 0.000 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 
 Intercellular Bridge 37 

p-value 0.119 0.717 0.234 0.086* 0.176 

 

0.012** 0.661 0.024** 0.02** 0.179 

 

0.104 0.651 0.252 0.104 0.184 

 

q-value 0.850 0.952 0.743 0.342 0.355 
 

0.234 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 
 Presynapse 163 

p-value 0.262 0.735 0.377 0.077* 0.17 

 

0.006*** 0.596 0.008*** 0.004*** 0.075* 

 

0.249 0.688 0.387 0.098* 0.166 

 

q-value 0.850 0.952 0.743 0.342 0.355 
 

0.234 0.997 0.424 0.076 1.000 
 

0.849 0.830 0.778 0.516 0.269 

                    

Biological Process 

                   
                    

developmental process: 

multicellular organismal 

process: system 

development 

                   

  Cardiac Chamber 

Development 

78 
p-value 0.393 0.863 0.642 0.246 0.129 

 

0.017** 0.716 0.046** 0.03** 0.396 

 

0.395 0.828 0.653 0.278 0.111 

 

q-value 0.850 0.952 0.748 0.377 0.352 
 

0.262 0.997 0.424 0.087 1.000 
 

0.849 0.830 0.779 0.517 0.269 

  Endothelial Cell 

Development 

36 
p-value 0.237 0.838 0.46 0.256 0.342 

 

0.016** 0.661 0.045** 0.044** 0.447 

 

0.232 0.827 0.471 0.254 0.33 

 

q-value 0.850 0.952 0.743 0.378 0.369 
 

0.262 0.997 0.424 0.087 1.000 
 

0.849 0.830 0.778 0.517 0.282 

  Coronary Vasculature 

Development 24 

p-value 0.34 0.64 0.225 0.035** 0.294 

 

0.02** 0.699 0.027** 0.006*** 0.409 

 

0.331 0.653 0.235 0.066* 0.242 

 

q-value 0.850 0.952 0.743 0.337 0.368 
 

0.264 0.997 0.424 0.081 1.000 
 

0.849 0.830 0.778 0.516 0.279 

  Pituitary Gland 

Development 16 

p-value 0.278 0*** 

0.003**

* 0.51 0.003*** 

 

0.092* 0*** 0.004*** 0.046** 0.006*** 

 

0.228 0.002*** 0.006*** 0.575 

0.008**

* 

 
q-value 0.850 0.000 0.743 0.427 0.320 

 
0.294 0.000 0.424 0.087 1.000 

 
0.849 0.830 0.778 0.563 0.269 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 
 Ventral Spinal Cord 

Development 19 

p-value 0.688 0.083* 0.045** 0.045** 0.271 

 

0.345 0.147 0.039** 0.018** 0.779 

 

0.714 #N/A 0.054* 0.053* 0.283 

 
q-value 0.850 0.952 0.743 0.337 0.363 

 
0.342 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.280 

 
 Digestive System 

Development 67 

p-value 0.02** 0.397 0.066* 0.068* 0.593 

 

0.007*** 0.264 0.018** 0.049** 0.111 

 

0.026** 0.313 0.057* 0.084* 0.662 

 

q-value 0.850 0.952 0.743 0.342 0.395 
 

0.234 0.997 0.424 0.088 1.000 
 

0.849 0.830 0.778 0.516 0.319 

  Embryonic Heart Tube 

Development 37 

p-value 0.173 0.694 0.04** 0.007*** 0.804 

 

0.087* 0.657 0.038** 0.005*** 0.989 

 

0.19 0.651 0.051* 0.004*** 0.698 

 

q-value 0.850 0.952 0.743 0.334 0.426 
 

0.292 0.997 0.424 0.076 1.000 
 

0.849 0.830 0.778 0.516 0.323 

 

 Exocrine System 

Development 
26 

p-value 0.408 0.165 0.156 0.054* 0.049** 

 

0.187 0.207 0.036** 0.009*** 0.9 

 

0.467 0.149 0.16 0.06* 0.065* 

 

q-value 0.850 0.952 0.743 0.337 0.351 
 

0.315 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Blood Vessel 

Morphogenesis 
216 

p-value 0.03** 0.912 0.028** 0.004*** 0.642 

 

0.008*** 0.947 0.015** 0.005*** 0.467 

 

0.048** 0.919 0.049** 0.01** 0.643 

 

q-value 0.850 0.952 0.743 0.316 0.401 
 

0.234 0.997 0.424 0.076 1.000 
 

0.849 0.833 0.778 0.516 0.317 

 
 Organ Growth 37 

p-value 0.001*** 0.453 0.01** 0.002*** 0.675 

 

0.011** 0.537 0.03** 0.012** 0.509 

 

0.005*** 0.528 0.012** 0.001*** 0.679 

 

q-value 0.850 0.952 0.743 0.257 0.404 
 

0.234 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.320 

 

 Olfactory Lobe 

Development 
17 

p-value 0.055* 0.815 0.073* 0.005*** 0.968 

 

0.034** 0.823 0.048** 0.006*** 0.845 

 

0.083* 0.839 0.09* 0.013** 0.955 

 

q-value 0.850 0.952 0.743 0.334 0.460 
 

0.266 0.997 0.424 0.081 1.000 
 

0.849 0.831 0.778 0.516 0.371 

 

 Negative Regulation Of 

Developmental Process 
463 p-value 0.188 0.426 0.084* 0.017** 0.944 

 

0.035** 0.531 0.032** 0.006*** 0.937 

 

0.205 0.4 0.111 0.025** 0.92 

 
q-value 0.850 0.952 0.743 0.337 0.455 

 
0.268 0.997 0.424 0.081 1.000 

 
0.849 0.830 0.778 0.516 0.363 

 

 Developmental Process 

Involved In 

Reproduction 

343 p-value 0.016** 0.347 0.056* 0.059* 0.525 

 

0.011** 0.312 0.02** 0.037** 0.876 

 

0.019** 0.333 0.066* 0.063* 0.532 

 

q-value 0.850 0.952 0.743 0.337 0.387 
 

0.234 0.997 0.424 0.087 1.000 
 

0.849 0.830 0.778 0.516 0.302 

 

 Regulation Of 

Keratinocyte 

Differentiation 

18 
p-value 0.188 0.287 0.066* 0.013** 0.032** 

 

0.015** 0.42 0.006*** 0*** 0.632 

 

0.169 0.275 0.097* 0.025** 0.049** 

 

q-value 0.850 0.952 0.743 0.334 0.343 
 

0.259 0.997 0.424 0.000 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Positive Regulation Of 

Muscle Tissue 

Development 

28 p-value 0.009*** 0.395 0.024** 0.011** 0.129 

 

0.002*** 0.423 0.006*** 0.013** 0.026** 

 

0.011** 0.395 0.038** 0.016** 0.172 

 
q-value 0.850 0.952 0.743 0.334 0.352 

 
0.182 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Positive Regulation Of 

Dendritic Spine 

Development 

23 p-value 0.94 0.136 0.055* 0.068* 0.025** 

 

0.227 0.145 0.017** 0.001*** 0.72 

 

0.947 0.097* 0.07* 0.096* 0.021** 

 

q-value 0.850 0.952 0.743 0.334 0.352 
 

0.182 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Embryonic Heart Tube 28 p-value 0.349 0.863 0.346 0.061* 0.25 

 

0.019** 0.914 0.025** 0.007*** 0.701 

 

0.327 0.856 0.409 0.09* 0.215 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 

Morphogenesis 
q-value 0.850 0.952 0.743 0.337 0.361 

 
0.264 0.997 0.424 0.085 1.000 

 
0.849 0.831 0.778 0.516 0.273 

 

 Positive Regulation Of 

Neuron Projection 

Development 

146 p-value 0.005*** 0.92 

0.006**

* 0*** 0.344 

 

0.005*** 0.976 0.02** 0.009*** 0.757 

 

0.012** 0.956 0.006*** 0.003*** 0.393 

 
q-value 0.850 0.952 0.743 0.000 0.369 

 
0.234 0.997 0.424 0.085 1.000 

 
0.849 0.835 0.778 0.516 0.289 

 
 Developmental Growth 199 

p-value 0.058* 0.138 0.116 0.208 0.533 

 

0.003*** 0.096* 0.007*** 0.041** 0.139 

 

0.047** 0.13 0.087* 0.258 0.443 

 
q-value 0.850 0.952 0.743 0.369 0.387 

 
0.210 0.997 0.424 0.087 1.000 

 
0.849 0.830 0.778 0.517 0.293 

localization 

                   

 

 Regulation Of 

Telomerase Rna 

Localization To Cajal 

Body 

15 p-value 0.083* 0.957 0.088* 0.015** 0.951 

 

0.018** 0.921 0.037** 0.017** 0.566 

 

0.091* 0.927 0.094* 0.022** 0.922 

 
q-value 0.850 0.953 0.743 0.337 0.457 

 
0.264 0.997 0.424 0.085 1.000 

 
0.849 0.833 0.778 0.516 0.363 

 

 Regulation Of 

Leukocyte Migration 
105 

p-value 0.126 0.76 0.06* 0.006*** 0.315 

 

0.052* 0.758 0.029** 0.006*** 0.991 

 

0.167 0.645 0.068* 0.008*** 0.341 

 
q-value 0.850 0.952 0.743 0.334 0.368 

 
0.270 0.997 0.424 0.081 1.000 

 
0.849 0.830 0.778 0.516 0.283 

 

 Ameboidal Type Cell 

Migration 
86 

p-value 0.254 0.758 0.332 0.057* 0.397 

 

0.009*** 0.731 0.016** 0.003*** 0.65 

 

0.235 0.766 0.374 0.069* 0.321 

 
q-value 0.850 0.952 0.743 0.337 0.373 

 
0.234 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.280 

 

 Negative Regulation Of 

Establishment Of Protein 

Localization 

147 p-value 0.002*** 0.212 0.019** 0.03** 0.667 

 

0.002*** 0.151 0.008*** 0.021** 0.084* 

 

0.003*** 0.207 0.021** 0.027** 0.666 

 

q-value 0.850 0.952 0.743 0.337 0.404 
 

0.182 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.319 

 

 Protein Localization To 

Chromosome 
36 

p-value 0.347 0.123 0.021** 0.008*** 0.339 

 

0.247 0.098* 0.014** 0.009*** 0.647 

 

0.424 0.099* 0.018** 0.008*** 0.267 

 

q-value 0.850 0.952 0.743 0.334 0.369 
 

0.326 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.280 

 

 Regulation Of Cellular 

Extravasation 
17 

p-value 0.178 0.869 0.184 0.024** 0.129 

 

0.006*** 0.928 0.016** 0.005*** 0.709 

 

0.183 0.864 0.23 0.047** 0.106 

 

q-value 0.850 0.952 0.743 0.337 0.352 
 

0.234 0.997 0.424 0.076 1.000 
 

0.849 0.831 0.778 0.516 0.269 

 

 Regulation Of 

Ryanodine Sensitive 

Calcium Release 

Channel Activity 

15 p-value 0.101 0.773 0.216 0.106 0.216 

 

0.003*** 0.569 0.007*** 0.022** 0.292 

 

#N/A 0.746 0.236 0.134 0.183 

 
q-value 0.850 0.952 0.743 0.353 0.355 

 
0.210 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Divalent Inorganic 

Cation Transport 
152 

p-value 0.177 0.78 0.2 0.025** 0.367 

 

0.023** 0.831 0.029** 0.001*** 0.924 

 

0.181 0.76 0.166 0.027** 0.277 

 
q-value 0.850 0.952 0.743 0.337 0.371 

 
0.264 0.997 0.424 0.050 1.000 

 
0.849 0.830 0.778 0.516 0.280 

                    

metabolic process 

                   

 

 Polysaccharide 16 p-value 0.057* 0.774 0.144 0.052* 0.251 

 

0.001*** 0.431 0.004*** 0.009*** 0.145 

 

0.051* 0.633 0.125 0.068* 0.237 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 

Catabolic Process 
q-value 0.850 0.952 0.743 0.337 0.361 

 
0.144 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.278 

 

 Cellular Carbohydrate 

Catabolic Process 
22 

p-value 0.128 0.951 0.217 0.038** 0.059* 

 

0*** 0.899 0.002*** 0.001*** 0.318 

 

0.14 0.944 0.245 0.061* 0.065* 

 

q-value 0.850 0.953 0.743 0.337 0.351 
 

0.000 0.997 0.424 0.050 1.000 
 

0.849 0.833 0.778 0.516 0.269 

 

 Gpi Anchor Metabolic 

Process 
28 

p-value 0.09* 0.898 0.123 0.032** 0.646 

 

0.012** 0.758 0.027** 0.008*** 0.356 

 

0.121 0.845 0.163 0.051* 0.545 

 

q-value 0.850 0.952 0.743 0.337 0.402 
 

0.234 0.997 0.424 0.085 1.000 
 

0.849 0.831 0.778 0.516 0.304 

 

 Alcohol Metabolic 

Process 
218 

p-value 0.7 0.057* 0.09* 0.119 0.003*** 

 

0.468 0.098* 0.047** 0.02** 0.468 

 

0.696 0.052* 0.103 0.178 

0.003**

* 

 
q-value 0.850 0.952 0.743 0.355 0.320 

 
0.367 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 
 Fucosylation 15 

p-value 0.176 0.606 0.062* 0.002*** 0.092* 

 

0.018** 0.787 0.008*** 0.001*** 0.885 

 

0.243 0.651 0.098* 0.014** 0.068* 

 
q-value 0.850 0.952 0.743 0.257 0.351 

 
0.264 0.997 0.424 0.050 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 
 Lipid Catabolic Process 137 

p-value 0.285 0.163 0.01** 0.001*** 0.937 

 

0.234 0.195 0.017** 0.01** 0.861 

 

0.355 0.196 0.028** 0.006*** 0.851 

 

q-value 0.850 0.952 0.743 0.257 0.453 
 

0.324 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.350 

 

 Ubiquitin Dependent 

Protein Catabolic 

Process Via The 

Multivesicular Body 

Sorting Pathway 

15 
p-value 0.624 0.515 0.333 0.119 0.071* 

 

0.062* 0.654 0.039** 0.008*** 0.88 

 

0.644 0.526 0.391 0.175 0.065* 

 
q-value 0.850 0.952 0.743 0.355 0.351 

 
0.280 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Regulation Of 

Autophasome Assembly 
30 

p-value 0.189 0.162 0.243 0.4 0.339 

 

0.002*** 0.075* 0.006*** 0.044** 0.047** 

 

0.146 0.12 0.182 0.468 0.278 

 
q-value 0.850 0.952 0.743 0.410 0.369 

 
0.182 0.997 0.424 0.087 1.000 

 
0.849 0.830 0.778 0.553 0.280 

 

 Protein O Linked 

Glycosylation 
62 

p-value 0.512 0.572 0.371 0.097* 0.125 

 

0.026** 0.637 0.02** 0.005*** 0.703 

 

0.551 0.523 0.409 0.133 0.135 

 
q-value 0.850 0.952 0.743 0.350 0.352 

 
0.264 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Regulation Of 

Gluconeogenesis 
31 

p-value 0.121 0.838 0.171 0.071* 0.383 

 

0.024** 0.821 0.049** 0.011** 0.42 

 

0.144 0.82 0.218 0.084* 0.372 

 
q-value 0.850 0.952 0.761 0.487 0.372 

 
0.390 0.997 0.514 0.152 1.000 

 
0.849 0.830 0.793 0.589 0.297 

 

 Multicellular 

Organismal 

Macromolecule 

Metabolic Process 

36 p-value 0.394 0.119 0.054* 0.019** 0.059* 

 

0.283 0.223 0.022** 0.008*** 0.619 

 

0.418 0.145 0.069* 0.036** 0.065* 

 

q-value 0.850 0.952 0.743 0.337 0.351 
 

0.332 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

                    

immune system process 

                   

 

 Negative Regulation Of 

Production Of Molecular 

Mediator Of Immune 

19 

p-value 0.258 0.392 0.097* 0.042** 0.06* 

 

0.034** 0.496 0.019** 0.005*** 0.986 

 

0.285 0.367 0.12 0.039** 0.063* 
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GS 
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SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 
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BP 
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DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 

Response 
q-value 0.850 0.952 0.743 0.337 0.351 

 
0.266 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Toll Like Receptor 

Signaling Pathway 
71 

p-value 0.151 0.739 0.046** 0.006*** 0.082* 

 

0.011** 0.669 0.005*** 0.002*** 0.712 

 

0.183 0.687 0.074* 0.013** 0.089* 

 

q-value 0.850 0.952 0.743 0.334 0.351 
 

0.234 0.997 0.424 0.065 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Regulation Of 

Megakaryocyte 

Differentiation 

20 
p-value 0.07* 0.825 0.087* 0.022** 0.536 

 

0.012** 0.762 0.023** 0.006*** 0.352 

 

0.087* 0.802 0.129 0.043** 0.425 

 

q-value 0.850 0.952 0.743 0.337 0.387 
 

0.234 0.997 0.424 0.081 1.000 
 

0.849 0.830 0.778 0.516 0.292 

 
 Positive T Cell Selection 17 

p-value 0.264 0.572 0.092* 0.009*** 0.2 

 

0.019** 0.739 0.011** 0.002*** 0.924 

 

0.274 0.653 0.117 0.024** 0.176 

 

q-value 0.850 0.952 0.743 0.334 0.355 
 

0.264 0.997 0.424 0.065 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Negative Regulation Of 

Myeloid Leukocyte 

Differentiation 

30 p-value 0.447 0.215 0.067* 0.018** 0.301 

 

0.121 0.349 0.022** 0.009*** 0.904 

 

0.467 0.208 0.079* 0.042** 0.263 

 
q-value 0.850 0.952 0.743 0.337 0.368 

 
0.302 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.279 

 

 Osteoclast 

Differentiation 
20 

p-value 0.739 0.126 0.109 0.044** 0.026** 

 

0.083* 0.271 0.017** 0.004*** 0.898 

 

0.768 0.171 0.142 0.088* 0.023** 

 
q-value 0.850 0.952 0.743 0.337 0.343 

 
0.289 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Negative Regulation Of 

Osteoclast 

Differentiation 

16 p-value 0.11 0.547 0.053* 0.007*** 0.718 

 

0.037** 0.69 0.021** 0.008*** 0.782 

 

0.111 0.575 0.063* 0.014** 0.544 

 

q-value 0.850 0.952 0.743 0.334 0.411 
 

0.268 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.304 

 

 Regulation Of 

Production Of Molecular 

Mediator Of Immune 

Response 

70 p-value 0.001*** 0.396 

0.009**

* 0.012** 0.868 

 

0*** 0.339 0.004*** 0.023** 0.211 

 

0.001*** 0.374 0.008*** 0.012** 0.942 

 
q-value 0.850 0.952 0.743 0.334 0.439 

 
0.000 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.367 

 

 Regulation Of B Cell 

Differentiation 
18 

p-value 0.236 0.552 0.119 0.013** 0.356 

 

0.057* 0.688 0.046** 0.013** 0.868 

 

0.257 0.622 0.136 0.035** 0.285 

 
q-value 0.850 0.952 0.743 0.334 0.370 

 
0.275 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.280 

                    

response to stimulus 

                   

 
 Response To Acid 

Chemical 200 

p-value 0.323 0.999 0.485 0.214 0.079* 

 

0.014** 0.966 0.023** 0.014** 0.226 

 

0.327 0.998 0.51 0.207 0.102 

 
q-value 0.850 0.960 0.743 0.369 0.351 

 
0.248 0.997 0.424 0.085 1.000 

 
0.849 0.845 0.778 0.517 0.269 

 

 Regulation Of 

Intracellular Estrogen 

Receptor Signaling 

Pathway 20 

p-value 0.072* 0.991 0.059* 0.013** 0.322 

 

0.012** 0.999 0.017** 0.004*** 0.507 

 

0.096* 0.974 0.083* 0.014** 0.314 

 

q-value 0.850 0.952 0.743 0.408 0.351 
 

0.369 0.997 0.492 0.165 1.000 
 

0.849 0.830 0.778 0.546 0.269 

 
 Response To Camp 62 

p-value 0.021** 0.536 0.052* 0.044** 0.559 

 

0.001*** 0.39 0.01** 0.02** 0.334 

 

0.018** 0.488 0.059* 0.053* 0.501 

 

q-value 0.850 0.952 0.743 0.337 0.391 
 

0.144 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.299 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 
 Detection Of Biotic 

Stimulus 18 

p-value 0.691 0.2 0.16 0.097* 0.018** 

 

0.128 0.327 0.02** 0.005*** 0.712 

 

0.644 0.221 0.234 0.112 0.016** 

 
q-value 0.850 0.952 0.743 0.350 0.343 

 
0.303 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 
 Detection Of Stimulus 141 

p-value 0.136 0.845 0.31 0.166 0.363 

 

0.002*** 0.771 0.015** 0.016** 0.648 

 

0.166 0.866 0.334 0.206 0.389 

 
q-value 0.850 0.952 0.743 0.362 0.371 

 
0.182 0.997 0.424 0.085 1.000 

 
0.849 0.831 0.778 0.517 0.288 

  Response To 

Gonadotropin 17 

p-value 0.091* 0.508 

0.006**

* 0.001*** 0.286 

 

0.01** 0.615 0.001*** 0*** 0.965 

 

0.136 0.524 0.015** 0.002*** 0.222 

 

q-value 0.850 0.952 0.743 0.257 0.366 
 

0.234 0.997 0.267 0.000 1.000 
 

0.849 0.830 0.778 0.516 0.276 

  Regulation Of Camp 

Metabolic Process 69 

p-value 0.082* 0.556 0.24 0.126 0.397 

 

0.007*** 0.33 0.022** 0.036** 0.099* 

 

0.072* 0.503 0.202 0.116 0.414 

 

q-value 0.850 0.952 0.743 0.355 0.373 
 

0.234 0.997 0.424 0.087 1.000 
 

0.849 0.830 0.778 0.516 0.291 

  Cellular Defense 

Response 45 

p-value 0.101 0.902 0.098* 0.012** 0.595 

 

0.032** 0.948 0.043** 0.016** 0.631 

 

0.121 0.893 0.125 0.026** 0.492 

 

q-value 0.850 0.952 0.743 0.334 0.395 
 

0.264 0.997 0.424 0.085 1.000 
 

0.849 0.831 0.778 0.516 0.298 

 
 Positive Chemotaxis 15 

p-value 0.116 0.262 0.015** 0.001*** 0.475 

 

0.211 0.218 0.028** 0.013** 0.893 

 

0.161 0.227 0.025** 0.006*** 0.468 

 

q-value 0.850 0.952 0.743 0.257 0.383 
 

0.321 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.297 

                    

cellular process 

                   
                    

cellular process: cell 

communication: cell-cell 

signaling 

                   

 

 Non Canonical Wnt 

Signaling Pathway 
104 

p-value 0.022** 0.603 0.052* 0.04** 0.278 

 

0.003*** 0.592 0.022** 0.018** 0.126 

 

0.034** 0.638 0.09* 0.055* 0.284 

 
q-value 0.850 0.952 0.743 0.337 0.364 

 
0.210 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.280 

 

 Excitatory Postsynaptic 

Potential 
15 

p-value 0.95 0.307 0.198 0.155 0.059* 

 

0.236 0.434 0.041** 0.014** 0.936 

 

0.968 0.257 0.234 0.198 0.044** 

 
q-value 0.856 0.952 0.743 0.359 0.351 

 
0.324 0.997 0.424 0.085 1.000 

 
0.858 0.830 0.778 0.517 0.269 

 

 Canonical Wnt 

Signaling Pathway 
55 

p-value 0.043** 0.763 0.039** 0.002*** 0.381 

 

0.027** 0.817 0.049** 0.011** 0.741 

 

0.052* 0.754 0.052* 0.017** 0.395 

 
q-value 0.850 0.952 0.743 0.257 0.372 

 
0.264 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.289 

 
 Signal Release 98 

p-value 0.622 0.246 0.094* 0.04** 0.115 

 

0.069* 0.489 0.024** 0.004*** 0.914 

 

0.625 0.324 0.145 0.06* 0.096* 

 
q-value 0.850 0.952 0.743 0.337 0.352 

 
0.281 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.269 

                    

cellular process: cell 

communication: signal 

transduction 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 

 Platelet Derived Growth 

Factor Receptor 

Signaling Pathway 

25 p-value 0.135 0.955 0.194 0.043** 0.161 

 

0.011** 0.927 0.021** 0.007*** 0.372 

 

0.123 0.956 0.211 0.044** 0.161 

 

q-value 0.850 0.952 0.759 0.417 0.355 
 

0.392 0.997 0.480 0.127 1.000 
 

0.849 0.830 0.794 0.546 0.269 

 

 Negative Regulation Of 

Erk1 And Erk2 Cascade 
39 p-value 0.276 0.473 0.492 0.437 0.136 

 

0.013** 0.305 0.038** 0.041** 0.284 

 

0.242 0.448 0.435 0.425 0.142 

 
q-value 0.850 0.952 0.743 0.417 0.355 

 
0.237 0.997 0.424 0.087 1.000 

 
0.849 0.830 0.778 0.545 0.269 

 

 Negative Regulation Of 

Signal Transduction In 

Absence Of Ligand 

22 p-value 0.46 0.448 0.245 0.091* 0.054* 

 

0.034** 0.734 0.033** 0.008*** 0.665 

 

0.397 0.481 0.298 0.112 0.05* 

 

q-value 0.850 0.952 0.743 0.346 0.351 
 

0.266 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Positive Regulation Of 

Erk1 And Erk2 Cascade 
106 

p-value 0.055* 0.852 0.062* 0.01** 0.159 

 

0.001*** 0.764 0*** 0.002*** 0.416 

 

0.064* 0.818 0.088* 0.026** 0.136 

 

q-value 0.850 0.952 0.743 0.334 0.355 
 

0.144 0.997 0.000 0.065 1.000 
 

0.849 0.830 0.778 0.516 0.269 

                    

cellular process: cellular 

metabolic process 

                   

 

 Phospholipid 

Dephosphorylation 
22 

p-value 0.031** 0.652 0.062* 0.029** 0.206 

 

0.008*** 0.564 0.024** 0.013** 0.197 

 

0.032** 0.603 0.085* 0.033** 0.21 

 

q-value 0.850 0.952 0.743 0.337 0.355 
 

0.234 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.273 

 

 Glutamate Metabolic 

Process 
20 

p-value 0.125 0.911 0.287 0.141 0.228 

 

0.015** 0.76 0.048** 0.033** 0.276 

 

0.118 0.907 0.284 0.114 0.209 

 

q-value 0.850 0.952 0.743 0.355 0.358 
 

0.259 0.997 0.424 0.087 1.000 
 

0.849 0.832 0.778 0.516 0.273 

 

 Ribonucleoside 

Triphosphate 

Biosynthetic Process 

42 p-value 0.212 0.223 0.367 0.375 0.164 

 

0.01** 0.173 0.035** 0.04** 0.172 

 

0.209 0.206 0.283 0.417 0.153 

 
q-value 0.850 0.952 0.743 0.403 0.355 

 
0.234 0.997 0.424 0.087 1.000 

 
0.849 0.830 0.778 0.544 0.269 

 

 Positive Regulation Of 

Phosphorus Metabolic 

Process 

659 p-value 0.15 0.334 0.028** 0.002*** 0.335 

 

0.067* 0.426 0.024** 0.003*** 0.244 

 

0.165 0.389 0.049** 0.006*** 0.369 

 

q-value 0.850 0.952 0.743 0.257 0.369 
 

0.281 0.997 0.424 0.076 1.000 
 

0.849 0.830 0.778 0.516 0.285 

 

 Telomere Maintenance 

Via Recombination 
25 

p-value 0.024** 0.329 0.067* 0.021** 0.04** 

 

0.002*** 0.423 0.003*** 0.001*** 0.634 

 

0.043** 0.359 0.128 0.033** 0.036** 

 

q-value 0.850 0.952 0.743 0.337 0.351 
 

0.182 0.997 0.424 0.050 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Positive Regulation Of 

Nucleotide Metabolic 

Process 

73 p-value 0.063* 0.84 0.085* 0.012** 0.501 

 

0.002*** 0.718 0.009*** 0.004*** 0.582 

 

0.071* 0.777 0.091* 0.015** 0.49 

 
q-value 0.850 0.952 0.743 0.334 0.385 

 
0.182 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.298 

 

 Negative Regulation Of 49 p-value 0.637 0.182 0.134 0.097* 0.037** 

 

0.17 0.243 0.048** 0.017** 0.799 

 

0.674 0.152 0.156 0.128 0.042** 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 

Dephosphorylation 
q-value 0.850 0.952 0.743 0.350 0.347 

 
0.314 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 
 Mrna Transcription 16 

p-value 0.056* 0.215 0.146 0.212 0.342 

 

0.001*** 0.151 0.007*** 0.023** 0.137 

 

0.066* 0.184 0.131 0.242 0.324 

 

q-value 0.850 0.952 0.743 0.369 0.369 
 

0.144 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.517 0.281 

 

 Positive Regulation Of 

Dephosphorylation 
33 

p-value 0.389 0.555 0.318 0.091* 0.136 

 

0.046** 0.918 0.049** 0.014** 0.674 

 

0.356 0.657 0.299 0.092* 0.146 

 

q-value 0.850 0.952 0.743 0.346 0.355 
 

0.268 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

                   

cellular process: cellular 

metabolic process: cellular 

macromolecule metabolic 

process: cellular protein 

metabolic process 

                  

 
 Histone Methylation 64 

p-value 0.157 0.94 0.131 0.017** 0.663 

 

0.029** 0.968 0.037** 0.001*** 0.94 

 

0.159 0.957 0.163 0.028** 0.604 

 

q-value 0.850 0.952 0.743 0.337 0.403 
 

0.264 0.997 0.424 0.050 1.000 
 

0.849 0.835 0.778 0.516 0.311 

 

 Histone 

Monoubiquitination 
20 

p-value 0.722 0.243 0.109 0.047** 0.21 

 

0.272 0.326 0.036** 0.011** 0.638 

 

0.774 0.279 0.173 0.103 0.148 

 

q-value 0.850 0.952 0.743 0.337 0.355 
 

0.328 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Protein 

Polyubiquitination 
204 

p-value 0.4 0.786 0.238 0.049** 0.099* 

 

0.026** 0.942 0.009*** 0.002*** 0.941 

 

0.411 0.789 0.292 0.066* 0.088* 

 

q-value 0.850 0.952 0.743 0.337 0.351 
 

0.264 0.997 0.424 0.065 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 

 Peptidyl Glutamic Acid 

Modification 
16 

p-value 0.022** 0.9 0.044** 0.013** 0.351 

 

0*** 0.804 0.003*** 0*** 0.381 

 

0.029** 0.908 0.048** 0.012** 0.304 

 

q-value 0.850 0.952 0.743 0.334 0.369 
 

0.000 0.997 0.424 0.000 1.000 
 

0.849 0.832 0.778 0.516 0.280 

 

 Protein 

Dephosphorylation 
138 

p-value 0.031** 0.735 0.088* 0.047** 0.907 

 

0.003*** 0.588 0.011** 0.016** 0.096* 

 

0.032** 0.721 0.086* 0.04** 0.874 

 

q-value 0.850 0.952 0.743 0.337 0.448 
 

0.210 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.354 

                   

cellular process: cellular 

response to stimulus 

                  

 

 Intrinsic Apoptotic 

Signaling Pathway In 

Response To Dna 

Damage 56 

p-value 0.441 0.214 0.109 0.036** 0.101 

 

0.08* 0.29 0.029** 0.004*** 0.601 

 

0.514 0.204 0.149 0.072* 0.066* 

 
q-value 0.850 0.952 0.743 0.337 0.351 

 
0.287 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.269 

  Nucleotide Excision 

Repair 103 

p-value 0.696 0.045** 0.055* 0.119 0.073* 

 

0.549 0.076* 0.037** 0.036** 0.417 

 

0.653 0.033** 0.063* 0.155 0.065* 

 
q-value 0.850 0.952 0.743 0.355 0.351 

 
0.379 0.997 0.424 0.087 1.000 

 
0.849 0.830 0.778 0.516 0.269 

  Positive Regulation Of 

Dna Repair 29 

p-value 0.316 0.171 0.053* 0.013** 0.177 

 

0.127 0.303 0.021** 0.008*** 0.986 

 

0.313 0.181 0.062* 0.027** 0.158 

 
q-value 0.850 0.952 0.743 0.334 0.355 

 
0.303 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.269 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 

 Regulation Of Response 

To Reactive Oxygen 

Species 28 

p-value 0.667 0.059* 0.016** 0.023** 0.23 

 

0.357 0.126 0.036** 0.015** 0.49 

 

0.698 0.078* 0.024** 0.028** 0.162 

 

q-value 0.850 0.952 0.743 0.337 0.358 
 

0.344 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 
 Cellular Response To 

Amino Acid Stimulus 37 

p-value 0.72 0.065* 0.063* 0.068* 0.052* 

 

0.226 0.123 0.029** 0.014** 0.601 

 

0.711 0.071* 0.09* 0.11 0.048** 

 

q-value 0.850 0.952 0.743 0.342 0.351 
 

0.324 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

                   

cellular process: cell 

differentiation 

                  

 

 Positive Regulation Of 

Fat Cell Differentiation 
27 

p-value 0.013** 0.702 0.045** 0.013** 0.087* 

 

0.019** 0.737 0.042** 0.02** 0.415 

 

0.027** 0.715 0.061* 0.017** 0.095* 

 

q-value 0.850 0.952 0.743 0.334 0.351 
 

0.264 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.269 

 
 Fat Cell Differentiation 74 

p-value 0.062* 0.561 0.165 0.143 0.589 

 

0.008*** 0.475 0.033** 0.035** 0.187 

 

0.066* 0.585 0.194 0.143 0.581 

 

q-value 0.850 0.952 0.743 0.356 0.394 
 

0.234 0.997 0.424 0.087 1.000 
 

0.849 0.830 0.778 0.516 0.308 

                   

cellular process: cell 

activation 

                  

 
 B Cell Activation 93 

p-value 0.019** 0.941 0.024** 0.002*** 0.656 

 

0.012** 0.897 0.031** 0.024** 0.847 

 

0.025** 0.877 0.022** 0.008*** 0.688 

 

q-value 0.850 0.952 0.743 0.257 0.402 
 

0.234 0.997 0.424 0.086 1.000 
 

0.849 0.831 0.778 0.516 0.321 

 

 Lipoprotein 

Biosynthetic Process 
68 

p-value 0.049** 0.805 0.068* 0.005*** 0.755 

 

0.014** 0.819 0.02** 0.009*** 0.46 

 

0.054* 0.782 0.073* 0.009*** 0.739 

 

q-value 0.850 0.952 0.743 0.334 0.419 
 

0.248 0.997 0.424 0.085 1.000 
 

0.849 0.830 0.778 0.516 0.329 

                   

cellular process: cell cycle 

                  

 

 Negative Regulation Of 

Mitotic Nuclear Division 
26 p-value 0.439 0.634 0.216 0.052* 0.078* 

 

0.038** 0.883 0.034** 0.002*** 0.737 

 

0.446 0.703 0.242 0.073* 0.067* 

 
q-value 0.850 0.952 0.743 0.337 0.351 

 
0.268 0.997 0.424 0.065 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Regulation Of Cell 

Cycle Phase Transition 
261 

p-value 0.185 0.32 0.087* 0.007*** 0.235 

 

0.043** 0.36 0.027** 0.008*** 0.531 

 

0.217 0.291 0.095* 0.009*** 0.235 

 
q-value 0.850 0.952 0.743 0.334 0.358 

 
0.268 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.278 

                   

cellular process: others 

                  

 

 Chaperone Mediated 

Protein Folding 
40 

p-value 0.019** 0.437 0.065* 0.051* 0.636 

 

0.004*** 0.417 0.035** 0.045** 0.185 

 

0.02** 0.421 0.061* 0.048** 0.592 

 
q-value 0.850 0.952 0.743 0.337 0.399 

 
0.223 0.997 0.424 0.087 1.000 

 
0.849 0.830 0.778 0.516 0.309 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 

 Positive Regulation Of 

Protein Oligomerization 
15 

p-value 0.149 0.799 0.272 0.068* 0.439 

 

0.009*** 0.653 0.031** 0.013** 0.402 

 

0.137 0.785 0.232 0.092* 0.443 

 
q-value 0.850 0.952 0.743 0.342 0.378 

 
0.234 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.293 

                    

cellular component 

organization or biogenesis 

                   

 
 Regulation Of Cell Size 117 

p-value 0.849 0.071* 0.054* 0.071* 0.188 

 

0.431 #N/A 0.037** 0.026** 0.669 

 

0.889 0.071* 0.072* 0.092* 0.118 

 
q-value 0.850 0.952 0.743 0.342 0.355 

 
0.360 0.997 0.424 0.086 1.000 

 
0.851 0.830 0.778 0.516 0.269 

 
 Membrane Invagination 24 

p-value 0.687 0.103 0.044** 0.032** 0.237 

 

0.26 0.16 0.026** 0.016** 0.692 

 

0.721 0.117 0.055* 0.051* 0.204 

 
q-value 0.850 0.952 0.743 0.337 0.358 

 
0.328 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.272 

 

 Positive Regulation Of 

Protein Polymerization 
64 

p-value 0.427 0.693 0.373 0.088* 0.174 

 

0.024** 0.746 0.035** 0.005*** 0.754 

 

0.441 0.702 0.391 0.131 0.159 

 
q-value 0.850 0.952 0.743 0.344 0.355 

 
0.264 0.997 0.424 0.076 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Lamellipodium 

Assembly 
21 

p-value 0.017** 0.815 0.021** 0.001*** 0.801 

 

0.017** 0.735 0.031** 0.001*** 0.655 

 

0.028** 0.754 0.026** 0.001*** 0.704 

 
q-value 0.850 0.952 0.743 0.257 0.425 

 
0.262 0.997 0.424 0.050 1.000 

 
0.849 0.830 0.778 0.516 0.325 

                    

biological regulation 

                   

 

 Regulation Of 

Monooxygenase Activity 
41 

p-value 0.186 0.488 0.102 0.019** 0.391 

 

0.029** 0.59 0.021** 0.007*** 0.676 

 

0.176 0.509 0.125 0.032** 0.38 

 
q-value 0.850 0.952 0.743 0.337 0.373 

 
0.264 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.287 

 

 Negative Regulation Of 

Nf Kappab Transcription 

Factor Activity 

47 p-value 0.03** 0.888 0.041** 0.004*** 0.985 

 

0.008*** 0.81 0.03** 0.004*** 0.379 

 

0.032** 0.841 0.069* 0.011** 0.971 

 

q-value 0.850 0.952 0.743 0.316 0.464 
 

0.234 0.997 0.424 0.076 1.000 
 

0.849 0.831 0.778 0.516 0.374 

 

 Endoplasmic Reticulum 

Calcium Ion 

Homeostasis 

17 p-value 0.14 0.892 0.138 0.024** 0.449 

 

0.012** 0.879 0.021** 0.005*** 0.56 

 

0.159 0.862 0.169 0.048** 0.459 

 
q-value 0.850 0.952 0.743 0.337 0.379 

 
0.234 0.997 0.424 0.076 1.000 

 
0.849 0.831 0.778 0.516 0.295 

 

 Regulation Of Heart 

Rate By Cardiac 

Conduction 

15 p-value 0.135 0.867 0.113 0.026** 0.117 

 

0.012** 0.972 0.023** 0.002*** 0.874 

 

0.145 0.879 0.154 0.044** 0.12 

 

q-value 0.850 0.952 0.743 0.337 0.352 
 

0.234 0.997 0.424 0.065 1.000 
 

0.849 0.831 0.778 0.516 0.269 

 

 Cardiac Muscle Cell 

Action Potential 
17 

p-value 0.084* 0.742 0.057* 0.01** 0.339 

 

0.015** 0.712 0.021** 0.003*** 0.508 

 

0.091* 0.722 0.082* 0.015** 0.382 

 

q-value 0.850 0.952 0.743 0.334 0.369 
 

0.259 0.997 0.424 0.076 1.000 
 

0.849 0.830 0.778 0.516 0.287 

                    

multicellular organismal 

process 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 

 Regulation Of Tumor 

Necrosis Factor 

Superfamily Cytokine 

Production 

83 p-value 0.163 0.874 0.189 0.044** 0.65 

 

0.027** 0.914 0.046** 0.014** 0.707 

 

0.14 0.869 0.215 0.054* 0.512 

 

q-value 0.850 0.952 0.743 0.337 0.402 
 

0.264 0.997 0.424 0.085 1.000 
 

0.849 0.831 0.778 0.516 0.300 

 

 Positive Regulation Of 

Type I Interferon 

Production 

64 p-value 0.87 0.166 0.129 0.075* 0.128 

 

0.169 0.427 0.044** 0.007*** 0.993 

 

0.88 0.265 0.166 0.126 0.083* 

 
q-value 0.850 0.952 0.743 0.342 0.352 

 
0.314 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.269 

 

 Regulation Of Tumor 

Necrosis Factor 

Biosynthetic Process 

15 p-value 0.371 0.23 0.036** 0.003*** 0.504 

 

0.06* 0.23 0.013** 0*** 0.361 

 

0.427 0.233 0.06* 0.015** 0.445 

 

q-value 0.850 0.952 0.743 0.316 0.386 
 

0.279 0.997 0.424 0.000 1.000 
 

0.849 0.830 0.778 0.516 0.293 

 
 Fertilization 73 

p-value 0.175 0.98 0.203 0.065* 0.197 

 

0.007*** 0.978 0.014** 0.003*** 0.632 

 

0.185 0.989 0.24 0.076* 0.211 

 

q-value 0.850 0.957 0.743 0.341 0.355 
 

0.234 0.997 0.424 0.076 1.000 
 

0.849 0.841 0.778 0.516 0.273 

 

 Negative Regulation Of 

Endothelial Cell 

Migration 

25 p-value 0.196 0.83 0.299 0.071* 0.131 

 

0.011** 0.86 0.019** 0.005*** 0.749 

 

0.186 0.853 0.308 0.096* 0.153 

 
q-value 0.850 0.952 0.743 0.342 0.354 

 
0.234 0.997 0.424 0.076 1.000 

 
0.849 0.831 0.778 0.516 0.269 

                    

multicellular organismal 

process: system process 

                   

 

 Sensory Perception Of 

Mechanical Stimulus 
75 

p-value 0.079* 0.513 0.193 0.107 0.211 

 

0.004*** 0.329 0.015** 0.019** 0.215 

 

0.086* 0.488 0.204 0.11 0.256 

 
q-value 0.850 0.952 0.743 0.353 0.355 

 
0.223 0.997 0.424 0.085 1.000 

 
0.849 0.830 0.778 0.516 0.279 

 

 Positive Regulation Of 

Smooth Muscle 

Contraction 

18 p-value 0.042** 0.566 0.138 0.071* 0.76 

 

0.004*** 0.286 0.009*** 0.037** 0.06* 

 

0.054* 0.471 0.135 0.059* 0.698 

 

q-value 0.850 0.952 0.743 0.342 0.419 
 

0.223 0.997 0.424 0.087 1.000 
 

0.849 0.830 0.778 0.516 0.323 

 

 Regulation Of Vascular 

Permeability 
19 

p-value 0.638 0.102 0.046** 0.012** 0.503 

 

0.32 0.14 0.038** 0.018** 0.594 

 

0.668 0.127 0.057* 0.028** 0.422 

 

q-value 0.850 0.952 0.743 0.359 0.369 
 

0.364 0.997 0.432 0.093 1.000 
 

0.849 0.830 0.778 0.517 0.280 

                    

multi-organism process 

                   

 
 Response To Protozoan 17 

p-value 0.051* 0.606 0.144 0.144 0.291 

 

0.004*** 0.514 0.017** 0.036** 0.102 

 

0.07* 0.578 0.188 0.188 0.24 

 

q-value 0.850 0.952 0.743 0.356 0.367 
 

0.223 0.997 0.424 0.087 1.000 
 

0.849 0.830 0.778 0.516 0.279 

 

 Negative Regulation Of 

Multi Organism Process 
107 

p-value 0.005*** 0.482 0.035** 0.027** 0.681 

 

0.001*** 0.369 0.002*** 0.004*** 0.08* 

 

0.014** 0.468 0.032** 0.032** 0.63 
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GS 

size 

 adjusted for Smoking Status   Adjusted for Antihypertensive Medication   No Adjustment 

  

  
SBP DBP 

SBP&

DBP  

SBP-

DBP HTN   SBP DBP 

SBP&D

BP 

SBP-

DBP HTN   SBP DBP 

DBP&S

BP 

SBP-

DBP HTN 

 

q-value 0.850 0.952 0.743 0.337 0.405 
 

0.144 0.997 0.424 0.076 1.000 
 

0.849 0.830 0.778 0.516 0.314 

 
 Response To Fungus 31 

p-value 0.726 0.255 0.093* 0.048** 0.154 

 

0.112 0.52 0.029** 0.005*** 0.984 

 

0.713 0.304 0.138 0.061* 0.119 

 

q-value 0.850 0.952 0.743 0.337 0.355 
 

0.299 0.997 0.424 0.076 1.000 
 

0.849 0.830 0.778 0.516 0.269 

                    

others 

                   

 

 Positive Regulation Of 

Cell Matrix Adhesion 
24 

p-value 0.126 0.918 0.205 0.061* 0.242 

 

0.023** 0.913 0.041** 0.011** 0.711 

 

0.162 0.904 0.214 0.089* 0.233 

 

q-value 0.850 0.952 0.743 0.337 0.358 
 

0.264 0.997 0.424 0.085 1.000 
 

0.849 0.832 0.778 0.516 0.277 

 

 Regulation Of Cation 

Transmembrane 

Transport 

118 p-value 0.371 0.503 0.099* 0.017** 0.107 

 

0.027** 0.798 0.014** 0.001*** 0.998 

 

0.374 0.569 0.117 0.037** 0.106 

  q-value 0.856 0.952 0.754 0.443 0.351   0.356 0.997 0.432 0.093 1.000   0.858 0.830 0.790 0.572 0.269 

 

*Significance level of 0.1 

**Significant level of 0.05 

***Significance level of 0.001 

† The multiple analysis of systolic and diastolic blood pressure measurements 

‡The pulse pressure: difference between systolic and diastolic blood pressure values 
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Regulation of Smooth Muscle Contraction by signal transduction 

Recent developments in blood pressure studies have highlighted the importance of the 

regulation of vascular smooth muscle contraction and vascular tone on regulation of blood 

pressure.  The young blood vessels are contractible and plastic and  as people age, they become 

synthetic and less contractible in response to  proinflammatory stimuli, diet or other 

factors[132–134]. 

The significant pathways negative and positive regulation of ERK1 and ERK2 cascade, 

negative and positive regulation of dephosphorylation, protein dephosphorylation, actin 

binding, response to camp may reveal some biological processes behind the regulation of 

vascular smooth cell and its subsequent effect on blood pressure regulation. Previous studies 

have detected significant roles of these pathways and other related pathways in regulation of 

vascular smooth muscle contraction[135,136]. Brozovich et al. [137]provided a thorough 

description of these roles. 

 

Regulation of Smooth Muscle Contraction by epigenetic mechanism 

Epigenetic mechanism refers to heritable changes of gene expression which are not related to 

the genome sequence [138]. These mechanisms may contribute in changing plasticity of 

vascular smooth muscle by either altering the accessibility of transcription factors at DNA 

regulatory regions or changing the genetic translations [139]. Our study identified histone 

methylation as a significant pathway to alter accessibility of transcription factors by changing 

chromatin packaging of the cells. Also, significant pathways messenger RNA transcription, 

basal transcription machinery binding, transcription cofactor binding and damaged DNA 
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binding may reveal more epigenetic mechanisms causing differential transcription of smooth 

muscle cell. 

 

Cell-cell Signalling: WNT Signaling 

Non-canonical and canonical WNT pathways were found to be associated with trajectories 

of pulse pressure and multiple outcome of SBP and DBP. Massive literature has supported the 

association between WNT pathway and hypertension. The study of these pathways has been 

motivated by heterogeneity of hypertensive patient population in response to antihypertensive 

medications. Patients with type 2 diabetes mellitus responded poorly to the treatment compared 

to others.   

Many Genome Wide Association Studies (GWAS) suggest the association between 

hypertension and WNT3 that encodes a canonical WNT ligand and SOX proteins which interact 

with b-catenin and modulate the transcription of WNT-target genes [140–143]. In experiments, 

mice infused with angiotensin II have been diagnosed with activated b-catenin and proliferated 

vascular smooth muscle contraction. The other line of evidences supporting this relationship is 

the association of neurolocal regulation of blood pressure with interaction of insulin and WNT 

signaling [144]. 

 

 DNA Damage and Genomic Instability 

The association between age and development of cardiovascular diseases and hypertension 

can be explained by pathways related to DNA damage and repair. This result is in agreement 

with our earlier observation that biological processes of intrinsic apoptotic signaling pathway in 

response to DNA damage, nucleotide excision repair, positive regulation of DNA repair and 



86 

 

regulation of response to reactive oxygen species (ROS) are significantly associated with blood 

pressure trajectory over time. Below, there is a description of how these pathways collaborate to 

develop hypertension. 

DNA is damaged by exposure to exogenous and endogenous agents, such as smoking and 

diabetes mellitus. Aging leads to prolonged exposure, accumulation of DNA damages and 

elevated production of ROS at the molecular level. In order to preserve genomic stability under 

ROS-induced stress, multiple pathways to repair or respond to the presence of DNA damage are 

employed by the cell and their functions may overlap, compromise or exceed the capability to 

repair DNA. A defective DNA repair system leads to genomic instability and can accelerate 

development of vascular problems, such as increased blood pressure, increased vascular 

stiffness and decreased vascular relaxation [145] Also, multiple lines of evidence have 

suggested the direct or indirect effect of increased ROS on hypertension incidence, affecting 

blood vessels (contraction, relaxation and growth), heart, kidney[146] and nervous system 

functions[147]. This path of investigation can promote antioxidant therapies and production of 

drugs enhancing genomic integrity. 

 

Nervous system development: Pituitary development and ventral spinal cord development 

Blood pressure changes can be related to nervous system development. In our study, we 

found pituitary development as a significant pathway affecting the pulse pressure and 

SBP&DBP trajectories. Endocrine hypertension, a special type of hypertension, is caused by 

the pituitary or adrenal gland producing too much or not enough of the hormones [148,149]. 

Secretion of Antidiuretic hormone (vasopressin) by pituitary gland plays an important role in 

water retention in kidneys and controlling blood pressure.  Furthermore, the imbalanced 
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influence of the posterior and interior parts of pituitary gland is known to increase blood 

pressure [150]. 

The other significant nervous-system-related pathway in this study is spinal cord 

development. Higher prevalence of hypertension among patients with spinal cord injury as a 

result of the interruption in the autonomic nervous pathways supports our finding. Reduction in 

autonomic cardiovascular control of hypertension explains this result [151]. 

  

Heart and Blood Vessel Development 

Our results are consistent with the significant influence of cardiac chamber development, 

coronary vasculature development, embryonic heart tube development, embryonic heart tube 

morphogenesis and blood vessel morphogenesis pathways on blood pressure trajectories.  

The extra load on thin wall chamber or tube caused by increased blood pressure is 

normalized by an increase in wall thickness and/or by a reduction in chamber/lumen diameter. 

More specifically, left ventricle adopts its structure in response to imposed stress through 

remodelling or hypertrophy[152]. At the cellular level, cardiac gene expressions are altered in 

response to stress stimulus[153]. 

Overall, this study illustrated the application of LLCT on gene expression data measured on 

related and unrelated subjects. This was the first attempt to analyze gene sets when the blood 

pressure is repeatedly measured, and the dataset is clustered by families. Analysis at the gene 

set level improves interpretability of findings. Incorporating repeated measurements of outcome 

over time enables us to investigate the temporal progression of phenotype over time. These 

studies provide the opportunity to investigate genomics under an important assumption: the 

effects of the genes contributing to the underlying phenotype are persistent over time.  Also, the 

potential genetic and environmental covariates are better controlled via longitudinal study 
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design. The family-based structure of data decreases heterogeneity leading to more precise 

investigations. The previous works in GAW19 never had these three features together. 

Although this study is unique in its kind, our findings have been shown to be mostly consistent 

with those of experimental or GWAS studies. However, we recognize that our study may not 

present the best set of pathways involved in blood pressure development because of the 

following limitations. The first limitation is very common among genomic studies. A single 

significant gene may lead to the significance of the whole pathway. Second, although we 

adjusted for anti-hypertensive intake and smoking status, there are many other uncontrolled 

covariates, such as diet, stress, physical activity [154]. Lack of availability of informative 

covariates such as behavioral recommendations that accompany medical prescriptions has also 

been mentioned as a general limitation of GAW19 studies in the summary provided by Chiu et 

al[155]. 

 

3.5 Discussion 

The interest in temporal patterns of change in the patients’ conditions is becoming 

increasingly popular, as it explains the complexity of biological systems. Longitudinal studies 

provide a possibility to study individual development of an outcome over time. They advance 

our understanding of disease progression or phenotype trajectory. Through longitudinal studies, 

the development of other variables can also be examined as determinants of the outcome 

trajectories. Therefore, incorporating longitudinal designs in genetic studies enable examination 

of genetic variants that affect phenotypes over time [155,156].  Moreover, longitudinal studies 

are more reliable as the subjects are closely followed up and the onset of the events is precisely 
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observed [155]. Obviously, there is higher certainty behind the existence of an effect that is 

detected to be continuously significant over time in the presence of many uncontrolled or 

unmeasured time-dependent covariates than an effect which is observed once. In other words, 

multiple measurements and significant trajectory over time provide more reliable evidence than 

what a single time point measurement and a cross-sectional effect can provide. Adding family 

structure to the study design weighs more this reliability by detecting a significant genetic effect 

in a family rather than an individual.  

The main purpose of the current study was to develop a statistical method for high-

dimensional data able to analyze repeatedly-measured outcomes and covariates. This method 

offers many interesting flexibilities to the analysis. It allows adjusting for potentially t ime-

dependent covariates. While genetics and environment always interact to shape the phenotype, 

the result of genetics studies may be biased without taking the environmental factors into 

account. It also incorporates gene-gene correlations within a gene set into the test statistic. A 

very common drawback of many available GSA methods is the lack of ability to accommodate 

between-gene correlation.  In addition, LLCT is a self-contained method proven to be powerful 

and computationally efficient compared to existing methods. This method can be applied to 

different classes of phenotypes, such as continuous, binary or categorical phenotype if an 

appropriate model is defined in the first stage. Furthermore, it is applicable to both unbalanced 

and incomplete data. In longitudinal studies, it is quite common that some subjects are lost to 

follow up. The evidence from the simulation study suggests higher power of LLCT in 

comparison to existing method, PAVR [29]. Aside from higher power of LLCT, there are two 

critical features that discriminate these two methods. First, LLCT is computationally far more 

efficient. Compared to LLCT, the run time is about 70 times longer for PAVR. For the same 

reason, we could not design a large simulation for evaluation of PAVR.  Second, PAVR is 
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unable to test the interaction of time and covariate over time and it only tests the covariate 

effect. The interaction of time and covariate indicates if the covariate’s effect varies over time 

and it is known as the most critical parameter of longitudinal analysis. Without considering this 

parameter, the longitudinal study resembles a cross-sectional study that takes advantage of 

multiple measurements for gaining higher accuracy of measurements.  Our simulation study 

also showed that the power, and therefore the required sample size, is dependent on the gene set 

size and the within-gene-set correlation and it is independent on the number of repeated 

measurements and within-subjects correlation. Significance of a lower heterogeneity within a 

larger gene set can be achieved with a smaller sample.   

Despite the strengths mentioned above, there are few limitations for this method that need to 

be considered. Our method dealing with longitudinal phenotype is unable to adjust for time-

independent covariates. Including time-independent covariates in the second step of the method 

may result in misleading findings. As a self-contained method, LCT would identify a set as 

significant even if a small number of genes, or even if one single gene is associated with the 

phenotype. One way to address this limitation is to consider reducing the significant sets to their 

core members.  In time-course microarray data analysis, this method can identify the gene sets 

which are differentially expressed over time in association with a set of covariates. However, 

our method is unable to distinguish the individual covariates responsible for this difference, 

unless we include one covariate at a time. 

LLCT was applied to GAW19 data. As noted earlier, GAW19 has been analyzed before. 

However, significant differences across various methods used prevented a meaningful 

comparison of the results. There are four pedigree-based GAW19 studies exploring the 

association between phenotype and gene expressions via different methods: linear mixed 

models, nonparametric weighted U statistics, structural equation modeling, Bayesian unified 
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frameworks, and multiple regression. However, their results cannot be compared with ours. 

Here are the differences between our approach and theirs: 1. They incorporated the information 

of rare variants into their analysis 2. They did not include the priori information of gene 

pathways. 3. They did not take the longitudinal pattern of the phenotype into the account. There 

are seven GAW19 pathway-based analysis, three of which explored gene expression data[157]. 

There are three GAW19 studies with longitudinal analytical approaches, all of them examining 

genetic variants[155]. The longitudinal studies used generalized estimating equations (GEEs), 

latent class growth modeling (LCGM), linear mixed-effect (LME), and variance components 

(VC) in their analysis. Among all these studies, the study of Ziyatdinov et al. which is a gene 

ontology pathway and family-based enrichment analysis of gene-expression data came closest 

to the current study, but it is unpublished at the time of submission of this work. They used 

linear mixed models. GAW19 studies acknowledged higher power of longitudinal methods in 

detecting genetic effects, decreased trait heterogeneity and smaller standard error of effect 

estimates[155]. Also, they recognized identification of unique genetic-related trajectories of 

disease progression missed by the previous studies. 

 

3.6 Conclusion 

LLCT method can be used for analysis of complex genetic studies and may result in better 

reproducibility across studies. LLCT can be applied to a wide range of longitudinal genomics, 

transcriptomics, proteomics, metabolomics and microbiota data. A very important application 

of LLCT is to link omics over time, the approach that has been emphasized by recent studies for 

gaining better understanding of complex biological process. Linkage of omics over time 

requires a method that can handle large scale outcomes and predictors datasets, simultaneously, 
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which cannot be accommodated by most methods.  Therefore, we think that our method had the 

potential to contribute efficiently in the future progression of genetic science.  
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Chapter 4 

Discussion 

 

4.1 The demand for Novel Statistical Methods 

Complex study designs are crucial for answering complex biomedical and public health 

questions. The shift from classic toward advanced designs is particularly necessary for the 

studies with a background of heterogeneous findings, such as genetics. As a result, genetic 

researchers, today, focus on more complicated study designs such as pedigree-based or time-

course studies. Examining the network of omics associations rather than evaluating each omics 

separately has received increased attention in recent genetic literature, as it improves our grasp 

of biological systems and may lead to development of personalized health care models. 

However, generating knowledge from these types of studies is not possible unless technology 

and statistical methodology are keeping up with the latest advances in study designs.  

System biology investigations, and more specifically integration studies, require statistical 

methodology accommodating the challenging structure of the data. Omics are mostly measured 

on a continuous scale and they are collected in large numbers. Omics related to a specific 

biological pathway are correlated and therefore, the approach employed in GSA methods is 

more advantageous. as Although popular, GSEA does not address analytical challenges for 

linking omics data.  Most importantly, GSEA cannot accommodate multiple, continuous 

phenotypes.  GSEA is unable to detect a significant gene set consisting of multiple correlated 

genes, with weak to moderate correlations with the outcome[25].  Also, a gene set consisting of 
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genes whose expressions are not associated with the phenotype, is many times called as 

significant by GSEA, mostly due to the correlations of genes across the set. GSEA performance 

depends on the gene set size. The enrichment score of a larger gene set is always higher than 

the smaller one with a similar correlation ranking[87]. GSEA tends to cancel out positive and 

negative gene-phenotype associations, resulting in a small enrichment score and large, non-

significant p-values. This is true for biological pathway with feedback loops. GSEA fails to 

identify such pathways as significant. With respect to the classification of competitive or self-

contained, GSEA is a combination between the two approached, a hybrid method. Therefore, it 

is susceptible to important deficiencies of a competitive approach, such as subjectivity and 

relying on the untenable assumption of independence of genes across a set, as well as 

significance of a gene set depending on genes outside the set.      

Many high-dimensional data analyses have been proposed. However, most of them are not 

designed for fitting the complex structure of integrated omics, especially within and between 

omics correlations. Many of the high dimensional existing methods suffer from computational 

efficiency and/or lack of inferential analysis. A collection of these methods was reviewed by 

Huang et al.[158], emphasizing the need for developing methods with the ability to consider the 

interactive relationship among different omics layers.  LASSO, as the most popular method in 

dimension reduction, applicable to multivariate response analysis, primarily assumes no 

association among predictors and among dependent variables. In addition, LASSO suffers from 

two other noteworthy limitations. First, when genes are not performing independently, and they 

are linked via a genomic pathway, LASSO tends to randomly select one gene from each 

correlated pathway. Second, when the number of genes is larger than the sample size, the 
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largest number of genes selected by LASSO does not exceed the sample size. Given these 

limitations, the false negatives may be overrepresented in the findings[159].  

LCT is suggested by this thesis as a suitable approach for analysis of omics linkage because 

of the following reasons. LCT is a self-contained GSA method. As such, it considers the gene-

gene correlations within a gene set. Taking advantage of shrinkage method, LCT deals with the 

high dimensionality of the data and maintains a reasonable computational efficiency. LCT 

handles a combination of positive and negative associations by assigning optimal gene-specific 

weights. LCT is unique in case of omics linkage analysis, when the numbers of measurements 

for both omics are large. 

It is now recognized that genetic studies benefit from longitudinal designs. The observation 

of temporal associations of omics-omics or omics-phenotype enhances our understanding about 

underlying biological processes.  Through examination of the temporal associations, the 

findings from genetic studies are expected to achieve more consistency. LLCT is proposed here 

as an efficient analytical tool to identify the genes whose differential expressions lead to 

different temporal pattern of phenotype variations.  LLCT is able to adjust for environmental 

variables affecting the temporal variations of the phenotype, leading to more accurate 

interpretations. LLCT takes care of the longitudinal correlation structure of the data, as shown 

in the simulation study.  Changing the main elements of the longitudinal design, such as 

number of repeated measurements, and within-subject correlations, did not affect the 

performance of LLCT. Larger sample size, larger gene set and greater within-gene-set 

correlation increased LLCT power.  
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LLCT is a two-step method, modelling within-subject variation at the first step, followed by 

testing the between-subject variation at the second step. On the grounds of the unique flexibility 

of LCT in dealing with different complexities within a dataset and failure of other GSA 

methods to satisfy the requirements of this data structure, we selected LCT for the second step 

of our proposed method. The main idea of LLCT is derived from mixed effect models, which 

can be regarded as a two-step regression modeling of within and between subject variations. 

Alternatives to LCT in the second step were extension of SAM-GS to continuous  phenotype 

[29] and Global Test[12], the self-contained GSA methods able to work with continuous 

phenotypes. However, LCT is a more powerful method compared to its alternatives[160]. 

In our simulation study, we compared the performance of LCT with that of PAVR method, 

proposed for uncensored dependent variables[29]. To the best of our knowledge, PAVR is the 

only method in the literature that can be applied to longitudinal phenotype. PAVR performed 

poorly when dealing with small sample size large number of repeated measurements, and low 

within-gene-set correlation.  LCT shows a reasonable performance in all these scenarios. Aside 

from the lower power of PAVR, a critical drawback of this method is that it assumes that the 

effects of gene expressions remain constant over time.  In other words, it does not allow the 

gene and time effect interaction. However, LLCT can detect differential temporal patterns of 

phenotype in association with differentially expressed genes, which is aligned to the objectives 

of longitudinal designs.  

Another feature improving consistency of findings among genetic studies, is measuring 

multiple members of a family. Lower heterogeneity of pedigree-based genetic data improves 

the analysis power. However, since the subjects related to a family are correlated, the analysis is 

challenging. Our proposed method is able to deal with this additional correlation structure 
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imposed by this study design. We used multiple measurements from the same family to find 

family-specific trend of phenotype, which obliviously provides more accurate estimation of the 

temporal patterns, by diminishing the between-subject variations. 

Simultaneous variation of omics and phenotypes is the subject of investigation in many 

genetic studies and was recognized to provide more knowledge about the underlying temporal 

biological process. The measurements of thousands of genes repeatedly over time, although 

possible by the advances of technology, are expensive. Thus, the sample size in these studies is 

usually very small. There is an intensive literature developing methods for time-course 

microarray data analysis. However, as reviewed in introduction section, existing methods are 

mostly defined to analyze binary or multiple discrete conditions and, therefore, are unable to 

examine the phenotypes measured on a continuous scale. Dichotomizing a continuous variable 

is discouraged by statisticians because of loss of information. The extension of LLCT for 

analysis of time-course omics data may play an important role in identifying genes 

differentially expressed over time in association with a continuous phenotype, such as blood 

pressure or cholesterol level.  

 

4.2 Strengths 

There are several noteworthy strengths of LCT method as applied to omics linkage. The 

omics data are measured on a continuous scale. Dichotomization of continuous variables to 

satisfy the requirements of a specific statistical method may be misleading, no matter how 

reliable the classification method is. Therefore, investigators of omics linkage should take 

advantages of methods able to accommodate continuous variables. LCT is able to analyze 
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continuous omics data. LCT is a powerful and computationally efficient method. In a 

simulation study conducted by Dinu et al., LCT outperformed SAM-GS (extended for 

continuous variables) and Global Test, in terms of power. The omics data are correlated within 

biological pathways. Ignoring this correlation structure may inflate type I error. As such, the 

GSA methods taking into the account the correlation within a priori defined genes are 

advantageous. Competitive methods are sensitive to genes outside the set of interest. LCT 

works on the genes within the set of interest. LCT is able to detect cumulative weak to 

moderate effects of two or multiple omics, a scenario where competitive methods fail.  

LLCT provides a unique tool in analysis of longitudinal phenotype of omics data. Phenotype 

dynamic may be influenced by environmental factors. The first step of LLCT allows adjusting 

for time-dependent covariates who may affect the variation of phenotype over time. LLCT is 

applicable in the presence of non-linear temporal patterns. If the temporal pattern of gene 

expressions or phenotypes is non-linear and a slope does not explain all the variations, a 

polynomial model in the first step should be used. In the case polynomial models fail to indicate 

the variations, spline models should be employed in the first step of LLCT[30]. However, these 

modifications require a larger sample size. LLCT is a GSA method and therefore evaluates the 

association between a given phenotype trajectory and the set of genes sharing a biological 

function. LLCT assumes that the genes within a gene set are correlated, a crucial assumption in 

analysis at gene set level. LLCT is a self-contained method testing the null hypothesis of “No 

gene within a given gene set is differentially expressed in association with different trajectories 

of a phenotype”. Thus, the results of LLCT on a certain gene set are not influenced by 

alterations to the collections of gene sets in the study. LLCT is computationally very efficient 

compared to existing methods. In our simulation analysis, we observed that it takes 70 times 
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longer for PAVR to run a single test, compared to LCT. LLCT can be applied to a variety of 

phenotypes, given an appropriate model is used in the first step. A considerable proportion of 

longitudinal observations are usually missing. This calls for statistical methods that can deal 

with missing values. LLCT is applicable to both unbalanced and incomplete dataset. When an 

observation is missing, the other observations related to the corresponding subject still 

contribute to the analysis. A reasonable power of LLCT was observed in our simulation study. 

LLCT does not perform poorly when the sample size and gene set sizes are small. LLCT 

performance remains robust by changing the number of repeated measurements and within-

subject correlation, indicating its ability to take care of the longitudinal structure of the data. 

LLCT is able to incorporate family-based structure of data into the analysis. Family-based data 

imposes a complicated correlation structure into the data, which is addressed in the first step of 

our proposed method.  

 

4.3 Limitations 

Despite all the strengths of our proposed methods, we identified two important limitations 

discussed below.  

Firstly, not all the genes within a significant gene set may contribute to its significance. 

Identification of a subset of genes that actually drive the significant association with the 

phenotypes improves our understanding of the biological system.  Vatanpour et al. 

[105]proposed Linear Combination Test for Gene Set Reduction (LCT-GSR) method to find a 

core gene set for a continuous phenotype. A significant gene set identified by LCT undergoes a 

secondary analysis.  SAM is used to reduce the set to its core subset, by eliminating the 
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redundant genes. LLCT can take advantage of this method to find the core gene sets 

significantly associated with the different temporal patterns of phenotype.  

The second limitation is that time-independent covariates such as gender may confound the 

association between genes and the phenotype behaviour over time. In other words, the between-

subject variations may be partially explained by subject-variant covariates. LLCT cannot adjust 

for such effects. The same limitation applies when analyzing family-based data. The family-

dependent covariates may alter the gene-phenotype associations. 

 

4.4 Conclusions and Public Health Implications 

Lack of replication among genetic studies is widely observed. Incorporation of complex 

designs in genetic studies should improve consistency of the findings, by lowering potential 

epidemiological errors and analytical biases. Lack of appropriate statistical methods 

discourages investigators to benefit from these designs[161]. Consequently, complex designs 

accompanied by reliable statistical methods help generating better results and contribute to 

changes of clinical practices and enhancement of screening, preventive and therapeutic clinical 

outcomes. The statistical approaches proposed in this thesis facilitate the analysis of family-

based and longitudinal omics data.  

Integration of multiple omics data allowing molecular profiling of subjects helps 

development of personalized medical care. When human genome is regulated at multiple levels, 

examination of single omics provides limited information regarding the etiology of diseases. 
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A genetic study may benefit from family-based design by gaining higher quality assurance 

of data collection[162], boosting the motivation of participants when their family members are 

enrolling[163] and minimizing the effects of unmeasured subject-related confounders[164]. 

Longitudinal design monitors the process of disease development allowing for 

measurements of time-dependent covariates and increasing quality assurance by repeated 

measurements of subjects. This design allows for an increased understanding of the biological 

systems underlying progression of a disease.  

 

4.5 Future Directions 

 

The needs for practicing complex study designs in order to enhance the precision of findings 

have been highlighted by many researchers. Biotatisticians and bioinformaticians have 

developed sound methods for advanced study designs in the past two decades. In spite of 

availability of some review papers classifying and explaining these methods for time-course 

microarray data analysis, microbiota data analysis and omics integrative analysis, there are very 

few papers comparing the methods via simulation analyses and providing the researchers with a 

guide to indicate the situations where each method best applies. Therefore, future high-

throughput data investigations may benefit from simulation-based reviews of the methodology. 

Otherwise, the attempts toward generating the high-quality knowledge may be wasted. 
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4.6 Software Package 

We used R software version 3.4.3 to execute LCT, LLCT and data simulation. Free R codes for 

performing LCT for continuous phenotype is available at 

https://sites.ualberta.ca/~yyasui/software.html.  
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D. Purine Metabolism 

 
 
 

Supplementary Figure 1.  Cluster analysis of subjects based on the significant metabolite sets signature: Graphs on the 

left: dendrogram of subjects clustered based on their metabolite set signature, and scatterplots of AKT1 vs. MYC with 

cluster-specified observations. 
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Supplementary Table 1. P-values and q-values calculated by LCT for association between bivariate oncogenes (MYC, AKT1) or univariate oncogenes  (MYC 

only or AKT1 only) and different metabolite sets in tumor samples 
 

Metabolite Set 

Size of 

Metabolite 

Set 

p-value 

for 

(MYC, 

AKT1) 

q-value 

for 

(MYC, 

AKT1) 

P-value for 

(MYC, 

AKT1) 

Interaction 

q-value for 

(MYC, 

AKT1) 

Interaction 

p-

value 

for 

MYC 

only 

q-

value 

for 

MYC 

only 

p-

value 

for 

AKT1 

only 

q-

value 

for 

AKT1 

only 

Estimated linear 

combination of 

oncogenes 

Alanine, aspartate and glutamate metabolism 11 0.363 0.829 0.221 0.686 0.405 0.799 0.755 0.887 0.64 MYC -1.88 AKT 

Amino sugar and nucleotide sugar metabolism 7 0.190 0.716 0.248 0.686 0.240 0.799 0.626 0.887 -1.24 MYC -1.37 AKT 

Arginine and proline metabolism 21 0.168 0.716 0.236 0.686 0.495 0.799 0.920 0.945 1.07 MYC -1.57 AKT 

Ascorbate and aldarate metabolism 4 0.314 0.829 0.299 0.686 0.337 0.799 0.952 0.952 1.12 MYC -1.52 AKT 

Benzoate degradation 2 0.747 0.855 0.806 0.831 0.514 0.799 0.504 0.887 -1.37 MYC -1.18 AKT 

beta-Alanine metabolism 12 0.528 0.829 0.706 0.787 0.842 0.885 0.504 0.887 0.68 MYC -1.86 AKT 

Biosynthesis of unsaturated fatty acids 13 0.148 0.716 0.069 0.500 0.389 0.799 0.209 0.887 0.4 MYC -1.97 AKT 

Butanoate metabolism 9 0.876 0.898 0.680 0.787 0.595 0.799 0.747 0.887 -1.54 MYC -0.82 AKT 

C5-Branched dibasic acid metabolism 5 0.634 0.840 0.477 0.686 0.317 0.799 0.517 0.887 -1.64 MYC +0.43 AKT 

Chlorocyclohexane and chlorobenzene degradation 2 0.850 0.896 0.884 0.884 0.839 0.885 0.142 0.887 0.83 MYC -1.77 AKT 

Citrate cycle (TCA cycle) 8 0.883 0.898 0.817 0.831 0.606 0.799 0.516 0.887 -1.64 MYC -0.44 AKT 

Cyanoamino acid metabolism 5 0.554 0.829 0.692 0.787 0.565 0.799 0.326 0.887 0.11 MYC -2.03 AKT 

Cysteine and methionine metabolism 11 0.802 0.878 0.611 0.770 0.514 0.799 0.457 0.887 1.32 MYC -1.26 AKT 

D-Alanine metabolism 2 0.750 0.855 0.803 0.831 0.542 0.799 0.180 0.887 -1.48 MYC -0.97 AKT 

D-Glutamine and D-glutamate metabolism 3 0.035* 0.472 0.01* 0.309** 0.070 0.799 0.619 0.887 1.17 MYC -1.46 AKT 

Dioxin degradation 2 0.747 0.855 0.806 0.831 0.514 0.799 0.504 0.887 -1.37 MYC -1.18 AKT 

Fatty acid biosynthesis 5 0.043* 0.472 0.014* 0.309** 0.062 0.799 0.462 0.887 1.06 MYC -1.58 AKT 

Fatty acid metabolism 3 0.395 0.829 0.448 0.686 0.167 0.799 0.616 0.887 -1.64 MYC +0.45 AKT 

Fructose and mannose metabolism 6 0.018* 0.348** 0.022* 0.319** 0.125 0.799 0.404 0.887 -0.92 MYC -1.7 AKT 

Galactose metabolism 6 0.130 0.716 0.166 0.686 0.160 0.799 0.544 0.887 -0.07 MYC -2.03 AKT 

Glutathione metabolism 12 0.398 0.829 0.403 0.686 0.169 0.799 0.730 0.887 -1.59 MYC+ 0.66 AKT 

Glycerolipid metabolism 3 0.229 0.738 0.319 0.686 0.854 0.885 0.251 0.887 -0.27 MYC -2.01 AKT 

Glycerophospholipid metabolism 9 0.393 0.829 0.343 0.686 0.326 0.799 0.054 0.887 -1.35 MYC -1.22 AKT 

Glycine, serine and threonine metabolism 12 0.423 0.829 0.497 0.686 0.162 0.799 0.295 0.887 -1.68 MYC -0.05 AKT 

Glyoxylate and dicarboxylate metabolism 8 0.444 0.829 0.471 0.686 0.455 0.799 0.448 0.887 -1.28 MYC -1.32 AKT 
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Histidine metabolism 9 0.568 0.829 0.445 0.686 0.339 0.799 0.762 0.887 -1.5 MYC+ 0.91 AKT 

Inositol phosphate metabolism 2 0.119 0.716 0.147 0.686 0.246 0.799 0.405 0.887 1.04 MYC -1.59 AKT 

Lysine biosynthesis 5 0.841 0.896 0.388 0.686 0.995 0.995 0.734 0.887 0.07 MYC -2.03 AKT 

Lysine degradation 9 0.768 0.857 0.728 0.797 0.472 0.799 0.851 0.907 -1.55 MYC+ 0.8 AKT 

Methane metabolism 7 0.376 0.829 0.408 0.686 0.163 0.799 0.550 0.887 -1.61 MYC -0.6 AKT 

Nicotinate and nicotinamide metabolism 8 0.752 0.855 0.491 0.686 0.708 0.838 0.105 0.887 0.6 MYC -1.9 AKT 

Nitrogen metabolism 5 0.057 0.472 0.037* 0.358 0.115 0.799 0.585 0.887 0.73 MYC -1.83 AKT 

Novobiocin biosynthesis 2 0.423 0.829 0.588 0.758 0.641 0.808 0.466 0.887 0.46 MYC -1.95 AKT 

Oxidative phosphorylation 7 0.644 0.840 0.482 0.686 0.318 0.799 0.834 0.907 -1.68 MYC -0.03 AKT 

Pantothenate and CoA biosynthesis 10 0.717 0.855 0.377 0.686 0.678 0.819 0.735 0.887 0.18 MYC -2.02 AKT 

Pentose and glucuronate interconversions 6 0.345 0.829 0.276 0.686 0.450 0.799 0.860 0.907 -1.32 MYC -1.26 AKT 

Pentose phosphate pathway 7 0.476 0.829 0.519 0.700 0.196 0.799 0.680 0.887 -1.68 MYC -0.12 AKT 

Peptidoglycan biosynthesis 3 0.652 0.840 0.635 0.784 0.545 0.799 0.501 0.887 -0.11 MYC -2.03 AKT 

Phenylalanine, tyrosine and tryptophan biosynthesis 4 0.210 0.716 0.304 0.686 0.903 0.919 0.068 0.887 0.24 MYC -2.01 AKT 

Phenylalanine metabolism 7 0.580 0.829 0.661 0.787 0.364 0.799 0.648 0.887 -1.3 MYC -1.29 AKT 

Porphyrin and chlorophyll metabolism 4 0.672 0.847 0.357 0.686 0.371 0.799 0.458 0.887 -1.6 MYC+ 0.61 AKT 

Propanoate metabolism 5 0.339 0.829 0.297 0.686 0.579 0.799 0.322 0.887 0.83 MYC -1.77 AKT 

Purine metabolism 18 0.01* 0.29** 0.03* 0.348** 0.021* 0.799 0.929 0.945 1 MYC -1.63 AKT 

Pyrimidine metabolism 12 0.004* 0.232** 0.016* 0.309** 0.837 0.885 0.780 0.887 0.58 MYC -1.91 AKT 

Pyruvate metabolism 3 0.126 0.716 0.204 0.686 0.043* 0.799 0.543 0.887 -1.61 MYC+ 0.57 AKT 

Riboflavin metabolism 3 0.576 0.829 0.079 0.509 0.373 0.799 0.767 0.887 -1.44 MYC -1.06 AKT 

Sphingolipid metabolism 4 0.559 0.829 0.668 0.787 0.844 0.885 0.246 0.887 0.57 MYC -1.91 AKT 

Starch and sucrose metabolism 4 0.190 0.716 0.275 0.686 0.067 0.799 0.390 0.887 -1.66 MYC -0.34 AKT 

Sulfur metabolism 3 0.586 0.829 0.162 0.686 0.278 0.799 0.286 0.887 -1.68 MYC+ 0.08 AKT 

Taurine and hypotaurine metabolism 7 0.405 0.829 0.311 0.686 0.245 0.799 0.534 0.887 1.45 MYC -1.03 AKT 

Thiamine metabolism 4 0.578 0.829 0.425 0.686 0.321 0.799 0.634 0.887 -1.36 MYC -1.2 AKT 

Toluene degradation 3 0.200 0.716 0.319 0.686 0.590 0.799 0.429 0.887 0.54 MYC -1.92 AKT 

Tryptophan metabolism 6 0.646 0.840 0.484 0.686 0.778 0.885 0.649 0.887 0.87 MYC -1.74 AKT 

Tyrosine metabolism 5 0.512 0.829 0.491 0.686 0.531 0.799 0.560 0.887 -1 MYC -1.63 AKT 

Ubiquinone and other terpenoid-quinone biosynthesis 4 0.528 0.829 0.548 0.722 0.638 0.808 0.804 0.897 -0.42 MYC -1.97 AKT 

Valine, leucine and isoleucine biosynthesis 5 0.154 0.716 0.180 0.686 0.555 0.799 0.573 0.887 -0.1 MYC -2.03 AKT 

Valine, leucine and isoleucine degradation 3 0.051 0.472 0.067 0.500 0.761 0.883 0.543 0.887 0.42 MYC -1.97 AKT 
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Vitamin B6 metabolism 3 0.913 0.913 0.436 0.686 0.673 0.819 0.504 0.887 -1.47 MYC -0.99 AKT 

*Associations significant at p-value<0.05. 
**Associations significant at q-value<0.35. 
 

 

Supplementary Table 2. P-values and q-values calculated by LCT for association between bivariate oncogenes (MYC, AKT1) or univariate oncogenes  (MYC 

only or AKT1 only) and different metabolite sets in normal samples 
 

Metabolite Set 

Size of 

Metabolite 

Set 

p-value 

for 

(MYC, 

AKT1) 

q-value 

for 

(MYC, 

AKT1) 

P-value 

for 

(MYC, 

AKT1) 

Interactio

n 

q-value 

for 

(MYC, 

AKT1) 

Interactio

n 

p-value 

for 

MYC 

only 

q-value 

for 

MYC 

only 

p-value 

for 

AKT1 

only 

q-value 

for 

AKT1 

only 

Estimated linear 

combination of 

oncogenes 

Alanine, aspartate and glutamate metabolism 11 0.264 0.979 0.144 0.964 0.611 0.911 0.491 0.988 -0.24 MYC -2.01 AKT 

Amino sugar and nucleotide sugar metabolism 7 0.743 0.979 0.785 0.964 0.781 0.911 0.464 0.988 0 MYC -2.03 AKT 

Arginine and proline metabolism 21 0.802 0.979 0.595 0.964 0.545 0.911 0.809 0.988 -0.12 MYC -2.03 AKT 

Ascorbate and aldarate metabolism 4 0.835 0.979 0.840 0.964 0.805 0.911 0.493 0.988 -0.28 MYC -2 AKT 

Benzoate degradation 2 0.028* 0.667 0.057 0.964 0.686 0.911 0.021* 0.445 0.06 MYC -2.03 AKT 

beta-Alanine metabolism 12 0.839 0.979 0.841 0.964 0.677 0.911 0.506 0.988 -0.03 MYC -2.03 AKT 

Biosynthesis of unsaturated fatty acids 13 0.575 0.979 0.548 0.964 0.654 0.911 0.368 0.988 -0.37 MYC -1.98 AKT 

Butanoate metabolism 9 0.575 0.979 0.488 0.964 0.707 0.911 0.667 0.988 -0.21 MYC -2.02 AKT 

C5-Branched dibasic acid metabolism 5 0.636 0.979 0.584 0.964 0.526 0.911 0.680 0.988 -0.31 MYC -2 AKT 

Chlorocyclohexane and chlorobenzene 

degradation 2 0.042* 0.667 0.070 0.964 0.584 0.911 0.023* 0.445 0.06 MYC -2.03 AKT 

Citrate cycle (TCA cycle) 8 0.960 0.979 0.954 0.964 0.711 0.911 0.997 0.997 1.12 MYC -1.52 AKT 

Cyanoamino acid metabolism 5 0.744 0.979 0.742 0.964 0.662 0.911 0.433 0.988 -0.14 MYC -2.02 AKT 

Cysteine and methionine metabolism 11 0.738 0.979 0.585 0.964 0.893 0.955 0.700 0.988 -0.26 MYC -2.01 AKT 

D-Alanine metabolism 2 0.814 0.979 0.684 0.964 0.633 0.911 0.667 0.988 -0.21 MYC -2.02 AKT 

D-Glutamine and D-glutamate metabolism 3 0.286 0.979 0.255 0.964 0.467 0.911 0.283 0.988 -0.36 MYC -1.99 AKT 

Dioxin degradation 2 0.028* 0.667 0.057 0.964 0.686 0.911 0.021* 0.445 0.06 MYC -2.03 AKT 

Fatty acid biosynthesis 5 0.601 0.979 0.540 0.964 0.585 0.911 0.662 0.988 -0.6 MYC -1.9 AKT 
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Fatty acid metabolism 3 0.923 0.979 0.896 0.964 0.707 0.911 0.854 0.988 -0.41 MYC -1.97 AKT 

Fructose and mannose metabolism 6 0.421 0.979 0.481 0.964 0.769 0.911 0.238 0.988 0.01 MYC -2.03 AKT 

Galactose metabolism 6 0.655 0.979 0.688 0.964 0.577 0.911 0.408 0.988 -0.01 MYC -2.03 AKT 

Glutathione metabolism 12 0.798 0.979 0.702 0.964 0.716 0.911 0.565 0.988 -0.06 MYC -2.03 AKT 

Glycerolipid metabolism 3 0.570 0.979 0.541 0.964 0.407 0.911 0.318 0.988 0.01 MYC -2.03 AKT 

Glycerophospholipid metabolism 9 0.373 0.979 0.267 0.964 0.227 0.911 0.191 0.988 -0.51 MYC -1.93 AKT 

Glycine, serine and threonine metabolism 12 0.682 0.979 0.751 0.964 0.737 0.911 0.380 0.988 -0.12 MYC -2.03 AKT 

Glyoxylate and dicarboxylate metabolism 8 0.977 0.979 0.964 0.964 0.739 0.911 0.985 0.997 0.04 MYC -2.03 AKT 

Histidine metabolism 9 0.307 0.979 0.294 0.964 0.550 0.911 0.121 0.988 -0.15 MYC -2.02 AKT 

Inositol phosphate metabolism 2 0.210 0.979 0.209 0.964 0.143 0.911 0.132 0.988 -0.24 MYC -2.01 AKT 

Lysine biosynthesis 5 0.711 0.979 0.660 0.964 0.930 0.955 0.391 0.988 -0.03 MYC -2.03 AKT 

Lysine degradation 9 0.159 0.979 0.190 0.964 0.939 0.955 0.041* 0.595 -0.04 MYC -2.03 AKT 

Methane metabolism 7 0.855 0.979 0.773 0.964 0.772 0.911 0.618 0.988 -0.21 MYC -2.02 AKT 

Nicotinate and nicotinamide metabolism 8 0.705 0.979 0.604 0.964 0.316 0.911 0.435 0.988 0.52 MYC -1.93 AKT 

Nitrogen metabolism 5 0.320 0.979 0.246 0.964 0.510 0.911 0.214 0.988 -0.2 MYC -2.02 AKT 

Novobiocin biosynthesis 2 0.719 0.979 0.671 0.964 0.342 0.911 0.748 0.988 -0.6 MYC -1.9 AKT 

Oxidative phosphorylation 7 0.616 0.979 0.575 0.964 0.467 0.911 0.304 0.988 0.23 MYC -2.01 AKT 

Pantothenate and CoA biosynthesis 10 0.963 0.979 0.903 0.964 0.907 0.955 0.937 0.988 -0.38 MYC -1.98 AKT 

Pentose and glucuronate interconversions 6 0.972 0.979 0.952 0.964 0.792 0.911 0.843 0.988 -0.18 MYC -2.02 AKT 

Pentose phosphate pathway 7 0.846 0.979 0.770 0.964 0.770 0.911 0.608 0.988 -0.3 MYC -2 AKT 

Peptidoglycan biosynthesis 3 0.641 0.979 0.597 0.964 0.455 0.911 0.513 0.988 -0.38 MYC -1.98 AKT 

Phenylalanine, tyrosine and tryptophan 

biosynthesis 4 0.625 0.979 0.568 0.964 0.313 0.911 0.814 0.988 -0.75 MYC -1.82 AKT 

Phenylalanine metabolism 7 0.941 0.979 0.922 0.964 0.654 0.911 0.886 0.988 0.14 MYC -2.02 AKT 

Porphyrin and chlorophyll metabolism 4 0.046* 0.667 0.018* 0.964 0.021* 0.911 0.498 0.988 -1.37 MYC -1.18 AKT 

Propanoate metabolism 5 0.796 0.979 0.757 0.964 0.598 0.911 0.622 0.988 -0.15 MYC -2.02 AKT 

Purine metabolism 18 0.629 0.979 0.649 0.964 0.862 0.943 0.361 0.988 -0.1 MYC -2.03 AKT 

Pyrimidine metabolism 12 0.815 0.979 0.707 0.964 0.693 0.911 0.760 0.988 -0.26 MYC -2.01 AKT 

Pyruvate metabolism 3 0.814 0.979 0.724 0.964 0.481 0.911 0.967 0.997 -0.53 MYC -1.93 AKT 

Riboflavin metabolism 3 0.421 0.979 0.374 0.964 0.381 0.911 0.288 0.988 0.23 MYC -2.01 AKT 

Sphingolipid metabolism 4 0.215 0.979 0.117 0.964 0.141 0.911 0.875 0.988 -0.89 MYC -1.72 AKT 

Starch and sucrose metabolism 4 0.788 0.979 0.743 0.964 0.980 0.980 0.562 0.988 -0.1 MYC -2.03 AKT 
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Sulfur metabolism 3 0.890 0.979 0.813 0.964 0.729 0.911 0.771 0.988 -0.32 MYC -1.99 AKT 

Taurine and hypotaurine metabolism 7 0.407 0.979 0.322 0.964 0.512 0.911 0.548 0.988 -0.42 MYC -1.97 AKT 

Thiamine metabolism 4 0.979 0.979 0.917 0.964 0.817 0.911 0.929 0.988 -0.38 MYC -1.98 AKT 

Toluene degradation 3 0.725 0.979 0.703 0.964 0.396 0.911 0.931 0.988 -1 MYC -1.64 AKT 

Tryptophan metabolism 6 0.691 0.979 0.597 0.964 0.438 0.911 0.874 0.988 -0.42 MYC -1.97 AKT 

Tyrosine metabolism 5 0.890 0.979 0.881 0.964 0.662 0.911 0.724 0.988 -0.34 MYC -1.99 AKT 

Ubiquinone and other terpenoid-quinone 

biosynthesis 4 0.674 0.979 0.616 0.964 0.791 0.911 0.409 0.988 -0.34 MYC -1.99 AKT 

Valine, leucine and isoleucine biosynthesis 5 0.779 0.979 0.659 0.964 0.395 0.911 0.909 0.988 -0.5 MYC -1.94 AKT 

Valine, leucine and isoleucine degradation 3 0.822 0.979 0.806 0.964 0.663 0.911 0.731 0.988 -0.49 MYC -1.94 AKT 

Vitamin B6 metabolism 3 0.602 0.979 0.519 0.964 0.729 0.911 0.395 0.988 -0.14 MYC -2.03 AKT 

*Associations significant at p-value<0.05. 
**Associations significant at q-value<0.35. 
 

 


