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ABSTRACT

Logit models provide a means of modelling dependency among varisbles. For the completely
categorical case, loglinear models may be used t0 fit corresponding logit models. Usually the response vari-
able is dichotomous 30 that the logit formulation can be in terms of simpie odds of the two casegories. The
same data analyzed by logit models where the response variable is dichotomous may be viewed as owt-
comes in a series of Bernoulli trials and smanged as responses in a crossed ANOVA layout. In the case of
Bernoulli type data, it has been observed that fixed-effects, balanced ANOVA is robust when the tresment
group probabilities of success are not extreme and the sample size is not 100 small.

This study focussed on empirical comparisons of loglincar analysis (logit) and ANOVA. An assort-
ment of 2x2 and 2x2x2 tables (ANOVA layout perspective) that vary in the group treatment probebilities of
success were examined via Monte Carlo simulations. The simulations primarily investigsed compietely
null models and models with main effects present for both types of modelling (tests for first order interac-
tions were included). The study was based mostly upon the Type I emror levels and power results of the F-
test for ANOVA and the conditional likelihood ratio test G2 for loglinear fits. Small and moderate sample
sizes were used along with a full range of probabilities. In addition, results were obtained to examine the
effects of using the Froeman-Tukey arcsine transformation in ANOVA and the effects of adding 0.5 o all
clementary cell otals for loglinear analysis. The overall goodness-of-fit statistics for loglinear modelling,
the Pearson X2 and the likelihood ratio G2, were compared. Also, stepwise forward and stepwise backward
model selection strategics were contrasted.
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Chapter 1
Introduction

When all variables are categorical (i.e., discrete and unordered) and observations are taken in the
form of a contingency table (or crcss classification) loglinear analysis is generally assumed 10 be the most
appropriate method for modelling the observed relationships between the variables. Although they involve
many strong parallels 10 other linea~ models, loglinear models are different from most common linear
models in that they do not identify one varisble a3 the dependent variabie.

Logit models, however, provide a means of modelling dependency among categorical variables. For
the completely categorical case, loglinear models may be used to fit equivalent logit models, the relation-
ship being that a logit model requires that the marginal totals of the response variable be fixed in the
corresponding loglinear model. Usually the response varisble is dichotomous so that the logit formulation
can be in terms of simple odds of the two categories. The same data analyzed by logit models where the
response variable is dichotomous may be viewed as outcomes in a series of Bernoulli trials and arranged as
responses in a crossed ANOVA layout. The F-test in ANOVA has been shown to be remarkably robust to
many violations of the basic assumptions underlying ANOVA models. In the case of Bemoulli type data, it
has been observed that fixed-effects, balanced ANOVA is robust when the treatment group probabilitics of

success (or failure) are not extreme and the sample size is not 100 small.

The purpose of this thesis is t0 compare and contrast classical fixed-effects, balanced ANOVA and
loglinear analysis (logit models) as competing tacthods for analyzing Bernoulli-type data. There is a funda-
mental difference in the two for this type of dats. ANOVA models describe the dependency in terms of
additive probability effects whereas logit models describe multiplicative effects for odds that become addi-
tive in the logarithm. There is a direct relationship between main effects for the two types of models, but
the correspondence ceases for first and higher order interaction effects. Therefore, inicraction effects may be
present in one model while absent in the other. The focus of investigation in this study is the relative perfor-

mance of the two types of modelling when the presence of effects is the same for both inlerpretations.



An assortment of 2x 2 and 2 x2x 2 tables (ANOVA layout perspective) that vary in the group treat-
ment probabilities of success are examined via Monte Carlo simulations. The simulations primarily inves-
tigate completely null models and models with main effects present for both types of modelling. The com-
perison is based mostly upon the Type 1 error levels and power results of the F-test for ANOVA and the
conditional likelihood ratio test G2 for loglinear fits. Small and moderase sample sizes are used along with a
full range of probabilitics. In addition, results are obtained t0 examine the effects of using the Freeman-
Tukey arcsine transformation (FrTS0) in ANOVA and the effects of adding 0.5 10 all elementary cell totals
for loglinear analysis. The overall goodness-of-fit statistics for loglinear modelling, the Pearson X2 and the
likelihood ratio G2, are compared. Though these statistics have already been carefully examined in other
studies, the results in this thesis are reported since the sampling scheme, product multinomial, is different
from the more commonly investigated full multinomial sampling. Also, siepwise forward and siepwise
backward model selection straiegies are looked at for the loglinear modelling

Brief reviews of ANOVA and loglinear analysis are given in Chapter 2 and in Chapter 3, respec-
tively. These are quite general and elementary so those already familiar with the methodologies may skip
over them without any loss of continuity (except for sections 3.5 and 3.6 of Chapter 3 where logit models
and the analogy with ANOVA models are discussed). Chapter 4 contains a review of some of the previous
studies and papers related to this thesis. The Monte Carlo simulation design is laid out in Chapter S. In
Chapeer 6 the results of the study are presented and discussed. Chapter 7 is the conclusion providing a con-
cise summary of the results.



Chapter 2
Analysis of Variance

This chapter presents a brief overview of the statistical procedure known as the analysis of variance,
ofien abbreviasted ANOVA. ANOVA is a hypothesis-testing method enabling one ©0 simukaneously com-
pare the means of several different samples and decide whether an obeerved difference in the means is the
result of a difference in the population means or the result of sampling error alone.

A result of the work of R.A. Fisher (¢.g. , see [Fis44]), ANOVA has been an invaluabie statistical tool
for researchers in the biological and social sciences for more than half a century. Accordingly, the literature
on the subject of ANOVA combined with modern principles of experimental design is extensive and com-
plete with many monographs and texts having been written on the subject. The reader who desires an
detailed and comprehensive look at ANOVA, experimental design, and related issues is referred 10 any of
the following texts: [Lin53), [Sch59], (DuC87), (Kir82]). The aim of this chapter is 10 review the basic
ideas of ANOVA and to introduce the issues most pertinent 10 this thesis. Those already familiar with
ANOVA may wish to skim this chapter, though a quick review of the assumptions underlying the ANOVA
(Section 2.3) may be of interest since several are violated by the designs looked at in this thesis.

2.1. The Basics of ANOVA

ANOVA is most ofien used to analyze tabulated data from an experimental design. The type of
ANOVA applied to the data depends upon the design of the experiment. Since there are a great number of
available, effective designs from which the experimenier may choose, the number of procedurally different
ANOV As is also quite large. However, the basic rationale behind ANOV A is the same regardless of which
design is used by the researcher.

Because of its relative simplicity, the one-way analysis of variance will be used here 10 present the
fmtbmunlidusofANOVA. The one-way ANOVA is used 10 examine K >1 groups (sampled populs-
tions) that are assumed (0 be equivalent in every way except for the treatment applied 10 each group. If the



reatments create any siatistically significant difference between the means of each group, then the treat-
ments are said to have different effects on their respective groups. Table 2.1 shows a general layout for the

data in & one-way design.
FACTOR 1
1 .
Yn{Yn | Yn |[Ya] .| Y
Y2 Yz ) £ Ya e Yx2
Ys [ Yo | Y | Yo | . | Yas
Y Y ) £ Y w | Yra
Yie [ Y | Y% | Yaa | oo | Yma
Yie | Yoo | ¥oe | Yoo | - | ¥&xo

Table 2.1 General layout for one-way ANOV A design.

In the above layout the X' treatments (T1,T2....,TK) comprise X levels of facior 1. This is 10 say that
the treatments are varying degrees or qualities of a common factor. For example, the factor may be tem-
perature with treatments cold, cool, mild, warm, hot. The Y; (j=1,..K; I=1,...») are individual observa-
tions. In the semperature example the observations may be, say, the lifespan of a specific manufacturer's
battery type measured in hours. Table 2.1 shows » observations per treatment group. The final row of ¥,
are the sample means of each treatment group. The subscript indicates summation over the index replaced
by the addition sign.

The question that the experimenter seeks to answer is: Do the various weatments have significantly
different effects on the observed values? Examination and comparison of the group means is one approach
10 answering the question. However, even in the case where all the treatments have no effects, one would
expect some variation among the group means due 10 sampling error. Therefore, mere inspection of means
is not sufficient 10 answer the question since one does not generally know how much variation is sttribut-
able 10 chance and random error alone in any given experiment (or sample survey). Analysis of variance is
a hypothesis test that compares the variability between all of the sample means with what one would expect



by chance if the population means were equal. The null hypothesis in ANOVA is that the means of the
popuistions from which the samples were drawn are equal. This is the same as assuming that there are no
differences in treatment effects.

The logic underlying ANOV A for wsting the null hypothesis is 10 calculase two different estimases of
the population variance, o2, which is assumed homogeneous within groups. The first is referred 10 as the
withi-groups estimate of 0%, or . The second is referred 10 as the between-groups estimate of 67, or
0% and is based on the group means. The ratio 83;/03; is the statistic used 10 test the hypothesis. Under
the null hypothesis of no trestment effects (i.e., equal group population means) the ratio is distribuscd as &
central F distribution with v, and v, degrees of freedom in the numerator and denominator, respectively.
Here v, is the number of groups minus one and v, is the 1otal number of observations minus the number of
groups. In this case, one is interested in the variance of the sample means of the individual groups. If the
uwammdmhmmuwmmmmmmnm
same parent population. Therefore, under the null hypothesis, the variance of each treatment group is an
unbiased estimator of the population variance. Since there are X such estimators the average of these esti-
mates provides a better estimate of the population variance than a choice of any one of the individual group
estimates (sufficiency upheld). This average of the group estimates of o2 is the within-groups variance,
04, ("within-groups” indicates that the variance is estimated from the variances of the observations within
each treatment group) and can then be used 10 estimate the variance of the sampling distribution of the
m.o;.uhwnhmua;equuém.wm. is the size of each group.

The within-groups estimate of 07 is unaffected by the presence of group treatment effects. To see
why this is 30 recall that adding a constant 10 each member of a distribution increases the mean of the group
but not the variance. Since the within-groups estimatc of 07 is the same independent of the presence or lack
of presence of treatment effects, calculation of another estisuate of 67 that is unbiased only when the null
hypothesis of no treatment effects is true leads (0 the desired st statistic.
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independont estimates of the population mean and thea computing the variance of thet sample. If the treat-
mhnnoeﬂecuouhmm&uucla h-MMdo}. If any significant

wreatment effects do exist then 63, will be larger than o7 and larger thas Odg.

The remaining problem is 10 resolve what costicuies a significant (beyond chance alone) difference
between 65 and 6dg. Fortunately, the probability deasity function! for the F-ratio which describes the
distribution of 83;/0%; whea the null hypothesis of no trestment effects is true has been desermined.
Hence, one can compare 83;/03¢ with the tabulated critical values of the appropriste F distribution 10 test
the null hypothesis.

22. Fixed-Effects Two-Way and Three-way ANOVA

The previous section gave a simplified, intuitive introduction 0 the one-way analysis of variance,
The ideas are readily exiended 1o more complicated experimental designs. Particular 10 this thesis are the
fixed-effects designs for two and three-way ANOVA. These are the models that were chosen for comparing
10 the analogous log-linear models that will be presented in the next chapeer.

The two and three-way designs are straightforward extensions of the one-way design. The difference
is in the inclusion of another factor (with corresponding treatments) for the two-way design, and the inclu-
sion of two additional factors for the three-way design. The inclusion of additional factors cremes a
cross-classification. This mcans that in a two-way design each observation is subjecied 10 two treatments,
one from each facior. In the two-way designs these trestments are ofien labelled row and column treat-
ments. The effects of these treatments are referred 10 as main effects. This is due 10 the fact that each effect

is attributable 10 cither a row or column factor, but not 10 both at the same time.

! The dansity function depsnds upon the degsens of fresdom in the sumerssor snd the denominasor. Theve is & fawily of
F diswributions.
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Yaspea +p, +(af), +8,; inld; juld; kel, ..., 'H
|4 spopuietion mean;

o weffoct of trestment i of factor I;

P, =sfont of westmens j of famer J;

(of); =oliom of imserestien of wessments i and j of factors [ and J;
£ = ovver component of ebearveticn ¥ ;

Table 2.2 Tabile layout and parametric equation for 2x2 ANOVA ex-
amined in this study (T1 and T2 denose treatments),

In addition 10 possible row and column cffects in the two-way designs there is also the possibility of
ineraction effects. Interaction effects represent the deviation of cbservations from the overall mean that are
not accounted for by the main effects, yet are still significant beyond chance alone. They are the resuk of 8
combinetion of treatments. Intuitively, a combination of trestments may resull in an effect above and
beyond the individual treatment effects as is the case when a nerson mixes varioss medications with various
amount of alcohol consumption. In the case of an interaction cfiect the trestments have a catalytic or syn-

The hypotheses tested in the two-way and three-way designs are ones concemed with the presence or
sheence of the possible effects. Therefore, in the two-way design, three null hypotheses may be tested : no
row effects, no columa effects, no interaction efiects. The usual tests of these hypotheses are well known w0
be independent. For each a scparme F-ratio is calculamed and tested for significance. Likewise, for
threo-way and higher designs, hypothesis tests can be independeatly carried out for each possible effect
The imeraction effects are usually referred 10 by the number of factors involved in the imeraction. For
example, the interaction effects in a three-way design are the two-factor interactions and the three-facior
imeractions. Table 2.2 and Table 2.3 depict the layouts and corresponding notations used in this study.
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} = population Mean;

o, = effect of weasment i of factor I;
B, = effect of wessmem j of facsor J;
(af)y; =effact of imevaction of wessmenss i and j of fecsors [ and J;

(ay)n =effoct of imseraction of westments i and & of facsors [ and K:
PY)p =effect of inssnssion of ressmenss j and & of facsors J and K;
(afy)p = effect of immamction of weatmenss i and j snd & of facsor I and | and K;
€5y = ervor component of sbservation ¥y,

Table 2.3 Table layout and parametric model for 2>2x2 ANOVA ex-
amined in this study (T1 and T2 denote treatments).

23. Assumptions Underlying ANOVA F-Test

Several important assumptions have 10 be made and comsidered when using the F-test of the null
hypothesis in the ANOVA discussed 30 far. These assumptions are perticularly important in this thesis
since they will be subjected 10 violations. Discussion of these violations will be reserved until Chapter 4. At
the moment the discussion will be limited 10 introducing the assumptions in general. The assumptions are
best expressed in terms of the parametric model that underlies the chosen design. The models for the
two-way and the throe-way designs are presented in Table 2.2 and in Table 2.3, respectively. Briefly, the

assumptions are as follows :

(1) Before administration of the reatments, all sampies are drawn at random from the same population?.

3 N*d-”nhdﬂﬂﬂkﬂ]hh“ﬁ—hmu—-h
modified Ths paint of ANOVA is 10 check for equal trestment efiecss. The F-vasio is siill disseibuted os F oven if the weat-
ment samples coms frem difflorent trestment popuistion befors applicstion of westments. However, if this is the case, appli-
“d“ﬂ“ﬂhﬂ_nu(ﬁmyhmh)ﬁ
would mean vestment effects are preseat. Yor, in such & cass the F-test weuld not leed 10 rejection of the sull hypothesis; s




(2
3]

4]

Afer the treatments have boen applied, the sampled populations (there are ij for the iwo-way and i jk
for the three-way designs) may be viewed as random samples from correspondiag crossed wreatment
populations. This assumption effectively roquires that the deviations from the population means be
statistically independent both within and across treatment combinations. This leads 10 the relased
sssumption thet the samples are distributed normally with mean 2er0 and variance equal 10 the efror
varisace, N(0.02).

The varisnces of the crossed treatment populations are all equal (homoscedasticity).

The distribution of the after treatment scores (the Y, in Table 2.2) in each crossed reatment group is
normal.

The mean of the scores in each crossed treatment population is the same (the null hypothesis).

With these assumptions & can be shown (using the two-way model, for example, with

i=l,...a; j=1..,b) that any set of the a xb population means can be expressed with u + o, +8; +(af);
such that

[ ]
ro=0,

»
Lp;=0,

j=

(@), =0,

isl

i(aﬂ)q =0,

j=t

Z.:}E(ﬂﬂ)v =0.

inljal

These constraints are consistient with the property that for any population the sum of all the deviations from

the mean of the population must equal zer0.)

Type Il esvor would sessk. Therefors, the asssmption is best kept if detection of w0 effects is the hypothesis.
)

:2.(:,-‘)--“:2.:, --a‘}}v,lu+:z.t, =0



The first assumption is perhaps the most important with respect to the inferences made from the
ANOVA. Simply put, it requires that all the treatment subjects are in no way statistically relased to each
other cither within groups or across groups. If there is correlation among the subjects that the experimenter
has overlooked or ignored, the estimators could show a bias that the experimenter would then incorrectly
attribute (0 the presence of effects. Thus, an experimenter needs to be careful that the assumption is met if
the inferences drawn from the ANOVA are 10 be trusted.

The second assumption is fundamental to the rational underlying the F-ratio in ANOVA. The
within-groups variance estimator is automatically biased if there is heterogeneity of the crossed treatment
population variances. This is because the test assumes that the sample variance of each group is an estima-
tor of a population variance common to all the groups. Fortunately, the F-test is robust for moderate degrees
of heterogeneity. (More will be said about this in Chapter 4).

The final two assumptions are of lcsser consequence than the first two. The assumption that the
response variables, the Y, in the two-way example, are normally distributed can generally be relaxed to
one of assuming that the forms of parent distributions of the crossed treatment responses are all similar. The
final assumption of equal means of crossed trestment groups is merely the null hypothesis. The F-ratio is
only distributed as a central F distribution when the null hypothesis is true. This then is what provides the

test to accept or reject the null hypothesis.

2.4. Model Selection

The F-test for the possible effects may be made individually and independently of each other, but
usually are caiculated at the same time. When a test tums up a significant result, the corresponding effect
parameter is added to the model. If the experimenter’s only concem is 0 test for a specific effect then the
model is of litle importance and not necessary. On the other hand, if the experimenter seeks a model t0
express the response varisble in terms of the independent variables (factors), then all effects must be inves-
tigased for significance.

10



The different significant effects can be estimated from the appropriaic means. For example, if a row
factor is found to be significant in a two-way design, the value of the effect of the first treatment can be
estimated by subtracting the mean of the first row from the over-all mean. The other effects may be
cstimaed in a similar way. One needs only the means and the results of the significance tests 10 make the
calculations.

11



Chapter 3

The Loglinear Model
This chapter gives a basic introduction of the loglinear model for casegorical data. For simplicity
most of the discussion is limited to the 2 dimensional model since generalizations 10 higher dimensions are
straightforward and do not require any adjustments or additions (0 the basic theory. ' ~ver, it should be
stated at the outset that the main value of loglinear analysis is found in its application. . analyzing higher
dimensional cross-classifications and this is the purpose for which it was developed. Afier presentation of
the general loglinear model the logit model is introduced. The logit model is shown to be a restricted case
of the general loglinear model. This distinction is made since it is the logit model (via its general loglinear

representation) that is being compared with ANOVA in this thesis.

3.1. History

Loglinear analysis evolved from the need for a general analytical tool for stdying multi-way
cross-classifications of categorical data. The theory surrounding two-way tables has been well established
since the ecarly part of this century (e.g. , see [Pea00] and [Yul00]). However, a suitable method for analyz-
ing higher-way tables of categorical data, especially the high order interactions, analogous 10 that allowed
by multiple regression analysis did not begin to appear until the mid-1950s. This was primarily fundamen-
tal work on measures of association and methods of estimation [GoKS54), [GoKS9), [GoK63], [RoKS6],
[LanS1). From this emerged the present theory of loglinear analysis, mostly in the 1960s. By the early
1970s several comprehensive overviews of the theory and the applications surrounding loglinear analysis
had been published (e.g. , (Goo78), [BFH75), (Pla74), (Hab74), (Fie77)).

12
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3.2. The Model

Assume that one has a 22 table of counts with underlying cell probabilities, p;; , shown below where

¥ py = 1. In this case the row and column varisbles have 7 =2 and ¢ =2 levels, respectively.
i

Pu | P
Pa | Pn

Table 3.1 Exampie 2x2 tabie of probabilities.
The most general loglinear model for this table is then:

log (py) = w+u G yreag i 12Gjys § =125 j=1.2;
with the constraints

T = ?‘m* Tr i = ;"nw)'o
InmbgywiﬁANOVA.dw.odmnmmybeexpnmdhmofﬂwoeﬂpmhbﬂhiau

1
y=— ?OS(P-',‘)
U= {: ?’08(1’.7)-“
uagy= % Sog (py)

4126j) = log (pij) —u —416)y~42()
Hence, u is the grand mean of the Iogtidlmsofﬂleptobabilides.uw,mduw)mﬂnmainelecu(ot

deviations from the grand mean) for levels i and j of variables 1 and 2, respectively, and u2;) is the
interaction effect for cell ij.

The above model is called saturated since it includes all possible 4 -terms corresponding 0 all vari-
mmmmmmmmum.mmmeqwmmwmumumm

umymuﬂmmm‘mmw,ku&dlhehim-ordau-mnsimit

¢ The model can be rewrition in terms of expecied counts. Since expected coust my; = Np, whers N is the grand wotal
of consts, the ssrased model mey be written log (m;; ) = log (V) + log (py) = log (N Jess 48y 3;)¥8 3y



represents interaction of all variables in the model. The u -terms whose subscripts are subsets of the sub-
scripts of other higher-order erms are called lower-order relatives. A loglinear model is hierarchical if it
satisfies the following two conditions:

{1} If a u-term is set equal 10 210, then all higher-order relatives of that term are zero.

[2} If a u-term is not equal 10 zero then all of its lower-order relatives are not zer0.

Here "u-ierm cqual 10 zero” means that the term is zero for all levels or combinations of levels (e.g.,
u12g)=0foralli, ).

Only hierarchical models are examined in this study. Hierarchical models are desirable since they
permit casy and straightforward calculation of cell estimates. This is not true for nonhierarchical models, in
which case, for the same maximum likelihood procedures 1o apply, the tables need to first be transformed
30 that a hierarchical model can be formed. Also, if higher-order effects are to be interpreted as measuring
deviastions from their lower-order relatives the hierarchical assumption is needed.

Still, there do exist cases where nonhierarchical models are the most appropriate t0 describe the data.
Theee situstions arise when there exists a synergistic relationship between two or more variables. That is,
eee 18 an cffect when two or more varisbles are together but no effect exists when each variable is taken
alone. Consequently, interpretation of the higher-order u -terms included in nonhicrarchical models is awk-
ward if not difficult. Therefore, use of hierarchical models is considerably more popular in applications.
More complete discussions of hierarchical models and references to aspects of nonhierarchical loglinear
modelling may be found in (Fie77) and [Hab74).

The loglinear formulation discussed so far is a linear model in the natural logarithms of the cell pro-
babilities. This linearity is not intrinsic 10 building a model for expressing the expected cell probabilities.
Rather, it is a feature that allows for parameter intespretations directly analogous 10 those of other common
linear models such as those in ANOVA and multiple regression. For each loglinear model there is an under-
lying mukiplicative mode! for explaining the data. The multiplicative models become linear in their loga-

14



rithms thereby giving the corresponding loglinear models (see [(Ken83) for an introduction © loglinear
analysis with atiention given to multiplicative formulations). One may argue that the multiplicative version

better reflects the maximum likelihood estimation used in deriving cell expectations (i.e., the maximum

likelihood cell estimates are ratios of products of the observed marginal totals). Nevertheless, general

preference has been given to the loglinear formulation in both the applied and theoretical literature. In this

study it is natural 10 select the loglinear model for making the comparisons with ANOVA since these two
types of models have analogous interpretations.

33. Sampling Schemes

The three most common sampling schemes for gathering cross-classified data are:

n

2]

3]

Full multinomial sampling : A fixed random sample of size N is taken and each observation is
independently selected and then allocated 10 a cell (i.e., the cell count is incremented by 1)
based on the agreement of its attributes to the casegories of the variables in the design. Each
observation must be allocated 10 only one cell of the table and the variable categories must be
exhaustive so that every observation can be casegorized within the table.

Product multinomial sampling : The marginal totals are fixed for a variable or combination of
varisbles, often considered explanatory variables. These marginal totals are those found by
summing over the levels of the response variable(s). For example, given an / xJ xK table
where the response variable is indexed by k = 1, - - - ,X product multinomial sampling yields
I xJ independently sampled multinomials each with X' casegories. The sizes of each of the
1 xJ multinomials do not have to be the same.

Poisson sampling : Each cell count is assumed 10 have an independent Poisson distribution.
Neither the grand total nor any of the marginal totals are fixed. Instead, observations are made
over a fixed period of time and the totals are recorded for each cell.

15



Loglinear modelling is appropriate for each of these sampling schemes. They all lead to the same
model estimates and thus the same goodness-of-fit statistics. However, in the case of product multinomial
sampling, the hypothesized model must include the u -terms corresponding to the fixed margins. [Bir63).
Product multinomial sampling is the scheme chosen for this study since it corresponds to the models where
one varisble is designated as the response variable, thereby continuing the analogy with ANOVA. Such
models form the set of logit models. Logit models will be discussed in Section 3.5.

3.4. Estimation and Model Selection

Once a loglincar model has been proposed for the data, estimates of cell counts under the model can
be found using the method of maximum likelihood [Bir63). The maximum likelihood estimases are func-
tions of the observed marginal wtals of the table. The model specifies which marginal totals are minimally
sufficient for generating the estimases. They are the marginal totals that comrespond 0 x-terms in the
models which have no higher-order relatives. Take, for instance, the 3 dimensional model

log (m;p) = u+uyytuagyti sey+iti2g))
The minimally sufficient marginal totals are x..3 and x,2, which correspond 10 the terms & ) and ¥ 12y,
respectively. The addition sign in the subscript indicates summation over the categories of the variable it
repiaces.

With these totals the estimates may be calculated given the requirements of Birch that:

[1)  the minimally sufficient marginal totals of the cstimates must equal the minimally sufficient marginal
totals of the observations, and,

(2]  that the set of estimates satisfying those equalitics and model constraints is unique. There is a prob-
lem, however, when these solutions give cell estimates equal ©0 zero, which will occur when there is

a zero in any of the minimally sufficient marginal totals of the observations. In those situations max-

imum likelihood estimates do not exist for the « -terms comresponding t0 those minimally sufficient

marginal totals. Some useful suggestions for dealing with this problem are outlined in [Fie77). Other

16



forms of estimation such as weighted least squares (GSK69) also break down when there are many
obeerved zero counts.

Assuming there are no zeros in the minimally sufficient marginal (0tals, cstimates may be found by
cither directly solving for & closed form solution thet satisfies the model and maximum kikelihood com-
straints or by using an iterative method. The two most common iterative methods are the Newion-Raphson
techaiques (see [Hab74], (Hab78), and [Hab79] for applications 10 loglincar analysis) and iserative propor-
tional fitting (DeS40). Both iterative methods provide estimates when closed form solutions do not exist
(see [BFH75) for a method of detecting whea they do) and both provide the same estimases as those found
directly using the closed form solutions.

Afver cell estimates have been obtained for a model, the fit of the model (0 the observed data may be
subjected to significance testing by calculating the Pearson chi-square statistic

(observed —expected )?

28
X ,E. expected
or the likelihood-ratio statistic
2, observed
G*=2 3 (observed)log d

Both staistics have asymptotic X2 distributions with v degrees of freedom where
v =#cells—#parameters in hypothesized model. These siatistics measure the overall goodness-of-fit of
the model. Significant values give reason 10 reject the model and search for an alternative.

This brings up the topic of model selection. The object of model selection is 10 find the most parsi-
monious model (i.c. , most restrictive in that it uses fewer paramesers) that still adequately fits the observed
data. One ™ caiculate G2 and X? for every possible model and then select the one which is most parsi-
moniol® @ « 4, iignificant statistics. However, more ofien than not there will be several "best fits”
using “ queal - the experimenter may not be able 1o choose one from among them when the

differe: - @m ot e choice runs contrary 10 the experimenter’s insight.
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A more common method of model selection involves using a property of G that is not shared by X2,
The G? statistic can be partitioned 1 test nestod hypotheses. Nested hypotheses arise when all the parame-
ters of one mode! are included in another model— i.c., where a more general model is being compared
with one with a reduced number of parameters. Then the hypothesis that the nested, more parsimonious
model is acceptable conditional t0 the assumption that the larger model is true can be tested. The difference
in the values of the G? statistics, G of smaller model minus G of larger model, is spproximately distri-
buted as x2 with degrees of freodom equal 10 the difference of the degrees of freedom for the two models.
This statistic is ofien referred © as the conditional likelihood ratio statistic. It is denosed usually as Gy
where the subscript A stands for the nesied model and B stands for the larger model (i.e., model A given
that model B is true). G{p can also be cxpressed as

(expected s
Gly = 2*2*[%“ b blm

Hence, the cell count estimates calculated for model B are used like observed values in the regular G2,

Given this property of G2, siepwise selection strategies have become popular. These are siepwise
forward selection and stepwise backward selection. Use of these techniques involves incrementing or decre-
menting the number of  -terms in the model and examining the conditional G statistic. For siepwise for-
ward selection all «-terms of the next higher order in the hierarchy of models are added and tested for
significance one at a time. The most significant of these terms is appended 10 make a new base model and
the process is repeated for the remaining & -terms of that order. Should all the & -terms of the same order be
added (0 the base model, the u-terms of the next higher order are tesied. Stepwise backward selection is
similar except the starting model is the saturatod model and the process successively deleses non-significant
terms from the model. These procedures may also be mixed. Whea the cross-classificaion has a large
number of variables the overall G2 and X? statistics may be examined first for full order models 1 see
where 0 begin. A full order model is one that satisfies the condition that if a x -term is in the model, then all
the x -terms of that order are also included in the model.
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Ofien the aforementioned procedures still do not identify a single model as the best fit in which case
some follow-up analysis can be carried out. Individual efects parameters may be standardiaed and exam-
ined for significance. Standardized cell residuals may also be comsidered. The two most common methods
for this type of follow-up invoive examination of either components of X? or Preoman-Tuksy devisses.
References and descriptions of these follow-up procedures, and more, can be found in the texts cited at the
end of section 3.1 in this chapeer.

3.5, Logit Model

The logit model is of specific interest in this thesis since it and the fixed effects, balanced ANOVA
model are used 0 analyze the same sets of data in the Monte Carlo study outlined in Chapeer S. Logit
models sre s subset of loglinear models when all data is caegorical. In an asymmetrical study of the vari-
ables one or several of the varisbles in the cross-classification are assumed (0 be explanatory while the oth-
ers are response variabies. The words response snd explanstory may be imerchanged with dependent and
independent, respectively. The logit model posits a dependency relationship between the response
varisble(s) and the explanatory varisbie(s). For example, suppose one choses 0 investigae whether or not
vow(yes, no) depends on income(high, middle, low), gender(female, male), and education(univ, high
school, clementary). The response varisble is vote and the explanatory varisbles are income, gender, and
education.

Discussion is confined 10 the cases where there is only one response varisble and two or three expla-
naory varisbles. The study of multiple response varisbles involves structural equations models which is a
large part of the topic referred 10 as path analysis (see [Dun75) for a detailed trestment). Multiple
categorics in the response varisble present no problems for logit analysis [BFH7S), but they do creste a
problem if the analogy with ANOVA is 10 be maintained. Therefore, it is also assumed that the response
varisbie has only two categories. This forms the analogy with ANOVA where the response is the outcome
of a2 Bermoulli wrial. Hence, the two casegories of the response varisble in the analogous logit formulation
would be, say, success and failwe . With the restrictions just mentioned the paramesers in the logit model
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have a direct correspondence to the parameters in the fixed effects ANOVA model (except logit models and
loglinear models have no error term).

With 2 two casegory responee varigble the logit model describes the behavior of the logarithm of the
odds of one caegory of the response variabie 10 the other in terms of the effects of the explanatory vari-
abies. Assume that there is a 3 dimensional model with variables 1, 2, and 3 where varisble 3 is the dichow-
mous response variable. The logit model anslogous t0 the ANOVA model with both main effects and
interaction effects is

logi i) = log L= wouw [ w By iR
where the w -terms sum 10 zero over any of their indices. The relationship of the logit model 10 the loglinear
model is swaightforward:
lolﬂ'- = log (m,, - log (m;; 2
my;2
= (1040 1yt a0 r+a sy 120 7+ 13 1y 8 23 1y 120G 1)
= (001t 820yH8 3y 8 126)H8 1 3G 27+ 8 20 2+ 81 296 )
= (w31~ 318136 1)~8 136 D} HB 25 1y~8 23 2+ 812965 1y~ 128G 3)
= 2 [aquyHa 196 1y+8 2315+ 25 1)

=witwil+wi +wih

The second 10 last equality is due to the fact that varisbie 3 has two levels and the x -terms are constrained
10 sum (0 2er0 across levels. The u -terms that have the response variable in their subscript in the loglinear
model do not cancel out in the transformation ©0 the logit representation. On the other hand, all other
u-terms do cancel. This means there could be several Inglinear representations for the same logit model.
The reason for this is that the logit mode! does not put any restrictions on the relationships between the
dependent varisbles. However, arguments have been made (¢.g. , [BFH7S)) that the loglinear model should



contain the ¥ -tlerm for highest order ineraction of the dependent varisbles (implying it contains all lower
order relatives due 10 the hicrarchy priacipic). The main dofonse for doing this is that if the analysis is 10
explain the responee in terms of the explanstory varisbies, then the weets for individual effects parameters
(wsing conditional G?) should partial out the relationships not involviag the response varisble. Inchuding all
% -terms involving the explanstory varisbies in the two models being compared by the conditional G? et
removes the influence of the relationships of the explanatory varisbles from the tests. This is analogous 10
regression analysis using goneralized losst squarcs catimation (Rot ordinary loast squares estimation) where
comelations among independent varisbles are accounted for by transforming the data (using the information
in the variance-covariance matrix) 30 that the ervor terms are uncorreisted. In this study all 4 -serms iavolv-
ing the explanatory variables are included in the loglinear formulations of the logit models.

3.4. ANOVA/Logiisear Amalogy—Exsmple

To conclude this chapter a hypothetical example depicting asn ANOVA model and the corresponding
loglincar model where both are used to describe the same set of data is presensed. The example extends 1o
all the comparisons made in the Monte Cario study described in Chapter 5. Consider a 22 table of Ber-
noulli trial success counts where there are 10 trials per cell (Tabie 3.2). The ANOVA model for this table
has two explanatory varisbies cack with two categories. The response varisbie is the oucome of the Ber-
noulli wial, 1 for success, O for failure.
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- Table 3.2 Exampie of Bernoulli trial data for 22 ANOVA.
The ANOVA model for both main effects present and no inseraction effects is
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Y = ptoy +Betin
The analogous loglincar model is

log (mya) = 4+ 14+ ayyH sayHE TGa Y+ 125 T+ 13G2)
where index § is for the two category response variable. Heace, the logit formulation is

- logmLik)
R g maj)

This is like the exampie in the previous section excopt there is no interaction and the response variable has
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index i insead of index k. This model examines the same data as the ANOVA except it is arranged

differently (Table 3.3).
var 1
success failure
var3 varl
ctl cm2 catl o2

catl 3 S 7 5

vl 3 5 7 s 3

Table 3.3 Exampie contingency table for data in Table 3.2 (sbove).

The subtable under the success casegory of variable 1 is equivalent 10 the success totals for each cell
of the ANOV A data in the Tabie 3.3. The submbie under the failure categories is the number of failures in
each cell of the ANOVA table. Under this sampling scheme the marginal totals found by summing over
variable 1 must all equal 10. The sampling is product multinomial type (4 muktinomials of overall size 10,
cach with two categories). Hence, in the ANOVA formulation a scoring of the observations (0 or 1)
represents the response whereas in the loglinear formulation the response varisble is explicitly casegorical.
The same data is imerpresed differently for the two methods. For ANOVA the data are viewed as real
number values but for loglinear analysis the dats are viewed as category tallies.



Chapter 4
Reinted Studies

Though the analogy of the loglinear model 10 the ANOVA model is made in almost all introductory
overviews of loglincer asalysis, few comparisons of the two methods for analyzing the same data sets have
been made, and those that have been carvied out are limited. Undoubeedly, this is due 10 the very obviows
theosetical differences in the imerprotations and applications of the two methods. Most conapicucus are the
different assumptions about the data that cach method is appropriste for analyzing. Loglinear anelysis is
imended for casegorical deta whereas ANOV A is insended for continuous data. Extending the use of cither
method 10 analyze data that is more appropriasely analyzed by the other method involves violations of basic
assumptions. The loglinear model is certainly not visble for analyzing continwous data unless the data is
wansformed by scoring or partitioned into categories and counted. On the other hand, ANOVA wchaiques
are surprisingly robust.

This chapeer provides a brief survey of some studics related 10 the topic of this thesis. First, studies
pertaining 10 loglinear analysis are reviewed. Next, some studies of the robustness of ANOVA sre noted.
The last section discusses some comparisons that have been made between loglinear analysis and ANOVA.

4.1. Studies Reinted to Logiinear Analysis

A good deal of attention has been given 10 the small sample behavior of the goodness-of-fit statistics
X2 and G*. As these are the primary statistics for iesting loglincar models, resulls conceming them are
important in this study. It has been established that both of these statistics vary from there asympotic distri-
butions when many cell counts are small or zer0. This is the situation where most attention has beea
focussed with respect 0 the two statistics.

A thorough investigation of small sample behavior of X2 and G2 is given in (Lar78). Larniz obisined
both exact and Monte Cario resukts in examining Type | error over a variety of multimomials for 1, 2, and 3
dissensional tables. The results demonstrase that the Pearson X? statistic out-performs G2 by a wide margia.



For expecied cell counts in the range 0-1.5 G2 does not reject ofen enough. For expected counts in the
range 1.5-4.0 G2 rejects much 00 often. In contrast, X2 is sufficiently close 80 nominal when expected
counts are greater than 1.0. G2 becomes acceptable only when expected counts are greater than 4.0. Lamtz
atuributes the high Type I error rates of G2 when expected counts are moderate to the large contribution to
G? from vary small observed counts. This conclusion is based upon calculations that were made for both X2
and G? of the exact contributions of various observed counts for several fixed expected counts.

Other studies are in agreement with the findings of Lamtz. In the course of these investigations
several rules of thumb have been suggested for desermination of the minimal expected number of observa-
tions per cell that are needed in order to reliably use X2 and G2 A concise survey of these rules may be
found in [Rud87). Most of these rules are for the case of a single multinomial without estimated parame-
ters. Loglinear models are considered by [Lar78), [Odo70]), and [Rud87). Fienberg [Fie79) suggests, based
on the results of Lamtz, that the overall sample size, N, may be as small as 4 or 5 times the number of cells.
Rudas carried out Monie Carlo simulations to obtain 90% and 95% confidence intervals for X2 and G2 for a
variety of 2 and 3 dimensional tables. It was shown that the statistics are reasonably acceptable (i.c. , the
confidence interval contains the asymptotic percentage point) even for the range of sample sizes equal to 2
or 3 times the number of cells in the table.

These studies have mostly been focusssd on examination of the statistics when the null hypothesis is
true. Results in {CrG82] are used 10 examine the power of X2 and G2 for multinomials and contingency
tables. They use a measure of strength which they define as a weighted average of the power. The results
indicate that X2 and G2 have about equivalent power, with the power of G2 being slightly greater.

Other studies involving goodness-of-fit statistics for models of contingency table data have been
directed at tailoring special statistics and tests to individual problems. Use of the lognormal approximation
of the x? distribution and the use of a scaled X distribution as reference distributions for the Pearson X2
statistic are examined in (LaUB4). Their study is confined to only the case of 2 dimensional tables and the
chi-squared test for independence, but the results indicate considerable improvement over the traditional



chi-squared test for that restricted class. A new goodness-of-fit statistic is introduced in [Sim85) for sparse
maltinomials that performs well when the assumption that the null distribution exhibits smoothness is met.
The smoothness restriction allows for information in neighboring cells 1 be used collectively w0 aid in
estimating the probebilities for cach cell. In an extension of results in (KoL80) Koehler [Koe86) examines
G? for sparse contingency tables when using the normal approximation in comperison 10 the usual
chi-squared approximation. The normal approximation is shown © be much more accuraic than the
chi-squared approximation for G2 in many cases, though possible biss of estimated moments remains s
problem for very sparse tables. Several goodness-of-fit statistics for contingency table models based on
cluste . mpling are compared in (ThR87). Though not specifically relevant 10 this thesis, the study is of
interest since it exiends the sampling schemes and models for contingency tabie data.

4.2. Studies Related to ANOVA

As ANOVA predates the emergence of loglinear analysis, many studies have been camied out 1o
examine the robustness of ANOVA under violations of basic assumptions or 10 develop new statistics and
transformations (o correct for the violations. Of specific interest in this thesis are the results involving
ANOV A for discrete data, especially binomially distributed counts. Binomial data, such as that examined in
the Monte Carlo study described in Chapter S, violate several of the important assumptions of the tests used
in ANOVA. The errcr terms and the treatment populations are not normally distributed. In many situations
heterogeneity of cell variances will exist since the variances are proportional 10 the cell means. In addition
10 this the distributions ~f the cell populations may be of nonhomogeneous shape even when homogeneity
of variance is present.

Early work considering the use of ANOVA for analyzing Bernoulli type data concentrated on
transformations of the data to remove heterogeneity of variance and give normally distributed data. Fisher
first suggested use of the arcsine transformation (Fisd4). Bartlet and Cochran developed variants of the
same transformation [Bard7], [Coc40). A rigorous development of the mathematical theory pertaining 0
the transformations was carried out by Curtiss in [Cur43). Freeman and Tukey [FrTS0) introduced a



transformation that Mosteller and Youtz showed in [MoY61] to be superior 0 the other arcsine transforma-
tions. Investigations of arcsine transformations apparently subsided afier the study by Mosteller and Youtz.
No Monie Carlo results comparing ANOV A using transformed data 1o ANOVA using raw data were found
in the literature survey for this thesis. Specific case exampies using the arcsine transformation are given in
{MoT68) and in [Coc40], but the ANOVA for raw scores is not displayed. Interestingly, when the ANOVA
was carried out for the raw data in the Mosteller-Tukey example the results were found 10 be nearly identi-
cal 0 those for the ANOVA in the example using the transformed scores. (ANOV A for the raw data in the
Cochran exampie was not carried out).

Monte Carlo swdies examining ANOVA with binomial populations were carried out by Hsu and
Feldt (HsF69) and by Lunney [Lun70). Hsu and Feldt investigated the robustness of the F test for binomial
populations for probebilities of p = 0.25, p = 0.40, and p = 0.50. They examined experiments with 2 or 4
treatments with n = 11 or 2 = 51 observations per treatment. ANOVA results using the raw data indicated
that the distribution of the empirical F ratio agreed quite well with the nominal distribution at significance
levels of @ = 0.05 and @ = 0.01.

The results of the Hsu and Felde study apply to the case where the general null hypothesis is true, i.e.,
where treatment means are all equal. Therefore, the assumption of homogeneity of variance was not
violsed. The study of Lunney extended the results of Hsu and Feldt and also examined power of the F-test,
the latter involving heterogeneity of cell variances since no variance stabilizing transformation was used.
Lunney investigated values of p = 0.1, 0.2, 0.3, 0.4, and 0.5. Several 1, 2 and 3 dimensional table layouts
were investigated with sample sizes per cell ranging for 3 10 31 in steps of 4. The results presented in
Lunney's paper are averages of results from various layouts so interpretation and comparison t0 other stu-
dies is difficult. The main conclusion of the study was that the F-test is robust for binomial probabilities
ranging from 0.2 10 0.8 given that cell sample size is fixed and under the condition that the number of
degrees of freedom for the within cell variance is equal 10 20 or more. Power results are not displayed by
Lunney but it was commented that when the above conditions are satisfied the observed power is close %0



the nominal power.

Other studies of the robustness of ANOVA, but not for the binomial data situation, are reporied in
[RoK77] and (NorS2]. The Rogan study investigates the robustness of ANOVA 10 variance heterogeneity
when sample sizes are oqual and data is normal. The main result concerns a quantification of how much
heterogeneity of variances is too much. The degree of heterogeneity is measured with the coefficient of
variation of the variances, CJ, the standard deviation of the varisnces divided by the mean of the variances
(see (KeF71]). The results of the study suggest that ANOVAF is robust when C3 < 0.80. The Norton study
demonstrated similar robustness of ANOVA F in the case of heterogeneity of variances. Also, Norton
showed that ANOV A F is robust 10 nonhomogeneous cell distribution shapes, regardless of whether hesero-

geneity of cell variances is present.

4.3. Comparisons of Loglinear Analysis and ANOVA

No extensive studies directly comparing ANOVA 10 loglinear analysis were found in the literature
surveyed for this thesis. Cox [Cox70)] briefly comments on the results of some empirical investigations
comparing analyses of binary data using four different response curves. An example is presented that com-
pares the stimulus-response curves for linear, logistic, angular, and standardized normal scales. His results
suggest there is little difference in the methods. The logistic and normal curves show the closest agreement.
The angular (arcsine transformation) and logistic curves are in close agreement for probabilities in the range
0.2 0 0.8 (however, scale constants were chosen for the example so that all curves would agree st the
p =038 point).

A single case example is detailed in [BFH75] where a set of daa is analyzed using logit models and
using ANOVA with the arcsine transformation of Freeman and Tukey. The conclusions about main effects
and interactions are the same for both methods with the exception of a single interaction term being found
just slightly significant by the ANOVA procedure but not included in the best fitting logit model. Though
the authors conclude that the effect can be ignored in the ANOVA model, it is worth noting this incident of
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discrepancy between the two methods since other singie case examples have demonstrated that ANOVA
may lead 10 inclusion or rejection of interaction effects in opposition 0 results of the corresponding logit
analysis.

Hsu and Feldt include a limited discussion in (HsF69) for some resuits comparing the analysis of 2-
way tables of counts using the usual x2-test of independence and ANOVA. Several arguments are presented
in favor of ANOV A for this situstion. However, no mention is made using loglinear analysis (logit) for the
data, which for the situation they examined would be more appropriate since the x>-test of independence is
not for hypotheses conceming dependency as is the ANOVA F-test. Because this study was carried out
before loglinear analysis had been broadly publicized or even fully developed, perhaps the authors were
unaware of its applicability in place of the x*-test of independence. In a study by Knoke [KnB80) loglinear
models are compared 10 dichotomous dependent varisble multiple regression models using dummy vari-
ables. Two specific cross tabulations are analyzed using both methods. Knoke reiterates the observation of
Goodman [Goo78) that the two methods can lead 1o different conclusions when the dependent dichotomy
falls outside the range of 0.25 to 0.75. In the first example, one on voter willingness to legalize abortion,
the response proportions are within the aforementioned range, and the two methods lead (o the same con-
clusions. In the second example, voter willingness to legalize use of marijuana, several of the response pro-
portions fall outside the range. For this case, the methods yield different conclusions about the data. The
dummy variable regression identifies significant dependent varisbie interaction terms whereas the loglinear
modeling does not. Knoke does not go into detail to offer an explanation for the differences other than not-
ing the differences occur when proportions for the response variable are extreme and commenting the
assumptions about normality of the regression error terms is violated.

In [Mag78) Magidson makes a similar comparison of dichotomous dependent vasiable regression
analysis and logit modelling resembling that of Knoke. Again the situatior where the dependent response
proportions are extreme is identified as one where differing results may oc ur for the two methods. Magid-
son examines in detail data for predicting camp preference of Americaa soldiers. In addition to this exam-



ple. Magidson includes a separate discussion about the differences in the definitions of effects for both types
of modelling. Clear examples of cases where the two methods lead to different conclusions concemning
inseraction effects in 2 2 tables are presented in the concluding remarks. These are worth reviewing and
are adapeed here t0 help emphasize and clarify the basic differences in what interactions are in the two types
of models. In the example tables below success probabilities are in parentheses next to the corresponding
odds of success 1 failure. What should be noted here is that there exist data where interaction effects are
present in analysis using probebilitics and absent in analysis using odds (and viceversa ) even though both
use the same data.

1.04 (0.51) | 0.27(0.21)
1.00 (0.50) | 0.25 (0.20)

Table 4.1 Magidson example 1: row effects (very small for both proba-
bility and odds), column effects (small for both probability
and odds), and interaction effects ( none in probabilities,
very small in odds).

1.04 (0.51) | 0.011(0.011)
1.00 (0.50) | 0.001 (0.001)

Table 4.2 Magidson example 2: row effects (very small in probabili-
ties, large in odds), column effects (large in probabilities,
very large in 0dds), and interaction effects ( none in probebil-
ities, large in odds).

11.0(0.917) | 0.011 (0.011)
1.00 (0.500) | 0.001 (0.001)

Table 4.3 Magidson cxample 3: row cffects (small in probabilitics,
large in odds), column effects (very large in probabilities, ex-
tremely large in odds), and interaction effects { large in pro-
babilities, none in odds).



9.00 (0.9) X
125(0.2) | 4.0(0.8)

Table 4.4 Magidson exampie 4: Every value of X in the additive pro-
bebility model must show an interaction effect whereas the
odds model shows no interaction effect for X = 144 (odds) or

0.993 (probability).



Chapter §
Simulation Design

The Momnte Cario technique was chosen as the method by which 10 generate empirical results for
comparing loglincar analysis 10 classical fixed-effects ANOVA when both are competing methods for test-
ing the same hypotheses on an appropriste set of dsta. Monte Carlo studies have become a common way 1o
empirically test the agreement of applied statistics with the nominal theory. This study was carried out to
examine the levels of agreement over varying conditions and (0 then utilize the generated resukts ©0 draw
conclusions about which form of analysis exhibits superior performance over the conditions that were
tested.

In this chapter the tests used to measure the goodness-of-fit for each method of the summary siatistics
10 their corresponding theoretical values are first explained and justified. Next, the design of the Monte
Carlo study is detailed. This includes rationale for the probability layouts in the tables, hypotheses tesied,
simulation size, and discussion of the conditions that were varied as they relate 10 both loglinear analysis
and ANOVA.

5.1. Hypothesis Testing

In practice, the two most commonly used statistics for assessing the goodness-of-fit of a loglinear
model are the Pearson X2 statistic and the likelihood ratio statistic G2. Both have asympiotic chi-squared
distributions under the null hypothesis. For example, given a 2>2 table of counts that are drawn from a mul-
tinomial distribution with population probabilities (p11.212.221.P22) comresponding 10 the cells of the
table, the completely null hypothesis that the probabilities are all equal is tested with X2 and/or G2. If the
null hypothesis is true then these statistics are distributed approximately as a chi-squared distribution with
three degrees® of freedom. The test for rejection of the null hypothesis may be made by selecting the

3 The fully sasurased log-linser model for an /x/ tabls is log (my ) = & + t4q)+ My, + 8 12g,,- The constraints of the aull
hrypothesis thet 5,¢) =8y, = 4129, =0 allow (/ -1)+ (/=1)+ (/ =1){/ ~1) parmsmeters 10 vary. Hencs, in this sxampis there sre
va(2-1)+(2-1)+2-1)2-1)=13 dogress of fresdom.
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desired level of significance, ofien denoted by a, and comparing the value of the calculated statistic with
the critical value comresponding 10 the selected level of significance.

Similarly, ANOVA modeis are tested using F statistics that are calculated from the data. Evaluation
of ANOVA models involves the calculation of several F statistics, one for each effect that is included in the
null hypothesis, whereas the goodness-of-fit for loglinear modeling can be based upon a single summary
statistic that takes in the entire model. However, thorough study using loglinear analysis will usually
embody much more than the calculation of X2 and G2. Procedures for model selection, data resrrangement,
and asscssment of internal goodness-of-fit, 0 name a few, are a common part of loglinear analysis. For the
most part, applied swudies using cither loglinear analysis or ANOVA are not confined to calculations of
their besic summary statistics, X2, G2, and F-ratios, respectively. Yet, since they are the backbones of the
methods under investigation, this study bases the comparison on results stemming from them alone.

For each table of counts generated in the simulation X2, G2, and the appropriate F statistics are com-
puted. These statistics are then examined 10 see how well they approximate their corresponding asympeotic
distributions. The methods used in this study o check the fit to the approximations are graphical analysis,
the Kolmogorov-Smimnoff test, and calculation of Type I and Type II error rates (though power is ™ported
in piace of Type II error).

5.2. Kolomogorov-Smirnov Test

The Kolmogorov-Smimoff test is used 10 test the null hypothesis of an unknown distribution being
equivalent 10 a known distribution. The test is defined as

reject the null kypothesis if max|F(x)-F(x)| > 8.
The left hand side of the incquality represents the maximum absoluse deviation of the empirical cumulative
distribution function £'(r) from the theoretical cumulative distribution function F (x) assumed by the null
hypothesis. 8 is the critical value corresponding 10 a selected level of significance. The test is applicable
oaly for continuous underlying distributions. Finally, a non-significant statistic does not imply that the sam-
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ple distribution is the null distribution; there could be several distributions that do not differ significantly
from the null distribution.

The Kolmogorov-Smimoff test was chosen 10 be included in this study since it affords a simple,
comprehensive measure of goodness-of-it of the empirical diswributions of each of the summary statistics
10 their corresponding theoretical distributions. The Kolmogorov-Smimoff statistic was found for each
empirical distribution. Becsuse it is a broad spectrum test, the results were used solely 10 detect cases of

53. TypeI Exror Rates

A Type | emor is defined as the case where the null hypothesis is rejected whea in fact it is true. In
the context of this study Type I error was examined via cumalative probebility percentage points of the
empirical distributions of the summary statistics. A statistic is said to be significant at the a percent level
when it exceeds the value 3 where 8 denotes the smallest number that has 1 - a percent of the values in the
asympeotic distribution of the statistic less than or equal 0 it. The value & is commonly refesred 10 as a crit-
ical value.

A comperison of ANOVA and loglinear analysis was made by contrasting the empirical Type | error
rates of each method with respect 0 chosen nominal rates. The nominal rates chosen were 0.10, 0.0,
0.025, and 0.01. For each nominal rate critical values were cakulaed by evaluating the inverse of the
cumulative probability function. These critical values were then used 10 locase the comresponding empirical
Type I error res. For exampie, a nominal rase of 0.05 for an F distribution with two degrees of freedom in
the numerasor and 27 degrees of freedom in the denominator corresponds 10 a critical value of 3.35, round-
ing 10 two decimal places. This critical value is then used (0 find the largest observed F statistic, say, Foy ,
less tham or equal 10 3.35 from the list of 10,000 calculated F statistics in a given simulation. The sumber
of F statistics in the list that are grester than F ., divided by the size of the list is the empirical Type | error
rate corresponding 10 the nominal rate of 0.05.
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The study of empirical Type I error rases with respect to the asymptotic (nominal) Type I esror rates
provides more than just another measure of the goodness-of-fit of the empirical distributions 10 the theoreti-
cal disributions. The critical values corresponding 10 the nominal rates (significance levels) are used 0
desermine when 10 reject the null hypothesis in ANOVA and loglinear modelling When the empirical rates
excoed the nominal rates the test statistic leads 0 rejection of the null hypothesis 100 oficn. When the
empirical rates are less than the nominal rates they are said 10 be conservative in that they do not lead 0
rejection ofien enough. Examining the levels of conservativencss of the related summary statistics is a way
of gaging the relative relisbility of using loglinear analysis or ANOVA for testing a hypothesized model
over the same set of data. Akhough loglinear analysis and ANOVA utilize summary statistics with
different asympiotic distributions, cach method can be compared via empirical Type I emor rates. The
measure of the relative conservativeness or liberainess of the statistics used for significance testing is the
basis of comparison.

S5.4. Type Il Error Rates (Power)

A Type II error rate is the probability of not rejecting the null hypothesis at a given level of
significance when in fact it should be rejected, that is, when it is not true. Type II error rate is directly
relsted 0 what is called the power of a test. Power is defined as onc minus the Type II error rate, or, the
probability that the test will lead 10 correct rejection of the null hypothesis. Analytical measures of power
are somewhat unwieldy 1o apply in practice since, in general, test statistics have a different distribution for
each model outside the model upon which the null hypothesis is based. The problem is that given a specific
null hypothesis, violation of the null hypothesis means that the distribution of the test statistic could be any
of many that are possible aside form th aull distribution of the null model. Therefore, power is specific 10 a
givea null hypothesis and given violation of that hypothesis.

This smdy compares ANOVA and loglinear analysis through empirical measures of power based
upon scveral different violations of a set of null hypothesis. For example, power is examined for the case of
2 2Q table with the null hypothesis that no row, columa, or imteraction effects are present. The way 10



obtain an empirical measure of power is 10 have the simulated data be generated such that & knowa columa
effect is present and then test the hypothesis that the effect is absent. The method which exhibits larger
degree of power, or, equivalendy, lower Type 11 error rase, is them judged as being superior 10 the other
method. As desermination of power is most easily done through large scale simuliation, it is newral ©0
include power results in this Monte Carlo study.

SS. Compared Orderings of Sample Tables

Even though the statistics from the two methods under investigation have different asympiotic diswri-
butions they should create similar orderings of the ssmple tabies in each experiment when they are perform-
ing adequately. The orderings are based upon the ranks of the summary statistics for the tables. Hence, if
the 199th table in the 22 design for row and columa independence yields a X2 value of 2.51 which hes
rank 1281 out of the 10,000 X? statistics caiculated in that experimen, table 199 is given rank 1281. For
this experiment the table ranks based on X2 would be compared 10 the tabie ranks based on the F statistics
for testing inseraction effects. Suppose tabic 199 gencrates a F statistic for interaction of 123 which ranks
1269 among the other F statistics for interaction. Then, in this example, the two rankings of table 199 hap-
pen b0 differ somewhat,

An advantage with this type of comparison is that it is distribution-frec. Direct comparison of the
allowiag for a simple comparison of the two methods which gave rise ©0 the ranks. There are many well
documented distribution-free methods available for analyzing rank data. Most address the question of
whether the ranks resukt from the same underlying distribution of values upon which the ranks are based.
Since there is n0 question about the different identities of the underlying diswibutions in this study, such
methods that test for distribution equality are not considered.

The point of interest in this case is 10 investigate whether the two methods order the tables the same
way. This is slightly different from distribution relsted investigation in that for cases where the summary
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statistics are not distribwed particularly close 10 their comesponding asympotic distributions for both
methods, exiensive comparison of the devistions from asympiotic values becomes somewhat intractable
due 10 the size of the simulation. On the other hand, by frocing the analysis from the context of the theoreti-
cal distributions, the comparison of the similarity or difference of the behavior of the two methods when
conditions are extreme or debilitating becomes more ienable.

Given the situation where both methods are failing, it is still of interest 10 know if they are failing in a
similer fashion. Light and Margolis (LiM71) use the method of calculating the rank correlation coefficient
as part of an examination of two different methods. In their case, they compared the statistic from their
CATANOVA method 10 the Pearson X? statistic derived from classical chi-squared testing for indepen-
dence in two dimensional tables. The rank comvelation coefficient has been selecied as the measure 10 apply
in this stedy.

For a given experiment a set of table ranks is genersted for cach method. The rank correlation
coefficient is then calculated for the two sets. It is defined as
634 Ly
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where X; and Y; are the two ranks given 0 the ith table, d; is the difference between X; and Y;, N the

ry=1

number of tables generated, S, the standard deviation of the X;, S, the standard deviation of the Y;, and
cov (X Y ) the covariance of the X; and Y; pairs.

The range of 7, is from -1 10 +1. Absolute values close 10 one indicase that the two methods behave
very similar, ranking uic tables such that the ranks are lincarly related. Values close 0 zero indicate that
overall the assignment of ranks 10 the tables is not discemibly similer for the two methods. It should be
noted that such a measure of behavior says nothing about the competing methods’ relative performance in
terms of their respective diagnostic capabilities. It is merely a way of desecting another degree of similarity
or difference in the methods. Messuremments of diagnostic power are mecessarily dependent upon the



sssumed distributions.

Still, the information given by the rank correlation cosflicient can be use:ul when looked at in cos-
junction with the measurcs of diagnostic power 10 help identify sitsations which influence such power. For
example, there may OCCUX two situations where ANOVA fails quite drastically and where loglinear analysis
succeeds Adequately while, in the first cage, the rank corrolation coefficiont is quite close 10 one and, in the
other case, it is close 10 2¢¢0. In such a scenario the rank corvelation coeflicient suggests that special atien-
tion be givea 10 the second case above since for it both the performance and the behavior of the two
methods are quite different.

5.4. Simulation Design

This section presents the details of the structuring of the Mome Carlo study used 10 compare and co-
rast ANOVA sad loglinear analysis. Figst, the overall aim and scope of the design are briefly outlined!
lowing that more general overview, detiled descriptions of the various ;. ~ts of the desigr.. s.-.. us iable
probebility swuctures and sample sizes, among others, are supplied. Motivations and justifications are
included along with those descriptions of clements which involved fundamental design decisions. Occa-
sionally the reader is referred 1o the eartier chapiers for details and/or examples, but, for the most part, an
staeenpt has been made 10 keep the section self-contained.

$.6.1. Aim and Scope

As described in Section 3.6 of Chapeer 3, ANOVA and loglinear analysis are being compared in this
study only for the snalysis of costingency tables where the observed counts in cach cell represent the
number of successes for a fixed sumber of Bernoulli trials, the number of trials being the same for each cell
in a given wble. This study gomerases large-scale simulstions of experiments yielding such tables by
assigning theoretical binomial distributions® 10 each cell of a table structured 10 test a given aull hypothesis.

¢ If ths probabiliey of success for a cell is set st p, and & chesrvations ase 10 be mads for thet call, them the # chserve-
mn*hamﬂm-ump and & 10 gonersts the count fer that cell.
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For example, (0 analyze a method’s performance in testing the null hypothesis of no row effects, no column
effect, and no interaction effects in a 2x2 table, each of the four cells of the table are assigned identical
binomial distributions from which 0 randomly generate the observed cell counts. 10,000 tables of counts
following that probability structure are then generated for use in conducting the various analyses detailed in
Section §.7.

The conditions which were chosen to be controlled and varied in this study are the table dimensional-
ities, the theoretical models with their corresponding null hypotheses, the size parameters of the underlying
binomia! distributions ( fixed across cells of a table for a given model), and the magnituies of the probabili-
ties vecd 10 test 3 given null model. This last condition is also a way of coatrolling the size of the observed
counts when testing a given mode! since reducing the probabilities is a way of genenating smaller counts
while still maintaining a given theoretical structural relationship among cell counts in a table.

Different combinations of these conditions were sclected to define a given simulation. The conditions
stated above were chosen as the simulation parameters since each will commonly vary in applied practice.
Hencs, some emphasis was placed on keeping this study focussed on obtaining results that could be useful
10 the practitioner. Though contrived layouts of extremes, such as table structures with very small probabil-
ities, say, less than 0.05, do have theoretical merit, they were not investigated in this study. Such cases
most ofien demand specialized modifications of existing techniques that become difficult if not impossible
to genenalize.

The extent of the simulation was limited to testing the main features of each method. The number of
advanced modifications and extensions of both loglincar analysis and ANOVA is becoming increasingly
large. Techniques other than overall model identification were not studied. Relative effectiveness of pro-
cedures such as parameter estimation and residual analysis have been left outside the scope of this study.
Although these are important areas of investigation, because this was an initial comparison of the two
methods, such extensive comparison was considered premature and best put off pending analysis of the

preliminary results.
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Enough was included in this general look 10 make a fair comparison of the two methods. The aim
was 10 produce sufficient results (o make a recommendation as © which procedure is superior overall. In
owder to achieve this goal, simulations were designed 10 compare and contrast the known weaknesses and
strengths of both. Cases where one method fails and the other is robust were generated, as well as cases
where both are known 10 perform questionably. Of greatest interest are the latter and those cases where the
theory and prior results suggests both are on equal footing. For these situations the empirical study is most
informative since no prior results exist which directly compare ANOVA and loglinear analysis in detail.

Another aspect of this study that influenced the design of the simulation was a desire 10 gencraic
results that could be used 10 also corroborate previous results conceming issues of loglinear analysis and
ANOVA independent of each other. This was not an initially planned part of the study but it followed
casily from the rest of the work, and though several related studies have been carried out, the work has not
been exhaustive. The cases in point here are the comparison of X2 10 G2 and effectiveness of the two sug-
gesied “cosrective” transformations investigated in this study, the arcsine transformation for ANOVA and
the addition of 0.5 10 counts for loglinear analysis. Also, a comparison of the siepwise forward and siep-

wise backward model selection strategies for loglinear analysis was included.

5.6.2. Enviromment

The simulations were performed using a VAX 11/780 and an Amdahl 58(/5860 running under UNIX
and MTS (Michigan Terminal Sysiem) operating systems, respectively. APL library routines were called
for generating the sample tables and for calculating the theoretical cumulative probabilities and inverse
cumaulative probabilities. All sample statistics were calculated using programs written in C under a UNIX
environment. Graphs were produced with a Calcomp plotter wtilizing the TAG software package.

The binomial sampling was simulated by first specifying the population probability, P, and the sam-
ple size, N. The APL random number generator was then used (0 generate N five di+.. random numbers

drawn from a uniformly distributed population over the inierval from zero 10 one. The sample count for a



wable cell following a binomial population with parameters P and N was then taken to be the tally of the
random numbers less than or equal to P . This process was repeated 10,000 times for each cell of each table
examined in this study. The simulation size of 10,000 for cach table was chosen 30 that the probability
would be 0.99 or greater that the observed mean value of a cell (taken over the 10,000 tables) would be
within 0.1 standard deviation of the population mean, NP, of the cell.” Also, the simulation size was
selected to correspond 10 the size used in several related studies [HeF69], (RoK77) [WCT86] [Lar78) o
allow for more direct comparison between studies. Finally, all numerical computations were carried out to

an accuracy of six decimal places or more.

5.6.3. Table Dimensionality

Probability structures are examined only for 22 and 2>2x2 tables of counts. Actually, as noted in
Section 3.6 of Chapter 3, these tabies correspond 10 2xX2x2 and 2x2>2>2 tables with one configuration fixed
when studied using loglinear analysis. The cardinality of each dimension is limited 10 two since the counts
result from a dichotomous response varisble. Thus, the sampling i« i effect product multinomial sampling,
the individual multinomials being binomials. For such asar - ' -neme each multinomial is independent
of the others in the table. Therefore, no asympaotic ¢i'icrens ., stould be induced in either of the two
methods by increasing dimension cardinality other than ;- ~~:pie smoothing of results and the expecied
improvements related (o0 the overall increase in sample size. If the individual multinomials were not res-
tricted to being binomials, dimension cardinality would make a difference due 10 the theoretical constraint
that cell population probabilities in a given multinomial must sum t0 one. In that case, higher cardinalities
imply low cell probabilitics or highly skewed cell probsbilities, which in tumn has the effect of increasing
the likelihood of small counts appearing in the table unless the overall sample size is made large. The type

7 This is found through s version of Tchebychefl"s inaquality,
;m.qx-man:-%.
where X is any random varisble, £ » real constant gresser than 28ro, |4 the population mean of X, and 02 the population

variancs of X . Choosing X Slqicu-.t-.lc'.-‘-ﬁ.hﬁ.huaﬂhio@aﬁyb.”dbmnmb

solve for N , the sumber of simulstions, since the variance of the sample mesn is v



of sampling scheme which forms the basis of the comparison of loglincar analysis and ANOVA, Bernoulli
trials, removes as an issue the effect of the cardinalities of the table dimensions.

On the other hand, the number of dimensions relates 10 two areas of investigation in this study. First
and most significant is that with increased dimensionality a grester number of models become possibile for
tions of lower order effects and intcractions. Most of the studies referenced in the course of this research
have examined tables of two dimensions or less, especially those related 10 ANOVA. For the studies
involving loglinear analysis, most have had three or two dimensions as the upper bound on tables investi-
gated. One motivation for choosing 22 and 222 (implying 2x2>2 and 2x2x2x2 for loglinear analysis)
tables is that results for lower dimension tabies can be related 0 previous studies while the higher dimen-
sion results can provide an extension. Authors of previous results in the literature suggest that the results for

tables of lower dimensions should extend 0 higher dimensions.

In the case ~F 'oglinear modelling the study of many of the models in three or more dimensions
requires the use of an approximation algorithm to calculase cell estimates. This study selects several models
that require approximation of the estimates. In these cases where direct estimaies do not exist, a precise
snalytical approach to studying the distributions of the test statistics under various violations or transforma-
tions becomes difficult if not impossible, making the alternative of an empirical investigation all the more
worthwhile.

There is, however, sometimes a problem with high dimensionality. In applied situstions, intcrpreta-
tion of models with a large number of significant terms becomes increasingly difficult and muddied. In
some cases the researcher combines or collapses categories (o aid with interpretation. In other cases tables
are partitioned into smaller tables and then scrutinized. These are more advance arcas of investigation and
were not specifically addressed in this study. Tables of dimensionality higher than three for ANOVA lay-

outs of the probabilities were not considered (no higher than four for the corresponding loglinear analysis).
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5.6A4. Cell Sample Size

Since fixed effects ANOVA is being compared to loglinear analysis the the number of observations
for each cell of a table is constant. Fixed effects ANOVA methods do exist for non-orthogonal designs
{Coh82), but they are not considered in this study. To test the small sample and the large sampie behavior,
cell sample sizes of 10 and 40 are employed, respectively. These sizes are used for both dimensions of
tables studied. The size of 10 observations per cell is considered to be about the smallest size of interest in
this study for two reasons. First, the context of the comparison implies that for the loglinear analysis sam-
pling size is fixed for cells’. This is due o the product-multinomial sampling scheme such that each table
is stratified into binomials. As noted in 4.2 of Chapeer 4 it has already been determined that both X2 and G2
arc suspect when observed cell counts are 1 or 0. The smallest cell probability used in this study is 0.05.
Hence, a cell sample size of 10 leads 10 an expected count of 0.5 in such a cell. Therefore, the small sample
behavior of loglinear analysis is adequately examined by setting the number of observations per cell at 10
and choosing appropriaiely small probabilities.

The second reason for choosing the size of 10 stems from the results of given by Lunney [Lun70).
That study concluded that for ANOVA with a dichotomous dependent variable the number of degrees of
freedom for within cell variance should not be less than 20 when the response probabilities for success are
greater thwa 0.2. For cases where there are probabilities less than 0.2 it was suggested that 40 degrees of
freedom are required 0 obtain reliable results. The size of 10 observations per cell corresponds 10 40
degrees of freedom for within cell variance for 22 tables. Therefore, 10 observations per cell should be
extreme enough 10 simulate known conditions where the tests used in both ANOVA and loglinear analysis
exhibit less than adequate performance. Again, based on earlier findings, the cell sample size of 40 is about
the point where significant changes in performance cease 10 occur. Further increases in sample size result in
on slight improvements in the performances of the two methods.

$ Acamlly it is Gixed for pairs of cells in the loglinesr formulation, but the information in one call of the pair detenmines
the valus of the other cell.
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5.6.5. Data Traasformations

At several points in the history of the development of ANOV A and loglinear analysis, transforma-
tions of the raw data have been suggested 10 either make the data conform 10 underlying assumptions or 10
make adjustments 10 comect for violations. Two transformations are examined in this study: the arcsine
transformation and the addition of 0.5 1o cell counts. These are used with ANOVA and loglinear analysis,
respectively. For each set of raw counts the transformations are carried out and the two analyses are exe-
cuted. Results using the transformed data are then compared with each other and also 10 the results using
the raw data.

§6.5.1. Arcsine Transformation

The purpose behind the use of the arcsine transformation is (0 stabilize heserogencous variances
among cells of a tabie. The arcsine transformation is used for cases where the the heterogeneity results from
data being sampled from differing binomial distributions®. Several different forms of the transformation
have been proposed in the liserature [BHH78), (Cocd0), (Bard7], [Fisé4), [FrT50]. The raw data is
recorded as proportions 30 the scale is 0.0 t0 1.0. For each of these transformations the variate on the new
scale tends to a normal distribution as n —ee, where n is the num ber of trials. The transformations all gen-
enally succeed in stabilizing the variance, exhibiting inadequacies only with the tail area probabilitics.
When the sample sizes are small, the range of proportions over which the stabilization will result varies

between the transformations that were reviewed.

The transformation chosen for this study is the one proposed by Freeman and Tukey,

6= [sin"\l%+sin“\[-’;-j—:-]

where x is the number of successes and » the number of trials. 0 is measured in degrees in this siudy.

? The veriancs of & binomeial distribution is s direct function of the mean: p=NP, 0’ = NP (1-P). Thevefors, cells that
hove difforent populetion probebilities, P , will have different variances in the simulation.
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Mosteller and Youtz (MoY61] show that with this transformation, for n=10 in the interval
0.1 S (prob.success ) 0.9, the ratio of the variance of © © its asymptotic variance is nearty constant. For
=50 the ratio is constant in the inerval 0.07 S (prob.success )< 0.93, the variance of 0 being within 2% of
is asympiotic value. They also show that the Freeman-Tukey transformation stabilizes the variance over
larger intervais for small to moderate sized n than does the often cited transformation used by Bartlen

(Bard7],

:in“-\/%- (1sx Sn-1)
0= sin"-\,T: (x=0)
W—ﬁn"wlr-'n (x=n)

5.6.5.2. Adding 0.5 to All Elementary Cell Totals

A difficulty that cin srise in loglinear analysis is the occurrence of many zero counts in cells. Zeros in
celis have the effect of distorting the X2 and G2 statistics (see Chapeer 3.4 for details). Also, when the zeros
occur such that a marginal total is also zero, the degrees of freedom need to be reduced, minus one for each
zero marginal 1tal of a single variabie as that level is basically collapsed out of the table [Fie77).

Several places in the literature the adjustment of adding 0.5 0 each cell has been suggesied as a pos-
sible way 10 mitigate the problems caused by excessive numbers of observed zero counts. Goodman
(Goo70] was the first 10 make the recommendation. Subsoquent authors have since made reference ©0 the
practice. Also, this technique has been included as an option in some of the widely available loglinear com-
puster software packages for contingency table analysis such as BMDP/M and ECTA.

Theoretical justification of the adjustment is not given. Direct cakculation of the X? and G? statistics
on such modified data leads to statistics that are no longer distributed with the regular asymptotic
chi-square distributions. Hosmane [Hos86) develops the corrected X2 and G2 statistics for the case of 22
tables. In a Monte Carlo experiment Hosmane shows that the unaltered X2 for the raw data is in most cases



superior to the modified G and slightly better on average than the modified X2. He suspects that the results
genenalize (o higher dimension tables but at the same time feels further investigation is needed before sound
conclusions can be made.

This study does not attempt 10 extend the investigation along the direction of Hosmane's study. To
do that the modified statistics would need 10 be derived for each model studied. Instead, the regular X and
G? statistics are examined using the adjusted data. The intent is 00 note the effect of the adjustment as it is
offered 10 applied practitioners in the existing software packages. Whether the addition of 0.5 10 cell totals
is beneficial is not obviously clear in light of Hosmane's results . This siudy aims in part then 10 clarify just
what effect adding 0.5 has on the analysis.

5.7. Models and Probability Structures

This section presents the table probability structures used 10 generate the cell counts. In choosing the
structures, first,the linear models corresponding ©0 the null hypotheses under examination were sclected.
Probebilities were assigned to the cells of a table such that they agreed with the related linear model. Then,
pscudo-random counts were generated based on those probabilities. The equations for the models are given
in both ANOVA and loglinear formulations. The ANOVA equations arc identical in form to the logit
models which are, in effect, being fited via the corresponding loglinear models. The probebility structures
are presenied in tabular layouts. In what follows the cross between tables is used to indicate that the two
tables are joined (are layers of the same table).

5.7.1. Completely Null Model

The complescly null model applies when no effects of any kind are present. This model is used 10
check the Type I error levels. Table 5.1 shows the probability structures examined for two dimensional
tables. The equations of the null mode) are

Yia=p+en,
for ANOVA in two dimensions, and,
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lO‘ (»lm) =4+l w)ﬂlw)ﬂl”)‘ﬁllwn
for loglinear representation in three dimensions.

05 05 .1 | J78 1178

05 | .0 1 1 178 |.178

case 1.1 case 1.2 case 1.3
25 25 .37 |.378 5 5
25 |25 378 1.378 5 5
case 14 case 1.5 case 1.6

Tabile 5.1 Null model cell probabilities for 2x 2 tables.
Figure 5.3 shows the probability structures for the three dimensional tables. The probabilities used are the
same as those chosen for two dimensions. The corresponding equations for this higher dimensionality are

Yiu = u+eju

log (M) = M+u1 2y 3+ M agry+i 1267+ 8 1 3Ga I 2GR THI 1 238 ) -



case 2.1 case 2.2

S 5 X 5 3

case 2.3

Table 5.2 Null model cell probabilities for 2x2 x 2 tables.

$.7.2. Maia Effects for One Variable

Tables that maxch the linear model having one main effect present and all other main effects and
interactions set 10 zero provide the simplest seuting in which 10 test Type II emor levels (or power). Here
there is only one violation of the compiete null model 10 consider. For ANOVA the focus of attention is
directed 10 the F-ratio that tests for the main effect that has been added. Any rejection of the compietc null
model siemming from other F-ratios would be spurious duc (0 the source of rejection, even though rejection
is the correct choice. For loglinear analysis, using siepwise forward mode! selection, the complesely null
model is compared 10 the mode! equaling the null model plus the term for the added main effect. Unlike the
ANOVA case, significance testing of components in loglincar analysis involves fitting entire models and
then checking the significance of differences. The G statistic!? of the completely null model is subtracted

from the G2 statistic of the model for one main effect. A nonsignificant difference results in a Type Il error.

10 The X* uatistic canmot be used sincs it does not have the sams additive properties.
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6 |.6 1 1 25 .25
case 3.1 case 3.2 case 3.3
08 .08 1 .1
A2 |12 9 9
case 3.4 case 3.5

Table 5.3 Cell probabilities of 2x2 tables for row main effects.
Stepwise backward model selection strasegics are also examined. The models used 10 calculase the condi-
tional G2 are given in the next chapter.

The main effect for the first dimension was chosen as the one 10 be included. The dimension which
contains the main effect makes no difference; the choice of first dimension is arbitrary. The same effect was
chosen for both the 22 and 2x2x2 tables. The two and three dimensional models for one main effect in
ANOV A format are

Yia =p+a; +€a

Yiu=p+o +tu
and in loglinear format are

b'(ll.")t [ ] *l|a)+lw)+lm)+lgw)+l|”)
log (mp) = 8 + 816y + Mag) + Magy + Mag)+ B12g)) + B13r) + B GR) + 8 146) + B123GR)
Tables 5.3 and 5.4 give the selected theoretical cell probabilities. Cases 3.1 and 4.1 have midrange probe-

bilities which have been shown 0 allow high performance for both ANOVA and loglinear analysis. In the
cases 3.5 and 4.3 the probabilitics are at the extremes where both methodologies break down. Cases 3.3



and 3.4 ase even more extreme in the probabilities and case 4.2 is mixed. Since the probabilities are not
constant across all cells for exch of the tables, the variances differ between cells in cases 3.2, 3.3, 3.4, and
4.2. Dus 10 symmetry cases 3.1, 3.5, and 4.3 allow for row effects 10 be present without and heterogeneity

of cell variances.
6 |6 6 |6 1 | ! !
case 4.1 casc 4.2

1 1 X 1 1

case 43

Table 5.4 Cell probabilities of 2x2x2 tables for row main
effects.

$.7.3. Full Main Effects Model

The inclusion of all main effects without interaction effects is investigated witk these models. No
inseraction in the additive probability model (ANOV A) does not necessarily mean that log-odds inieraction
effects are absent. For these models log-odds interaction effects are present in cases 5.2, 5.3, 6.1, and 6.2.
The other cases are of interest also since the loglinear models used 10 fit the logit models were chosen so
that any relationships between the dependent varisbies is taken out when calculating the conditional G2
statistics. This modellingtechnique is used regardliess of the true presence or absence of relationships
betweea dependent varisbles). Whether this antomatic “partisling” has any efiect on the Type | esmror or
power might show with these other cases.
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3 s 05 25
s 7 25 45
case 5.1 case 5.2
.06 .1 .1 L7
.1 L 14 3 9
case 5.3 case 5.4

Table 5.5 Cell probabilitics for 2x2 tables with both row and
column effects present.

For the three dimensional case, direct maximum likelihood estimates are not possible when fitting the
cormresponding loglinear model. Hence, the effects, if any, of using approximase maximum likelihood esti-
mates found thmugh application of the Siephen-Deming (DeS40) iserative proportional fiting algorithm

can be noted.

The equations for the mutual independence models are

Yia =p+a; +B; +¢,
Yu=p+to; +B +n+tu
for two and three dimensions with ANOV A, and,

lO'(ﬂl,‘,g)’l +“1a)+Uw)+lm)+Ilw)+l|u)+lw)
log (M) = u + 41y + Mag) + May+ Bay+B12gj)+ B3y + B2aGR) + 814Gt) + Boug) + M) + B 123G)
for loglinear representation of the corresponding logit models. The simulation probability structures for the

tables are displayed in Tabie 5.5 and Table 5.6.



>< 4 :5 1 | X 3

case 6.1 case 6.2

Table 5.6 Cell probaebilities for 2x2x2 tables with both row,
column, and layer effects present.
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Chapter 6
Simuiation Results

The results of the Monte Carlo study are presented in this chapter. Relative performances of the test
siatistics for ANOVA and loglinear analysis are compared and contrasted with respect to the simulation
design detailed in Chapter 5. Most of the results are in terms of Type I error levels and power. The follow-
ing comparisons are made:

A ANOVA F using raw data versus ANOVA F using the same data following application of the arcsine
transformation of Tukey and Freeman;

e X?and G?of loglinear modelling using raw data versus the same statistics after 0.5 has been added t0
cach cell total [Goo70);

® X2 versus G2 as measures of overall goodness-of-fit for loglinear modelling

*  conditional G? of loglinear analysis versus ANOVA F (lesting the same null hypotheses). Included
here also is the additional comparison of forward versus backward stepwise selection strategies for
loglinear modelling.

For the most part, performance is assessed in terms of how close the statistics maich the upper 10%
of their respective cumulative reference (nominal) distributions. The study of power was confined to the
case where a = 5% to keep the size of the study to a manageable level. Though the bulk of the results per-
tain (0 the upper percentage point behavior of the statistics, several complete distribution results are given

in the form of graphs and measures of correlation.

52



6.1. Interpretation of the Graphs

Graphs of the nominal versus cumulative distributions of the statistics were produced for most of the
simulation experiments. Most turned out to be repetitive, though in several cases interesting results did sur-
face. Figure 6.1 depicts a detailed example of the type of graphs referred 10 in this section. The plots were
made of the percentage points of the empirical cumulative distribution versus the percentage points of the
reference cumulative distribution for the various summary statistics. In the simulation 10,000 tables of ran-
domly generated samples were obtained for cach test case. Sample statistics were calculated for each table
of sampie counts. Each collection of 10,000 statistics was then sorted in non-decreasing order. Each statis-

tic was then used (0 create a point in the plot of a graph such as that found in Figure 6.1.

100

N o8

im % \ —plot

(95.93)

9 92 9 9% 98 100
Empirical

Figure 6.1 Example plot of nominal versus empirical cumulative

Assume the above plot is for the likelihood ratio statistic G2. For the point X in Figure 6.1, the
abscissa value, 95, represents the proportion of the 10,000 observed G? statistics less than or equal 10 the
G? statisuc in the simulation, say, G2 with a value of 4.5. The ordinate value, 93, represents the probability

of a value in the reference distribution being less than or equal 10 the value of the G? statistic. The ordinate
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(in this case 93) for G? equal (0 4.5 is found by evaluating

7!(:)43.

0
where f (x) is the probability density function of the reference distribution of the statistic being studied
(cither 2 or F in this study).

Visual inspection of the resulting piot reveals how well the empirical cumulative distribution agrees
with the reference cumulative distribution. A straight line with siope equal © | indicates perfect agree-
ment. Deviations of the piot sbove the line y = x indicate that the percentage points of the reference distri-
bution exceed those of the empirical distribution, while deviations in the opposite direction indicate that the
reverse is true. The interpretation of point X is that the 5% critical value of the empirical distribution is in
fact the 7% critical value of the reference distribution. Hence, ai thig point the test statistic is conservative
in that a test of significance with it using tables of the nominal distribution will lead (0 rejection of the null
hypothesis 2% less often than is nominally expected.

ldeally, the empirical distribution should maich the nominal distribution. Emphasis of the Monte
Carlo study was placed upon examining situstions where such a match was not highly likely so that devia-
tions could be compared. Plots deviating with regularity to both sides of the line y = x are indicative of
discreteness for the empirical distribution. Plots that are consistently above or below the line mean the
statistic eads (0 a liberal or conservative test, respectively. Graphs of the entire cumulative distributions as
well as graphs of just the upper 90 percentiles were plotted, the latter emphasizing the region where most

significant testing is based.



6.2. Tabled Results

Results were collected in terms of actual significance levels ucing critical values of nominal levels for
o =10%, 5%, 2.5%, 1%. Binomial standard deviations for realized significance levels of magnitudes 1%,
2.5%, 5%, 10%, 20%, and S0% arc .10%, .16%, .22%, .30%, .40%, .50%, respectively.

Many of the results presented in this section are in terms of the number of standard deviations of the
actual levels from the nominal levels. The reason for this transformation is to miake the results more directly
comparsble. Since four different significance levels are being compared side by side, transformation of the
devistions from nominal levels onio the same scale allows for fair comparison (in terms of magnitude)
between different significance levels and thus a clearer view of the upper percentage point behavior. Fusth-
ermore, the results in this form are z-statistics and can be referred 0 normal distribution tables for tests of
significance. Throughout this chapter a result is “significant™ when its absolute value is 2 or mose. This is
approximately the critical value for the 5% level of significance for the z-distribution. The <ign indicates
direction of deviation. A negative sign means the observed value is below the nominal value (i.e., test is
conservative). Positive entries (unsigned) mean the oppasite is true (liberal test).

Results are presented by statistic and case. Table 6.2 gives a quick reference guide of the cases in

terms of the underlying probability structures of the iest tables. Cases are referred 10 by number throughout
this chapter.

X

Table 6.1 2 x 2 table probabilities (A, B, C, D) and 2 x 2 x 2
table probabilities (A, B, C, D,E, F, G, H)
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dimensions effects case cell probabilities
present
2x2 none 1.1 (.05, .05, .05, .05)
12 (1,.1,.1,.1)
13 (.175, .175, .175, .175)
14 (.25, .25, 25, 25)
1.5 (.375, 375, 375, .375)
1.6 (5..5.5.9
2x2x2 none 2.1 (1,.1,.1,.1,.1,.1,.1,.1)
22 (.2s,.25,.25,.25,.25,.25
23 (5..5.5.5.5.5.5,.9)
2x2 row 3.1 (4, .4,.6,.6)
32 (7..7,.1,.1)
33 (.08, .05, .25, .25)
34 (.08, .08, .12, .12)
35 (1,.1,9,.9
2x2x2 row 4.1 (4,4,6,6,4,46,.6)
42 (7,..7,.1,.1..7,.7,.1,.1)
43 (1,.1,9,9..1,.1,9.9)
2x2 row and column  5.! (3..5.5.7
5.2* (.05, .25, 25, 45)
$.3* (.06,.1,.1,.14)
54 (1,.7..3,.9
2x2x2 row col layer 6.1* (2,4, 4,6,4,6,6,38)
62* (1,.5,.3,.7,3,.7,.5.9)

Table 6.2 Summary of probabilitics used in test cases. Effects are noted
in terms of additive probability model. Cases marked with *
have large log-odds interaction effects. In all other cases the
presence of log-odds effects corresponds with the labels in

column two.



63. Arcsine Transformation

The arcsine transformation is used with ANOVA when the original scores are believed 10 be drawn
from binomial populations. Application: of the transformation results in new scores which have rear con-
stant variance (for fixed sampie size, n ) and are approximately normally distributed; that is, the problems of
heterogeneity of variance and non-normality of cell populations ar. remedied. ln experiments where the
cell populations (binomial) do in fact have equal probebility parameters (equal in the scnse that the smaller
of the binomial parameters, p and ¢, for each cell population is the same for each cell), heterogeneity of
variance should, in theory, not exist, and the expected benefit of applying the transformation would be the
improved normality of the cell populations.

This section details the results of the study aimed at assessing the cflectiveness of the arcsine
transformation in the aforementioned situstion. Results compering the empirical and nominal distributions
of the F statistic are presented for the cases where the null hypothesis in the F-test is true by design of the
Monte Carlo simulation. Discussion of the outcomes for the cases where the null hypothesis is designed to

be false (power study) follows in Section 6.3.2.

6.3.1. Type I Error - Upper Percentage Poiats

Table 6.3 displays the results for 2 dimensional cases where no treatment effects are present. This
table gives results of the F-test for row effects grouped together so that the effects of success probability
size and sample size can be seen more casily. The case results for column and interaction effects arc similar

and can be found in the tables comparing ANOV A and loglinear results (Tables 6.15 0 6.26).

Increased cell sample size leads 10 actual levels that are close 10 nominal levels. Without the arcsine
transformation 11 out of 24 levels are greater than 2 standard devistions from nominal for # = 10 observa-
tions per cell, while only 4 are greater than 2 standard deviations for » = 40. When the transfon ation is
applied to t~- ‘1w scores 17 levels deviate from nominal by more than 2 standard deviations for a = 10. For

» =40 there are 4 instances where the levels are significantly different from the nominal levels.
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STANDARD DEVIATIONS OF ANOVA F FROM
NOMINAL SIGNIFICANCE LEVELS

nominal level (a)
n(cell) case prob 010 085S 0025 0.1

11 ) -149 -17.7 -145 99

1.2 1 22 47 -14 12
13 178 1.0 06 -1.7 -l14
10 1.4 28 03 05 0.9 1.3
1.5 375 -37 08 10 04
16 S 62 -28 -15 00

11 oS -178 -181 -150 -99

1.2 1 07 -57 -85 -13
10t 1.3 178 4.1 21 -1.5 -12
14 28 40 40 24 29
L.s 375 42 -10 10 00
16 5 68 -37 32 -15
11 08 1 =33 34 -33
1.2 1 05 05 -19 -l14
13 178 02 03 02 03
40 14 28 1.0 06 -02 -01
1.5 3715 -12 03 19 07
16 5 07 -12 -15 <01
1.1 08 74 26 1.7 08
1.2 1 02 05 03 08

1.3 178 -1 06 -08 -01
14 25 £s 03 03 -02
1.5 378 -20 -13 06 -04
1.6 S 06 -i12 21 -02

t Entries where arcsine transformation was came -} out

Table 6.3 Standard devistions from nominal Type I emor rates for
ANOVA test of nuil hypothesis of no row effects

Upon closer inspection the resuits reveal that at » = 10 the pattern of deviations is similar between
the tests using the transformed and raw scores. In the vicinity of the extremes and middle of the cell suc-
cess probabilities (p = 0.05, p =0.5) the realized levels are more conservative than the nominal levels.
Agreement with nominal levels is closest when cell probabilities are in the region 0.175<p $0.375 and
when the arcsine trar - -rmation is not applied. Only 1 of the 12 empirical levels investigated in this region

58



is greater than 2 standard deviations from the nominal level (roughly, significant at the 5% level).

The region 0.175 < p $0.375 also contains the smallest deviations for the transformed scores, but 7
empirical levels are clearly significant (st the S% level). Also, the deviations are at 8 maximum within this
region at p = 0.25 for the transformed scores, whereas, for the raw scores, p = 0.25 is the probability that
has realized levels that are closest to nominal levels. Thus, at # = 10 superior results are observed for non-
transformed scores, though the pattern of deviation in magnitude and direction is similar for both types of
scores.

No such pattern is evident in the results when a = 40. Aside from the case where p = 0.0S, the empir-
ical levels are quite close to nominal levels and the discrepancics are moet likely autributable to the inherent
randomness of the study. When p = 0.05 the transformation leads to consistently more liberal levels than
does the use of the raw data, and compared to nominal levels the transformation leads to liberal levels while

the raw scores lead 10 conservative levels (except for the nominal 10% level).

Examination of the cumulative plots (Figure 6.2) shows that the arcsine transformation results in a
more smoothed (but only slightly) cumulative distribution of F-ratios when the number of observations per
cell is 40. Siill, the cell probability of 0.5 leads 10 a rather discrete plot. This is very odd since one would
expect such a population to be closer t0 normal than the other binomial populations since it is symmetric.
Even more striking is that when the probability is 0.1 the graph (Figure 6.3) is ncarly a straight line, what
one would have expected 10 occur with p = 0.5 before occurring with p = 0.1. For probabilitics less than
0.1 (graphs not shown) things do indeed begin to break down as should be expecied, and both transformed
and raw scores lead t0 more discrete graphs and larger discrepancies from the nominal cumulative distribu-
tion.

At 10 observations per cell the transformation results in a cumulative distribution of F-ratios that is
more discrete than it is without the transformation; the sieps become clearly defined. At p = 0.1 the F
cumulative for the raw score ANOVA has sieps, but they are more rounded than is the case when the

arcsine transformation is used (Figures 6.4, 6.5). When p =0.25 both transformed and raw scores lead 10
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graphs (Figures 6.6, 6.7) that are reistively smoother (compared to p = 0.1 and p=0.5) with smaller steps.
Still, the arcsine transformation brings out clearer sieps. At p = 0.5 the raw scores ANOVA graph (Figure
6.8) is clearly discrese, much more than those for p = 0.1 and p=0.2S. With use of the arcsine transforma-
lion the graph (Figure 6.9) is even more discrese in that the comers of the steps are not as rounded, instead
having one or two short sieps between the large ones. All the above results hold in both the 2 and 3 dimen-
sional layouts.

It is spparent from these results that, for small samples, the arcsine transformation results in a cumu-
lative distribution that is more discrete than the distribution obtained by using the raw binomial scores. A
possible explanation for this is that the transformation maps the raw scores into a bounded interval thereby
making the results more susceptible 0 discreteness due 10 rounding errors. Of course, as the asymptotic
theory shows, this discreieness should vanish when the sampile size is large.

Still, this does not explain the increased discreteness observed with use of the raw scores as binomial
probabilitics approach 0.5. This is baflling (0 the author, the only suspicions being that it may in some way
be related to the increased symmetry of the distribution from which the scores are drawn (which does not
seem a likely cause), or 10 an unexpected property of the sampling model (like the unexpected, but theoreti-
cally backed result in [Fel57] where lengths of betting leads in binomial experiments are shown 10 be long-
est when when p =0.5), or to an artifact in the pseudo-random number generation. (The first four moments
about the mean were calculated for each sample and did not show any great disagreement with theoretical
moments. The third and fourth moments about the mean showed discrepancies in some cases, but always
appeared 10 be approaching those of the normal distribution).

Results from the analysis of 2x2x2 tables arc similar t0 those for 2x 2 iables (see Tables A2.1,
A22, and A2.3 in Appendix 2). The main difference is that, overall, the empirical levels ase closer (0 the
nominal levels than they are for the 2x 2 design. This agrees with the observation that the tests improve

with increased sample size (and larger degrees of freedom [Lun70)).
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TYPE I ERROR OF ANOVA AND LL AT NOMINAL S PERCENT
SIGNIFICANCE LEVEL WITH ROW EFFECTS PRESENT

column interaction
(cell) cd anova G G ANOVA G?
" (ce case forward backward $
35 00 0039 00015 00835 00407  0.0900
32 04 0049 00117 00633 00472  0.0669
10 33 06 0054 00540 00708 00518  0.0425
31 00 00465 00384 00606 00466 00734
34 02 00409 00854 00864 00383 00840
35 00 00387 00014 00144 00389 00110
32 04 00495 00093 00311 00445 00197
10t 33 06 00343 00165 00234 00325  0.0082
31 00 00457 00356 00415 0.0453 00468
34 02 00378 00119 00127 00356  0.0099
35 00 00542 00015 00574 00402  0.0704
32 04 00476 00132 00504 0: 0.0579
«® 33 06 00515 00450 00553 CC o 0078
31 00 00480 00434 00503 00505  0.0533
34 02 00502 0052 0053 00520  0.0777
35 00 00538 00015 00416 00505  0.0439
32 04 00481 00120 00427 0.0451  0.0431
W0t 33 06 00548 00390 00459 00530 00343
31 00 00461 00434 00455 00485  0.0493
34 02 00535 00389 00393 00551  0.0458
+ Results afier data transformations: arcsine for ANOVA, addition 0.5
10 each cell for LL (loglinssr snalysis).

$ Ovenall goodness of i statistic for log-linesr model that includes
all but the highest order term (mode! of independence).

Table 6.4 Empirical Type I error rates for two dimensional models at
nominal 5 percent significance level for null hypotheses of
no column and interaction effects while row effects are

present
Tables 6.4 6.5 and 6.6 give results for cases where the probabilitics of success are not the same for all
cells of each configuration. In these cases, row and/or column efects are present by design. The resuits in
the aforementioned tables are Type | error rates based on nominal 5% critical values.
The cases studied here allow for an examination of Type I error when heterogeneity of variance is

present. The level of heterogeneity is expressed via C3, the coefficient of variation of the cell population



variances [RoK77], [KeF71). Of the cases studied, C3 ranges from 0.0 to 0.6. The results in [RoK77] indi-
cate that the F-test is robust when CJ is less than 0.8 and the number of cbservations per cell is 10 or more.
Thus, the maximum value of C3 in this study, 0.6, is not an extreme. On the other hand, Rogan's results
were based on sampling from normal distributions, not binomial distributions. Also, since the variance is a
function of the mean in binomial sampling, > = pgn , instances where extreme heterogeneity of variance is
present are found only where there are large, obvious differences in the cell means (relative to p = 0.5).
Such situations require that some of the cell probabilities be close 10 0 or 1, that is, be at the extreme of the
probability scale. Hence, where there is extreme heterogeneity of variance there is also with it the problems

caused by the extreme probabilities of the binomial distribution.

EMPIRICAL TYPE I ERROR FOR ANOVA AND LL AT
NOMINAL S PERCENT LEVEL OF SIGNIFICANCE

n(cel case C> ANOVA ANOVAt G? G

54 04 0.0553 0.0497 0.0684 0.0203
52 04 0.0499 0.0462 0.0742 0.0263
s1 01 0.0442 0.0430 0.0683  0.0405
53 028 0.039 0.0358 0.08""  0.0096

10

54 04 0.0488 0.0466 0.0  0.0439
52 04 0.0484 0.0899 02197 0.1546
s1 o1 0.0532 0.0499 0.0581 0.0517
$3 028 0.0507 0.0572 0.0836 0.0452

t Results after data transfonmations: arcsine for ANOVA, addition 0.5
10 each cell for LL (loglinear analysis).

40

Table 6.5 Empirical "ype 1 emror rates (nominal 5 percent level) for
true null ypothesis of no interaction effects (additive proba-
bility model) for two dimensional cases with both row and
column effects present

For cases 4.1, 4.2, and 4.3 entries represent Type I error. Entries represent power for cases 6.1 and
6.2. The results in Tables 6.4, 6.5 and 6.6 show that the arcsine transformation does not consistently
improve the empirical 10 nominal agreement for Type I error. When a = 10 the ransformation lkeads more
often than not to larger discrepancies from nominal levels than does use of the raw data. When n =40 the

discrepancies are reduced for both types of data, neither being discernibly superior 1o the other.
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EMPIRICAL TYPE | ERROR RATES AT

NOMINAL $ PERCENT LEVEL
tests for colama effects tests for layer effects
C } » Gl GI v Gl Gl

n(cell) case ANOVA ) i bech I ANOVA P i back :

4.1 0.0 0.0530 0.0520 0.0546 0.0547 0.0539 0.0555
10 42 0.4 0.0484 0.0142 0.0557 0.0464 0.0118 0.0536

43 0.0 0.0490 0.0016 0.0526 0.0516 0.0017 0.0560

4.1 0.0 0.0503 0.0328 0.0459 0.0508 0.0344 0.0467
10t 42 0.4 0.0528 0.0102 0.0321 0.0542 0.0088 0.0302

43 0.0 0.0452 0.0004 0.0160 0.0465 0.0001 0.0187

4.1 0.0 0.0457 0.0422 0.0467 0.0472 0.0450 0.0483
40 42 0.4 0.0490 00124 0.0549 0.0459 0.0131 0.0567

43 0.0 0.0495 0.0014 0.0505 0.0 2 0.0010 0.0540

4.1 0.0 0.0446 0.0422 0.0431 0.0464 0.0450 0.0458
40t 42 04 0.0491 00115 0.0476 0.0553 0.0120 0.0482

43 0.0 0.0509 0.0014 0.0406 0.0527 23.0010 0.0416
+ Resuks after dats transformations: arcsine for ANOVA, addition 0.5

10 each cell for LL (loglinear analysis).

Table 6.6 Empirical Type I emror rates for three dimensional cases
where a main effect is present.

When both row and column effects are present (Table 6.5) the F-test for interaction effects (none by
design in probability model) exhibits peculiar behavior for 1 = 40 when the arcsine transformation 1, used.
In two cases (5.2, 5.3) the empirical level wi  the transformation is noticeably larger than the nominal
level and the level found using thc raw scores. These two cases are ones where log-odds interaction cffects
are present. The levels suggest that non-additivity in the arcsine scale falls between additivity in the raw
proportions and non-additivity in the log-odds.

Assessing the effect of heterogeneity of variances and the effectiveness, if any, of the arcsine transfor-
mation in improving the F-test is not a straightforward process in this study. The difficulty siems from the
fact that larger heterogeneity of variances is not independent of the existence of small minimum cell proba-
bilities in tables. Previous studies (RoK77] [Nor52] have shown that the effect of variance heterogeneity is

10 inflate the Type I error levels above the nominal levels %) en normal sampling. This study has shown
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that when cell probaoilities are at the extremes or middle of the O to 1 scale, Type | ermor rates are
significantly smaller than the nominal rates when no heterogeneity of variances exists. When heterogeneity
of variances is introduced, there might then be a counterbalancing effect in cases where probabilities are
extreme and variance heicrogeneity is large. That is, smal! probabilities cause reduced Type I error levels
while variance heterogeneity increases Type [ error levels. Hence, it seems plausible that given both there
may be a cancellation in the dis..cpancies from the nominal level. The results in Tables 6.4, 6.5, and 6.6
do not show such a counterbalancing; instead, there is an increase in irregular results, especially for the
ANOVA using the arcsine transformation. A clear pattern like the one before is not scen with these particu-
lar results. This is perhaps evidence that probability size and variance heterogeneity are interacting, but a
clear characterization of the interaction is difficult due 10 the irregu.ar results.

For the case with the largest degree of heterogeneity (case 3.3, Table 6.4) the Type I error is inflated
for the raw data for both n = 10 and n =40. When the arcsine transformation is applied, the level drops
significantly well below nominal for # = 10 and rises significantly above nominal for n = 40. Case 3.3,
Table 6.4, has the probability structure (.05, .05, .25, .25). Afier application of the arcsine transfor~  )n,
we underlying cell probabilities appear o have the same effect upon the Type 1 error levels as they did in
the study where no variance heterogeneity was present. For example, for case 3.3 with £ = 10, the realized
level of 0.0343 in the hypothesis of no column effects is -7.14 standard deviations from the nominal 5%
lev . using transformed scores. Looking va - 0 “bie ° veals that for p =0.05 and p =0.25 the
cor sponding realized levels are —13.1 and 4.0 standard devistions from the nominal 5% level, respec-
uveiy. The average is —7.05 which is close 1o that found in case 3.3. Case 3.5 and case 4.3 are also directly

comparable o the results in Table 6.3, and the same sort of relationship holds.

When heterogencity of variances exists ana  ..cn samples are as small as 10 observations per cell use
of the arcsine transformation results in a much more conservative test when using the nominal tables. How-
ever, when observations are 4C per cell the transformation gives results almost the same as does an analysis

without the transformation (close 10 nominal), though in several instances it was observed that it



significandy increased Type I eror.

The results support Lunney’s conclusion [Lun70) that the standard fixed-effects ANOVA is adequate
when the coeflicient of variation is less than 0.8. Furthermore, when sample sizes are as small as 10 obser-
vations per cell the sandard ANOVA lcads ©0 results closer 10 nominal than does ANOVA using the
arcsine transformation. Therefore. when the heterogeneity of variances is not extreme, use of the arcsine
transformation is not advised. Cases where extreme heterogeneity of variance is present were not con-
sidered in this study, but the behavior of the transformation where cell probabilities are close 1o 0 or | sug-

gest that it is ill-suited unless a very conservative test is desired.

6.3.2. Power

Results for power are found in Tables 6.7, 6.8, 6.10, 6.11, 6.12, 6.13. When C is 0.2 o o= the
arcsine transformation generally causes a slight decrease in power. When greaier heterogeneity 0. vaniu.ces
is present the transformation significantly increases power, but not consistently. The biggest inciease in
power found in the results occurs when all main cffects are present *ad CJ is 0.4 (cases S4 an' 5.2
Tables 6.11 and 6.12). However, the change in power is erratic depenaing upon sannle size and probability
structure of the tables. For instance, case 5.4 in Table 6.11 shows the arcsine transformation creaics an
increase in power of 0.019 at a = 10, yet a decrease in power of 0.006 when n = 10. Then in case 3.4 of
Table 6.9 the transformation leads 10 a decrease in power of 0.005 at » = 10 and an increase of 0 002 at
n =40. In general the increases in power are greater than the decreases when heterogeneity of variances is
present. In the absence of heterogen~ity the transformation always cither decreases power or causes o
change in power. When the sample size is larger, both transformed and raw data lead 10 very similar results.
This agrees with the results for Type I error.

Table 6.7 presents a comparison of power in the manner recommended in (Mar87). The column
headed with diff contains the differences in rejection rates (transformed results minus raw score results).

The column headed by SE contains the estimated standard deviation of the difference which was calculaicd
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using the expression found in (Mar87). The next column gives for each case the proportion of 10,000 sam-
ples where both methods reject the null hypothesis. The final column contains the rejection correlation
coeficient for the two calculations of F. T - is the correlation between the two arrays formed by scoring 1
if the test rejects and O otherwise.

POWER OF ANOVA F AND ANOVA F WITH ARCSINE
TRANSFORMATION AT NOMINAL § PERCENT LEVEL

m(cell) came C3> ANOVA-T ANOVA  &iff SE ’:*"c“" corr

s 00 1.0000 0.9864 00136* 000116 0.9864 undf
2 04 0.9882 09894  -00012* 000037 09881 094
10 a3y 0s 0.4539 0.4530 00009 0.00151 04421 095
il 00 0.2143 0.2202  -0.0059* 0.00093 02129 097
4 02 0.0527 00554 -0.0027* 0.00066 0.0519 096

s 00 1.0000 1.0000 00000 0.00000 1.0000 undf
32 04 1.0n00 1.0000 00000 0.00000 1.0000 undf
40 33 06 0.9645 09642 -00003 000066 09622 0954

a1 0o 0.7165 07166 00001 0.00010 0.7165 059
4 02 0.1380 0.1367 00013  0.00147 0.1265 091

Emmd-d-thmeolmwmvhh
comeistion cosficient is undefined due 10 division by a0
* The differencs of the two powers is significant at 5% level.

Table 6.7 Power comperison at nominal 0.05 significance level
between ANOVA F for raw scores and ANOVA F afier
arcsine transformation of scores.

The results show that for # =10, 4 of the 5 cases have a difference that is greater than 2 standard
deviations (significant at the 5% level). Whea n =40 none of the differences are significant. The proportion
where both reject is mostly a function of effect size. Looking at this in conjunction with the rejection corre-
lation shows that both methods behave very similarly. Even when both reject infrequently they do so in a
highly correlaied manner; they are rejecting for the same sampies most of the time. Case 3.3 is interesting
since it is the case with the largest C3 that was examined in this study, 0.6. The transformation makes little
difference here. This is not unexpecied given the results in (Lun70) where it was shown that ANOVA using
raw scores is robust when C3 <08 (when sampling is from normal populations). Based on the power

results of this study, the arcsine transformation does not appear (0 consistently improve the performance of
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ANOVA. In some cases it brings noticeable improvements, while in others it causes a reduction in power.
This erratic behavior is likely attributable to the effects of small expecied counts on the transformation.

EMPIRICAL POWER AT
NOMINAL $ PERCENT LEVEL
tests for colume effects tests for layer effects
cd aNova _© G’ ANOV G G*

®(cell) case forward backward A forward backward
10 61 02 0.4682 04559 04764 0.4699 0.4582 04T

62 03 09719 0.9692 09743 0.5184 0.4494 0.5389
104 6.1 0.2 0.4680 03695 0.4486 0.4660 0.3666 0.4517

62 03 0.9728 0.9490 0.9687 0.53%9 0.3559 0.4763
P 6.1 0.2 0.9660 0.9588 09671 0.9648 0.9559 0.9657

62 0.3 1.0000 1.0000 1.0000 0.9846 0.9702 0.9854
ot 6.1 0.2 0.9652 N 9588 0.9639 0.9631 0.9559 0.9625

62 03 1.0000 1.0000 1.0000 09878 0.9702 0.9839
1+ Rosults after data tranaformations: arcsine for ANOVA, sddition 0.5

10 sach cell for LL (loglinear analysis).

Table 6.8 Power of ANOVA F anG Conditional G2 for three dimen-
sional cases where all main effects are present.

63.3. Further Discussion

The author was not able 10 locate published Monte Carlo results comparing ANOVA for binomial
data with and without the arcsine transformation. Since most thorough textbooks on the subject of experi-
mental design and ANOVA make the recommendation that the arcsine transformation be applied when it is
known the data is drawn from binomial populations, it is of some concem that the results of this study sug-
gest that such recommendations are misguided. Therefore, much attention has been direced in an effont 10
verify and explain the results relating 10 the arcsine transformation for ANOVA even though it is not the
central topic of this thesis.

The increases and decreases in the arcsine transformation results compared 10 the respective nnw
score results seem 10 make a little more sense. The results in a study by Mosteller and Youtz [MoY61) indi-
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cate that the varisnce of the transformed scores is at a relative maximum around p = 0.2 for » = 10. This
means that it is o its greasest positive departure from the asympiotic variance, which is used as the denomi-
nator for the F-ratio.!! As a result, the F-ratic that was calculased in the simulation is slightly greater than
what would be expected if the true variance of the transformed population had been used in place of the
asympiolic variance estimaie.

When cell s wple size is large, the asympiotic variance of the transformed scores is approximately
the same for all values of p, the probability. Accordingly, an F-ratio which is larger than what would be
theoretically expected leads to a higher than nominal Type I error rate. The results of Table 6.3 are con-
sistent with this line of reasoning. For » = 10, the results using the arcsine transformation show a higher
than nominal rate for probabilitics in the vicinity of 0.2, a local maximum for 6, the actual variance. For
p S0.1 the Type [ error rate is lower than nominal (true for mw score ANOVA, too0) as 6¢ is smaller than
the asymptotic variance, decreasing rapidly as p approaches zero. For p > 0.2, of decreases 10 a local
minimum at p =0.5 which is about equivalent to the minimum at p=0.1. The results show that the Type I
esTor rates are about the same for p = 0.1 and p =0 .5 when the arcsine transformation is empioyed. Both
are conservative but the trends of closeness of agreement ©0 nominal levels differ as a goes from 0.10 to

0.01.

Rcsults for 1 =40 reveal the same conespondence 10 the Masteller-Youtz results. Their results are
for a = 50 but they are still quite related 10 the trends exhibited in Table 6.3. The local maximum of o is at
p =0.04. Case 1.1 (p =0.05) of Table 62 when » =40 is the only case where Type I error rases clearly
exceed the nominal level. The remaining cases all have 6 c'ose 10, but slightly less than, the asympiotic
variance of the transformed scores, with the closest mach occurring at p = 0.1 which has all empirical rates
being within one standard deviation of the nominal rases.

1! Bow Box (BHHTS) and Moselier snd Tuksy {MoTS8) comment that wes of the sample variance is an slermative thet
might be preferable since it involves wee of more information from the sample.
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Figure 6.10 Gngh of ratio of actual to asymptotic variance,
odlod, versus binomial probability, p, for a =10
(adapted from Mosteller and Youtz)

The sbove observations explain the empirical results reasonably well with respect 10 the
Mosteller-Youtz study when viewing the arcsine transformation results exclusively. However, the trends
noted for the arcsine transformation results with » = 10 are strongly parallel t0 the results that are arrived at
without use of the transformation. The trend is that the discrepancies of the ANOVA F from nominal Type
I error rates when ploued against the probebilities, p, follow the sar.c “rabbit cars® shaped curve as that
given by Mosteller and Youtz, the plot of the ratio of actual 10 asympiotic vasiance versus probability (Fig-
ure 6.10 and Figure 6.11). This is the case for both 2 and 3 dimcnsiona’ configurations examined in this
study.

“hie reascn for this h-~ ot been cleard; -stablished in thix sindy (nor addrsssed in detil). However,
the graphical analvsis a2 - "Jre < .ooum. .y b kot when p = 0.25 the cumulative distribu-
tion of F is much more in agreement with the nominal distribution than ace the cumulatives when p = 0.1

sndp =0.5.

n



Figure 6.11 Graph of number of standard deviations from nomi-
nal 5% level versus binomial probability, p, for
n=10

Mo:teller and Youtz offer no explanation in their paper for the behavior of 6. It has not been esia-
blished in this thesis what causes the behavior of the Type I error discrepancies. What has been shown is
that there is a striking similarity in the behavior of Type I error and 6§ with respect 10 binomial probabili-
ties when n is sme'!. Whether or not the cause is the same for both (i.e. , an underlying property of the bino-
mial distribution), has not been identified in this thesis; however, examining such an assumption would
scem to be a reasonable approach 10 take should one decide to camry out a deeper investigation into the

matter.



64. Addition of 0.5 to Cell Totals

The small sampie performance of the X2 and G2 siatistics has been thoroughly examinea over the last
20 years. It has been clearly cstablished that the performance of each breaks down severely enough 10
make use of the nominal tables unrelisble when there are many small or zero counts. (See Chapeer 4 Sec-
tion 4.1 for more details). The problem has been approached in several ways such as developing new statis-
tics and adjusting the approximating distributions of the usual statistics 30 that the agreement is better.

Goodman is often credited with making the recommendation of adding 0.5 t0 each observed cell oial
in an carly paper on loglinear analysis [Goo70). However, he made the suggestion in relation 10 calculation
of effect parameters in the saturated model with the aim of reducing both the asympiotic bias and standard
errors. He did not comment in (Goo70) about the general use of the adjustment, yet it appears that the inclu-
sion of such an option in some popular computer programs for loglinear analysis (e.g., ECTA and
BMDP/4) has led many 10 use the adjustment in the general context of model fitting. The adjustment does
have the advantage of climinating the problem of zeros in the marginal totals (problem for maximum likeli-
hood estimation) and the problem of zeros in elementary cells (problem in cefinition of G?). Subsequent to
Goodman’s paper, several authors have either repeated or cited the recommendation in introdu.tory papers
and exts on loglinear analysis [Rey77], [KnB80). TKen83) (Fox84). One should note that this adjustment
is not the same as the common correction for continuity where 0.5 is subtracted from the difference of

expected and observed counts before squaring in the Pearson X statistic.

Intuitively, a uniform increase in each cell 1otal when expected counts are small will result in smaller
values of X2 and G? since the effects will be smoothed over. Thus, one should expect a decrease in the
number of test statistics that are significant based on critical values of the approximating %2 distribution.
Type I error should decrease as should power. The point of this part of the study was 10 determine whether
the bias introduced by the adjustment is innocuous or significant. The author of this thesis did not locate
any Monte Carlo results studying the effect of the adjustiment. !2

12 There ass two papers by Hosmans [Hos86], [Hos87) that investigase & varisty of adjustments where & constant is ad-
ded 10 cell tonis; however, the statistics are also adjusted for ssymprotic binses coussd by the additions.




