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Abstract

Vector representations of text are heavily used in state of the art NLP tasks,
however they require significant computing resources to build and use. In this
work, we discuss and evaluate DFx, a system for representing vectors in a
compressed form without compromising the similarity between those vectors,
resulting in faster comparisons with less memory. Evaluation on a corpus of
1,000,000 tweets indicates that for the top 10 closest neighbors (KNN), dFX
overlaps with cosine similarity for 95.4% of results while using as little as 12.5%
of the original memory and completing the comparisons in 17.6% or less of the
original time (assumes that the full size vector array fits in main memory).
The KNN similarity rate decreases to only 90.2% when K = 1000. We fur-
ther evaluate DFx on STS (Semantic Textual Similarity) benchmarks (STS-12
through 16) and demonstrate minimal performance loss (and occasional gains)
due to discretization.

We also explore the notion of paraphrases built through a corpus wide
similarity search. The generated paraphrases are evaluated on ROUGE, and
BLEU for corpus similarity and for semantic similarity by using BERT-Score.
The generated phrases achieve scoring as follows: BLEU 60.74%, ROUGE-
1 67.91%, ROUGE-2 41.21% and BERT-Score F1 result of 77.92% on the
WikiAnswers paraphrase corpus. We believe these results indicate that DFx
can be used in practical applications and introduce computational gains with-

out significantly compromising accuracy.
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Chapter 1

Introduction

NLP (natural language processing) is a discipline centred on the idea of teach-
ing computers how to read. If we imagine the cornerstones of human develop-
ment, one of them is most certainly the ability to read and write. With the
advent of the written word, every individual was no longer required to begin
life with only the information provided by their caregivers, they could read
and gain the expertise of distant or departed individuals, which gave them
an important competitive edge. In the landscape of artificial intelligence, I
believe that this is equally true — teaching computers to read will give them
an understanding of the breadth of human knowledge, and current technology
is advancing towards this goal.

In the current state of NLP, there is a fundamental challenge of attempting
to represent the meaning of text using numerical input, which is generally
referred to as embedding. An embedding can be thought of as the translation
layer between human language and the binary code required by the computer.
On its face it seems simple enough, we can turn any word into a unique number,
but when we do that we lose the relations between them — their meaning. An
example of this information loss is if we encode swim as #A34465 and swimming
as #F12354 they lose all meaning of association, they are just fundamentally
different values. Further to this, it is also challenging to represent homonyms
as they map to the same number, and new words humans invent also need
to be inserted as they are created. The goal of an embedding is to create

a numerical representation that retains the meaning of the text — we want
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swimming to be close to swim, but also diving, and maybe even butterfly (for
the stroke, but preferably not the insect).

When humans read a text, we infer meaning to words quite fluidly and
without much explicit information, as we relate them to our physical world
and our prior experiences; this even applies to words we have never heard or
used before. To illustrate this point I was walking with my colleagues one day
in the quad and I said ‘geeze it sure is smuggy today’, which they were able
to understand in context. If you (the reader) were a computer, you receive
this phrase with solely the linguistic context in isolation from the physical
context, which includes the temperature, the time of day, other entities, prior
experiences and all 5 senses of a person, and it basically comes across as ‘geeze
it sure is NEW_WORD today’, which could mean anything. I'm reasonably sure
that most readers have by now developed some definition for ‘smuggy’, but it
will likely help you define the word if I tell you it was a hot humid day, and
there was a lot of smoke in the air from surrounding forest fires — ‘smuggy’
referred to the thick, smelly, moist air. The word ‘smuggy’ doesn’t mean
anything as far as I am aware, I could have replaced it with ‘blick’ and it
might have gotten across the point, but I feel that ‘blick’ is a worse word to
choose than ‘smuggy’ for that context, likely because of the close similarity to
the word ‘smog’. It is this inference of meaning through context that we need
to teach computers, take a guess based on what you have experienced before
and go with it until you know you are wrong.

An embedding, therefore, is a numerical definition of some chunk of text
(character, token, word, phrase or larger) that is built up by reading text
and accumulating statistics about that text. This initially includes words
that happen frequently around a target word, so that their co-occurrence can
be modelled, but it has grown to be so much more in recent transformer
networks [45]. A transformer [45] is a newer application to word embeddings
where the network effectively looks at all of the tokens in a fixed window
and then assesses them all according to their surroundings, a notion of the

linguistic context of the word. For now, this means that the surrounding
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words can change the embedding of the current word and the current word
also affects the surrounding words — the relationship of the embedding values
is co-dependant.

Transformers, in modern NLP, are used to embed phrases or paragraphs
as a whole to a single embedding. For example, we would expect the final
embedding of the phrase ‘I like what you said’ to be quite close in latent
space (the high dimensional space to which the embedding belongs) to another
phrase ‘I like your statement’ This closeness in latent space represents the
semantic meaning of the phrases, the closer they are to each other, the more
similar they are.

If we only consider a phrase to be a single embedding, however, we lose
information about the words contained in that phrase, they are represented
as one. For the sake of this work, we are interested in the journey through
that space, how embeddings are created by a sequence of words. To examine
this issue of moving through latent space, we conceptualize a phrase length
transformer embedding as a path through latent space, where each constituent
word in a phrase is a separate transformation from the previous embedding
to a new one as the phrase grows. In Figure 1.1 the embeddings for all of
the nodes are calculated separately with only the context of prior words, as
a human would read. In other words, the embedding for ‘I’ is considered
independently of ‘I like’, as the addition of the word like moves both the
embeddings for ‘I” and ‘like’.



e_

‘I Like what you said’

Figure 1.1: Vector paths in latent space

Concretely in Figure 1.1, we propose producing 5 distinct embeddings and
retain the situational meaning of each word through its embedding. This
retention of transformations between words allows us to examine portions of
phrases independently, and consider their effect on the phrase embedding as
a whole, as human writing in English would compose the phrase from left to

right, word by word.

° Some Di 'si:ér'u:e. e

‘I like what you said’
‘I like your statement’

I like
your
statement

Figure 1.2: Vector paths collide in latent space

If we now compare the two phrases ‘I like your statement” and ‘I like what
you said” we can see which parts of each statement are equivalent according
to the network. In Figure 1.2 the two phrases are illustrated as they move

in latent space, and wherever they approximately collide, they are considered
4



equivalent. This equivalency itself is interesting, as it represents a paraphrase
— an alternate way of saying the same thing or more concretely a different
way to arrive at the same vector. The central challenge of exploring this notion
is one of computational complexity, we now need to store an embedding for
each chunk of each phrase and with enough text, this is very costly.

DFx (the primary tool produced herein — Discrete Flag xor) is a vector-
based search engine that is used to facilitate the exploration of a network’s
latent space. DFx was developed to combat the resource allocation required to
reasonably explore the embeddings of an entire corpus of text. DFx empow-
ers the user to rapidly query a corpus of text for similarity according to the
embeddings created by any given network. Herein DFx is limited to testing
and evaluation on a text corpus, however, there is no reason it could not be
applied to any embedding — it is agnostic to the network used.

Once DFx has ingested a text corpus, the user can enter queries and DFx
returns the embeddings that are closest to that point in latent space. By
exploring a network in such a fashion, one can examine the separation of
negations: e.g. are ‘can’ and ‘cannot’ close? — the separation of word senses
— e.g. bank as a financial institution vs bank as a riverbank — throughout an
entire corpus of unlabelled text, by expanding the query neighbourhood until
the two phrases share neighbours in latent space. If for example, we start with
the phrases ‘I went to the bank to deposit money’ and 'I went for a swim on
the river bank’ we can expand the query neighbourhood until the two notions
overlap, this represents the number of interfering phrases in the corpus are
between the two candidates. This measurement can allow you to look into a
densely packed vector space and extract knowledge about the phrases.

The applications of a tool such as DFx are numerous, however herein I
explore the generation of paraphrases, not through network inference, but by
considering different embeddings that connect the same space as equivalent
through substitution as in Figure 1.2. In this scenario, DFx is asked to re-
peatedly search a corpus of text for chunks of phrases that are semantically

equivalent — chunks that collide, connecting two separate portions of latent
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space. This illustrates the importance of efficiency for DFx, as a moderately

sized text corpus can contain many millions of chunks.

1.1 Proof of Concept

The initial proof of concept for the work can be well illustrated with the
following two phrases ‘I went to the park with my dog’ and ‘I took my dog to
the park’ Using the Universal Sentence Encoder [10], a transformer network
created primarily for the task of embedding sentences, we generate Table 1.1
wherein we compare each phrase, word by word using cosine similarity, a
measure of the angle between two high dimensional vectors. As Table 1.1
shows, USE is capable of identifying paraphrases as when the cosine similarity

is high, the sentences are very close to semantic equivalency.

Phrase A Phrase B C.051.ne .
Similarity
I I 1.000
I went I took 0.787
I went to I took my 0.745
I went to the I took my dog 0.543
I went to the park I took my dog to 0.749
I went to the park with I took my dog to the 0.726
I went to the park with my I took my dog to the park | 0.817
I went to the park with my dog | I took my dog to the park | 0.978

Table 1.1: The initial proof of concept example

The task herein is to take an unlabelled corpus of text and first embed it
with USE [10] and ingest it with DFx and then use the search to locate the
embeddings that represent paraphrases of a given query phrase. As the para-
phrased chunks are located, the portions of the query text that are used are
then replaced with the search results to create potentially novel paraphrases
(though the text fragments are completely contained in the corpus, the com-
bination is potentially novel). For example, if ‘Phrase A’ from Table 1.1 was
present in the corpus, and the algorithm is given the phrase ‘I took my dog to

the park to play frisbee’, an expected paraphrase would be ‘I went to the park
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with my dog to play frisbee’, where ‘Phrase B’ was substituted with ‘Phrase
A’
DFx is used to power this search method, which involves evaluating a vector

for every unique sequence of chunks in a corpus, as in Table 1.1.

1.2 Contributions

The main contribution of this work is to design and evaluate DFx, a method of
vector compression useful for storing and retrieving embeddings that maintains
a notion of similarity for large-scale comparison. While other methods perform
this task, DFx allows a true O(n) search to be completed on large arrays of
vectors in a reasonable time with common hardware, meaning that there is no
chance of missing a close neighbour in the search.

To validate DFx, I offer comparisons of the method across various tasks
requiring the maintenance of semantic similarity. First I show that DFx’s
compression method maintains a similar level of semantic similarity as the
raw vector by comparing on STS (Semantic Textual Similarity) benchmarks.
Second I show that the increased speed of brute force comparisons can be used
to power a paraphrase generation algorithm that competes with state-of-the-
art neural systems.

Code for DFx is made available at github.com/qubies/DFx



Chapter 2

Background

This chapter introduces some background concepts that are essential to the
work presented. It begins with an introduction to the foundational concepts
of vector embeddings as they pertain to text, and how embeddings relate to
tokenization. A factor to be aware of is that the concepts of embedding and
tokenization are intertwined to a large extent as the embedding is the repre-
sentation of the token and the methodology used for tokenization reciprocally
affects the embeddings.

In this work, I primarily discuss how to embed tokens in such a fashion as
to show how they are related to one another, i.e. their semantic similarity. To
this end this section discusses how embeddings can be used to compare two
tokens (or groups of tokens) of text for similarity measures — i.e we want to
measure how alike these tokens are in terms of meaning.

The chapter then outlines some of the common neural methods (Word2Vec
[35], Doc2Vec|28], RNNs[39], and LSTMs[25]) used to learn embeddings of text
and their noted strengths, closing on transformer embeddings [10], [12], [45]
which make up the current state-of-the-art (SOTA).

2.1 Embeddings

An embedding is a learned vector representation of text created to maintain
the semantic relationship between different tokens, where that vector is an

array of real numbers (7 € R). Embeddings are used throughout NLP as a



way to represent variable-length text (and some level of meaning) in a fixed-
size latent space, the size of which is controlled by the dimensionality of the
vector used as the embedding. Fach dimension of the embedding vector is
ideally trained to represent some concept or feature associated with the text
which could be ideas like plurality, gender, part of speech etc. or it could also
represent classes of objects such as ‘is a fruit’, ‘is a vehicle’ etc. The fixed-
length representation is required for many different algorithms and the method
with which language is transformed into the latent representation (many are
discussed in further sections) has great bearing on the output. An embedding
matrix £ is then an array of vector embeddings such that they represent all
of the tokens in text — the vocabulary of the embeddings.

The larger the dimensionality of the embedding, the more features it can
represent, however, larger vectors are computationally expensive to maintain
and also more difficult to resolve due to ‘the curse of dimensionality’ [7].

‘The curse of dimensionality’ is a phrase introduced by Bellman [7] used
to define the idea that too many dimensions harm many metrics (particu-
larly nearest neighbour search). The problem arises that as dimensionality
increases, the distances between them all become approximately equal. An
extreme example of why this phenomenon arises is as follows: given that each
dimension represents a distinct feature, and each token also represents a dis-
tinct concept, if there are sufficient dimensions for each token to be represented
by a unique dimension (the size of the vocabulary is equal to the dimensional-
ity) then each token is a one-hot representation of itself (a vector with a single
dimension set to 1.0 and all others set to 0), which has no additional meaning
encoded, and all tokens are different from each other by the same amount
in the embedding space. In a typical embedding scenario, the dimensionality
of that embedding is a balance between too small to not represent enough
distinct features, and too large as to enter the curse of dimensionality.

Creating an embedding is such a common, general-purpose task in Al that
its meaning is somewhat blurry across the body of work in academia, but

is generally used to reduce an input to a vector. Herein, to create an em-
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bedding is the process of turning any text token (character, subword, word,
n-gram, sentence, paragraph etc.) into a fixed-length vector, which is typically

normalized to provide a common ground for comparison.

2.2 Tokenization

In NLP, the process of tokenization is the act of assembling text into a sub-
section of ‘tokens’. A token can be anything from a single character to a group
of characters (subword or n-gram), a word, or a group of words (n-gram). The
level of tokenization is an important consideration, and while many initial al-
gorithms [22], [35] rely on words, modern methods [12], [13], [34] use subword
tokenization.

Tokenization methods affect embedding methods as the style of tokeniza-
tion affects what meaning the embedding is trying to capture. For example,
if the token is a single character, then the embedding matrix will be smaller
than if the tokens are words (as there are fewer characters than words in En-
glish), however, more of the ability to extract meaning will be shifted to the
network used with the embeddings, as there is not as much semantic content
in a character as there is in a word.

On one hand, word-level tokenization, with an embedding for each word
allows a more natural understanding of what the embeddings mean, but they
hamper generalization, as plurality and verb conjugations are different surface
forms of the same root. To work around these differences, techniques such as
stemming and lemmatization were introduced to reduce the word to a single
common form, at the expense of the loss of information about the plurality or
the tense, among other linguistic processes.

Subword tokenization, on the other hand, allows a word to be broken into
groupings of characters based on their occurrence in the text. The idea is that
a word might get split into a root and a conjugation, so instead of ‘run’, ‘runs’
and ‘running’ being separate words, they might get split into [‘run’], [‘run’,'s’],

[‘run’, ‘ning’].
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2.2.1 Word2Vec

The most significant embedding method of which I am aware is Word2Vec [35].
Word2Vec is significant because it is simple and effective, but mostly because
it helped make main-stream the idea of transfer learning.

Word2Vec is based around the principle that ‘You shall know a word by the
company it keeps’ introduced by Firth [16] in 1958, which can be summarized
as the meaning of any given word can be determined by the words used in
context around it. This process is natural as when we (as humans) encounter
an unknown word, we can often decipher a likely meaning from the context in
which it is used. There are a lot of factors that are built into what a human
develops as context when they read, their individual history and exposure to
language play a role, but also the text that occurred earlier in the current
document, and even text that occurs in an entirely different document can

affect the interpretation.

“The cat/chased a bird”

Figure 2.1: A word (red) and its context (blue) with a window size of 2

In Word2Vec, a word is embedded through the use of either a skip-gram or
bag of words task, which is analogous to deciphering a word from its context.
In the bag of words task, we provide to the algorithm a set of words from
a window around both sides of a target word and attempt to maximize the
probability that we choose the target word. In Figure 2.1 the bag of words
task is to predict red given blue. For the skip-gram task we do the opposite,
from red in Figure 2.1, predict blue.

Over a large volume of text, Word2Vec [35] creates word embeddings that
model the co-occurrence of words and their contexts through a fixed-length
vector by applying either the skip-gram or bag of words task to a set of word

and context embeddings that are initially randomly created. The embedding
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of a given word is selected, and the dot product of that embedding is taken
across the entire context vocabulary, where the greatest value is taken as a
prediction, through a sigmoid function that is used to normalize the output.
The error is then used to update the embeddings attempting to maximize the
probability of that word being the correct one.

For this work, the important part to understand is that this process (hope-
fully) creates neighbourhoods of words in latent space, where words that share
a similar context, share a similar position in that space. If those words are
often used interchangeably, then the context will be very similar, and the
resulting embeddings will also be similar. From this similarity, the word vec-
tors can now be related through mathematical operations with some intuitive
implications.

With a Word2Vec embedding, one can attempt to determine the relation-
ships between words through the addition and subtraction of the embeddings.
If we subtract one embedding from another we effectively remove their shared
context, and if we add two embeddings together we add that context. This
idea leads to the seemingly natural understanding that the embedding of the
capital city ‘Paris’ with the removal of the embedding of the country ‘France’
removes the association to words that were associated with the country, but
not those associated with the capital, which can then have other capitals added
to it to approximate the embedding for that country, e.g. +‘'Rome’ = ‘Italy’
[15]. This phenomenon is of great interest, as despite not being trained to
specifically model this behaviour, the embeddings have ‘learned’ something
about the words and their greater meaning through context.

Word2Vec is a good example of transfer learning in language, it is trained
on a general task(s) so that downstream tasks can make use of its prior learn-
ing. This enables organizations with access to larger computing resources to

create and package embeddings for use and extension in other applications.
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2.2.2 Vector Comparison

One of the goals of creating embeddings is to allow them to be compared
to one another. In a continuation of the understanding of the relationships
between vectors in latent space, many works have targeted the cosine similarity
or dot product of language vectors to relate similar words by examining their
neighbourhoods in latent space [22]. In this context, both dot product and
cosine similarity are thought of as a measure of how close two vectors are to
being in the same neighbourhood — or how far apart they are. On one hand,
the dot product measures how similar two vectors are while allowing the length
(or magnitude) to play a role in the measurement [20]. On the other hand,
cosine similarity measures only the angle between two vectors, irrespective
of magnitude. Dot product and cosine similarity are indistinguishable if the
vectors are normalized, however, if magnitude plays a role, longer vectors
generally have a greater similarity to all other vectors when using the dot

product [20].

2.2.3 Multi-Word Embeddings

Word2Vec [35] was a very influential work, and its use has propagated to many
applications, however, when reading, people consider more than a single word
at a time to generate semantic meaning. To add document context to the
equation, Doc2Vec was created, where a paragraph vector was concatenated
to the word vector to provide a direct memory of past words [28]. Doc2Vec
treats the paragraph embedding as another word, but one that is shared for
the entire paragraph.

Word2Vec, and by extension Doc2Vec, consider context during training,
but because the target is a single word or document embedding, the context
is lost — all words that are spelt the same, are treated as the same, and all
documents that contain the same words are also treated as the same since
they ignore ordering. Order can be a key factor in semantics, take for example
the word ‘bank’ in the sentence “ I went to the bank on the river bank ” in

Word2Vec both banks here would share an embedding. This lack of word sense
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disambiguation (WSD) can be tied back to the lack of attention to word order

and contextual application.

2.2.4 RNNs

As we have identified the concept of word order and memory to be fairly cen-
tral to language understanding, the recursive neural network is another way
to create embeddings. An RNN [39] is a fundamentally different method than
discussed thus far in that it allows consideration of a sequence of words as a
whole. In a general form, an RNN used for language has an initial embed-
ding layer, which may be pre-trained (Word2Vec) using the power of transfer
learning, or may be created from scratch, but in either case, each word is trans-
formed to an initial embedding. Unlike Word2Vec, this initial embedding is
not intended to be used as such, rather for each token in a multi-word input,
that embedding is now one of the network’s inputs. An embedding built from
an RNN is capable of being sensitive to word order, unlike Word2Vec, as the
state created for each word is allowed to consider the words used up to that

point (Figure 2.2).

Figure 2.2: An unrolled RNN
adapted from Goodfellow, Bengio, and Courville [19]

It is important to note now as well that networks are not limited to the
consideration of words. As discussed in Section 2.2 we can break language into
any different level of token we choose. From this point on I will substitute the
word ‘word’ with ‘token’ to signify this variability.

In an RNN, each input token (¢) is mixed with the output of the prior

timestep (#-1) which is in turn mixed with the token before it (#-2) recursively
14



to create the current state (Figure 2.2). In this fashion, an RNN is quite
representative of how humans read, token by token in order, building a ‘state’
that allows the network to bring in information from the past. An RNN can
be used to embed any length of phrase by continuing to feed in the input
words, and then eventually extracting the hidden states from the network as
an embedding. The issue that arises with an RNN is that it attempts to keep
all information in its state, and since the state is a fixed size vector, it rapidly
becomes overwhelmed and loses information.

Further, the longer the sentence the more significant the ‘vanishing gradi-
ent effect’ [24]. The essence of back-propagation (the method by which many
neural networks learn from their mistakes) is that the nodes that were re-
sponsible for an output error are corrected for their hand in it. As an RNN
essentially adds a layer for each token, more tokens mean more nodes to blame,
and the gradient becomes vanishingly small as it is spread over those nodes.
This makes it very hard for an RNN to learn the long-term dependencies of

words.

2.2.5 LSTMs

To address the memory capacity issues of RNNs, the LSTM [25] presents a
series of gates (input, forget, output) that allow the network to selectively
forget or ignore portions of both the current input and of the prior state
(Figure 2.3). These gates insulate the memory component of the RNN from

the state with a series of sigmoid functions.
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Figure 2.3: An LSTM cell [19]

The reason for using a sigmoid is that it strongly activates as either 1 (re-
member/use this dimension) or 0 (forget this dimension). The LSTM adapts
the sigmoid to each input so that it can react to, and therefore learn to han-
dle different inputs. Further these sigmoid functions, in combination with the
additive nature of the network help to prevent the gradient from vanishing —

the network can usually blame something for its mistakes.

2.2.6 Transformers

Transformer networks [45] have brought a large amount of change to the lan-
guage processing landscape, and they currently represent the majority of the
SOTA models. The key advantage that transformers have over LSTMs is that
they are not burdened with maintaining a state, instead, the network looks
at all of the input tokens (to a maximum length) at the same time, and uses
an attention function to regulate which inputs are important for which other
tokens. This attention function is derived from 3 sets of weights that create a

query, key and value from an input embedding for a given token.
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Figure 2.4: The self attention mechanism in a transformer. Image credit to
Alammar [3]

The attention function (Figure 2.4) first uses the newly built query vector
for a target word and computes the dot product with the key vector of every
other word in the input, this produces a series of scalars, which is thought
of as the attention score for the token [3]. The softmax is then taken of the
scalars to normalize them and highlight the more important tokens — the ones
we should pay attention to. Each scalar here is now multiplied by the value
vector (created in the same way as the query and key) which produces the final
embedding for that token. The scalar scores are very similar to the sigmoid of
the LSTM, wherein a 0 allows the output from that token to ignore the effect
of other tokens, and a 1 allows it to pay attention to only that token.

While the mechanism of attention has a similar action to the gates of the
LSTM (zeroing out values deemed forgettable or unimportant), Transformer

networks are faster to train for the same amount of parameters than an RNN as
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they have no dependencies between each state, i.e. all tokens can be calculated
on their own, at the same time. This makes the transformer architecture highly
parallelizable, and as such its limits are scalable with more hardware. This
computational flexibility has resulted in networks with a very large number of
parameters, trained by huge computing resources.

The initial breakthroughs in transformers were brought into the main-
stream by BERT [12], a transformer network with 340 million parameters in
its ‘large’ model (figure 2.5). Microsoft recently announced Turin-NLG, a mas-
sive 17+ billion parameter transformer network, which lays claim to SOTA in
many tasks but cannot be trained on common hardware [34]. Microsoft states

that any network with more than 1.3 billion parameters cannot fit on a single

GPU (even with 32GB memory) [34].

10b

Ai2

Figure 2.5: The growing size of transformer networks [34]

Most recently, OpenAl has announced GPT-3, a 175 billion parameter
transformer-based language model that possesses a very captivating ability
to generate text, answer questions and do simple arithmetic [9]. The ever-
increasing size of networks produces interesting results, however, the amount of
computing required to train and even run inference on them is out of the reach

of most academics, which could restrict future advances to large corporations.
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Despite their training resource requirements, transformers have greatly in-
creased the power of many transfer learning applications by creating token
order sensitive embeddings of token sequences, often considered sentence or
paragraph embeddings [12]. The primary difference between a transformer
embedding and a word embedding in this context is that the phrase ‘philos-
ophy of history’ has a different embedding than ‘history of philosophy’ [38],
[42]. This importance of order allows for a larger chance at Word Sense Disam-
biguation (WSD) [13], as the resultant sentence vector is dependant on both
the constituent tokens of the context and their order. As a result, embed-
dings extracted from Transformer networks are no longer a simple affair, as
each sentence has to be passed through the network, and has a likely unique

output.
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Chapter 3

Related Work

There are 3 principal components at use in this work: vector compression,
vector comparison, and paraphrase creation. DFx performs the comparison
and compression, while the paraphrase generation is made possible by the
former. While paraphrasing is only one application of search in this domain,

it is an interesting demonstration of the capabilities of DFx.

3.1 Vector Compression

The first issue in storing a large number of vectors is the size of that storage.
Vectors are typically represented as an array of 32bit floats, therefore the stor-
age requirement for each vector is 32 bits x number of dimensions. The level
of precision provided by a 32-bit float is rarely required for machine learning
applications, therefore one method of compression is to reduce the precision
of the floating-point representation to either 16 or 8-bit floats or an 8-bit int
(weight quantization) [21], [32]. In these applications, the quantized weights
are used inside the model itself rather than in the representation it creates,
and can both be learned through training (quantization aware) and applied
after training (dynamic & static quantization) [37]. Not surprisingly, these
methods are applied in large-scale machine learning deployments to speed up
inference and reduce storage costs [32], and are being incorporated into GPU
frameworks to offer mixed-precision computations [23]. DFx tries to be agnos-

tic from the initial implementation and is based on a more general method of
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vector compression wherein it operates after training on the representations
created, and has no interaction with the model itself. I refer to this generically
as vector compression, irrespective of where or when it is applied, the principle
is the same.

There are two main methods for vector compression: binary embeddings
and vector quantization, which also give rise to hybrid methods that use both

techniques [8], [17], [18], [40], [46].

3.1.1 Binary Embeddings

Binary embedding methods concentrate on turning a vector into a represen-
tation with reduced dimensionality that maintains a low hamming distance
for similar vectors [17], [18], [46]. The idea is that such a binary embedding
can then also be rapidly compared using the popcount instruction (Population
count) which counts the number of 1s in a binary representation.

Introduced by Salakhutdinov and Hinton [40] as one of the first methods of
binary embedding — semantic hashing is the process of using a neural net to
produce a binary code rather than a vector. The work completed by Salakhut-
dinov and Hinton [40] is largely before, or on the cusp of the deep learning
revolution, and before the modern word embedding and transfer learning,
therefore the binary encoding is their embedding method. A graphical model
is used to generate the binary encoding from what is essentially word counts of
documents which are fed through an auto-encoder stack of Restricted Boltz-
mann Machines (RBM), fine-tuned by gradient search [40]. In this setting the
RBM is used as an encoder, trained without ground-truth (unsupervised), just
to avoid reconstruction loss of the word count from the embedding. As an im-
portant note, this task is a document-level embedding rather than a sentence
or word level task.

Modern embeddings are surprisingly similar, however, rather than using
a word count as input, modern networks typically use an embedding layer
for each token in a vocabulary, and further they can account for word order

and unseen words through various methods. DFx is an extra layer to any
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vector embedding and does not require specific training, however, in future
work I would like to explore the notion of creating the binary embedding from
the encoding stage to see if it improves performance or allows dimensional
reduction and comparable performance.

PCA (Principal Component Analysis) [26] is a frequent first step in binary
encoding methods [18]. The goals of PCA are to reduce a given matrix to
its principle components, keeping only the important information, thereby
reducing the size of the representation [1].

PCA is completed by first condensing dimensions that have a high co-
occurrence, as that information is considered redundant [1]. From the co-
occurrence matrix, PCA considers the variance across a vector vjz = Zy‘j xfj
to be the inertia of the vector from which is subtracted the mean of the vector,
i.e. the amount the vector changes [1]. Then, through linear combinations of
the original variables, new vectors that represent the maximal variance of
that space — its inertia — are constructed as the principle components [1].
This process continues for each dimension, leaving out the prior dimensions
which had greater inertia, resulting in a series of factor scores that represent
a projection of each value to the principle [1]. PCA, by its nature, does not
directly reduce dimensionality, however, it loads the importance to the top —
the vector with the greatest inertia. To end with reduced dimensionality, the
less important components are omitted from the final projection — i.e. the
components with the smallest variance are not considered. Further, as noted
by Gong, Lazebnik, Gordo, et al. using the same number of bits to encode these
higher value dimensions is likely to result in loss — termed quantization error.
To address this issue, Weiss, Torralba, and Fergus [46] attempt to assign more
bits to more important dimensions, while Gong, Lazebnik, Gordo, et al. [1§]
develop a method they dub iterative quantization, which attempts to minimize
quantization loss by optimizing the rotation of a binary hypercube to quantize

each point to a vertex of that cube (Figure 3.1).
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(a) PCA aligned. (b) Random Rotation. (c) Optimized Rotation.

Figure 3.1: Taken from [18], this figure illustrates the rotation of the binary
hypercube to suit the clusterings created by PCA

DFx performs a simplistic decomposition, where each vector is considered
equal and has a centroid that is w The idea behind this is that the
important parts of the vectors for an embedding are the variance of groups,
not the variances between them. As an extreme example, a normalized vector
that consists of an equal number of ones and zeroes has high inertia, but a
low interest from a learning perspective, this vector is effectively binary. DFx
assumes that an insignificant value is middling in a min-max sense. In the
extreme case presented above (all Os and 1s) DFx will not allocate any more

or less importance to that vector, it encodes them as what is effectively high

and low.

3.1.2 Vector Quantization

Vector quantization attempts to learn a mapping of the entire vector field
and reduce vectors to a similar representation by k-means (or other clustering
methods) [8]. An approximate nearest neighbour is then returned by compar-
ing a candidate to the ‘codebook’ of possible vectors generated by the cluster-
ing. In general, this means that vector quantization does not need to lower
dimensionality, as each cluster membership can have the same dimensionality,
however it saves resources by checking only the representative from the cluster,
rather than each member. The result of this is that there is a tradeoff between
the number of clusters (the size of the codebook) and efficiency — the larger

the codebook the better the result, but the more expensive it is to compute.
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Additionally, vector quantization has a lesser ability to extrapolate to unseen
data, as if a cluster is not represented in the input set, it cannot be properly
represented in the quantized output.

Jégou, Douze, and Schmid [27] introduce their method of product quan-
tization, which attempts to augment k-means by splitting the vector into
subvectors and then applying a separate quantizer on each subvector. The
resultant clustering/search method is quite computationally expensive; there-
fore Jégou, Douze, and Schmid [27] implement a coarse quantizer (effectively
k-means), and a fine quantizer (product quantization), wherein the fine quan-
tizer is learned from results of the coarse quantizer, and on search, an ‘inverted
file’ is produced according to the coarse quantizer then the results are further
processed with the fine quantizer. Further, for each result, it is now possible
for the nearest neighbour to not be in the inverted file specified by the coarse
quantizer, therefore, multiple coarse indices are checked.

The fundamental challenge with vector quantization is to create a repre-
sentative field without overburdening future search initiatives. While DFx is
most similar to a binary embedding, it uses a simple discretization across di-
mensions, which could be replaced by a product quantization [27] like approach

— clustering across each dimension to find relevant clusters.

3.1.3 Paraphrasing

Bannard and Callison-Burch [4] suggest that paraphrases can help create a
more fluent and varied generated text. The central idea is that you could gen-
erate text multiple ways by expanding with paraphrases, and then either select
the best or provide them all. Bannard and Callison-Burch [4] also suggests
that paraphrasing can help in evaluating translations as there may be many
ways of saying the same thing — BERT-score [47] can be seen as an attempt
at exactly this.

In early work, paraphrases were drawn from monolingual parallel corpora
— phrases that were translated more than once into a target language of-

ten contained different translations of the same idea [5], [6]. Bannard and
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Callison-Burch [4] consider a foreign language as a pivot, where an input En-
glish sentence is aligned to the translated version, then other instances of that
same foreign language phrase are located, and their English translations are
returned. This method attempts to make use of the translation errors that ac-

cumulate with every translation to create paraphrase examples (Figure 3.2).

what is more, the relevant cost dynamic_ is completelyjunder control

im Ubrigen ist die diesbezugliche kostenentwicklung véllig|unter kontrolle

wir sind es den steuerzahlern schuldig die kosten unterkontrolleﬂhaben

we owe it to the taxpayers to keep the «costs| in check

Figure 3.2: a German language paraphrase for ‘under control’ [4]

A paraphrase is then calculated as the sum of the probabilities that the
translation model can create from the initial phrase to the foreign language
then back again — i.e. the sum of all of the probabilities of the translations
of the initial phrase being translated back into the new paraphrase.

For evaluation, Bannard and Callison-Burch [4] substitute the candidate
paraphrases into 10 sentences that contained the initial phrase, which was then
judged by 2 human annotators.

One of the challenges with foreign language paraphrasing methods is the
creation of the corpus, i.e. how to match the foreign and target phrases in
their respective texts. This task is called alignment and is difficult as it must
be performed twice in bilingual paraphrasing methods, once from the input
phrase to the foreign language, then back again to the input language. The
issue at play is how best to align phrases, since ordering in many languages is
different, and even if it is similar it can still be challenging to determine which
words are part of the target phrase. In Figure 3.2, the alignment between the
examples is straight, however other alignments in the phrase (shown with lines
connecting them) are mismatched. If for example, the phrase was ‘completely
under control’ this maps to ‘vollig unter kontrolle’, however, 'completely‘ has
no connection in the second phrase. It is easy to see that the longer the phrase

becomes, the more difficult alignment is. Bannard and Callison-Burch [4]
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conclude that using manual alignments is best, and automatic alignments are
improved by the addition of a language model to score the resultant phrases
due to frequent grammar errors.

The paraphrasing with DFx employed here is, in a sense, an automated
alignment task, and has even fully adopted the idea of using a language model
to score the candidates generated, due to frequent grammatical errors. The
difference is that DFx’s paraphrasing method does not compute an alignment
per-say, it checks a subset of possible alignments as split around the verbs in
the phrase over a large corpus. Because DFx operates as a scalable search,
there is also no need for a translation, the corpus is exhaustively searched for
comparable phrasings. This last point is a benefit, also highlighted by Liu,
Mou, Meng, et al. [30].

In their more recent and related work, Liu, Mou, Meng, et al. [30] propose
Unsupervised Paraphrasing by Simulated Annealing (UPSA), a search-based
method for the creation of paraphrases. Provided with a target phrase, UPSA
attempts to alter it via a stochastic search algorithm driven by an objective
function to alter the text by word replacement, insertion and deletion. The
objective function attempts to measure the semantic similarity, diversity, and
linguistic fluency of candidate phrases. Each candidate that is proposed by
UPSA is scored, with the temperature controlling the range of acceptable
deviation below the current best phrase — this temperature control is what
prevents UPSA from getting stuck and returning either uninteresting para-
phrases or very similar phrases to the original text. As the search progresses,
the temperature is cooled, and UPSA is allowed to converge.

Both UPSA and DFx are unsupervised in the sense that neither requires
a training set of example paraphrases to be used in this fashion, rather they
search for valid replacements by using the text that they have seen before.
UPSA employs stochastic mechanisms to find potential replacements, then
scores them, while DFx exhaustively searches its input corpus for similar

phrases and replaces them.

26



Chapter 4

Problem Definition

DFx attempts to address the problem of semantic phrase similarity search
through vector embeddings created by a transformer network. The problem
with exploring this latent space is fundamentally an issue of scale. The space
occupied by a normalized 512 dimension vector embedding is difficult to fully
conceptualize but the full space occupies a number of bits equal to 32°!? differ-
ent combinations (disregarding specific float implementation factors). To more
effectively explore the space, DFx compresses vectors through discretization
and accelerates comparison computations.

To demonstrate the capability of DFx, we use it to generate paraphrases
from a corpus of text by searching a latent space populated with a pre-

embedded corpus.

4.1 Vector Search

DFx is primarily addressing the problem of vector search, in the context of a
vector that represents an embedding. The goal of DFx is given an unlabelled
corpus of text, produce an indexed database of embeddings for that text, such
that the embeddings maintain their semantic relatedness in terms of the search
while reducing the resource consumption so that the entire corpus can be
contained in memory. In other words, DFx aims to maintain an approximation

of cosine similarity between any two embeddings while reducing their resource
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The purpose of this operation is to allow time and memory efficient searches

against the corpus to locate text, not by keyword, but by vector similarity.

4.2 Paraphrasing

The problem of paraphrasing text for phrase expansion is one where we desire
to predict and use alternate forms of a given phrase that have the same (or
approximately the same) resultant meaning. This process can be thought of
as a phrase expansion, where a single meaning is mapped to multiple phrases.
Phrase expansion could be useful for expanding existing datasets to increase
the generalizability of results, or it could be used as a writing tool that suggests
alternative wordings. The ability to paraphrase represents the potential for a
more abstract notion of meaning in a phrase.

In this work I propose that a sentence, or paragraph, can be viewed as
not a single vector embedding, but rather a path through the vector space,
where each additional word applies a transformation to the existing vector,
resulting in the matrix F. This transformation ¢ is viewed as the movement

of the meaning of the sentence S as it grows by words (w).

E = t(w;..w,)Vw,n € S,|9| (4.2)

The task of paraphrasing is reduced to finding alternate paths between a
start and an end vector. This means effectively altering the rows of E by
switching them with other similar embeddings that already exist in a given
corpus to maintain the property that the final embedding of the initial phrase
(E,) is approximately equal to the final embedding of the generated phrase
(E'):

E,.~FE,, (4.3)

In DFx, candidate replacements are generated via the vector search and

may contain a different number of words than the initial phrase (n is not
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necessarily equal to m).

4.3 Evaluation Methods
4.3.1 Vector Similarity

To demonstrate the maintenence of similarity, a comparison of DFx against
cosine similarity is completed for up to 1000 results, over 1,000,000 vector
embeddings. The goal of this test is to have a significant overlap with cosine
similarity, particularly when the number of results is lower, i.e top 10.

As a secondary measure of comparison, the similarity score of DFx vec-
tors is compared to cosine similarity using Facebook’s SentEval framework
[11], and the STS-12 through STS-16 benchmarks. Starting in Sem-Eval 2012
and running until 2016, the STS benchmarks are a series of tasks which at-
tempt to measure the semantic relatedness of machine generated vectors. STS
tasks examine the correlation between various sentence pairs and test that
the measurements rise an fall with human judgements on the same pairs.
In this benchmark, we compare DFx’s discretized vector representations to
standard vector representations and expect to show minimal degradation in

performance, despite the decrease in resource consumption.

4.3.2 Paraphrases

A significant issue in the task at hand is the evaluation of a successful para-
phrase. Paraphrases, by their very nature, may bear little or no resemblance
to the initial text, though they maintain the spirit of the statement. This
property has the disadvantage that a correct answer cannot be predetermined
reasonably, as there are likely many correct answers, which are all equally cor-
rect. Therefore, a test corpus cannot contain all possible paraphrases, or even
all the most likely paraphrases, meaning that any evaluation short of human
judgement is lacking.

Difficulties aside, some methods have been created to allow the automatic

evaluation of paraphrases, namely ROUGE [29], BLEU [36] and Bert-Score
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[47]. ROUGE and BLUE are n-gram based models that test for identical
words used in a candidate paraphrase and a list of references. ROUGE fo-
cuses on recall, while BLEU focuses on precision, and adds a penalty for word
omissions. Either ROUGE or BLEU can be run on many different levels of
n-gram (consecutive words considered).

BERT-score [47] attempts to use embeddings from Google’s BERT trans-
former encoder to detect similarity as a primary measure. Unlike ROUGE
and BLEU, BERT-score is not as n-gram sensitive, as it matches each token
to its most likely embedding both from the candidate to the reference and in

reverse.
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Chapter 5

Implementation

5.1 Code Infrastructure

5.1.1 Overview

At the core of this work is DFx (Discrete Flag Xor), named for a method of
discretization which maintains the approximate relationships between vectors,
while decreasing their resource requirements.

DFx is composed of a vector search engine tied to a datastore which allows
for retrieval of phrases in detail at a low cost. The search engine and storage
implementations are carried out in the Rust programming language. Rust was
chosen because of its modern emphasis on memory safety without garbage
collection, resulting in high performance and high-quality end products.

To make the library approachable and useable, DFx uses a Python front-
end API, which is tied to a multithreaded Rust-based back end for perfor-
mance. The Python front-end provides the user with the flexibility to define
their embedding in Python with the efficiency of Rust. As a result, the user
can choose any of the many embedding methods available in Python for text
(BERT [12], Distilbert [41], USE [10], RoBERTa [31] etc.) to embed the in-
put data, however, the user is required to provide a file that contains the
maximum and minimum spans for each dimension of that embedding. The
front-end Python API provides various hyperparameter and helper options to
fine-tune storage and search options — these are listed in Figure 5.1.

DFx has two modes of operation, which are mutually exclusive: add mode
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-h, --help show this help message and exit
--add_json_file ADD_JSON_FILE
add a json file with line by line objects
--paraphrase_json_file PARAPHRASE_JSON_FILE
create a new json file with paraphrases of this
one. The input is a json file with line by
line objects
--generate_max_min_json_file GENERATE_MAX_MIN_JSON_FILE
create a max_min from a json file, the input is
a json file with line by line objects
--json_text_field JSON_TEXT_FIELD
the json field id as a string
--batch_size BATCH_SIZE
The size of a batch in the file input processor.
--add_phrase ADD_PHRASE
a phrase to add to DFx
—-num_buckets NUM_BUCKETS
The number of buckets in the search server
store. DO NOT CHANGE after initial creation.
--search_limit SEARCH_LIMIT
The number of results to return with each search
--language_model_weight LANGUAGE_MODEL_WEIGHT
The amount to count the input of the language
model (higher is more)
—-—grammar_weight GRAMMAR_WEIGHT
The amount to count the input of the grammar
checker (higher is more)

Figure 5.1: DFx Python API help documentation

32



and query mode — the transition between the modes is not controlled directly,
rather it is done according to the CLI options entered (Figure 5.1) where any
add operation is processed before any query operation. Add mode is used to
add entries to the datastore, while query mode is used to search that datastore.
For this section, python methods are shown in conjunction with their back-end

counterparts to illustrate typing requirements (Rust is strongly typed).

5.2 Component Layout

DFx consists of 3 main components that operate partially separately: The
python front-end, the Rust back-end, and the PostgreSQL datastore. The
python front-end chooses the encoding, the rust back-end performs encoding
and compression, and PostgreSQL provides the storage.

In all of the tests for this work, the datastore operates from a docker
container, as are the front-end and back-end. The front and back communicate
via the PyO3 FFI inside the same container, while the database operates off
of a socket-based connection pool (R2D2) in a separate container.

Hardware used either consists of the author’s laptop — A Dell xps13 9370
- 12 cores/16GB ram/M.2 SSD (laptop) — or a cloud VM hosted on Amazon
Web Services — 8 cores, 32 GB ram, and an SSD for storage (cloud).

5.3 The API

5.3.1 Instantiation

#Python
dfx = DFx.Vector_Search_Server (NUM_BUCKETS, SEARCH_LIMIT,
Iladdll)

#Rust
fn new(num_buckets: usize, search_limit: usize, mode:
String) -> Self

A DFx instance is created using two essential hyper paramters: NUM_BUCKETS
— the number of buckets to split each dimension — and SEARCH_LIMIT —
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the number of results to return per query. These functions return a vec-
tor_search_server object, which loads all existing data from the Postgres
store. SEARCH _LIMIT may be altered after DB creation, however, altering
NUM_BUCKETS causes the datastore to be invalidated as the encodings need to
be recalculated. Since DFx is a lossy compression, there is currently no way
to patch the datastore without recalculating the vectors. As an operational
consideration, it would be a future improvement to store the raw vectors in

the DFx datastore so that they could be re-calculated.

5.3.2 Add Mode

#Rust

Add (&mut self, phrases: Vec<String>, embeddings:
Vec<Vec<f32>>, phrase_ids: Vec<i32>)

#Python

dfx.add(phrases, embeddings, ids)

In add mode, DFx first discretizes the vector produced by the input network
(USE [10] in this work), compressing it into an integer based sequence which
aligns the hamming distance of the input vectors with their approximate sim-
ilarity (full details of the discretization are in Section 5.4). This is done to
reduce memory consumption and to collapse near-identical vectors into one
another.

In add mode, each input is cached in a hash map to speed up ingestion and
avoid duplication of work, however this conflicts with the demands of query
mode in terms of memory usage and retrieval efficiency, but typically allows
O(1) lookups of existing data by a vector.

For an add operation, the discretized vectors are pushed to a PostgreSQL
datastore along with their phrases via a connection pool (Figure 5.2). Each
add and discretization operation is sourced to a worker (number of workers is
the number of cores), however, in practice, all workers wait for the datastore
on add operations. This is because additions are synchronized around unique
discretizations, therefore the store needs to be kept consistent as it is updated.
While the add speed is slower than simply calculating the embeddings, it is a
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single step that is not repeated.

" Input Texts " Vector Batch

Lorem ipsum dolor sit amet, — Py‘hor_‘
consectetur adipisicing elit. Sed Embedding
do eiusmod tempor incididunt ut

| labore et dolore magna aligua.

| [[ 0.1, 0.2, 0.3],

[0.2, 0,4, 0.6]]

$ '/Discrete Batchﬂ
({17, (811
%/ |

AN

PostgresSQL

Figure 5.2: DFx Initial Text Processing Path

5.3.3 Query Mode

In query mode, DFx is designed to optimize an O(N) operation (a brute force
search on all vectors), therefore the data is moved into a contiguous memory
array to allow faster iteration. In query mode, additions are not allowed as
the append operations may cause expensive reallocations. The modal nature is
solely for this reason, as the performance objectives of DFx surround optimiz-
ing the speed of the query processor, rather than the speed of ingestion. On
instantiation, all discretized vectors are loaded into memory in this contiguous
array.

When a query string is received, the query is embedded and then discretized
(Figure 5.3). DFx then performs a comparison across the array by slicing it
to each available core, with each core returning the k lowest score discretized
vectors — in DFx a lower score is a higher similarity as the score represents
the divergence between the discretized vectors. The individual top k& scores

are collected for each core, sorted and returned as the query result as a list of
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discretized vectors.

To turn the discretized vectors back into language, DFx stores the phrases
in an external database, which are retrieved by querying the database for
phrases represented by those K vectors. This query can return more than K

candidate phrases, as vectors that collide are grouped.

© Query [ Vector

Python
Embedding

What is lorem ipsum? IR — [0.z2, 0,4, 0.6]

Discrete
PopCount

tel Compare

K Results

What K phrases
match K results?

Results

["Lorem Ipsum...”,

"labore et dolore”]

PostgresSQL
Figure 5.3: DFx Query Path

5.3.4 Datastore

The design works with a PostgreSQL database as a backing store, which was
initially configured with the schema in figure 5.4. The prototyping of the
datastore led to some interesting conclusions about the default PostgreSQL

configuration.
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Vectors Phrases

PK | Vector ID int NOT NULL 4—\O< PK | Phrase ID int NOT NULL
FK1 | VID int
Data_0 BIGINT
Data_1 BIGINT Class int
Data_... BIGINT UNIQUE
Data n BIGINT
Max_Len INT

Figure 5.4: The first database schema

Indices

In the initial configuration, indices were added to the Data_n fields, with the
intention that only unique vectors could be allowed. This worked in early tests
that used only a small number of buckets (most initial tests were completed
with 3 buckets) as this consumes fewer resources and is faster, however as the
testing was scaled up the number of buckets was increased, this schema was
not viable. By default PostgreSQL only allows 32 columns to be included in
an index, therefore DFx could only function up to 5 buckets — 32 columns
of u64 is 2048 bits of storage, spread over 5 buckets uses exactly 2048 bits of
storage.

Aside from the limitation of the index column count, the keeping and con-
struction of the index are problematic as well. The default indexing scheme in
PostgreSQL is the B-tree because in a typical scenario both lookup and inser-
tion are O(log(n)). PostgreSQL offers many methods for maintaining indices,
but the one worthy of discussion here is the hash index. Since DFx’s opti-
mizations are all centred around query speed, the hash index is the ultimate
choice. Once a hash index is built, the query time is expected to be O(1),
however during building a hash index may take extra time to rebuild when it
encounters too many collisions. This is one of the reasons that Hash is not the
default index, as insertions may be randomly slowed down to reorganize the
index. The other reason that Hash indices may be inferior is that they do not
sort items, so if a lookup needs to cover a range of values, hash indexes face
difficulty as each lookup may be in a different block, therefore there is no bene-

fit from prefetching. Neither of the drawbacks is significant for DFx, therefore
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a significant speedup (approx 4x on insertions) was achieved by converting to

Hash indices. The final schema is detailed in Figure 5.5.

Vectors Phrases

PK | Vector ID int NOT NULL *—\Oe PK | Phrase 1D int NOT NULL
FK1 | VID int (Hash Index)

Data bytea (Unique Hash)

Class int
Max_Len INT

Phrase text

Figure 5.5: The final database schema

Hash indices in PostgreSql only support a single column key, however, so
to gain that advantage, the vectors had to be serialized to a binary format to
allow their storage in a single field wherein the 64-bit uints are concatenated

together in a bytea.

5.4 Discretization

One of the core contributions of DFx is the discretization function. The goal
of the discretization function is to reduce the size of each vector by allowing
only a discrete number of choices for each dimension. In this work, this limit
is called the bucket count. The larger the bucket count the more variablility
in each dimension, however the more resources the algorithm consumes.

The discretization function in this work attempts to take a continuous
function — the vector embedding f(x) — and turn it into a discrete value set
d(f(x)), where d is applied element-wise and k is typically small and represents
the number of discrete buckets for each dimension in a vector produced by the

—

input network (f(x) = )

d(t;) »y; ye€Z, 0<y <k (5.1)

The basic concept of DFx is maintenance of near outliers, the assumption is
that what makes a vector special are its distinct values, not those that it shares

with other embeddings. To this end, DFx uses a bucket type discretization
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which relies on the maximum and minimum values for each dimension. Know-

ing the exact values for maximum and minimum is not required (and likely

not desirable), we only strive to identify which values are likely outliers.
Given the max and min, the bucket centroids are calculated separately for

each max/min pair:

bucket__centroids = {min + (W) + (M) a2l (5.2)
In this work, the max and min values were computed by embedding 1,000,000
phrases in the target set and taking the max and min for each dimension
of those embeddings. The resultant discretization is then determined as the
closest centroid to the initial value with ties going to the lower centroid (Fig

5.6).

In: [1.0, -1.0, 0.0]

‘\

.. I/\_
BA
[2,0,1]

Figure 5.6: here a 3 bucket discretization is presented where each bucket has
a max of 1.0 and a min of -1.0. The centroids are labelled on the ‘opening’ of
the buckets. The closest value to each input is selected as the representative
value

5.4.1 Encoding

The result of discretization is B = {Z _yuu_suckers }, which represents the bucket
each dimension was assigned to. In DFx, each member of B is encoded as a
binary flag format where 0 is b0, 1 is b1, 2 is b11 and so on, where each 1 is
a flag that represents the bucket number assigned to that value. The number
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of bits required to represent a vector is dim * (NUM_BUCKETS — 1). In DFx, a
512d vector with 3 buckets is compressed from 16,384 bits (512d x 32bit) to
1024 bits — a savings of 16x without considering overheads.

Figure 5.7 illustrates how the memory consumption of DFx scales with the

bucket count relative to a more standard floating-point representation.

== OFx == 32bitfloating point
50

40
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20

Memory (Bits)

10 20 30 40 50

Bucket Count

Figure 5.7: Comparison of the number of buckets per dimension to a 32-bit
floating-point value.

5.4.2 Comparison

A comparison in DFx is then computed by taking the xor of the 2 discretized,
encoded vectors and summing the 1s in that value, where the 1s represent
that the vectors differ at that point (a higher score is a lower match). For
example with NUM_BUCKETS set to 5, a minimal value is encoded as 0000,
while a maximal value is encoded as b1111. The xor of these two points is
b1111, therefore the distance is 4. If we were to compare two middling values,
say 2(b0001) and 3(b0011) our distance is only 1 (Table 5.1 for full examples).

DFx’s comparison is computationally simple, and also offers an additional
speed advantage (Figure 5.8) in most bucket counts over both cosine similarity
and dot product as implemented in the ndarray package in Rust — ndarray.
To arrive at a fair comparison, DFx’s compare method was examined using
the Rust toolchain’s benchmark utility, which performs many iterations of the
method until a stable measurement is obtained. Figure 5.8 outlines the relative

performance of the comparisons on a single 512dim vector randomly created.
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l 00 | 01 | 02 | 1,0 [ 200 [ 2,1 [ 202
0000 | b00O1 | bOO11 | 0100 | b1100 | b1101 | b1111
0,0 | 0 1 2 1 2 3 4
0,11 0 1 2 3 2 3
0,2 | 2 1 0 3 4 3 2
1,0 | 1 2 3 0 1 2 3
2,0 |2 3 4 1 0 1 2
2,113 2 3 2 1 0 1
224 |3 |2 |3 |2 110

Table 5.1: The distance returned from DFx comparison for various discrete
representations of a 2 dimensional vector using 3 buckets as in figure 5.6

In many instruction sets, there is a special low-level instruction named
‘popcount’, short for population count, it is specifically designed to optimize
the counting of 1s in a binary representation [44]. Popcount is often the
target of binary encoding schema, simply because it is faster than the standard
methods of bit-shifting. Comparisons with different bucket counts with and
without popcount are displayed in Figure 5.8.

Note that when popcount is enabled, a DFx compare has a minimum timing
of bns per iteration at 2 buckets, compared to 68 ns for dot product and 210
for cosine similarity — a reduction of 93% vs Dot Product. At the default

bucket count of 9, DFx obtains a benchmark of 25ns, a 63% reduction.
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Figure 5.8: DFx compare across bucket settings with and without popcount
optimizations

*completed on laptop

The reason that DFx’s compare and discretization functions were designed
and selected is that they are not an approximation of the search space, but
an approximation at the level of each vector. A search in DFx is truly a
search over all of the values, and has no chance of missing a comparison that
is considered close by DFx. Other methods of searching a large vector space
either rely on clever segmentation of the search space (vector quantization,
PCA, LSH), or require a specially trained vector embedding. The tradeoff
of segmentation methods is that they run the risk of not returning the best
matches as the segments may occur in less than optimal locations. The tradeoff
of binary embedding methods is that the training phase needs to be redone
to create the embedding. DFx provides a generic method that can be applied
after training to any series of embeddings, as it only requires a maximum and
minimum value for each dimension, which also only needs to be approximate

to obtain reasonable results.
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5.5 Creating Paraphrases

With an understanding of how DFx works and the goal of exploring a latent
space, this section explores a method to use DFx to create paraphrases. As
stated in the introduction, the idea here is to create a vector embedding fol-
lowing the flow of a sentence. If we consider a sentence as a combination of
separate subphrases, then those are exchangeable for semantically equivalent
ones and given a large enough corpus, there are sure to exist valid substitu-
tions. In this application, a chunking method is initially applied to the entire
corpus to break each input sentence into chunks, which are initially stored in
DFx.

The first step in creating a paraphrase is to ingest a corpus into DFx using
a method of chunking the phrases. The phrases are chunked from the input,
keeping the sentence together by adding further chunks and re-embedding,
step by step (chunk by chunk). This is intended to be the equivalent of a
recursive network outputting an embedding for each token as it is ingested,
but with the contextual understanding of the transformer. A single phrase
is turned into many different chunks which are all embedded separately. The
method works this way because transformer embeddings are context sensitive,
therefore chunks are best compared with their context attached.

Once the corpus has been ingested, in inference mode, a query phrase can
be chunked into candidate chunks for replacement using the same chunking
method as with which the vectors were stored. For each candidate chunk DFx
then returns the top £ most salient matches. Each candidate chunk in the
input phrase is replaced with all k& DFx results for that chunk to create a
minimum & * num_chunks new phrases. To make this more clear, if chunks
were words, this is the exact method used in Table 1.1, where each chunk is
replaced with the k most likely chunks.

Because DFx creates many different phrases, and many of them are not
grammatically correct, there are 3 additional selection measures that are ap-

plied to this smaller corpus to improve the generated text — similarity, lan-
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guage modelling, and grammar correction.

5.5.1 Chunking

While for the sake of examples, until now we mostly had word based chunking,
for paraphrasing DFx actually uses a verb-phrase based method. The theory
for this is that verbs are seen as idea transitions, moving the vector to a new
location. While all tokens move the vector, some are relatively insignificant
(stop words, articles, determiners etc.) and others, such as nouns, are harder to
gauge in effect, particularly proper nouns, as some will be significant (Barack
Obama) and others less so (Tobias Renwick) as in training USE has likely
encountered a president of the US more frequently than an Edmonton based
computer science researcher.

To create an input chunk verb phrases — verbs plus any adverbs — are
detected using Spacy and the phrase is split around the verb, and the verb
phrase itself is also kept. For example, given the input phrase, ‘I went to the
park’; the chunker would create the chunk list [‘T’, ‘went’, ‘T went’, 'T went to the
park’]. Note that while the verb chunks are extracted, the complete sentence
is also included for comparison, this way DFx can get a holistic view as well. It
should be noted that because of the way the chunker works, replacements near
the beginning of a phrase are more likely than those at the end of a phrase i.e
DFx is more likely to have good matches for ‘I went’ than for the full phrase

‘I went to the park’ simply because the former is more common.

5.5.2 Queries

DFx is queried for each chunk created by the chunker separately against the
entire corpus. This operation has a time complexity of O(mn) where m is
the number of chunks in the query phrase, and n is the number of chunks in
the corpus. Additionally, the quantity of paraphrases returned is a minimum
of m x k — For the example phrase, initial paraphrases are returned where
each token is substituted for its returned matches — these are the candidate

paraphrases. Note that DFx is prevented from returning an exact embedding
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match for the input query, this is important as it requires the text to be

different than the input.

5.5.3 Similarity

To consider the entire composition of the phrase, all of the candidates are first
re-ranked by cosine similarity to an embedding method on the original phrase
i.e. how much the paraphrase changed the final embedding. The embedding
method used for evaluation here is USE [10], however, any other embedding
method could be used as a secondary measure. USE was chosen as it is least
likely to compromise the measurements of BERT-Score [47] as it is a dif-
ferent base network, based on encoder-decoder rather than masked language
modelling. The result of the similarity phase is the list of k x num_ chunks
candidate paraphrases scored and ranked by their cosine similarity to the in-

put.

5.5.4 Grammar Correction

If the GRAMMAR_WEIGHT is greater than 0, each candidate phrase initially has its
grammar corrected by language tool (a popular grammar corrector in Python)
[43] before being added as a candidate. Language tool can fix many simple
mistakes, such as missing punctuation and capitalization. Once the candi-
dates are corrected, they are again checked for errors, and persistent errors are

punished by multiplying their count by —GRAMMAR_WEIGHT.

— 1 * num_mistakes * GRAMMAR_WEIGHT (5.3)

This modelling is quite simple and heavily punishes phrases that are less gram-

matical than the rest at default settings.

5.5.5 Language Modelling

Current SOTA generative models are based on decoder-only style transform-

ers, which are constructed by asking the network to predict the next word and
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adjusting the output probabilities based on the cross-entropy loss of that pre-
diction. Generative networks are seen as language models, which is to mean
that they have a statistical understanding of the overall language. In this
work, I use GPT-2 as a language model to score the likelihood of the returned
phrases being proper English.

To create a score from GPT-2 I measure perplexity, which is essentially how
confused the model was when it sees what the phrase was given the inputs.
In order to transform the cross-entropy loss from GPT-2 to perplexity we sum
the loss and divide by the tokens (n): €20 s/ To make perplexity useful for

our scoring function it is inverted, therefore the language score is calculated:

LANGUAGE_MODEL_WEIGHT * (5.4)

e2_0 lossn/n

The perplexity score is then multiplied by LANGUAGE_MODEL_WEIGHT to create

a factor which is added to the final score.

5.5.6 Final Scoring

At the end, all the scores are modified according to the weights, the candidate

list is re-sorted and the top-k are returned as valid paraphrases:

cosine(initial, candidate) + lanuage(candidate) + grammar(candidate)

(5.5)

5.5.7 Paraphrase Method Summary

Starting with a corpus of example text, each phrase in the corpus is chunked
into embeddings around the verb-phrase chunks and stored using DFx. Given
a query text, the query is also chunked, and each chunk is separately searched
in DFx returning k possible replacements for that chunk. The matching chunk
in the query text is replaced with each of the k results from DFx to generate
different combinations of phrasings — paraphrases. The paraphrases are then
scored by their cosine similarity to the input text, their lack of grammatical
errors, and their predictability according to a language model to generate the

predicted paraphrase.
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Chapter 6

Results

6.1 Search Examples

DFx is first and foremost a search tool that focuses on maintaining the seman-
tics of embeddings. In this section, DFx was given a large corpus (28.4 million)
of tweets on climate change, and then various search queries were run to see
the results. Once ingested, at a setting of 9 buckets, the dataset consumed
only 4.5 GB of memory and a corpus wide search could be conducted in 0.65
seconds using a Ryzen 2700x processor.

Many topics, if they are prominent in the corpus, appear much like a
keyword search — if there are K results that match the keywords, those are
likely the results returned. However, for topics that seem a little obscure, the
interesting features of embedding search can be shown. Below are the search
results for a query about dogs causing global warming,

Dogs cause global warming

Puppies cause global warming.

Dogs contribute to man (animal) made global warming scam
unpopular opinion: dogs are the root cause of global warming

Cats and dogs are one of the main cause of global warming
Well its about time. Dogs cause global warming. Everyone knows that.
Dogs now just referring to the weather as global warming.

Global warming dog

Global Warming Makes Dogs Bite <LINK>

Just clarifying..Hot Dogs caused climate change..got it !

The first result is that Puppies cause global warming (note the omission of
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the keyword and the similarity of the phrase and its structure). If we repeat

the search with a different house-pet:

Cats cause global warming

Cats and dogs are one of the main cause of global warming

Are cats to blame for 'Global Warming’?

Cats not taking global warming seriously

Cats are pro global warming, they enjoy the heat (and watching humans suffer)!
2021: cats caused global warming <LINK>

And cats cause climate change. Idiots.

Absolutely-it’s not cats that are causing climate change!

Global warming. The cat dragged in global warming.

Puppies cause global warming.

In this section the results appear mostly sarcastic, however, for the last
results, ‘cat’ is replaced with ‘puppy’, which is still a mammal and a house-
pet, but not the right one. A potential negative about DFx’s search is that it
always returns k results, even if they are not what we would consider a good
match, it is the closest one in the corpus.

With DFx’s search, a synonym is close enough. For example, if the user
wants to search for a mammal, they can just use that word and still get

reasonable results:

Mammals cause global warming

humans cause global warming

Humans cause Global Warming. <LINK>

#Trigger AConservativeIndWords Humans cause global warming

The effects of global warming. It’s hot and mammals are pissed <LINK>
Global Warming causes this..hehe

Humans caused global warming #justsaying

Global warming causes cooling

Humans are the leading cause of global warming #exterminatethehumanrace
HUMANS ARE THE REASON FOR GLOBAL WARMING

The results contain some interesting claims about global warming, but
more importantly, they illustrate how semantic search is different from key-
word searches. In many results, synonyms are preferred over results with more
keyword matches that have a different meaning, for example, the text ‘humans

cause global warming’ ranks more highly than ‘The effects of global warming.
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It’s hot and mammals are pissed’ despite the inclusion of the keyword ‘mam-
mals’ Because of this increased reliance on semantics, it is sometimes possible
to use foreign language phrases and get the translation — though it is impor-
tant to note that this is primarily an effect of how USE was trained, and DFx
only facilitates the large scope of the search.

In French ‘Je t’aime’ means ‘I love you’:

Je t’aime

I love you. | love you. | love you. <LINK>
| luv u <LINK>

i love u <LINK>

I love you <LINK>

i lov u!l! <LINK>

| love you ® <LINK>

| LOVE YOU @ <LINK>

| love u © <LINK>

| love u ®®OO® <LINK>

And in French ‘Je te deteste’ means ‘I hate you’

Je te deteste

i loathe you <LINK>
i despise you <LINK>

I dislike you. <LINK>

I h8 you <LINK>

[ h8 u. <LINK>

i dislike you so much <LINK>

[ HATE YOUU <LINK>

I really loathe you. <LINK>

I really do hate you <LINK>

While all of these results are anecdotal, they provide a feeling of how the
search works. The algorithm does like phrasings with the same keywords, but
it sorts them somewhat differently depending on the context. Synonyms can
be substituted at any point in the results, which is exactly the behaviour we

want to exploit when we generate paraphrases.

49



Phrase 1 Phrase 2 USE Distilbert
Cosine Cosine

[ went to the park | I went to the the | 0.99663705 | 0.9785236
park

[ went to the park | I went to the the | 0.98901767 | 0.9509182
the park

[ went to the park | [ went to a the | 0.9770059 0.9694521
park

I like to wear hats | I hate to wear hats | 0.8288758 0.9799255

riding ridding 0.87408507 | 0.8724389

swim swimming 0.9424287 0.9536646

Table 6.1: A comparison of cosine similarity with multiple, incorrect stopwords
and poor results from BPE encoding

6.2 Notes about Transformer Encodings Ex-
amined

One of the most noteworthy effects of exploring a latent space with a tool like
DFx is that you can observe certain patterns within the spaces. It is important
to note that the following are simply observations obtained from investigating
the latent spaces while learning to create paraphrases.

For the task of paraphrasing, it is an interesting connection that neither
Distilbert [41] nor USE [10] consider stop words important. This means that
both networks will accept doubled stop words, and score them reasonably well
as a measure of similarity (Table 6.1). In early iterations of the paraphrase
generation, the results would often incorporate doubled stop words, usually
from the paraphrase being spliced in after a stop.

While USE is intended to be an embedding method, masked language
models such as BERT [12] and by extension Distilbert [41] do not strictly
return an embedding. For comparison, a Distilbert embedding is formed by
averaging the hidden states of the second last layer over the output tokens.

Table 6.1 demonstrates that the addition of stop words appears insignifi-

cant to either method.
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6.3 Validation

As DFx is, to our knowledge, a novel approach to word and sentence vector
similarity it is reasonable to compare its retrieval to the most common vec-
tor comparison method used in NLP, cosine similarity. In brief, the cosine
similarity of 2 vectors is a comparison between their angles, which does not
account for magnitude, only direction. We expect that cosine similarity is a
relatively efficient method, that can produce reasonable results, though this is
heavily dependant on the input data.

To examine each method in kind, validation tests were completed on a

subset of 1,000,000 tweets sampled from the corpus on climate change.

6.3.1 Cosine Comparison

The data here was selected as its metered length makes it suitable and clean
to process. For preprocessing only links were replaced with ‘URL’, while hash-
tags, @ mentions, and other Twitter data (retweets, emojis etc.) were not
altered. The search results are mostly data-agnostic but are sensitive to the
vector embedding used. For the sake of expediency, we use the Universal Sen-
tence Encoder (USE) [10] version 5, which has a 512dim output vector for up
to 1024 tokens. USE was chosen as it is a simpler transformer type network,

with reasonable performance on STS benchmarks.
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Figure 6.1: DFx agreement with cosine similarity as compared to bucket count
for a single query

Both cosine similarity and DFx were used to embed the data which was
then queried for the K nearest neighbours to a query phrase. The results of
the queries were added to sets, where the overlap of those sets is considered
a measure of agreement. In DFx, the initial input of 1,000,000 tweets was
reduced to =~ 269,000 unique vectors, with some variance by bucket count
(higher bucket counts result in fewer collisions, though at this dimensionality
the difference is not striking). Also worthy of note is that in DFx it happens
frequently that there are ties at the end of the search since the scores are
discrete. Ties are important in DFx, as the algorithm is not ordered (it is
multi-threaded) the final score values included will be effectively random. For
example, if K = 5 and the options have scores of 1, 2, 3, 4, 4, 4 ..which two
of the three 4s that are included is whichever is added first during the search
as there is no meaningful way to break the tie.

To determine the approximate bucket setting that would yield the best
results, DFx was run with many different bucket settings across the corpus
for three values of k: 10, 100, 1000 (Figure 6.1). The approximate knee of

this curve, a bucket count of 16, was selected for the following larger scale
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comparison.

To investigate the comparison between DFx and cosine similarity, the same
set overlap methodology was conducted over 10 different queries. The results
of this comparison are in Figures 6.2 & 6.3. Each Figure is from the same
data, with figure 6.2 added to allow more visibility into the top 100 results
of the chart, as they are likely to be much more important than the bottom
900. DFx generally aligns quite well with cosine similarity, typically providing
the first 10 results without any discrepancies, however, some queries did have
errors in the top 10, while the single highest agreement reached without error
was at K = 55. At K = 10 DFx produced a mean of 95.4% overlap, while a
mean of 91.5% overlap was obtained at K = 100, and 90.3% at K = 1000.
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Figure 6.2: DFx mean error vs cosine similarity up to & = 100
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Figure 6.3: DFx mean error vs cosine similarity up to & = 1000

DFx’s performance decreases with K because as K grows, and the differ-
ence between vectors becomes less significant, DFx begins to disagree more

with cosine similarity as it does not respect small differences, it only measures
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to its discrete thresholds. This means that while DFx concentrates on looking
for significant differences, cosine similarity considers many small differences as
more important. Additionally, as the count of vectors grows, the number of

tied vectors at the end of the search grows.

6.3.2 Semantic Textual Similarity

Because there is a significant overlap between cosine similarity and DFx does
not necessarily mean that DFx’s discretization does not affect the semantic
relatability of the vectors. To quantify that difference, we ran DFx’s discretizer
on top of USE [10] against the STS (Semantic Text Similarity) benchmarks
from 2012-2016 as implemented in Facebook’s SentEval framework [11].

The STS task was a task within SemEval from 2012 to 2016 to illustrate
how well an embedding captures the semantic differences between two phrases
[2]. The task presents the algorithm with two sentences and asks for a score
from 0 to 5, where 0 means that the sentences are completely different, and 5
means they are equivalent (Table 6.2). The phrases are extracted from different
corpi from datasets of image captions, news headlines and user forums [2] and

results reported (Figure 6.4) consist of a mean of all corpi in each test.

Phrase 1 Phrase 2 Score

The bird is bathing in the sink. | Birdie is washing itself in the D
water basin.

In May 2010, the troops at- | The US army invaded Kabul on 4

tempted to invade Kabul. May 7th last year, 2010.

John said he is considered a | “He is not a suspect anymore.” 3

witness but not a suspect. John said.

They flew out of the nest in | They flew into the nest to- 2

groups. gether.

The woman is playing the vio- | The young lady enjoys listening 1

lin. to the guitar.

John went horse back riding at | Sunrise at dawn is a magnifi- 0

dawn with a whole group of | cent view to take in if you wake

friends. up early enough for it.

Table 6.2: STS Sentence comparisions — Adapted from Agirre, Banea, Cer,

et al. [2]
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The main goal of the STS task was to create embeddings that show a high
correlation with these changes in semantic meaning, therefore scores are mea-
sured using both the Spearman and Pearson correlation coefficients to show
similarity, where the Pearson coefficient is considered the primary measure. If
the Spearman correlation is high while the Pearson is lower, this likely means
that the relationship between one or more of the different brackets is less rep-
resented by values than by rank. For example, if an algorithm was successful
at differentiating between 0 and 5, but ranked middling scores(1-4 inclusive)
as between 3.0 and 3.4, it may have a good Spearman score, but a poorer Pear-
son score. If the Pearson is higher it means that there is a higher correlation
between the actual values than the rank.

Figure 6.4 shows the results obtained by bucket size when DFx is overlaid
on USE [10]. In general, DFx stops harming performance between 6 to 10
buckets (dependant on STS year). There is a trade-off between resource con-
sumption and accuracy which is well illustrated, where lower bucket settings
consume fewer resources, and higher bucket settings show better alignment
with the baseline algorithm. Figure 6.4b illustrates that at points discretiza-
tion can improve results, where beyond 5 buckets, DFx outperforms the base-
line. I hypothesize that this is due to the insignificance of small embedding

changes on this particular dataset.
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09 == pearson mean
= = pearson mean baseline
08 == spearman mean
o == spearman mean baseline
2 4 6 8 10 12 14 16 18
(a) STS-12
1.0 1.0
0.9 0.9
0.8 0.8
0.7 [emals 0.7
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
(b) STS-13 (c) STS-14
1.0 1.0
0.9 0.9
0.8 - 0.8
0.7 0.7
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
(d) STS-15 (e) STS-16
1.0
0.9
0.8
0.7
2 4 6 8 10 12 14 16 18

Figure 6.4: STS Benchmark correlation with semantic similarity across DFx

bucket count.

(f) STS-12 — 16 Combined

Baseline performance is USE version 5 [10]
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6.4 Paraphrasing

To illustrate the usefulness of a tool like DFx, it was examined for its ability
to generate paraphrases. Paraphrasing a corpus can be a way to expand a low
data corpus or can be used as a way to verify a network’s understanding of
language. It is common to ask a person to restate an idea in different words
if it is not well understood by the listener, this demonstrates an attempt to
re-establish communication along similarly understood terms. In this way,
paraphrasing (or more exactly the ability to map similar phrases together) is
central to many NLP tasks, such as question answering, information retrieval

and dialogue [30].

6.4.1 Dataset

The Wikianswers corpus contains 18 million word-aligned question pairs and
2.5 million original questions, which were identified as identical questions by
the WikiAnswers community [14]. For the following tests, DFx is allowed to
ingest the original, un-lemmatized corpus of 2.5 million questions for search,
however, no alignment with the paraphrases is made. In other words, DFx is
asked to identify the paraphrases from a series of chunks of the original text
and reassemble them into coherent phrases. DFx is used in this application
does not create original text, only potentially original combinations of chunks
of it, and to do that, it needs to be shown the possible options.

For evaluation 10,000 paraphrase sets are selected at random from the 18
million aligned sets. The candidate paraphrases are lemmatized after selection

for comparison using Spacy.

6.4.2 Metrics

By its very nature, paraphrasing is difficult to evaluate. If an idea is well
represented in different words, how can we empirically, and automatically,
measure a paraphrase? There are potentially infinite ways to restate any

given phrase, therefore corpi built for evaluating paraphrases generally contain
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many different paraphrases of a given statement (references), against which a
candidate paraphrase is evaluated.

The most accurate way to evaluate a generated paraphrase is likely hu-
man judgement with a large number of annotators, however, due to time
constraints, I have not been able to complete this style of evaluation here.
For automated evaluation of results similar metrics to translation and sum-
marization are employed — ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) [29] and BLEU (Bilingual Evaluation Understudy) [36], and the
recent BERT-Score [47].

6.4.3 BLEU

BLEU [36] attempts to measure the precision of a paraphrase to several can-
didates using n-gram similarity. What this means is that BLEU counts the
matching words (BLEU-1), the matching groups of 1 and 2 words (BLEU-2),
the matching groups of 1,2, and 3 words (BLEU-3) and the matching groups
of 1,2,3, and 4 words (BLEU-4). BLEU is primarily a measure of precision

where precision is the ratio of tokens in the generated paraphrase that also

# of overlapping tokens
Total tokens in paraphrase’

appear in the reference —

A potential deficiency of a precision-based score is that high precision can
be obtained at the expense of recall — if we don’t guess we are never wrong.
Imagine if our paraphrase consists of a single word ‘the’. The word ‘the’ will
appear in many references, and will probably net a reasonable precision score.
To combat this, BLEU introduces a brevity penalty, where if a generated
phrase is shorter than the reference, the final score is multiplied by that ratio.
When the phrases are equal length, or the candidate has a greater length,
the brevity penalty is 1. A negative consequence of the brevity penalty is
that BLEU penalizes concise paraphrasing — a paraphrase must be as long or
longer than the original. This is far from ideal as a more practical application
of paraphrasing would be to improve concision.

For the task of paraphrasing, BLEU is not ideal, however, it is commonly

reported [30], [33]. Table 6.3 represents the BLEU score for DFx generated
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paraphrases on the Wiki-Answers corpus. Note that the larger k is, the better
the result for DFx, however, the larger k is the more expensive the paraphrase

is to generate.

DFx k | Metric | Score (%)
1 BLEU 34.51
1 BLEU-1 74.97
1 BLEU-2 59.91
1 BLEU-3 46.51
10 BLEU 55.45
10 BLEU-1 85.84
10 BLEU-2 75.54
10 BLEU-3 65.96
50 BLEU 60.74
50 BLEU-1 87.12
50 BLEU-2 77.93
50 BLEU-3 69.86

Table 6.3: Mean BLEU results on 10,000 phrases randomly selected from the
Wiki-Answers Corpus
Created using corpus-bleu from the NLTK python library

6.4.4 ROUGE

ROUGE is a series of metrics that measure the number of n-grams that overlap
between a generated and a reference paraphrase. Reported in Table 6.4 are the
unigram ROUGE scores (ROUGE-1), bigram ROUGE scores (ROUGE-2) and
ROUGE-1 which is the longest common subsequence. Unlike BLEU, ROUGE,
as per its namesake, involves recall in the scoring rather than solely precision.

Scores for ROUGE are reported in Table 6.4 are means for F1, precision and

recall. ROUGE recall scores measure the amount of a given reference summary

that overlaps with the generated paraphrase: - overlapping tokens o ijq the
Total tokens in reference

precision, like BLEU, measures the fraction of tokens in the paraphrase that

were needed to make the reference: # of overlapping tokens . ROUGE
Total tokens in generated paraphrase

F1 is the harmonic mean combination of precision and recall.
To arrive at a comparison with current work on paraphrase generation, I

present Table 6.5. The above results are summarized for DFx compared to
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k | Metric Precision (%) | Recall (%) | F1 (%)
1 | ROUGE-1 53.37 57.66 54.06
1 | ROUGE-2 22.88 24.56 23.11
1 | ROUGE-] 65.13 55.09 52.06
10 | ROUGE-1 66.48 68.13 65.94
10 | ROUGE-2 38.33 37.90 37.22
10 | ROUGE-] 65.13 65.83 64.26
50 | ROUGE-1 67.19 71.54 67.91
50 | ROUGE-2 42.43 42.06 41.21
50 | ROUGE-] 66.00 68.70 66.13

Table 6.4: Mean ROUGE results on 10,000 phrases randomly selected from
the Wiki-Answers Corpus
Created using the rouge python library

other paraphrase generating algorithms as listed in Liu, Mou, Meng, et al.
[30]. DFxy outperforms the other candidates, however, it should be noted
that part of the reason for this is that if a given reference had a paraphrase
included in the training set, DFx is very good at selecting that phrase because

of the way it is built.

6.4.5 BERT-Score

BERT-Score is a different measurement as it attempts to use the cosine sim-
ilarity between BERT embeddings to evaluate the semantic relation of two
phrases [47]. The candidate is compared to the references by greedily match-
ing the highest cosine similarity tokens with each-other. This implies that
order is not as significant, as long as the embeddings are consistent, and the
true meaning should be more readily represented.

Precision and Recall for BERT-Score are slightly different than for n-gram
based approaches. For BERT-Score both precision and recall have the same
meaning as before (candidate to reference, reference to candidate), except that
each token is matched to another to maximize its potential score, rather than
considering the actual order directly. In this way, the intent is that if tokens
have the same meaning that they are matched together in latent space.

An example where BERT-Score outperforms ROUGE and BLEU is where
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Method Class Model BLEU | ROUGE-1 | ROUGE-2
Supervised Residual LSTM 27.36 48.52 18.71
Supervised VAE-SVG-eq 32.98 50.93 19.11
Supervised Pointer-generator 39.36 57.19 25.38
Supervised Transformer 33.01 51.85 20.70
Supervised Transformer+Copy | 37.88 55.88 23.37
Supervised DNPG 41.64 57.32 25.88

Domain Adapted | Pointer-generator 27.94 53.99 20.85

Domain Adapted | Transformer+Copy | 29.22 53.33 21.02

Domain Adapted Shallow fusion 29.76 53.54 20.68

Domain Adapted MTL 23.65 48.19 17.53

Domain Adapted MTL+Copy 30.78 54.10 21.08

Domain Adapted DNPG 35.12 56.17 23.65

Unsupervised VAE 24.13 31.87 12.08
Unsupervised CGMH 26.45 43.31 16.53
Unsupervised UPSA 32.39 54.12 21.45
Search DFxy 34.51 54.06 23.11
Search DFxq 55.45 65.94 37.22
Search D Fxs 60.74 67.91 41.21

Table 6.5: Wikianswers Corpus Comparison — Adapted from Liu, Mou, Meng,
et al. [30]

the meaning is changed by a small number of words. For example, since
ROUGE and BLEU are n-gram based, a paraphrase of “I’'m going to the lake”
could be “I'm not going to the lake”. This has no brevity penalty, near-perfect
precision, and perfect recall, but it means the opposite (negation) and is not a
proper paraphrase. A better paraphrase — “I’'m headed to the lake” — receives
lower ROUGE and BLEU scores, but a better BERT-Score (Table 6.6). As a
more extreme example, Zhang, Kishore, Wu, et al. provide the input phrase:
“people like foreign cars” where semantically incorrect candidate of “people
like visiting places abroad” achieves a higher score than “consumers prefer
imported cars” as there are no n-grams shared [47].

In a fashion, BERT-Score is very similar to DFx, but in reverse. A phrase
is broken down into its separate tokens to create a matrix of contextual em-
beddings, which is then compared to a candidate, broken down in the same
way. [t is important to note that DFx does not directly share any embed-
dings with BERT, it uses USE [10] as a base for all reported work. Results of
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Table 6.6: Metrics on the paraphrases of “im going to the lake”

Candidate Metric F1 (%)
“im not going to the lake” | BLEU 55.72
“im not going to the lake” | ROUGE-1 90.01
“im not going to the lake” | ROUGE-2 66.67
“im not going to the lake” | ROUGE-] 90.91
“im not going to the lake” | BERT-Score | 78.82
“im headed to the lake” BLEU 0.00
“im headed to the lake” ROUGE-1 80.00
“im headed to the lake” ROUGE-2 50.00
“im headed to the lake” ROUGE-1 80.00
“im headed to the lake” BERT-Score | 87.38

BERT-Score evaluation are in Table 6.7.

k | Metric Precision (%) | Recall (%) | F1 (%)
1 | BERT-Score 63.25 67.26 64.40
10 | BERT-Score 77.52 78.51 77.61
50 | BERT-Score 77.88 78.93 77.92

Table 6.7: Mean BERT-Score results on 10,000 phrases randomly selected from
the Wiki-Answers Corpus [47]

The most significant disadvantage of ROUGE is shared with BLEU, and
that is that the reference still must capture the same words used by the gen-
erator, including spelling mistakes which are frequent in Wikianswers. The
fourth phrase in our random selections was “who deliverd the getty burg ad-
dress 7”7, which DFx, paraphrased as ‘Who delivered the Getty burg address
?’, which does not net a perfect score in any measure (Table 6.8).

If the generator produces a completely novel paraphrase that was unac-
counted for by the authors of the corpus, the ROUGE score will be 0. This is

what BERT-Score is attempting to correct.

6.5 Paraphrasing Summary

DFx can be used to create paraphrases that in terms of metrics, rival state-
of-the-art supervised systems. I note, however, that DFx is incentivized to

make the most simple paraphrases possible, and it draws upon an existing
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Metric F1 (%)
BLEU 64.35
ROUGE-1 85.71
ROUGE-2 66.67
ROUGE-] 85.71
BERT-Score | 81.87

Table 6.8: Metric error on the paraphrase ‘who delivered the getty burg address
77 of reference ‘who deliverd the getty burg address 7’

corpus. The paraphrases it generates are limited to different combinations
of the chunks in the corpus, and while that number is extremely large, it is
not generative. There is some argument to be made that current generative
language models also perform this same task, however with a higher level of
obfuscation. By this I mean, they too can only re-combine phrases they have
previously seen and do not truly create. For example, if an LM was trained
without ever having read Dr. Seuss’s The Cat in The Hat, it would never come
up with the hat part of that phrase. If asked to complete the phrase ‘the cat
in the <>’ it would likely choose box or house and never a hat. In this regard

DFx is the same, it recombines what it is given without the ability to create.
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Chapter 7

Conclusion

I presented DFx, a vector search system which through a discrete encod-
ing facilitates an exhaustive search of latent space. DFx primarily works by
compressing the vectors through discretization and accelerating comparison
through a binary encoding which allows the hamming distance to be used as
a measure of similarity. To examine the uses of the system, evidence was
provided that DFx maintains results comparable to cosine similarity (Figure
6.1), and is effectively identical at k& = 10. To further demonstrate that DFx
does not harm semantic relatability it was used as an overlay to the Universal
Sentence Encoder [10] on the Semantic Textual Similarity Benchmark, where
between 5 to 10 buckets, performance is near identical (Figure 6.4).

In a test of its ability, DFx was used to create potentially novel paraphrases
by replacing verb phrase chunks in the WikiAnswers dataset [14] through an
exhaustive search of that corpus. Results are comparable to state-of-the-art
supervised systems (Table 6.5), however, DFx needs to be shown the data and
is not truly generative, but more of an identification tool that is used in a

compositional way.
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