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Abstract 20 

Aim 21 

Predictions of spread of nonindigenous species allow for greater efficiency in 22 

managing invasions by targeting areas for preventative measures.  The invasion 23 

sequence is a useful concept in predictions of spread as it allows us to test hypotheses 24 

about the transport and establishment of propagules in novel habitats. Our aims are 25 

two-fold: 1) to develop and validate multi-stage invasion models for the introduced 26 

fishhook waterflea, Cercopagis pengoi, and 2) assess how variability in the transport 27 

patterns of the propagules influences the accuracy and spatial extent for predictions of 28 

spread. 29 

Location  30 

New York State 31 

Methods 32 

We developed a two-stage model for the spread of C. pengoi. First, we 33 

developed a stochastic gravity model for dispersal based on surveys of recreational 34 

boat traffic in New York State as a proxy for propagule pressure.  We then modeled the 35 

probability of establishment based on predicted levels of propagule pressure and 36 

measures of lakes’ physicochemistry. In addition, we used Monte Carlo simulations 37 

based on the gravity model to propagate variability in boater traffic through the 38 

establishment model to assess how uncertainty in dispersal influenced predictions of 39 

spread. 40 

Results 41 



 3 

The amount recreationalists were willing to spend, lake area and population size 42 

of the city nearest to the destination lake were significant factors affecting boater traffic. 43 

In turn, boater traffic, lake area, specific conductance and turbidity were significant 44 

predictors of establishment. The inclusion of stochastic dispersal reduced the rate of 45 

false positives (i.e. incorrect prediction of an invasion) in detecting invasions at the 46 

upper 95% prediction interval for the probability of establishment. 47 

Main conclusions 48 

Combinations of measures of propagule pressure, habitat suitability, and 49 

stochastic dispersal allow for the most accurate predictions of spread. Further, 50 

multistage spread models may overestimate the extent of spread if stochasticity in early 51 

stages of the models is not considered. 52 

 53 

54 
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Introduction 55 

 Invasions of ecosystems by nonindigenous species (NIS) are occurring at 56 

increasing rates globally (Gollasch, 2006; Ricciardi, 2007; Hulme, 2009).  Proactive 57 

efforts to reduce invasions are the most cost-effective management option (e.g. Leung 58 

et al., 2002; Finnoff et al., 2007), although managers may be unwilling to “risk” a 59 

preventative approach due to the high uncertainty inherent in preventative practices 60 

relative to post-establishment control  (Simberloff, 2003; Finnoff et al., 2007). Thus, a 61 

key challenge for invasion biologists exists with respect to forecasting dispersal and 62 

establishment of NIS to inform the most appropriate management decision (see Lodge 63 

et al., 2006).  64 

An extensive literature exists for both theoretical and empirical approaches to 65 

predict invasions (e.g. Sakai et al., 2001). Much of the earlier research on forecasting 66 

invasions focused on attributes intrinsic to the NIS (e.g. Thuiller et al., 2006, Statzner et 67 

al., 2007) or characteristics of the recipient community (e.g. Stachowicz et al., 2002; 68 

Fridley et al., 2007). More recently, models have used the conceptual model of the 69 

invasion sequence, which is characterized by a series of steps the NIS must overcome 70 

to become successfully established. These steps include the initial transport of 71 

propagules from native or recently invaded sources, survival during exposure to (or 72 

exploitation of) physical and chemical characteristics of the new habitat, and integration 73 

into the existing community (Richardson et al., 2000; Kolar & Lodge 2001; Heger & 74 

Trepl, 2003; Melbourne et al., 2007; Theoharides & Dukes, 2007).  Colautti et al. (2006) 75 

proposed that hypothesis testing follow this sequence, as characteristics of the NIS or 76 

the recipient community that may facilitate or hinder invasion may be applicable only at 77 
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certain stages of the sequence.  Here, we follow this recommendation and develop a 78 

transport model for NIS propagules, and assess their establishment upon encountering 79 

the physical and chemical characteristics of the novel habitat. 80 

Propagule pressure may broadly be defined as the rate of introduction comprised 81 

of the number of introduction events, and the number and quality of NIS individuals 82 

transported per event.  Propagule pressure has been increasingly recognized as a key 83 

determinant of invasion success across a range of taxa as it may influence both the 84 

spatial extent of the invasion and level of impact (e.g. Lockwood et al., 2005; Von Holle 85 

& Simberloff, 2005). Furthermore, propagule pressure may influence invasion success 86 

at different stages of the invasion sequence.  For example, in addition to the initial 87 

transport of propagules into novel habitat, sufficient levels of inbound propagules may 88 

bolster the establishment of small populations that otherwise would have disappeared 89 

owing to demographic stochasticity, and may provide an ongoing source of genetic 90 

heterogeneity to the founding population (Simberloff, 2009).  Since the introduction of 91 

propagules is often the stage of the invasion sequence at which management efforts to 92 

control the spread are most efficient, it is a major focus of policy recommendations (e.g., 93 

Lodge et al., 2006, Reaser et al., 2008).    94 

 Vector-based or transport predictive models are often successful at predicting 95 

NIS dispersal.  In particular, gravity models that were initially developed to model 96 

immigration patterns (Zipf, 1946) and trade flows (Linneman, 1966) between spatially 97 

discrete sources and destinations, have been applied to model the flow of recreational 98 

boater traffic, a likely vector for the transport of aquatic NIS.  For example, gravity 99 

models have been used to model dispersal of aquatic NIS based on single-trip 100 
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recreationalist movement between invaded and non-invaded lakes (Schneider et al., 101 

1998; MacIsaac et al., 2004) or multi-trip movement incorporating trips from the 102 

recreationalists’ homes to invaded lakes (Bossenbroek et al., 2001; Leung et al., 2006). 103 

Another approach to predict invasions has sought to link factors extrinsic to the 104 

NIS - such as environmental suitability or native species community composition - to 105 

invasion success.  Environmental suitability in novel regions is most often forecast by 106 

matching correlates of species occurrence or abundance with environmental data from 107 

the native range with those in the new region.  For example, Herborg et al  (2007) used 108 

an environmental niche model to forecast suitable habitat in North America for the 109 

Chinese mitten crab Eriocheir sinensis based upon its current distributions in Asia and 110 

Europe. Alternatively, lower biotic resistance from the recipient community due to 111 

decreased competition from native species (e.g. Dzialowski et al., 2007), or differences 112 

in traits between native and introduced species augmented by shifts in environmental 113 

conditions (Moles et al., 2008) or environmental heterogeneity (Melbourne et al., 2007) 114 

also may facilitate invasion. 115 

The integration of multiple stages of the invasion sequence into single models or 116 

use of a hierarchical approach in which stage-specific hypotheses are sequentially 117 

tested, allows us to assess contributions of each stage to overall invasion success or to 118 

isolate the stage of the invasion sequence where the invasion first fails.  Leung & 119 

Mandrak (2007), for example, developed a joint probability model for propagule 120 

pressure and environmental conditions to predict establishment of the zebra mussel 121 

Dreissena polymorpha.  There, the inclusion of environmental characteristics in the joint 122 

model provided better predictive power than the model containing only propagule 123 
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pressure. Similarly, Rouget & Richardson (2003) found that predictions of plant 124 

invasions were strongly related to environmental conditions after first accounting for the 125 

effect of propagule pressure. In their model, propagule pressure was a stronger 126 

predictor than environmental factors considered separately. 127 

 The fishhook waterflea Cercopagis pengoi (Crustacea: Cladocera) is a relatively 128 

recent Great Lakes invader, having first been reported in Lake Ontario in 1998 129 

(MacIsaac et al., 1999).  It spread to Lakes Erie and Michigan by 2001, as well as to 130 

several inland lakes in New York State (Makarewicz et al., 2001; Witt et al., 2005).  131 

Introductions of C. pengoi have been linked to negative impacts in the native community 132 

including declines in abundance and diversity of small-sized zooplankton in the Baltic 133 

Sea (e.g. Ojaveer et al., 2004, Kotta et al., 2005) and Lake Ontario (e.g. Laxson et al., 134 

2003, Warner et al., 2006). Cercopagis may compete with larval fish for zooplankton 135 

prey, thereby limiting fish production, but may also be of benefit as an alternate food 136 

source for planktivorous fish (Kotta et al., 2005). 137 

Similar to dispersal of another invasive cladoceran, Bythotrephes longimanus, 138 

Cercopagis dispersal may be facilitated by overland transport associated with 139 

recreational movement of contaminated trailered boats or fishing gear. Like 140 

Bythotrephes, Cercopagis has alternating reproductive modes, with predominant 141 

parthenogenetic growth occasionally interrupted by sexual reproduction and production 142 

of resting stages. Despite its potential for high population growth and subsequent 143 

spread among inland lakes, there have been no studies to date to predict Cercopagis’ 144 

spread in North America.  145 
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In this paper, we assess Cercopagis spread among lakes by developing a 146 

stochastic gravity model to explore propagule pressure associated with recreational 147 

boat traffic, and use these estimates of inbound propagule flow as input into a 148 

subsequent establishment model.  Unlike previous gravity models of NIS dispersal (e.g. 149 

Bossenbroek et al., 2001; Leung et al., 2006), we treat recreational traffic as a 150 

stochastic process and model traffic between lakes as a random variable described by a 151 

statistical distribution.  We use this model to test a series of hypotheses about 152 

economic, social and geographical factors governing boater traffic between lakes to 153 

derive the most parsimonious dispersal model.  We then develop a baseline 154 

establishment model based on mean propagule flow and lake physicochemistry and 155 

propagate variability from the dispersal stage of the invasion sequence to evaluate the 156 

effect of stochastic boater movement on estimated probabilities of establishment. This 157 

approach allows us to evaluate how uncertainty in earlier stages of the invasion 158 

sequence affects our ability to predict lake invasion status and spatial extent of spread. 159 

 160 

Methods 161 

Data collection 162 

 We conducted creel surveys of recreational boaters at several boat launches in 163 

New York State including the Finger Lakes and lakes Erie and Ontario during the 164 

summer of 2004.  We were able collect data on 534 outbound trips where the 165 

recreationalists trailered their boats from 11 lakes with established Cercopagis 166 

populations, including Lake Erie, Ontario, and nine inland lakes in the Finger Lakes 167 

region.  Here, we treated Lakes Erie and Ontario similarly to other lakes and considered 168 
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them as having a single access point where we collected survey data. Information from 169 

the surveys included the lake last visited by the boaters, lake(s) they were planning to 170 

visit, the length of time they were planning on spending at the lake (average (1 SD), 171 

1.94 ± 2.14 days), and the amount of money they spent to arrive at the lake ($141 ± 172 

417).  Additional data required to parameterize the dispersal model such as lake area 173 

and road distance between lakes were extracted from TIGER/Line geospatial data 174 

provided by the U.S. Census Bureau (http://www.census.gov/geo/www/tiger/). 175 

Stochastic Gravity Model 176 

To model recreational boater movement between lakes i (invaded) and j (invaded 177 

and noninvaded), we consider the number of pairwise trips as a random variable 178 

following a zero-inflated negative binomial (ZINB) distribution, which can be built up by a 179 

series of hierarchical submodels (Fig. 1, Stochastic Gravity model). The ZINB is a 180 

generalized form of a Poisson distribution and is useful for describing count data that is 181 

both overdispersed and contains an excess of zeros that are either structural in nature 182 

or arise due to sparse sampling effort. The ZINB distribution is described by three 183 

parameters, , where  and k are the mean number of trips and 184 

dispersion parameter of the negative binomial (NB) distribution; and  is a parameter 185 

describing zero-inflation as the probability that only yij = 0 can occur, and  the 186 

probability that  is occurring. 187 

First, the mean number of trips between lakes i and j can be expressed in a 188 

submodel as: 189 
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,
 (1) 190 

where wj is a composite measure of destination lake attractiveness, and dij is the road 191 

distance between lakes i and j, and is a fitted parameter to account for distance 192 

decay.  Here, trips between i and j are asymmetric since data was available on whether 193 

the recreationalist visited lake i before j.  In addition, the model is limited to cases where 194 

. 195 

Destination lake attractiveness, wj, was in turn parameterized according to: 196 

 (2) 197 

with aj = lake area, cj = average cost the recreationalist paid to arrive at the lake, pj  198 

= population size of nearest city/town and dp,j is the distance of the nearest city/town to 199 

the destination lake.  Lake attractiveness is constrained to a minimum 0 by 200 

exponentiating the vector of fitted parameters b, with the exception of the power 201 

functions associated with population size and distance of the nearest city/town. 202 

Finally, zero-inflation of the ZINB distribution was estimated by: 203 

, (3) 204 

where  is the distance between lakes i and j (in km), and  is the surface area of the 205 

destination lake (in ha). 206 

Since maximum likelihood estimates for parameters used in estimating , k and 207 

for the ZINB must be solved simultaneously; the EM (Expectation-Maximization) 208 

algorithm (Dempster et al., 1977) is a useful approach for MLE in modeling mixture 209 

distributions when other methods fail to converge (see Appendix S1 in Supporting 210 
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Information). In general terms, the log-likelihood function for the ZINB is a sum of two 211 

components: one log-likelihood describing the probability of zero-inflation (hereafter 212 

referred as ) and another log-likelihood conditional on this describing a negative 213 

binomial distribution weighted by zero-inflation ( ). 214 

The statistical significance of variables used in measures of the mean number of 215 

trips , the dispersion parameter k and estimates of zero-inflation  were assessed 216 

using likelihood ratio tests.  Non-significant variables or parameter estimates were 217 

eliminated from the dispersal model with the most parsimonious model used in further 218 

analyses. 219 

Predicting areas at risk for Cercopagis establishment 220 

 In the second stage of modelling Cercopagis establishment in lakes, significance 221 

of propagule pressure and water physicochemistry was tested in a logistic model using 222 

Cercopagis presence/absence data (Fig. 1, Establishment model).  Here, expected 223 

propagule pressure to specified destinations is simply the summed inflow of the 224 

estimated number of trips into each destination j across the invaded source lakes 225 

adjusting for zero-inflation, . 226 

 Lake area and water quality data from the United States Geological Survey 227 

(http://waterdata.usgs.gov/nwis) including specific conductance, turbidity, pH, total 228 

phosphorus, total nitrogen and dissolved oxygen concentration were used as predictors 229 

of establishment success for 871 destinations. Water quality data for each lake were 230 

summarized by taking the average, minimum and maximum value from samples taken 231 

since 1998 to the present corresponding to the period beginning with the first record of 232 



 12 

Cercopagis establishment. Missing water quality data for 24% of the destination lakes 233 

was estimated using kriging from a pool of 29886 sites across New York. Lake 234 

physicochemistry and characteristics of the nearest city or town to invaded and 235 

noninvaded lakes are summarized in Table 1. 236 

We developed the establishment models in two stages, excluding and then 237 

including stochastic variability from the dispersal model. First, we estimated baseline 238 

probabilities of establishment by a logistic regression model relating Cercopagis 239 

presence/absence to propagule pressure and water quality data where expected 240 

propagule pressure is based on the best-fit gravity model.  The logistic model was 241 

simplified as much as possible using the fewest significant predictors which were 242 

determined by stepwise evaluation of the model’s AIC in both forward and reverse 243 

directions based on the expected number of inbound trips,  and the complete 244 

suite of water physicochemistry.  In order to cross-validate the logistic establishment 245 

models, we used a jackknife leave-one-out method where each destination lake was left 246 

out of the data set in turn and the models trained on the remaining lakes. Establishment 247 

probabilities were then estimated for the hold-out samples. 248 

Second, we used a randomization approach to propagate variability from the 249 

dispersal model to the most parsimonious establishment model. Similar to the cross-250 

validation of the baseline establishment model, data were repeatedly subset into 251 

training with a hold-out observation for testing.  At each iteration, random numbers of 252 

pairwise trips were drawn from a ZINB distribution parameterized from the dispersal 253 

model, Yij  ZINB(ij,k,ij), summed for each destination, and combined with water 254 

quality data (Fig. 1). A logistic regression model was fitted to the training subset, and 255 
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confidence intervals for the fitted parameters were calculated from bias-corrected 2.5th 256 

and 97.5th percentiles of the resampled parameters (Efron & Tibshirani, 1986).  In turn, 257 

prediction intervals for establishment probability for the testing data subset were based 258 

on the confidence limits with the propagated errors. 259 

We evaluated the relationship between establishment probability and Cercopagis 260 

presence/absence data by means of the shape and area under the receiver operating 261 

characteristic curve (AUC) for baseline probability and prediction intervals with and 262 

without the propagated errors. This allows us to assess how the inclusion of stochastic 263 

variability affects estimates of hit rates (correctly predicting invasions when they occur) 264 

and false alarm rates (incorrectly predicting invasions as occurring when in fact, they 265 

have not) across a range of probability thresholds.  In addition, we calculated the 266 

optimum threshold for establishment probability based on the receiver operating 267 

characteristic (ROC) curve and establishment probability from the baseline dispersal 268 

model without error propagation.  The optimum threshold was calculated as the 269 

probability of establishment along the ROC curve that was closest to the curve if there 270 

was perfect model fit (i.e. 100% hit rate and 0% false alarms) (Liu et al., 2005).  Lakes 271 

were classified as invasible if their establishment probability was equal to or larger than 272 

this threshold.  This, in turn, allowed us to compare the numbers of lakes predicted to 273 

be invaded based on this threshold and observed invasion status and quantify the effect 274 

of stochastic variability based on the frequency of correct invasion predictions and false 275 

alarms. 276 

After determining the relationship between establishment probability and 277 

observed invasion status, we standardized the coefficients of the logistic regression to 278 
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assess which variables had the most influence on establishment probability.  We 279 

standardized the coefficients for each variable according to: , where b 280 

and R are the raw coefficients and square root of Pearson’s correlation coefficient and 281 

and are standard deviations of the independent and logit-transformed predicted 282 

values for presence/absence, respectively (Menard, 2004).  This method standardizes 283 

for variation in both the independent and dependent variables such that one standard 284 

deviation in the change of the independent variables can then be interpreted as 285 

producing b* standard deviations in the dependent variable. Standardized coefficients 286 

were calculated for both the baseline model as well as model with stochastic variability.  287 

Confidence intervals for the standardized coefficients incorporating stochastic variability 288 

were calculated based on 95% bias-corrected bootstrap confidence limits (Efron & 289 

Tibshirani, 1986). 290 

In the previous model, the timing of lake invasions was not specifically 291 

considered, as flow from currently invaded lakes (n = 11) was modeled to other invaded 292 

and noninvaded lakes.  A subsequent dispersal and establishment model considered 293 

propagule flow from the first invaded lake (Lake Ontario) to Lake Erie and the inland 294 

lakes in New York.  This scenario allows for a true validation of a model for Cercopagis 295 

spread since model predictions were compared against the invasion status of lakes that 296 

were invaded later on.  In this scenario, we recalculated the fitted parameters for the 297 

stochastic gravity model using Lake Ontario as the sole source.  Similar to the model for 298 

the 11 source lakes, we generated a random number of trips leaving Lake Ontario to 299 

each destination, and fitted a logistic establishment model with the same water 300 

chemistry variables selected from the previous scenario.  301 
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 302 

Results 303 

Stochastic dispersal model 304 

A summary of hypothesis tests and corresponding likelihood ratio tests are 305 

presented in Table 2.  Lake area was a significant term in the logistical model to 306 

estimate zero-inflation (Eqn. 3) but not as a measure of destination attractiveness 307 

(Eqn. 2).  Population size was also significant in the model for lake attractivity (Eqn. 2). 308 

The estimated number of trips between pairs of lakes is given by 309 

with dispersion parameter for the ZINB distribution, k = 0.92. Nested within 310 

this model, lake attractiveness is modeled as , where c is the average 311 

cost to arrive at lake j and pj is population size of the nearest city or town to the 312 

destination lake. This reduced model was not significantly different from the full model of 313 

lake attractiveness as determined by likelihood ratio testing (2=0.669, d.f.=4, P = 314 

0.955). 315 

The final model for estimation of zero-inflation is given by: 316 

 317 

for each pairwise trip with fitted parameters .  Confidence limits for the fitted 318 

parameters ,  and are presented in Table 3. 319 

 320 

Predicting Cercopagis establishment 321 

After elimination of non-significant variables based on the stepwise procedure, 322 

the baseline logistic model for estimating the probability of Cercopagis establishment 323 
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was determined by propagule pressure j, lake area (aj) maximum specific conductance 324 

(SC) and minimum and maximum turbidity (TB):  325 

326 

 327 

With the addition of the water chemistry data, there was a significant 328 

improvement in model fit over a logistic model using propagule pressure alone (2 = 329 

22.48, d.f. = 4, P = 0.0002).  Finally, when coefficients for the logistic model were 330 

standardized, maximum and minimum turbidity had the most influence on estimated 331 

probability of establishment, followed by propagule pressure (Fig. 2).  332 

There was high concordance with the baseline probability of establishment 333 

estimated for the testing data and observed Cercopagis presence/absence for each of 334 

the destination lakes. The area under the Receiver Operating Characteristic Curve 335 

(AUC = 0.984) was significantly different from 0.5 (P < 0.001) (Fig. 3(a)). 336 

 337 

Effect of stochastic variability on predicting establishment 338 

The impact from the inclusion of stochastic variability in the dispersal model on 339 

the ability of the establishment models to predict the invasion status of lakes depended 340 

on the sensitivity of the metric used to measure the change.  At the upper 95% 341 

prediction limit excluding stochastic variability, there was a negligible decrease in AUC 342 

relative to the baseline model (0.991 vs. 0.994) (Fig. 3(a)).  However, when we chose 343 

an optimum threshold for the baseline model (P = 0.010) above which lakes are 344 

predicted to be invaded, the chance of incorrectly predicting a lake as invaded when it is 345 

not (false alarm) increased from 3% to 100%, with only a 1% chance of correctly 346 
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predicting the overall invasion status of the lakes (Table 4).  Similarly, in a comparison 347 

of the upper 95% prediction intervals for the models excluding and including variability 348 

from the dispersal stage, there was no change in the overall AUC (Fig. 3a), but the 349 

chance of committing false alarms decreased from 100% to 78% (Table 4). 350 

At the lower 95% prediction limits for the models without and with stochastic 351 

variability, estimated probabilities of establishment were poor predictors of observed 352 

invasion status. Probabilities of establishment estimated from the model without 353 

stochastic variation were able to significantly predict invasion status (AUC = 0.65, P = 354 

0.03), but probabilities based on included stochasticity were unable to predict better 355 

than random (AUC = 0.60, P = 0.12). There was no change in either false alarm or hit 356 

rates at the lower 95% PI in a comparison of the models excluding and including 357 

stochasticity (Table 4). 358 

Areas with high probabilities of Cercopagis establishment were concentrated 359 

primarily on a cluster of seven invaded lakes in the Finger Lakes region when the 360 

spatial extent of establishment probabilities is taken under consideration (Fig. 4a). 361 

When variability was propagated from the dispersal model, the spatial extent of 362 

predicted establishment based on the 95% prediction limits differed extensively. For the 363 

upper prediction limit, the spatial extent of establishment probability at the higher 364 

prediction limit was overly inclusive.  At a probability threshold between 0.81 and 1.00, 365 

predicted areas of establishment extended from Lake Ontario to the Pennsylvania 366 

border (Fig. 4b). In contrast, predicted areas at high risk of invasion were focused on 367 

the cluster of lakes already invaded with the addition of several isolated hotspots in 368 

eastern New York State when stochasticity was propagated. (Fig. 4c). 369 
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 370 

Dispersal and establishment models with Lake Ontario as source for invasions 371 

Parameter estimates for the dispersal model for Lake Ontario were not 372 

significantly different from the dispersal model estimated using all 11 source lakes as 373 

determined by overlapping confidence intervals (Table 3).  In the sub-model estimating 374 

the mean number of pairwise trips leaving Lake Ontario, road distance between lakes 375 

was slightly less of a deterrent (i.e. less negative) than all 11 source lakes were 376 

considered ( = -0.485), but not significantly based on confidence intervals [-0.578, -377 

0.393].  In terms of destination lake attractivity, wj was negatively related to the average 378 

cost of travelling to a specified destination  (4=-2.11) but the confidence intervals 379 

indicate that it was not significant from 0, unlike from the other scenario. 380 

The dispersion parameter for the ZINB, k = 1.39 [0.681, 2.858] was also not significantly 381 

larger than that for the 11 source lakes model, and parameters used in the estimation of 382 

zero inflation,  383 

,  384 

were also not different from parameter estimates for the other scenario. 385 

 386 

Establishment model with Lake Ontario as sole source  387 

In the scenario with Lake Ontario as the sole source, the probability of 388 

Cercopagis establishment was described by:  389 

.  390 
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There was no significant difference between the fitted parameters for this 391 

establishment model in this scenario as compared to the 11 source lakes establishment 392 

model based on overlapping confidence limits (Table 3). Also, as in the scenario for the 393 

11 source lakes, maximum and minimum levels of turbidity had the greatest influence 394 

on the probability of establishment, followed by propagule pressure (Fig. 2).   395 

When Lake Ontario was considered as the only source, performance of the 396 

establishment model was extremely high in being able to discriminate between true 397 

invasions and false alarms as evaluated from the Receiver Operating Characteristic 398 

Curve (AUC=0.984, P << 0.001). 399 

 400 

Prediction limits for Cercopagis establishment with Lake Ontario as single source 401 

Estimated probabilities of establishment varied greatly for invaded and non-402 

invaded lakes when stochastic variability was propagated from the dispersal model. The 403 

average probability of establishment for invaded lakes was 0.69 but ranged from 4.5E-7 404 

to 0.97 at the lower and upper 95% prediction limits when stochastic error was 405 

propagated.  For non-invaded lakes, stochastic variability resulted in establishment 406 

probabilities that differed by two orders of magnitude between the lower and upper 95% 407 

prediction [averages of 5.96E-7 vs. 1.36E-1].  The average probability of establishment 408 

for non-invaded lakes was 4.53E-3 for the baseline model without error propagation. 409 

Similar to the scenario with the 11 currently invaded lakes as sources, there was 410 

negligible change in the AUC from probabilities estimated from the baseline model to 411 

probabilities at the upper 95% prediction limit (Fig. 2(b)). Likewise, hit rates and false 412 

alarm rates were more sensitive to the addition of stochasticity based on an optimum 413 
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probability threshold of p = 0.013 derived from the baseline model. At the upper 414 

prediction interval, the probability of committing false alarms decreased from 1.00 to 415 

0.38 when variability was propagated, resulting in an overall 73% chance of correctly 416 

predicting invasions overall (Table 4).  At the lower prediction limit, the ability of the 417 

model to correctly predict invasions (hit rate) did not change in comparison to the model 418 

without stochastic dispersal, but remained at 0 (Table 4).  Here, all estimated 419 

probabilities were low (< 0.2) and the model was unable to discriminate between true 420 

invasions and false alarms (AUC = 0.43, P = 0.78). 421 

 Spatial patterns of predicted establishment with Lake Ontario as the single 422 

source (Fig. 4d-f) are almost identical to the scenario with 11 lakes as sources (Fig. 4a-423 

c). In the baseline models for both scenarios (Fig. 4a,d), a similar region of moderate 424 

probability of invasion (0.21 – 0.40) formed around the Finger Lakes. However, in the 425 

Lake Ontario scenario, lakes within this cluster were not at as a high a risk of invasion 426 

as in the 11 source lake scenario.  One notable difference between the two scenarios is 427 

that small clusters of high and moderate risk areas in eastern New York State are 428 

contiguous in the 11 lake scenario at upper 95% PI (Fig. 4b,c) but are more isolated 429 

when only Lake Ontario is considered as single source (Fig. 4e,f) due to lower levels of 430 

propagule pressure. In other words, propagule flow from Lake Ontario is sufficient to 431 

create potential satellite colonies, but additional propagule flow from the Finger Lakes 432 

may allow for infilling of the satellite colonies. 433 

Discussion 434 

 Multi-stage invasion models are a useful approach to implementing the invasion 435 

sequence conceptual model because they allow us to identify factors that limit or 436 
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facilitate invasions at different stages of the sequence and provide flexibility in choosing 437 

suitable sub-models appropriate to the biology of the organism.  In particular, estimating 438 

factors that influence dispersal of NIS is the significant first step in risk management 439 

because preventative measures are most readily applied at the introduction stage of the 440 

invasion sequence (Lodge et al. 2006).  In this paper, we developed stochastic gravity 441 

and logistic establishment models to forecast spread of an aquatic NIS. Since we used 442 

a stochastic form of the gravity model, we were able to propagate variability from early 443 

stages of the invasion sequence to final predictions of spread. 444 

 The use of stochastic gravity models to model recreational traffic has some 445 

statistical advantages over deterministic approaches. First, stochastic gravity models 446 

require specifying a probability distribution about the probability of individual trips being 447 

made between sources and destinations, as opposed to deterministic models that 448 

model mean interaction traffic and assume a probability distribution about residual 449 

variability during the model fitting process. By specifying an appropriate trip distribution -450 

such as Poisson or negative binomial if the number of trips is being modeled - estimated 451 

traffic would be less biased than if an incorrect distribution were assumed (Flowerdew 452 

and Aiken, 1982).  Further, with these discrete distributions, cases where there are zero 453 

trips between a source and destination may be modeled explicitly instead of excluding 454 

them from the analysis. In other words, stochastic models based on discrete 455 

distributions are likely to perform better at smaller sample sizes.  Finally, stochastic 456 

models that are fitted using maximum-likelihood estimation allow for statistical testing of 457 

hypotheses surrounding the number of trips through the use of likelihood ratio tests or 458 

information-theoretic approaches such as Akaike’s Information Criterion. 459 



 22 

Invasions are ultimately stochastic processes, and even in strictly controlled 460 

experiments (e.g. Melbourne & Hastings, 2009), stochasticity will limit our ability to 461 

make predictions about invasion dynamics.  However, an assessment of various 462 

sources of uncertainty in model predictions is useful. In this study, a comparison of 463 

model predictions among baseline models, and models including and excluding 464 

stochastic variability from earlier stages of the model, in addition to predicting spread 465 

under different scenarios, permits us to assess contributions of different sources of 466 

uncertainty in final predictions of establishment. 467 

Uncertainty inherent in model parameterization may be considered as a key 468 

source of variability. Parameterization uncertainty was tested by comparing model 469 

predictions from the best-fit or baseline model, to the 95% prediction limits defined by 470 

the 95% confidence limits of the fitted parameters. Here, we consider this an evaluation 471 

of the input variables’ statistical uncertainty, defined as uncertainty that may be 472 

described by statistical terms as deviations in the variables or parameters from the true 473 

value (Walker et al., 2003).  In our model, the high increase in false alarm rates (Table 474 

4) and overly inclusive predicted area of establishment at the upper 95% prediction limit 475 

(Fig. 4) indicates that statistical uncertainty is a major source of uncertainty. That is, 476 

modest changes in the fitted parameters result in an overestimation of probabilities of 477 

establishment resulting in increased false alarms.  Statistical uncertainty in models of 478 

predicted spread may be reduced through increased data collection in order to develop 479 

stronger model discriminators between invaded and non-invaded habitats. 480 

 Stochastic variability of model inputs can also be described as statistical 481 

uncertainty because it addresses whether the data set captures the true variability in the 482 
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population. The decrease in false alarm rate at the upper 95% PI when stochasticity 483 

was propagated relative to the model without stochasticity indicates that accounting for 484 

sources of uncertainty is not as critical as addressing uncertainty inherent in the model.  485 

Nevertheless, we recommend the inclusion of stochastic variability in model inputs since 486 

estimated areas of spread were lower than the upper 95% PI of the model without 487 

propagated error.  This reduced area of spread when stochastic input variables were 488 

included is consistent with population spread models of Clark et al. (2001), where 489 

propagated variability in the net reproduction rate, R0, resulted in lower rates of forest 490 

spread. 491 

A comparison of predictions in spread under the two scenarios with Lake Ontario 492 

only and 11 invaded lakes as sources addresses the issue of scenario uncertainty 493 

frequently used in policy analysis (Walker et al., 2003). Scenario uncertainty involves 494 

uncertainty in how the system and processes driving the system may develop through 495 

time, and reflects alternative outcomes or conditions.  In the context of this study, we 496 

are comparing two invasion trajectories about outbound propagule flow.  The nearly 497 

identical patterns of spread under the two scenarios indicate that Lake Ontario is a 498 

major driving force in Cercopagis expansion since it is present in both scenarios, and 499 

thus may serve as a ‘hub’ for future expansion across a network of invaded lakes 500 

connected by boater traffic (see Muirhead & MacIsaac 2005). 501 

Finally, one source of variability that our model does not contain is stochasticity 502 

present in local population growth over time. As time progresses, stochastic population 503 

growth may increase the probability of lake becoming a future source for invasions if the 504 

population is likely to expand faster than decreasing below a threshold where the 505 
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population is likely to collapse or experience Allee effects (e.g., Drake & Lodge, 2006).  506 

That is, there is likely a greater chance of propagules being transported away from the 507 

lake depending on the source population size, although this relationship is difficult to 508 

quantify.  In order to develop a complete population spread model based on the 509 

invasion sequence, population estimates of the NIS are required but are unfeasible for 510 

planktonic species. 511 

The combination of propagule pressure and habitat suitability in determining 512 

establishment success for Cercopagis is similar for other zooplankton species.  In 513 

particular, Cercopagis is more likely to found in larger, clear lakes (i.e. low turbidity) with 514 

high propagule inflow from human-mediated dispersal, similar to the confamilial 515 

Bythotrephes longimanus.  European and North American lakes that support 516 

Bythotrephes have significantly greater surface area and are deeper and more 517 

transparent than those in which it is absent (MacIsaac et al., 2000; Branstrator et al., 518 

2006; Weisz & Yan, 2010). In both the dispersal and establishment models for 519 

Cercopagis, the likelihood of travelling between two lakes (estimate of zero-inflation), as 520 

well as the probability of establishment, increased with increasing lake area.  Lake area 521 

may be an indication of subjective attractiveness for recreationalists since it has been 522 

shown to be positively related to the probability of making a trip to that lake (Siderelis & 523 

Moore, 1998) as well as the average amount of boater traffic on a lake (Reed-Anderson 524 

et al., 2000).  In terms of Cercopagis establishment, lake area may influence habitat 525 

diversity, availability of refuge from fish predators and, consequently, population size of 526 

the NIS.  Finally, specific conductance may not have a direct impact on Cercopagis 527 

establishment, but it is an indicator of lake position in a watershed.  Lakes that are 528 
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larger, deeper and at lower elevations tend to have higher specific conductance.  In a 529 

zooplankton community analysis for Wisconsin lakes, Dodson et al. (2009) found that 530 

larger zooplankton species were found in these larger lakes. 531 

The clustering of inland lakes invaded by Cercopagis is limited to the Finger 532 

Lakes region and raises a key question of why Cercopagis hasn’t spread like 533 

Bythotrephes, despite ample time to do so.  Cercopagis displays many of the life-history 534 

and physiological traits expected to confer an advantage in colonizing populations.  For 535 

example, Cercopagis frequently has greater absolute abundance and fecundity, and 536 

thus we expect higher number of Cercopagis propagules based on relative abundance 537 

(Makarewicz et al., 2001, Yan et al., 2001). 538 

One possibility of why Cercopagis has not spread extensively involves the timing 539 

of production of resting stages relative to seasonal patterns of recreational boat traffic.  540 

Like many cladocerans, Cercopagis produces gametogenic resting eggs that are likely 541 

the life stage to survive dispersal among lakes.  Whereas recreational boating traffic 542 

occurs predominantly between May and early September, peak abundance of 543 

Cercopagis females with resting stages does not occur until mid-August in Lake Ontario 544 

(Makarewicz et al., 2001) and late September in the Baltic Sea (Gorokhova et al., 545 

2000). Seasonal recreational boating activity is declining at this time, thereby reducing 546 

the likelihood of human-mediated species dispersal. 547 

 548 

Allocation of sampling effort and optimum control to detect and contain spread 549 

 The spatial pattern of lakes at high risk of invasion by Cercopagis has 550 

implications on whether to allocate more effort to sampling and detecting new invasions 551 
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versus controlling secondary spread.  In terms of sampling effort to detect new 552 

invasions, risk maps allow the identification of invasion ‘hotspots’ where sampling can 553 

be prioritized to increase detection sensitivity for low population sizes.  For example, in 554 

a survey for Cercopagis in Lake Ontario by Harvey et al. (2009), the probability of 555 

detecting the species was greater for targeted spatial arrangement of samples rather 556 

than lower-effort sampling over a great area when population densities were low.  557 

Based on our simulations, areas at high risk of Cercopagis invasion in New York State 558 

are primarily concentrated around a cluster of lakes that are currently invaded, although 559 

there exist several high-risk areas surrounding this cluster that currently are not 560 

invaded. If large volumes of recreational boating traffic depart from these high-risk 561 

areas, effort to detect new invasions should be focused on these potential satellite 562 

colonies rather than sampling for lakes proximal to those already invaded because 563 

satellite colonies may increase the overall rate of spread by exceeding that of the 564 

central core of the invasion (Moody & Mack, 1988; Blackwood et al., 2010). 565 

Alternatively, if management effort is targeted toward limiting secondary spread, 566 

the optimal solution is contingent on the spatial configuration of the invasion, rates of 567 

spread, and control strategies.  Despite a relatively long time since its introduction into 568 

the Great Lakes, Cercopagis has not spread in New York State at the rate or 569 

geographic extent of Bythotrephes in Ontario (Muirhead & MacIsaac, 2005; Weisz & 570 

Yan 2010).  Although eradication seems unfeasible for planktonic species such as 571 

Cercopagis, an optimal strategy of “slow the spread” based on creating barriers to 572 

dispersal is recommended since the area currently invaded is limited (Sharov, 2004).  In 573 

instances where the invasible habitat is not homogenous, but is distributed in patches 574 
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such as lakes, the optimal control strategy is to limit the amount of propagule dispersal 575 

among patches.  Here, the spatial arrangement of patches has implications on where 576 

management efforts to control spread should be applied.  For example, in an optimal 577 

model for zebra mussel spread, Potapov & Lewis (2008) show that disrupting the flow 578 

between clusters of lakes by washing trailered boats is preferred over disrupting 579 

propagule transfer within a cluster.  Similarly, if we consider propagule dispersal 580 

between invaded sources and destinations as a source-sink model, Travis & Park 581 

(2004) illustrate how the optimal control strategy for overall population size does not 582 

always involve reductions in the source (i.e. invaded) habitat, but is strongly influenced 583 

by the level of dispersal and the strength of population decline in the sink habitat.  In 584 

situations where density-dependent dispersal is low, as is often the case in invasions, 585 

they suggest a dynamic strategy where eradication effort switches between sources and 586 

sinks as opposed to splitting effort between the two. However, if a species exhibits high 587 

density-dependent dispersal, reducing the source population will be the most effective 588 

strategy.  For planktonic NIS such as Cercopagis, management options may include 589 

education of recreationalists through awareness of invaded lakes in the Finger Lakes 590 

region; inspecting fishing lines or water-based vectors such as bait buckets, live wells or 591 

bilge water for animals; and washing boats and trailers after emerging from invaded 592 

lakes.  Commercial solutions such as the development of fishing lines that prevent 593 

Cercopagis attachment may prove highly effective (Jacobs & MacIsaac, 2007). 594 

 595 

Hierarchical approach to modeling invasions 596 
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The utility of combining stochastic dispersal and establishment models in a 597 

hierarchical approach provides a flexible framework to address a wide range of 598 

hypotheses in invasion biology.  While we focus on aquatic NIS, the same approach 599 

could be used to assess the spread of terrestrial species.  For example, stochasticity in 600 

wind currents affecting seed dispersal of plants or insect dispersal may be propagated 601 

into spatially- and temporally-explicit establishment models based on local 602 

environmental conditions. In a series of individual-based models for Rhododentron 603 

spread, Harris et al, (2009) show how differences between minimum and maximum 604 

reported windspeed can halve the time for seedlings to establish outside quarantine 605 

zones. Further, the authors were able to make recommendations on optimal control 606 

measures based on these simulations of stochastic dispersal of seedlings and age-607 

dependent seed production. 608 

The hierarchical approach also allows for testing multiple dispersal pathways.  609 

Pathways may be modeled separately and subsequently used as independent 610 

predictors in a combined establishment model allowing to test hypotheses of human-611 

mediated versus natural dispersal. Variability in each of the pathways may be 612 

propagated through the establishment model to assess how uncertainty in each of the 613 

pathways can influence predicted rates of spread.  Alternatively, comparisons of 614 

dispersal kernels derived for multiple pathways may be compared to observed patterns 615 

of spread to identify relative importance.  For example, Wichmann et al. (2009) 616 

compared dispersal kernels derived from stochastic simulations of wind-mediated seed 617 

movement for black mustard (Brassica nigra) plants to human-mediated dispersal 618 

obtained from field experiments. Their results suggest that human-mediated dispersal is 619 
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the primary pathway for observed long-distance dispersal. As a consequence, managed 620 

reductions in propagule supply transported over long distances may reduce the chance 621 

of establishing satellite colonies (Hulme, 2003). 622 

 623 

 In conclusion, models developed here address factors that influence human-624 

mediated propagule pressure and establishment for the nonindigenous zooplankter 625 

Cercopagis pengoi following a conceptual model of the invasion sequence.  Lake area, 626 

travel costs and population sizes were significantly related to the amount of boat traffic 627 

between lakes; in turn, boat traffic, lake area, specific conductance and turbidity were 628 

significant predictors of Cercopagis establishment. This study highlights how 629 

propagating stochasticity associated with dispersal throughout the invasion sequence 630 

reduces the rate of detecting false alarms for predicted spread. 631 
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Table 1. Means (+/-1 standard deviation) for measures of lake physicochemistry and 841 

factors influencing lake attractivity to recreational traffic (N=871 lakes).  Abbreviations 842 

for water chemistry: SC – specific conductance, DO – dissolved oxygen, P – 843 

phosphorus, TN – total nitrogen, Turb – Turbidity. 844 

         845 

Parameter Noninvaded Lakes Invaded Lakes 846 

      847 

Lake area (ha) 3.47E+02 (3.96E+03) 3.76E+05 (8.76E+05) 848 

 849 

Nearest city area (km2) 30.71 (90.26) 7.51 (11.90) 850 

 851 

Population Size of 4.21E+04 (5.45E+05) 6.65E+03 (1.47E+04) 852 

nearest city 853 

  854 

Distance to City (km) 10.18 (8.64) 14.48 (28.85) 855 

 856 

min SC (mS cm-2) 1.28E+02 (2.67E+02) 3.31E+02 (2.55E+02) 857 

 858 

mean SC (mS cm-2) 2.30E+02 (1.01E+03) 6.95E+02 (1.02E+03) 859 

 860 

max SC (mS cm-2) 4.09E+02 (2.15E+03) 2.03E+03 (5.26E+03) 861 

 862 

min DO (mg L-1) 6.68 (2.10) 7.67 (2.22) 863 
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 864 

max DO (mg L-1) 12.84 (3.15) 14.07 (1.13) 865 

 866 

min P (mg L-1) 0.02 (0.01) 0.04 (0.06) 867 

 868 

mean P (mg L-1) 0.04 (0.04) 0.09 (0.07) 869 

 870 

max P (mg L-1) 0.22 (0.30) 0.42 (0.49) 871 

 872 

min pH 6.35 (1.00) 7.32 (0.83) 873 

 874 

mean pH 7.01 (0.72) 7.94 (0.52) 875 

 876 

max pH 7.75 (0.71) 8.39 (0.49) 877 

 878 

min TN (mg L-1) 0.62 (0.44) 1.63 (1.12) 879 

 880 

mean TN (mg L-1) 1.15 (0.63) 2.47 (1.16) 881 

 882 

max TN (mg L-1) 2.64 (1.48) 4.34 (2.06) 883 

 884 

min Turb (NTU) 1.45 (1.67) 4.37 (3.70) 885 

  886 
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mean Turb (NTU) 5.02 (9.57) 17.81 (8.31) 887 

 888 

  889 

max Turb (NTU) 29.17 (63.75) 105.16 (111.04) 890 

     891 
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Table 2. Summary of hypothesis tests for variables used as measures of lake attractivity, covariates in the logistic 892 

regression and fitted parameters.   and refer to the log-likelihood estimates for the zero-inflated and weighted 893 

negative binomial components of the ZINB. 894 

                  895 

Model Parameter/     d.f    896 

 Hypothesis tested             897 

 1 Full model -397.807 -310.909 -708.716          898 

 2 Testing for significance of -397.819 -310.927 -708.746 -0.031 1 0.062 8.04E-01 899 

  intercept  900 

 3 Testing for significance of  -398.153 -310.776 -708.929 -0.213 2 0.426 8.08E-01 901 

  lake area (a=0) (removed 902 

   from  only) 903 

 4* Testing for significance of -404.451 -662.348 -1066.889 -358.174 3 716.348 5.99E-155 904 

  lake area (a=0) (removed  905 

  from both and )  906 

 5* Testing for cost of travel  -399.796 -311.094 -710.890 -2.174 1 4.348 3.71E-02 907 

  to attractiveness.   908 
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 6* Testing for linear  -402.638 -310.752 -713.389 -4.674 1 9.348 2.23E-03 909 

  relationship between 910 

  population size and  911 

  attractiveness  912 

 7* Testing for population  -404.564 -310.650 -715.214 -6.499 2 12.998 1.51E-03 913 

  size to attractiveness  914 

   915 

 8 Testing for linear -399.254 -310.586 -709.840 -1.125 1 2.250 1.34E-01 916 

  relationship of population 917 

  distance to lake  918 

 9 Testing for population  -397.796 -310.930 -708.726 -0.011 2 0.022 9.89E-01 919 

  distance to attractiveness 920 

   921 

 10* Testing for inverse linear -440.131 -296.855 -736.986 -28.271 1 56.542 5.50E-14 922 

  relationship of source to  923 

  destination distance   924 

             925 

* Significant at  926 

927 
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Table 3.  Summary table of parameter values with 95% confidence limits for the invasion scenarios with 11 currently 928 

invaded lakes as sources and Lake Ontario as sole source.  Confidence limits for parameters in the establishment model 929 

excluding and including stochastic variability from the dispersal model are enclosed by square and curly brackets, 930 

respectively. 931 

                   932 

Model Sub models  11 source lakes Lake Ontario     933 

 Parameter  Parameter value and confidence Parameter value and confidence 934 

  limits limits    935 

         936 

Stochastic gravity model  0.92 [0.664, 1.167] 1.39 [0.681, 2.858] 937 

 Mean number of trips,   -0.58 [-0.845, -0.308] -0.49 [-0.578, -0.393] 938 

 Lake attractivity,   0.26 [0.086, 0.431] -2.11 [-4.409, 0.422] 939 

 Zero-inflation,   9.60 [8.605, 10.699] 8.36 [6.029, 11.260] 940 

  0.01 [0.010, 0.014] 8.83E-3 [3.860E-3, 1.424E-2] 941 

   -1.37 [-1.533, -1.230] -1.25 [-1.681, -0.906] 942 

Establishment model   -11.89 [-18.268, -7.861]  -13.28  [-20.057, -8.237]  943 
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  {-13.337, -9.443} {-13.603, -9.544} 944 

  0.20 [0.093, 0.428] {0.104, 0.678} 0.81 [0.484, 3.284] {0.097, 0.755} 945 

  0.84 [0.253, 1.532] {0.170, 1.008}  1.17 [0.301, 1.786] {-0.117, 1.021} 946 

   1.82E-4 [2.03E-5, 3.16E-4]  1.90E-4 [3.458E-5, 3.337E-4] 947 

  {1.221E-4, 2.087E-4} {1.312E-4, 2.124E-4} 948 

   0.82 [0.382, 1.416] {0.615, 1.299} 0.67 [0.455, 1.540] {0.617, 1.860} 949 

    -2.36E-2 [-5.82E-2, -6.16E-3] -1.58E-2 [-6.78E-2, -8.93E-3]  950 

 {-0.087, -0.014} {-0.130, -0.014} 951 

         952 

 953 
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Table 4. Predicted (baseline and 95% prediction intervals) and observed invasion status 954 

for 871 destination lakes under scenarios with 11 lakes or only Lake Ontario as a 955 

source. Optimal probability thresholds above which lakes are classified as invasible are 956 

p = 0.010 for the 11 lakes scenario and p = 0.013 for the Lake Ontario scenario 957 

calculated from the baseline establishment models. Invasion status is abbreviated as 958 

1=Present and 0=Absent. 959 

    960 

Prediction Pred. 0, Pred. 0, Pred. 1, Pred. 1 Hit False Overall 961 

scenario Obs. 0 Obs. 1 Obs. 0  Obs. 1 rate alarm percent 962 

      rate correct 963 

         964 

11 source lakes 834 0 26 11 1.00 0.03 0.97 965 

11 source lakes, 860 11 0 0 0.00 0.00 0.99 966 

lower 95% PI 967 

11 source lakes, 0 0 860 11 1.00 1.00 0.01 968 

upper 95% PI 969 

11 source lakes, 860 11 0 0 0.00 0.00 0.99 970 

stochastic variability, 971 

lower 95% PI 972 

11 source lakes, 182 0 678 11 1.00 0.78 0.22 973 

stochastic variability, 974 

upper 95% PI 975 

Lake Ontario 834 1 26 9 0.9 0.03 0.97 976 
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Lake Ontario, 860 10 0 0 0.00 0.00 0.99 977 

lower 95% PI 978 

Lake Ontario, 1 0 859 10 1.00 1.00 0.01 979 

upper 95% PI 980 

Lake Ontario, 859 10 1 0 0.00 0.001 0.99 981 

stochastic variability, 982 

lower 95% PI 983 

Lake Ontario, 532 0 328 10 1.00 0.38 0.62 984 

stochastic variability, 985 

upper 95% PI1 986 

        987 

988 
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Figure Captions 989 

Figure 1. Flowchart of model inputs for the stochastic dispersal model and Monte Carlo 990 

error propagation to the establishment models.  Circles indicate model inputs, 991 

rectangles indicate intermediate or sub-models, and parallelograms represent model 992 

outputs or parameters estimated during the model fitting process. Gray boxes 993 

indicate the main dispersal and logistic establishment models. 994 

Figure 2. Standardized logistic regression coefficients with bias-corrected 95% CL for 995 

establishment models with 11 lakes and Lake Ontario as sources. Plot markers 996 

indicate logistic regression coefficients for the baseline model and confidence limits 997 

incorporate stochastic variability from the dispersal model.  Distance from horizontal 998 

dotted line indicates relative change in standard deviations in the probability of 999 

establishment with 1 standard deviation change in predictor variable. 1000 

Figure 3. Empirical Receiver Operating Characteristic curves for means and upper 95% 1001 

PI for establishment probability excluding and including stochastic variation from the 1002 

dispersal model. Establishment probability was estimated based on model validation 1003 

sub-samples.  Panels (a) and (b) represent the scenarios of 11 lakes and Lake 1004 

Ontario as sources, respectively. 1005 

Figure 4. Estimated probabilities of Cercopagis establishment based on logistic models 1006 

of propagule pressure and water chemistry for scenarios of 11 source lakes and 1007 

Lake Ontario as single source only. Panels (a-c) show the probability of 1008 

establishment with upper 95% prediction intervals excluding and including stochastic 1009 

dispersal for the scenario of propagule flow leaving 11 sources, and panels (d-f) 1010 



 50 

show estimated probability of establishment with prediction intervals with Lake 1011 

Ontario as the single source. 1012 
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Supporting Information 1022 

Additional Supporting Information may be found in the online version of this article: 1023 

 1024 

 1025 

Appendix S1 Probability mass function and Expectation-Maximum Algorithm for fitting 1026 

a Zero-inflated Negative Binomial Distribution 1027 

 1028 

The probability mass function for the number of pairwise trips, assuming a 1029 

ZINB is characterized by: 1030 

 1031 

 (A1) 

1032 

where , k and  represent the mean, dispersion and zero-inflation components of 1033 

the distribution. Since difficulty frequently arises in finding maximum likelihood estimates 1034 

for the three parameters using conventional optimization methods, the E-M 1035 

(Expectation-Maximum) approach is recommended (Jansakul, 2005). In this approach, 1036 

the E-steps and M-steps of the algorithm alternate until convergence is reached. 1037 

To begin, let Zij be a binary indicator of whether the trip had occurred with 1038 

probability between lake pairs i and j with  as the zero, or perfect state; and 0 1039 

otherwise (i.e. ). Thus, conditional on this indicator variable, Zij, the 1040 

number of trips, Yij follows either   or  (Jansakul, 1041 



 56 

2005). The log-likelihood function for parameter estimates ij, ij, k may then be 1042 

separated into a weighted binomial likelihood for  and a weighted negative binomial 1043 

likelihood: 1044 

,     (A2) 1045 

where  1046 

 1047 

and  1048 

. 1049 

E-step for Zij 1050 

The expected value for may be estimated following Bayes’ Theorem by its 1051 

posterior mean given the observed number of trips yij and current estimates of , ,  1052 

and k.  Here, parameter and the vector of parameters  are used in estimating the 1053 

mean number of pairwise trips and lake attractivity respectively (Eqns. 1 and 2), and the 1054 

vector of parameters used in estimating the level of zero-inflation (Eqn. 3). 1055 

 1056 



 57 

  (Modified from Jansakul, 2005). (A3) 1057 

  1058 

During the model fitting process, the initial estimates for ij, k were set at ij = 0.5, and k 1059 

= 1. Useful initial estimates for ij and  were based on the unweighted logistic 1060 

regression,  1061 

 1062 

. (A4) 
1063 

In this model, covariates included road distance from lake i to j, dij, (in km) and log-
1064 

transformed lake area of the destination lake, aj (in ha). 
1065 

 
1066 

M-step for ij, k  1067 

Parameters , 0 through 6, and the dispersion parameter for the negative 1068 

binomial distribution, k, required for the estimated number of trips mij were fitted using 1069 

MLE with loss function LLNB (Eqn. A2) and weighted by  from the previous E-1070 

step estimation for zij. 1071 

 1072 
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M-step for  1073 

 Parameter values for g are updated by minimizing the loss function  for ij as 1074 

a function of g and current estimates of zij from the previous E-step. This step is 1075 

identical to a weighted logistic regression with weights, hij = zij when the number of trips, 1076 

yij = 0, and hij = (1- zij) when yij > 0 (Lambert, 1992).  1077 


