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ABSTRACT o
~

ks
This report presents Several s1gn1f1cant results on
determlnlstlo processor schedullng. For some minimal length
: \
problems, polynomlal algo;;thms are given; namely, anAO(né)'
algorithm tor two special types ot three-processor flow
shops ana a&AO(nz) algorithm for an m-processor bound systém
with equal execution time tasks on two task chains. Using a
aynamic programming approach, an O(n21) algorithm is also
outlined for a tree-3tructurea set ok equal execution time
tasks on a 2—processor bound system, where I is the number

of tepminal subsets of the tree. This algorlthm is not

polynomial in n but is a significant improvement over the

- \

alternative ot+ssimple enumeration.

-

Several proble@Lware also shown to be NP-complete.
These are minimizing scneaule length on two—procesor bound
unit execution time task systems even when the precedence £
constraints'COnsist of ®hains only, 2—maxlmal three~
processor flow shops ana 1 or 3 maximal/minimal flow shops,
and mlnlmlzlng the mean, tlow'tlme on the two—processor open
shop. W1th the exceptlon of the 2 max1mal flow shop,, the
results are strong NP-complete reductions to the 3- PARTITION
'problem. )

Finally, in the area of performance bounds, tight

bounds are obtained on the lengths of 1ist schedules on

. Y
. \—Lj
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identical proceésbns for indépendent'taské'with similar
£ . .

executionvtimes,‘and on the mean flow times of arbitrary and

SPT schedules for the open shop.  .; = L
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Chapter One
INTRODUCTION

The scheauling problem is cpncerned with the allocation .
oﬁ‘reSources ovef time £o perrorm a collection of tasks. It
is deterministic wnhen the‘informatiohldescribing the tasks
is assumea to be kpown in advance; that is, the task syspem
is static as opposed to dynémic éystems in which new tasks
may pe‘addéd while scheauling is iﬁ prog;éss. The problem
may be broken down into that‘of‘allopation fnd’séquencing.

In other words, given a set of processors and tasks, a

schedule is fully specified when-thé tasks to bevpeffprmed

" On. each processor. are determinea (allocation) aﬁd;the‘order_

in which the tasks on each proceséor.will be ‘done is:given
(sequencing) Subj%ét to préspeclfiéd constréiﬁts.“ﬂﬂa‘v “
Occasionally, however, oniy oné of theée_two elements may be
presént;' | | |

Scheduling may be viewed, tirstly, as a decision-making

‘function ana, secondly, as a body of theoty. This thesis is

. cbncerneq mainly with the task of furthering'undepStanding

@

of the scheduling problem from the theoretical viewpoint. In '
this chapter, the schedpling_function and the theoretical
problem are briefly discussed and, finally, an'outline-ofv1

the remaining chapters is presented.:
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1.1 The Scheduling Function

©As a declision-making tunction, scheduling is,of general
p?actlcal,value;:one hardly need dwell on motivations for
lts_study. Its applicabil}ty ranges from the simple, such as
organizing an eifective worgoax\or preparing a meal, to the

most complex, such as plannlng the operations for a large

computer installation or job-shop environment.

An important element of thec<scheduling function is that
of.evaluating a SetAof’alternativeuc0urses of action and
selectlng the cheapest oepen01ng on statea objectlves. In
general, the measurement of the costs in a system due to

scheduling decisions is a difficult task. However, three

measures of performance have become. prevalent, namely,

B

etf1c1ent utlllzatlon of resources, rapia response to

aemanas, and close contormance to prescribed deadlines.\
Tnese are closely modelled when schedules are designed to

minimize the time taken to finish all the tasks, to mlnlmlzev
-

'the mean tlme tasks speno in the system, and to mlnlmlze

I

lateness or tardiness. Thus, the mathematlcal moaels w1th

“which scheoullng theory is concerned are. of value in thelr

'ablllty to represent the general structure and. essentlal

properties of real life scheduling problems.



1.2 'Scheduling Theory

Scheduling models come in several variations dependiﬁg
upon tﬁé original problems from wnich the models ari
apstractea. The general mode 1 given below captures the
essence of most ot these models and serves to present thé
pasic notatiohn which_wili be employed subsequently. |
"Variations which are Eovered in subsequent chapters will be

noted as they are encountered.

From the theoretlcal viewpoint, schedullng problems are
problems of comblnatorlal optimization. éonsequently,
several well known approacnes (Aho, Hopcroft & -Ullman, 1974;
Baker, 1974- deler, 1976; weiae, 1977; etc).fof studying
sucn proolems are applicable. Conyersqu, advances in
scheduling theofy tena to have similar effectélon other
problems“ot complﬁatorial optimization. After the
presentation of'fhe»general‘ﬁodel} thisﬂgéction is concluded
witn a aiscussion ot problem‘classificatiOn and reduction,
the techniques for obtaining.é}ficient algorithnms, and
-heuristic-apprdaches.nihe ideas are applicable to any
combinatorial optimization probiem‘but ﬁhe discussion is

~

centered mainly on their application to scheduling problems.
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l.2.1 The General Model and Basic Notation

The model has the following constituents; (a)

resources, (b) task system, (c) sequen01ng constraints and

(d) the perfofmance measure to be applied.

(a) The resources consist of a set ot'm'p;dcessors
{Pl,...,P }. In the most general model there is also a set
“of additional resource types, but this.will not be covered

J
in tnis tne51s

(b) The task system can be defined as the system
({Ti}, <, {ti[j]}, {wi}) as follows:
(1) {Ti},~l£ign, is a set or n tasks to be execu._ed.
(2) < is an (irreflexivef partial order defined on the sgt
of tasks whion specifies operational precedence
" constraints. That is, T, <‘Tj implies that T, must be
completea before the execution of Tj can begin;

. . Y
(3)vtilj] 2 b 1s the time requirea to execute task Ti on

processor Pj' 1<ign, 1<j<m. Whea the execution time 1is
independent ‘of the processor, the secona index, j, is
dropped giving time ti for task Ti'
'(4) The weights wi, liign,.are intetpreted as deferral cost '
| .rates and are assumed to be constant. Thus, the cost of

finishing task~'Ti at time t is simplyrwit.

. (c) Schedules may be gieemptive or nonpreemptive. In a
nonpreemptive scheaule, a task cannot be_interrupted once it

has begun execution. A preemptive schedule allows a task to



pe interrupted and removed from the processor under the

assumption that it will eventuaily receive all of its

regquired execution time,. ana there is no loss of execution
. '

time due to preemptions. 2.3

PR ST

(d) For any task T,r the time at wﬂ?%nﬁthe execution of

T, is started will be denoted by S(T;) and:the time at which
T, is completed will be denoted by F(Ti). Of the three .

performance measures.mentioned earlier, only the firif two

will be congiaered, namely, minimizing the schedule length,
w = MAX{F(Ti)} for all taskstivahd minimizing the mean

weighted flow time, mwft = Z?#l(WiF(Ti)).‘When the weights

W, are all the same, the mean weignted flow time will be

‘referrea to simply as mean flow time or mft.

1.2.2 Pproblem Classification ana Reauction .

It is useful to be able to ciassitykcgmbinaﬁgrial
problems accoraing to their dég;ee of comblexity. Since the
reports of Cook (1971) and Karp (1972).dlassifiCation into
the classes P and NP have become §ideiy uséaa These problem
classes were originallyﬁéefined én’connection with language

’ fecognition'pfoblems but have found application in other

aisciplines. An algorithm is said to bé polynomiéi—bounded

if its worst-case complexity is bounded by a polynomial
tunction of the input size, that ig, if there is a “,
polynomial g such that for each ini:t of size n the

; _

algorithm terminates after at most g(n) steps. A problem is’



polygomial-bounaed\lf there is a polynomial-bounded
aloorithm for it. The reason tor the criterion of'
polynomial-bounaedness is that, in general, a ’ e
polynomlal -bounaea aigorithm will complete its task 1n ’ﬁ;
reasonable tlme. For problems, polynomial-boundeaness
approximates one's intuitive notion. of tractapility while a
problem whose solution requires expbnential time may be
-lookea upon as intractable. Roughly speaking, the class P
may be 1oent1f1ed w1th the class of problems for which
polynomlal—bounaeg algorithms exist, whereas all problems in
the class NP can be solvea by polynomlal-depth backtrack

search.

In’ this context, all.problems must be stated in terms
ot recognition problems that require a yes/no answer. For
Scheéaullng problems, the transformation is accomplished by

N _
specifylng'a target, D, on the performance measure and

N x
asking if there is a schedule with performance measure not

exceeolng D.

Thewfollowing.concept of problem reduction is essential

for further understanding of the P and NP classes. A
‘problem, X, is readcible to problem Y if for any 1nstance of

X an 1nstance ot Y can be constructea in polynomial- bounded
5
t1me stich | that solv1ng the instance of Y will solve the

instance of X as well. Problem Y 1s NP-complete if Y is.in
Sy
* the class NP ana X'is reduc1ble to Y for every problem X 1n

LqP .
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A good (that is, polYnomial-bounded) algoritnm for any
'NP—compiete problem could be used to construct good
algoritnms for every prooiem in NP. However, no such
algor'tnm has been found ana it seems likely that none ever
' will. Menx Problemé of a combinatoriel nature (Garey g
Johnson, 1978a) and in particnlar-many scheduling problems
(Ullman, 1974, 1975; Garey, Johnson & Sethi, 1976; Gonzalez
& Sahni, 1978;‘Lenstre & Rinooy—Kan, 1978; etc) are in.the
clﬁes NP-complete. In chapters 3, 4 and 5 se;eral nen

aaditions are made to this ever growing list.

Generaily, seneoulingbproblems trivially belong to the
riclass NP. (Ullman, 1974) Conseéuentiy, in oroer to prove
NP- completeness it 1s‘%uft1c1ent -only to demonqtrate a
polynomial reauction from a known NP—complete problem. The
known NP-complete problems which are nsed in subsequent |
chapters- are PARTITION and 3-BARTITION, detined (Gonzalez,

¥

Johnsoﬂ'§ Sethi, 1976) as follows:
S

PARTITION: : a

= s Given a set {él”f"'an} of n fon-negative integers
whose sum is 2K, does there exist a subset. u of the
~inaices {1l,...,n} such that Zieu(ai) = K?

| 3~PARTITION:

leen ‘a set {a ,...,a3n} of 3n non—negatlve 1ntegers

:whose sum is nK, and K/4 < ay ‘<. K/2, coes there ex1st a

partltlon of the 1ntegers into n d15301nt groups of



‘three elements each such that each group sums exactly
~ ’ N
to 'K?

sy

So tar, questions concerning the actual nature of the -
v N .

coﬁputer performing the algorithms and tpe manner in which
the size of a problem's iﬁput is to be measured have been
left ﬁntouchéd. Experience indicates tﬁat the actual nature
of thé comﬁuter is relatively unimportant as far as.
algorithm complexity is concerned so long as the assdmptions
made are reasonable; It is assuﬁed here that .the
hypotnetical computer is capable of éxecJting conventional
instructiohs such as integer arithmetié,‘numerical.
comparigons ;no'oranching operations. Normally, each
instruction takes one unit of time and unlimited random

ofy

;
'

{

access memory is available. However, the aétual amount

_ i v
the memory reguirea for each algorithm will be determinea\Ep

!
|

within a constant tactor.

The questioh of measuring:input size is much more
‘difficult. Some refinement in the classification,
NP—cbmplete, is.pOSQible according to ﬁhe-manner inl&hich
aata is encoded. For schedﬁling problems the inpdt size is
normally taken tb*be either the number of tasks in the
syste@xgrjthe sum of ekecution times of all tasks in the
"'system. Usﬁally,éNP—completévrgsqlﬁskusingAthe'fdfmer

‘méasuré‘aré_wegxer than thosefusing the latter. Garey and

--Johnson (1978) breSent a cdmprehensive diséussion'of‘this

topic. Following their terminology, 3-PARTITION and problems
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a,
~

shown NP-complete by'rédgction from 3-PAKTITION in this
b = .

. thesis are strongly Np-complete as opposed to  PARTITION and.

problems reaucea from PARTITION.
/ v . . .

1.2.3 Solution Techniques

The techniques that have been found useful in solving
scheduling and indeed combinatorial optimization problems in
: . o o :
general include linear programming, recursion and

enumeratibn, random sampling and heuristics. Baker (1974)

ana Lawler (1976) aiscuss these methods in some detail.

y

Recurision ana enumeration include dynamic progfammingA
(Sanni,:1976; BaKerg& Schrage, 1978), branch and bound. (also
called backtrack programming) (Idnall & Schrage, 1965;
konler & Steiglitz, 1974) and neighbourhood search:
techniques (Kohler & Steigliti) l97l).“Several ot these

techniqgues are illustratea by materiél in ensulng chapteré.

¥

A technique that seems peculiar to scnedauling is that
of adjacent paitwise intercnénge.as exemplified by Johnson's
(1954)'al§orithm. In this case, an arbitrary schedule is
) modified and improved by cohsidering the effect on the

schedule's performance of interchanging two adjacent tasks.

As noted earlier, for those problems which have been

.

proveda NP-complete, it is highly unlikely that good

algorithms will ever pe found. Hence, emphasis shifts to the

design of heuristic methods. kather than ensure that an

[ax? L}
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optimai solution is obtainea, such me thods try to prouide
.reasonaoly goou solutions in polynomlal time. An important

- analysis problem tor such algoritnms is tne determination ot
- nOw far, ln-some sense, rrom the optimal-the neuristip csn

get. well-known heuristics include keep-busy or

greedy-processor scneculing,'Eriority—list or simply list
scnedullng, and SPT and LPT rules. (Coffman, 1974) In
'greedy processor schedules, a task is asslgned to a
processor as soon as the prucessor is idle and the task is - .

reaay tq;be.exeeutéd} that is, all preceaing tasks have been
nexecutea. List,schedules are keep-busy schedules in which
tssks'are selectea forvexecution on availablevprocessors
accoroing_to.a pre—determined priority rating. SPT }LPT)
scheaules are list’ 5cnedules in which highest prlorlty 1s
glven to the task with the shortest (Iongest) execution

time. &

r

s

A'fairly recent technique for combinatorial
optimization problensfis that of approximétion algprithms.
jgahni,,lS?S; Ibarré & Kim, 1975) . Such algorithms are
guaranteed to_produce in pOlynomial time, solutions that aref
arbitrarilf'close'tO'the uptimal. The application of this
idea to scheduling problems has not reCeiVe&imuch attéhtion‘
(Sann1, 1976, gives some results for 1ngepenaent tasks) and
this seems to be a promising area for- further 1nvestlgat10n.
Note, however, the results ot (Garey & Johnson, 1978) whlch

'1n01cate that for strong NP-complete problems, fully



1

polynomial approximation Schemes cannot be obtained. -

1.3 Outline ot Thesis

For most models, the scheduling problem in its most
general form has been shown NP—compiete, as previously
noted. However, the developmeni and analySis of heuristic
methods as wel;.es the classification of interesting and o
useful restricted models remains an important study. In this
thesis, several scheduling models are c0n81dered and a

numper of restrlctea types of scheduling problems are

solvead.

Chapter 2 is concerned with the questlon of determining
tlght bounas tor the iengths ot llst ‘scheaules ot

lnaependent tasks on m 1dent1cal processors in terms of the
N ‘
optimal schedule Length The relevant literature is surveyed

and an open problem ot Graham (1974) is partially solved.

Chapter 3 introduces the processor bound systems,of.
which the flow shop ana open Shop‘conSidered.in the
.following two- chapters may be considered special types. A
survey in thls area is prov1aea. Then 1t is shown that the
'proolem of schedullng un1t execution time processor bound
systems 1s_NP-comp1ete even when the precedence‘constraints
are restrlcted to chalns. In addltlon, ‘a dynamlc programmlng
method 1is suggested for schedullng such systems, and th1s |

leads to a consxderatlon ot terminal subset enumeration, an
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v

interesting compinatorial problem inpitselrl

Arter a pbriet survey ot pertinent results, a numper ot .
“clial cases ot the three -stage flow - shop mlnlmal length

scheduling p;obiemlls shown to be NP—complete in Chapter 4.

J
r

Then polynomlal algorlthms are presented for two other
cases. The de51gn of the algorithms illustrates the use of

adjacent pairwise interchange and enumeration.

v

The open shop is dealt with in Chapter 5. After a brief
] : , :

‘introauction and survey, ghe major part of the chapter is

- aevoted to a redauction trom 3-PARTITION whieh shows the

two-processor Minimal mean tlow problem. to be‘NP—complete.

Y

“ The chapter is concluded with two theorems bounding the

" pertormance of arbitrary ana SPT schedules in terms ot the

optimal ‘mean flow time.

The final chapter ‘summarizes the results ana discusses

several suggestions, for &urther research\

§



: Chapteréﬁwo
{f

BOUNDS ON SCHEDULES FOR INDEPENDENT TASKS

Pernaps, ohe-ct the,mqst basic'scheauling problehs is
that of minimizing the schedule lengthffor a set of - ?ﬁ
indepenaent tasks, (that'is, no preceaence constgalnts) on
parallel identical processors. Assume the system con51sts of
n tasks, Ti’ lsisn, with ‘execution t;mes-tth lglgn, and m
>identical;processors, Pj’ lijié; In the s;ngle processor
~case, m = 1, the scheaule iength is constant tor all
- sequences ot the n-tasks and there is no optimization
.proplem, whether schedules are allowed tque'preemptive or -
'nonépreemptive. however, tor m 2 2 prbcessors, the_probiemv
~~can'be;sblvec easily for preehptive schedules while the-case
tor non-preemptive schedules is extremeiy dlfflcuﬁt This

chapter deals with the problem of prov1dlng tlght bounds for

the list scheauling heurlstlc for the nan- preemptlve‘

‘problem.

2.1 Survey

The well-known linear algorlthm for the preemptlve

-

problem was first reported by McNaughton (1959) and for

qu1te a while no COmparatlve results for the non- preemptlve A
Y
case were known. The reason.for this became apparent when R

I

the non-preemptive problem was_showh to be NP-complete

13
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_ was?deme;OPea with ideas fromgghe theory of_bin—packing.

(Bruno, Coiffman & Sethi, 1974). Asvfor heuristics” list

&

schedules' and, in particular, LPT scheaules are known

(braham, 1974; "Baker, 1974) to have gOod pertormance. Sahni
RN \ :
W, A
(l976)=app11ed dynamlc programmlng ano developed an A\"

approx1matlon algorlthm for thlS groblem. More recentiy,

Coﬁ\man, Garey and ‘Johnson. (1978) obtalned better

/
performance than LPT, in Jeneral, wlth thelr algorlthm which

t

Let,wO be the length of an optimal non-preemptive

scheaule, Zb, ano-lét\w\ie the.length ot an arbitrari list
scheaule, Z. Graham (1964, 1972, 1974) showed that

"W/W ’1 2 - l/m._Tnls general bound is found to apply over a

wiae range of values of the parameters otgtne system,
namely, . task tlmes, number ot processors, and priority lists

used? -In partlcular, wnen the priority list is modifieda and

the other parameters‘are kept constant this bound is

‘\

achlevable even 1t the ratlo of . maximum and mlnlmum task

executlon t1mes is never more than 4 (Graham, 1974) Graham

~left as an open problem the. improvement of the bound for

lower execution time ratios. . -

o

Let the ratlo between the longest executlon t1me .and
the shortest be r 2 1. For rr#/l : every task in the"system

has the same executlon time an& hence,»every list schedule

_1s optlmal Thus, in this case w/w"'— l. It seems

reasonable, theretore, to expect that as .r approaches 1 “the

bound on w/w can be reauced below 2 - 1/m whlcn-applles in
_ _ e

av
R

14

/\/”-
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general. (One may think of systems with small ratio, r, as

systems with similar tasks.)

In this chapter, the effects of lowering the maximum
execution time ratio, r, are studied ‘and tighter pounds on

list schedule length,as:cohpared‘to the optimal length are

derived as follows:

(1) For r < 3,

- 1/(3m/30), - form 2 6,

w/wo < 17/10,‘ : . for m = 5,
. 5/3, . for m = 3, 4.

(2) For r < 2,
5/3 - 1/(3m/2 ), for m 2 4, ,
w/wo < : S :
342, . - for m = 2, 3. s
Trne result for r ¢ 3‘is proved by contradiction. It is

shown by inauction on the number of processors that there

cannot ex1st any pair of scneaules Z ana Z whose f1n1sh<?

‘ tlme ratio w/w is larger than the statea value. If there

# Ld W\ﬁ
exlsts such a pair of schedules, which is referred ‘to as a

counterrexample, for m procéssors, then by some 51mple

"normalization" operations it can be modified to produce a

“counter~example for m - 3 processors. But, as will be seen,

i

no counter-examples exist for small values -0of m. For the

“second case where r £ 2, a 51m11ar technlque is agaln

o

‘employeo.#In both cases, examples whloh aqh;eve»the stated

vbounds are glven..

N ,/’-
P A v E ~ . - p \ .
ol . X BN . . -
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2.2 Normalization

In this section, several lemma#) which will be useful
, ‘ W =

1

~in deriving the bouna w/wo < (2 7 l/p) tor some value of P,
,are given. Hence the lemmas use (2 - 1/p) as a tentative
bound without specifying a value for pP. Since the bouna >

(2 - 1/m) is Known, p must be less than or equal to m.

In the following, the longest and shortest execution

times will be denoted by t  and tg respectively. The

starting time of task T the task with execution time s
will be denoted Dy y, that 1is, S(TL) = y. If several tasks
nave the same execution time, L’ one will be selected ana

it w1ll be clear trom the context which one it is.

by a counter—example is meant a given task 'system with
‘a list schedule Z and an optimal schedule.zO suCQ that ‘v |
A w/wo > 2 - 1/p. The effect of applyiné the following lemmas,
a process, called normaluzatlon, is to transform any glven

.

counter example 1nto anothe; counter example w1th a spec1flc

IS B B e o

S a et e e

fstructuremﬂ

i : - ».--
| Lemma,z,l: Fpr,a'given'set_of tasks, Tyr 1$i§n; there
exists a list scheonle'Wifh lonoest'finiShvﬁime'(of_all iis£
scheduléé% for whicnhn F(TL) = Ww. In other words, TL is the
llast task or.one of tne last tasks to be finished.
225292:”Let 4' be a list schedule with longest finish
‘ i timé°g-'an§ F'(TL)L¥ n}fﬁof;anyjﬁaskaL With“the’naximun‘
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'

executionyéime.tL. (S'(Tiy abd F'(Ti) are the starting ana

»

rinishing times ot Ti in schedule %'). Since there is no

Freceaence relationship between the tasks, the tasks on eacn
™ A

processor can be sorted in non-decreasing oraer. This

. . . L
operation aoes not change the -length of 3'. -
. Es

Now, let Pj be a processor which finishes last in Z2'.
- A

Then, there exists T,  executed on Pj with F'(T,) = w'. Also,

assume that P, is the processor that executes a task T, with
pfbcessing t ime £, sO that P; is idle after time F(T,) .
because of the manner in which list scheaules are bullt
there can be no idle time in 2° before s! (Tk) Hence

'(’.[K) < ’E"(TL) and’ tL bk £, ; W' - st (T.) . Now, form a new
seneouletz with F(Tﬁ) = w and w- 2 w' as follows. Replace TL
‘on Pi by Tk giving a scneoule'in wnich tne first idlevtimeﬂ
occurs’ at MIN{b‘(T ) F(T )}, where F(T ) is of course the

flnlshlng time ot T in the new scheoule. Make T the last

k
*task'on Processor P, it E( g < S (T ), otherw1se, ‘make - T
the last task on processor PJ Thls ylelds the new schedule
Z‘withyW'i"w:rand»E(Tn),=;‘ (See Flgure 1. Hatched areas ;,‘
“‘indicate idle periods on pProcessors.) Since by hYpothesis Z'

has %Pngest-rinishing>time, it follows that w = w'.. 1]

Thus, without loss of generallty, One may assume that
the worst llst schedule nas the form deplcted in Flgure 2,

where U rhdlcates the total busy tlmes on other processors

fvadurlng the exetutlon of - lL ‘There can be no 1dle periads in

“the first y = S(TL) t;me units._Possible‘idle_periods in the
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optimal scheaule ZO are not inaicated in the Figure. For the
rest ot this chapter assume all counter-examples to be -

represented as above.

Lemma 2.2: If the worst list schedule Z with the
corresponding optimal scheaule Z0 satisfies w/wo > 2 - 1/p

then w, < p(m—l)tL/((p;j)m) for m 2 2.

Proof: Refer to Figure 2. By considering the

"processef:gﬁsy" areas in 2 and Zos

mw 2 my‘+.tL +.U'= my + th - (m—- l)tL + U.
=> mwo 2 mw - (m - l)tL ,
=> 1.+ (m - l)tL/(mwo) )‘w/wo.- BN : | 2
Since w/v}o > 2 -1/p, 1 +7(m - l)tL/(mwO) > 2=-1/p from ‘
which the result follows. L - 0
Corollary: if the conditions of Lemma 2.2 hold and
p = 3Lm/3J}'then wo < 6tL/5’for m 2 3 and wo < 21tL/2Z tor
m:z 6.
2522£: There aré thtee caées depenaing on the Qalue of
m(mod 3). | | .
(lf m = 3i, " p = 3i. From Lemma 2.2, wy < .
(2) m = 3i+1., p = 3i. From Lemma 2:2,; e
oW, < (1 + Iy (mz.—2m-)‘)t.L < 9_tL/8'_'f,oj:}I'ri',.»i;'tl'..'f’, ‘ ,Q_;;" """
(3) mo= 3i+2, P =:3i. From Lenma 2424 .
Similarly for'm 2 6.0 - - e . .- Lt ﬂ
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Lemma 2 3- leen a counter—example with list schedule
'2' and optlmal scheoule Z' we can obtaln anotner
counter-example Z, Zo for whlch W= Zyo -1 and.

y =w, - 1+g, where tL ; wo’- g, ﬁ(gil;

{

Proof: This requires only the. appllcatlon of a scallng
operation to all’ task times. From ‘the deflnltlon of
counter-examples' for z', 2 - l/p < w./w' 1‘2 6‘l/m. Let
w'/wl = 2 - 1/d for some real number &, p<d<m. Multlpiylng
all ti by a/wé‘ano using the Lame schemes as in Z2' and Z'
gives Z, Zo with w, o= a, w/wO =2z - l/wo, w = 2wo -~ 1 and
the ratio w/w, = w'/w! > 2 - 1/p. Furthermore, since (see
{1gyre 2) w.=y + tL.and tL £ Wor ¥ = W, - 1 + g ana

tL = wo ~ g for someAg, B<ggl. v 0

In the following it is assumed that the scaling

operation of Lemma 2.3 has beeen applieu to the scheaules.

Lemma 2.4: Let Z ana Z, be a counter-example for m 2 3

and r £ 3. Then, no processor executés more than,three tasks

in Lo Furthermore, the processor wnich exeoqtes T in Zs
does no other tasks. '
-Proot: From the Corollary of Lemma 24 2, w ( 6tL/5

.Suppose some processor executes foor tasksr 1(1)'- 1(2),.

......

| :A_’-,: 111(3) 4 Tl (4) 0 ln Z t!hen " .
3= 1(t1(3)) 2 4tL/3 > GtL/S 2 ¥

¢ _:Z
whlch 1s a contraalctlon Also, 51nce'



executes TL in

Lemma Z2.5:
™

Zo can proce

f list sch

22 ™
SS no other task. ‘ i

eaqule Z anu optimal scheduie Z

torm '@ counter-example on m processors, m 2 7, ana

P = 3m/3, the

- Proofs i

n, tL 2 y..

cé y s 2wo'— 1 - tL (by Lemmas 2. l and 2.3;
‘see Figure 2)‘t 2 y if and only 1f t - (2w. -1 - tL) 2 0
:dr=1*+aéxe- - W, ) 20797 The last 1nequa11ty is ea51ly shown

to be ‘true as f

ollows. By Lemma 2. 2,

Wo < P(M - 1t /((p - Lym)

=> 1 + A(t -

(since W £ma

surflclent to s

For p m, G =

wo) >»l +jz

1 -2

]

[mwo(p - 1)/(p(m - 1)) - w_]

Wo(m = p)/(P(m - 1))

>1 - zm(m -‘P)/(p(m - 1)),

fter scallng
how that G =

8.

oy Lemma 3.3).. Thus, it is

2(m - p)m/(p(m - 1)) < 1.

For p=m-1, G< 1 as 2m < m2 - 2m + 1 for m 2 6.

For p =m - 2,

hHence, for m. >

G £ 1 as m2

7, } + 2(tL

- Tm+ 2 %6 for m 2 7.

- wo) 2 B and tL,2 Yo k ﬂﬂ

, A task w1ll be referrea to as k—partnered in Z if it

1s.executed w1th k other tasks on the same processor in Z

the ‘same except that T nls

~;Qfotner taSK-;gigff;\;¢57;5"

" Lemma 2.6+

'Lét”ifahdﬁz

‘:;For a llSt scneduleiz the.aeflnltlon of k—partnets w111 be -

not counted as a partner of any o

I TR
I T

represent a counter—example ‘as

oetore, w1th m 2 7, T < 3,’and p 3 m/3l. Then, there ;'
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‘exists a counter—example consisting of schedules Z'Aand Zé

with the same tlnlsh tlme ratlo w /w' = w/w for which the

follow1ng propertles hold. |

’(i) In both‘z"and Z' any 2-partnerea task is smallen ‘in,

- executlon tlme) than any. 1- partnered task whlch 1n turn .

is smaller than any ﬂ—partnereu task. \

(rl)-In-Z', 1f T. and TJ are l*partnered and .are executed on
the same processor, then 1f t 2 tJ then t. -; wo/2.;‘

~

¢

’ Proor- If the propertles do not hold alreaoy, a number - N

®

or operatlons .are pertormed on the schedules’ and task times

while keeping the finisn time ratio’unchanged.

(1) First consider the list scheaule 2. W1th reterence

to Flgure 2 any moclflcatlon on the tasks except TL in %

whlch aoces not 1nclude 1dle t1me before tlme Yy = 2w -1- tL

will ylelo ﬂ llSt scnedule.with length not less than W

‘Since any three tasks have total execution time at

least as big as t, ana by Lemma 2.5.tL >y, it cap be

L
~ensurea that the smallest tasks are the 2-partnered tasks by
exchanging any larger 2-partnered tasks with smaller 1- or

Y-partnered tasks.

Furthermore, any ﬂ—partnerea task Tk in Z has the

fi“property that tk 2 Y. Hence if there is a larger l-partnered .

- task TJ,.where tJ > tk 2 y, then exchanglng T, ano TJ w1ll

k. S
‘Stlll glve a scheoule w1th tlnlsh t1me w.,lhus, the tasks in’ -~

-1
Z can ‘be rearranged accoralngly (yleldlng scnedule Z ) such”
& , ¥,

ol
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that a p-partnerea task is no smaller than, a l-partnered
task which in turn is no smaller than any 2-partnered task.
This concludes the proof of part (i) for 2'. -

.For Z it is flrst shown that a ﬁ-partnered task. in."Z'

v

is also a B partnerea task in Z and vice versa. Let T be a

k
Q—partnered task in 2', then tL 2 wo -1, ahd
wy = t, €1 <t /3. (From Lemmas 2.3 ana 2.5, after the '
scaling operation, tL p3 y > wo - l >p -1 2m- 3; hence

tL > 3 for m 2 6 ) Hence no other task can be executed on

14

the same processor w1th Tk in éo,_That is, a ﬁ—partnered
task in Z is a @-partnered task in 2_. Now suppose there is

a pb-partnerea task, T other than"I"L in Zo which is not

k’

: ﬂ—partnereo in Z‘, As in ‘the proof of Lemma 2. .2 a

"contradlctlon is obtalnea by con51der1ng the processor busy

'ﬁareas of . Z and Z' (see Flgure 2) Suppose there are u 2 ﬂ

“

=gl W, + ot EN

.ﬂ—partnereo tasks common to Z' and Z ;'Let q = m - u - 2 be

_the numoer of processors (excludlng the processors whlch

execqte Tk and_TL)‘that execute'?f and l-partnered tasks in -
ZO.\The total execution tine onrthe q processOrs""i'nwzo is at
mostawoq. Since Tk has a partner'in z', its‘partner must
takeiat least t /3."Therefore, out_of the total executlon
t1me on the ijprocessors at most w q - t /3 must be shared

between q + 1 processors in Z' Hence,

qwo L/3 > (q + l)tw - 1)

T B2l ey ¢ Sug/le
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~1=>Tn“—~l->523§6/18'i‘23(mA; 2)/18  (since &O > p i:m~—!é)L
=> 1ls(m - 1) > 23(m - g) or 5mh< 28, A ' |

giving a contraoiction-for‘m > 6. Hence,la —partnereo task

in ZO must also be a @—partnerec task in 2" (except for T )

’It tollows that the ﬂ—partnered tasks are the largest in 2 o

since they are the largest in z'.

The construction of schedule Zé can now be specified.

Let Té be the smallest lfpartnered‘task in Zo‘,‘Tb lts

(larger) partner and TC the largest 2—partnered task in Zg-
It t, 2 t,, then (i) holds for 2, and-z! is identical to 7

Suppose t, <Hté. Note that’t < w —2t /3 since t /3 is the

”‘mlnlmum ‘possible length for each of its partners. Hence,

t. < w. - th/3, Now, lncrease_tar to Wo - 2tL/3 exactly thus-»n-

a o

.IOréing”t“z»t'; Since t‘ T" s-wé,ftb ‘must be reouced, if-

.Lhnecessary, to 2t /3. This operatlon ot settlng

ta é woi—‘zt /3 ana tb é 2tL/3:does“n0t-Change Qo Vln 2',
1ncrea51n9 any task time w1ll not reauce w and thus w/wo
'gaoes not. decrease. Also, it is obvious that T, can be a z-
‘or l-partnered task in z' ana decrea51ng a 2—partnerea

task s tlme to 2t /3 w1ll not reduce w. For a l—partnered
nﬁask even-if the other partner has minimum tlme, t /3,
.thelr total length must be at least tL 2 Y, ensurlng no
reaquction in w. The. operatlon can be repeated unt1l there is
no l-partnered task that is smaller than a 2epartnered task
in 2 |

or thus obtaining schedule Zé. This concludes paf! (1)

' '
for Zo. | .
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(11) here, note that 1f the larger ot a palr of tasks
:executed on. thalsame processor. in Z 1s less than w /2 then
”tnere must‘be idle time on that processor. Increase the o
“laréer task;s time by the‘amouht of idle‘time on the
processor.-Again, W, aoes not increase and w does not .

decrease. : ) 0
&
The last of the normallzatlon results imposes an order

- on .the 1= partnereo tasks in both schedules Z and Z of a

<~

Lemma 2.7: Let Z anaq Z ‘be a counter—example as before.
. ' .

Tne l partnerea tasks in. Z and Z 'can be ordered so that the"“

‘largest 1s a partner ot the smallest, the next largest a “
,partner or the next smallest and so on. The result remalns a

_counter—example. o f o

Proof: The'schedules are modified with the aia ot two

operations similar to those employed by Graham (1974).

Gperatlon I'

Sort the tasks on each processor in non-decreasing’

order. Thls does- not .change the schedule s length.»

L ‘}_7_
Operation Iii
" Let T. and TJ be partners, and 51mllarly for Tg and Th.

S Figure It t. . t. . . A
‘ (See. gu 3.). i { tgxana i < th' efchah?e TJ,and

. Tpe
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Apply'both operations iteratively until there are no
lndices,'g, n, i, j, for which operation II can be‘applied.
lt is easy to see that the effect is to delay the first L
occurrence of”idle time and possibly decrease the.SChedule's |
length ‘Also, only a flnlte number of operatlons w1ll be
done (Graham, 1974). Since Z 1s optlmal, wd w1ll remain
L‘is.not: considered for above
operations (recall that'T‘ is . not considered a.-partner of

unchanged. Note that in 2, T

=l

‘any other task) . hence, the relevant effect of operations I
b
anda I1 on Z is the p0551ble delay of flrst occurrencge ot

&

lole time y. Since y is not decreasea, ‘w will not be

decreased. o S : 0
«

This concludes the pPresentation of ‘tre normalfiation
lemmas.” Let p =3m/3], £ < 3,/m > 7. Then, if’

counter-examples exist; con ider the worst case; By

4

appllcatlon of the previous, lemmas, it can be transformed.

v

1nto a counter example with schedulest and Z for whlch

wo= 2w, - 1, the 2- partnered tasks are the smallest in‘ both
Z and Zo, and the Z—partnered are the largest Furthermo?e
the 1- partnered tasks in both schedules are palred in an
orderly manner and can be represented as in glgure 4. Note
that the set of tasks {T; 1 liiin} - ATy} occupy one more
‘processor in 2 than’in Lo Also;'recallA}from proof of Lemma
2.6)'tnat a task is ﬂepantnered‘in Z ,if and°only if lt;is
QQpartnered in 2. Hence, this 1- processor gain must be

achlevea by hav1ng a dlfference of exactly 6 tasks in the



division between 1- and 2-partnered tasks. It follows that

there are at least two processors in Z.O that perform three
tasks each (exactly two more than in %, not counting T in
Z) .

Furthermore, it is quérahteed'that at least three

processors in z  perform two tasks each for the following

"

reason.. Suppose ‘there are k < 3 pfocessors that;perfotm two
tasks'each in ZO.‘Then, the numberiof_l-parinergo tasks is
2k in Zélgno 2k + 6 in Z2, where the additional é”ﬂgsks in Z
are 2—§artnere9 in z_. Now, tor k < 3, these six tasxf'are
greater in number than k + 3, the number,of pfpgessors which
execute the'ék + 6.t$sks in %Z. Hence, two of the six tasks
wniéh are 2-partnered in Zg must be executed én fhévggme
.processor in Z. Their total time is at most

. . . . ‘ /
2t = 2(w, - 2t /3), using t_ of Lemma 2.6. Using W' p (by
Lemma 2.3) ana the;sé?ond part ot the corollgryvto.Lemﬁa
2.2,,it“is easily shown that this number is less]than”

wo - 1, and hence is not sufficient for y (that is,

contraaicting the fact that there ,is no idle time in 3
before time y).

s

In the next section, tignt bounds for sysgems with

r < 3 and r £ 2 are proved using normalized-
counter-examples. =~ . . =+ . &

s . ,
‘ . ’ 4 . ~
e oS jnggﬁ_ S oA
. : -
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2.3 Bounds for Similar Tasks

t . L4

o

>

The following relations wnich apply to a normalized
counter—example should be kept in mlnd whlle studylng
subsequent proofs in this sectlon.

(1) v, < pm - 1)t / (p - 1)m) for m > 2. (Lemma 2.2)

(2) w_ < 6t L/ for p = Im/3 |, m 2 3. . (Corollary of

. Lemma 2. 2)

(3) w = 2w o l, vy = Wy = 1+ g, t

L= Wy - g, where 0<g<l.

(Lemma 2.3)

(4) p < w0 i m. Hence, W 2 6 for p 3m/3 1, m 2 7.
(follows from Lemma 2.3, since for a counter—example,
2 -1/p < w/wo £ 2 - 1/m).

e} L

Lemmas 2.3 and 2.5). -

(5) wy 2t 2y2w ~-1forp=3m/3] m27. (from

2.3.1 Tasks With Largest Execution Time Ratio < 3

Intormally, the proof for the bound for m?k G?runs as‘
foflows: It a. counter-example exists for any m, m 2 6, then
another can oe constructed for m - 3 processors (Lemma 2.8)..
Hence, by running through a series of constructlons a |
counter—example for m = 6; 7 or 8 <an be produced But in
Lemma 2 9 it is shown tnat no counter—examples exlst for
'm = 6, 7 or 8 thus glylng a contradlctlon. The. bouhd is

shown to be’ tight by demonstrating some examples.

. Lemma 2.8: Let 2z, Zoﬁconstitute a normalized



v

-

counter-example for m processors, where p = 3 m/3 L m 29
and r < 3. Then, one can construct a counter-example for

m - 3 processors.

Proor: Note that all results of .previous lemmas, where
aepenaent on m, are valid for m 2 7, and also there is no
need to consider those cases where mis a multlple of 3

51nce the bound 1n these cases is exactly 2 - 1/m whlch has

' peen proveo (Graham, 1974). .

The counter- ~example for m-3 processors is constructed
1n two steps. first, slx of the l—pa;tnered tasks in 6° are
aeleted Xrecall that the ex1stence of at least six of them
has been dete%mlneo) Second, the execution times of some of
the tasks are reduced sllg‘tly It must be shown that in the’
resultlng task system the ratlo r is still less than or

equal to 3, and that the resulting scheaules do form a

counter—example for m - 3 processors.

-The,tasxs to be aeleted are precisely those in the

miadle range of the l-partnered set in Z ., namely,

{Ti+u+l""'Ti+u+6} (See Figures 4,'5). The task times of

,tne_remaining tasks. will then be reduced thus:

tj -1, '1f i< itu, ‘4’ o
t! = t: - 2 if i+u+7 g £ i+2u
3003 " 3 o
ty = 3, if 3 > it2u.

’

Note that after task time reduction, for every pair (of

l-partners) above which has not been disrupted by task
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deletlon the total processor tlme is reduceaq by 3. But the

w?taSKS {I itu— 5""’T1+u} lose thelr partners 1n 'z,

pr' ti+u-5 + ti+u+6 2y 2 wo ~ 1.

vsimilarly, ti+gﬁ + ti+u+l,2 w, - 1.

nencey. Eihues Thiva ti+u+1-+_tiiu+6 2’2“0;“'2*
But €ivuer * t1+u+6 < W, (being a pair in ).
Hence, . ti+u—5 f,si+u % wq - 2.

Similarly, it can_be«shogn that
Civumg ¥ Cisu-1 2 ¥ ~ 2
_and tl+u 3t t- 2 2 Wy~ 2.

Slnce the abové six tasks are among the tasks reduced by 1,

] ] N -
ti+u—5'+‘ti+u, 2 Yo 4,
' ' - -
,ti+uﬁ4 +'F1+u 1 2 ¥ '4’,
S 1 ] -
and t1+u 3 + t1+u 2 2 wo 4.

But thlS is equ1valent to the reouctlon 1n executlon tlme on
the other processors in %J Hence, the tasks wnlcn are left
with no partners in 2 can be paireaq againsr each:other. This
gives two new scnédUles Zf} Zé for m - 3 proceSsors with

Wf = w —‘b, wé =w, -3 ana. ] ‘
wwl =" (w S8 /Wy =3 =2 - 1/0w - 3) >2-1/(p -3,

It is'opvious that 2' is inaeed a list’schednle for the
reduced set of tasks. Hence, if 1t can be shown tHat the -
task time ratios are less than or equal to 3 for z2', Zé,
.then they conskltute a counter- -example for m-3 processors.

L
\'ti = MIN{t!}, and ti/t' > 3. Note that the {t! }(are in three

This is done by showing that (I) t'! = MAX{t }, (11)
> s

1

non-decrea51ng ‘Sequences: T



!
1

{ti"ohucn‘-fo'-'t +u}

{t!

.ana " {t

-

—

= MAx{t{

o 7

is opbviously the largest *8lement

L}
(I) Show tL

]
t L - .
NOw ti+6 2 wo/3 (sge Figure 4).’ti¥§

35

- obtained.by'subtracting 1,
+u7re e tiioy! -'Qgté;ngg«py subtrgct#ng 2,

l43ui1r - r+Ea=ti} - optained by subtracting 3.

of the third sequence..

is the'largest\qf the

2-partnered tasks in Zo which are l-partnered in 2. If it is -

-less than w6/3} tﬁen”py.reasoning along the lines of Lemma’

2.6, part (ii), it can alWaYs be forced to equal this number

Furthermore, (see Figure 5)'

'8
ti+u-+ ti+u+6 < ti+u + ti+u+7

at the end of normalization withogtyéhanging the
counteréexample’status of the schedules.
'Hénée, ti+7 > w /3, since tiv7 2 By oo
But tigq ¥ ti+2u'$ W, (a pair in Zé)'
Therefore, ti+2u" 2wq/3. 4‘ |
or ti;2u £ 2w;/3 - 2
§ < (2/3) (6t /5 - 2)
" (from the Corollary of Lemma 2.2)
= (4t - 18)/5. ‘
gince bl o=t - 3 = (5t —v15)/5,
B ‘tL 2 t'i,+2u =i
if and only if St; - 15 2 4t - 10 qr.yﬁ'z 5.
But for m 2 6'and hence for p 2 6, |
| 6L, /5 > Wy > p =>t > 5.
‘Therefore, ti‘;s at least as la:ge as tisou )
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and ‘ t. £t

i+u T Ti+u+6”
uence, ti+u £ wo/2
- o . . N -~ - - .
ana ti+u < wo/z 1 < (3tL - 5)/5.

'ﬁt tollows that'ti is-larger than t/ for t. 2 50r.m 2 6. -

+u L
Thus, t} is the largest of the new .task times.

(II) Show t} = MIN{ti}, 1<ign.

"ti is obvibuély7the smallest of the elements of the tirst

sequence. Now, for j > i + 2u, task Tj is @-partnered in 2.

[

Hence, tj 2 w, - 1. This implies~that_
‘ ' o A _
tj 2 w5 4 < wQ/B 1 (for Wy 2 6)
- = 1
2_tl. .l tl.

-

Tnué t] is smaller than the smallest element in the. third
seqdencé. Now, ti+u+7 (seeAfigure 5) 1is the larger of two
tasksrexecutga_on the séme-prbcessor in Zo and by Lemma 2.6,
part (il);
‘ . Eivus7 % Vo/z'
This implies ) ti+u+7 2 wo/z - 2_
2 yo/3 -1 (true for w_ 2 6)
| | | 2 tl -1 ='ti. |
Thus‘éivis the minimum of the new task times.

I3

‘(III)f ,.-tL/ti < 3
| <>t €3t
<=> t-3 < 3(t)-1)
RN .35§¢3tis - o

. Hence, - o ti/gi < 3. | . ) 0
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Lemma 2.9: No'Counter—examplesaexist for p = 6, r <3

ana m = 6, 7 or 8.
Proof: The approach is to show.that'tne value
atfainaole for Y in &ny example is not large enough to yield

a counter-example. ' : , . -
1o

SN

m=6; The .bouna is already proved for multiples of 3

(Graham, .1974)

m=7,8; Agaln,_note that all the normalization Lemmas
hola for m } 7. Atter application of these lemmas a
counter- example with 2u l-partnered tasks-ln Z,u g m"is
obtained. It is: ea51ly verified (using the relatlonshlps in
AElgure 4; the result is due to the fact that u < m is too
small) that at least one of the tasks T l,...,T 6 has a -
partner in 2, T, say,'Where T, is either
(i) 1l-partnered in 4, @nd is smaller thgg;its partner in Z,
and'heﬁce t, £ w /2 or |
(ii) Ta'ls one of the aoove mentloned six tasks. Lach of the
executlon times t. +l,...,tl+6 is less than or egual to
wo'- 2t /3 (maxlmum for a 2- —~Partnered task). Hence for
ﬁhis case ta 1s"also less than or equalwto wo/2;
Hence, Y€ (g = 26./3) + w2
=-(9wo - 4tL)/6/
and ‘w/ﬁo = (y + tL)/wo“
< (9w0'+'2tL)/16w0)‘£ 2 - 1/6.

Thus, the supposea ceuntereexample cannot be a
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counter-example; contradiction. ‘ B [

Theorem 2.1: if r < 3 andm 2 6, then w/wo £ 2 -

1/(3m/3]). This bouna can be achieved.

Proot: By Lemma 2.8 if a cpuntet—example exists for
m > 9, theh counter-examples for m = 3, m. - 6, «.v, (8 0r 7
or 6) can be constructed. But by Lemma 2.9 no
counter-examples eXisp‘for m =6, 7 or -8. Contradiction.

AN

: ' ) : %
To complete the proof of the theorem it remains to show

that the bound is achievable. This is shown schematically in

Figure 6. ’ .. ' : 0

~

The secona theorem considers the~sp€!&al cases

‘m =4, 5.

Al

Theorem 2.2: Assume r < 3. If m = 4 then w/w_ < 5/3

(i.e. 2v4‘l/3) ana 1f m = 5 thnen w/wo £ 17/18 (i.é.

2 - 3/19). The bounds are tight.

Proof: Consider first the case for m = 4.

R

" m_= 4: Note that Lemmas 2.1, 2.2, 2.3 & 2.4 apply for

m = 4. The Se; of taSKS'eibépt TL must be executed on one
more processor in Z';han in'zo with no idle time before y.
If»this'gain in processors is achievedfby,hgving'a

non—ﬁ—partnered'task T.i in 2 becgme.ﬂ-partnered'inlz, then

o

..gence, | vy £ ti < Wy - tL/3
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Examples which achLeve

_(the bounds of theorem 2.1

r=

0



and : w7@o = (y + tL)/wo

| < (3wy + 28)/(3w ) < 2 - 1/3.
Hence, for a counter-example, a task whicn is ‘p-partnered in
2 is @-partnered in Zo' The reverse can also be shown by
.a;gument similar to that in the proof of Lemma-2.6. As
~before there must be at leastitwb pfbcessors in Zo (exactly
two more than in Z) doing thpee'tasks. Thers are thus only
three possibilities. See Figure 7 for sketch. Label task

ti@es Vi for tasks with two paitners, Wi for the l-partnered

an& X; for tre @g-partnered.

——

(a) Reter to Figure 7. The six tasks Vi, 1<i<6 must be

executea on three processors in Z. Since there can be’
no iale time pefore y,

y < (1/3)5° V. < 2w /3

i=1 .
(y + tL)/wO'i (2wo/3 + tL)/wo

anda w/wo .
' | £ (2w0/3 + wo)/wo =2 - 1/3.
‘Hence, such a counter-example does not exist.

(b) In this case, since wl, w2 must be paired with at least

two of the Vi'the femaining tasks which are executed on

the second processor give
i Vi)t Vi * Vi(gy)/2
£ (2wo - 2tL/3)/2

y £ (V

since tL/3vis thezmigimumitask time for each of the A

already paired up. ﬁ?nce, y'$ wo—tL/3 ahd as befofev

w/wo < 241/3, and no such counter—éxamplé can.exist .
(c) ‘ﬂere the nine 2—partnerec tasks have to be executed on

tour‘processors in 2. At least one processor must
[ 4 . .

\
1
"
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o | |
- # tasks per processor

N

'[01 

- W |w

N\
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(b))

N

(o)

FIGURE 7:
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4

execute three of the V.. The minimum total time for
these three.is tL. Therefore, the remaining six tasks
~ which are e%equted on three processors yielid {ﬁ}»
y £ jB(tL + e);f tL)/3-

and henqe,w/wovs 2 - 1/3.
. '_ s ' a

Figure 8 shows the bound for m =4 :to be tight.

~

m_= 5: The discussion at the start of case m = 4
%pplies leaving six possibilitieéjfor‘a coynter-example as
in Figure. y.

(a) Simiiar to case (a) for m = 4. -

I
>
L]

R
3

(p) Similar to éase (b) for m

(c? Here there are tasks w. lilgg, whlch are l—partnered

arna V. 1<ige, 2—partnerea 1n z . 51nce all V wi must

L

nave partners (see dlSCuSSlonjaﬁastart of m = 4) at

'ew/wo < (2(w - 2t /3) 4 t )/w.‘ e

- (5w, + e)/,(3w»°)' .

‘w/w = (y + L)/,
< (4w /5 + tn)/w < 4/5 + tL/w

Assume w/w‘-}:lVVIE so that 17/18 < 4/5 + /v .

o
* Then, 9/lﬁ < L/wo, e = wé - tL < wo/lg,
ang " ‘ +ra) / N .
and w/wo‘g (Swo e)/(3wo) .

C < 5/3 +'1/3p = 17/16. Contraaiction.

‘Hence, ° w/Ww_ < 17/19.
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(a)
(e)

()

and - W/wW, £ 2 - 1/3.

' The scheaule in Figure Iy shows the bound to be tight.

Similar to case (c) for m = 4.

Here, one can Ssee that two of the smaller tasks V must
be palred with wl,.w2 leav1ng seven tasks to be shared
between three processors. Since one of these three
processors must have three tasks there remains four
smail tasks (V ) for two processors. Even if all

prev1ously a551gnea tasks have yunlmum executlon t1me r

. f‘i

‘tL/3’ this still yields

y £ {3(t + e) - 5t /3]/2

(4t + 9e) /6.

W/w, < (LBt; + 9e)/ (6t + 6e)

€2-1/3< 2~ 3/18.

‘ Here, five processors must share twelve tasks. At least

)

two of the- processors must have at least three tasks
each leav1ng no more than six tasks for three
processors. Again, even if those tasks assignea three
per processor take tL/3 eachfthis leaves -

Y < (4(tp + ) - 6t;/3)/3

Y

<
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2-3.2 Tasks With Largest Execution Time Ratio g 2

* In this sub—section, the case when r £ 2 is considered.
It is first Snown Dy'contradictioh that w/wo £ 5/3 - 2/(3m)
anda that this bouna is pest possible tor.eveh m.
Subsequently, a technique similar to that usea in the
- previous sub- sectlon is used to prove the tignt bound

'5/3 - 2/(3(m - 1)) for odd m.

Lemma 2.16: If W/W, > 5/3 - 2/(3m) and r < 2 then
(1) tLv> 2wo/3. ~
(iiL NOo processor in Z w1ll execute’ more than two tasks’ and -

the processor w1th T, executes no other tasks.,

Proof; (i) Rewrite the ratio”as w/wO > 2 - 1/p with
P =3m/(m + 2), By Lemma 2.2, wo < (P(m - l)tL)/((p - 1)m).
}§Sostituting p into the inequality gives tL > 2w0/3.

’

\ » ,
\\ (ii) If there~ex1sts one processor Whlch S

executes more than two tasks in Z ‘or if the processor with
TL executes more than one tasK, then the length of Zo'is at
‘least 3t /4 > wo; which is a contradlctlon. Thus (ii) 1is

ootalned for r ¢ 2. - C - ‘ . : b
o -

Theorem 2.3: Ifr ¢ 2 and m > 4, then e

w/w < 5/3 - 2/(3m).

Proof"By contradlctlon. From Lemma 2 l the tasks On
(m - l) processors 1n Z wlll be execute"

Z)\iurthermore, if w/wo >_5/3 -’2/(3m),

on m processors in

is obv1ous from
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Lemma 2.16 that at least one of the l-partnered tasks inf\zo

Fad

will be @-partnered in Z. As the processing time for the

l-partnerea tasks in 2 is at_most‘w04— tL/2, it follows

. g N R i . f‘
that w < wO - t /4 + tL = wo + t /2 and w/wo $1+ ¢t /(2w ),

which 1s liks than or equal to 5/3 - 2/(3m) for m 2 4. Thue

the theorem is provea. ’ B 0

. . -
Theorem 2.4: If r < 2 and m < 4, then w/w0 < 3/2. o~

Proof: By contradiction. Suépese w/wé > 3/2. Thenley_
Lemma 2.2, wo'§ (p(m - l)tL)/((p - 1)m) and for p = 2,
m < 4, this gives wy < 3tL/2. Hence, no processor_exeeutes
more than two tasks in Z, and the processor which executes
,TLiexecutes no other taégs; But‘this implies w/wb < 3/2_
(simiiar to the proof in Theorem 2:3) which 'is a

contradiction. S v : | B

The bounds are pest possible by considering the
examples given in Figure 11 for m = 2, 3 ana 2k, k 2 2.

However, the bqund 5/3 - 2/(3m) isjnpt tight’for-odd‘
m 2 5. A tight bound 5/3 - 2/(3(m—i)55can be proved tor ddd.
m 2 5 by arguments similat to those used in Lemmas 2.8 and
2.9 and Theerem 2.1.

. B Q. S,
Theorem 2.5: If r < 2 and m 2 5, m odd, then

i

W/ < 5/‘3’- 2/13(m - 1)).

L

.
-

> R

Proot- The ppbof is 51m11ar to that of Lemmas 2 8, 2 9 -

ana Theorem 2.1 and is therefore only SKetched here.
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(a)

(b)

- (c)

(a)

~

a partner 1n.Zo. First qonsldervschedule 2, It task T

'.ais f-partnered then t,

First note the following points:

Lemma 2.1 applies ana nence w = y + tL. -
L > 3t /2 for otherw1se it can be shown by Lemma 2 19

that w/w S 3/2. - .

Given counter—example schedules 7 and 2 o’

w/w_ > 5/3 - 2/(3(m=-1)) gBt 1t has already been provea

o)
that w/w < 5/3 =2/ (3m) . Hence,

of the counter-example .schedules.such that

3(m-1)/2 < wé < 3m/2 and w/w_ = 5/3.~ 1/w_. Then

W= 5w /3 -1, ot = 2w /3 - g, for some g 2 @ (see (¥

L

above) and y =w, -1+ g. *

There are no ﬁ-partnered tasks in 2. and Z and T. has

o’ L
Kk

2 y. But t, < t

k k L”

ana.w = y + tL < 2t . By (b) above, w/w < 2(2% /3) /v
= 4/3 whlch 1s less than or equal to 5/3 - 2/(3(m 1))

for m > 3, giving a contradlctlon.

for-achedule Zo,_if.Tbrhas né partner thenwtotal
executign time of theAremaining m - 1 processors in Z;
is (m -'l)wé. Hence in'schedUIing the tasks in Z,y
becomes at most (m - l}wé/m.‘Therefore .

w/wo =

?

Ay +th)/w is at most

((m - l)w /m‘+ t#)/w < (m—l)/m + 2/3, (by (p)). This

is a contradlctlon 51nce (m - 1)/m + 2/3 1s less than

5/3 —-2/(3(mv- 1)) for m > 3. The case for any other

hence,f L\k y

5/3 - 2/(3(m-1)) < w/w,-< 5/3 - 2/(3m). Scale the tasks
5/ < .,

‘



51

task not hav1ng a partner 1n Zo-can be ootained'by a‘

w51mllar consideratior ot ggiag bu%g perlods of all

processors. N : - 'ﬂ; =

(¢) There is at least’onesproceSSOr in Zotwniciéperforms
tnree tasks. Otherwise, as in the proof of Theorem.2.4,

013/2. ) ' | 3:‘\:

(£) Given counter—example schedules 2, Zo’ eithef the

W/ W

follow1ng hold or another pair of schedules 2', Zé can

be constructed for which they hold.

B

(1) Any 2-partnered task (or T;'s partner) is smaller
than any l partnered task.

(i1) If a l-partnered task ik is laréer than orzequal

- to its partner then t 2 w0/2; The proof only .

k

v

reqdires arguments similar to those of Lemma 2.6.
' (g) The l-partnered tasks can be ordered.in.both Z and Zo

by Lemma 2.7. 1

Tne above tacts lead to the conflguraton in Flgure 12

‘

for a counter-example. A processor reduct1on by two 1s done

by deletlng tasks {T T, }e Thls‘ls followed. by

1+u+1"“ i+tu+4
reduc1ng,task.t1mes thus: <

| t. -1, j < i+u,
£ = J o
3

£y - 2,"j > i+u+s,

which leads to a counter-example for m - 2 processors.

For the. 1n1t1al case, m =35, the proposed bound
) 5/3 - 2/(3(m—1)) is equal to 3/2. All preprocessxng of

counter-examples betore the processor reauction stage are

-~
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found to be valid for m = 5. Thus (see Figure 12) one

-robtalns a pair of tasks T Tj (l-partners in Z), for which
. : '

'fl is 2-partnered in % o’ Tj is l-partnered in ZO and is
smaller than or equal to its partner in Zy- Now t, < wo -t
[a) .

since its two partners must take at least tL/2 each, and

o
t < wo/z.

J )

Hence, Yy s.ti + tJ < W o= e +_wo/2

ana ,w/wo £ 3/3.

The bound is tignt by Figure 13. ‘ 0
2.4 Discussion . . L e ' "

4

Thls chapter has 1nvestlgated the behav1our ot tlght

bounas on list schedules of 1ndependent tasks on m 1dent1cal.v

processors,as the degree of 51m11ar1ty between the tasks'
execution times is varied. Out of this.investigatio; the
relati wnips in Figure 14 emerge. As might pe 1ntu1t1vely
. €Xp ‘cted, the worst case heurlstlc schedule -length
approaches the optlmal as the ratlo r 1s reduced Note

however that even for a -atio as low as 2, the heurlstlc can

still take up to 3/2 tin.s as long as the optlmal.

Another interesti- “J point to note is that the examples
whlch.lliustrate the tlghtness of the bounds all attaln the™
lmaxlmum ratlo al’ \wed, an 1nd1cat10n that tne bounds mlght
be tlghtened further for values of r 1n between the 1nteger

‘ values con51dered.

-
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Chapter Three

CR. PROCESSOR BOUND SYSTEMS

<

Consider tne problem of scheaullng a set of n tasks,
{Il,l ,...,T } on a multlprocessor computer system that has
m2x 2 processors {Pl,Pz,...,Pm} capable of inoepencent

operation on indepenaent tasks. As usual, 1t is assumed th%t

there is a partlal orderlng, <, spec1f1ea on the set of

'

tasks in the form of a directed'acyclic graph. In addition,

it is also assumed that.no two’tasks are identical. Thus,

tor each task”T a processor 1ndex, R(T ), 1is specifiedAso,
that taSK T must be executed on the R(T )-th processor.

such - a‘sYstem is called an m—processor bouna system “This

\

moael covers such well known 1nstances ot processor -bound

systems such as the ftlow and job shops (JohnSOn, 1954,
Garey, Johnsonu&vSethi, 1976; Gonzalez & Sahni, 1978; Chin &
Trsai, 1978)'anoithe open:snop systems (Gonzalez & Sahni,
19765 Gonzalez, 1976).

In thls chapter, non—preemptlve schedules for the case

’1n whlch ail tasks have the same execution tlme (un1t

" !

executlon t1me or UET) is con51derea. It is shown that the

problem of scheaullng such systems to m1n1mlze schedule

”length-ls NP-complete even when the task5-have a very 51mple

precedence structure con31st1ng of chalns. Subsequently, a

dynamlc programmlng solutlon is presented

=
Z -
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3.1 Survey

&

\

GoYal (1977) shows that the problem ot scheaullng
m~processor bound ULT systems to- m1n1mlze schedule length 1s

o
mP-complete in two restrlcteo cases: . . ,
.o' - r .
(l) m—processor bouna ULT systems, arbltrary m, with the

precedence constralnts restrlctea to belng a forest,

13

(2) 2-processor bound sys&gms with arbltrary precedence
e Y \\ ‘
constralnts. : ' A

The tlrst is shown by a reauctlon from the NP—complete
problem of Noae Cover1ng (Garey & Johnson, 1975; Karp, 1972'

and the second . by a reauctlon from tne UET schedullng

problem (Ullman, 1974)

Furthermore, Goyal presents a.simple level algorithm,
similar to that of Hu (1961Y, wh1ch produces 0pt1mal

LI

scheﬁules 1f the precedence graph is in the form ot a cycllc

forest, that 1s, ‘one 1anhlch all tasks in the sane level of
6.; o
the torest require the same processor, but for any* two tasks

T, Kaha T fin two aajacent levels h and h-l respect1ve1yﬁ
. N 3 \
thelr pr0cessor requ1rements satlsfy the relatlon
. . :
o R(T )+1, 1 < R(Tj) < m,

R(T.) e
' - l’ . R(T_)=m.

1)

Y I
»

relat1ons restrlcted to belng a forest 1s left open._

-, i4

:TfLiu and Liuj(l977)aandaqarfé (1978) consider a 'slightly -



58

more general moael in which there are g types of,processors,u
with m, identical procésSors or type i, lKisq, and derive = . o -
bounas on the lengths of. list scneaules in terms of the_‘

optimal scheaule length.: S o

3.2 Definitions

1t the'precedehceLoonstraints include the relation

a < b for tasks a and b, then a is an immediate preaecessor

of o and b is an immediate successor of a. The predecessors

of Db are all those tasks whlcn must be done before b can be
"executeo (ana thus 1ncludes a ana 1ts predecessors)

slmllarly, the successors of task a are all tasks whlch can

be ‘aone only after task a‘has been executed (and thus’

1ncluoes b ano'lts successors). The preceaence graph

consists of chains if each node -has at most one immediate
'preoecessor ana at most one’ 1mmed1ate successor. It is a
termlnally rooted tree if eacn node has at most one

immediate sucCessor and there is exactly one nodeﬂ»the root,.

wnlch has no successor. Slmliarly, it is an 1n1t1ally rooted

tree 1f each node has at most one 1mmedlate predecessor ano

there is exaptly one node, the_root,'which has no

preoecessor. Nodes whlch have no predecessors (successors)
in a termlnally (1n1t1aliy) rootea tree a{e calleo leaf
nodes. A termlnally rooted forest cons1sts of a- set oﬁ

v, ¢

termlna11y~rooted trees. Slmllarly,'an 1n1t1ally rooted

.torest con31Sts of a set of initially rooted trees.'



-

' NP-compleEe. /

'tollow1ng (3n+l)£cha1n problem. The chalns are Q ﬂ$i£3nJﬁ/

An m-processor_boundeET scheduling problem with

b‘Fceaence constraints restricted to k chains will be

!

referred to as-'a k-chain problem. Similarly, an m-processor

)

bound UET scheauling problem with a precedence constraint

which is a terminally rooted tree will be referrea to as a

¢

tree problem.

3.3 Complexity of the,erhain-Problem

: : . : . / )
In this section, it is shown that the k-chain prhblem
- e /
tor arpitrary Kk is NP—complete. The proof is by reépctlon

/

trom 3- PARTIlId& (see Section 1.2.2). "//J-;’

~

' Theorem 3.1: The;k—cnain problem for arbitfery k is -

/
s

/ ’ : : : .
/ o :

. / e o
Proot: Given/an instance ot 34PARTITION considef the _

/
The j-th task of the i- th chaln is Q [J]. Chaln Qg has . 2nK‘

- tasks whlle chaln Q l$1$3n, has- 2a1 }asks. The procesipr

requ1rements are - , : e

!
/

. 2 for'(2x-2)K+1 <3< (2x-1)k,
R(Qa[31) = .
' _ 1 for (2x l)K+1 €3 £ 2xK,;, 1 £ x £ n,
| : ‘1 for 1< < a; .- L
R(Qi[j])‘L= g

IRy

v 2 for al < 3 < 2a
The deaollne is D = 2nK, the length of cha1n Qﬂ.

Consequentiy, any - schedule that. meets the deaollne mUSt

f .

/

execute a task ot chaln Q 1n‘each tlpe 1nterval, ThlS gives

S

]

L3
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. between the processors.'

Loxc

/. pFO essor-z_tasks of the same,chalns.are done in: t1me slot

the template of Figure 15.
: . ‘ . | v » » ~
Suppose the 3-PARTIT18§-problem has a solution.
Schedule the procésSor-l tasks of those chains corresponaing
to the three elements of the 'i-th partition in the i-th iale
slot (left oy chain Q,) on the first/processor éno the B
remoining processor-2 tasks of the same three cgeins on’the

i-th slot on the seconda processor.

Conversely, suppose the chaln problem has a scheaule.
which tinishes by time D. Then, the schedule must have no
.idle perloos. Chaln Q must be .executea as shown in Flgure

15 leav1ng 2n 1ale perloas, each of length K, alternatlng

It is easily shown by “inauction on thevnumbefjbn, of
idle periods on—either prooessor'that for chains Qi’ i> #,
. if the flrstatask of chain Q& isAdone in time slot .
[(2x-2)K+1, (2x-1)K], then the last task of the same chain
must be execyted. in time slot‘[(2x-l)K+l,.2xK], lein.
Hence, all the processor-lvtaSks of Q are done in one of

)the 1dle perlods ‘of Flgure 15 and all the processor 2 tasks
Ain thé next idle period. ’
// ) / : I S : : o

/

/ }h general, let Yy be the number of chains Qi’ i o,
../ / .

wnos processor-1 tasks are done in: time slot

/i( -

»

)K+l (2x—l)KJ, l$x£n. Then, by the above re8ult, the

;

" [(2x-1)K+1,2xK]. It follows that the total number of

5 -
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. processor-1 (or 2) tasks from the Yy chains is K. Since
K/ 4 <>ai <__K/2,‘yx must be precisely three for any x, 1l<x<n.
Hence, the 3-PAKTITION problem has a solution. I

»

3.4 Solution of the 2-Chain Problem .

Let the tasks in one of the two chains be a;, 1gigs,
and the tasks in the other chain, bj’ 1<j<t, with precedence
1<, 1 2<.-..<bt, where n = s+t is

‘the total number of tasks. There are m > 2 Processors.

. relations a,<a <...<aS and 5.§b

The solution is by thamic programming. The principle’

of optimality is illustrated in the following argument.

» : .
order- to obtain an optimal schedule one can proceed as

follows.flt R(al)”# R(bi) then a, and b, can be‘executedkl

1 1l
‘the first time unit without loss of optimality. This is then
2

followed by an optimal schedule of the subfchainsfa
-and b2<"’<bt' If,” on the other hand; R(al) =‘R(bl) then

<.;.§as
only_one?of {al,.bi} can be ékgcqted in the ﬁirstiﬁﬁme
‘interVal; Inlone Césé:al i§~fqlio§ea by an optimal.schedule
OF the‘sub-ch'ains,a2<'.-..<as ana bi<...<b°,'while %n’#he
other casé, b, is followed by anvoptimal,schedﬁle'of the
"sup—chainsval§;1.<és,éndﬂb2<...<bt; Fpr‘the thimai

~solution, try.béthiwaYé and pick the better ¢ne. -

Let F(i,j), 1<i<s, 1<j<t, be the length of an optimal - °

schedule for.the.sub-cnains ai<;..<as and bj<...<bt; Then
the aDOVefd;scussion impliesuthe’relation

hd



: 1l + F(2 2), for R(al)fR(D )

F(1,1) =

' 1 + MIN{F(Z l) F(1, 2)},,for R(a )= R(b ).
In'general assume that the first i-1 tasks of the a- chain
and the first j-1 tasks of the b-chain have been scheduled

w1thout loss of opt1ma11ty. (A number of tasks 1s said to

have been scheduled w1thout loss of optimality in the first

.

~r time units, r > a, if there exists an optimal SchedOle
‘with iaentical execution for the‘r units.) Then, the above

argument can be répeated for tasks al.and bj and the

' tollow1ng recur51on Obtained.

,x%

I 1 + F(1+l,3+l), for R(a )fR(b )
'F(ilj) = ‘ .
1 + MIN{F(1+1,J) F(i, J+l)}, for k(a )= R(b )r.f"
Since cna1n bj<"'<bt i5 not detinea for J > t, let F(1 t+l)
denote the length of an optlmal scneaule (equal to length of
sub-cnaln) of the sub-cnaln a. <..‘<as, for i < s. Slmllarly,
let F(s+l,3) be the length of the sub-cnaln oJ<...<b ‘for
j £ t. ThUS, F(i, t+l) = s+l-i, 1 $ s, and F(s+l,j) = t+1-J,

: ] 4 t Taklng F(s+l t+l) to be zero, every element of the

array F(l,J), l$1<s, 1<j<t, can eas1ly be -computed. To '

perform the computatlon efflclently, it is essentlal to

compute F(1+l,j), F(1 j+l) and F(1+l,3+l) before ever

' attemptlng to compute or use the value of F(l,j).'One>wav to
'achleve th1s is to compute the elements of F(1,3) in. reverse

,row order i.e. last row tlrst ana fon each row, last column

‘tlrst. ThlS computatlon is presented 1n Procedure l

;Theorem~3;2r'Anfoptimaldschedule for,the‘ZAChainﬂ

]



64

procedure CHAIN-ALG; - e B
1. begin comment chains are a1<...<as and bf(...(bt.
"F(i,j) is lgngth of optimal schedule for
sub-chains a, <...<as and bJ(...(Dt;-where a
sub-chaln is empty if i>s or j>t respectlvely.
‘This procedure computes the array F(1,J) in
reverse row order; .

2. for i := 1 until s+l do F(i,t+l) := s+1-i;

. 3. fof j := 1 until t do F{s+l,j) :i= t+l-j;
4. fdr i := s step -1 until 1 do .

for J := t step -1 until 1 do
6. . - begin if k(a;) # R(bj) then ,

o T. - F(i,j) := 1 + F(i+l,j+1) else. _
8. - " F(1,3) =1 + MIN{F(i+1,3),F(i,j+1)};
9. enda; o ' L ) o

l6. ena; .

PROCEDURE 1

’ .

problem can be censtructed in O(st) time'anonSpacevusingﬂthe-

procedure CHAIN-ALG.

Proof: Suppose the array F(l,j) has been computed w1th
the glven procedure. Construct a scheaule hav1ng mlnlmal

length E(l,lxuby»trac1ngathe computatlon of F(l,l).

Suppose‘trac1ng 1s currently at F(l,])
‘R(a.) # R(b.) scheoule ai and,bj in the next t1me unit and
trace b(1+1,3+1).'1f R(a ) f R(b ) then scheddle al-and
trace F(1+1,3) if F(i,3) = 1 + F(1+l,3), otherw1se sehedule |
oJ ano trace r(1,3+l) It is clear from the fore901ng |

'GISCUS810n that thls w1ll result in a scheoule with length

E(l,l) ThlS process takes O(F(l 1)) = O(s+t) tlme._

'Now, the array F(i.j), 1$i$s+l,-l$j$t+l} has_b(stih



elements and the eomputation of each element (see

65

N

-

Procedure 1) ts donéhélthln a constant number of steps.

~Hence, at most O(st)‘tlme 1s)used to findg an optimal

schedule. The O(st) space reduirement is obvious. ' ]

llExample 3.1: Let m

a. = i, 1<i<6, b

I

J(R(al), 1gi<6)

=3, s=6,t=7, -

3 . 1£347,

(1, 1, 3, 3,.2, 2),

«4R(b Ve 1£3<T) = (1,73, 3, 1, 2, 2, 1).

Then the elements of array F(l,j) are as follows:

1ndex 1
o , :
w~}, “1 2 3 4 5 6 7 8 < index j
I _ .
1] 8 7 7 7 6 6 6 6
21 8 7 6 6 5 5 5§ 5
31 -8 7 6 5 4 4 4. g4
4 | 7 7 6 5 4 '3 3 3
5 | 7 6 5 4 4 3 20 2
6.1 7-6 5 4 3 2 1 1
717 6 5 4 3 21 g

.

Tne mlnlmal length is F(l 1) = 8 unlts. One of the p0551ble

: trac1ngs 1s'——>F(l l) -=>F (1, 2)-—->F(2 3).-->F(3 4)

~->E(4 5) —->F(5 6) -->F(6 6) -->F(6,7). The, schecule which

s generated in conjunctlon w1th the above tra01ng is glven

in Flgure 16.

L}

An alternatlve way to recover an optlmal SChecule from

tne F(l,]) array is to Keep another array H(l,]) ot polhters

jlndlcatlng which ot F(1+1,J), F(1 J+1), and F(1+l,3+l) was

_used to obtain F(l,J).

-70f constructlng an optlmal schedule after computatlon of

This simplifies the subSequent task
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F(1,1). - L

The above algorithm is strikingly similar to the

aynapic programming solution of the longest common :‘ ‘ i
subzgo

uenck.(LCS) problem (Hirschpberg, 1375; Brown, 1978).

In fact, for a 2-chain problem on twoa processors, if the
processor requirements ot one of the chains are reversed

(tnat is, processor—l tasks become'processor—Z'tasks and

vice versa) a solution ot the LCS problem for the resul ing

chalns correSponas to a solution of tne orlglnal sche uling:

problem. lhus, the .2-chain problem on two processo is

equivalent to sn-LCS problem with a 2-§ymbol-al ébef.
Considerable work'has been'done on the LCS pfoblem (see
Brown for further reterences) which may/b//applicable to the
2- chaln problem. Unfortunately, the/énalOQy breaks down for .
-'the g—chaln-problem¢on.m processors when k&? 2 orvm.k 2.

_ -

3.5 {Extension to More ComplexAPrecedence.Graphsf

'In‘rhis,section, the extenSlonyof tbe dynamlc
_programming solution to k—onalns,‘rrées, end'arbitrary
preceaence dioraphs isgoonsidered.’lhe exienslon to_k_~
chains;,k.> 2, is straightforwaro, the‘two;diménsional
~array, F, of the prevlous'seobioﬁ~being replaced by a
k;dimensional array. Tnis leads to an O(nk)_timevand‘spaoe
algorithm, assuming each chain to beTOt.lenétn n. Now
] consider;the tree prOblem.for'g ¥‘2; (Tbe_extenslon of‘the
_solution to‘the case of more than Emovprocessors will be

v
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straightforward).

For an arbitrary precedence graph (a airected acyclic

graph) a subgraph, G, will,be calleo a terminal subgraph if

1t satisfies the CODOlthD that it a node, u, is in -G then

oevery successor ot u is also in G A ‘terminal subtree is a

-

termlnal subgraph whlch is also a tree. The set of nodes in

a terminaiy subgraph torms a terminal subset ot the set of C

noaes in the orlg1nal graph.

o

Now, cons1der the tree problem Given a’ schedule tor
the tree problem, tor any 1nteger, t, (less than or equal to

the length of the scheaule) . the tasks "in the flnal t time

J

‘units of the schedule form a terminal subset of the set of;

all tasks in the system The pr1nc1ple ot optlmallty applles
\
in the same manner as for the 2- chaln proolem Suppose that
r . ‘ i
‘at the end of ‘the (1 l)-th time unit, a number of tasks ‘have

-

been’ scheduled without loss ot‘optlmallty, leaving a

terminal subtree, G. The only nodes that can be scheduled

for executlon in the i-th tlme_unlt‘are leat nodes of G.

Con51der all poss1ble palrlngs of a processor -1 leaf gl, 4tA-
G w1th a processor 2 leaf, 92,,ot G for executlon in t1me

-unlt:l.:From each“such pairing followed by an optimal'

schedule ot the correspondlng reduced terminal subt:ee, plck'
_the ohe Wthh gives the shortest length scnedule. Thls leads
to the recur51on, f(G) = MIN{l + f(G - gl - gz)}, where f(G).

is the length of an optlmal schedule for subtree G and the

T

minimum 1s taken over all leaves gl of‘G whlch requlre the

|

i .
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tirSt proceSsor ana all leaves 9, of Gtuhich require the

secona processor. Of course, G may have nO'processor—luleaf

or processor—z leaf in which case (G - gl - g,) in the ' g '

‘expression above 1is replaced by (G - 92) or (G - gl). In

\
oraer to. compute f(G) eff1c1entl§ for all termlnal subtrees,

_G, the.following is required: ) e |
v(a) A method of indexing or_assigningtaddresses to-subtrees '
‘Gtso.that the locations~Of {G - gl-— 92),‘(6 Tigl) and
(G. - ng'can pevretérenced quickli given G, g, and gé,.v
(h) A simple method ot,enumeratihg the terminal‘subtrees;G
i (or equivalently, enumerating ‘the terminal subsets)
such that (G -»él'— 9,0 (G - gl).and.(G - gé)'aref
~ enumerated beﬁore G. e | ‘. ‘
The first problem can be solved ny asSignihg labels to
the tasks so that tne Index ot a tree is tne sum of the J

AN

labels of the tasks in tnat tree.

As for the secona problem, althouéh several algorltnms
1’are avallable (Nljenhuls & W1lf, l97&) for - enumeratlng -
suosets oL a set under varylng condltlons, hone,ot;them can
zbe usea to enumerate termlnal'subsets‘exclusivelyt Ihrthe
‘folrowing, an enumeratiohualgorithm is’presented‘whiCn~
enumerates'oniy the terhihal subsets ot a’giveh'tree.AThisb
"ereduces storage space for 1ndex1ng and ellmlnates the need
_to checK that a subset is termlnal or alternatlvelyuthe need

to,derlve f(G) for a subtree G that would never subse&uently

" be referenced



lIhe’terminal subset enumeration schemecconsists ofvtwo
_parts,'a labelllng prqcedure, LABELTREE» Wthh 1s presented
in Procedure 2 ana a decodlng procedure, DECODE, glven 1n
Procedure 3. LABELIREE asslgns labels to the nodes of a. tree

so ‘that each terminal SubSet may be 1noexed by the sum Q\)

5 -

:the (avels of the noaes in the. subset It will be’ shown that}f
'Ethe term;nal subsets have indices from 1 to I, where 1.is
the sum of. all the labels. DECODL(]) constructs the termlnal J> g
: ‘Subset whose 1ndex is j; Thus in orderJto enumerate the -

wtermlnal subsets 1t is suff1c1ent ‘to DECODE(]) foq 11311.

‘e

| The labelllng proceaure groups the tasks into N cha1ns

ana ass1gns the same label to all tasks on the same c aln.

_:AsSume that a aummy flnal node (successor to t’e’root) with
. » v

Elabel b is temporarrly added to the?ﬁxee.and at thqe

. preqecessors of eacn node have been arbitra; ly"ordered.

Then, the iterative step proceeds as~follow Suppose the

Ny

rirst (i- l) Chalns have been deflned and labelled. Then,

-detlne the 1—th Chalh 1n‘the tollow1ng manner-

(l) Elnd the most recently labelled néde with an unlabelled,
predecessor. If none exlsts, stop (all tasks have . been

labelled) Aad the next ‘unlabelled predecessor of the

H - ‘ Y

‘”node to the new chain. (It is the last task on the

; . ,® S " y
1 Chaln). ’ - e : . J . - oA & ~
! N B ‘ ’ P - . '

(2) Let v be the most.recent node added to the chaln. If v

has any prededessors (nonelof them has a label? add’ the

Y

o o e

first preaecessor of}v to the chaln andq go to 2;
| J

K
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N . - ) ) . ) R 3% “_.
procedure LABELTREE, ) ' LT
N begln comment N is ‘the number of chains. , e
o I ig the ipaek Qf the complete tree; \
i lf 1 := a; ;=(l- X := t nl iF sl_:— 8; -
2. '1RAVERSE(root ot tree, 39, . _ : .
c3. N o=d; Toa= gy .
- ena. N o o
.7 Procedtre TRAVERSE(node, x); .
_ . begin " local integer k; o
'l. " if null node return; L B ' B -
. comment visit node; . S o : ’
2,vvlabel;node_with a;; add‘node-to;cqain; '
x = x + a i -t = tJ+ al‘ . ﬁi s= ni’+ 1;
o .comment traverse predecessors 1n«pre-oider,‘ ,
3. TRAVEKRSE(first predecessor of- node, x); . .o
© . ¢ k := (number of predecessors of node)'— 1; RN
4% -while k > ¢ do w . e o
‘... begin comment Start new_ cha;nLM U
I i .; i+ 1; n-.:* 0; 8. :="x;
O i it
aiw:: t+ 1 - x-A . | | |
')_ S, © . TRAVE RSE(next predecessor of node, X);

k2 K.- 1; SO o

,e &
end~ ‘{ép

l‘PROCEDURE 20 TN

-

otnerw1se stop (chaln 1 1s complete). ST
< # - : i ) [~ B
Ihls cha;nfbecomes the 1 th chaxn.;The label, ar assigned

<

to everf task on thbs cha1n is one largex.than thefsum of\

'x7labels of all those labelleo tasks tht?are'hOtusUCceSSoISi

.Eg of the la t task on*the Chaln. The,sum;~8

R

‘3W1th thls labe,

i’ of 1abels of ali

'wlabellea tasks that are successo:s of the 1ast task on the'

“chaln 1s also saved or" later use in. the aecodlng pnocess. 05;'

j}ng, the index of a set W111 be the sum of

';theelabels of t,wks 1n that\aet thus satxsfylng condftzon 'ffff




s, . . R . ¢

" (a) above -for efficient computationbof £(G).

a

thé proceuure, as given, implements;the'above ideas
usihg a preorder traversal (Aho, Hopcrott & Ullman, 1974) of
the tree. The procedure keeps tpack of. the sum, x, of the
lapels of all labelleda tasks that are successors of the "task

_to”be visited and the  total, t, of labels of all: labelleo

nodes. These are used in computlng al ana si when a hew

L

chaln is: deflned.

" Given an 1ndex, Js the decodlng procedure determlnes'
the nodes of a unique subtree G of the original set of

< nodes. It uses the tollow1ng data set up- by the labelllng

(o

proceaure-

(1) the numger ot cnains, N,

(2) tne'number of tasks, n;, on chain i,
‘ . _ . , ;

N ’ . . /2 - .
(3) the actual tasks.on each chain in order,

(4) thg label, a;,, of tasks-onﬁchain»i,

(5) the'spm_of'labels,‘si, aefined‘above.
Thé.procedure consiaers the chains'in-decreasing Order of
. W ) . " )

their index-i.e. in the reverse order trom that in whlch

-

they were deflned Suppose chalns u N= l,...,1+1 have been
ki"con51dered 1;@. the tasks from these chalns have been

'tdeterﬁlned andfthelr labeis have been;subtracteo from 3

-

glv1ng curreht subset 1ndex C. Then one of the follow1hg

o cases applles.‘,

T (1)_c:< si ¥ ai;"ihen xfs‘ﬁ‘taskssof,ohain_i'helohquo}the;j";m'
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e
procedure DLCODB(J), ' ) »
begin comment N is the number of chains. . o

The arrays a Si’ and nl, 1<ig<N, are as defined
in Procedure 2; | - ey
l. ¢ := ]; SUBSET := = null;
2. for i := N step -1 until 1 do S
3. begin comment find elements ot chain i beionging
to tge subset; . - o :
if ¢ si then k := ¢ elfe g
PR if ¢ Z.Si:+ n.a; then <;=.ni>else f;nq k
' ' such that s T+ ka1 i c < 85 + (k+l)ai;
aad last k tasks oﬁ chaln i to SUBSET‘
cC = ¢C - ka
o . end; .- .
4. -return SUBSET°_ ‘
end. - . ) .
PKOCEDURE 3 - * ° L e '

M E

(2) ¢ 2 s + nja; Then k = n1 tasksaef;cbain i belong to

the suoset

“
v

(3) s, + ka £c < 84 ; (k#l)a , (. eerk# (c -8, )/a 1)

’

Ihen last k' tasks bf chaln i belong to the subset.
. In any case, dgis reauced by ka -and the procedure considers
chain iflz . o ‘( | . .

f"t . - | / .
The labeLllng and subsequent decodlng of’a partlcular
1ndex j is 1llustrated by the foilow1ng example.

;.'

<x



o

Example 3.2:

LABELTREE: See Figure 17 for tree structure. The
orderlng of- predecessors to a node is 1nd1catea 1n the

‘f1gure by . 1ntegers near the eages leadlng into each node,

{71_ -¢chain r;; ni ay By l ~

I 1 r,d,a 3. 1 BB
21z 1 12 1 2 |

31| e,b -2 | 4 | 2

| 4 | h,f I 2 ("13 | -1 |

.I 5 ] 9." _,]‘ l.'|.26 l 14 j.

DECODE (17): L
o [
L N - ‘
c =.17;: SUBSET is empty 7 “
‘ o (o D
i=5: ¢ < sg + as (no’ task from Chaln 5)
1=4:‘s4 + a, <c < s{ + 234 .

'(take last task of cha1n 4)

SUBbET = {h}. c=c - a4 = 4. . -» : C - “'. u

i=3: ¢ < s3'+ a3' (no task from cnaln 3)
i=2:. c 2's2 + n2a2 (take all chain 2 tasks)

x'SUBSET = {h z}; c=¢c¢ ~-n a.

i

S |

lz'sl}+ 2al < c < sl + 3al
- (take’ last two tasks of chaln 1) .

:SUBSET = {h,z d r} c = c -'éniis'd}‘?-}s;fﬁr? -,-‘{'ﬂ'

¢ ) : RN Seee oo . gl

P

-

The followlng properttes\of LABELTREE ana DECODL are }j;ﬂ

requirea for prov1ng that the term1nal subsets are indeea

— it

~given by DECODE(J) for 11311-_f45rv, '?kfﬁk;’f*i”f&f;{"iif?

‘v‘..
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‘Lemma 3.1: with the labelling of proceﬁure LABELTREE

N

‘evely terminal subset has a unique ?;dex j, 1<3<I.
. : . \’ ! N
‘ )

" Proof: The proot 1s by contra?/ctlon. Note that the
- . /
1ndex of a set is tne sum- of the labels of its elements.

r81nce I is by deflnltion the su"of all the- labels, any Het
~ _ ¥
must have. inaex 1n the gl%fn range. Suppose two termlnal

-

subsets U and \% have the same index J..Let node.. u,'w1th, o
label a1 be the hlghest labellea noae wh1ch is in one

fsubset but not in the other. Assume that node,u 1s in U but -

-

‘not in V. Then all labels in' v Wthh are less than ai wéte

4

‘ass1gnea by LABELTREE before a. By deflnltlon of é kn the

l.
procedure, ai is laéger than the -sum ot all smaller labels ./

I
in the tree whlcn are not labels ot successors ot node U.’

Thus, the- tollow1ng 51tuatlon results“_»; }‘ o } S
(l) Every nooe in Vv w1th label larger than a1 is‘iﬁﬂu."d
’ 4

(2) Node u, . w1th label al_ is. 1n i but not 1n V, e

(3) Every successor of u in V is also 1n U since U is af:"'z‘

termlnal Subset and . must have all successors ot node u,

(4)‘The sum of labels of nodes in v who?e labels are less‘;

T than a1 and. whlch are not successors Qf ufis 8 1ctly s';
. ilrless than a, S Lo 5 B l
jgj;uence, set 0. has a hlgner 1ndex than set V, contradlgtlon. ﬂf*'

2

~

-

J 18 umque for lcnﬂ... .
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Proof: Consider ‘the way ‘in.whic¢h j is decoded. In the
‘general” step the taskigfrom chains N’ N-l, ce i+l have been

determinea ana theiy; bels subtractea .from j glv1ng an

'1ndex value ¢ for the remalnlng elements., Now, suppose that

N

no task o; chaln i is.in the set J. Then, J can’ contailn
(among the rema1n1ng chalns) at most all tasks w1th label
'less than al Ihe labelling procedureﬂqﬁ&rantees that the
"sum ot.labels of these. tasks/ls at most s +a; - 1. Hence,‘
g c'< + ay Slmllarly, suppose‘that k tasks ot chaln i o
;@ubelong to set J..TH%n J has sum of labels at. least s + kaio
5tor the k tasks and the successors ot tne last task of chaln

».
i wnlch must all be 1n the set. In aadltlon, J may contaln
- ] N T

Yoall tasks ulth label less tnan a1 whlch are not sucoessors
_of the last task of chain i. Slnce thls latte? set of tasks
‘. has total labels af most al-l, 'y +ka1 1 c < s, +(k+l)a In -
‘the case that arl n1 tasks of chaln i are in the set, the
‘:.ln:equal;_ty o 3+’ 1 i $Q 1s 81m11arly obtalneo. /
s o N B u‘-;~'f' T e
I Slnce only one of the three cases o :
o ‘JJ*9\>‘sie+ ai ' ,: ‘K,;bb_.;s 7;'_ stﬁ-)f f;ti
JZ)?s + ka £ cC < s e 5 (k+1)a o -:- fk‘ ' j(;'.f
2;', (3) c 2 s ot nla; ljlb lv‘__,_l;f_* l:.fu‘.x[_'f X

can occut for a glven c, the value of c uniqueny Ldentxfles

the number of tasks ftom cba1n41. Thus, DECODE(J) produCes a
Q- ST T .
unlque subset for 1ndex J. R ﬂvldI’ o A. v '.*vufffﬂ

~ . :
T

1t is aleo necessary to,shaw, that 1 is actually the

L.




"711£ node u 1s a successor of node w and

N o _ R - 78
that there is no j, 1<j<I, such that DECODE (j) yields a
‘non-terminal subset. This is ‘done by showing that during the
B B . . ¢ . )
decoding process, if node w is included im the subset and
'node n is a successor of node w then u must subsequently be

\

'-1ncluded rn the subset The follow1ng property of the

‘ 1abe111ng is requxred for this proof g .

‘;'Let node u belong to the‘Q(u)-th}chainQ

Lemma-3. If nooe u 1s a successor of node w. .and

. Q(u) < Q(v) < Q(w), then node u 1s a successor of node V.

/ . : :
fProot' Refer to procedure LABEETREE, Procedure 2. Since

noae u 1s a successor oy noce w, 1n the preorder traversal

. of the tree the call to tne procedure to traverse w 1s made

and completed whlle ‘the call to traverse u 1s suspended A

f“Also,151nce Q(u) < Q(v) < Q(w) and the chalns are deflned in |

1ncrea51ng order of thelr 1ndex, the call: to traverse node v‘

must have been made after the call to traverSe u and before'

. ©

the call to traverse w; Consequently,'node v 1s also v131ted d'”

: anq the traVersal of v completed wnlle the traversal of u 1s~

@

: suspended. e J-‘.' . R 't’ivflduji"ff o
T R t-s;ij"énr’

Hende, node u 1s the root of a subtree contalnzng both

2 and w* Therefore, node u’ 18 a éuccessor of noae g. R |
Lemma 3 4 Cons1der a tree labelled w1th psocedure-’“ﬂi‘

ot

'dfffLABELiREEa During the decodlng of an 1ndex, J,_ofﬁa sudset,f.ﬁnﬂf



"T“'such that v is. subsequently selegted By Lemma 3, u 18 ‘also

. o 79

~ subset, then u must subséquently be included.in the subset._ﬂ‘!

‘

‘PrOOfi Refer to procedure DECODE,rProcedure 3;'The‘?
_Aproot is by 1nduct10n on the number of chains. Note that for

1any i, 1£1$N, the flrst i chalns constltute a terminal

-

-

subtree ana” the labelslof the.subset is a.labelling for the -

subtree.

-

v_'» The theorem 1s trivial for ‘the flrst or only chaln. r

Lo

’ _Suppose 1t 1s true for the\tree formed by tne flrst (1 l)

chains, 1<i<N. Durlng the aecodlng, 1f no tasks ot chaln i

are selected, then the theorem applles to the first 1

chalns. , , R o v SRR f

Suppose a tasK, w, of chaln i is selected ano u is-a

1

vxsuccessor of w..It Q(u) Q(w) =.1, then u is also selected'v'
at the same t1me wlth W, If, on the other hand; u belongs to,

a smaller numbered chaln (all hlgner numbered chalns have

[
, ¢ -~

,2been dealt w1th at th1s tlme),bthen there are two cases: -

(l) There exlsts some’ task R ‘with Q(u) < Q(v) < Q(w)

1la successor of v and’ by the lﬂductxon hypotheszs for the
. ¢ .

juflrst Q(v) chalns,_u must be subsequently selectea. '~f;n»;.,f’

R . ! P . - ‘,._. R SR

*l.» (2) Now suppose that there 18 no ﬂask v w1th

iQ(u) < Q(v) < Q(w) wh;ch 15 1ncludea Ln the subset.fLet

,
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N

uij <. i, i der con51aeratlon..Let c be the resultlng subset

Vvlndex aI:e?ﬂ;halns N N-l,...,1+l have been con81dered and
let k " be the number of tasks from chain i which are _
selected. Then, c 2 s + k. a ThlS 1nequa11ty still holds
at the time chain J is belng con81dered. If kJ tasks of
chain’ 3 (1ncludlng task u) are succeSsors of node w and

hence of the last task on chaln 1, then c - k a 2 s

- . -

J J73°
tasks from chaln j is satlstled Therefore, noae u must be-

= s, + k a. Thus, the cendaition for selectlng at least kJ

"selectea.
', In-any case, the theorem now applles to the first i
o chalns. By 1nauct10n7 1t applles to all N chalns.v - S &

Theorem 3. 3. For a tree labelled w1th LABELTREE, the
3

.termlnal subsets are Plven by DECODE(J),.I(J(I.v

f
f. Proof-‘By Lemma 3 1 every termlnal subset hﬁf a unlque
1ndex between 1 and I.vBy Lemmas 3. 2 énd 3 4, DECODE(J),.'M
lijéI, ylelds a. unlque termlnal subset. Thus, there is" a
one-to-one correspondence between the fltSt I 1ntegers and ;;

‘-j the non-empty termlnal subsets ot tne glven tree.'7'ﬂ¢ 4 }fn

’.

It 1s easy to check tor Example 3 2 that the number
'3 1 = 65 obta;nea xs 1ndeeq the number ot non—empty termlnal
subsets*of the.tree, The number of termlﬂal subsets of a

s‘tree satisfles the followxng recurrence ;elatlon. Let h(u)




T T e e

”}‘erm;nal suotree, G, the number of pairs, (gl,gz) Df

81
at node y con51sts of u and ‘some termlhal subtrees rooted at
.predecessors of u, h(u) =1+ r{h(v)},vwhere v ranges over. (

‘all 1mmedlate predecessors of u. Applylng this recurrence'

; relatlon to the tree of Example- 3. 2 ylelds h(r) ='65.

° |

The miain part of the solution of the tree problem is

N

outlined in Procedure 4. Here, L(g) is the label gﬁVen to a

noae, g, ana F(j) 1s the length ot. an optlmal scneoule for
the subtree wnose 1noex 1s j. The pro equre outllne follows

'closely the prev1ous discussion and requlres no fdkther

.
comments. B

i In order to construct the actual scnedule another array

of I p01nters should be malntalned, 1nd1cat1ng forieaCh

1noex, J, whlch subtree was used to obtain F(J). With thls

farray ot1p01nters and the DECODE proceoure, subseq ent

ﬁgnstructlon ot an opt1mal schedule is stralghtfor ard.

'l
,b
”

. n"\ . . .
. Now, cons1der the t1me ana space requlrements of ';

*“247'

TREE A%ﬁk It is, ea81ly seen that both LAEELTREE anﬂ DECODE

”,each %%ke O(n) time where n is the number of nodes; For any

‘_- -“) ',4' -

Qﬁﬁd?ssor -1 and processor 2 leaves is no more than n2

"i B .’.}-

v !A .

-

fk’requlre llnear storage. During the terminal subtzee ;ff?7"

9»-;‘,»4&— - (

oy

e
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- "

”-lsubsets of tne nine tasks.“g o e

. procedure TREE—ALG, :
1. begin comment L(g) 'is the label of node g.
1 is the index of the complete tree. R
F(J) is the length of an- optimal schedule for
, subtree with index j;
2. .LABELTREE; (note I is computed by LABELTREE) T
3. for 3 := 1 until I do '

Alr- /

4. ’ begin G := DECODE(J); : ; e
5. ‘determine processor-l-leaves of Gi {\
6. aetermine processor-2 leaves of G;- N

/

7. F(j) := mln{F(J - b(g) - L(g)) k.
where the mi imum is taken over all palrs of
processor-1 leaves, gl, and procassor-2 ‘
leaﬁes, 92, of G; :

o end; N _ s
~end; e : .

'

PROCEDURE 4 -

- - 4
- . P ~ . f -

oA

renumeratlon, O(n ) locatlons are heedeo for the pairs,"

b

(gl,g ) . However, the same. locatlons can be usea for every

ET]
subtree 51nce it-is only necesséry to ‘save F(]). Hence,

storage requlrement is at most of O(n2 “I).

.-

Lo . v . . T ’ ) g . " .‘
. R . .

Thus, the complex1ty of the algorlthm is really o
i

oetermlnea by the number of’ subsets generated Although the‘
®

number of subsets 1s exponFntlal 1n.n, in general,‘the

presence of precedence cinstralnts 51gn1t1cant1y reduces the

“ number of termlnal subsets. In Example 3.2, only 65 subsets

A

.
o

9

'would be generated as compareq,to 2-—1 .Sll'non-empty. .

-

) Coe

Flnally, con51der the other types of precedence graph f}TZ
, )




_and O(e) space, where e is the number of edges.

WThls appears to be the sxmplest C;Le of the processor—bqppd

a trxed numoer of processors m 2 2 and precedence

83

'\3;

“resulting schiedule. Similarly,'solutions for forests may be'

obtalned by aodlng,a dummy root whlch 1s connected to thez

&

roots of all the trees, applyang the corresp0nd1ng tree

Qalgorlthm ana flnally delet;ng the dummy root from the

schedule. As for the general acycllc dlgraph, it is obv1ous

'that a goou dYnamlc programmlng solutlon ‘along the llnes

]

'QlSCussed above hlnges on the avallablllty of a good , j‘\\p<

_bermlnal subset enumerator. Recently, Achugbue and Ch1n

'(198ﬁ), nave developeo a termlnal subset enumerator for

£

arpitrary precedence graphs thCh takﬁl at most O(eI) time )

13

3.6 ‘Disq&ssion
_ | ] o . |

., In this chapter, the NP—completeness'of the minimal
length schedullng problem for UET processor~bound systems

1ntroduceo by Goyal (1977) er the case ot two processors o

and an arbltrary number of chalngﬁhas been demonstrated.;

’systems that is NP—complete and 1ndeed the result subsumes~‘

fa}l NP-compLeteness results or Goyal as well ds the case of

Vs D

"constralnts 1n the form of trees,fwhlch he lett as an open

Problem. i . B l\lu‘v, .' | _y A.' A v. L ‘..' .. "_v_-“ ‘ | . S

'n, .o:‘\n-" __|‘

v : ' R P P .

B AL a.

In addltion, a dynamlc programmxng approach is proposed

.

for ﬁlndrng mrn;mal;;eng'h,schedhles for"these systemsvwhich;ET;




N S
5

enumeratlon. ThlS approach requlres a termlnal subset
enumeratlon scheme. In the case of trees (and forests),"

termlnal subset enumeratlon algorlthm 1s presentea. It is

2

-etficient 1n the sense ﬂhat 1t never\enumerates a

non—termlnaA subset. For general preceaence graphs, the

v

scheme of Baker anb Schrage (1978) is’ good in that it is:

a )

fast but 1t however 1ncl%des\some non- termlnal subsets in’
«P

1ts enumeratlon. ‘The reéent algorlthm of Achugbue ang Chln -

(1980) is. reasonably fast and ‘never, enumeragesznon-terminal'

subsets. SRR
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Chapter Four :

FLOW SHOP SCHEDULES

In the flow shop model, considered in thi§ chapter; and
the open éhop of the following cﬁapter, severai related
tésks arehgrOuped together to form a job. Thus, a flow shop
consists‘of m prpcessors, Pj,‘lgjim, énd.m 1225, Ji’ iiiin;
Yhere job_Ji qdﬁtains m tasks or staées, Ti[j], l;jim. The
flow shop is processor bound since task Ti[j} Aust be
executed on the j-th processor, ana it is Characterized by a
unidirectional flowLof tasks, that is, task Ti[jj must be

executea pefore Ti[j+I] for any i. | ¥

f

when dealing with -two- or'three—stage shops, it is
often more convenient to refer to the compongnt tasks of job
(=

JJi_as tasks Ai,‘Bi,and Ci (to be executed o -processors Pl,-

P, and P, respectively). *

The flow shop.is perhaps the first of ﬁhe processor
bound models_to be stuaied extensively probably due to the
fact that it closely simulates éssembly line systems. Much
of what is known about the model is reported in Conway,

‘Maxwell énd Miller's book (1965) and the more recent text

by Baker (1974). The emphasis in this.chapter is on )

- ) , D e . .
non-preemptive.ischedules minimizing schedule length for

: : \ s
three-stage systefis.

13
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4.1 Survey

-

R ’

Jonnson (1954) showea that for two and three-processor

“tlow shop mihimal"lengtn non-premptive scheduling problems

it is sufficient to consider only permutation schedules, in

v

which the jobs are‘scneouied in the'same order on all the
Processors ana a processor is nof keét idle it a task fPE
that processor is ready for execution (thus, permutation
scheaules are keep-busy schedules). He further gaQe thé
Qellfknown O(nlogn) solution for the twb—procéfsor system.
Tne';dle tor obtaining an optimal schedule in a two-stage
tlow shop is to schedule the i-th job betore the j-th if

1

MIN(Ai,BJ) < MIN(Aj,Bi).

3
.

For £nreé—%£age tlow shops, solutibns haﬁe been
presented for several special cases. These arexitemized
below by original author:

(I) Johnson (1954) extended his two—stage_rule to.the case
of three processors and showeo‘that the eﬁtended
version produces minimal length schedules, also in

O(hlogn) time whenever the task system satisfies either

Aisz for all i and j, or Ci2Bj.for all 1 and j.

.

He turther conjectured that when his two-stage
’rule appliea to the first two stages yields the Eamé
permutatioh as that for the lastatwo stages, then ﬁhe
permutation is optimal for the three stagé problem. -

However, Burns ana Rooker (1976) showed that this. is



(2)

(3)

(4)

(5)

not always the case. Johnson's conjecture is true if

tor each application of

S

he two stage rule, the (

‘inequality is strict for all job patrs, or if the

<
permutatlon resulting rrom the flrst two appllcatlons

is also optimal for the first anag thlro processors.

Arthanari and MukhOpadﬁyay (1971) gave an O(n®)” .

algorithm tor systems with either Aiisjvfor all i,j or

C.<B_ for all i,j. ’ SN - -
1] . , E :

Smith, Panwalker and Dudek (1975) considered systems

(]

with oraerea processing time matrices, in whicn the

Arelative oroer'(in terms of task length) of the tasks

in every job is the same, ana in addition, if one task-™
of job J. 1s less than ‘the correspondlng task ot Job

Jj, then every, task of ]Ob J Is less than the

correspondlng task or job Jj.

»

The system of Burns and Rooker (1975) must satify the .

condition that the product of MIN(A ,B ) MIN(B ,C ) ana

2

. MIN(A ,B. )—MIN(B i) be non- negatlve. Their algorithm

is ea51l§ seen to require O(n ) time at most.

more recntly (1978), they gave an O(nlogn)
algorithm tor the case in whicthiiMIN(Ai,Ci)‘for
all i. S ' 1

Swarc (1977) also gave an O(nlogn) algorithm for the
case 1in which Bi=Bj:and if AiﬁAj then Cizcj tor all i

-

and j.

Another case aue to Swarc can be aescribed as
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N ‘ ¢ 3

ﬁtollows. Let permutation, pj~be optimal for the two

me tho
the p

Sahni

-
3
K

stage problem in wnich job Ji:has tasks Ai+Bi, Bi¥Ci,

with associated optimal legéth Up. If

Lo .
Up = Lp + E?=l(Bi): - oz 7
then p ds optimaL for the three stage problemj} where Lp

N -

is the length of the three stage scheaule 051ng ¢

permutatlon p-.

fa

For the general problem with m22 several heuriétic
ds have also been aevised (see Baker, 19745 However,
roplem is Np- complete as shown by Gonzalez, John§on and

(1976) ana Gonzalez ana Sahni (1978),

In the following sections, several new results are 4

. gliven

4.2

" J-th
other

restr

smith,

flow
bouna

to th

tor some interesting special three stage flow shbps.e

J-Maximal and J-Minimal Flow Shops

A flow shop is said’to be j-maximal ¢j-minimal) if the

task of eqch'job i1s not smaller fhan (greater than)‘an§u
task of the same job. This criterion is far less 1'2//‘
ictive than the ordered processing time tlow shop of' e
PanWalkeF and Dudek (1975y; J-maximal and jemihimal
shops,ﬁave been studied by Chin and Tsa£ (1978) ahd:

§ Oon the performance of the worst solutions as compared

e best possible were derived.

It is easily checkea that known proofs of

NP—completeﬁess ot the minimai length flow shop scheduiing



" problem remains\m&—complete except for:therz—minTmai\case-

& 89

fproglem (Gonzalez;'Jonnson,& Sahni, 1976; Gonzslez &Aséhni,

11978) involvé the setting up of flow shops which :ao.not have

the-j-maximal or, j-minimal criterion for any value of j.

hence, thelr results ao not carry over to tne cases unoer

»

.con51derat10n. ‘ ' .

A . &

-In _the fblloying, it is sho,n\fhét.gpe three-stage

2

which is.solveouin O(nlogn) steps. ¢ -

[

Chin and Tsai show that the é—minimal problem is

NP- complete under the assumptlon ‘that 1t a Job has ‘a

& .
Zero-length task on a certaln processor, tnen the jOb aoes .

not have to v151t tnat processor. With this 1nterpretat10n

i

of zero-length tasks it is no longer true ‘that an. optlmal

&
”_scneoule may be touhd among the,permutatlon scneaules.

(R - f'

ﬂowever,ggﬁmwe realistic” 1nterpretat10n of zero length

tasks for the tlow shop moael 1s to consider them as‘tasks

with 1nf1n1te51mal t ime requlrement. Thus,‘each job must

visit every processor even when a JOD has a zero- length task

2

for a processor. The latter interpretation is aoopted in

this the51s.



. _ -
4.2.1 2-Minimal Flow Snop: A Solvable Case -
H ¢ ( - \ |
B .Given a permutation p of\the first n integers,., ~© -
(p(l),p(2),...,p(n)), and any u, v with lguivin, the numbei/
-L (u,v). = ¥ + =V o+ sD L is & lower

N

p(i) 1=u p(l) 1=v p(l) -
pound on ‘the length of the schedule derived from p. In fact,

the length of that schedule, Lp, is MAX{Lp(u,v) | lgugvini.

nis fa@lbﬁs\érpg)the fact that job p(u) (that is, the
A :

drftﬁﬂgoblorthTuy ,,,,, t)

\\

—

processor 1 has executed stage l of all preCeding jobS}‘task:

p(v) cannot start untll processor 2 finishes all prev1ous

stage 2 tasks (in partlcular, those between p(u) ang p(v)),'

ana flnally,batter the processing of task C . B (v v)’ the thlra

processor has to do the. remalnlng thira- stage tasks. Thls

A
lower bognd w1th dlfferent q and v will be used'repeatedly
in the following. ) : ' #

3@ﬁhson“s (1954) proposal for the three-stage problem

is to schedule the i-th jOb before the ] th job if
Ay

WIN(A. + B., B. + cy) < MIN(A. + B., B. + c ——(1)
(A + B By +C) (8 + B, l (1)

i
One of the special cases solvea by the above rule as

”recently aemonétrated by Burns ‘and Rooker (1978) is (by

oetlnltlon of j—nlnlmal) a 2—m1n1mal flow shop The proof is

.stralghttorward and is sketcheo below for completeness.

- .

Theorem 4.1 (after burns & Rooker, 1978) Ihe 2-m1n1ma1

tnree~stage tlow snop .Scheauling problem can be solved 1n

O(nlogn) time by the application ot Johnson S rule (l).

gt
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Prdbf:lLet”p = (p(i),..;fp(n)) be a permutation'ot the:

tirst n integérs Con81der the two—processor flow shop w1th

n JObS such that for the i<th job, the task on the flrst
processor takes (A +B. ) tlme and the othér task taxes

(B +d') Then rule (l) ‘above 31mply applies Johnson s
. optlmal procedure for two processors. In other wordsi rule
“(l) ‘tinds a pérmutation which -minimizes '

_MAX{L (er) [ liﬂin} Therefoté} in o:der to prove the
-tneorem it 1is sutflclent to show that
L (u,v) < MAX{L (u u),“L (v v)}, , -——(2

for ail u<v ana all permutatlon pP. _' - ‘
Suppose (2) aoes not’ hold.'4
L (a, u) ana L (au,v) >1Lé(v;v),a‘
i Y
o Zi u+l(Bp(i)
- aﬁdf Z (B (1) > ZZ =u+ p(i)
trom which one obtains B’ %p) > Cp(u) ahd Bp( ) > A

Then, » Lp(u,v)

for some u lds

)

yvél
) > ;2.= (Cp(i)
),

1 (A

p(v)’

)

Slnce in a 2-minimal flow shop A > B and Ci 2 Bi' liiin,v“:T

it fsllows that Bp(v) > p(u) 2 Bp(u) > Ap(v) Hence,-

B ' > A which is a contradiction. -
p(v) p(v) :

i

An G(nlogn) implementation of the given rule is eas1ly

env1sagea.

]



4.2.2 NP-Complete Cases F%FZ:///\‘

The easy solutlon of the z—mlnlmal case for three
processors mlght leaa one to conjecture that other j-max1mal
or J)-minimal cases might just as ea31ly be solved. In this

section it is shown that this is definitely not the case.

. The NP-completeness of the 2-maximal three-stage flow
shcp problem is easily demonstrated by a reduction from

»

B . '
PARTITION (see Section 1.2.2).

Theorem 4.2: The 2—maximalvthree—stagerfloﬁ shop

minimal lengtn scheauling problem is'NP;complete.
Proof: Given an instance ot FARTITION, aefine the
o N ’ v
tollowing Z-maximal tlow shop containing n+l jobs.

.o

A, =C, =6, tor 1 < i < n.
1 1
. Bi = a;y tor 1 < i ( n:'
Bns1 = Bpyp T Gy = K.

The deadline for the flow shop problem is D = 3K.

By corisidering Figure 18, it is obvious that there
exists a permutation schedule for the flow shop whose length
_aoes not exceed 3K if ana only if the PARTITION instance has

'a solution. - . » | >ﬂ

Incidentally, the flow shop of Theorem 4.2 is also
l-minimal as well as 3-~minimal and serves to show
NP-completeness of these cases. They were not includea in

the.statement of that theorem because stronger reductions

e
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secona-stage task. Since K is

kS _ ‘ ‘ : - 94
from 3-PARTITION w@ll be presented.

Lemma 4.1: Coﬂsider'the.foliowiqg l—minimal (n+2) -job

‘flow shop: | '

M 2(i - 1)K, 1 < i < n+l;

(24 - 1)K, 1 < i < n+l;
C, = 2(i + 1)K, 1+ i < n+l;
A =C ., =4

n+2 = 2(n + 2)K; for K > @.

o]

{ N

2.
—
1}

~The permutation (l,..., n+2) is the uhique optimal

permutation.

Proor: See Figure 1Y for| the-case'n = 4. Note that the
glVen scheaule has total idfe time of length K on the thira

processer, anda that for any Schedule the thira processor

]

must be at lcast idle duri the execution of tne first
e minimum second-stage task

the given permutation must be optimal.

Now, consider an arbitrary optimal permutation

(P(1),...,p(n+2)). If p(l) # 1 then B > K and there is

p(l)

~idle period greater than K on the. thlrd processor,

contraolctlng optimality-of p. Hence, p(l) must be 1.
k4

Similarly,_lf p(2) # 2 then B p(2) > C

p(l) = l and extra

'1dle perloa is generated on the tnlrd processor. Hence, p(2)

must be 2 Continuing in this manner, it is clear that the

permutatlon p must pe precisely the one given in the lemma.
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Note that‘thetlength ot the optimal schedule is

: (ﬁz + 5n + 6)K and that any other permutatlon.iields a

scheoule strlctly ykggér than thls. S .

R)

Theorem 4.3: The l-minimal flowlshopfminimal lenéth3

scheduling problem is NP—complete.

‘Proof: Given an instance 6f 3-PARTITION with the set

{al,.;.,a3n}, the a.’sqmming to nK ahd;K/4 < a; < K/2,

i
constract.the tollewing ihstance of a l-minimal flow,shop

"minimal length scheculing_problem;

Y
- .

Use all the jObS of Lemma 4.1 ana 1nc1ude the

foilow1ngr An+2+3 = Cn+4+3 = ﬁ( Bn+4+3 = aJ, for l$J£3n.

2

The target scheaule. length 1s D‘* (n“ + 50 + 6)K, ‘the length

of the optlmal scheoule ot Lemma 4.1. . .. .

The unique optlmal Schedule ot Lemma 4.1 leaves n idle

perlods each of length exactly K 1nto wnlch ‘the 3~ element

partltlons (stage 2 of -the new JObS) can oe placed 1f the
Q
o 3- PARTIIION ‘problem has a solutlon.«Thus, there exists a

scnedule whose length . 1s D.

Conversely, oy the unlqueness property in- Lemma 4. 1,,

the only type of schedules for the flow shop which can-

- pos51bly tinish by time'D are‘thoSe wnicnvcontain the jObS‘
of Lemma 4. 1l in thelr optlmal order as glven in Elgure 19.

That drder canﬁtherefore De con81dered as a sKeleton of any

-optlmal schedule. Cons1aer the pos51ble placements of the

N

-

G L . - 96

)
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;new jobs 1n the skeleton. It is 1mposs1ble ‘to 1nsert the new-
!jObS at elther end w1thout lengthenlng the schedule.r
Furthermore, the f1rst set . of n+l jObS leave n perlods on .
processor 2 1nto wh1cn t remalnlng “can be placed only }f

set {a } has a. 3—part1t10n (note that the K/4 < a, <fK/2v

,property ot the al is essential here). °° ,.-' S e

~

Theorem 4.4: The 3-m1n1mal £ low shop m1n1mal length

schedullng problem 1s NP—complete. s

* .
~

: S A : :
Proof- 51m11at to Lemma 4:1 and Theorem 4 3. For the

\ ¢
v . .

Iemma part* use ‘the +4 Jobs-’

cAj =201+ K, 1<ichel; L o
D‘ Bi = (2i -~ DK,1 < i $.>""rl+l; o
%”/ Ci = 2(1 - 1)K, 1 <+i < n+l;°
Bnea =\Cn+2 =8, B, =A . =2(n+ 2)K.

Therunique‘optimal permutation is (n+2, n+1,'...} 1), The

same set of jObS as for Theorem 4.3 1is added to the. above

set of n+2 jobs: S ‘  I o a o g
- Lemma 4 2: Con51der the follow1ng l-max1mal (n+l) JOb
.flow shop . . R . A l o
‘Ai'=\(12 + 31 + 4)K/2, f o ael’f_.f g??
’ = (1% + i + 4)K/2, | |

(1% =i + 2)k/2," for 1 ¢ i < n+l, K>D.

The permutat' n (n+l, n, ..., 27'1) is the unique optimal
NS S S o
permutation. . ° ‘ -~ : e T
‘Proof:- See Figure 26 for h schedule with the-taSks in

| e ————
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the épecified ordef for n=3. The optimality df the
permutation given in Figure 20 can be derivea from the fact
that this permutation is thimal on the first two
processors, (i;e.‘considering the Z-processor flow shop with
each job'cdnsisting of the first two tasks) and the fact
that the optimal scnedule length on the three processors is
né‘less than the dptimal scneaule length on the first two
»procéssors plus the.smallest task length on the third
procegsor. Since the length of the scheaule in Figure 20 is
‘the sum ot the optimal scnédule for the tirst two'processors
ana the smailest task length on the thira, the given

‘permutation is optimal.

5

Notice that the length of the given permutation

schedule is .

. L n+1
Lopt = Pny1 t 251 (By) + ¢
(n3 + 9n2 + 38n + 48)K/6.

--=(3)

L}

It remains to prove the uniqueness property. Consider
-the given optimal permutation p. p(l) must be n+l for
otherwise the length of the corresponding scneddle, Lp, is

'oounded as rollows:

. <Uu ’ . n+l_ - :
. = 3" R DY .
- Ly 2 Lo(u,n+l) >i=12p (i). zl=qu(l) * Co(n+1)
where p(u) = n+l, u>l. But Cp(n+l) 2 Cl ana Ap(i) > Bp(i)’

for any i. Hence, by comparing with the expre§sion tor LOpt

in Bquation‘(3), L >

p > Loper @ contraaiction. Thus,

.p(l) = n+l. Similarly, it can be shown that p(n+1) = 1.

Thus, the permutation p starts with n+l and finishes with 1.
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The rest of the pfoot consists of showing by induction that
n must precede n-1 and then that n-1 must precede n—2_and SO
on. Incildentally, the fact that p(l) = n+l implies that ﬁ+l
must precede n. Assume that j+1 precedes j for u+l<j<n+1.
Let p(s) = u+l. A iower bound on the length of scheaule p is

L (1,5) = a 55 shtle . ———(4)

n+l * 2i=18p (i) * 2i=5% (1)
NOow, C

= Cl and the gummation of the B in Equatioﬂ

p(n+1) p(1)
(4) includes the secohd stade of all jobs.j for j2u+l by
¢
" o
hypothesis. If in aaaltlon U preceaes u+l then Znt; b (i) is :
& sum‘of'cu+l, Cl, and a subset ot {CZ, ooy Cu_l}.

For 1 < i < n+l,
. .2 . 3 . 2 A -
B, = Co = (i" + 1+ K/2 - (1i° - 1 + 2)K/2

(i + 1)K.

"

. : u-1 ‘ - ‘ _ _
Therefore, zi:l(Bi - Ci) = (u(u - 1)/2 +u 1)K

Rx iy = (u2 + u)K/2 - K.

~ u-l, _ 2 -

Hence, Zi:lBi'f (us + u)K/2 K + Zl l i

= (u2 + u)K/z + U lC (note C, = K)
1=2 1
2 -
U< (W + u + 2)K/2 + zi=2C

_ u- l
- Cu+ zl 2G4 -

Notice further that the ineguality holds if Bj is removea

trom the left anag Cj from the right for 1<j<u since Bj 2 Cj'

Thus, the sum ot Bl ano'ény Subset ot {Bz, ceey Bu_l} is

strictly less than the sum of C, 41 2nd the corresponaing

‘subseg qf'{CZ' (Y Cuuple

Comparing the expressions for_Lp(l,S) and Lopt' it

follows that Lp(l,S) > Lobt' Hence, either u+l preceaes u or
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a contradiction is obtained. By induction this property

nolds for a\l u. i

Theorem 4.5: The l-maximal flow shop minimal length

scheauling problem is NP;complete.'
IS .

Proof: Given an instance of 3-PARTITION with set
{al, .oy a3n}, the a, summing to nK anda K/4 < a; < K/2,

construct the following instance of a l-maximal flow shop

.
/

problem.

Use all the jobs in Lemma 4.2 and include the
following.

A = 6, for 1 < j < 3n.

n+i+j © Sn+i+i - 2597 Pnii4
The target scheaule length is D = (n3 + 9n2 + 38n + 48)K/6,

which is the optimal schedule length of Lemma 4.2.

After scheaulingjthe first n+l jobs as specified in
Lemma 4.2, n equal perlods of length K can be obtalned on
processor 1 by shifting tne tirst stage tasks gg far right
as possible (this has beep done ‘in Flgure 28) and there
are n’Similar periods appropriately positioned OQ the thira
processor. Thus, the tinal 3n jobs can be scheduléd in-these
spaces\}t-tne 3-PARTITION problem has a solution. Observe'

that the resulting scnedule is indeed a permutation

schedule.

Conversely, it is only necessary to consider scheaules

for the flow shop wnich contain the first n+l jobs in their

>

ot
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L4

optimal oraer for otherwise the*deadliné, D, will definitely
be exceeded, by the uniqueness property of Lemma 4.2. It is
obvious that none of the flnal 3n jobs can be 1nserted into
tne sKeieton betore the first job (i. e.'n+l) or after the
last job (jOb 1) . Furthermore, if some of the ‘final 3n Jjobs
with total processing time atxéhe tirst stage exceeding K
are inserted petween any two Jobs of the skeleton, N
aaaitional iﬁle.periods will be generated on ;he second
ptbceséor (see Figure 20) and the scheauie becomes

suboptimal. Hence, a,scheaule of length D can pe obtained

~only if the 3-PARTITION problem has a solution. I

Theorem 4.6: The 3-maximal flow shop minimal length

scheduling/problem’is NP-complete.

Proof: Similar to Lemma 4.2 ana Theorem 4.5. For the

lemma part use the jobs,
2

A, = (i - i+ 2)K/2,
By = (i + i + 4)K/2,
C. = (i% + 3i + 4)K/2, 1 < i < n+l.

The unique_optimal'permutation'is (1, 2,...Y/n+l). The same
set of jobs as for Tnéoiem 4.5 1s added to the above set of

s

‘n+l jobs. : ' ' : _ 0
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4.3 COraerea Three Stage Flow Shops

The results of theiprevious section shbw that, with but

one exception, the mlnlmal ‘length scheaul;nghproblem for
. B \.‘

J-maximal ana J-minimal three- -stage flow shops is

NP-complete, In this sectlon, the flow shop is further
res£ricted 80 that it is j-maximal and at the %ame’time
k—miniméi tor some jfk,;l$j$3, l$k£3. Thus, for eacﬂ jobithe
task on a certaln processor is the largest and the thsk on
one of the remalnlng two processors is the smallest. Th;s

leads, to an oraering of the tasks Ai, Bi, Ci for each job i.

iNote that the resulting shop is still less restrictive than

the case considered by Smith, Panwalker ana Dudek (1975).

Let L stand for the processor with the largest task of
each job, S the processor with the smallest task, ana M (for
medium) for the remaining processor. Then flow shops of the

type aescribed above can be classitied as follows:
IR

processor 123
LMS = l-maximal & 3-minimal
LSm = l—maxim;l'& 2-minimal
type of MLS = 2-maximal & 3-minimal
/flow shop‘_ 'MSL»=f3—maximal & 2-minimal
.. » | “ SLM = Z—ﬁaximal & 1<minimal
SML = 3-maximal & l-minimal ' .
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- Qﬁ\is clear that the O(nlogn) algorithm for scheduling
(N . .

(«\\: | '- \_/)//P 194

e
h.\\’/. . . )
the 2—m1§imal tlow shop works for' LSM ana MSL shops. -

similéi}§, the proot of NP-completeness for the 2-maximal
tlow shop apélies to MLS and SLM shops. However, thé LMS and
SML tlow shops present_a new problém; In the following
secpiohs, 0(n6) algorithms are given forfséneduiing these
types ot flow shop.,first, consicér LMS flow snoés.

/ ,
4.3.1 LMS Flow Shops

In computing the expression Lp, the length_of

- permutation p (i.e. the length of the scnedﬁle derived from
permutation p), the following convention is adopted. If
L§(x,y) =‘Lp(r,s) anda s>y then, use Lp(r,s) when thé‘aétual

indices that yield Lp are of partigular interest.

A set of n numbers {B; | 1<i<n} is-said to be almost
sorted in uescenaing oraer if for any B,, 1<i<n, there

ag

exists at most one value of j, i<j<n; such that B, < Bj..

"It will be shown .that there exists an optimal

4
permugation p-with Lp = Lp(u,y) which satisfies the

tol;owiﬁg‘conditions:v

(1) B,y < Bp(i+i).=> Cp(ij > Cé(i+1)' 1¢i<n. ip;' |
partieular By gy < Bp(py1) => Cpri) > Cprieny 1<in.
,(ZY:éﬁ(Q}»>'B£};§}'y<ksh,_ “‘VH'T-f¢; ; .~f€gz;ﬁﬁ%
“(3rw85fi):z-cP(V),,lgisvmr :

(4 {éﬁ(i) ' 1<ign} is almost sorted in descending order.,

a
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(5) If m is the minimum index tor which Bp(m) < Bp(u)‘and

m<u, then‘Bp(ﬁ)""’Bp(u~l) is sortea in descending

oraer. In addition, < B i>u, m<j<u.

Bp’(i) p(J)’

N ) ' . ~ o _ .
1he algorithm constructs an optimal permutation, p,

which satisties all of the apbove conditions.

Condition (1) indicates that in the scheduling process,
jobs with the same- execution time on the second stage may be

arranged 1in descenaing order of the thira Stage.

Shppose the job which wil: be in the‘v—th position in b
;*ds known (i.e. in computing Lp(u,v) it is known in. advance
JWHien:job will contribute the second inaex v). Then, the
jobs to precede p(&) and those to fpllow job p(v) can be
eetermined bf conaitions (2)hand§(3); Thus; the remaining
sfl~JoDs are psrtitioned ieto two subsets -

(a) those jobs with B, > C "~ and_

p(v)’

(b) those with B. < C .
1 p(v) .

The jobs in subset (a) must be executea before job p(v)
o

while those in subset (b) must be executed after job p(v).
The actual value of the index v will then be determinea-by

the size of the subsets.

Now, suppose further it is known in advance wnlch Job
‘w1ll play the role of p(u) The Jobs 1n subset (a) can then

-be partltloned further as follows.e

.

and

(c) those Jobs w1th b 2 Bp(u)’ nd -

(d) those w1th b -
<. p(u) "
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NOwW the Jobs in subset -(c) must precede job p(u).

(Ctherwise, if there is i, u<igv, with B > B then

p(i) p(u)’
(i v) > L (u,v) anda L # L (u,v).) By conaitions (4) and

(b), it k jobs in subset (d) preceae job p(u) they must’ be
the K largest in (af'ana-must immediately precede p (u)

sorteo in descenaing oraer, and k = u-m.

It 1s clear that the above conaitions are not
sufticient to detgrmine an optimal permutation. There are

still three unknown parameters, p(v), p(u) and tne number,

-

. K, or the previous paragraph.

o

‘Therefore, the algorithm tries all possible
#

combinations of the following choices:

(I) choose job p(v); use‘task C to partition the

p(v)
femaining jobs into subsets (a) and (b) -as above.

(11) from subset (a) enOOSe job p{u); use B to

p(u)
partition the remalnlng Jobs in "{a) .into fc)
ana (d). .
(III). choose k > ¢ so that the largest k tasks of subset

(d) will precede job p(u).

The decisions I, II, III will be said to be optimal :
whenever there exists an optimal almost sorted permutation.
for Wthh the choices are correct. It is shown'latep ho;‘to
obtaln a pe:mutatioﬁ p, if one exists, for«any set of
deciSiohs I, I1, and III. The algorithm obtalns ‘all such

permutatlons and selects the shortest one.
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first, the above conditions are shown t0 hold for some
optimal permutation. Conditions (1) and (2) are proveda in

the following lemma.

Lemma 4.3: There exists an optimal permutation p for an

£ b then

LMS flow shop sucn thatilt B p(i+lk

p(i)
C .. 2cC_ .. .
p(1) p(i+l)

Proof: The proof is by construction. Suppose p is

< <

optimalf Bp(i)‘ Bp(i+l)’ and>cp(i): Cp(i+l)' Consider
permutation q obtained fromfp by interchanging p(i) and
p(i+1)'in p..We show that Lq < Lé»by showing thét for all x,
¥, lexgy<n, Lox,y) < L,(u,v) for some u,'Q,vl;uivin. The
«folléwing cases exhaust the possible values of x and y.
CASE 1:  x < y < i. Lq(x,y) = Lp(x,y).
CASE 2:  x < i, y = i. -
Ly (x, 1) =7Lp(x,i+1) +Coii) - By (1) -
.  Ssince Cp(i) € By (i)’ Lq(x,i) < Ly (x,i+1) .

CASE 3 X <i, y=1i+1.

p(iy ~ Spli+y) -
Lq(x,i+l) < Lp(x,i+l),

Lé(x,;f1).=-Lp(x,i+1) + C
S s Cogy <Gl
CASE 4: = x <'i, y > i + 1. L, (x,y) évgp(x,y).
CASE 5: x =1i, y = i. | | |
| Lo (i,i) = Lp(i+1,i+1) + Coiy = Ag) -
Since Cp(i) < Ap(i)"Lq(i'i) < Lp(i+l,i+l)f

CASE 6: x =i, y =i + 1,

pq(i’i+l) .Lpfifl'1+l)'+ o) F % -

MRS
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Since C p(i) < Cp(i+1)'and Bp(i) < Ap(i)’

L (1 1+l) < L (i+l,i+l).
CASE 7: X =1, vy > i + 1, _
Lq(l,yl = L (1+l,y) + Bp(i) - Ap(i)‘ |
Since Bp(l) i A (1), L (i,y) < L (1+1,y)..

CASE 8: x = i+1, y=1+ 1.

Lytitl,i+l) = Lp(i+1,i+1) * Bo(qy t Co(i)
T Pprirn) T Cpieny ’
Since (i) € cp‘i+l) and_sp(i) < By (i41) 7
| : Lq(i+lfi+l) < Lp(i+1,i+1)f '
CASE 9: x =1+ 1,y > i+ 1. B
Ly(i+tl,y) = Lo (A+10y) + By gy = B (i1,

Slnqe Bp(l) < Bp(1+l)’ L (1+l,y) < L (i+l,y).

"CASE 16: i+ 1 < x < y.‘Lq(x,y) Lp(x,y).

Therefore, Lq‘i Lp andsq\pustvperoptimal for otherwise
the optimality of p is contradicted. Aftef a finite number
of sucn exchanges, an optimal permutation which satisfies.
the lemma is ootained. ‘ | _ ]

‘\( . ’
| Corollarz There exists an optlmal permutat1on p for an

LMS flow shop such that if Bp(i) < Bp(i+l) then

> . | : -
Coiy > Cprivn) L K
L’Ptbot:isame as thé_proof of the .lemma dsing the .

< C

ana- C p(i}l)

‘1nequal}t1es Bp(i) < Bp(i+l)'
' ... and .
< Bp(ien). @nd Cp(yy < C

instead of -

p(l)

B (1) p(itl) "
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Lemma 4.4: Let p be'any permutation tor an LMS flow
shop with length L (u,v). Then, C > B for v<k<n.
p g p( ? ) r p(v) p(k)’ ) ‘.4,
5 -
Proot» Note that 1n an LMS flow shop A c2 Bi‘z Ci;'
1<ign. Slnce length of p 1s L (u, v),~L (u,k) < L (u, v), tfor

-v<k$n._Thls implies

. E? 1 p(i) + z§=u p(i) + z1 kcp(l)
< Z1 lAp(l) + ZZ qu(i) + 21 =v p(l) N
f> z§=v+l pgi) < zl =v p(l) . i |
=> ZE;&+pr(i) + (ﬁ) < 25_&+lcp(i) +,§é(v).
Since Bp(i) by Cp(i) for any i, i; follqws that
'_Bp(k) < C-p_(v)_’__ - | - A

Thejtbllbwing lemma is neeued to facilitate later

proofs.

Lemma 4.5: There exists an optimal permutation p for an
LMS flow shop such that if & .. < B . then
L v p p(i) TR (i+l) €

C ,.. > b 1<i<n-2, i+1<j<n.

p (1) p(3)’

Proot: The,proof’is again bY"construction. Let p be
optimai with»Bp(ii <, p(i+1) and such that the permutatlon q
obtalned by 1nterchanglng p(i) and p(i+l) in p is no;

‘»optlmal We show that Lq = Lq(r,1+l) for some r,_1$r$;+1jfhy

. proving that.Lq(x,y) < Lp for y#i+l1. By the corollary to

.Lemma 4.3, Cp}i) > Cp(1+l) The followlng cases (similar to

Lemma 4.3) are’ obtalnea.

CASE 1;'. x < Y < 1._Lg(x,y) = Lp(x,y).
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CASE

Ny

X < i, y =i : ' .
L, x,i) EL (x,i+l) + - B ... .
(1) p (*ritl) Cp(l) o p(i)
”Sl C - "< B . L (x,i) < X,i+1).
| nce p(l) p(i)” q( r1) < Lp( ’ )
CASE 3: x < i, y

1 + 1., ** unknown * %
CASE 4: X < i, y> i+ 1. Lq(x,y) = Lp(x,y).

CASE 5: X =1, yv =1,

L
Lq(;,l) = L (1+1 1+1) + Cp(l) - Ap(i)’ :
‘:Slnce Cp(i) < Ap(i)' Lq(lcl) < Lp(1+l,1+l).
CASE 6: X =1, y =i+ 1. ** yunknown *k -
’ ’
CASE 7:- X =1, y > 1 + l.,
y (1 ) = + + ' - -
| Lq(l,g) L (1 1,y) Bp(l) _Ap(l) .
Slncelbp(i) < Ap(i)‘iLq(lfY) < Lp(1+l,y).
CASE 8: X =1i+1,y =i +s5k. ** unknown **
CASE Y: 'x = i + 1, y'>'i‘+ 1. o
| Lq(1+l,y) = L. (1+l,y) +, Bp(l) p(i+iff |
’ Since B _ L _(i+1, < L (i+1 .
p(r) Pp(it) gttt v < plittrd),

CASE 1#: i+ 1< x < y. Ly (xy) = Lp(x,Y)Q

/

Sincé q is not opﬁimal Lq > Lp but from the above |
cases it is clear tﬁat L (x,y) £ Lp whenever y#i+1. Hence,
there exlsts r, 1<r<i+1; such that L (r, 1+l) D> Lp:;IEJL;;'
follows that L (t, 1+l)(> L (r,]), 1+l<3$n. By-Lemmé 4.4, av
', or C |

1+1<3<n.x"- R

q(1+1) > q(J) P(1) ? p(j)'

It is convenlent to first prove. condltlon (4) in the‘

next lemma ara use the result 1& prov1ng condlthﬁg%3)

Lemma 4.6: There exists an optlmal permutatlon p for an.

.
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Lms flow shop such that {B J liiﬁn} is almost sortea in

(i) ’
'oescenolng order. R
' Proof: The-proof ‘is by induction on the size of the set
R € ) ' ‘ ‘
B . e s B . . e b
{ p(i)’ ' p(n)} ‘
’ : ~ ‘ .
Initial case: {B . is almost soptead in descending
Ind * {Bp(n)} s almost sopte 9
order.

- -

Induction step: Suppose. {B ... 1
nduc ion ep: upp e { p (i +l)' ’Bp(n)} is almost

sorted~1in descendlng order. If B 2 B then the

P(l) (1+l)'
almost sortea conaition holos for posutlons 1,...,n I1f, on

&
the other hano, p(l) < p(1+l)' then, by Lemma 4 5,, ‘

p(l) > BP(J)' ]>1+l. Now,iSane B > C

p(1)’ 1t follows

p(i)

that B > B

p(1) ]>l+l.

P(i)’

Hence., in an case b yee.;B } is almost sortea
: enes Yooaser Bpiyree Byt s © |
in. aescenaing eraer. TN S _ B

v , : . ‘

) ' . 4

Lemma 4.7 proves«a stronger result than CoantIOD (3)

'whlch is stated in the coroliary.

‘Lemma_ 4.7: There ex1sts an optlmal permutatlon p for an

2 for l(l(]in.“

LMS flow shop such that Bp(l)

pm

Froof-‘Let p be an optlmal permutatlon satlsfyang

Lemmas 4 3 to. 4 6. We flrst show that B ' 2 C

g ™ %o 1
P(i-1) * By then Bb(J 1) 2 Cp(3yr

’va(j) 2'Cp(j)' If Bp(j;l)mg Bp(j),.thenybyethe\forollary tot.

' —— o
Lemma 4.3 C } C 2. CP(J l)' we -

P(J)'
51nce

al’ld since B_

P(J 1) P(J)’ P(J‘l)

- ¢

2
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obtain b > C_. . . Thus, in either case
S PG- T Tp@d) r s ases

b 2 C L.

p-1) = "p(3)

> L - . . .
Now consider the case of arbitrary lndices 1 and 3,

1<i<(j-1)<j<n. This case is trivial if B (i) 2 p(j) As for
Bp(i) < BP(J)' since {Bp(i) | lglgn} is almost sortea in
qescenaing order, Bp(i) 2 Bp(k)’ i<k£n, k#j. In particular,A
B_,.. 2> : , a B_ . - > L by proot of first
"p(i) * Pp(i-1)r @09 By gy 2 Chyy. (by proot of fir _
t). H , B . > - : ) .
part) ence b (i) Cp(]) , 0
Corollafx: It Lp = Lp(u,v) then Bp(l) 2 Cp(v)’ 1<igv.,
Proof: Follows directly from the lemma. _ ]

B

The tinal condition (5), is given in the next lemma.

Lemma 4.8& Let p be an optimal permutatlon for an LMS

.

tiow shop wnlcn satlsfles Lemmas 4.3 to 4 7. Let the length
or p be Lp}u,v). If m is the minimum index'for whickes

B < B ana m < u, then the subsequence
p (m) p(u) _ s :

A v . f%ﬁﬁy_ ..
bp(m)""’Bp(u—l) is sorted“in’descending oraer. In

< B i > u, m<i<u.

addition, B :
a 1 .._n,’ p(])' | ; . v ,A_ ,‘yv,..

p(i)
Proof: This follows directly ﬁrom the almost sorted -
condition. ' |

This concludes the proofs of the five condltlons.FWe

. now show now to obtaln a permutatlon p whlch corresponos to

"a set ot de01510ns I,‘II and III,:1f such a permutatlon

i exlStS.,,..w
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kecall that after making the aeclsions i, IT and III,
tne rtollowing situation results.
(1) The first (m - l) ]obs are those with b 2 Bp(ﬁ).
(2) The next k = u - m jobs consist of the k jobs which.

have largest seconua stage among those with secona stage

less_than Bp(u)'

(3) Next job is p(u).

(4) Job p(u) is followed by theﬁremaining jobs with

Pp(u) 7 Bi 2 Bpyy- o

(5) Next comes job p(v).

(6) Tne.remaining jobs follow job p(v).
The second group may be empty depending on decision III. The
actual values of the inaices m, u and v are determlnea by
the sizes of tne above sets. The tlrst step- is to sort each
group in cescenolng oraer of bi’ using adescenaing order ot
C, (Lemma 4.3) wnenever there is a tie between the b, . This
results in an ‘initial almost sortea permutatlon P wnlch is

further moalfled by tne follow1ng procecure ALSORT where'g:

w.necessary.»

s a s

In order to clearly explaln the operatlon of proceoure
’ALSORT, two-operatlons,'cycle anc sort,'are def1ne0~on a

pair of indices i, j as follows. Applying the operation

cYcle(i,j) to a sequence {Bl,...,Bi,...,bj,...,B } proéUces
the sequence {Bl,...,Bl l’Bl+l""'Bj Bl,...,B }. Applying
rtne operatlon sort(l,J to the above sequence reverses the .

eftect ot the prev1ous cycle operatlon.iln other words,-

RN EE P S
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/

execution tlmes ot all thlrd stage tasks follow1ng C

AN ' 114
\ _ ,
cycle éotates the elements in pOS1t10ns i through j one

place to tne left ana "sort" rotates them one place in the

,opposite direction. Intuitively, cycle operations will be

§Erformed on the permutation initially obtainea by sorting

the jobs as indicated above so6 as to reduce the length of

°

The almost sortedvcondition implies that there exists a
disjoint set of indgex pairs {(s(i),t(i)) | 1<igT}, where
s(i-1) < t(i—l)°< s(i)'< t(i), such that p may-be obtained
trom_the permutation suppiied to ALSORT by applying
cycle(s(i),t(i)), 1<igI. The*hdmber'of pairs,'I, is
1nitially‘uhknown;but_oounded by n/2.'It wrll'be shown'that'
for an optimal set of decisions I,11,111 procedure ALSORT
will fina an optimal 1naex set ana perform the requlred
cycle operations.

For any permutatlon E iet E(l,J) De the earllest tlme _fﬂa

that tasx 1 ot job p(j) can be flnlSheG and Y(j) the sum or’

{J)’ in
the permutatlon schedule correspondlng to p. A procedure to

“calculate and update the .values of'E(i,j) and Y(j) 1is

neeaed. Set E(i,@) = E(#,j) = @, 0&113, ﬁijin, and set
Y(h)‘= 6. Then, the values of E(i, 1) ana Y(J) can be
computed w1th the relatlons- S .

Y(j) = Y(J+l) + C 0§J<n, and"

p(J+l)'
E(l J) = MAX{E(l l:J) E(l.J l)} + t, 111{3,_113sn,

wnere t is A B ( ) or C

p(])’ p(]) dependlng on i. ThlS
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computation 1s proviadea by proceaure LENGTH(p,X,y)
(Procedure 5) wnich calculates w(i,]), 1<ig<3, x<£j<y, ana
Y(J), x£3<y, with the assumption that the pboundary (i=@g,
3<x, 3>Yy) contains apgropriate values. Clearly, this
procedure\requires.oniy O(y-x+1) time. Note that E(3,n) = L

ana E(3,3)) + Y(]) = MAX{Lp(i:j) | 1<i<j}.

Oncé the decision set I, II and III has been Specified,
Lp(u,v) can De‘calculated. Thus, ALSORT starts by computing
Lp(u,v).‘Essentially, the algorithm seeks an almost sorted.
permutation,ip, with Lp = Lp(u,v). This is done by fnsuring
“that mAX{L_(r,3) | 1<r<j} € L(a,v), 1<j<n. Thus, for eacn
~ position J starting from 1 up to n it checks if |

MAx{Lp(r,j) I 1£r<j}‘> L_(u,v), . ——=(5)

P

~oort E(3,3) + ¥Y(3) > Lp(u,v).
~There are two- cases to be cons iaderea dependlng on the

‘dp051t10n j, lQJSn.'u

'lCAée l:vnsﬁﬁu.kor j=u,-when‘u<m) or J=v. For this case,
‘1f the Inequallty (b) holds then the dec151on set I, Ii, 111
cannot pe optimal 1i.e. there does not exist an almost sorted‘d
seduence p Wwith Lp‘= L (u,v). The procedure CHECK(p,x,y)
(Procedure 6) is used to check that the Inequallty (5) does
:not nold between any two glven p051t10ns X and Y. The
“loglcai value returned hy the procedure 1nd1cates whether or

not the condltlonnifs been detected in the given range. This

'procedure also takes O(y-x+1) time.

“
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Proceaure LENGTIH(p,x,y); . .
l. begin comment Ai,bi,ci, 1<i<n and E(i,]), #<ig3, B<j<n
T ana Y(3), 1<3<h, are global variables.
Ai'Bi’Ci are task lengths for tne LMS flow shop;

E(1,]) is earliest time task i of job j can
tinish. E(i,0) ana E(@8,3), @£1$3, ¥<j<n, are
initialized to 9. ’
Y(jJ) is tne sum of task lengths C (k) ’
Y(n) is initialized to g. P

p 1s the permutation under consSideration.
E(i,j) and Y(3j) are updated for Xx£j<y. vy

Jj<kg<n.

2. for j := x until y do
3. begin for i := 1 until 3 do

i= (A

4. begin t ..,B .. ,C de ai on 1i;
, 9 p(3)" P’ P(J)) pending on 1

5. -~ E(1,3) := maximum{E(i-1,3),E(i,j-1)} + t;

6. . end; - :

7. end;-

8. for j := y-1 step —l until x-1.do ;
Y(j) := Y(J*l) + C ; '
9. end; p(3+1)

PROCEDUKE 5

Case 2: 1l{j<m (or l$j<u‘if u<m) , u<j<v or v<j<n. Fof
these pos1t10ns, it the Inequallty (5) holds at 3, it is
'Stlll p0551ble tnat there exists ~an almost sortea
permutation with Lp = L,(u,v). To discovér such a
permutatlon,'an attempt is maoe to pertorm a cycle (i i, )
operation, where 1<i<j<m (or 1<€i<3<u) or u<i<j<v or v<i<j<n,
depenaing on which of above ranges j falls in, so that the
inequality no longer holds for all positions from 1 to 5~
inctusive. This may require. that a prev1ous cycle operatlon
be reversed (a sort(i,j) operatlon) in order to accommodate
‘a cycle operatlon at a higher 1naex since tne permutatlon'

must at all-times remain almost sorted. These checks anad

\

6‘.



117

proceaure CHECK(p,x,y);
1. begin comment procedure checks:-to ensure
' L (r,3) < L (u,v) x<jgy, lirsj.

Loglcal value FLAG 1ndlcates success or rallure,
LEN is L (u,v).
Other vaglables are as in .Proceaure 5.

2. FLAG := true; A

3. LENGTH(p,x,Yy); : L

4. J := x;

5. while FLAG and j < y do

6. begin if E(3,j) + Y(j) > LEN tHen FLAG := false;
7. J =3 + 1;

8. end;

9. feturn FLAG;

1@, endg;

PROCEDURE 6

necessary cycle operations are carried out with the
.proceaure ChECKCYCLE(p,x,y) (Procedure 7) . Note that after a
cycle(i,J) operation, this routine uses the CHECK procedure-

to test it (5) no longer nolas. ‘It is easily seen that the

proceaure takes no more than O(nz) time.

hus, procedure ALSORT (Proceaure 8) computes Lp(u v)
and w1tn the aid of the procedures discussed above, attempts
to find a permutatlon p w1th Lp = Lp(u,v) by

(1) checking that Inequal;ty (5) is not true for m<j<u (or

J=u tor u<m} and j=v, ano'

(2) ensuring (performlng approprlate cycle operatlons when

_necessary) that Inequallty {5) does not hold for l£J<m‘¢;55f4

.. (or 1<3<u for udm), u<j<v,_ana v<3£n.w;L,_i;;t;.jigff:“‘”

In order to prove that procedure ALSORT works asﬂj,"

BN . R Ve g e

requlrea, the follow1ng lemma whlch 1s in. a sense a stronger .

s B T YR TO R P 2 I L ST S R

eV
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proceaure CHbCKCYCLL(p, ,y), -
.l,ybegln comment proceaure perrorms the Ssame checKs as
proceaure CHECK but - tries to perform CYCLE
‘-operations. at proolem spots;
A stack of cycled index pairs 1is maintained 'in
arrays 5-5T(*) ana T-ST(*) with the top pair being
5-5T(TOP) ana T- ST(TOP),‘ :
2. FLAG := true; S ) Lo L
- comment - 1n1t1allze ‘stacksy o .
3. TOP := @; S-ST(TOP) := @; T— bT(TOP) := ﬁ-,
-+ comment cnéck next- p051t10n and if - necessary cycle
4. for j := x until y do

5. begin LENGTH(p,j,3):

6. if E(3,3) + Y(J) > LEN then .

7. _ ‘begin comment there exists r such that

: Lp(r,j) > L (u,v);

‘8. . ’ FLAG := false; i := j - 1;

9. - while not (FLAG) and i 2 x do
1. ' begln if i = T-ST(TOP) then
11. ‘ : "begin SORT(S- ST(TGCP) ,T- ST(TOP)),

S 12. LENGTH(p,S-ST(TOP) ,T-ST(TOP) ) ;

13. comment pop stack; TOFP := TOP - 1;
14. end;
15. CYCLE(i,j); LENGTH(p,i,J);:
le6. : if CHECK(p,1,3j) then
17. ‘begin comment push stack;
18. ‘ " TOP:=TOP+1; ,
1y. S-ST(TOP):=i; T-ST(TOP) :=3; .
20. ‘ FLAG := true; :

Z21. end else
22. begln SOKRT(1,3); LLNGTH(p i,3);
23. . i:=i-1;
24.. a end;

25. end; b
26. " end;
27. - end;

28. return FLAG;

29. end; ‘ff‘{'F,*g;x;ﬁﬁ:;lf“;'qﬁT‘fj;i:flfi”iﬁxi;gf e

[P



Froceuure ALbORT(p m,u,v);
1. begin comment global variables are expiaineda in
Proceoure 5.
P, m, U, ana v have the same significance as in
the text. LEN is the length ot the modlfled
permutatlon at ex1t-" : .

-LCOmment tirst compute Lp(u,v);'

i L <V L en- - .
.‘25,LbN .f zi-lAp(i) +'zi=qu(i) + Zi—v p(i)?
comment check and if necessary cycle 1n positions 1
: to m-1;

3. HIGH := u~1l; if m < u then HIGH := m~1;
4. if HIGH > @ then

5. begin LOW := 1; | :
6. if not(CHECKCYCLE(p LOW HIGH)) then goto NOGOOD;
7. ' ena;

. comment check p051tlons m to u (or just u);
8. LUW := m; if m > U then LOW := u;
9. it not (CHECK (p,LOw,u) ) then goto NOGOOD;
comment check (ana cycle) 1n positions u+l to v—-1;
1p. if v-u > 1 then
11i. - it not(CHbCKCYCLE(p,u+1 v-1)) then goto NOGOOD;
comment check position v;
12. it not (CHECK(p,v,Vv)) then goto NOGOOD-‘
comment check (ana cycle) in p051t10ns v+l to n;
13. if v'< n then
14. if not (CHECKCYCLE(p, v+l n)) then ‘goto NOGGOD;
comment permutation found;
15. LEN := E(3,n); goto DONE;
comment failed to obtain: permutation, abort;
- 16 NOGOOD LENGTH(p,l n), LEN :ts E(3,n);
”17;‘DONE ena- AR “xxA'

' ff.:.'PRQCE.D_U:RE.~8.7 S L
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. jobs p(s),...,p(t) are rearranged as:

ana thus. L (%, i)” Ly (x, 1) ? Lp, a contradlctlon. Similarly, .
.KsupPOSe L Fx k) > Lp for some X. Slnce Bp(t) >IBPKK)' | |
p(k) p(k)' ana & (1),2 Cp(l,, x<1<t, it follows that =~

version of Lemma 4.5 is used.

-Lemma 4. 9:'Let o be an almost sorted optimal

‘permutatlon for an LMS flow shop with the positions s,...,t

. cycleo. Let q be a permutatlon such that q(l) p(l), l§1<s,

Do

p(s),..,p(k l),p(t) p(k),..,p(t ‘1) in positions s,...,t or q

~ana the - remalnlng Jobs are 1n any order 1n q. Then, the

tollowing hold. A

| (1) L}q'("x,'i/)k Lp, 'igisl__c, 1<xgi,

(2) inére_exiscs;i,'kéist,lsucn that Lq(X,l)‘> Lp for some
X, 1<x<i. | |

Proof: First assume that»jobs p(t;l);.l.,plnf;are in
tne same. oroer-in G as in E- |
Note: that Dy prev1ous lemmas (the corollary to Lemma 4'3l1nd
partlcular), o does not contaln any unnecessary cycled -
posxtlons. Hence, g must be sub-ogtimal since in q (s,k)
rather than (s,t) is cycled.'Now; the only positions in g
which differ from those of p are in bositions'k‘to t, thus:

Pi Bp(ky e By (eo1) 1By ()

qg: Bb(t)'Bp(k)"""‘°'Bp(t-l)

If there. 1s any position i<k such that L (x, 1) > Lp ‘then .

*tne change trom q to p does not atffect the value of L (x, 1)

'

L (x,k) S L Lx t) Tneretore,‘Lp < LS(ffk) < Lé(x»t))

“again
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a contraaiction. Hence, part"(l) lelows; »

Now 51nce g is not optlmal there exists some 1>k such
that L (x,1) > Lp for some x, 1<x<i. But suppose that there
1s no such igt. Slnce the only dlfference between q and p
_ocgcuy - in pos1t10n (k,...,t), X must satisfy kgxit for
otnerw15e L (x ‘1) = L (x,1). ‘Now, for k$x£t we have
Lq(xil)_g_Lp(t,;) since "B’ (i) p(ly,

By(x) = Bp(x-l) < By gy ano Bo(e) € Bp(r)- But

Ly (x,1) < Léft,i;:implies that~Lp(t,i)‘> L, a

x£1<t, and if x>k

contradiction. Hence, there exists i, k<igt, such that

Lq(x;i) >_Lp; for some'x, 1<x<i. Thus part (2) is proved.

It 1s clear that if- the jobs - in p051t10ns t+1,...,n in

q are not in the same sequence as in p, the aoove

conclu51ons Stlll hold 51nce ‘the oroer ot these jObS ooes-

not attect the values L (x 1) for i g t. o ”f T "U‘f

"Lemma 4.1@: ProcedUre ALSORT will perform an optimadi

set of cycle operations when the set of decisions, I, II,

I1I, is~optimal. The procedure requires at most O(n3) time.

Proof: Suppose an optimal set of decisions I, II, III
" has been made. Then there exlsts an. optlmal almost sorted
{germutatlon, p, with Lp-= L (u v) where p(u) and p(v) are

the jobs chosen 1n I1 ana. I ana the Jobs Bp(i)' m$1<U,'are‘\

the jobs chosen in III, wh1ch are less than Bp( )" Now, p
dlffers from the permutatlon passea to- ALSORT only in that

*

'»the cycle operation has been performed once on a. d1s301nt
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;~set:ot inaexvpairs_{(s(i),t(i)), Iilﬁisl}jas pfévidﬁsiy._
notea. It is sutficient to show that ALSORT will find all |
the requrred positions s(i),t(i) and pertorm the correct
cycle operations;.thereby der1v1n9 P- lhe case of oniy one
cycle rs stralghtforward Suppose the flrst k l cycles have
been found, yielding an 1ntermed1ate permutatlon Q. ‘then by
' Lemma 4.9, there wiill be a p051t10n, i, in the range of the
krth cycie for which Lq(xfi)‘>va = LEN, for some X, iihii.
Since this is precisely the condition that ALSORT testS) the
proceaure will seek for the 1noex s(k) ana subsequently

cycie(s(k),l) 1n oraer to remove the conaltlon.

‘Notice ‘that even 1r the true cycle i's-on (s(K),t(k))
wniie the algorlthm 1n1t1ally trles to. cycle(s(k),l),

'S(K)<1<t(k), tnen part (l) ot Lemma 4 9 ensures that a's"“ ,

.
-

7temporary solutlon con81st1ng ‘of* cycle(s(k) 1) ex1sts ana

part (2) ensures that the. proceoure will subsequently seeklv.e:‘.-,-

'to cycle(s(l),t(l)) since any" partlal cycllng does not
p oy

entirely remove the conoltlon trom the positions

-

s (k) ,'...,t'(k) )

The complex1ty ot ALSORT is domlnateo by the callsvto
the CHECK and CHECKCYCLE procedures.. Since- only one of these
“is callea tor each ], lSJin, and 81nce CHECK is lanear and
ChEChCYCLE requires at most O(n ). tlme, it follows that .

proceoure ALSORT takes at most O(n ) time. _,',,_,ﬂ

The main algorithm is presentea in Procedure 9.
& ’ A '
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 _Algorithm LMS-FLOW; °‘
1. begin comment p is the permutatlon unaer test OPTPERM
‘ - 1s the optimal permutation after running the
~valgorithm, .LEN ‘and OPTLEN are the lengths of p.andg -
OPTPERM respectively. PSAVE is usea to save the
-permutation p betore aecision IIT is "made so that -
it can be restorea for alternative cnoices. Other
variables are explalned in Procedure 5. It is
assumed that the ihitial pre- sorting ip descending
order of C within B, ‘has been done;

2. for i .:= ﬁ until 3 do E(i,P) := 9;
3. for j := # until n do E(ﬁ,]) = P;
. comment initialize permutation to
4. for i := 1 until n do p(i) := i;
comment obtain an upper bound for schedule length
5. LENGTH(p,1,n)3; OPTLEN := E(3,n); OPTPERM := P; :
.. ---comment  try all, comblnatlons of dec151ons I, I, ITIf.
L6 for i r="1 until n-do

X(n) = P

sorted order;

7. .. begin’ comment index-i. makes. decision I; - o
'-8',' fina v 27i such that B p(x) 2 C?(V) > Bp(y)’
R l$x$v<y£n), - ' e S o
,9.;;J'sC¥CLE(1 V)3 LhNGTH(Prl V) R EE
14. . . for .k := 1 until .n.do psave(k) p(K); e
11.  “.for:3. :=-1 until v ‘do. ..

“12. _ begin comment index jJ maKes oec151on I1;

- 13. - tor u := j until v do

l4.. . .. .pegin comment inaex u makes dec151on IIr;
15. . if 3 < v then-

Sle. oo begin if u < v ‘then o

17, ‘ o begin CYCLE(J,u); LENGTH(p,J, u),
1. _ - m = 3; if m = u then m_:= m+l;
16. nd else goto NEXT; : :
20. L end else m := v+1; -
2. . . ALSORT(p,m,u,v);

22. 0 if LEN < OPTLEN then . :
23. : -+ begin OPTLEN := LEN; ’ "

24, ' .~ for k.‘l until n do OPiPERM(k)°*p(k),
25. . . _ . - end: o ’
o ' ‘comment restore p for' next ch01ce I11; .
26..- -~ . " for k =1 until n do p(k) 'psave(k),\
27. - LENGTH(p,1, n); ‘

- 28. ' end; : .

'29. . NEXT . 'end; : o

Lo comment restore sortea input permutation;
36. . for k :=1 untll n do p(k) := k;
31. - .end; o
32. end; ‘ e

~ BROCEDUKE 9 -
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Theorem 4.7: Algorithm LMS-FLOW finds an optimal

permutation tor an LMS ftlow shop in time at most O(ns).

Proot; The algorltnm tries all combinations ot choices-
I, II ana III, and must at some stage -have "an optlmal
aecision set. But by Lemma 4. lﬁ procedure ALSORT produces an
'.optlmal permutatlon wnenever the dec1s1on set 1is optlmal.
| Hence, this algorlthm w1ll flnd at least one optimal -

'permutatlon.

4 s T

The three ch01ces proouce at most n> 1n1t1al ;m

-

permutatlons to . be modifiea by procedure ALSOKT: whlch takes

only O(n ) tlme. dence, an optimal permutatlon will be found

" in o(n®) tlme. | o Y'.'r""rfﬁu~V.fﬂ‘J"

-1o Note that the algorlthm tr1v1ally requ1res only O(n)
‘space.,

é
4.3.2 SML Flow Shops

—--

Algorlthm LMS-FLOW can be used to schedule an SML rlow
‘shop as follows. leén an SML flow shop- with ]obs (A B

=i

'gi), 1g1<n, with A < B; € Ei,‘apply algorithm LMS-FLOW to

the flow shop wlth A' = £n+l -i’ Bi\= §n+l—i’ Ci = én+l—i'
1<ign, to get an optimal permutation-p = (p(l), ... ,p(n)).

. ‘ o
An optimal permutation for the SML flow shop is

£ = (PM), pl), ... p(l)).

Theorem 4.8: Thérébove[app;icqtion of ‘algorithm

e

’



LMS- FLOw proauces arf optimal scheaule for an SML flow shop

[

in tlme O(n ).

[

Proot: An SmL problem can be regarded as one of

'mlnlmlzlng the length ot a scnedule builgt from the end

backwaras w1th-eachtjob executing.first on,processor 3, and
T - . . 4 o

uthen~on'processor;2 and . finally on progcessor 1. From this

point of view, an SHL flow shop problem becomes an LMS flow

shop problem and thlS is pre01sely the approach taken.

; - . . < R ’ ., )
The preconver51on before appllcamlon oﬁ algorlthmj
LMS FLOW as well as’the ‘fifal conversion of p to. p are

“linear. Hence, algor1thm{an optlmal 1s tound 1n at most

{

o(n®) time. . f" _ :f" | o

y . - > A R - -

4.4 Discussion

The tore901ng results on some spe01al structure_'

, three stage tlow shops are summarlzed in Flgure 21 In the

-~

Venn alagram, ‘each c1rcle represents a J—mlnlmal or

@ :
j—max1mal flow shop (l$J$3) Thelr 1ntersectlons lead1ng to

the LMS and the . other types of flow-shop con51derea and the

i

assoclated complexltles are 1nd1catea. Although the

algorrthm for tne Lms\ia;:BSML) ﬁlow sh0ps is polynomIal in ”
N
n, its runnlng time of O ) makes 1t hlghly 1mpract1cal _

lmprov1ng the given algorlthm ar dev151ng a faster one

»

-

possibly w1th a completely dlfferent approach remains an

*
. s
B Y . o ¥

open problem. jlh' N S S

o . N . . . - A »

.
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1-MAX

'-FIGURE 21.@

HeLotLonshﬂgggond compLext%Les 
of the spectal 3- gtoge Fng shopgs
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’ Chapter Five

.200\.

OPEN SHOP SCHEDULLS

S

e

Another processor bouna system of interest is the'open
shop which is closely related to the flow sHOp. The_only“
differénce between them is that in an open shop, no
.retrictions are placeda on the order in wnich the tasks ot
any job are to oe oone. Thus, an open shop consists of mx1
processors, Pi' lsigm,-and nx1 jobs where each job has m
component tasks and the j-th task of the i-th job is to be
performea on the j-th processor for any 1i. Tnisvcnaptet
deals mainly with the problem of tinding optimal
-non-preemptive scheaules for the flow'shop with the mean

tlow time performance measure.

¢

5.1 Survey

’The propblem ot finding minimal length'scnedules for tne
open shop has been studied by Gonzalez and Sahni (1976) who
: prov1de some motivation for interest in thlS partlcular
model and Gonzalez‘(1976). Gonzalez and Sahni presented a
‘linear algorithm for the 2-processor preemotive and
non-preembtitevsystems; and for m > 3 gave an efficient
algorithm tor preemptive schedules, while the non;pfeemptive
proolem was shown to 'be NP—complete. Gonzalez subsequently

,presented a faster algorithm for the preemptive case when

127 _
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m 2 3.

As for the mean flow time minimization prooiem,
Gonzalez (1979) sHOWed NP-completeness for the case of an
arbitrary numoer of processors. For the case of only one
processor, a well-known solution, reported by Smith (1956)
is to schedule the tasks in order of non- decrea51ng

execution time.

In the following, the mean flow time problem is shown

to be NP-complete for‘two processors. Subsequently, in

. - o . .
Section’'5.3, tignt bounds on the mean flow time of an

o

arbitrary schedule ana an SPT scheaule are obtained in terms

‘0t the optimal mean flow time.

;

5.2 Complexity of Mean Flow Schedules

Ihe 2-processor mean tlow proolem is shown NP-compiete 
by-a reauction from 3—PARfITION (Section l.2.2). The open
shop to be constructea consists ot a large number ot_jobs'
but their number and the sum of their lengths will be

polynomial in' nK. There are four types of jObS, the T, U, X

.ana Y—jObS. U~jobs are further diviaeaq 1nto V and w- jobs.

The X and Y-type,Jobs are large jobs which must beﬂthe,last

]obs in the scnedule 1n oraer toéﬁeep the mean flow small.
Furthermore, their executlon must not be delayeo beyona
certain spec1f1c t1mes if the bound D is not to be exceeded.

’

Ihe T~jobs, which have very large tasks on processor 1
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comparea to the T and U-tasks.on processor 2, are used to
generate fixea-size qaps on the secona processor Wthh can
nly pe tllled by the U jObS if ana only if the glven'

instance ot 3-PARTITION has a §olution.

. For convenience in specifying the different types of
Jjobs, a job willvbe given as aheordered pair (x,y) where x
is the time taken by the job on processor l‘ana % ié the
time taken onbérocessor 2. The notation S(X), F(X)

introduced in Chaptér 1 for the starting ana finishing time

of a task (or job), X, wiil be adhereaq to.v

Theorem 5.1: The 2-processor open shop. non-preemptive

mean flow scheduling problem is NP—complete.

Prooft: Given a 3-PAKTITION problem with n, K and the
set {al...a3n}, consiaer the tollowing 2-processor flow

shop:

[
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T-0S: Ty = (0, @) Tyt (6o9), 1.4
‘ g‘iw‘&;ﬁéﬁéj“Xi"'; (x, @), if:iﬁs'g <hy T
Y—jobs: Yi = (B, ¥Y), 1 <1< h;
U-jops: V; o= (8, v), - 1<E<n, 1<3i< (-3
éno wi % (8, v+ai); 1¢ i i 3n;’ !
where.u = 3nK + 3n + 1, | g = 3nK + 3n + 6,
v = n(K + l)g, 4 .t = uv + g + K,
x = 2(n + h)t, Y =X, |
s = (n +'lfg + ﬁnK +'nug + n(n - 1l)u(g +‘K)/2,
ana  h % .s + 1.

The bound D is given as D = X + Y + T + U, where

e e e
X, = sh_ (nt + ix); |
Y, = 2?=1(nt + g +~}y);
T, = ST=@(9 + it);: | ,
ana U, = 3nK + T]3GY (g + it + v)).

x Suppose tne'B—EARTITION problem_has a éélution; Use the
schedule suggested. in Figure 22. Scnedule,:on the tirst. |
processor, tasks Tilll, lsiﬁn,rto;lowed by X, (11, lgich, and
on the second processor,” tasks TitZ], ﬁ(ign, fo}lowed'by
Yi[ZJ, 1<i¢<h. This yields the templaté of Figure 22. in,each‘w '
of the n hatched areas on:the second processor place (u-3)
Vetype tasks followea by'the thfee W-tasks corfesponding to
the tnreé’elemenﬁsaof one of .the 3—element_p§rtitions.

‘Clearly, the X, Y and T-jobs contribute xe,ﬁYé and Te to the

b
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mean flow t1me. Slnce there are exactly three W-type tasks

'with sum (3v+K) in eacn hatched area, the contrlbutlon of

T the~i—thrhatcnedva=‘e,»ﬂsls(n—l), 1s less than'

B

. 35)). (Note that the: three W tasks ;111
pe the last to' -neCuted in each hatchea area.) Hence the
Uejoosf contrlbutlon to the mean tlow time is less than U P
ana the bound ‘D is not exceeoed Dy the mean tlow time of the

scneaule.

NOW, supéose,there‘ekists‘e.schedule with mean flow
time not exceeding the bound D. For brevity such a schedule
will be referred to as a gggd schedule. The proof of the
theorem is completed by showing that the oe51red 3—-element
pdrtitions must ex1st Th1s, in turn, is done by showing
that 1f there is a good schedule, then it can be reducea in
polynomlai t ime (1.e. polynomlal in nK) to a good schedule

vw1th the structure ot Figure 22. The following‘intermediate}
results (lemmas) are required for this porpose.o
5,1 In a good scheoule,‘S(x-[l]) 2 nt'and
S(Y [2]) 2 (nt + g), 1lgi<h. Hence, all T[l]*tasks are
executeaq betore any XLLJ tasks anda all T[2] and
'U[2]-tasks are executeq before any Y[2]-task. Without

loss of generality, it méy‘be'asSUmed that the X[17,

Y[2] and T- tasks are executed in 1ncrea51ng order of

their 1noex i,

5.2 1n a good scheaule, S(Xl[l]) = nt and

|}

s(yy(2]) = nt + g. - .
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In addition, F(Ti[ll) = ti, #<ig<n.
5.3 In a good schedule, during the tirst (nt + g)‘time
units, at least u tasks are- executed on processor 2 in
| . . any time’ 1nterval of length (t - g). - o |
5.4 A gooa schedqle cah be reduced—1n*polyhomialftime?to
one in which F(Ti[l]) < S(Ti[2]),-ﬂ£i$n, andg

CE(T (2)) g F(T,,,[1]), b<i<n. ' . T

i+l

5.5 A good scheoule can bée reduced in polynomiai time to
one in which S(T [2]) - F(Ti[l]) < v.+ K/2, #<ign.

5.6 In a good schedule satistying all previousvlemmas,-at_
nost (u + 1) and at least (u - lf U-tasks are executed
between Ti[2] and Ti+l[2],‘z£1<q. |

5.7 In a good scheaule satisfying all p:evious‘lemmas;
EXACTLY u U-tasks are executed between Ti[2]'and
Ti+1[2],'ﬂ$1<n. ' |

5.8 In a good scheaule satisfying all,previous lemmas,

S(T;[2]) = ti, B<iga.

‘Lemmas 5.1 and 5.2 establish the fact that the
Til]—tasksvare”aone in the first nt time units ana are
vlmmeoiately tollowea by the le]-tasks. InAaddition, the
‘X[ZthaS&s are the tinél tasks to-he done on-processor*z ana
they must start precisely atvtime-(nt + g), thus leeviho,no

-idle time on that processor.

:The'maid“conclusionstofxLemmas~5 3 to 5 8 are given in

5.7 and 5, 8 (the others are requlreo merely as. 1ntermed1ate

'steps in the proofs of these) By Lemma 5.8, S(Ti[2]) =’t1;~



134

p<i<n. At.this point, one obtalns a good schedule wnlch is
51m11ar in structure to that of Elgure 22. Lon51oer'a‘good
scheadule which satisfies tneﬂlemmas. Then-3-elements' l
partitions, Hi;'lgiiny are,given by |

By = {a, |-S(T; 102D < s l21) < sy 20y

i
by Lenma 5.7, tnere are u U-tasks, U [2], w1th
»b(T- l[2]) < S(U [2]) < S(T [2]). Slnce the‘V[Z] type tasks
have iength V ana the- w[2] tasks have length less than
(v + k/2) ana greater than (v + K/4) and these u taSKS'cover
an intervaliof t - g =uv + K w1thout leav1ng an idle

periOd, the u tasks must contaln exactly three w[2] -tasks

with total lengthvlv + K.

.Hence, the open shop has a Schedule w1th mean flow tlme'
not exceedlng the deadline D if and only if the“3- PARTITION

o

problem has a solutlon. -

‘The proofs ot the lemmas follow. The etfects of the
lemmas are taken to be cumulative. In other _words, when

proving any lemma\it/{s assumed that a good schedule which

satisfies the pfeviouSlyvproven lemmas'is available.

Lemma 5.1: In a good schedule, s(x [l]) 2 nt, and
‘S(Y lzj) 2 (nt+g) ,. l$1$h Hence, all. T[1l]-tasks are executea
before any X[l]—task, ana all T[2] ana U[2] -tasks are

_executed Detore any Y[2]—task. Without loss of generallty,

s o

one may assume that.the X[1], Y[2] and T—tasks are executeq

in increasing oraer of tneir index i,
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Proof: It can be assumed that all zero- length tasks are
executed at time @. Flrst, suppose that only the first
;nequallty 1s v1olated, i.e. S(Y [2]) 2 (nt + g) for all i
" but S(X [l]) < nt for some 3._5uppose tnrther that only one
X-task, Aj[l],‘starts before time nt. Now, compute a lower .
bouna for the mean f1l6éw of the scheaule. The Y-jobs
contribute at leaSFﬁxeﬂ Since x = 2(n + h)t“isﬂgreater than
(ht +'g)”ano no f—task is executing on:pr0cessor 2 betore
_time (nt + g), all otner processor 2 tasks can oe tinishea
Detore E(k [1]1). Hence, the remalnlng tasks on processor 1
~after t1me E(X [1]) are completeiy independent ot tasks
remalnlng on processer é and@gare therefore scheauled
optlmally in non-decreas1ng order of thelr executlon time.
‘Hence, tne x—Jobs contrlbute at least |
Xb = x + Z l(x + nt + ix) = xe?- nt.

‘Now,.s1nce S(x [1]1) < nt, at least one of the tasks T, (1]
must execute after task x [1]. Hence the T-jobs (consiqer
only the Tl1l]-tasks) contrlbute at leastA |

Tb = x + Z l(t1) = T + X - (n + l)g.

Flnally, the contrlbutlon of the U-jobs to total mean flow
t1me may be B\nndeo as tollows. Since each U-task on the

secono processo: is at least vV in length a trivial lower

,bouna tor their flow is

o] .1= [
U = 3nK + X (Su l(1uv + Jv - g - it = jv))

U“f Z?:l(iv)~ shT l(ZJ l(1uv + Jv))

e

Ue - 3nK

+

>: (S“l(g—lg—um
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U, - 3nK - nug - n(n - l)u(g + K)/2

=‘Ue - s + (n + 1)q.

Adding these values together gives a lower bound of

Yo +Xg 4 T+ U

Ye + Xe + Te + Ue + X - nt - (n+l)g - s + (n+l)g

=D + X —'nt - S.
‘Since x is‘strictly greater than (nt + s) the schedule
cannot be a good one.
&
Now suppose that only the second inequality in the
lemma is violated. Assume S(Yi[Z]) < nt + g for some i. By

similar reasoning, one obtains a lower bound of

Yb = (Ye - nt - g} for the Y-jobs, xe for the X—joos,

CT - (n+l)g) for the T—JObS and (Ub + ¥ - nuv) for the

"U -jobs, if a U[2]—task executes after Y [2J Alternatlvely,

one gets a lower bound of x + yb 'b + Ub if a'T[2]—task

executes after Y, [2]. In either case, y = x is large enough -
/ .
to ensure that tne/lower bound is strictly larger than D.

Flnally, con51der the m1xed case where. some X [l]
starts pefore nt and “some Y [2] starts before (nt +9). It
brollows that'some T[l]-task will execute after X [1] ana

either a T[2]-task or a U[2]-task w1ll execute after Y [2].

it a U[2]—task follows Y [2] then lower bounds of x T

+ Ipr Ty
ana (UD‘+ Yy - nuv) are obtalned 1n.tne same manner as above.
Again, the total,lower bound is too large. The only
remaining case is wnen a T[l]—task that follows x [l]

_belongs to the same Job as a T[2] task that follows Y [2]
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In this case one obtains a. lower bound of

Xb'+ Yb + Tb + Ub = D+ x - 2nt - s f g >‘ D.

Since the X [l], Y [2] have the same length it can be
assumed that they are executed in order of increasing ‘
inaex i. Similarly, since the T.—jobs for 1<i¢n have the
- same length ‘tasks on each processor 1t can also be assumed

that the order of execution on the first processor is in

increasing index i. : 0
‘Lemma 5:.2: In a good sScheaule, S(Xl[ll)\= nt and

S(Y;12]) = nt + g. In addition, F(T,[1]) = ti, g<i<n.

Proot: Note that x [1] ana Y [2} are now the first x

-ana Y- tasks to be executeo among th’\x ano Y jobs on the

, tlrst and second processors respectivély.

By Lemma 5.1, S(X[11) 2 nt and S(¥,[2]) 2 nt + g.
Suppose S(x [IJ) > 'nt. Then the flow for the x Jobs is at
least.Zu_l(nt-+ 1 + jx) = Xe '+ h. The- follow1ng trivial
lower bounos for the other jobs are ea31ly obtalned-‘Yé for
the Y—JObS, (‘1‘e - (n + 1)g) for-the_T—jobs (obtained by
' consxderlng only T[l]-tasks)} and Ub for the U-jobs. Addlng
these togetner leads “to a lower bound of
(D+h -s) = (D + 1) for the sChedulA, ﬁhich}contradictsa
the tact that it is a goodrscheaule. The case

: S(Yl[ZJ) >nt + g is similar.
»

Tnus, 1t follows: dlrectly that there is no idle perioa

b4

P
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on’ the tlrst processor for the rlrst nt time unlts and on”

_the second processor for the flrst (nt + g) time unfts.

Thus, F(Tilll) = ti, @<ign. : §

Lemma 5. 3. In a good schedule, durlng the flrst

4
(nt + g) tlme_unlts, at—ieast“u‘tasks are executed .on

processor 2 in any -time interval of length (t - g}.

Proof: Recall that there i§ no 1dle time on processor 2

,aurlng the first (nt + g) tlme units. The nUmber of tasks

executeo in the 1nterval is at least J = (t -~ g) / (v -+, K/2)
sSince every taskaexecuteo before (nt + g) on processor 2 has
length not exceeaing (v + K/2).

NOW ' V=n(K +.1)g > an > nKu > uk/2

e = K > uk/2 < ov - K2

=>uv + K> (u-1)(v +K/2)

1) (v % K/2)

O
=
pos
|
Q
o
c
|

‘In an open shop, there is no restriction on -the order

in whlch a jop'! s tasks are pertormed It has been assumed

‘that zero length tasks are executed at t1me 9. However, the

T~ ]ODS have non-zero - tasks on both processors.‘The tollow1ng

“

‘_‘,lemma snoxg that there ex1sts a good schedule which executes'

<

them 1n the same processor oraer, first on processor 1 and

then on processor 2.

Lemma 5.4: A good schedule can be 'reduced in polynomlai
T :
time "to one in thCh F(T, [1]) g S(I [2])' ﬁiién and

~

\.':‘i
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A}

F(Til2j)_s F(Ti+l[11L; ﬂgign - 1.

_ <«
Proof- The proof is by constructlon. Recall tnat as a.

consequence of Lemmas 5.1 and 5 2 there 1s a gooa scheaule

in whlch E(T [l]) = t1, f<ign.

Consider‘first the T—jobs whose T[l]Atasks are executed
before their T[2] tasks. Scan the schedule from left to
rlght .look ing for tasks T [2] such that, T ,

s(T, 121) » F(T [1]) = ti. It must bpe ensurea that

E(T-[Z})e( t(i+l) If this is not the case, perform the

i

tollow1ng operatlon as often as neceSSary. .

Operation I: s
. Find the first U-task, U ; on. processor 2 precedlng
, c IR R

::T.[ij Remove U ﬁ@rom the schedule, shift the tasks

\ rollowung U yand including T [2] to the lett to
" take- up the f “”‘i'l vacated by U., and-insert U, after
Ti[2]. T D

. ; %

It must be shown that 1t is poss1ble to. apply the
operatlon untll F(T [2]) < t(1+l) and that each appllcatlon
does not increase- mean flow tlme. Slnce _ o
E(T, [2]) = F(T;[1]) > t and the total length of the |
T(2] tasks 1s (n+l)g Wthh is less than t - v - K/2, the',ﬁﬁf
-ex1stence ot a U task,'Uc, w1th S(U ) 2 ti and ;
F(U ) i S(T [2]) 1s guaranteed. Now, any T [2] -task betﬁeen
’Uc ana T, [2] must have F(T [2]) < S(T. [lJ),‘so that shlftrng .

u‘sucn a task to the lett does not generate any confllcts w1th

’
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ta5ks on processor 1 and does not atfect the flow t1me of
job TJ Now( the flow t1me of task U '1ncreases by at most
(n+l)g;wnile that of task 1 [2] (ano hence of job T. )

3

decreases b& at least v.* Slnce v = n(K+l)g is much greater
// !

than (n+I)g, tne”total mean” flow t1me ooes not 1ncrease.

In the second stage consider those T-jobs whcse
< T12] tasks are aone before the T[1l]-tasks. This time scan
the scnedule trom right to lett ana perform operatlon II

0N .
whenever a Ti[2] y}th’F(Ti[2]) < S(Ti[l]) is encountered.

Operation II:
Fina a V-task, vc, sucn‘that.
(ti +g) < ch’) <“(ti +'V + g). Remove T,{2] from the
SCheaule, snlft the follow1ng tasks up to and ‘including
’”V o the left to take up the 1nterval vacated by
.[zl, and 1nsert 1.[2] after V . If among the shlfted
-\ tasks a I (2] con;llcts with T 11, exc?ange the Tj[2]

w1th the follow1ng task.

-

Again, It is necessary. to prove the existence of V and
.

show that Uperat1on I1 does not 1ncrease mean flow time.
jNOte tnat any T [2] which executes atter 1 [2] satlsfles the
first part of the lemma and must also satlsf\ the seccnd»
part (poss;bly, atter an earlier applica“ir‘ of II). -
Consequently, there is no task of length g 1n the t1me

. 1nterval [ti,t(i+1)) gsee Flgure 23)vana,at mcst one task,

Ti_llz], of length g in the %nterval [t(i~1),ti). Ihe task

»
a
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ot length g in [t(i-1) ,ti) must be aone before otner U-tasks
in the same interVal._Tnerefore, there 1is no task of length
é ln [ti-v=-K/2,t (i+]1)) (the lower limit of the interval over
which there are no tasks of length g can be decreased but
the above 1s sufficient for the proof). Now the interval
(ti-v-K/2,t(i+1)) has length t+v+K/2. Even if éll the
‘Ww-tasks were in this interVal their total length is less
than t - 3v and hence there is still room for at least four
V-tasks in the interval. Since the V—tasks are smaller than-
any w-task, they will be the tirst to be done in‘the |
intervail. Thus, within (ti-v-K/2, ti+v+K/2) there are oqu
V- tasxs or parts Or V-tasks, one of wnich will be identified

as task V .

Now con51der the tlrst task Vj[z] to finish atter time
ti. By above arguments thlS task and the one following it
must pbe V-tasks. yjlz] finishes pefore (ti + v + K/2) (wnicb
-is less than (ti + v +g)). If Fkvj[Z])r— tifz g, then
cnoese VC = Vj[2], otherwise cnoose the task fOllowing‘it
as VC. Hence, F(Vc) - ti < v + g. In either ease,
ti + g < E(V,) < ti+ v + g.

The'operation'proceeds to.remove Ti[2] from the
schedule, shift the following tasks,‘say J in number} up to
ana includingfv to tne left by a clstance of g and insert
Ti[Z] atter Vc: Slnce F(V Yy 2 ti + g, after performlng II
there cad‘be no contllctbbetween Ti[z] and Ti[ll. HoweVer;

it may be necessary to resolve some conflicts between some
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Tj[ZJ ana Tj[l] where the Tj[2] is among the.tasxs shiftea
lert. Tnis is aone by exchanging the Tj[2J with the task
tollowing it. (It is clear tﬁat tne following task is a
V-task by the same line of argumeht that was used to

determine vc)

Now, since any intermediate T[2]-tasks already'satisfy
the second.part of the lemma, in any interval [t(j—l),tj),.
where E(Ti[2]) < t(3-1) before ITI was applieaq, thepglgan be
only one task Tj_l[ZJ of length g. By Lemma 5.3, the same
interval must contain at least u U-tasks as well. Hence

&

. \ !
there are at most | J / ul T[2)~-tasks among the shifted
tasks., (”

L] » ) : - ‘ .
Ine etfects of Operation II on the mean flow time of

"the scheaule can now be computed. The flow time of jbb 'I‘i
increlases by ét most (V + g). Tne J tasks'shifﬁed to the
left lose at least Jg flowlﬁime}€1n addition, th;
intermediate T[2]-tasks may gain at most | J / u v in
exchanges to resplve éonfliéts. Thhs, for thg lemma to hold,
it mﬁst be shown that*jg 2v+g+|J/ ul, where J 2 u.
(Since the J tasks—eoaér at least the 1nterval [t(1 1), t1],_
J must be no less than u.) Let J = cu-+la, q‘z 1l and - |
7] s'd < u. _ "

Jg 2 v +g +|J/up
<=> }cu + d)g 2 v +1g + cv . , o 1_
<=> 3ncK +.3hc + é +d2nck + nc +nk +n + 1, é’; 1,

which is easily .seen to be ttueﬁ'There are no other changes
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to the mean tlow time. Hence, a good schedule can be reduced

to one satistying the lemma. . | 0

Lemma 5.5: A gooa scheaule can be reducea -in polynomial
et A eyt i,

time to one for whicn b(T 12]) -~ F(Ti[lj) < v + K/2, 8£ign.

EEQQE:‘Consioet a good schedule satisfying all previous
lemmas. S(Ti[2]9 - F(fi[l]) £t - g. Furthermore, in the |
interval (ti, ti + t) there is ho task of‘size g on )
processor 2 other than T.[ZJ. 1f
S(T [2)) - F(T [l]) >V + K/2, then the task preceding |

[2], a U[2]-task, can be eéxchanged with T [2] w1th no

increase in mean flow time, and no conflict in the execution

of Jjob T 'sihce that task must start after t1 = F(T [l]) _ﬂ

Lemma 5.6: In a good Schedule satisfying all previous
lemmas, at most (u + 1) ana at least (u'— 1) U-tasks are

‘executed between T [2] ana\i [2}, 6<i<n. .

Proof: The proot is similar to that of Lemma 5.3. By
Lemma 5.5, the interval between T [2] and T [2] is no

smaller than (t-g-v-K/2) ana no larger,than (t—g+v+K/2).

Suppose there are fewer than (u 2 1) U ~tasks in -the
-'1nterval Their total length-;s_at most nK + (u - 2)v.
Now, "av = n(K +-i)g > hK --K/2
=5 av K/2 -~ v > nK + uv - 2v
= t-g-v ~ K/2:> nkK + (ﬁ - 2)#.

(by definition of t)
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Thus, there will be idle time on processory 2 and by Lemma.

5.2 the schedule cannot be a good one.

Similarly, suppose there are more than.(g + 1) U-~tasks.
Theilr total length is at least (u + 2)v. .
< Gl <
Fsut v o> 3ks2 ‘ . | |
A‘=> ue + 2v > uv + v + 3R/2

» .
=> (u+ 2)v >t -g +v + K/2. (by definition of t)

s -

Hence, at most (u + 1) U-tasks can be present in the
interval. v . |

!

This condition can be tigntened further as follows.

Lemma 5 7: In a gooa schedule satlsfylng all prev1ous
lemmas, EXACTLY u U tasks are executed between T [2] and

l+l[2], ﬂ$1<n.’

§599£:'To beginbwlth; consider in what‘ways fhis Iemma'
can pe violated.- If there are less than iu U—tasks precealng
1. [zj then the total length ot tasks precealng T (2]
(incluaing lezl, J < 1) onvprocessor 2 is at most (;g +
(iu —‘l)v + nK). This is less than the time interval, ti;
which it has to cover as
ig + (iuv->l)v + nK»< it = i(uv + g'f K).
Thus; there are at least iu U-tasks preceding Ti[Z]; Now ,
}olet ki,‘ﬂiig(n - 1), be the numbe of'U~tasks in the
»interVa% betwgen Ti[2I‘and'Ti+i€?], : f

. . : //' "o
Suppose k, = u + 1 = k_, and k; = u for p < i < q.
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Then, there are ((@+ 1 -p)u+ 2) U- tasks between I {2] and
q+l[ZJ w1tn total length at least ((q + 1 - piu + 2)v.
Iogether with the tasks T. [2], pglsq, this glves total
~length at least ((g + 1 - p)u + 2)v + (g + l ~--plg which" is
greater than (g + 1 -~ p)t + v + K/2. 51nce the latter value
expresses the maximum time 1nterval avallaole for the tasks,

as 1mp11ea by Lemma 5.5, this is not p0551ole.

’

Collecting these facts together, namely, that

ki = (u=-1), uor (u+ 1), that 3.y (k) 2 iu, and that it

is not possible to have,kp = kq =e(u + 1) and k; =u for
. . A

4

P <ix<agqg, one can concldde that the (u + 1) and (u - 1)
'\yalues of ki-occur alternately starting with a (uh+ 1) and

finishing with a (u - 1), with the u values interspersed.

It is now. shown that the bound D 15 exceeded if k is

d
’

not equal to.u for ﬂsli(n - 1). A new lower bound U for the

tlow ot the U~ jObS can now be. computed as

UC = 1 b(>Jll(g + Jv + t1 + E. 3).

The term b "2 B will compensate for the fact that the- T [z]

-cannot start early enough after a kp =u + 1 and before the

"

tollow1ng k =u-1.
2 ~1, k. o |
_ - n- _ el T
Uc - Ue 3nK + S 9(5 ;1(g+3v+t1+E ) Zj=l(g+]v+t1)).

B . . -

With respect to the sequence ks outside of those ®
..subseéuences~starting with_a (@ + 1) and:endiné with"a”
(ukf 1), the Ej term is zero and the corresponding
 summations in the aopve'canCel out. However, it iskshown

R . . v ' : LY
below that if there is at least one ‘



. 147

(u+ 1), u, «.., u, (u - 1) such subsequence then
UC + Tc - Ue - Te’> B, where TC 1s a corresponding -bound for .

tne T-jobs.

-

Let Rp, :ﬁ:f K&ibevone sPcn subsequeeqe. Task’Ti[ZJ,
p<i<q, cannot start until after’ .
pt + (1 - p)g + (e!’— plu+ 1)v = ti + v - (i - P)K. .
Thus Ep = g anag E = v - (i - p)g, p<igqg.
in ihe expre8810n tor (UC - Ue) the,sdmmatidns‘corresponding
to the eubsequence are

Z;+i(g + Jv o+ pt)(-‘Zgzl(g + v +.pt)

zq_p+l(2 S LN

+ ZJ 1(9 + gt + jv + vV - (g - pP)K) - Sljl;l(g + gt + jvv).

After 51mp11f1catlop,.thls become's :
| -(q - pI (g + uK) - Zq_p+i(u(1 - P)K) .

where the summation in the second term_is zero if q = b + 1.
eowever, on comphting the.ldwer<bound To tor the 1-jobs,
. agaln the values to be summed out51ae the subsequences are
tne same as in tne summation tor Tr.rFor the subsequence
above, one obtalns‘ | |

By Zq p+l(9'+ ti +v :'(i 4fp)K) - $?=p+1(9 + ti)

=V - (g - pPK+ Sq ! celV = (i - PIK)

as the dlfference in the two summations.~since

vv - (q - P)K > (q - p)(g *+ uK) + 3nK and
':v - (i - p)K > u(1 - p)K, p < 1< 9, the overall bound is
strictly greater then D. Note that the 3nK term in the

4

: def1n1t10n.of Ue ‘has been taken»care of, while the bounds
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tor X and Y-tasks remain X, and Yel

%% K -

Thus if there 1s ak re;at one subsequence of the t
vuescrlbeo the flow time 1s“stf;ctly greater tha ﬁ
.vd [ KA

ki = u for Dils(n—l).

~Lemma 5.8: In a goed'scneaule satisfyihg the previous
. ‘?“. h !

lemmas, S(Ti[2]) = ti, pgign. SRR

Ezggéz Giyen'a geod SCheeule,whicn'satisfies “the
prev1ous lemmas, assume that S(T [2}) > ti for some i,
ﬂilsn. Then the following lower bounds for ‘the 30Q§ flow
time are‘ea51ly determ;ned; Xe for the X-jobst Ye_fpr tHe‘
Y-jobs, (T_ + 1) for the T-jobs; and'finaily‘at least
(Ue + u - 3nK) for the U—JObS (the u term is 1ntroduced by
bthe delay on the u U—jObS between T [2] anc Tl+l[2]) Aadlng
these together gives a Dounq_pﬁ (D +:u + 1 - 3nK) thch is
greater tﬁan<D. Hence, the lemmaemust be true. : b

Tnismconciddes the proof of the theorem. i

5.3 " Heuristic Solutions

The previous sectieh showed ﬁhe Zeprocessdr,h-job mean
. tlow time ‘scheauling pfqblem for the.open'shovaP4cemplete.b
In this seetion, tight bounds. on the mean flew time of an
arbitrary séhedﬁle and'of a schedule obtained using the
shortest‘proeeSSing’time (SPT)“first'heurisﬁic as compared
to the mean flow time of an optimal schedule are Obtaiﬂedx;m

~

o



case.

Let the n jobs be J, i 1l < i < n. The 3j-th task of

i-th job is J. [j] and has executlion time.t, [j]. Let

T; = 2J.;(t5031) ana.T = $i-1(T)). T, is the total

processing time for the i-th job, while T is the total time

for all the n joobs. For'any schedule Z the mean flow time or

)

Z will pe aenoteu by mft(Z) Tne notation fdr starting ana

tlnlsnlng time of a task (or jOb), a, will be as usual S(a),

o

«

F(a). (If 2 is suoscrlpted S and F may be. given the ‘same:
subscrlpt to indicate clearly that startlng and flnlshlng

-

times are given with respect to the particular scheaule %).

Theorem 5.2: Let Z be an optlmal mean flow scheaule

tor an m—processor open shop w1th n ]ObS. Let Z be an

mEt(2z)
mft(Zo)

arbitrary schedule.:Then, < n.

Proof: Without loss of generality, assume that.the‘jobs
are completed in‘tne oraer J1 2""’jn; In the'worst case,
no task ot job Ji is starteo before Jy l has been completea.

hence, F(I;) < S;=1(Tk).

! . ‘ " <n i
Now, mEt(z) = Ej_(F(3;)) < S, (Fp (1))

1l

Z?;l(n + 1 = i)‘Ii < nT.

i

. _ <n
MEE(Z5) = 2j-1(Fg(34)) T E_(Ty) =T |

> mft(2) /n. ) : D
The bound giveq above is asymptotically tight as illustrated

by the following example.
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Example 5.1: m = Z..The jobs are J

l’ Jz’...’Jh'*'l,

where  t, (1] =t;[2] =1, 1< i < n;
tn+l[l] = X; th+l[2] = 1; .x > n. .
The. schedules Z ana 4, are given in Figure 24. In the

figure, tasks for the i- th JOb are 1n01cated by integer 1i.
(In general, an optlmal mean flow schedule is not a mlnlmal
length schedule. This- explalns the fact that schedule Z in

Figure 24 is actuaily longer than scneoule 2.)

mtt(z) = (x + 1) + Z l(x + 1)
= (n+1)x +n(n+l)//.+l.
mft(zo) = Z“ %(1 +*1) +n + x + (n + 1)

X + n(n + 5)/4.

‘ mit(Z = fn + 1)X + n(h+l)/2 + 1,
Therefore, EEETES% = X ¥ (n + 5172

which approaches n+l as x.approaches infinity. 0

Now consider the case tor the SPT heurlstlc, in. whlch
Jobs are processed in order of non—decrea31ng processing
time. The [U_e is normally 1mplemented as follows: Suppose
that the j-tn processor is avallable, and JObS J and Jk
have no tas\s currently under executlon anad thelr tasks tor
p;tne J-th »hgcessor nave not yet. been executea, then J, [3] is

' chosen t. execute Defore J [Jj 1f T < Tk'

;,Tneorem 5:3: Let Z_ be an optimal mean'floﬁ'time ’
SCheaule for an'm4processor~n-job flow shop. Leths be a

schedule constructed with the SPT heuristic.

. -
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mtt(Z ) ) C -

?hen, mtt(Z £ m.

1 2
mEt(z ) = z l(F (J, )) <’ b l(yk l(T ))

Proof: Assume T. < T. < ... < T, -

Let (g(l), q(2),...,q(n)), a permutatlon ot the first n

1ntegers, be the order in which the jobs. are completed in -
. / '

8 i ] |
.. - - i,_ . . l ‘ . . ‘

Therefore,

mte(z,) = 3 1(F Ugqi))) 2 -Tioy (g j(m/m)

1Y%

mEt(z ) /m. - - o

As for'tne prev1ag§ theorem, the bound 1s

asy ptotlcaily tlght as 1llustrated by Example 5 2

‘0- Example 5. 2- Ihere ace ‘m+l jObS Joy ee. d
o ! lf ‘ m+1
Py . ’ ' el
processors, wheﬁ? g | = 4K?:
g 'l for j =-1. - ' : T
tl[jll. e - R
- " B for 2 < 3§ < m.

>

© le” 2fori=1,0r 3§ =i, :
e d31 = T T
2 $\1 £m - @ for Z;S-Jhi-m,'j #Ii.j,;_d : .
_i>. . s..thOr'j/;Q}.(x > 2) . ' | S
‘th+lt1] 2. for 3 = 2.

: R
P for 3 < j < m. -7

The SPT ana optimal schedJIé‘

Flgure 25, As in Example 5. l,' asks for the 1 th Job-are.

"y
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W . mL
mft(zs) "1 + (x + 3) + X “l(x + 1 + 2i)
if_..‘ . =mx +m? + 3.
MEE(Z_) = 1+ 2m + 2 + x + zT;iz(i + 1)

= x.+ mcm‘+‘3) + 1.
mtt(z ) . - 2

, : mx + m>” + 3
Tnerefore, _TETE_T T X Fo@m T 3) 1

t

which approaches m as x approaches intinity.

~
-

5.4 . Discu'ssion

The main contribution of this chapter is the reduction
trom 3- PART TION or the -2-processor open shop mean flow time
,scheaullng problem, thus show1ng Ehe problem to be

NP-complete. One may conclude as well that the problem
t‘;n .
) remalns NP-complete when the number of processors m > 2,

© Thus the relaxatlon of the constraint- that each jOb'S tasks

be processea 1n the same processor orager in the flow shop

“moael ylelalng an - open shop, still leaves an 1ntr1n51cally

[

K]

In adaltxon to the above, t1ght ‘bounds have been
‘derivea for the mean flow tlme of an arbltrary schedule anof

' for an SPT- schedule in terms of the optlmal mean flow time.

.‘k

'Slnce the number Of JObS is usually much larger than the

-

number of processors, the bounds 1ndlcate some advantage of:

' SPT scheculés “over arbltrary schedules.

{



. ‘ Chapter Sfx'

" CONCLUDING REMARKS

-~

1

Leterministic processor scheaullng is of practical and
\tnééretlcal value to computer science as well as many other
01801p11nes and &as sucn its study is a worthwhlle endeavour.
In thls the81s, several models of scheoullng tHeory have
been con81oered, relevant prev1ous work surveyed and some
51gn1f1cant results were obtained.

For some minimal length problems, polynomial algorithms

have been‘developed; namely; an 0(n6) algorithm for LMS and

SML three-processor flow shops and an O(n ) . algorlthm tor an

—processor bound UET system w1th two task chalns» An O(nZI)

algorithm is also glven ﬁor a tree Structured set ofhtasks
on a’ 2—processor bouno -UE'T system, where 1 1s the number of
termlnal subsets ot the tree. The later algorlthm can be-
extenoeo, w1th corresgonding 1ncrease in proce551ng tﬁme, to
more than two processors. This algorlthm is not polynomlal |
‘ih n but is a s1gn1f1c#it 1mprovement over tne alternatlve
of simple enumeratlon. Furthe;more, the dynamic programmlng
technique outllneo in the algorlthm can be applleo w1th any

terminal subset enumerator tq_proylde solut10n3~fdr similar

syStems.with more eomplex precedence constraints.
<

Several problems were also shown to be NP-complete.

These are mlnlmlzlng scheaule length on two-procesor bound

" . . -
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UET systems even when the precedence constralnts consist of
lchalns only, 2 -maximal three—processor flow shops and%?Xor 3
‘max1mal/m1n1mal tlow shops, ana m1n1mlzing the mean flow
time on the two—processor open shop. In every cgse, the
result tr1v1a11y holas wnen the number ot processors is
increased. wWith the exception of the 2-maxjmal tlow shop,
the results are strong NP-compliete reductions from the
v3-PART;TION problem./ .

* ‘Finally, in the'areé of performance'bcuncs; tignt
pounds were obtained on the lengths of 1list schedules on . '
identical processors for independent tasks with similar ~
£execution times, andyon’the meah~flom times or~arbitrary and

SPT scnedules tgr'the open shop.

There are still many-chailenging~Open problems in this
tield. The distinction between pfghlems whicn.have‘
polynomiel solutions and‘the NP-complete problems is a.
useful one ana there are problems. for whlch thlS
cla551f1cat10n is yet to be accompllshed These Lnélude
.m1n1m1z1ng the scneaule iength £3r equal executlon tlme
,tasks tor a tlxea number - of processors«m23, and mlnimizing

¢ r

the mean flow: t1me for m processors, equal €xecution time

¢

tasks and equal welgths, where the precedence. relatlons

constitute a tree or forest. . : .
s _
~
- o # ' B L

There_is“alsd'much to be done in the desién anda

~analysis of heuristic algorithms for the hard, NP?compiete}‘

K
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problems. The talrly recent technique of approxlmatlon

algorlthms (Sahni, 1975) i} virtually untapped and may leao

to exciting n%ﬁ solutions.

Although the work presented here has concentratea on
the more common mooels, there are others more su1table and
reallstlc for some appllcatlons.‘These include sdme types ot
processor bouna systems such as the job shop (Baker, 1974)
ana typea systems (Liu ana Liu, 1977; Jaffe, 1978). These
moaels as well as those considered in this thesis may also
-be stuoled in connection w1th other performance measures,
such as mlnlmlzlng lateness and tardiness, and m1n1m1z1ng

the mean number of tasks in the system at any time._'

PN

a
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