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Abstract

Programs that are true to theiv spectlications are still an elusive target of software
engincering offorts. In the hope of uncovering some insights and gaining new expe-
ricnee we have experimented with nsing a general. formal proof-checking system for
obtaining correet programs. The PC Nizar system is based on classical logic and
an axiomatization of set theory, and ncludes software for checking proofs written in
the Mizanr langnage.

First, in PC MizaR. we specify the set of binary segnences. define a nnumber of op-
crations on these sequences, and prove their properties. To each of these operations we
provide computational content implemented in Lisp. Then. in PC MIZAR, we specify
some constructive inference rules for whick we provide computational content- -thus
obtaining connectives for composing larger programs. Finally. we implement a sys-
tem which extracts Lisp programs from these parts of MiZar proofs which have
computational content.

We experiment with unary and binary encoding of naturals in binary sequences.
Then, we specify and prove properties of arithmetic operations. From the constructive
parts of these proofs we extract ~almost™ correct Lisp programs for arithmetic oper-
ations. We then discuss conditions under which the extracted programs are totally

correct.,
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Chapter 1

Introduction

Programs which satisfy their specitications arve the goal of many soltware engineering,
efforts. Yet. it still remains an elusive target. despite the overwheloinge eflort thi
gocs into software development. This document deseribes an experiment in extracting,
correct programs, with respect to their specilications. These programs are extracted
from proofs using the PC Mizai system and some constrictive prool technignes
PC MIZAR is a syvstem for checking correctness of classical mathematical prools,

1.1 Formal methods in program verification

As the need in the arca of safety eritical applications for error free soltware inereases,
so does inerease the need lor formal methods in verilication of software systems. Only
the formal methods can promise nus wllra-reliability in the compnter software,

There are basically two. radically different, approaches to program correctiness
current practice. One approach is to study a program as an object in i realin of g
formal system. That is. first one writes a program and then one proves its properties,
The other one is to use special logies in which one specifies what to compute and the
programs are extracted antomatically from the prools of these specifications. In the
latter approach the programs are side effects of the reasoning. and in the former the
program is the object of reasoning.

1.1.1 External approach to program correctness

The external approach is the one that treats the program as an object. T that
approach. onc first develops a theory of a programming environment.  Next, one
proceeds Lo reason about programs as objects in that theory. just us one would reason
about any other objects. like Minctions or spaces for example, in their respective
theories. In that aspect this approach is the classical one since there is nothing,
special about the terms in mathematics that just happened to he programs.

To use this approach one has only to choose their favourite system for formalizing,
mathematics and proceed. The significant advantage of this approach is that we know



cvervthing there is to know about the program and its environment.

There is mneh work involved in developing a programming theory and proving its
propertios before one can start writing programs. Also the programs. after they have
heen developed and heen proven correet . have to he translated into an implementation
Lingnage which may or may not bhe a “true” implementation of the programming
cnvironment theory.

The examples of this approach include the specification of the SCN machine in
PC NMizar system ([16]0[2]) and implementation of the CLI Stack i Ngthm [12].

1.1.2 Internal approach to program correctness

The internal approach is a newer development that is rooted in the ideas of Nartin
Lols type theory [10] In type theory one defines types using specilic constructors
that ensure that the derived objects are well defined.

The idea behind this approach is that a program is a side effect of the reasoning
in the logic. In this approach the programming environment is defined by the logic
of the system. However, that means that we cannot reason about the programs and
their environment, In the “internal™ system one proves the specilications ol what one
wants to compute and the extraction of the correct program {rom the prool becomes
the responsibility of the system. This lessens the burden on the programmer bt
expects more from the system.

Foxamples of systems that take this approach to program correctness, and that
I have had first hand experience with, is COQ project [1]. which is based on type
theory, and Nizar-C system ([IS]. [6]). which uses the theory of bit strings (sce
section 3.2).

1.2 MizAaRr-C project

The Nizar-C project was originated by J. Hoover, P, Rudnicki and A. Wallenstein.
It s based on a first-order natural deduction logic. In its core. it is a {ramework for
experimenting with different logics and theories. The base system can be extended
through the addition of axioms and inference rules. Its carly incarnation is described
in [I8]. Since its inception the system has undergone an extensive “face 1ift”™. The
set of inference vules that are implemented has been revised and expanded.  The
addition of the “choice™ rule allows the user to introduce new functional terms into
the reasoning. Definitions of predicates have also been added. This latest work has
been done by K. Kippen and is deseribed in more detail in {6].

1.2.1 Extraction of programs in MIzAR-C

Mizar-C is primarily used in experiments which extract programs from proofs writ-
ten in this system. To extract programs from proofs MIZAR-C uses its realizabiliiy



mechanism, This mechanism transtates construnetive inlerence rales into propgratmiming,
steps,

These ideas were first developed by Kleene (7] He velated mathematical fovmulas
to programs which realize them. In other work Coeey and Howard vestated realis
ability in terms ol natural deduction prools. Oue ol type theories was developed by
Martin Lo [10]. A\ similar theory formes the base for the Caloabins ol Clonstraetions:
[1]. Coguand and Huet used the Calenlus of Constructions in the implementation of
the C'OQ syvstem in which programs are extracted from operations on types.

AMizar-C takes a ditferent approach to program extraction. 1t does not commit
itsell to any particular model of computation hut allows the user to axtomatize o
model of their own. The first experiments dealt with o model which was based on
natural numbers in unary representation characterized by the PPeano’s axioms [IS]
The next computational wiodel that was extensively used awas based on hit strings
(see K. Nippen [6] and 15 Ho[3]). Bit strings are linite sequences of binary vidues,
This model of computation was first ceveloped and implemented by mvselCwith hielp
from J. Hoover., The advantage of this model to the ones hased on tyvpe theory s that
the objects of computations can be freely manipulated. Phat iso there are many wiavs
to construct the same object, and destruction of an object does not hiave to follow i,
construction.

The realizability mechanism of NIzar-C translates only o few of its inferences
into program connectives. These are the only ones that actually perfori some compu
tation. This approach is labeled sparse realizability in Nizare CU Tt tries to determine
il a given formula has any computational contents and only it it s a0 program lor
that formula is produced. B. Knight has generalized on this idea in his work 8],

1.3 Objectives and motivation for this experiment

As flexible as the MizarR-C system is, it still reguires a ot ol effort from the nser
in proving the theorems. The bulk of the offort in proving specilications s spent
not on the constructive steps, which are simple since they arve part of the logic, bt
on proving the facts about the constructed objects. A new object Gs constracted
from already existing ones by one constrnetive logical inference: however, proving, the
properties of the constructed ohject usually takes many logical steps. Thow hard it s
to prove the properties of an object depends on how highly developed are the potions
alrcady formalized in the systen Thus most of the work involves peoving ordinary
mathematical facts and not constructing ohjects.

Formal rcasoning requires us to think at a very precise level, We can onldy abistric
over the terms that were previously introduced. Thus, “1 41 =27 15 not “obhvions™ i a
formal system but becomes a theorem to be proven. The existence of all the abstraet
notions like integers, arithmetic operations, cte., have to he formally derived fromn,
the principle theories that define the system. Formalizing highly abstract concepts
requires a major coffort. It can be compared to pyramid building as we slowly develop
one layer of abstraction upon the others all rooted in the founding theories, and



culiinating with some profound theorem at the top. From my experience. it looks
like the mmonnt of work involved is also comparable.

And here s the Lig advantage that PC Mizar holds over other formal systems.
B accmnulated, over the vears. a large number of mathematical facts and abstract
concepts that have been proven by many contributing authors. Thus we can spend
less time on reinventing mathematies in our proofs. PC MiZAR is a system based
on elassical logic and set theory which is nsed for formalizing mathematics. | shall
deseribe PC MiZAaR systenn in a little more detail in chapter 2.

Although the Mi1zagr-C systemn is modeled after PC MiZAR. it is only its ~“poor
cousin™. In comparison PC M1ZAR is a much more mature system, having the benefit
of over 20 vears of a somewhat turbulent history. The checker is more powerful and
there exists an extensive library of previous results. Hence. the motivation for this
project: how to “marry” the realizability developed for MizZAR-C with the richness
of PC Nizanr?

The objective of this experiment is to extend the PC MIZAR system with the
realizability mechanism found in Mi1ZAR-C. As a test suite for these extensions we
would like to produce some non trivial programs like the four arithmetic operations:

- e =3

ST % T and <=7 on binary encoded natural numbers.

1.4 The mechanics of the experiment

Here is an ontline of the logical steps that were involved in this experiment. First
the computational model was designed.  Adl computations of the programs are im-
plemented usiug this model. The model T used for this purpose was based on ~bil
strings”. Bit strings are finite sequences of binary values. The model also includes
some operations for manipulating these strings: catenation and splitting. and some
procedures for examining them: ~is-nil™ and ~0-or-17, see section 3.2.

Once 1 decided on the bit string model 1 proceeded with its specification in the
AizAanr language. This specification takes the form of several definitions and theorems
proven in a NIZag article. In this way we obtain a set-theoretic description of the
st of bit strings and operations on them.

Now. with the basic operations in our model formally defined, we need program-
ming language connectives for writing bigger programs. This is where the constructive
inference rules and their realizability come into play. We choose a set of constructive
inference rules which will be realized by Lisp expressions implementing our program-
ming connectives, In MizZAR, these rules take the fori of schemes of reasoning which
are MIZAR constructs that use second order terms (see section 3.3). The realizability
mechanism for the constructive inferences have been borrowed from the Mizar-C
svstem.

At this point, we were ready to write proofs with computational content. First,
I wrote some proofs of simple but fundamental theorems about Bits. Bits is my
formalization of bit strings. One of the programs compares the lengths of two strings
(with three way output: <. =, >).another one is an equality tester for two bit strings.



Next I proceeded to more challenging “programs". | formalized the unary encoded
natural numbers. UNat. as a subtypce of Bits. That they are indeed a true represen-
tation of natural numbers is shown by proving the isomorphism ln reveionr UNat and
the Nat type. Nat is MI1zaR's formalization of natural numbers. 5 - =v#ag &
theorems about their addition and multiplication and obtained rutible .-
which ran correctly once they were extracted.

Finally. I formalized BNat. the binary encoded natural numbers, in terims of Bits,
I showed the one-to-one correspondence between BNat and Nat tyvpes. Then ©detined

@ four arithmetic operations: addition. subtraction. multiplication and division.

After all these proofs were written with computations “hidden™ inside them, the
last thing to do was to extract the programs. The extraction is done by the Nhiz2nse
tool. which I had to implement from seratch.  Given a proof. MNIzZ2L1Se recovers
the realizations of the basic operations on Bits and combines them into a program
according to the usage of the constructive inference rules and their realizations. The
programs extracted from MIZAR proofs by N1Z24018p are coded in Lisp.

An example that illustrates the process of extracting a runnable program from a
constructive proof is presented in an almost self-contained seetion 1S,

‘)l OV l‘(l

Soans

1.5 Overview of the thesis

This thesis is divided into 7 chapters. Chapter 1 provided an introduction. Chapter
2 offers a glance at the PC MizARr system to give the reader a rough idea what it s
about.

The constructive extensions to NUzAR language are discussed i chiapter 3.0 Botly,
the computational model and the constructive aspects of Mizan language are pre
sented there. Lvery item has its compuatational content explained and examples are
given of how to use it. This chapter also introduces il basic program extraction
methods used in Mi1z2Lisp.

Chapter 1 presents MIZAR theorems whose proofs carry programs inside them, it
desceribes the development of unary and binary cncodings of natural mnmbers using
bit strings. The major theorems specify the four arithimetic operations on binary
naturals: +. —. x and =+,

Chapter 5 desceribes the implementation of the software, Miz2L1se, that translates
MIZAR proofs into Lisp code. It also states some of the diffiealtios | encountered along,
the way.

In chapter 6. | outline some of the issues feft nnresolved by this project. The
problem of runtime errors is addressed there. It also specifies some possible directions
for further development

Finally, the summary and conclusion of this experiment are presented in chapter 7

.



Chapter 2

PC MIizZAR system

A brief overview of the Mizar project is given by P. Rudnicki in in an electronic
document “An Overview of the MiZAR Project™
excerpts from that document.

. Here, 1 present a few condensed

The MiZAR project is over 20 years years old. It originated in Poland under the
supervision of A, Trybulee. Its purpose is to assist in writing of mathematical papers
by checking their correctness. It is rooted in classical logic and set theory which form
the bases for all further development.

A. Trybulee designed a language, called MiZAR, in which mathematical articles
are written. Mizan allows for cross referencing to other articles. The author of
an article is not permitted to introduce any new axioms to the system. The only
two articles which are not checked for validity contain the axiomatizations of Tar:ki-
Grothendieck set theory[15] and strong arithmetics of real numbers{14]. *verything
clse in the system is proven from these predefined axioms.

The main effort. in the recent years of the M1ZAR project has been directed at
building the library of MI1ZAR articles. There are almost 400 of them and the number
is growing. All components of the system are still evolving, including the language
and the checking software. This only underlines that after all these years the MIZAR
project is still very much an experimental system.

2.1 The MIzAR article

The source of a N1ZAR article is an ASCII file. There are two parts to each article:
the environment part and the text proper. The text proper contains statements with
justifications of their correctness. MIZAR statements can express new facts or they
can define new concepts. The statements of fact, marked as theorems. the definitions
of new concepts and schemes of reasoning become parts of the MiZAR library which
can be referenced by other articles. In the environment part the author states what
parts of A1ZAR library are imported for use inside the article. They include symbols,

Yhttp://www.cs.ualberta.ca/~ piotr/Mizar/MizarOverview.ps

6



formats of functors. predicates. modes. theorems. detinitions and schemes <defined in
other articles.
2.1.1 The text proper section

There can be several text proper sections in an article cach stavting with the begen
keyword. Each text proper section is a sequence of the follows s items:

1. Rescrvation lets the anthor specifv a default type tor identitiors so later on
whon an identifier is used without explicitly specifying its type the resereed one

is used.

2. Definition-Block defines or redefines MIZAR constructors:  term constructors
(functors), formula constructors (predicates) and type constructors (modes).

3. Structurc-Definition introduces new structures. These are entities consisting of
a number of fields which are accessed by selectors.

4. Theorem marks a proposition for export into the Mizag library for reference
by others.

5. Scheme, also an externally visible proposition. allows for occurrences of second
order terms.

6. Awriliary-Item is an object that is local to the article.
The goal of writing an article is to prove some useful results that others can nse

their work. Only articles verified by the MiZAR processor can be added into Mizan
library.

2.2 PC MizAR system

PC MIZAR is an implementation of a MIZAR processor. It is implemented on an

IBM PC platform under the DOS operating system, henee its name. The power of

the MiZAR systemn comes from its ability to process cross relerences to other articles
in the MIZAR library. A great deal of effort was spent in trying to speed up the
process of accessing the MiZARr library. For that purpose all articles that are added
to the library are translated into a nunmber of PC Mizanr internal files.

1. signaturc filcs contain information necessary for parsing occurrences of defined
MIiZAR phrases,

2. definition filcs store every delinition’s definiens; the definiendums are stored in

signature files.

3. theorem jiirs store statements of theorems without their proofs.

-1



4. seheme files store statements of schemes without their proofs.

PC MIZAR software is a collection of about 30 programs that manipulate NI1ZAR
articles, The verifier itself is a four step process:

1. scanmer scans the ASCII file and tokenizes it.

2. parser parses the tokenized article,

3. analyser checks for proper occurrences of MIZAR expressions.
1. eheeker checks if the premises justify the propositions.

The MiZAR language has a very expressive grammar which allows for overloading
of identifiers. The constructors of MIZAR phrases can be defined and redefined many
titnes. All this complexity makes for a very involved parsing and type analysis process.

The checker inference incorporates the following scheme for verifving inferences.
When an inference is made of the form

009, .., 00 3

it 1s transformed to the following conjunction

arANaxy A Ao ANy3

If this conjunction is found contradictory then the inference is accepted. The checker
is designed for processing speed and not power. Thus it frequently happens that
although an inference is logically correct it still is not accepted. In such circumstances
a complex inference should be split into a sequence of smaller ones or even one may
have to use a proof structure in order for the checker to accept it.

2.3 MizAR input language

The MIZAR language is very expressive. From the beginning of the project one of its
goals was to develop a rich environment that reflects the traditional ways in which
mathbematicians work. NiZAR language is so complex that it is way beyond the scope
of this thesis to even try to present its basics here. The best way to learn the language
is by browsing through the articles of the MizAR library. There are two user guides
by K. Bonarska [3] and more recent one by M. Muzalewski [13]. Also, A. Trybulec
deseribes some of the research aspects of the MIZAR grammar in [17].

In my own experience with PC MizAR I found that most of the language can be
casily grasped by intuition. However, when | needed to use some of the more advanced
features, like attributes, 1 encountered some difficulties, especially that there does not
scem to be any complete documentation of the language in a human readable form.

V4]



2.4 MIZAR abstracts

As part of including an article into the library an abstract of the article is created
which contains only the statements of the theorems without proofs. This ix done in
order to provide users of the library with a reference to its content. These abstracts
are typeset using TN, The whole set of abstracts of the articles contained in the
Main MNizAaRr Library are periodically published in Formalizea Mathe matics [11].

2.5 Main Mi1zAR Library

The Main Mi1zARr Library is the most significant advantage of the PC Nizak svstem
over other formal systems. In 1989 the Nizar group in Bialystok, Poland, started
collecting MIZAR articles and organizing them into a library that is distributed to
other MIZAR users. Presently there are almost 400 articles ineluded in this Bbravy.
The subjects of these articles vary, Most of them arve translations of basic mathematies
and only a few contain new resulis,

Right now, every article that is submitted and accepted by the NIIZAR processor
is included into the MizAR library. There are programs that try to automate the
elimination of repeated or trivial theorems. However, since it is still an experimental
system it changes sometimes to the point where some parts of the library must be
rewritten to reflect the changes in the system. This caused me some griel and as a
consequence | continued using an older version of PC MizAR system (5.1.03) instead
of migrating to the newer one.

There have been a few glitehes, however. in the development of the librarvy. Prob-
ably the most visible one is that natural numbers in the main library do not widen
their type to integers but directly ti real numbers.

2.6 The future of the MIzZAR system

With respect to the language, the development focuses on type hierarchies and the
introduction of an object-oriented mechanism for deriving MiZAgr structures. The
leader of the MIZAR project, A. Trybulec, says that these changes will have a dramatic
impact on the way one does mathematies in MiZAk.

There are also plans for the implementation of an antomatic translation of math-
ematical results between MIZAR and other existing compnterized systems for proof-
checking mathematics

As the data base of articles is growing so is the problem of maintaining it. Fven
at its current size, learning the content of the library is a major impediment Lo nsing,
it. Since there is no guide to it, the only way to learn it is through browsing the
abstracts. Having access to an “expert” who already knows the library is a definite
advantage during the initial stages of learning MiZAR. Oune reason for duplicated
theorems is the fact that sometimes it is casier to prove “again” a simple theorem
rather than to find it in the library.

4
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After working with the PC MiZAR system I compiled my own list of “wishes™:
porting the system out of the PC world, a better user interface, and even having the
system stabilized would improve the usability of the system.



Chapter 3

Computational extensions to
PC MizAR

The goal of this experiment is to extract programs from NiZar proofs. Before we
can do that we need to develop a framework of objects and constructive inferences
from which to extract the computational contents of onr proofs. We are presented
with the following three problems:

1. what model of computation to choose.
2. how to express the computational connectives, and
3. how to translate computations hidden inside proofs into runnable progriuns,

The problem of choosing an implementation language is already solved. The theory
tells us that there exists an isomorphism between the Tambda calenlus and nataral
deduction [4]. So, I have chosen Lisp for the implementation language sinee it provides
for lambda expressions, and it is what MIZAR-C uses.

3.1 Realizability in Mi1z2LI1SP

The realizability mechanism of M1£22LIsP is borrowed from Mizan-C system. Actu-
ally it is one of the goals of this experimment to adapt, MIZAR-C realizability for use
with MIZAR. Like MI1zZAR-C’s, MIZ2LISP’s realization process does not preserve the
Curry-Howard [4] isomorphism between the natural deduction logic and its lambda
calculus realization. However, we still have a one-way correspondence from proofs Lo
programs.

The key to MIZAR-C’s sparse rcalizabilily is the notion of a computational con-
tent. The formula has computational content if it states something of a compn-
tational value; that is, if we can use its results as inputs in Marther calculations.
However, where MIZAR-C goes to lengths to eliminate all non-compmtational terms
from the program, MizZ2LISP only checks for content inside potential lambda expres-
sions. Lambda expressions are created only if some computation has been detected
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in its scope. Also the eriteria for when a formula receives computational content is
meh simpler. The formula receives computational content if it is a conclusion of a
constructive inference. The inputs to the constructive inferences are not checked for
valid computational content. This may lead to runtime errors (see section 3.5.1).

The realizations of formulas in M122L1sp are Lisp programs that compute the
content. of their corresponding formulas.  As with Mi1zaR-C. there are only three
types of compntational content:

L. lambda crpression is the content of an assumption (formulas and variables).

.
Y

2. objeel is the content of a term,

3. decision is the content of a disjunction.

The realizability mechanism in M1z2LISP is the process of extracting these contents
and operations on them from proofs in M1ZAR articles. The operations on the contents
come from the constructive inferences. It is these inferences that form the steps of
the extracted programs

3.2 The computational model of bit strings

Before we can have programs, we need a computational model in which the programs
arc executed. | chose the model of bit strings for its versatility and easy implemen-
tation of binary encodings. The Bits type in MIZAR is a formalization of strings of
binary values, 0 and 1. There are three components to this model.

o I'irst, there are three basic building blocks fromy which all other strings are
constructed: an empty string and two strings of length one, one containing 0
and one containing 1.

e Sccond, there are two operations that can be performed on bit strings: catena-
tion and splitting. Catenation is a constructor which is used to build new strings
composed from others. Splitting has the opposite effect. It is the desiructor
which is used to decompose strings in two.

e Third. there are two procedures for inspecting bit strings: one that tells if a
given string is empty and one that tells us if a string of length 1 contains 0 or
l.

Bits typc is the basic data structure on which all other computations are per-
formed. In MizAr language it is defined in the following way:

definition

mode Bits is Element of {0,1}*;
end;

where {0,1}* denotes the set of all finite sequences of 0 and 1. Finite sequences are
alrcady a highly developed notion in the MiZAR library.



3.2.1 Realization of nil

The =“smallest™ term of type Bits is an empty string nil. It is used as such in many
places. especially as the base case in induction proofs. Hereis its definition in Nl1z.an.

definition :: nil_def
func nil -> Bits means
BITS1: def 3
it = <o>;
end;

The comments in MizaRr start. with =7 and continue to the end of the line. \fter
processing an article PC MNizAR assigns a reference number to cach exported item.
This reference is printed as part of the abstract of an article so that others can nse it
when they want to call upon a named fact. The above delinition says that nil is @
functor of type Bits and it is equivalent to an empty sequence. The computational
content of nil is given by this Lisp’s expression:

(sclg c-nil ()

As it stands, there is no way to reference nil’s computational content. Only Tabels
of MIZAR statements can be referenced. This is remedied by the following Nhzan
theorem

theorem :: BITS1:24 :: C.nil
nil is Bits;

here “BITS1:24” is a reference label of a theorem in article “BITST.MIZ”. 1 put the
other comment to mark correspondence between the mmnmbers assigned by PC Nhizan
and the labels | used inside the article. By using the constrnet “v: v is Bits”™ | pass
the content of the variable ~v” to the MiZAR statement labeled “v:"0 "The purpose
of this construet is discussed in section 3.4.3. The content ol nil is referenced by the
label of this theoren.

3.2.2 Realization of °0

The term 20 represents a string of length 1 and 0 as its only clement. It is meant Lo
represent a 0 bit. This is its MIZAR definition

definition :: Bits_O_def

func 'O -> non empty Bits means
:: BITS1: def 1
it = <*0%>;
end;

here the quote in 20 is used to differentiate this term from MIZAR's numeral 0. 1t s
given Lisp’s

(setq c-zero (0))
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expression as its predefined computational content. This content is linked to a label
by the following MIZAR statement

theorem :: BITS1:22 :: C_zero
’0 is Bits;

3.2.3 Realization of ’1

The term 21 represents a string of length | oand 1 as its only element. Tts Nizan
defination = given by

definition :: Bits_1_def
func ’1 -> non empty Bits means
BITS1: def 2
it = <x1%>;
end;

and its realization in Lisp is
(sclg c-one (1))
Again ’1’s content is linked to a label by the following MiZAR statement

theorem :: BITS1:23 :: C.one
*1 is Bits;

3.2.4 Catenation coustructor

The catenation is one of the two operations, in the bit strings model, that are used for
manipulating the strings. It is the constructor which is used to compose a new string
from two others. The catenation operation is defined in MIZAR in the following way:

definition :: cat_def

let p, q be Bits;

redefine func p = q -> Bits;
end;

where ~ is the catenation functor. This redefinition is accepted without any further
proof because the catenation operation is already defined on finite sequences. Its
meaning is that the type of the resulting expression is Bits when the “*” functor is
applied to arguments of type Bits.

Definitions are not processed by the Miz2Lisp extractor. Thus the predefined
computational content of this operation has to be referenced in some other way. The
following theorem is given the built-in realization of catenation.

theorem :: BITS1:28 :: C_cat
for p, q being Bits ex r being Bits st r = p ~ q;

And this is the Lisp expression that realizes the catenation operation.



(selq c-cal
(lainbda (r)
(lambdo (y)
(list Lappend (content x) (content y)) 1)1))

The intent is that the second Bits term is appended to the end ol the first one. We
return a list because of the realization of an existential statement. see seetion 3.3.6.
The ~content™ function checks for empty realizations, 7, and crashes when one s
found.

3.2.5 Split destructor

The destructor. split operator, of the bit string model is the connterpart to the cate
nation operator. It is used to split Bits terms into their substrings. In the case of
split operation there were no equivalent notions available and ready for reuse in the
MiZAR library. So. the following definition of the sphit functor was my fiest sigml
icant. effort in this project involving Mizank. Note that this funector is total on its
arguments.

definition :: split._def
let p, q be Bits;
func p "¢ q -> Element of [: {0,1}*, {0,1}* :] means
:: BITS1: def 4
it€1 ~ it‘2 =p &
(len q < len p implies len it‘1=len q & len it‘2=len p-len q) &
(len q > len p implies len it‘l = len p & it‘2 = nil);
end;

This definition uses a Bits term to specily where to split the steing. 'This is bhecanse
the only objects in onr computational model are bit strings and it wonld he impossible
to use anything clse. The result of splitting p is an ordered pair of Bits whose first
element is the first len q items of p and the second one is the rest of p. Tn the above
definition, “~ ‘7 denotes the split functor. The first argument is the string to he split
and the sccond argument specifies the split point. In the Nizar definition, it stands
for the result of the Munctor applied to its arguments, it ‘1 is the first clement of the
pair forming the result and it ‘2 is the second one. len is the “length of™ funetor
already defined for finite sequences.

As with catenation. the predefined realization of split operation is given to a
separate theorem.

theorem :: BITS1:29 :: C_split
for p, q being Bits ex ri, r2 being Bits
st p ~‘ q= [ri, r2];

Since there is no built-in iimplementation of Cartesian prodaect in onr string model, the
result of split has to be taken apart. The predefined realization of the split destructor
is this Lisp expression:



(selq e-splil
(larhda (.r)
(lambda (y)
(if (conlent r)
(if (eanlenl y)
(It ((ret (funcall (funcall e-split (edr o)) (ediy))))
(list (cons (car r) (ear rcl)) (cadr rel)))
(list wil tlist w0 1)))
(list nil (list nil 1))))))

As you can see, the realization is as equally awkward as the definition. The peculiarity
of this code is rooted in the nested existential statements. Fach existential formula
is realized by a pair. Hereo the fivst element is the object realizing the term bound
by the first guantifier and the second clement is the list containing the realization
of the second quantifier and the remainder of the formula. Existentially quantified
statements are discussed in section 3.3.6.

3.2.6 Is empty — decision procedure

There are two built-in procedures in the bit string model that allow us to examine
the string. The first one is a procedure that tells us if a given string is empty or not.
This information is captured by the lollowing theorem.

theorem :: BITS1:26 :: Cmnil_or_not
for b being Bits holds b = nil or b <> nil;

Note that this theorem is obvious to the PC MiZar system and is accepted by the
PC NizaR processor on its own. The above theorem is vealized by the following Lisp
expression:

(sely c-nil-decide
(lambda (r)
(ef o (list nil 1) (List t nil))))

the tirst element of the returned pair corresponds to b = nil” and the second to b
<> nil” of the above MizZARr theorem.

3.2.7 1Is zero or one — decision procedure

The second of the two inspection procedures allows us to examine the individual
“bits™ in the bit strings. This Mi1ZAR theorem corresponds to a program that decides
if a given Bits term of length 1is 20 or 71,

theorem :: BITS1:27 :: Cunit O or._1
for b being Bits st len b = 1 holds
b=’Worb-="1;



Its predefined realization in Lisp is the [ollowing lambda expression:

(scly e-O01-dceide
(lambda (r)
(lambda (y)
(if (cqual e-zcro (content @) (b nd) (ol 1))

where the first element of the returned pair corresponds to *b = 70" and the second
one to “b = 717 of the NiZzaRr theorem.

3.3 Realizations of constructive inferences

The constructive inferences correspond to the programming connectives which oper
ate on the contents of their premises and produce the content of their conelusions,
As such. the predefined realizations of the constructive scheme inferences are the
clementary programming steps in which all other programs are expressed.

Schemes in the NiZzair langnage allow for manipulating second order terms, Phis
provides means for abstraction over types, functions and predicates in Nzar proofs,
This feature allowed me to employ schemes of NMizanr as the encoding mechanisin lor
the constrictive inferences. The constructive schemes “show”™ the evidenee for their
conclusions. This evidence is constructed from the premises given to the schene. I
is this construction process that hecomes the realization of a constructive scheme,

There are several basic constructive schemes that have their realizations prede
fined by Miz2Lispe. They correspond to basie constructive inferences in the natnral
deduction logies. FThey are deseribed in the remainder of this section.

3.3.1 Uniform handling of schemes

The constructive inferences are made through the use of schemes that have real
izations. The propositions in Mizar which are justificd by the use of constructive
schemes are realized by the application ol programming connectives (combinators)
behind the schemes to the realizations of their premises.

The program behind a scheme is applied to the realization of the first premise,
Then the result is applied to the realization of the second premise, il any exists, and
this result is applied to the realization of the third premise, if any, and so on. 'This
continues for all the premises. For example, the following scheme inferenee

«« from scheme_ref( labell, label2 );
is realized by the following Lisp code
(funcall (funcall schemeref labell: ) label2: )

and becomes the computational content of the formmnla . Herve, seleme ref stands
for realization of scheme_ref scheme. and labell: and label?2: are vealizations of the
MIzZAR statements labeled 1abell and label2.



3.3.2 Implication elimination scheme

Iinplication corrcsponds to exccution of two blocks of code conscecutively. That 1s.
first. compute the antecedent and then use the results to compute the consequent. In
this sense implications subdivide a program into subroutines. Here is the definition
of the hplication Elimination scheme

scheme C.IE { P[], Q[] }:
Qll
provided
P[] implies Q[] 1and
P[1;

T'his says that P[J and Q[J are any propositions. The premises to this scheme are
listed after the provided keyword and are separated by the and keyword. The com-
putational content of this scheme is to apply the program behind “P[1 implies Q17
to realization of PLJ.

(~elq c-implication-clim
(laiibda (r)
(lammbda (y)
(funcall (content r) y))))

Example:
o from C.IE( imp, ant )

where imp is the label of the implication and ant is the label of the antecedent. This
inferenee produces the following Lisp code.

{funcall (funcall c-implication-clim imp:) ant:)

where imp: and ant: are realizations of the corresponding Mi1ZAR formulas.

3.3.3 Or introduction scheme

Disjunction expresses a decision making mechanism which in turn is used by the Case
Analysis. There are two ways 1o introduce a disjunction constructively. One is by
showing its left disjunct and the other one is by showing its right disjunct. Hence we
have two schemes. one for stating disjunction’s left hand side:

scheme C0.I.1 { P[], Q] }:

P[] or Qf]
provided

P[];

and one for stating disjunction’s right hand side:

o



scheme CO0.Ir { P[J, QO }:
P or QO
provided

Qll;
Their corresponding realizations are

(setq c-or-intro-lcft
(lambda (r)
(list x nil)))

and

(setq c-or-inlro-right
(lambda (x)
(list nil r)))

The realizations of disjuncts are passed along to the realization of the disjunction
because they may be used by their respective cases when the disjunction is used in
Case Analysis. More on that in section 3774,

Examples:

a from COI 1( left );
o from CO.I r( right );

The above justifications produce the following realizations of their conclusions:

(funcall c-or-intro-left left:)

(funcall c-or-intro-right right:)

where left: and right: correspond to the realizations of the corresponding premises.

3.3.4 Or elimination scheme
Case Analysis reasoning is captured by the following scheme.

scheme COE { P[], Q[J, RO }:
R[]
provided
P[] or Q] and
P[] implies R[] and
Q[] implies R[J;

The semantics of the Case Analysis inference is that we have two ways of constrie-
tively inferring the same conclusion. We know that if the preconditions of one of
them are true, then we can constructively arrive at the conclusion by following the
respective path. But it is not necessary to know which path is taken. This represents
the element of non-determinism in the reasoning since we do not know which path
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will be taken a priori. In programining terms. this reasoning represents a decision
point in a compntation. Depending on the ontcome of the decision. which comes
from the realization of the disjunction. one of the alternative paths in the program is
taken.

The following Lisp code realizes this scheme.

(selq c-or-clim
(laribda (pair)
(lambda (r)
{lambda (y)
(if (car (content pair))
(funcall = (car pair))
(funecall y (cadr paiv))})}))

The pairis the realization of the disjunction from section 3.3.3. Based on which
disjnnet is trne, implication elimination is performed using the respective case and
disjunct.

Examples:

« from C.OE( disj, left case, right case );
The above inference produces this Lisp realization of its conclusion
(Juncall (funcall (funcall c-or-clim disj:) lefi_case:) right_casc:)

where disj:, left_case:, and righl_casc: are realizations of the correspondingly labeled
statements in MIZAR text.

3.3.5 Universal statement elimination scheme

Universally quantified formulas represent functions. Thus. discharging a universal
statement is equivalent to a function call in a program. Below is the definition of the
universal statement elimination sche e,

scheme CUE { D() -> non empty set,
B() -> Element of D(),
P[Element of D()] }:
P(BO]
provided
for b being Element of D() holds P[b] and
B() is Bits;

here Element of D() is a type term parameterized by D() . | use the proposition “B()
is Bits” to refer to the computational content of term B() since only references to
labeled statements are allowed when using a scheme justification (see section 3.4.3).
The realization of the above scheme is the following Lisp expression:



(setq c-universal-elim
(lambda (r)
(lambda (y)
(funcall (content ) (content yl))))

Note that this realization looks the same as the realization of implication climination
scheme. Since Lisp is an untyped language, the difference in types between the two
schemes that is evident in NI1ZAR language is lost here.

Examples:

a from CUZE( unis, term );
produces the following realization
(funcall (funcall c-universal-clim uni_s:j term:)

where uni_s: and ferm: are the realizations of a universal statement and a term
“is Bits” statement respectively.

3.3.6 Existential statement introduction scheme

Locally instantiated variables cannot be a part of the conclusion of a veasoning in
Mizar. Otherwise. the conclusion, which is used outside of the local reasoning’s
scope, would refer to uninstantiated variable. An existential quantifier is used to bind
the variables occuring within a formula. Then the formula can become a conelusion.
Thusly exported formula does not include any occurrences of uninstantiated variables,
In realizability terms, this couples the computational contenis of the variable heing
quantified with the content of the formula. For that reason, existential guantifier
introduction is compared to the return statement in a program. Here is the definition:

scheme CEI { S() -> non empty set,

A() -> Element of S(),

P[Element of S()] }:

ex b being Element of S() st P[b]
provided

P[AQ)] and
A() is Bits;

and again, “A() is Bits” is a “place holder” for the computational content of the
AQ) term. The realization of this scheme is given in the following Lisp code.

(setq c-cristential-intro
(lambda (r
(lambda (y)

(list (conlent y) r})))
The realization of the existential statement contains first the realization of the quan-

tified variable and then the realization of the formila.
Examples:
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ex v st ... from CE_I( form, var );

Here form refers 1o the formula containing local variable and var is the label of that
variable’s content binding “... is Bits” statement. This justification results in the
following rcalization of the conclusion

(funcall (funcall c-cristential-intro form:) var:)

where form: and var: are realizations of the respective MIZAR statements.

3.3.7 Existential statement elimination scheme

Mizak handles existential gquantifier climination through a “consider™ statement.
See section 3.4.2 for discussion of that construct. This statement is justified by an
existentially quantified formula. The existential statement climination scheme arises
from the need to reference an existential statement and pass its computational content
at the same time. Thus this scheme is an identity that MIZ2LISP can recognize and
process appropriately. Here is its definition:

scheme CEE { S() -> non empty set,
P[Element of S()] }:
ex a being Element of S() st P[a]
provided
ex a being Element of S() st P[al;

And here is its realization in Lisp

(selq e-cristential-clim

(lambda (r) (content r)))
Fxamples:
consider v such that ... from CEE( exists );

where exists is the label of an existentially quantified statement. This scheme pro-
duces the following realization in Lisp:

(funcall c-cristential-clim crists:)

where erists: is the realization to be passed along.

3.3.8 Equality scheme

Sometimes in MIZAR it is necessary to manually change the type of a variable. This
is done in the following way

reconsid@wr v’ = v as Another_Type;



In the processing of this statement. NNZ2LISP passes the computational content of
v to v? since they both reference the same object in Nizar., Then we continue to
show some results "PLv?]7 using v, a “shadow™ of v. However since v? is a local
variable it cannot occur in the conclusion. And anyway, we are probably interested
in “PLv]”. Thus we have to express the results using vo “PLv]7. MNizanr knows
that these two terms are the same and has no problems accepting a straight forward
justification. However. for the same reasons as in section 3.3.7, we need a constructive
scheme justification to let MIiZ2L1sP know about the passing of computational content.
Unfortunately. none of the other scheme inferences fit here, so we need a new scheme to
express the equality among the two. scemingly different . variables and the propositions
that use them. We cannot just use an identity since to Mizanr the difference in types
makes the propositions look different.

Here is the equality scheme that solves the above dilemima. The extensive type
parameterization in this scheme allows for widening of types. T am not sare at this
time if the version accommodating narrowing of types is also needed so 1 left it ont.,

scheme CEQ { D() -> non empty set,
A() -> Element of D(),
D’() -> non empty Subset of D(),
A’() -> Element of D’(),
P[Element of D()] }:
P[A° ()]
provided
A’ QO

= A() and
PIAQD;

The realization of this scheme in Lisp is an identity since there are no types i Lisp.
But to reflect the “guarding” “A’ () = AQ7 premise in the scheme the realization
takes two arguments,

(setq c-cqualily
(lambda (r)
(lambda (y) (content y))))

Examples:
o from CEQ( eq, prop J;
The above inference will produce the following Lisp realization
(funcall (funcall c-cquality cq:) prop:)

where ¢q: and prop: realize corresponding MIZAR statements.
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3.3.9 Induction scheme

Induction is the “work horse” behind all the extracted programs from MIZAR proofs.
It is the only means for compnting something more substantial than just a few static
expressions. MIZ2LISP extensions to MIZAR use the following version of complete
induction.

scheme C_Comp.Ind { D() —> non empty set,
F(Element <«f D()) -> Nat,
P[Element of D()] }:
for a being Element of D() holds P[a]
provided
for a being Element of D() st for a’ being Element of D() st F(a’) < F(a)
holds P[a’] holds Pla];

where Nat is the MIZAR type which represents natural numbers. This scheme can be
applicd to any type: “Element of D()”, using any partial ordering on it: “F(Element
of D()) -> Nat”. The only premise to this scheme is the inductive step. Note that
the inductive step incorporates the base cases in it.

The realization of this scheme employs recursive calls to the inductive step with
“smaller” values through the references to the inductive hypothesis. The recursion
is guaranteed to terminate with base cases since the inductive hypothesis cannot be
used in their proofs. The base cases inside the inductive step have to be derived using
other means. Here is the Lisp code for the induction schieme.

(defun e-ind-prop (istep)
(lambda (x) :; recursive function from mduction

(funcall ;; call inductive step with . . .

(funecall (contenl istep) (conlent x)) ;: the argument and . . .

(lambda (y) :; inductive hypolhesis
(sclq c-ind-count (+ c-ind-count 1)) :; count recursive calls
(lambde (y-li-r) :: cheek for ((y < &)

(furcall (e-ind-prop istep) (conlent y) )))))) :: recursive call

(selq c-induction (function c-ind-prop)) :: for use with “funcall’
Fxamples:
a from C_Comp_Ind ( IS );

This application of Induction is straightforward. It is the inductive step that contains
all of the computations. IS is the label of the inductive step. It produces the following
Lisp realization

(funcall e-induction 1S:)

where 150 is the realization of the inductive step.



3.4 Realization of other PC MIizZAR constructs

The constructive schemes of the previous section correspond to the “exeeution” steps
in the extracted programs. That is. they specify the logic of the program. However,
they do not provide the means for dealing with issues of storage allocation. Whenever
we declare an object in a program. we reserve the space for it.

There are three types of objects in MiZAR that require storage for their connter
parts in the extracted programs: functions. formal parameters and local variables,
Opening a new scope of reasoning in MIZAR text corresponds to a function decla:
ration for that scope. Assumptions inside that scope correspond to declarations of
formal parameters for that function. And finally, the instantiation of “computed”
MIZAR terms corresponds to local variable declarations. These construets and their
realizations are the subject of the following discussion.

3.4.1 Assumptions

Assumptions in MIZAR correspond to [unction abstractions. There are two types of
them: assumptions that introduce variables, which are abstractions over variables,
and assumptions of formulas which abstract over formulas. The former introduces a
universal statement in MIZAR, the latter introduces an implication. Assumptions in
MIZAR can only occur inside some open scope.

3.4.1.1 Scopes of reasoning in MizAn

MIZAR allows for multilevel scopes of reasoning. In most cases new scopes of reasoning
open with “now™ or “proof” keywords and terminate with “end™. 'There are some
other ways to open and close a new scope of reasoning but they are ignored by the
Miz2L1SP translator and thus do not concern us here. The “proof™ keyword ocenrs
exclusively after a proposition to indicate that a more involved justification follows.
The conclusion of “proof”™ scope is thus fixed by the proceding proposition. A new
scope that opens with “now™ is a new compound statement. We are free to conelude
anything we can inside it. The compotind statement is interpreted as o universal
statement, an implication or the commbination thercof, depending on the reasoning,
inside its scope.

The conclusions of the reasoning are indicated by *thus”. It is possible to state
several conclusions in a MIZAR reasoning. MIZAR groups them into one conjunetion.
However, conjunctions do not have any computational content and MIZ2LISP just
ignores them. As a result only the last conclusion is taken into account by the
Mi1z2L1sP processor. Qur purpose here was to simplify things for ourselves and the
simplification introduced here cannot be exploited later sinee there is no constructive
scheme that operates on conjunctions,
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3.4.1.2 Universal statement introduction

Introduction of free variables in a MIZAR reasoning is done by the use of the let
statement. MiZAR binds these free variables to the conclusion of the reasoning with
universal gqnantifiers. The following fragment of MIZAR reasoning

for v, w holds P[v,w]
proof

let v;

let w;

thus P[v,w] from ...; :: constructive inference here
end;

results o the following realization
(lambda (v) (lanbda (w) ... #RPLv,wl) ) )

where “#1(P[v,w] )" stands for realization of the reasoning’s conclusion. In a realiza-
tion of a given reasoning, a new lambda expression is introduced for cach introduction
of a free variable,

3.4.1.3 Implication introduction

Assumption of a proposition in the scope of a given reasoning turns its conclusion into
an implication. The assumed proposition becomes the antecedent and the original
conclusion forms the consequent.  Fornwla and free variable assumptions can be
intermixed with cach other. Here is an caeraple of an implication introduction.

for v st P[v] holds for w st Q[v,w] holds R[v,w]
proof

let v;

Al: assume P[v];

let w;

A2: assume Q[v,w];

thus R[v,w] from ...; :: constructive inference here
end;

where A1: and A2: are labels of the assumptions. The above text fragment has the
following computational content

{lambda (v)
(lambda (A1:)
(lambda (w)

(lambda (A2:) ... #R( R[v,ul) ) ) )})



where #ZR(R[v,w]) stands for the realization of the conclusion. Since there are no
types in Lisp. there is no distinction between the two types of assumptions in Nlizan
language.

Unlike MNI1Zzar-C. NMiz2L1sp realizes all implications with lambda expressions as
long as their conclusions have computational content. NOZar-C tries to optimize
on the number of formal paramecters a function has by not including parameters
which are not used constructively. NIiz2nise does not share this “feature™ with
AlIzZAR-C. The main reason is that by keeping all formal parameters, the realizations
reflect their proof counterparts. Then. the extracted Lisp code closely resenmibles
the uses of the theorems with computational content in the proof since there is no
“raissing” implication eliminations correspouding to the excluded “non-constructive”
parameters.

I strived for clarity and not runtime performance. 1 found that the kind of op
timization NI1ZAR-C does by reducing the number of formal parameters to decrease
the number of functions calls is ill served at this level of development. As long as
other issues of correctness are still unresolved, 1 think that the increase in the clarity
of extracted Lisp programs overrides any marginal gains in runtime performanee.

3.4.2 Object instantiation

Object instantiation compares with an assignment statement ol programming lan-
guages. MIZAR terms that result from the previous computations are “assigned™ to
the local variables via “consider”™ construct., MIZAR's “consider” statcment intro-
duces a local variable into the reasoning. This variable is an instantiation ol some
MiZAR term whose instance is attached to it. These instantiations are justiticd hy
the equivalent existential formulas. Here is an example of the consider statement.

now
consider v such that
Pv: P[v] from a; :: constructive inference
thus /4 from ...; :: constructive inference
end;

where v is the instantiated variable, “Pv:  P[v]™ is the “stripped” remainder of

the justification, and /3 is the conclusion of the reasoning. ‘T'he instantiation of an
existentially bound variable decouples it fromn the rest of the formula, This is exactly
the computational content behind this construct. Here is the Lisp translation of the
above MIZAR reasoning.

(...
(lel ( (v (car #R(a))) )
(let ( (Pu: (cadr #R(«))) )
(.- #R(B))))... )



where #1t(er) is the realization of the justification that gives rise to the existentially
quantified formula and #/12(3) is the realization of the conclusion in the above reason-
ing. Thelast ... marks closing parenthesis for the scopes opened before the occurrence
of the consider statements. The above Lisp code decomposes the computational con-
tent of the existential formula into realization of the variable ¢ and the realization of
formula =/’

3.4.2.1 reconsider statement

I'he reconsider stateiment, in a similar way to the consider statement. introduces a
local instance of a variable into the reasoning. Only this time it is just a shadow of
an existing term. This construct tells the MizAR processor to look at the given term
as il 1t were of another type.

reconsider v’ = v as Another_Type;

This only introduces an alias for an existing term and thus Miz2L1sP handles this
case internally,

3.4.3 Referencing the computational content of objects

Since only the labels of MIZAR statements can be used as arguments to schemes, we
need a way of assigning the content of M1ZAR terms to MIZAR statements. MIZ2L1SP
implements this by assigning the content of a variable to the following “special”
statement in which the variable occurs.

v: v is Bits;

The type Bits is of no consequence here. But, sinee it is the type of the underlying
data structure on which all computations are performed, all Mi1ZAR objects that have
any computational content had better widen to this type. The Bits type then serves
as an extra check that the constructive inferences are using terms of proper type.
This is the realization of the above statement.

(oo (et { (o: ZR(D) ) (o)) )

Here, ... mark the realization of the external context in which the above MIzZAR
statement occurs. ZR(v) stands for the realization of variable v.

3.5 Realization with no computational content

Ivery other formula and term in a MIZAR article that was not mentioned above has no
computational content. Al MizAR items that do not have any computational content
are implicitly realized by Lisp’s “f7 to state that the facts they cxpress are true. 1
call it an empty realization. The analogy {rom programming would be a constant
expression that is not being referenced by anything and thus is not contributing in
any way to the computation.

28



R4y
3.5.1 No content runtime errors

Empty realizations may cause execution errors when used in places where compu
tational content is expected. In its present form Nhz20se does not check for this
possibility and will produce programs that will crash il it occurs. Here s a “real hife”
cexample from my experiment.

IS: for u being UNat st
(for u’ being UNat st len u’ < len u holds
B2N u’ = 0 & for a being Bits holds
B2N(u’ ~ a) = B2N a)
holds B2N u = 0 & for a being Bits holds
B2N(u ~ a) = B2N a
proof

:: non-constructive proof
end;

theorem :: UNat_B2N

UNat_B2N: for u being UNat holds

B2N u = 0 & for a being Bits holds B2N(u ~ a) = B2N a
from C_Comp._Ind(IS);

But “IS” statement, that is referenced by the induction scheme, has no computa-
tional content and thus this induction inference was translated by Mi22eise into the
following Lisp code.

(scig UNatB2N:
(furicall e-induction 1))

Now. if we go back to section 3.3.9 we will see that bailt-in function “e-induction”
expects a lambda expression as its argument. This code will “crash™ when Lisp will try
to perform funcall on t. This theorem was never meant o have any computational
content and is not used by other programs in a constructive fashion. The nse of
constructive scheme here was just convenient.

3.6 Extending the set of constructive scheme in-
ferences

Since the handling of schemes that have computational content is independent of
the programs that realize them, one can casily define more schemes that have "non
empty” realizations. Here is an example:

scheme C.UIE { D() -> non empty set,
A() -> Element of DQ),
P[Element of D()], Q[Element of D()] }:
QraQ]



provided
A: for b being Element of D() holds P[b] implies Q[b] and
B: A() is Bits and
C: P[AQ)]
proof
K: P[A()] implies Q[A()] from CU.E(A,B);
thus

QLAQ)] from C.I_E(K,C);
end;

The above scheme definition combines the eliminations of a universal statement and of
an implication into one scheme of inference. The program that invokes the realizations
of these inferences as its computational content is given below.

(sclg CUILE
(lainbda ( A:)
(lambda ( 13:)
(lambda ( ()
(let ((K: (funcall (funcall c-universal-clim A:) B:)))
(let ((thus: (funcall (funcall c-implication-clim K:) C:)))
thus: ))))))
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Chapter 4
Extracting programs from proofs

The goal of this experiment is to mechanically translate programs cmbedded i the
MizZAR articles into Lisp. The programs chosen for this task are the four arithmetic
operations: addition. subtraction. multiplication and division, performed on natural
numbers in binary encoding. These programs represent a nontrivial bit of computa
tion that is wholly derived from the axiomatization of the set theory and the theory
of real numbers. That is about as formal as one can get in classical logic.  Also,
implementation of these operations shows that we can manipulate arbitrarily larpge
binary encoded natural numbers which, for example, could he nsed to simulate all
finite programs on a Turing machine. If we can do that then we can compute anything
that is computable using this bit strings model, at least in theory, and we can doit,
efficiently.

This experiment. concluded in 45k words in 9k lines in 113 theorems in 3 Mizan
articles of formal proofls (in painful detail) and o 155k words in L5k lines of C 4
and related source code. The PC MiZAR articles translated into 12k lines and 391k
words of Lisp.

4.1 Basic Bits programs

The following are theorems whose realizations were the first programs extracted nsing
Bits.

4.1.1 Comparing lengths of two Bits

The program that compares the lengths of two Bits has been extracted from the
proof of the foliowing theorem.

theorem :: BITS2:1 :: C_len_decide
for p being Bits holds for q being Bits holds
len p < len q or len p = len q or len p > len q;

The program behind this theorem uses induction over the first argmment. While both
strings are not empty they are decreased in length and passed to the recursive call,
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The realization of this theorem groups the disjuncts to the right. This forms a
lict of eases that can be examined one by one from the left. The realization of this
theoremn has the following form. By *has the form™ Imean that the following describes
how many arguiments the program takes and what kind of expression it returns. This
applies 16 the remainder of this chapter.

(lainbda (pp)  (lawbda (q)
(#1( len p < len q)
(#It{ len p = len q) #1( len p > lenq) ) ) ) )

where #ZI8(. .. denotes the realization of the given Mizak item. One has to be
careful when nsing this theoren: other computations must not decompose its result by
prouping disjinetions to the left or the extracted program will crash. This disturbing
vsecnrrence is a resaht of the PC MIZAR system being too “smart™ when it comes to
processing schemes. From the beginning of this project it was assumed that all type
checking wonld be done by the MiZar processor. It was only in later stages of the
experiment that it was discovered that this was not so.
The proof of the following theorem uses the results from the previous one.

theorem :: BITS2:2 :: C_len_decide2
for p, q being Bits
holds len p < len q or len p > len q;

The program behind this theorem just calls the program of the previous theorem and
reports the result back.
The program has the following form.

(lambda (p)
(lambda (q)
(#1( len p < len) #I!( len p > lenq) ) ) )

4.1.2 Comparing first bits in the string

The following theorem’™s proof checks if the given pair of Bits agree in the first
position.

theorem :: BITS2:3 :: C.eqf_or not
for a, b being Bits st a <> nil & b <> nil
holds a.1 = b.1 or a.1 <> b.1;

The program of this theorem extracts the first “bits™ of both strings and then com-
pares them. It has the following form

(lambda (a)
fambda (b)
dambda (a2 <> nil & b <> nil)
(#R(a.1 =b.1) #R( a.1 <> b.1)) ) ) )
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4.1.3 Equality of Bits of length 1
The proof of this theorem produces the program that compares Bits of length one.

theorem :: BITS2:4 :: Cunit_eq_or. not
for a, b being Bits st lena =1 & len b = 1
holds a = b or a <> b;

The program is just a two-way. two-level deep case analysise 1t has the foilowing
imprint.

(lambda (a)
(lambda (b)
(lambda (len a = 1 & len b = 1)
(#R( a =b) #l(a<>b))).)

4.1.4 Equality of Bits

The following theorem is realized by a program which checks if the piven Bits are
the same or not.

theorem :: BITS2:5 :: C_eq.or_not
for p, q being Bits holds p = q or p <> q;

The program strips off the first ~bits™ of the arguments and. if they are the same, it
passes the remainders of the argnments to the reenrsive call. This is its Lisp form.

(lambda (p)
(lambda (q)

(#R(p =q) #R(p <>q))))

4.2 UNat — unary naturals

The UNat type in MNIZAR is a unary representation of natural nambers. Here s its
definition. First we define the set and then the mode. A mode i« NHZAR s connterpart
of a type in a programming language.

definition :: UNAT.def

func UNAT ~> non empty Subset of {0,1}* means
:: BITS2: def 1
for x being Any holds x € it iff

ex b being Bits st x = b &

for k being Nat st k € dom b holds b.k = O;
end;

definition
mode UNat is Element of UNAT;
end;
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Here. UNAT is the set of finite strings of 0's. including the empty one. ~{0,1}*" is
the set whose elements are Bits. so that this definition makes the UNat mode widen
antomatically to the Bits mode.

The correspondence between UNat and Nat modes in MIZAR is established by the
following definitions.

definition :: U2N_def
let u be UNat;
func U2N u -> Nat means
BITS2: def 4
it = len u;
end;

definition :: N2U_def
let n be Nat;
func N2U n -> UNat means
BITS2: def 5
len it = n;
end;

theorem :: BITS2:16 :: UTwos
for u being UNat for n being Nat holds Ui u = n iff u = N2U n;

The last theorem establishes that UNat is a “true” implementation of Nat.

4.2.1 Unary addition

Here is the definition of unary addition on UNat type.

definition :: Uplus Def
let p, q be UNat;
func p + q -> UNat means
BITS2: def 6

it =p ~ q;
end;

The program, however. comes from the proof of this theorem.

theorem :: BITS2:19 :: C_Uplus
for a,b being UNat holds ex c¢ being UNat st ¢ = a + b;

The program uses the catenation operator. Here is the Lisp —~declaration™ of the
extracted program.

(lambda (a)
(lambdu (b)
(#R( c) #1( c =a+b))))



4.2.2 Unary multiplication

Finally. here is the multiplication performed on unary naturals, UNav. First comes
the definition and then the theorem whose realization muiplements the mualtiphication
functor in Lisp.

definition :: UNat_mult_def
let u, v be UNat;
func u - v -> UNat means
:: BITS2: def 7
U2N u - U2N v = U2N it;
end;

theorem :: BITS2:22 :: C_UNat_ mult
for u being UNat holds
for v being UNat ex uv being UNat st uv = u - v;

This program incorporates induction over the first argument. Here is the ontline of
its algorithm:

1. check if the first argument is empty. if so return O (nil);
2. strip one 0 off the first argument:

3. call itself recursively with remainder of first argument from step 2 and the
second argument;

4. add the second argument to the result of the recursive call and return the value.
The following is the signature of this program.

(lambda (u)
(lambda (1)
(#R( uv) #ZR( uv =u - v) ) )} )

4.3 Binary naturals
Here is the implementation of binary naturals and the theorems whose realizations

implement the four arithmetic operations.  All programs implement “the classical
algorithms™ as in Knuth [9].

4.3.1 Definition of BNat mode

The Bits implementation of binary naturals is given in the {ollowing definitions.
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definition :: BNAT. def
func BNAT -> non empty Subset of {0,1}* means
:: BITS2: def 9
for x being Any holds x € it iff
ex b being Bits st x = b & (len b = 0 or b.1 = 1);

end;
definition

mode BNat is Element of BNAT;
end;

Here, BNAT is defined to be a subset of Bits such that its clements start with 1 or
are empty. This cnsures a one-to-one correspondence between BNat and Nat which is
shown by the following theorems.

FFirst. we define MiZzAar functor B2N which translates Bits to Nat.

definition :: B2N Def

let b be Bits;

func B2N b -> Nat means
:: BITS2: def 8

(len b = O implies it = 0) &
(len b > 0 implies
ex p being non empty FinSequence of NAT st
it = p.(lenb) & lenp =len b & p.1 =b.1 &
for n being Element of dom p st n < len b holds
ex bn being Nat st
bn = b.(n+1) & p.(n+1) = 2 - p.n + bn);

end;

This definition uses sequence p to store intermediate results of the translation. The
following two theoreims state this functor’s recursive properties.

theorem :: BITS2:26 :: B2N_def
B2N nil = 0 &
(for b being -~ s holds
B2N « - ’0) =2 - B2N b &
B2N (b * 1) 2 - B2N b + 1);

theorem :: BITS2:32 :: B2N_def2
for b being Bits holds
B2N ( nil ) = 0 &
B2N (0 - b) = B2N b &
B2N (’1 = b) = 2 #N len b + B2N b;

The first uses tail recursion and the second one uses the “head™ recursion. #N is a
natural power functor.

Then comes the conversion in the opposite direction, from Nat to BNat.



definition :: N2B_Def
let n be Nat;
func N2B n -> BNat means
:: BITS2: def 12
B2N it = n;
end;

And then these two theorems establish that BNat imiplements Nat in ANizan.

theorem :: BITS2:45 :: NAT._BNAT NAT
for n being Nat holds B2N N2B n = n;

theorem :: BITS2:46 :: BNAT_NAT_BNAT
for b being BNat holds N2B B2N b = b;

4.4 Binary addition

The addition on BNat type is defined by the following theorem

definition
let p, q be Bits;
func p + q -> BNat means
:: BITS3: def 3
B2N it = B2N p + B2N gq;
commutativity;
end;

The proof of the following theorem contains the program which adds two BNat terims.,

theorem :: BITS3:10 :: CBits.plus
for a,b being Bits st len a = len b holds
ex ¢ being Bits st ex cu being Bit st len c = len a &
B2N(cu ~ c) = B2N(a + b);

The cu term stands for a “carry unit” which contains the carry bit in performing the
addition. Bit is just a narrowing of the type Bits to Bits of length 1. The proof

employs the standard “column addition” algorithm which rans in O(n) where s
the length of the longer of addends. The program has the following Lisp template.

(lambda (a)
(lambda (b)
(lambda ( len a = len b)
(#R( <)
(#R( cu)
(#R( len ¢ = len a & B2N(cu ~ ¢) = B2N(a + b)) ) ) ) )} )

'l‘he f()“O\‘Viﬂ £) ‘.h(.‘()l'(flll is a “wrap or” f()l‘ “I(‘ above one \‘Vlli('h is less l'('H',l'i('“Vl'
121
on its argumenl,s
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theorem :: BITS3:11 :: C_BNat_ plus
for p, q being Bits ex pq being BNat st pq = p + q;

T'he Lisp signature of this program is also simpler than the previous one.

(lambda (p)
(lamnbda (q)

(#1( pq) #1( pa =p +4a))))

Note that addition here is performed on Bits and is not restricted to the narrower
type BNat. That is true for all arithmetic operations.

4.5 Binary subtraction

The following definition defines the “minus” functor on BNat terms.

definition
let p, q be Bits;
func p - q —-> BNat means
BITS3: def 5
(B2N p > B2N q implies
B2N it = B2N p - B2N q) &
(B2N p < B2N g implies
B2N it = 2 #N len q + B2N p - B2N q);
end;

I the minuend is less than the subtrahend then the result is presented in modulo
21en a_ I'he following theorem’s proof implements the program of subtraction.

theorem :: BITS3:15 :: CBits.minus
for a,b being Bits st len a = len b holds
ex c being Bits st ex sb being Bit st len c = len a &
B2N(sb ~ a) = B2N(b + c) &
(B2N a < B2N b iff sb = ’1);

Here the Bit mode is just a narrowing of type from Bits to Bits of length one. Note
that this theorem does not use the “minus™ functor. It actually occurs before the
definition of the “minus” functor and. what more. it was used in the definition of
the binary subtraction. lHere, ¢ is the result and sb implements the sign bit. The
proof uses the standard “column subtraction™ with “borrowing” from the higher order
digits. The program runs in linear order. in the length of its arguments, in number
of recursive calls. Here is the Lisp signature of its realization.

(lambda (a)
(lambda (b)
(lambda ( 1len a = len b)
(#R( <)



(#R( cb)
(#R( len ¢ = len a &
B2N(sb -~ a) = B2N(b + ¢c) &
(B2N a < B2N b iff sb = 1)} )} )} ) ) )

Here is the “cleanup™ theorem which is more “user friendly™ and uses “=7 notation,

theorem :: BITS3:22 :: C_BNat_minus
for p,q being Bits holds ex pq being BNat st ex s being Bit st
PQ =P - q & (B2N p < B2N q iff s = ’1);

I left the sign bit =s™ in so that if someone needs it then it is available. The realization
of the above theorem has the following Lisp signature,

(lambda (p)
(lambda (q)
(#R( pa)
(#R( s) #R( pq =p - q & (B2N p < B2N q iff s = ’1)) ) ) ))

4.6 Binary multiplication

The definition of multiplication and its implementation theorems are given below.,

definition
let p, q be Bits;
func p - q -> BNat means
BITS3: def 6

it = N2B(B2N p - B2N q);
commutativity;
end;

theorem :: BITS3:23 :: C_BNat._t
for a,b being Bits holds

ex ¢ being BNat st ex u being UNat st len u = len a & ¢ = a - b;

theorem :: BITS3:24 :: C_BNat_times
for a,b being Bits ex c being BNat st c = a - b;

Here again. the first theorem is the “work horse™ of the multiplication and the second
one is the interface *wrapper” to the first one. The term u holds the nnmber of zeros
by which we shift the second argument. in the current step of the algorithim. Without
passing u from “below” we would have to compute it at cach step.

The algorithm implemented in the proof is the standard “shift and add™ algorithm
that is of quadratic order in length of the arguments. The Lisp signatures of the
realizations of the above theorems are given bhelow.



(lanbda (u)
(lambde (b)
(#1( <)
(#1( u) #M{( len u = len a &
c=a-b)))))

(larnbda (a)
(lambda (b)

(#1t( c) #lt(c=a -b))))

4.7 Binary division

The division program is the “star” of this experiment. Division of Bits is defined in
terms of integer division, “div”, and modulo, “mod”. operations on MiZAR Nat mode.
These operations are part of the natural numbers definition described in “NAT .17
Main MiZAR Library abstract [1]. The result of the division is a pair of BNat terms
ol which the first one is the quotient and the second one is the residue of the division.
Both results are nil when b is nil which makes this functor total. That is also the
way the division of Nat terms in MIZAR is defined.

definition
let a,b be Bits;
func a / b -> Element of [: BNAT, BNAT :] means
BITS3: def 7
it‘t = N2B(B2N a div B2N b) &
it‘2 = N2B(B2N a mod B2N b);
end;

The following theorem, whose proof implements the binary division, is the culmi-
nation of the whole experiment. It computes the quotient and the residue of binary
integer division performed on Bits. This theorem presents a non-trivial piece of com-
putation. Its purpose is to convince others that it is possible to write some “serious”
programs and have them checked for correctness using the M1ZAR and MIzZ2L1sP
tools. After all this hype the theorem itself does not look like much.

theorem :: BITS3:36 :: C_BNat_div
for a,b being BNat holds ex gq,r being BNat st
al/b= [q,r];

The proof utilizes the standard long division algorithm from elementary arithmetic
that runs in quadratic number of recursive calls. in term of the length of the argu-
ments. The structure of the proof is an claborate multilevel case an=zlysis. Thus here
it is: an efficient program extracted from a proof which is derived from the axioms
of set and number theories. The Lisp signature of the realization of this proof is the
following;:



(lambda (a)
(lambda (b)
(#R(q)
(#R(x) #R(a / v = [q,x]) ) ) ) )

A list of all definitions. theorems and schemes. without proofs s atitached as
appendices A, B and C.

4.8 Code extraction example — binary multiplica-
tion

The purpose of this example is to illustrate how the parts of this and the previons
chapter come together in extracting of Lisp programs from the constructive proofs. |
present, here, the proof of the induction behind the binary multiphication. The non-
constructive parts of the proof have been excluded in order to simplify and clarify
the example. This example includes all of the produced Lisp realizations, which were
edited to preserve space.

The inductive step is where the program comes from. This program is then pro-
cessed by the induction scheme to arrange for the proper recursive calling, sce section
3.3.9. The output of an XLISP session in which 1 ran this program concludes this
section.

4.8.1 Description of the MizAR constructs used and their re-
alizations

The declarations of free variables with the “let” keyword and the declarvations of

assumptions with the “assume”™ keyword correspond to lambda abstractions.

The MIZAR labels are translated into local Lisp variables that have the computa
tional content of their statements justifications assigned to them.

The *v is Bits” proposition takes its content from the *v™ variable,

Each constructive scheme inference which starts with the keyword “from” corre-
sponds to a programming step, which applies the Lisp code of the scheme’s realization
to the realizations of scheme’s arguments. Sce section 3.3 for deseription of the basie

constructive inferences. This proof uses a couple of componnd constructive scheme

inferences:
e C_U2_E combines 2 universal eliminations, see appendix A3,
e CUIE is described in section 3.6.

Assigning the results of scheme applications to local variables eliminates the possibil-
ity of making redundant function calls which may result in the rantime deterioration
to an exponential order.
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The reconsider statement assigns the computational content of the term on the
right to the term on the left. This is handled imternally by the MiZ2Lisp tool.
The consider statement is handled in the following way.

e Virst the computational content of the justification is “saved™ in the “Con-

sider:? local variable, where =77 stands for a unique system assigned number.

Each of the introduced variables is assigned the first element of “Consider:7".
then this element is stripped to form the realization for processing the next
variable or the resulting statement; the variables are processed internally by
Mi1z2L1sP.

CSofirst and “mrest” are equivalent to Lisp's “ear™ and “edi”.
Assumptions without a label get “Null:?:7 realizations. It is impossible to refer-
ence these by a constructive inference.

Computational content. of conclusions is assigned to the “thus” local variable.
This arises from the uniform handling of all constructive scheme inferences.

The deseription of C_BNat_plus theorem can be found in section 4.4, There are
several external inferences. The theorems can be found in appendices. The following
external references are used in the constructive inferences of this proof.

theorem :: BITS1:26 :: Cmnil_or_not

for b being Bits holds b = nil or b <> nil;

has the built-in function that tells if a given argument is empty string for its
realization, sce section 3.2.6.

theorem :: BITS2:8 :: C.UO

U0 is Bits;

contains the computational content of *U0” which is defined as “nil”, see ap-
pendix 3.2, Its Lisp realization is the built-in basic empty string = ().

theorem :: BITS1:29 :: C_split
for p, q being Bits ex r1, r2 being Bits st p ~‘ q = [r1, r2];
has the computational content of the built-in split destructor. see section 3.2.5.

theorem :: BITS1:22 :: C_zero

'0 is Bits;

has the computational content of the built-in basic string *?0” which is realized
by *(0)" in Lisp.

theorem :: BITS2:18 :: C_Ucat

for a,b being UNat ex c being UNat st ¢ = a = b;
is a “wrapper” for the built-in catenation. thus its functionality is the same, see
appendix B2

theorem :: BITS2:9 :: C.U1
Ul is Bits;
“U1" is realized by = '(0)7. see appendix B.2.
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theorem :: BITS1:27 :: C_unit O_or.1

for b being Bits st len b = 1 holds b = 'O or b = ’1;

has the built-in realization of procedure that decides if a “but™ is 0 or 1, see
section 3.2.7.

theorem :: BITS1:28 :: C_cat
for p, q being Bits ex r being Bits st r = p ~ q;
has the built-in realization of the catenation, see section 3,204,

4.8.2 The program and its Lisp realization

The Lisp “translation™ of cach Mizanr item that has a corresponding Lisp construet

is flushed to the right in the following lines. =™ stand for the parts of excluded

reason

Is: £

proof

IH:

csa:

csatl:

anil:

Hng.

or a being Bits st
(scly 1S
(for a’ being Bits st len a’ < len a holds
for b being Bits holds ex c being BNat st
ex u being UNat st len u = len a’ &
c=a’> - b)
holds for b being Bits holds ex ¢ being BNat st
ex u being UNat st len u = len a &
c=a-b

let a be Bits;

(lambda ( a )
a is Bits;
(led ((a: a))
assume
for a’ being Bits st len a’ < len a holds
for b being Bits holds ex c being BNat st
ex u being UNat st len u = len a’ &
c = a’ - b;
(lambda ( 111:)
let b be Bits;
(lernhda (b )
b is Bits;
(let ((b: b))
a = nil or a <> nil from C_.UE(BITS1:26,a);
(let ((esa: (funcall (funcall c-universal-climg BITS1:26) a:)))
now
(let ((esal:
assume
a = nil;

{inbda ( anil: )



reconsider ¢ = nil as BNat by BITS2:def 10;

c: c is Bits;
(let ({2 e-nil))
then
p: len UO = len a & ¢ = a - b by anil,BITS2:10,BNat_times Def;
pv: ex u being UNat st lenu = lena &c=a - b
from C_E_I(p,BITS2:8);
(let ((pr: (funeall (funcall e-cristential-intro t) BI'TS2:8)))
thus

ex ¢ being BNat st ex u being UNat st lenu = lena & c =a - b
from C.E.I(pv,c);
(et ((thus: (funeall (funcall c-ceistential-intro pv:) c:)))
thus:))))))
end;
csa2: now
(lel ((esa2:
assume
anil: a <> nil;
(lambda ( anil: )
consider af,ar being Bits such that
afar: a ~¢ 0 = [af,ar] from C.U2_E(BITS1:29,a,BITS1:22);
(let ((Consider:80 (funcall (funcall (funcall C_U2_E BITS1:29) a:) BITS1:22)))
(let ((afar: (funcall mrest (funcall mrest Consider:80))))

af: af is Bits;
(lel ((af: (funcall mfirst Consider:80)))
ar: ar is Bits;
(let ((ar: (funcall mfirst (funcall mrest Consider:80))))
lara: len ar < len a by anil,afar,BITS1:38;
ihO: for b being Bits holds ex c teing BNat st ex u being UNat st

len u = len ar £ ¢ = ar - b from CUI_E(IH,ar,lara);
(let ((thO: (funcall (funcall (funcall C_UILE 1H:) ar:) 1))
consider arc being BNat such that
arcO: ex u being UNat st len u = len ar & arc = ar - b
from C.U_E(ihO,b);
(let ((Consider:81 (funcall (funcall c-universal-elim ih0:) b:)))
(let ((arcO: (funcall mrest Consider:81)))
arc: arc is Bits;
(let ((are: (funcall mfirst Consider:81)))
consider aru being UNat such that
aru0l: len aru = len ar & arc = ar - b from C.EE(arc0);
(let ((Consider:82 (funcall c-existential-eling arc0:)))
(let ((aruQ: (funcall mrest Consider:82)))



aru:

uo:

laf:

csaf:

csafl:

pPV:

csaf2:

afl:

bul:

bu:

aru is Bits;

(lot (aru: (funcall mfivst Consider:82)010)
consider u being UNat such that

u = Ul ° aru from CU2_E(BITS2:18,BITS2:9,aru);

(let ((Consider:82 (funeall (funcall (funeall C U2 E BEPS2:08) BUEES2:9) aru:)))

(let ((ud): (Juncall mrest Consider:8.211)
u is Bits;

(let ((u: (Juneall vifirst Consider:8:3)))

len af = 1 by anil,afar,BITS1:38;

af = ’0 or af = 't from CUI E(BITS1:27,af,laf);
(let ((esaf: (funeall (Juncall (funcall CUTE BITS:27) af:) 1))

now
(/c ! (((‘.wlfl.‘
assume
af = ’0;
(laribeda (- Null:S]:)
then

len u = len a & arc = a - b by lula,BNat times Def;
ex u being UNat st len u = len a & arc = a - b
from C.EI(p,u);
(let ((pe: (funcdl (funcall c-ceistential-jintro t) u:)))
thus
ex ¢ being BNat st ex u being UNat st len u = len a &
c=a - b from CE I(pv,arc);
(lel ((thus: (funcall (funcall e-cristential-intro pe:) are:)))
thus:)})))

end;
now
(letl ((esafl:
assume
af = '1;

(lanibda ( afl: )

consider bu being Bits such that
bu = b ~ aru from CU2E(BITS1:28,b,aru);
(let ((Consider:85 (funcall (funcall (funecall C U201 BITS1:28) b:) aruz}))
(let ((but): (Juncall mrest Consider:85)))
bu is Bits;
(let ((bu: (funeall wfivst Consider:85)) )



c:nsider c¢ being BNat such that
cO: c = bu + arc from CU2_E(C_BNat_plus,bu,arc);
thot ((Consider:56 (funeall (funcall (funcall C_U2_F C_BNat_plus:) buz) arc:)))
(let ((c¢Q: (funcall wmrest Consider:86)))

c: c is Bits;
(let ((e: (funeall mfirst Consider:86)))
then
p: len u = lena & c = a - b by lula,BNat_times Def;
pv: ex u being UNat st len u = len a & c=a - b
from CEI(p,u);
(let ((pe: (funcall (funeall e-criste ntial-intro t) u:)))
thus

ex c being BNat st ex u being UNat st len u = len a &
c=a - b from CEI(pv,c);
(lot ((thus: (funeall (funicall c-cristential-intro pe:) c:}))
thus:)))))11))))

end;
thus
ex c being BNat st ex u being UNat st lenu = lena & c=a - b
from C_.OE(csaf,csafl,csaf2);
(let {(thus: (funecall (funcall (funcall c-or-clim csaf:) csafl:) csaf?:)))
ths:)))))))))))))1II))))

end;
thus
ex ¢ being BNat st ex u being UNat st lenu = len a & c = a - b
from C_0.E(csa,csal,csa2);
(let ((thus: (funcall (funcall (funcall e-or-clitn csa:z) csal:) esal:)))

thus:)))};)))))

end;

theorem :: C_BNat.t
C BNat t: for a,b being Bits holds
ex ¢ being BNat st ex u being UNat st lenu = lena &c=a - b
from C_Comp_Ind(IS);
(sclq C_BNat_t: (funcall c-induction 15:))

4.8.3 Imvoking the Lisp program

Here are two sample runs of the multiplication program that resulted from the above
proof. The first bit string is the result of the multiplication and the second string
of zeroes represents the =shift™ in the next step of the program. if there was one.
“c-ind-count” counts the nummber of inductive/recursive calls by the induction scheme
prograni. sce section 3.3.9.

First we caleulate =12 x 2.1 = 10087,
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> (setq e-ind-count 1)
0
> (funcall (funcall ¢_bnat_t: 10 10100 (11000})

((1' 1111 10000)000000)7T))
> (print e-ind-count)

NI
< W

And then we calenlate =1578 < 1368 = 21587017,

> (sctq c-ind-count 0)

0 _

> (funcall (funcall ¢ _bnat_t: (171000001 010)) (LO10100101000))
((LOCGO0O0TT 11000011 10000)((O00000000020)71))

> (print c-ind-count)

190

190

After I analyvzed the proofs of the multiplication and the addition and their corre
sponding Lisp code realizations, I came to conclusion that the binary mualtiplication
program should perform no more than the order of QO(m < i) inductive/recnrsive calls,
where m and 1 oare the lengths of the first and the second arguments. Fach addition
should perform a linear order nunmber of inductive calls in terms of the length of its
argument-. and cach arguiment is not longer than e 4 00 Note that there are at most

m calls to the addition function in the maltiplication program. "T'he above results
seem to follow my findings.



Chapter 5

Implementation notes

ANIZ2L1SP is the software that translates constructive parts of a MizZAR article into
Lisp code. 1t is implemented as one program. It reads in the MiZAR article and
outputs its Lisp translation into another file. It also reads in a file that .pecifies
which MizAR items gel the built-in computational contents as well as the files that
specifly computational contents of theorems and schemies of other articles that have
been already translated by MizZ2Lise.

I must say that the implementation of the MiZ2LIsp translator took more ef-
fort, than all the other parts of this experiment combined. There are three parts to
the MIZ2L1SP translation: parsing the MizAR article, translating it, and handling
external files,

I did not test my parser on many MIZAR articles. | was more concerned with
parsing just my articles, since the goal of the experiment was not to parse every
NUzAR article but to extract programs from some of them. Thus I was satisfied with
MiZ2L1sp parsing abilities when it processed my articles correctly. 1 do not sce the
parsing capabilities of M1Z2LISP as an impediment to the project since I was still able
to extract progratus from proofs checked by the PC M1ZAR processor.

5.1 Parsing of the MizAR language

The Mizagr parser took by far the most time to implement. The NIZAR language
is rich in features that are context-sensitive and there is no comprehensive documen-
tation for it. The only complete description of the grammar are the source codes
themselves and in these the grammar is already written in the form of parsing ta-
bles. Also. the MizAaR language is a rescarch experiment in itself. Although it has
been quite stable for the past few years, there is “talk” about some dramatic changes
ahcad. In my experiment I used PC MIiZAR version 5.1.03.

To tackle the N1ZAR grammar 1 used the Bison and Fler compiler tools. The
Bison description still has some “shift /reduce™ conflicts but they do not seem to
cause any trouble at this time. The Bison and Fler combination allowed me to parse
some of the context-sensitive constructs of the MiZAR language. In particular I found
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the context switching mechanism of Fler very helpful.

For my guide into the MiZaR langnage 1 used some ontdated grannuar diagrams
from a few vears ago and the MiZAR articles themselves. The whole process was done
in a trial and error fashion.

The articles that were both checked and successfully translated into Lisp were
a cross section of the M1z2Lisp compiler grammar and the NiZzar language. The
exact subset of the N1ZAR language that is accepted by the compiler extension is not
well known even by me. One feature which T know is not accepted by the parser is
ALIZAR s “iterative equality™. However. most of the M1zag constructs ave parsed amd
handled properly.

There is one feature of the language that is especially tricky to handle withont
dvnamically altering parsing tables. Users in MIiZak can introduce their own symbols
in the vocabulary files and they could be alimost any sequence of printable characters
and even some non-ascii ones.  NMizar allows for symbols, like "Function-1like™,
with dashes ijuside. To get aronnd parsing these syimbols T =cheated™ and included
them in the MNiz2L1sp grammar. Most of them are usually very common symbols
Jike ==~ or =+" and appear in the “hidden.voe™ vocabulary file that is attached to all
articles by the PC MiZAaR system.

5.2 Processing the built-in base of computational
contents

Miz2L1sP assigns predefined built-in computational contents to the computational
primitives in MIZAR articles. The computational contents of the bit strings model and
the basic constructive inferences are loaded before the Mizan article is vead. "Then,
during parsing, when a statement for which realization already exists is detected that
statement reccives that realization.

This is a very flexible way of assigning computational content to MIZAR state
ments. One can easily change the built-in realization and the statements that oo
them without eveu touching the Mi1Z2L1sp software. One only has to design the o
alizations of inferences so that they reflect how they are being applied by Mz, .

What item of MIZAR text receives what realization is specified in i speciad
that is read during the initialization stage. The links in this file have the o sing
structure:

1
e
HL

1. the name of the MiZAR item which will receive the realization:
2. the type of the MIZAR item; right now only labels, symbols and schemes can
receive predefined realizations;

3. the name of a Lisp expression that constitutes the realization,

The items of MIZAR text that receive the built-in realization are the ones listed
in sections 3.2 and 3.3. The items listed in section 3.4 are handled throngh Miz2nisye
directly in its actions of Bison grammar specification.
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5.3 Passing information around — building libraries

There are two reasons for splitting MIZAR articles into several smaller ones. One s to
group the theorems into topical articles to build a library. Another. more pragmatic
reason. s that large articles overflow the PC AIZAR processor’s memory resources.
So. only small enough articles can be processed by the PC AMIZAR system. As its name
indicates. the PC Mizank system is implemented on an IBN compatible PC running
the DOS operating systenn. Because of the limitations DOS imposes on programs. the
size of the input articles has to be kept relatively small so that PC MIZAR programs
do not run out of memory.

In this light. 1 was forced 1o split my theorems into 3 MiZAR articles. This
introduced another issue to be tangled with in the experiment: namely. how to pass
information about the computational contents among articles. Luckily. the flexibility
of handling most of the computational contents orthogonally to the compiling process
paid off at these crossroads.

There are three types of statements that can be exported for the use in other
Mizanr articles. They are “definitional statements™. “definitions of schemes™ and
“theorems™. The delinitional statements, at this time. cannot have any content as-
sgned to them. The links to the other two types of statements that have computa-
tional content are saved in two special files. one for the schemes and the other for
Jie theorems. These tiles in turn are read by the translator when another article
asks to import schemes and theorems of another MiZAR article. This takes place in
the “environment™ section of the NMiZAR article. The result is that the references
to imported items, effectively having predefined computational content. have their
realization assigned to them. These contents are the names of already extracted Lisp
programs from imported articles.

Al MizARr proper text items that have realizations produced for them are given
their respective labels or scheme names as reference points in the generated Lisp code.
These references then become their realizations that are written to the “theorems™
and “schemes™ files for use by other articles.

5.4 Running compiled Lisp code

The proofs from Mizar articles are compiled into a Lisp variant. XLISP. After the
article has been checked as correct by the PC NMiZAR system and then compiled into
the Lisp coded it can be loaded into the XLISP interpreter. First, the library of built-
in bases of computational contents has to be loaded. Then. the Lisp files output by
the Nz211se compiler should be loaded in the order of their dependencies on each
other. Otherwise XLISP will complain about undefined terms.

The programs themselves are lammbda expressions and are invoked by applying
these lambda expression to the arguments on which the computation is to be per-
formed.
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5.4.1 Efficiency cousiderations

I did not concern myself much with the officieney of the generated Lisp code. Phe
correctness of the programs was the primary issue in this experiment. But when o
program that was expected to ran in linear time, ran in exponential time, thea T got
concerned.

In my first attempt at generating Lisp code I simply expanded the components of
all computational terms. This expansion terminated on the text proper statements
of MlizAR. Everything was fine until T ran the program that implemented binary
addition. In binary addition there are two terms computed: the result and the
“carry” bit. When these two terms were expanded there were two recuarsive calls
in the program instead of one. To fix this problem T had to sive the results of the
first recursive call and use them where the second call was made. Tsolved this problem
by assigning cvery step’s compuiation to a local vartable, Tagree that it s an “over
Kill™ but as I already mentioned =small™ grain eflicieney is not my concern herveo In
the end only one recursive call is made. no matter how many objects it computes.

5.5 Unfinished Business

Although. | feel that 1 was able to answer the core guestions concerned with trans
lating formal proofs in Mizar langnage into exeentable programs. there arve minor
practical aspects that are not attended to in my implementation. Here 1 outline them
so that these problems can be taken care ol at ithe later tine and make anvoue o
terested aware of them. [ think that they present a very pood warm up exercise for
somcone who would like to continue this project along the lines proposed i chapter
G. They also present a good starting point into the problems of parsing the Nlizag
language.

5.5.1 Access to MizaRr library

One of the unfinished parts of the project is the interface to the Nhizan library where
many of the svmbols 1 used are introduced. For the compilation process to he fully
rooted in the derivations of the PC Mizar system. deseriptions of symbaols used in
the translated articles, but defined o imported ones, mnst he fetched from the library.

As it sits right utev, T mannally ereated a “cheat™ file that contains deseriptions
of the symbols used in the articles. The dviamice introduction of symbols that use
characters other than alphanumeric may be especially tricky sinee they do ot it
nicely under one group of regular expressions.  Right now I ineluded them in the
scanner specification.

One way to solve this problem is to check all input against introduced symbols
before the rest of the scanner gets it. Another might be some sort of preprocessor
stage that generates the scanner which is then linked dynamically into the Miz2easp
program. As it is at the moment. NOz2n1se's translation definitely falls short of heing,
a fully automated compilation process.
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5.5.2 Renaming references

In AiZAR . when ©mnake a local reference to a previous result within the same article.
I use the labels I assigned 1o the referenced statement. However. once the article is
made a part of a library. PC MiZAR assigns numbers to the theorems contained in
it. Other articles have to use these munbers to reference the theorems. Fortunately.
the sehemes retain their names. The problem. now. is to connect these numbers with
the names of the extracted Lisp programs. It seems that the numbers assigned to
the theorems are in order of appearance starting with 1: thms. MIZ2LIsp is capable
of reproducing this sequence and output this correspondence in the theorems file.

As mentioned above, i the compile run two other files are created that contain
the references to the programs behind the theorems and schemes. Tdid not take care
of the names of these files yvet and they have to be changed manually so that they
refleet the names used in the “environment”™ section of the MiZAR article. Also the
references in the theorems file have to be renamed. It is only done once: nonetheless.
it should be amtomated by the MNuz2L1sp software.

5.5.3 Dealing with case insensitivity of XLISP

More significant and harder to find inconsistencies may occur because of the mono-
case of symbols in XLISP. The MizAR language is case-sensitive so the labels ~a:”
and “A:” are different. Unfortunately. this difference is lost inside XLISP and one
label can shadow another inside Lisp without a warning. 1 would like to blame it
on the shortecomings of XLISP. but it was a poor choice on my part to use it for my
implementation.

5.5.4 Fitness of Mi1z2Lisr software

I was able to use this implementation of MIZ2LIsP for my experiments and was
successful at extracting Lisp programs from MIZAR proofs. However, MIZ2LISP is an
experiment in progress, and should not be viewed as anything more. The goal was
never to develop a production quality system.



Chapter 6

Unresolved issues and future
directions

Here T would like to outline several issues that ©lind important but which still remain
unresolved. The most significant one is that although the resalts of the programs are
proven to be correct there is still the possibility of a run-time failure. This is becanse
at this time no checking is implemented to verify that whenever a computational
content is expected one is provided.

There are also more general issues connected with using the extracted prograos
outside of the formal environment. At this time there is no guarantee as to what
the extracted programs will do when given wrong arguments. They will most likely
crash.

On the more practical side. there is still much room for improvement left in the
Miz2L1sP translator itsell. These improvements mostly deal with the shortfalls al-
ready mentioned in chapter 5. Although, it may not be a rescarch project in itself,
finishing some of the “unfinished”™ aspects of YHZ2L1SP could constitnte a project of
a practical value.

Also, more experimentation with more complex problems than anthmetic on hi
nary naturals would give us a better idea about how much eflort is needed in order
to deal with complex issues. Thanks to the flexibility and extensibility of Miz2uisye
one could easily experiment with different basie compntational models.

6.1 Avoiding runtime errors

Miz2L1sP does not gnarantee that the prodouced programs will mn at all. The pro
gram given in the example from section 3.5.0 will crash when 7 s applied 1o an
argument because C_Comp_Ind expects a lambda expression. This is becanse there
is no checking for the possibility of a lambda expression which expects an argmmnent
with a content being applied Lo an item which does not have a computational content,
and is only realized by =17, This | sce as the next step on the road Lo extracting
correct programs from constructive proofs. Below I present my thoughts on how this
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runnability issuze conld be resolved.

6.1.1 Brute force

One solution is to include tracing information in the produced code itself. This way
one conld test the program by trying to execute every statement in the program at
least onee. I that happens without any erashes then we have a program that will
never erash. The reasoning behind this approach is that “empty realizations™ are
static objects introduced during the compile time and do not depend on any dynamic
properties of the program. 1 should add that the following assumptions about the
system are made:

e the verification step guarantees that the types of the realizations are correct.
that is, the types of arguments and formal parameters match: thus. either there
is a correet computation supplied or none at all:

e when an empty realization. “7,is used where a “true” computation is expected.
the extracted program will crash;

e “truc” computations cannot result in /7.

Thus if empty realizations do occur in places where a “true” computational content
is expected, they will cause the program to fail. And if they do not occur in the
“wrong” places then the argnments came from a proper computational content and
thus they are gnaranteed to alwayvs have appropriate shape.

This is a solution that would be casy to implement with only slight additions to
the current version of Miz2Lisp. Since it only requires a relatively siall set of input
cases to be checked, the approach is quite practical. This amounts to a static check,
only approached from a less organized angle.

6.1.2 Extracting programs without runtime errors

What | view as the “true” solution to the “runnability™ problem is te¢ check statically,
at. the compile time or perhaps as an additional step, for possible invocation of lambda
expressions which use the arguments that have empty realizations of “£” in their
computations.

I propose a resolution that goes along this line: “if the problem is hard to solve then
change the problem™. In other words | propose a restriction on how the constructive
inferences can be made which will simplify the problem. My vestriction is that there be
no discharging of implications which use their antecedents in constructive derivations
of their conclusions. That is. all antecedents are only used as “guards” and should
not carry any computational content. The only exception would be the assumption

of inductive hypothesis which is required in order to make the recursive call inside
induction.



How would this work? First. mark the formal arguments of all the elementary
constructive inference rules to denote whether they require a “true” computational
content in its place:

e COI1l (N).

e COIr (N).

e COE (C, C, C).

e CIE (C, N).

e CUE (C, C).

e CEI (N, C).

e CEE ( C).

e CEQ (N, C).

e C Comp_Ind ( C ).

where “C7 means that in its place a reference with a non emipty realization is re
quired in order for the inference to produce realization with content for the inferred
proposition. Arguments in the *N” positions may or may not. have realizations.

Now, all lambda bound variables in lambda expressions are marked with =C”
if somewhere within its scope it is being nsed in a constructive inference ina *C"
position. This means that we used them in a constructive way.

And here comes the tricky part. The restriction is enforeed when an inference
using an implication is applied. The are only two places where discharging of i
plication occurs, inside the C.I_E and C.0_E schemes. Then when processing these

two inferences the realizations of the implications are checked and if their Tambda

bound variables are marked with “C7, then the constructive inference is rejected and
no realization is produced for the proposition.

The variable assumptions are assumed to always require realizations with compu-
tational content and this is reflected in markings of the “C U_E” scheme.

So, now we are left with only one place"where a realization with computational
content is expected by an implication, namely, the inductive hypothesis. However,
the argument to that lambda expression is prepared by the induction scheme which is
guarantecd to provide a proper lambda expression for use as an inductive hypothesis.

What is achieved by the above method is that there will be no compntational
content produced by the constructive scheme inference unless the scheme inferenee is
guaranteed to always receive a computational content for the parameters that require
it. Since the correctness of cach computational content is guaranteed by the verifica-
tion stage, then only the programs with no runtitme errors will be produced. There
are still some details to be worked out but | leave it to the fture ninplementation.
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The above restriction forbids the passing of procedures as arguments to functions.
It does not limit the Mnetionality of the original system. Fvery function that takes
a procedural argument can be rewritten into several functions: one function for each
different. procedure that the original function is called with. These functions call their
respective procedures divectly from within. This “rewrite” eliminates the need for the
procedural parameter altogether. It does, however, reguire the nser to prove more
theorems sinee the “template” proofs will have to be “expanded”.

6.2 Problem of using programs outside the con-
trolled environment

As long as we are inside the controlled environment of formal reasoning. we have
a guarantee that everything is being used within their specifications. The problem
arises when we leave that controlled environment and try to invoke the program with
arguments that are not checked for validity since there is nothing to check them. This
oceurs even in my experiment since I'had no means of invoking programs from within
PC MizAR system. | took the produced programs and ran them inside the XLISP
interpreter, which is foreign to the formal system that checked the programs.

At this point I have no other solution but to try to describe the complex outside
world in the PC MizARr language. This approach at this time, if at all feasible, is
not. very practical. Thus the best that one can hope for is that the correct programs
will be wrapped in another programs that will check the validity of arguments. Un-
fortunately, this approach compromises the formal verification of the original. This
is only one aspect of a larger problem of when the formal verification stops and trust,
achicved through other means, in the correctness of programs begins.



Chapter 7

Summary and conclusions

Overall, I sce this experiment as a success, I managed to translate all of the proofs
I wanted into Lisp programs and they all ran within a reasonable time. Thos, |
conclude that it is possible to use the PC MiZAR system as a verifier of the cor
rectness of programs. 1 hope that the lure of the knowledge already collected in the
Main MizAR Library will be enough to ensure this project’s continnation in one form
or another.

I leave this experiment with a usable, although unfinished. svstem for conducting
further experiments in the compilation of formal proofs into rmmnable code. T led the
way in opening the MIZAR system to other experiments with constructive proofs and
program extraction. Further more, I proposed a solution to the runnability problem,
which stands in the way of producing “totally” corrvect programs.

My overall experience has been that using tormal methods at such an extremely
detailed level is a very laborious process and that muely work is still left to be done in
this area before we see any significant changes. Howevero | found that the effort spent
on proving the correctness of specifications was paid back when | ran the resulting
Lisp programs. They worked exactly as they were supposed from the very first time,
This experience pleasantly surprised me as [ was expecting some errors Lo oceur ever
though I had carlier proved the correctness of these programs.

7.1 The future of the program extraction from con-
structive proofs

I started this project with great expectations regarding this approach Lo progriaan
correctness, but I leave it somewhat confused. Mainly, becanuse there are still many
issues unresolved by this method, It is true that this method, based on construetive
proofs, offers a solution 1o the problem of producing correct programs. Bt so does
the external approach mentioned in section 1.1.1.

I do not sce a big difference between proving the properties of explicitly written
programs and proving “just” the specifications. The “hard” work is the same, proving
a lot of mathematical facts about the resulting objects, Writing programs is the “casy
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part”. ‘True, there is more work involved in deseribing the programming environment.
but the rewards of this work are twofold: one is that we have the environment in
which 1o talk about the programs direetly: and the other one is that we know that
the environment is sonnd. '

I do not know exactly how much effort would be involved in developing the pro-
gramming environment for the bhit strings computational model. but 1 suspect that.
given the model’s simplicity. it would be considerably less than the effort 1 spent on
constructively proving the bhinary arithmetic operations.

The problem of translating the program into an implementation langnage is the
same if not casier in the external approach since the programming steps are stated
explicitly and there is no “runnability™ issues involved. In other words the external
approach resolves all of the issues connected with program extraction and gives us

the ability to talk about the programs. The external apnioach seems to present a

better solution to the problem of obtaining correct programs.
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Appendices

The following appendices contain abstracts. produced by the PC Nhzan systen,
of the Mizar articles. from which the Lisp programs were extracted. Nppendix A
presents the formalization of the bit strings model. Bits. and the specifications of the
constructive inference rules. The theorems abont the unary encoded natural numbers,
UNat, and the formalization of the binary representation of naturals, BNat, are stated
in appendix B. Appendix (' contaius the constructive theorems of the four arithmetice
operations on the binary naturals: addition. subtraction. multiplication and division,
The full texts of these Aizar articles and the programs extrascted by Niz2nse
from the proofs comained within, as well as the sources for the NHZ20188 processor,
will be made available from the Mizar Web Library at the Department of Compnting
Science. University of Alberta. This library is currently ander construction. Please,
comtact P. Rudnicki {piotrces.ualberta.ca)y or J. Hoover (hoovor aes ualberta.ca).



Appendix A

Definition of bases with

compi:

iational content

BITS1.ABS

January 28, 1996

environ

begin

Al

theorem

vocabulary

BOOLE, FUNC.REL, SUBOP, REAL_1, NAT_ 1, INT.1i, ANAL,

FINSEQ, COORD, FUNC, FINITER2, TUPLES, PI, SIGMA, NEWTON,
POWER, POWER1i, NISHIYA, BITS;

constructors

BOOLE, FUNCT.2, SEQ.-1;

signature

TARSKI, BOOLE, REAL_1, SUBSET_1, NAT_1, INT_1, INT_2, FUNCT 1,
FINSEQ_-1, MCART_i, DOMAIN_1, FINSEQ 2, FINSOP_1, PREPOWER, POWER,
BINARITH;

theorems

TARSKI, AXIOMS, BOOLE, REAL_1, REAL_2, SUBSET.1, NAT_1, FUNCT.1,
FINSEQ_.1, FINSEQ.2, INT_1, INT 2, MCART._1, NEWTON, PREPOWER, POWER,
SQUARE_1, BINARITH;

schemes

BOOLE, NAT_1, FINSEQ.1, RECDEF.1;

definitions

TARSKI ;

clusters

FUNCT_1, FINSEQ.1,FINSEQ.2;

Preliminar:ies

:: BITS1:1 :: realjunkO
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theorer :: BITS1:2 :: realjunkil
for r being Real holds
r+0=r& :: 1:4
r -1=1r& :: 1:7
1 - r=1r& 1:7
r+-r=0%& :: 1:def 1

(r <> 0 implies r - r" = 1) & :: 1:def 2
-(-r) = r & :: 1:18

O-r=-r& :: 1:19

r - 0=0%& :: 1:20

(r <> 0 iff -r <> 0) & :: 1:22
r-0=1r& :: 1:25

(r <> O implies r" <> 0) & :: 1:31

(r <> 0 implies r"" = r) & :: 1:32

(r <> O implies (1 / r=r" & 1 / r" =71)) & :: 1:33
r-r=0%& :: 1:36

(r <> 0 implies r / r = 1) & :: 1:37

(r <0 iff 0 < -r) & :: 1:66

(0 < r implies O < r") & :: 1:72

OK<r -r & :: 1:93

(ex y being Real st r<y) & :: REAL_1:76
(ex y being Real st y<r) & :: REAL.1:77

r-t1t=r+-12¢%
r<r+1%¢&
r<r+1%&
r<>yr+ 1%
r>r -1%&
r>r -1%&
r<>r-1%



theorem ::

for x,

theorem
for ri,

54

(r = 0 implies r <> 1) &
(r 1 implies r <> 0);

BITS1:3 :: realjunk2

y being Real holds

x-y=x+ -y & :: REAL_1:14

(x/y=x-y" & x/y=y"-x) & :: REAL 1:16

(x-y=0 iff (x=0 or y=0)) & :: REAL.1:23

(x<>0 & y<>0 implies x"-y"=(x-y)") & :: REAL_1:24

(y<>0 implies (-x/y=(-x)/y & x/(-y)=-x/y)) & :: REAL.1:39
(y<>0 implies x/y-y=x) & :: REAL_1:43

(ex z being Real st (x=y+z & x=z+y)) & :: REAL_1:44

(y<>0 implies ex z being Real st (x=y-z & x=z-y)) & :: REAL_1:45
(x<y iff -y<-x) & :: REAL.1:50

(x<y iff x<y & x<>y) & :: REAL_1:def 5

(x<>y implies x<y or y<x) & :: REAL_1:61

(0<x implies y<y+x) & :: REAL_1:69

(x<y implies ex z being Real st x<z & z<y) & :: REAL.1:75
(x<>0 & y <> O implies (x/y)"=y/x) & :: REAL.1:81
-(x-y)=y-x;

:: BITS1:4 :: realjunk2x
r2 being Real holds-

(r1 >r2 iff r1 ~r2 >0) &

(r1 > r2 iff r2 - r1 < 0) &

(r1 > r2 iff r1 - r2 > 0) &

(r1 > r2 iff r2 - r1 <0) &

(r1 = r2 iff r1 - r2 =0) &

(r1 =r2 iff r2 - r1 = 0) &

(r2 > 0 iff r1 - r2<r1) &

(r2 =0 iff r1 + r2 = r1) &

(r2 =0 iff r2 + r1 = ri) &

(r1 < r2-1 implies r1 < r2) &
(r1 < r2 iff r1 < r2 & r1 <> r2) &
(r1 < r2 iff rt + 1 < r2 + 1) &
(ri1 <r2iffri-1<r2-1) &

(r1 <> r2 iff r1 + 1 <> r2 + 1) &
(r1 <> r2 iff r1 - 1 <> r2 - 1) &

(r1 <r2 iffr1 + 1 <2+ 1) %
(ri<r2iffri1 -1<r2-1) &
(r1 + 1 <r2iffri<r2-1) &
(r1 + 1 < r2 iff r1t < r2 - 1) &
(r1 + 1 <> r2 iff r1 <> 2 - 1) &

(r1 -1 <r2iffr1 <r2 + 1) &
(r1 -1 <2 iffrri<r2+ 1) &



OH
(r1 -1 <> r2 iff r1 <> r2 + 1) &
ri + r2 =r2 +r1 &
ri + (-r2) = -r2 + r1 &
ri - r2 = -r2 + ri;

theorem :: BITS1:5 :: realjunk3
for x, y, 2z being Real holds
((x+y) -z=x-z + y-z2 & z-(x+y)=2z-x + z-y) & :: REAL 1:8
((2<>0 & x<>y) implies
(x-2<>y -2 & 2-x<>y-2 & 2-x<>z2-y &
X- 2<>Z-y)) & :: REAL_1:9
((z+x=z+yorx+z=y+2Z2o0orz+x=y+zorx+z=z=+y)
implies x=y) & :: REAL.1:10
(x<>y iff x+z2<>y+z) & :: REAL.1:11
((z<>0 & (x-2=y-2z or z-X=z-y or
X Z=zZ-y or z-x=y-z)) implies x=y) & :: REAL 1:12

x+y-z=x+(y-2) & :: REAL_1:17
((-x) -y = =(x-y) & x-(~y)=-(x-y) & (-x)-y=x-(-y)) &

REAL_1:21
x-(y+z)=x-y-z & :: REAL_1:27
x-(y-z)=x-y+z & :: REAL_1:28
(x-(y-2)=x-y - x-2 & (y-2)-x=y-x - z-x) &

REAL_1:29
(x+z=y implies (x=y-z & z=y-x)) & :: REAL.1:30
(y<>0 & z<>0 implies x/y=(x-2z)/(y-z)) & :: REAL.1:38
(z<>0 implies ( x/z + y/z = (x+y)/z ) & ( x/z - y/z = (x~y)/z )) &

REAL_1:40

(y<>0 & z<>0 implies x/(y/z)=(x-z)/y) & :: REAL 1:42
(x <y implies (x + 2<y +z&x~-27y-2)) &

REAL_1:49
(x <y & 0< z implies (x-z <y-2 & z-x <2-y &
z-x <y-z & x-z<z-y )) & :: REAL.1:51
(x<y & 2z<0 implies (y-2z<x-z & z-y<z-x &
y-2z<z- x & z-y<x-2)) & :: HEAL.1:52
(x <y iff x+2<y+z) & :: REAL_1:83
(x <y iff x-2<y-z) & :: REAL_1:54
(((x<y & y<z) or (x<y & y<z) or (x<y & y<z)) implies x<z) &

REAL_1:58
(x<y implies (x+z<y+z & x-z<y~z & z+x<z+y & x+z<z+y & z+x<y+z)) &

REAL_1:58
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((x+z<y+z or z+x<z+y or x+z<z+y or z+x<y+z or x-z<y-z ) implies
x<y) &

REAL_1:60
(0<z & x<y implies (x-2<y-z & z-x<z-y & x-2<z2-y &
z-x<y- z)) & :: REAL_1:70
(2z<0 & x<y implies (y-z<x-z2 & z-y<z-x & y-z<z-x &
z-y<x -z)) & :: REAL.1:71
(0<z implies (x<y iff x/z<y/z)) & :: REAL.1:73
(2z<0 implies (x<y iff y/z<x/z)) & :: REAL.1:74
(x+y < z iff x < z-y) & :: REAL_1:84
(x+y < z iff y < z-x) & :: REAL_1:85
(x < y+z iff x-y < z) & :: REAL_1:86

(x < y+z iff x-z < y);
theorem :: BITS1:6 :: realjunk4
for x, y, z, t being Real holds

((y<>0 & t<>0) implies (x/y) - (z/t) =(x-2)/(y-t)) &

REAL .1:35
(y<>0 & t<>0 implies ( x/y + z/t =(x-t + z-y)/(y-t) )
& ( x/y - z/t =(x-t - z-y)/(y-t) )) & :: REAL_1:41
((x<y & 2z<t) implies
(x+z<y+t & x+z<t+y & z+x<t+y & z+x<y+t)) &

REAL_1:55
(((x<y & z<t) or (x<y & z<t) or (x<y & z<t)) implies
(x+z<y+t & z+x<y+t & z+x<t+y & x+z<t+y)) &

REAL .1:67
(y<>0 & z<>0 & t<>0 implies (x/y)/(z/t)=(x-t)/(y-2)) &

REAL_1:82
((x<y &z
(=

IA

t) implies x -t <y - z) &
y&z<tdor (x<y&z<t)or (x<y&z<t))
implies x-t < y -2));

A

theorem :: BITS1:7 :: natjunki
for k being Nat holds
O0< k & :: NAT_1:18
(0 <> k implies O < k) & :: NAT.1:19
0 <>k +1& :: NAT.1:21
(k = 0 or ex n being Nat st k = n + 1);

theorem :: BITS1:8 :: natjunk2
for k,n being Nat holds



(k + n =0 implies k = 0 & n = 0) & :: NAT1:23

(k <n+ 1 implies k <nor k=n + 1) & :: NAT.1:26

(n <k &k<n+1impliesn =k or k - n + 1) & :: NAT.1:27
(k < n implies ex m being Nat st n = k + m) & :: NAT.1:28

k<k+n& :: NAT.1:29
(k <n+ 1 iff k <n) & :: NAT.1:38
(k - n=1 implies k = 1 & n = 1);

theorem :: BITS1:9 :: natjunk3
for k,n,m being Nat holds
(k <nimpliesk - m<n -m&k -m<m- - n&
m - k<n-m&m- -k<m- -n)g&

:: NAT 1:20
(k <>0& (n k=m- korn - k=k - mor
k - n=k -m) implies n = m) & :: NAT.1:24
(k<nimpliesk +m<n+m&k+m<m+n&m+%k«<m+n¥&

m+ k<n +m &
NAT_1:36

(k < n implies k < n + m) & :: NAT_1:37
(k<n&n<mork<né&n<mork<né&n<m
implies k < m);

theorem :: BITS1:10 :: Natjunkl
for n being Nat holds
(n <> 0 iff n > 0) &

n>0¢&

n+1<>0%&

n+1>0¢

n+1>1%

(n>0iff n > 1) &
(n=0o0orn=1o0rn>1) &
(n>0 iff (n - 1) is Nat) &
(n>0 iff (n - 1) > 0) &
(n>1iff (n - 1) > 1);

theorem :: BITS1:11 :: Natjunk2
for n1, n2 being Nat holds
nl + n2 = n2 + n1 &

(n1 +n2 =0 iff n1 = 0 & n2 = 0) &
(n1 < n2 + 1 iff n1 < n2) &

(n1 + 1 < n2 iff n1 < n2) &

(nl1 - 1 < n2 iff n1 < n2) &

(n1 < n2 - 1 iff ni < n2) &

nl + n2 > nl &

nl + n2 > n2 &

(n1 > n2 implies n1 > O & n1 <> 0);



theorem

BITS1:12 :: Catuniq

for a, b, ¢, d being FinSequence st

ab=cd & lena=1len c & len b = len d holds a = c &b

definition

let F be non empty set;
let A be non empty Subset of F;
redefine mode Element of A -> Element of F;

end;
definition
let D be rnon empty set;
let F be FinSequence-DOMAIN of D;
let A be non empty Subset of F;
redefine mode Element of A -> Element of F;
end;
definition
let D be non empty set;
let X1,X2 be FinSequence-DOMAIN of D;
let x be Element of [:X1,X2:]1;
redefine func x‘1 -> Element of X1;
func x¢‘2 -> Element of X2;
end;
definition
let D be non empty set;
let X1 be FinSequence-DOMAIN of D;
let Y be non empty Subset of Xi;
let X2 be FinSequence-DOMAIN of D;
redefine func [:Y,X2:] -> non empty Subset of [:X1,X2:];
end;
definition
let D be non empty set;
let X1,X2 be FinSequence~DOMAIN of D;
let Y1 be non empty Subset of X1;
let Y2 be non empty Subset of X2;
redefine func [:Y1,Y2:] -> non empty Subset of [:X1,X2:];
end;
definition

let D1, D2 be non empty set;
let X be non empty Subset of [: D1, D2 :];
redefine mode Element of X —> Element of [: D1, D2 :3;
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end;

definition
let X be set;
cluster -> Function-like Element of Xx*;
:: for x being Element of X* holds x is Function-like

end;
definition
let X be set;
cluster -> FinSequence-~like Element of Xx*;
end;
definition
let D be non-empty set;
let p, q be Element of Dx*;
redefine func p~q -> Element of Dx*;
end;

theorem :: BITS1:13 :: FinSjunk
for p being FinSequence for k being Nat holds
(k € dom p iff 1 < k & k < len p) &
(1 <k & k < len p implies k € dom p);

definition
let D be non empty set of Nat;
redefine mode Element of D -> Nat;

end;
definition
cluster non empty FinSequence;
end;
definition
iet p be FinSequence;
redefine func dom p -> set of Nat;
end;
definition
let D be DOMAIN;
let p be FinSequence of D;
redefine func dom p -> set of Nat;
end;

defini<ion



let p be non empty FinSequence;
redefine func dom p -> non empty set of Nat;
end;

theorem :: BITS1:14 :: NEFjunk
for p being FinSequence holds
(len p <> 0 iff p is non empty) &
(len p > O iff p is non empty) &
(p is non empty implies
1€ domp & 1 is Element of dom p
& (len p) € dom p & (len p) is Element of dom p);

theorem :: BITS1:15 :: NEFjunk2
for p being non empty FinSequence for
q being FinSequence holds
(p " q).1 =p.1;

definition
let D be non empty set;
cluster non empty FinSequence of D;

end;
definition
let D be DOMAIN;
let p be non empty FinSequence of D;
redefine func dom p —-> non empty set of Nat;
end;
definition
let D be DOMAIN;
let p be non empty FinSequence of D;
let k be Element of dom p;
redefine func p.k -> Element of D;
end;
definition
let p be non empty FinSequence;
let q be FinSequence;
redefine func p~q -> non empty FinSequence;
end;
definition

let p be FinSequence;
let q be non empty FinSequence;

redefine func p~q -> non empty FinSequence;
end;



definition
let D be DOMAIN;

let p be non empty FinSequence of D;
let q be FinSequence of D;

redefine func p“q -> non empty FinSequence of D;

end;
definition

let D be DOMAIN;

let p be FinSequence of D;

let q be non empty FinSequence of D;

redefine func p~q -> non empty FinSequence of D;
end;

theorem :: BITS1:16 :: NEFoDjunk

for D being DOMAIN for p being FinSequence of D
for e being Element of D holds
(len p > O iff p is non empty) &
(p is non empty implies p.1 is Element of D) &
(p = <* e *>) is non empty FinSequence of D &
(<* e *> ~ p) is non empty FinSequence of D &
(p is non empty implies p.1 is Element of D);

theorem :: BITS1:17 :: NEFoDs

for D being DOMAIN for p being non empty FinSequence of D holds
p-1 is Element of D &

ex y being Element of O st y = p.1;

scheme FinRecExd{D() -> DOMAIN,
A() -> (Element of D()),
N(O) -> Nat,
P[Any,Any,Any]l}:
ex p being FinSequence of D() st N() = 0 or p.1 = AQ) &

for n being Nat st 1 < n & n < N()O-1 holds Pln,p.n,p.(n+1)]
provided

for n being Nat st 1 < n & n < N(O-1 holds
for x being Element of D()

ex y being Element of D() st P[n,x,y] and
for n being Nat st 1 < n & n < N()-1 holds

for x,yl,y2 being Element of D() st
P[n,x,y1] & P[n,x,y2] holds y1 = y2

.
?

scheme FinRecExd1{D() -> DOMAIN,
A() -> (Element of D()),



N() -> Nat,
P[Any,Any,Anyl}:
N() = 0 or

ex p being non empty FinSequence of D() st len p = N() & p.1 = AQ)
&

for n being Element of dom p st n < N() holds
Pln,p.n,p.(n+1)]
provided
for n being Nat st 1 < n & n < N() holds for x being Element of D()

ex y being Element of D() st P[n,x,yl] and
for n being Nat st 1 < n & n < N() holds

for x,y1,y2 being Element of D() st
Pln,x,y1] & P[n,x,y2] holds y1 = y2

.
’

scheme FinRecUndi{ D()->DOMAIN,
A() -> (Element of D()),
N() -> Nat,
F() -> (non empty FinSequence of D()),
G() -> (non empty FinSequence of D()),
PlAny,Any,Any]l}:

FO =G0
provided
for n being Nat st 1 < n & n < NO) .
for x,y1,y2 being Element of D() st
Pln,x,y1] & P[n,x,y2] holds y1 = y2 and

len F() = NO & FO.1 = A0 &
for n being Element of dom F() st n < N() holds
Pn,FO) .n,F().(n+1)] and
len GO = NO) & GO .1 = AQ) &

for n being Element of dom G() st n < N() holds
P[n,cO0.n,G0) . (n+1)];

theorem :: BITS1:18 :: nisubn2
for ni1, n2 being Nat st ni > n2 holds ni - n2 is Nat;

theorem :: BITS1:19 :: Catuniqtl
for a, b, c, d being FinSequence
st len a = len ¢ & a <> ¢ holds a~b <> c~4;

theorem :: BITS1:20 :: Catuniq2
for a, b, c, d being FinSequence
st len a = len c & b <> d holds a”b <> c~d;

theorem :: BITS1:21 :: B_diff_len
for a,b being FinSequence st len a <> len b holds a <> b;
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(0]

t BITS = {0,1}*;

A.2 Bit strings meodel

................................................................
................................................................

................................................................
................................................................

definition
mode Bits is Element of {0,1}x*;
end;
definition
cluster non empty Bits;
end;

definition :: Bits_O_def
func ’0 -> non empty Bits means
:: BITS1: def 1
it = <*0*>;
end;

theorem :: BITS1:22 :: C_zero
’0 is Bits;

definition
let b be non empty Bits;
let k be Element of dom b;
redefine func b.k -> Nat;
end;

definition :: Bits.l_def
func ’1 -> non empty Bits means
BITS1: def 2
it = <*k1%>;
end;

theorem :: BITS1:23 :: C_one
’1 is Bits;

definition :: nil_def
func nil -> Bits means
BITS1: def 3
it = <4>;



end;

theorem :: BITS1:24 :: Cmnil
nil is Bits;

definition :: cat_def
let p, q be Bits;
redefine func p ~ q —-> Bits;

end;
definition :: cat_def

let p be non empty Bits;

let q be Bits;

redefine func p ~ q —> non empty Bits;
end;
definition :: cat_def

let p be Bits;

let q be non empty Bits;

redefinie func p = q -> non empty Bits;
end;

theorem :: BITS1:25 :: Bitsnil
nil = <.',‘-> &

len nil = 0 &
dom nil = + &
(for x being Bits holds len nil < len x) &

A

(for x being Bits holds nil ~ x x & x ° nil = x);

definition :: split. def
let p, q be Bits;
func p ~‘ q -> Flement of [: {0,1}*, {0,1}* :] means

:: BITS1: def 4

it’1 - it‘2=p &
(len q < len p implies len it‘l=len q & len it‘2=len p-len q) &

(len q > len p implies len it‘l = len p & it‘2 = nil);

..................................................
..................................................

c 4 e 4 s @ o s e 8 4 e s 8 4 4 e % 4. S 9 e e mos e ' e e s e e e s e e S e s = e
.................................................

theorem :: BITS1:26 :: C.nil _or_ not
for b being Bits holds b = nil or b <> nil;

theorem :: BITS1:227 :: Cunit Oor_?



for b being Bits st len b = 1 holds
b='Worb=1"1;

theorem :: BITS1:28 :: C.cat
for p, q being Bits ex r being Bits st r = p 7 q;

:: This is commented out as there is no Cartesian product in Mizar-C
:: theorem c_split: for p,q being Bits ex r being Element
of[:{0,1}*,{0,1}*:]

HH st p q =r;
theorem :: BITS1:29 :: C.split

for p, q being Bits ex r1, r2 being Bits

st p "¢ q=[r1, r2];

scheme C_Comp_Ind { D() -> non empty set,
F(Element of D()) -> Nat,
P[Element of D()] }:
for a being Element of D() holds P[a]
provided
for a being Element of D() st for a’ being Element of D() st F(a’) < F(a)
holds P[a’] holds P[a];

..................................................................

..................................................................

..................................................................

..................................................................

theorem :: BITS1:30 :: Bits._is.nil
for x being Bits holds

(x = nil iff x = <&>) &
(x = nil iff len x = 0) &
(x = nil iff dom x = &) &
(x = nil iff for y being Bits holds len x - len y) &
(x = nil iff for y being Bits holds x ~ y = y) &
(x = nil iff for y being Bits holds y ~ x = y) &
(x = nil iff
(ex y being Bits st
x Ty=yory ~ x=yor
(y <> nil &y - x = [nil,y1))):;

LR I

it

theorem :: BITS1:31 :: Bits_.is not.nil
for a being Bits holds
(a <> nil iff len a <> Q) &
fa <> nil iff len a > C, &
(a <> nil iff len a » 1) &
(a <> nil iff (len & = 1 iff len a < 2)) &



(a <> nil iff 1 € dom a);

0) &

k € dom a) &

(len b + k) € dom a) &

a.k = b.k) &

a.(len b + k) = c.k) &

[c, d] holds

k € dom a) &

(len c + k) € dom a) &

a.k = c.k) &
a.(len ¢ + k)

theorem :: BITS1:32 :: Bits_cat
for a, b, ¢ being Bits st a = b ~ ¢ holds

(len a = len b + len c) &
(len b = 0 iff len a = len c) &
(b = nil iff a = ¢c) &
(len ¢ = 0 iff len a = len b) &
(c = nil iff a = b) &
(len a = 0 iff len b = 0 & len c =
(a = nil iff b = nil & ¢ = nil) &
dom b c= dom a &
(for k being Nat st k € dom b holds
(for k being Nat st k € dom c holds
(for k being Nat st k € dom b holds
(for k being Nat st k € dom c¢ holds
len a > len b &
len a > len c;

theorem :: BITS1:33 Bits_split

for a, b, ¢, d being Bitc st a 7" b =
a=c "~ dg&

stuff from Bits cat

a=c¢c -~ dg&
len 2a = len c + len d &
len a = len d + len c &
(len ¢ = O iff len a = len d) &
(c = nil iff a = d) &
(len d = 0 iff len a = len c) &
(d = nil iff a = ¢c) &
(len a = 0 iff len c =0 & len d = 0) &
(a = nil iff ¢ = nil & d = nil) &
dom ¢ c= dom a &
(for k being Nat st k € dom c holds
{for k being Nat st k « dom d holds
(for k being Nat st k € dom -: holds
(for k being Nat st k € dom d holds
len d €< len a &
len ¢ < len a &
(Zen b < len a iff len c = len b) &
(len b < len a iff len d > O) %

(len b < len a iff len c =

len ¢ < len b &
(len c

len a or len ¢

3

len b & len d > 0) &

en b) &

(O<lenb & 0O < len a iff len 4 < len a) &

d.k) &



(len b > len a iff len d = 0) &

(len b > len a iff d = nil) &

(len b > len a if¥ ¢ = a) &

(len b > len a iff c = a & d = nil) &
(len b = O implies d = a & len c = 0) &
(len c = 0 & len d > O implies len b = 0);

theorem :: BITS1:34 :: Bits 0
’0 = <*¥0%x> &
len 0 = 1 &
len 0 <> 0 &
len ’0 <> len nil &
len ’0 > 0 &
len 0 > len nil &
len ’0 > 1 &
1 € dom °0 &
’0.1 =0 &
’0 is non empty Bits &
’0 = nil ~ 0 &
'0 ’0 © nil &
’0 ~¢ nil = [nil1l,’0] &
0 ~¢ 0 = [°0,nil];

definition
redefine func ’0 -> non empty Bits;
end;

theorem :: BITS1:35 :: Bits_1
71 = <*k1%> &
len ’1 = 1 &
len ’1 <> 0 &
len ’1 <> len nil &
len ’1 > 0 &
len 1 > len nil &
len ’1 > 1 &
1 € dom 1 &

1.1 =1 &
’1 is non empty Bits &
T = nil - ’1 &

1T =1 © nil &
’1 ~¢ nil = [nil,’1] &
’1 ~¢ 2’0 = [’1,nil];

definition
redefine func ’1 -> non empty Bits;
end;



theorem :: BITS1:36 Bits_junki1
for a being Bits holds
a " nil = a &
nil ~a =a &
a - nil = [nil,a) &
nil - a = [nil,nil] &
len (a ~ nil) = len a &
len (nil ~ a) = len a &

theorem

len (a ~ ’0)
len (a ~ ’0)
len (’0 - a)
len ('O -~ a)
len (a -~ ’1)
len (a ~ ’1)
len (’1 - a)
len (1 -~ a)
(a - ’0) is
(a -~ ’0) is

Vv il v vV

v

non
non

lena + 1 &
0
lena + 1 &
0O
len a + 1
0 &
len a + 1 &
o &
empty Bits
empty Bits

(’0 - a) is non empty Bits
(’0 - a) is non empty Bits
(a - ’1) is non empty Bits
(a -~ ’1) is non empty Bits
(’1 - a) is non empty Bits

(’1 - a) is

non

(a is non empty
(a is non empty
0 &
1 &

(’0 -~ a).1 =
(1 - a).t

1]

(for k being Nat st k € dom a holds
(’0 - a).(k+1) = a.k & (°1 ~ a).(k+1)

BITS1:37

empty Bits

iff len a > 0) &
iff a <> nil) &

Bits_junk2

for a,b being Bits holds

theorem
for a,

(len b > len a implies a ~‘ b
(a <> nil implies (len t > len a iff a
len (a = b) &
(b -

len a

<
lan a <

len

BITS1:38 ::

c, d being B
st a <> nil
len ¢ 1 &
len ¢ > 1 &
len ¢ <> 0 &
c <> nil &

its
& a

a);

&

PRORIRRPRRRIER

Bits_split. O

=¢ 0 = [c, 4] holds

fa,nil]) &

a.k);

[a,nill)) &

~1

[v/d]
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theorem :: BITS1:39 :: Bits_split.nil
for a being Bits holds
(a"‘nil)‘1 = nil &
(a”‘nil)‘2 = a &
~¢

a nil = [nil,a] &
(for af,ar being Bits st a ~‘ nil = [af,ar] holds af = nil & ar =

a)

A.3 Constructive inference rules

................................................................

................................................................

................................................................

................................................................

scheme C.0.I1 { P[], QO] }:

P01 o 03
provided
P[];
scheme C.0_.Ir { P[], Q01 }:
P[] or Qfl
provided
Ql;
scheme C.O.E { »[1, Q(J, ROJ }:
R[}
provided

P[] or Q[] and
P[] implies R[] and
Q[] implies RI[];

scheme C.I.E { P[], Q01 }:
QO

provided
P[] implies Q[] and
P[];

scheme C.UE { D() -> non empty set,
B() -> Element of D(),



P{Element of D()] }:
P[BO]
provided
for b being Element of D() holds P[b] and
B() is Bits;

scheme CE.I { S() -> non empty set,
A() -> Element of S(),
P{Element of S()] }:
ex b being Element of S() st P[b]
provided
P{A()] and
A() is Bits;

scheme CEE { S() -> non empty set,
P(Element of S()] }:
ex a being Element of S() st Plal
provided

ex a being Element of S() st Plal;

scheme C.EQ { D() ~> non enpiy set,
A(Q) -> Ziewment = DO,
D!{+ -* non aexpty Subset of D(),
A2y <> Flames v of D?(),
P[E* ez wf 20)] }:
PA° ()]
;i wded
A’() = A() and
P(AOY];

...............................................................
...............................................................

................................................................
................................................................

scheme C03.I1 { P[], Q[1, ROJ }:
P[] or Q] or R[]

provided

F{1;

scheme C.03.I.m { P[], Q[1, ROJ }:
P[] or Q[J or RI]

provided

Qll;

scheme CO03.I.r { P[], Q01, R[] }:
P[] or G[J or R[]



provided

R[];

scheme C03 E { P[], Q01, RO], s0O }:
S
provided
P[]l or Q] or R[] and
P[] implies S[] and
Q[] implies S[] and
R[] implies S([J;

scheme CU2E { D() -> non empty set,
A() =-> Element of D(),
B() -> Element of D(),
P[Element of D(), Element of D()] }:
P[AQ), BO]
provided
for a,b being Element of D() holds P[a,bl and
AQ) is Bits and
B() is Bits;

scheme CUI.E { D{) -> non empty set,
A() -> Element of D(),
P{Element of D()], Q[Element of D()] }:
QLAQ]
provided
for b teing Element of D() holds P[b] implies Q[b] and
A() is Bits and
PLAQO]:

scheme CU2I E { D() -> non empty set,
A() -> Element of D(Q),
B() -> Element of D(),
P[Element ¢ 2(), Element of D()],
Q(Element oi %(), Element of D()] }:
Q[AQ, BO]
provided
for a,b being Element of D() holds P[a, b] implies Q[a, bl and
A() is Bits and
B() is Bits and
P[AQO), BOI;

scheme CUIUE { D() -> non empty set,
A() -> Element of D(),
B() -> Element of D(),
P[Element of D()1],



Q[(Element of D(),Element of D()] }:
QlaQ),BO)]
provided
for a being Element of D() st P[al] holds
for b being Element of D() holds Q[a,b]l and

A() is Bits and
P[A()] and
B() is Bits;

scheme CE2.I { D() -> non empty set,
D’() -> non empty set,
A() -> Element of D(),
B{) -~> Element of D’(),
P[Elament of D(),Element of D’>()] }:
ex a being Element of D() st ex b being Element of D’() st P[a,b]
provided
P[A(),B()] and
A() is Bits and
B() is Bits;

v
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Appendix B

Bits, UNat and BNat

BITS2.ABS

January 28, 1996

environ

begin

B.1

theorem ::

vocabulary

FUNC_REL, SUB.OP, REAL.1, NAT.1, INT.1, ANAL,

FINSEQ, COORD, FUNC, FINITER2, TUPLES, PI, SIGMA, NEWTON,
POWER, POWER1, NISHIYA, BITS;

constructors

BOOLE, FUNCT.2, SEQ.1;

signature

TARSKI, REAL_1, SUBSET.1, NAT.1, INT.1, INT.2, FUNCT t.

FINSEQ.1, MCART_1, DOMAIN.1, FINSEQ-2, FINSOP_ i, PREPOWER, POWER,
BINARITH, BITS1;

theorems

TARSKI, AXIOMS, BOOLE, REAL_1, REAL.2, SUBSET !, NAT i, FUNCT 1,
FINSEQ.1, FINSEQ.2, INT_1, INT_2, MCART .1, NEWTON, PREPOWER, POWER,
SQUARE_1, BINARITH, BITS1;

schemes

BOOLE, NAT.1, FINSEQ.i, RECDEF_1, BITS1;

definitions

TARSKI;

clusters

FUNCT_1, FINSEQ.1,FIN3EQ.2, BITS1;

Bits programs

BITS2:1 :: C_.len_decide

for p being Bits holds for q being Bits holds

len p < len q or len p = len q or len p > len qg;

=3



theorem :: BITS2:2 :: C.len.decide2
for p, q being Bits
holds len p < len q or len p » len q;

theorem :: BITS2:3 :: C.eqf_or mnot
for a, b being Bits st a <> nil & b <> nil
holds a.1 = b.1 or a.1 <> b.1;

thnorem :: BITS2:4 :: Cunit_eq.or.not
for a, b being Bits st len a = 1 & len b = 1
holds a = b or a <> b;

theorem :: BITS2:5 :: C.eq.or_not
for p, q being Bits holds p = qQ or p <> q;

B.2 Unary naturals

......................................................................
.......................................................................

.......................................................................
.......................................................................

definition :: UNAT_def
func UNAT -> non empty Subset of {0,1}* means
:: BITS2: def 1
for x being Any holds x € it iff
ex b being Bits st x = b &
for k being Nat st k € dom b holds b.k = 0;

end;
definition

mode UNat is Element of UNAT;
end;

theorem :: BITS2:6 :: UNat.0
for b being Bits holds
b is UNat iff for k being Nat st k € dom b holds b.k = 0;

theorem :: BITS2:7 :: UNat_split
for p being UNat
for q, r1, r2 being Bits st p ~¢ q = [r1, r2] holds
ri is UNat & r2 is UNat;

definition :: UQO_Def, Ul Def
func UO -> UNat means
: BITS2: def 2



\A
it = nil;
func U1 -> UNat means
:: BITS2: def 3
it = ’0;
end;

theorem :: BITS2:8 :: C_UO
U0 is Bits;

theorem :: BITS2:9 :: CU1
U1l is Bits;

theorem :: BITS2:10 :: Bits.UO

U0 = nil &
U0 = <> &
len UO = 0 &
dom U0 = & &

for x being Bits holds len UO < len x;

theorem :: BITS2:11 :: Bits Ul
Ul = 0 &
len Ul = 1 &
len Ul <> 0 &
len U} (0]
len Ul 1
1 € dom Ut
Ui.1 = 0;

[AVAN'4

&
&
&

theorem :: BITS2:12 :: UNa* _junk
nil is UNat &
’0 is UNat &
(for u being . * len u = 1 holds u = U1);

theorem :: BITS2:13 :: UNat_len.bij
for u, v being UNat holds u = v iff len u = len v;

definition :: U2N_def
let u be UNat;
func U2N u -> Nat means
BITS2: def 4
it = len u;
end;

definition :: N2U_def
let n be Nat;
func N2U n -> UNat means



BITS2: def 5
len it = n;
end;

theorem :: BITS2:14 :: U2N2U
for u being UNat holds u = N2U U2N u;

theorem :: BITS2:15 :: N2U2N
for n being Nat holds n = U2N N2U n;

theorem :: BITS2:16 :: UTwos
for u being UNat for n being Nat holds

U2N u =n iff u

theorem :: BITS2:17 :: two_junk
U2N U0 = 0 &
N2U O U0 &
N2U 0 nil &
U2N Ul =1 &
N2U 1 = Ul &
N2U 1 = ’0;

]

il

definition

let p, q be UNat;

redefine func p = q -> UNat;
end;

theorem :: BITS2:18 :: C.Ucat
for a,b being UNat ex c being UNat st ¢ = a = b;

definition :: Uplus_Def
let p, q be UNat;
func p + q -> UNat means
BITS2: def 6

it =p "~ q;
end ;

theorem :: BITS2:1¢ :: C_Uplus
for a,b being UNat holds ex c being UNat st c =

theorem :: BITS2:20 :: Uplus
for p, q being UNat holds
U2N (p + q) = U2N p + U2N q;

definition
let p be UNat;

a+ b;



let q be Bits;

redefine func p ~‘ q -> Element of [: UNAT, UNAT :]:
end;

definition :: UNat.mult_def
let u, v be UNat;
func u - v -> UNat means
BITS2: def 7
U2N u + U2N v = U2N it;
end;

theorem :: BITS2:21 :: UNat._mult by UO
for v being UNat holds UO = UO - v & UO0 = v - '™

theorem :: BITS2:22 :: C_UNat.mult
for u being UNat holds
for v being UNat ex uv being UNat -t uv = u - v;

theorem :: BITS2:23 :: C_Bits2UNat
for a being Bits holds ex u being UNat s% ien u = len a;

B.3 Binary naturals

..................................................
..................................................

..................................................
..................................................

theorem :: BITS2:24 :: B2N_exist
for b being Bits holds len b = 0 or
ex p being non empty FinSequence of NAT st len p = len b &
p-1 = b.1 & (for n being Element of dom p st n < (len b)
holds

ex bn being Nat st bn = b.(n+1) & p.(n41) = 2 - p.n + bn)

definition :: B2N_.Def
let b be Bits;
func B2N b -> Nat means
BITS2: def 8

(len b = 0 implies it = 0) &
(len b > O implies
ex p being non empty FinSequencz of NAT st
it = p.(len b) & len p = len b & p.1 = b.1 &
for n being Element of dom p st n < len b holds



ex bn being Nat st
bn = b.(n+1) & p.(n+1) = 2
end;

theorem :: BITS2:25 :: B2N_junkO

B2N nil = 0 &
B2N ’0 = 0 &
B2N ’1 = 1;

theorem :: BITS2:26 :: B2N def
B2N nil = 0 &
(for b being Bits holds
B2N (b = ’0) = 2 - B2N b &
B2N (b = ’1) = 2 - B2N b + 1);

definition :: {

let a,n be Nat;

redefine func a #N n -> Hat;
end ;

theorem :: BITS52:27 :: powerjunkl
for a being Real holds

a #$N 0 =1 &

a#N 1 = a;

theorem :: BITS2:28 :: powerjunk?2
for a being Real for n being Nat holds
(a > 1 implies a #N n < a #N (n+1));

theorem :: BITS2:29 :: power2
for k,n being Nat holds k < n iff 2 #N k < 2 #N n;

theorem :: BITS2:30 :: power2’
for k,n being Nat holds k < n iff 2 #N k < 2 #N n;

theorem :: BITS2:31 :: power2l
for k being Nat holds
2#N k > 1 &
2 #N k > 0 &
(k > O implies 2 #N k . 2);

theorem :: BITS2:32 :: B2N_def2
for b being Bits holds

B2N ( nil ) = O &

B2N (0 ~ b) = B2N b &

- p.n + bn);

SN



BE2N (1 ~ b) = 2 #N len b + B2N b;

theorem :: BITS2:33 :: UNat B2N
for u being UNat holds
B2N u = 0 & for a being Bits holds B2N(u ~ a) = B2N a;

theorem :: BITS2:34 :: C_Pad_zeroc
for a,b being Bits st len a > len b holds
ex ¢ being Bits st len c = len a & B2N ¢ = B2N b;

theorem :: BITS2:35 :: Bits_length
for a being Bits holds B2N a < 2 #N len a;

definition :: BNAT def
func BNAT -> non empty Subset of {0,1}* means
:: BITS2: def 9
for x being Any holds x € it iff
ex b being Bits st x = b & (len b = 0 or b.1 = 1);

end;
definition :: {
mcde BNat is Element of BNAT;
end;
definition
cluster non empty BNat;
end;

theorem :: BITS2:36 :: BNat_def
for b being Bits holds b is BNat iff (len b = O or b.1 = 1);

theorem :: BITS2:37 :: BNat.split.0
for a being BNat st a <> nil for b,c being Bits st
a "¢ 0 = [b,c] holds b = '1;

definitvion :: BODef, Bl Det
func BO ~> BNat means
BITS2: def 10
it = nil;
func B1 -> non empty BNat means
:: BITS2: def 11
it = ’1;
end;

theorem :: PITS2:38 :: CBO
BO is Bits;



o

theorem :: BITS2:39 :: CB1
Bl is Bits;

theorem :: BITS2:40 :: BNat_length
for a being BNat st a <> BO holds

B2N a

v/

2 #N (len a -’ 1);

theorem :: BITS2:41 :: Bits BO
BO =~ nil &
B2N BO = 0 &

for b being BNat st B2N b = 0 holds b = BO;
theorem :: BITS2:42 :: Bits Bl
Bl =1 &

Bl =nil - ’1 &

Bi1 =B0 - ’1 &

B2N B1 =1 &

for b being BNat st B2N b = 1 holds b = B1;
definition :: {

cluster non empty BNat;
end;
definition :: {

let p be non empty BNat;

let q be Bits;

assume p <> BO;

redefine func p ~ q —> non empty BNat;
end;

theorem :: BiTS2:43 :: B2N_unique
for k being Nat holds
for b1,b2 being Bits st len bl = k & len b2 = k &
B2N b1 = B2N b2 holds bl = b2;

theorem :: BITS2:44 :: BNat_len
for a being BNat for b being Bits st len a > len b holds
B2N a > B2N b;

definition :: N2BDef
let n be Nat;
func N2B n -> BNat means
:: BITS2: def 12
B2N it = n;
end;



theorem :: BITS2:45 :: NAT_BNAT.NAT
for n being Nat holds B2N N2B n = n;

theorem :: BITS2:46 :: BNAT NAT_BNAT
for b being BNat holds N2B B2N b = b;

theorem :: BITS2:47 :: Bits2BNat
for a being Bits ex b being BNat st B2N a = B2N b;

theorem :: BITS2:48 :: B2N _cat
for a,b being Bits holds
B2N(a ~ b) = B2N a - 2 #N len b + 1}2N b;

theorem :: BITS2:49 :: B2N_junk2
for a,b being Bits holds
B2N(b -~ a) > B2N a;
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Appendix C

Arithmetic operations on BNat

BITS3.ABS

January 28, 1996

environ
vocabulary
FUNC_REL, SUB_.OP, REAL_1, NAT_.1, INT. i, ANAL,
FINSEQ, COORD, FUNC, FINITER2, TUPLES, PI, STGMA, NEWTON,
POWER, POWER1, NISHIYA, BITS;
constructors
BOOLE, FUNCT. 2, SEQ_1;
signature
TARSKI, REAL_1, SUBSET.1, NAT 1, INT 1, INT 2, FUNCT 1,
FINSEQ_1, MCART_1, DOMAIN_1, FINSEQ 2, FINSOP 1, PREPOWER, POWFR,
BINARITH, BITS1, BITS2;
theorems
TARSKI, AXIOMS, BOOLE, REAL i, REAL_2, SUBSET.1, NAT i1, FUNCT 1,
FINSEQ_1, FINSEQ.2, INT_i1, INT_2, MCART.1, NEWTON, PREPOWER, PO%WER,
SQUARE.1, BINARITH, BITS1, BITS2;
schemes
BOOLE, NAT_1, FINSEQ.1, RECDEF_ 1, BITS1;
definitions
TARSKI;
clusters
FUNCT.1, FINSEQ_-1,FINSEQ.2, BITS1, BITSZ2;
begin
definition

func BIT -> non empty Subset of {0,1}* means

:: BITS3: def 1
it = {<*0#%>,<*1%>};

end;

definition



93

mode Bit is Element of BIT;

end;
definition
cluster non empty Bit;
end;
definition
redefine func 0O -> non empty Bit;
end ;

theorem :: BITS3:1 :: CO
’0 is Bits;

definition
redefine func ’! -> non empty Bit;
end;

theorem :: BITS3:2 :: C_1
’1 is Bits;

theorem :: BITS3:3 :: Bit_junkO

for b being Bits holds
(b is Bit iff b = 0 or b = 1) &
(b is Bit iff len b = 1);

theorem :: BITS3:4 :: Bit_junkl
for b being Bit holds
(b='"0orb-="21)%
len b = 1 &
len b <> 0 &
len b > 0 &
b <> nil;

theorem :: BITS3:5 :: C_Bit_decide
for b being Bit holds
b=’'0orbdb="1,;

theorem :: BITS3:6 :: N2B_junkO
N2B O = BO &
N2B 0 = nil &
N2B 1 = B1;

definition :: B2B_ Def
let b be Bits;
func B2B b -> BNat means



BITS3: def 2
it = N2B B2N b;
end;

theorem :: BITS3:7 :: B2B._def
B2B BO = BO &
B2B nil = nil &
B2B B1 = B1 &
(for a being Bits holds
B2B a = N2B B2N a &
B2N a = B2N B2B a &
len a > len B2B a) &
(for u being UNat holds B2B u = BO & B2B u = nil) &
(for b being BNat holds B2B b = b);

C.1 Binary addition

..................................................
..................................................

..................................................

definition
let p, q be Bits;
func p + q -> BNat means
:: BITS3: def 3
B2N it = B2N p + B2N q;
commutativity;
end;

theorem :: BITS3:8 :: BNat_plﬁs_def
for a,b being Bits holds
B2N(a + b) = B2N a + B2N b &
-+

B2N(a + b) = B2N b + B2N a &
a + b = N2B(B2N a + B2N b) &
a + b = N2B(B2N b + B2N a) &

(for ab being BNat st B2N ab = B2N(a+b) holds ab = a+b);

theorem :: BITS3:9 :: BNat_plus.nil
for b being Bits holds B2N(b+nil)=B2N b & B2N(b+BO)=B2N b &
(b is BNat implies b + nil = b & b + BO = b);

theorem :: BITS3:10 :: CBits_plus
for a,b being Bits st len a = len b holds

ex ¢ being Bits st ex cu being Bit st len ¢ = len a &
B2N(cu ~ c) = B2N(a + b);



theorem :: BITS3:11 :: C_BENat._plus
for p, q being Bits ex pq being BNat st pq = p + q;

theorem :: BITS3:12 :: Bplus_junk
for a being Bits holds
B2N(a + nil) = B2N a &
B2N(a + ’0) = B2N a &
for u being UNat holds
B2N(a + u) = B2N a;

C.2 Binary subraction

..................................................

theorem :: BITS3:13 :: AsCom3

for a,b,b2 being Real holds
a+ (b+Db2) =b+ (a+ b2) &
a+ b+ b2=a+ b2 + b;

theorem :: BITS3:14 :: AsComé4
for a,a2,b,b2 being Real holds a + a2 + (b + b2) = a + b + (a2 + b2);

theorem :: BITS3:15 :: CBits.minus
for a,b being Bits st len a = len b holds
ex ¢ being Bits st ex sb being Bit st len c = len a &
B2N(sb ~ a) = B2N(b + c) &
(B2N a < B2N b iff sb = ’1);

theorem :: BITS3:16 :: B2N_notUNat
for a being Bits st not a is UNat holds
B2N a <> 0 &
B2N a > 0;

definition :: {
let p be Bits;
func - p -> Bits means
:: BITS3: detf 4
(p is UNat implies it = nil) &
(not p is UNat implies len it = len p &
B2N it = 2 #N len p - B2N p);
end;
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theorem :: BITS3:17 :: C_UNat.or_not
for a being Bits holds
a is UNat or not a is UNat;

theorem :: BITS3:18 :: C.BNatUminus
for a being Bits holds ex b being Bits st b = -a;

theorem :: BITS3:19 :: C_B2N_junk2B
for a,b being Bits st B2N a < B2N b holds
ex ¢ being Bits st len c = len b & B2N c = B2N a;

theorem :: BITS3:20 :: C_B2N . decidele
for a,b being Bits st len a = len b holds
B2N a < B2N b or B2N a > B2N b;

theorem :: BITS3:21 :: C_B2N_decide?2
for a,b being Bits holds
B2N a < B2N b or B2N a » B2N b;

definition
let p, q be Bits:
func p - ¢ > B¥ic means
: BITS3: def &
(B2N p > B2N q implios
B2N 3t = B2N p - B2N ¢J &
(B2N p < BR2N q implies
B2N it = 2 #N len g + B2N p - B2N q);
end;

theorem :: BITS3:22 :: C.BNat minus
for p,q being Bits holds ex pq being BNat st ex s being Bit st
pPQ=p - q & (B2N p < B2N q iff s = ’1);

C.3 Binary multiplication

..................................................
..................................................

..................................................
..................................................

definition
let p, q be Bits;
func p - q -> BNat means
BITS3: def 6
it = N2B(B2N p - B2N q);
commutativity;



and ;

theorem :: BITS3:23 :: C.BNat.t
for a,b being Bits holds
ex ¢ being BNat st ex u being UNat st lenu = len a & ¢ = a : b;

thaeorem :: BITS3:24 :: C.BNat._times
for a,b being Bits ex c being BNat st ¢ = a - b;

theorem :: BITS53:25 :: B1i.NE
Bi is non empty;

scheme C U2 EX { D() -> non empty set,
D’() -> non empty set,
A() -> Element of D(),
B() => Element of D’(),
P[Element of D(),Element of D’()] }:
P[A(),BO)]
provided
for a being Element of D() for b being Element of D’ () holds Pla,b]
and
A() is Bits and
B() is Bits;

scheme C.UIU.EX { D() -> non empty set,
D’() -> non empty set,
A() -> Element of D(),
3() -> Element of D’(),
P[{Element of D()],
Q[Element of D(),Element of D’ ()] }:
QLA ,BO)]

provided
for a being Element of D() st P[a] holds
for b being Element of D’() holds Q[a,b] and
A() is Bits and
P[AQ)] and
B() is Bits;

theorem :: BITS3:26 :: BNat_times_def
for a,b being Bits holds
B2N(a-b) = B2N a - B2N b;

theorem :: BITS3:27 :: BNat_dist
for a,b,c being Bits holds a-(b+c) = (a-b) + (a-c);



C.4 Binary division

........................................
........................................

........................................
........................................

theorem :: BITS3:28 :: DivO
for n being Nat holds
n div 0 = 0 &
n mod 0 = 0,

definition
let a,b be Bits;
func a / b -> Element of [: BNAT, BNAT :] means
:: BITS3: def 7
it‘1 = N2B(B2N a div B2N b) &
it2 = N2B(B2N a mod B2N b);
end;

theorem :: BITS3:29 :: Bdiv_def
for a,b being Bits holds
(a/b) 1 = N2B(B2N a div B2N b) &
B2N(a/b) ‘1 = B2N a div B2N b &
(a/b) ‘2 = N2B(B2N a wmod B2N b) &
B2N(a/b) ‘2 = B2N a mod B2N b &
(0 < B2N b implies B2N a = B2N b - B2N(a/b)‘1 + B2N(a/b)‘2) &

(B2N a < B2N b implies (a/b)‘1=B0 & (a/b)‘2=B2B a & a/b=[B0,B2B al)

for q,r being BNat st B2N a =B2N(q-b+r) & B2N r < B2N b holds
(a/b)‘1 = q &
(a/b)‘2 =1r &
a/v = [q,7r] &
(a is BNat implies a =q - b + r) &
(B2N a < B2N b implies q = BO & r = B2B a);

theorem :: BITS3:30 :: Bdiv_junk
for a,b being Bits st B2N b > O holds
for g,r being BNat st a/b = [q,r] holds

B2N r < B2N b &
B2N a = B2N q - B2N b + B2N r &
B2N a = B2N(q - b + r) &
B2B a=q - b +r&
(a is BNat implies a = q - b + r);

theorem :: BITS3:31 :: N2B_junkO
N2B 0 = BO &



N2B 0 = nil;

theoram :: BITS3:32 :: C Becat .
for a being BNat st 2 is non empty for b being Bits holds
ax ab being BNat st ab = a ~ b;

definition
let a be BNat;
let b be Bits;
redefine func a ~‘ b -> Element of [:BNAT,{O,1}*:];

end;
theorem :: BITS3:33 :: C Usplit
for u being UNat. for b being Bits holds
ex uf,ur being UNat st u "¢ b = [uf,url;
theorem :: BITS3:34 :: C Bsplit
for a being BNat for b being Bits holds
ex af being BNat st ex ar being Bits st a ~‘ b = [af,ar];
theorem :: BITS3:35 :: C BNat.minus2
for a,b being Bits holds ex ab being BNat st
ab = a - b;

theorem :: BITS3:36 :: C._BNat div
for a,b being BNat holds ex gq,r being BNat st
a/ b= [q,r];
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