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Abstract 

Fuzzy rule-based models have been studied for decades and emerged in a diversity of 

architectures and design approaches. They play a vital and unique role by forming a 

human-centric computing framework. In general, fuzzy rule-based models are regarded as 

numeric constructs; as such they are optimized and evaluated at the numeric level. 

However, no ideal fuzzy models that fully capture (coincide with) all numeric 

experimental data. Information granularity is a perspective to represent and recognize the 

abstraction of information as the observation method of humans. In this perspective, the 

numeric data can be presented at various levels of resolution or scales. By bringing a 

concept of information granularity into fuzzy rule-based models, we give up on obtaining 

precise numeric models, whereas we make them into granular form and produce granular 

results. Subsequently, the outputs provided by granular fuzzy rule-based models are 

aligned well with the experimental data and deliver better insight into credibility.  

The fundamental objective of this thesis is to establish a comprehensive, systematic 

method for developing granular fuzzy rule-based models, so that the granular outputs of 

the models can embrace (cover) the target experimental data as much as possible, 

meanwhile the granular outputs are as specific as possible. To accomplish these objectives, 

we study several fundamental design issues that emerge in the realm of Granular 

Computing. First, we propose an advanced scheme of granulation and degranulation to 
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abstract information granules from numeric data. Second, we investigate several 

commonly known logic operators that are used in fuzzy modeling and granular fuzzy 

modeling. Afterwards, we design a series of development strategies for granular fuzzy 

rule-based models by admitting and allocating a certain level of information granularity 

around numeric values. Our proposed granular rule-based models could be classified into 

three groups: granular input space of the models, granular processing modules of the 

models, and granular output space of the models. Unlike the standard 

numeric-performance measure of fuzzy models that come in the form of the 

root-mean-square error (RMSE), two pertinent performance measures are introduced and 

implemented to evaluate the performance of granular fuzzy rule-based models: namely, 

coverage and specificity. We develop several protocols of forming and allocating 

information granules to cope with different strategies of granular modeling and analyze 

how different protocols lead to improve the performance of granular models. Some 

commonly used population-based optimization algorithms—for instance, particle-swarm 

optimization (PSO) and differential evolution (DE)—are used to optimize the allocation of 

information granularity, and coverage and specificity criteria are used to guide the 

optimization. A series of experimental studies is reported which offers a comprehensive 

overview of the underlying realization and performance of the granular fuzzy rule-based 

models.   
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Chapter 1  

Introduction 

Fuzzy set theory has witnessed an impressive growth since its inception when Zadeh 

published the first paper on fuzzy sets [1]. Fuzzy theory is an attractive research direction, 

as it is the one of the most comprehensible and acceptable of perspectives for describing, 

understanding and exploring the world by mimicking the habit of human cognition and 

behavior. Commonly, the feelings and words of human beings expressed in the natural 

language usually have un-sharp (fuzzy) boundaries. One significant contribution of fuzzy 

theory is to provide a principal for describing things on a basis of gradation and pluralism 

rather than via binarization [2]. Fuzzy models (usually encountered as fuzzy rule-based 

models) are developed originating from fuzzy theory to describe nonlinear systems. They 

establish a kind of inference systems that imitates the reasoning methods of humans. They 

have been studied for decades and produced many diverse architectures and design 

approaches, as for example in [3]-[10]. In the existing diversity of fuzzy models, fuzzy 

logic theory plays a vital and unique role by forming a human-centric computing 

framework [11].  

As time goes on, fuzzy logic theory has evolved into a more advanced perspective: 

information granularity, to represent and recognize the abstraction of information as the 

observation method of humans. Generally, we used to have two broad approaches to 

reasoning: inductive and deductive methods. In induction, we tend to recognize patterns 

by grouping them together as information entities according to their internal or external 

similarity and then developing them into general conclusions or theories. In deductive 

reasoning, we use inductively obtained results to process information which is usually 

abstract, fuzzy, concise and imprecise, and we are willing to accept that the reasoning 

outcomes are vague if it contains useful information. These forms of abstract information 

entities are termed information granules [12]-[16]. In this perspective, the numeric data 
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can be presented at various levels of resolution or scales, and operated more efficiently. 

Thus, in recent literature, researchers are interested in realizing and processing data at an 

abstract or extended level rather than crisp form when they handle issues in the fields of 

machine learning and data mining [17]-[22]. 

To use information granules, and to help users understand them, Granular Computing 

[23][24][26]-[28] and granular modeling [25][31][32][33][36]-[38] have been growing 

quickly as a paradigms of information processing for information granules in the domain of 

human-centric systems [28]. In Granular Computing, usually, values, variables, and model 

systems are granulated in an abstract way, as the manner of human cognition [29]-[37][39]. 

Among the existing possible perspectives in Granular Computing, we may regard the 

information granules as interval sets, fuzzy sets, rough sets [40], shadowed sets [41], 

probabilistic sets, etc. Regardless of how we refer to them, it is a beneficial challenge to set 

up and design a comprehensive framework to develop and process information granules 

with an appropriate methodology. 

Fuzzy rule-based models are presented as a well-structured framework for processing 

information granules because of its ability to handle numeric and semantic information in 

one system. Furthermore, fuzzy rule-based models are able to represent and exploit the 

knowledge acquired from data learning processes or experts’ experiences, and the models 

can be interpreted by humans as well. Therefore, we construct granular models based on 

fuzzy rule-based models to develop an advanced way to describe complex nonlinear 

system. Consequently, granular fuzzy rule-based models underlie the remarkable human 

ability to engage in rational reasoning when information is imprecise, uncertain, partially 

known and partial true [23]. 

1.1 Motivation 

One of the most common features of fuzzy models is that they produce numeric results 

[42], and that the design of the models is carried out at the numeric level guided by a 
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performance index that is typical for numeric models. However, there are no ideal fuzzy 

models that fully capture (coincide with) all numeric experimental data. In other words, we 

cannot without any error capture all the inputs that form the output data by the outputs of 

the model [43]. This is due to the error that comes from almost everywhere in such a model: 

e.g., the deficiencies of the model’s design and the inaccurate parameters of the model. 

Even the inputs of the model are possibly unreliable (due to measurement error). Thus, 

error and noise in numeric values are almost inevitable when we develop and use a numeric 

model. Even more advanced fuzzy models such as those that exploit Type-2 or 

interval-valued fuzzy sets are susceptible to (encounter) the same error. Moreover, to a 

certain extent, there is no expectation that minute variations in models could have a 

significant influence on resulting outputs. Do we indeed care about the difference between 

the outside temperature is 24 °C and 26 °C? An over-emphasized numeric facet of 

processing is somewhat counter-intuitive and does not lie in the spirit of any fuzzy 

processing and system modeling. In general, excessive design effort is wasted, as the 

model is assessed as a purely numeric construct in the end. 

With Granular Computing, we give up obtaining precise numeric models and focus 

instead on making the models to granular forms, which produce granular outputs capturing 

target or crucial information of the experimental data. This study presents our efforts 

toward the granulation of data and fuzzy rule-based models. The fuzzy rule-based models 

are made granular by admitting and allocating granular parameters at a certain level of 

granularity so that the granular output of the model can embrace (cover) the target data as 

much as possible and are as specific as possible [44]-[50]. The resulting granular fuzzy 

models offer higher tolerance to data noise and modeling errors, and help to produce results 

that are of practical relevance. The main characteristic of granular fuzzy modeling is the 

veracious, interpretable, and semantically-oriented transparency of the developed 

constructs [51][52].  
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It is obvious that the performance index used to evaluate the granular fuzzy model 

should not manifest as numeric constructs such as the RMSE or the like because it involves 

information granularity. Therefore, we turn to two pertinent performance indexes that 

information granules are guided to form—namely, coverage and specificity criteria—to 

evaluate and analyze the performance and guide the optimization of the granular fuzzy 

model. 

1.2 Objective and originality 

As illustrated in Figure 1.1, the fundamental objective of this study is to establish a 

comprehensive, systematic method with which to handle the information granules obtained 

from data based on the fuzzy rule-based model framework. First, we design the granulation 

and degranulation scheme transforming information granularity from/to numeric data sets, 

and its augmented approach. Second, we investigate several commonly known logic 

operators that are used in fuzzy modeling and granular fuzzy modeling. Afterwards, we 

design a series of new development strategies for granular fuzzy rule-based models by 

admitting and allocating a certain level of information granularity around numeric values. 

As a general architecture of fuzzy models can be highlighted three main functional 

modules, that is: input interface, processing module and output interface, our proposed 

granular fuzzy rule-based models could be classified into three groups: granular input 

space of the models, granular processing modules of the models, and granular output space 

of the models. The performance of granular fuzzy rule-based models is evaluated by two 

pertinent criteria coverage and specificity. From a methodological point of view, one can 

stress that granular modeling delivers a successive layer of system modeling. The approach 

advocated here builds upon an already constructed numeric model and makes it better 

aligned with the system under consideration by involving the concept of information 

granules. 
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Figure 1.1.  A general roadmap of the research 

 

The originality of the research in this thesis is mainly as follows. 

(1) We develop a novel augmented mechanism of data reconstruction to reduce the 

deterioration of a granulation-degranulation scheme, which is of benefit for the 

transformation of numeric data and information granules. 

(2) We design mechanisms of allocation of information granularity across the 

components of the fuzzy rule-based model in several new strategies which serve as sound 

vehicles for improving the performance of the model being sought at the higher level of 

abstraction of information granules. 

(3) We provide comprehensive criteria to assess and analyze the performance of the 

granular fuzzy rule-based models to cope with different strategies.  

Overall, the proposed study realizes a new original framework that emphasizes the 

nature of a granular fuzzy model being regarded as an enhancement of the original fuzzy 

model in an advanced perspective. 
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1.3 Organization 

The thesis is structured into the following chapters: 

To make the study self-contained and easy to follow, Chapter 2 covers some useful 

background ideas involved in this study, including fuzzy clustering, fuzzy rule-based 

modeling, statistical analysis, evaluation criteria of information granules, and 

population-based optimization methods. 

Chapter 3 proposes an augmentation mechanism for the generic data reconstruction 

approach by introducing transformation mapping of the originally produced partition 

matrix and by setting up an adjustment mechanism modifying a localization of the 

prototypes to enhance the quality of reconstruction. 

Chapter 4 poses a question whether two t-norms produce distinct results. The problem 

is formally expressed as a certain kind of hypothesis testing in which a null hypothesis 

concerns the equality of medians of membership grades produced by two triangular norms. 

In the sequel, we introduce a concept of granular t-norms and discuss an idea of the 

granular equivalence of logic operators. This study is an indispensable reference for 

selecting logic operators for fuzzy modeling and granular modeling. 

Chapter 5 introduces a concept of a granular input space in fuzzy rule-based modeling 

and develops an algorithmic framework that supports an optimization of the specificity of 

the model exposed to granular inputs data. For illustrative purposes, the study is focused on 

information granules that are formalized in terms of intervals. However, the proposed 

approach is equally relevant for other formalisms of information granules. 

Chapter 6 discusses the concepts and developments of granular fuzzy rule-based 

models in the processing module of Takagi-Sugeno fuzzy rule-based models. We present 

augmentation for fuzzy models by forming information granules around the numeric 

values of the parameters and constructions of the models, and show how different 

protocols of allocating information granules lead to improve the performance of granular 

models. 
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Chapter 7 proposes a method of granular output space and develops an optimization 

process for the allocation of information granularity across this space. We endow the 

output space with a mechanism for the optimal allocation of information granularity, which 

is to say that the numeric results formed by the original model are augmented by 

interval-information granules whose level of information granularity is determined by the 

developed mechanism. 

Chapter 8 draws the main conclusions of this thesis and lists several promising 

directions for future research. 
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Chapter 2  

Background  

This chapter briefly covers some useful prerequisites that make this study 

self-contained and easy to follow. 

2.1 Fuzzy Clustering 

Data clustering is a process of grouping data instances from original data sets into a 

number of clusters, so that the features depending on the nature of the data are as similar as 

possible. In granular computing, clustering is one of the approaches most commonly used 

to generate information granules. For instance, depending upon the nature of the 

underlying clustering algorithm, the information granules produced arise as sets, fuzzy sets 

or rough sets. In fuzzy clustering, the distinctions of each datum are measured in the terms 

of the membership grades. In particular, fuzzy C-means (FCM) [53] along with its 

numerous extensions [54]-[60], is one variety of the clustering method most frequently 

used in the formation of information granules. 

The generic version of the FCM algorithm minimizes the following objective function 

OF coming in the following form 

        
 


c

i

N

k
ik

m
ikuOF

1 1

2
rz                          (2.1) 

where z is the data to be clustered containing N data instances, c is a predetermined number 

of clusters, uik ∈[0, 1] is the elements of partition matrix and  


c

i iku
1

1 , m is a 

fuzzification coefficient that is usually greater than 1, ri is prototypes obtained by 

clustering, and ||.|| is denoted the weighted Euclidean distance expressed as 
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rz                          (2.2) 

where j is a standard deviation of the j-th variable of the multivariable data. Obviously, 

the choice of the distance function impacts the geometry of the clusters and this entails 

modeling capabilities supported by the ensuing rule-based models. 

The objective function OF is minimized iteratively by updated the prototypes and the 

partition matrix successively. In each iteration, the entries of ri and the k-th data instance is 

represented in terms of the membership grades in the partition matrix. The prototypes and 

each element in the partition matrix are calculated as follows, respectively, 

        






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1
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r                            (2.3) 
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          (2.4) 

The results of clustering of the data partitioned into c clusters come in the form of the 

partition matrix U = [uik], i = 1, 2,…, c; k = 1, 2,.., N and a collection of prototypes r1, r2, …, 

rc.  

As to the input-output pairs of data (xk, yk), k =1, 2,…, N are concatenated data zk = [xk 

yk]. The FCM clustering is completed in this data space. Thus, the prototypes ri produced 

by the FCM are expressed as ri = [vi wi], where vi and wi are the prototypes positioned in the 

input and output spaces, respectively. 
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2.2 Fuzzy Rule-based Model Systems 

The fuzzy rule-based modeling is an approach to using fuzzy logic to describe and 

handle complex nonlinear relationships by formulating if-then rules that are overlapped 

through input and output space and contain extractions of knowledge in the following 

form: 

If antecedent proposition then consequent proposition          (2.5) 

A fuzzy rule-based model system is a collection of rules with a certain model structure. 

In particular, Takagi-Sugeno (TS) [3] and Mamdani [4] fuzzy rule-based structures have 

become much renowned over the years. In the Mamdani structure, both the antecedent and 

consequent are linguistic; in TS models, on the other hand, the antecedent of the model is 

described by linguistic expressions and the consequents are numeric. This study 

concentrates on a fuzzy TS, multi-input, single-output (MISO) system. The rationale 

behind this choice is as follows: a TS fuzzy rule-based model can be regarded as a 

combination of linguistic and mathematical function modeling, and the output of such a 

model is crisp and valid. Therefore, TS fuzzy models are commonly encountered in fuzzy 

modeling and come with a great deal of well-established design practices (quite commonly 

engaging techniques of evolutionary optimization) and applications, thereby 

demonstrating their usefulness and relevance. For example, see [61]-[65]. 

The generic TS fuzzy model yields an aggregation of a collection of fuzzy rules, which 

are expressed as, 

 
    

partconclusion

1

partcondition

11 thenisandisIfruleth - The niin,in,i x,...,xfyAx...Axi ：          (2.6) 

where i = 1, 2,…, c, and c is the number of rules, x is a n-dimensional input variable. A is 

the membership function (fuzzy sets) respecting to the input variable. The membership 
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functions can be estimated relying on expert experience or by admitting a data driven 

approach. In the second alternative, clustering algorithm plays an important role to 

generate clusters (prototypes) and determine the rule structure of the model [66]-[68]. In 

the conclusion part, yi is the output of the i-th rule described by some local function fi(x), 

which is typically regarded as a linear function or simply as some constant values. 

When arranging all the rules together involving their condition parts, the output of the 

model is aggregated by taking the weighted average of the output of each rule. 

 

 






c

i
i

c

i
ii

A

fA

ŷ

1

1

)(

x

xx

                (2.7) 

If we consider implementing FCM clustering to form the membership function (fuzzy 

set), it holds that   1
1

 

c

i iA x . The output of the fuzzy models can be rewritten in the 

following expression, 

 



c

i
ii fAŷ

1

)(xx                 (2.8) 

In the original TS fuzzy model, fi(x) in the conclusion parts of the rules is adopted as 

a linear function as follows, 

 nnni xp...xpxppx,...,x,xf  2211021 )(          (2.9) 

In some cases, for the sake of simplification, p1, p2, …, pn can be defined as zeros, so 

that the function is simplified as a constant value. The parameters vector p in the linear 

function is identified by using the Least square estimation approach as calculated as 

follows. 
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   xyxxp
1

 T
                (2.10) 

Another alternative of fuzzy modeling approach is involving the prototypes obtained 

from clustering to the local function. Namely, fi(x) stands for a local linear function 

interpreted as a hyperplane governed by the following expression, 

 )()( i

T

iii wf vxax               (2.11) 

where vi is a cluster (prototype) capturing the location of the rule in the input space Rn 

and wi is the corresponding value in the output space, then 

  )()(
1

i
T
ii

c

i
i wAˆ vxaxy 



             (2.12) 

Let us introduce some auxiliary notation as shown below, 

 ))(( iiA vxxΨ                  (2.13) 

 



c

i
ii wA

1

)(xΘ                 (2.14) 

Then the above model is concisely described in the form 

 



c

i

T
iy

1

ΨaΘ                 (2.15) 

We introduce the following concise notation, 

  TNN Θy...ΘyΘy~  , , , 2211p               (2.16) 
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In the sequel, the parameters of the model are arranged into the cn-dimensional vector 

a = [a11,  a12, ..., a1n, a21,a22, ..., a2n, ..., ac1, ac2, ..., acn ]
T          (2.17) 

Furthermore, the data are structured in the matrix format 





















NcNN

c

c

ΨΨΨ

ΨΨΨ

ΨΨΨ

~









11

22221

11211

Ψ                      (2.18) 

Then 
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2

1

         (2.19) 

Minimizing (2.19), we estimate the parameters a by the Least square estimation as, 

  pΨΨΨa ~~~~ TT
opt

1
                       (2.20) 

2.3 Statistical Analysis 

Statistical comparison is used in these studies to determine if the difference between 

two methods is statistically significant. We involve two methods here: One is a t-test [69]; 

the other is a non-parametric Mann-Whitney-Wilcoxon test [70]. The t-test is a commonly 

used approach and is relatively easy to understand and perform. However, it is not suitable 

for all comparisons. For instance, if the data for either test is not normally distributed, then 

a different test should be employed: e.g., the Mann-Whitney-Wilcoxon test. 

The t-test is used to verify that if the means of two sequences of methods is 
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essentially different from one another [71]. We assume the two considered sequences x1, 

x2, …, xN1 and y1, y2, …, yN1 are normally distributed, and the standard deviation of the 

two sequences Δx and Δy are the same too. The t-values is calculated as following 

formula, 

   

 

21

2121

2
2

2
1

2

11 NN

NNNN

ΔyNΔxN

yx
t








           (2.21) 

where y,x  are the mean of the two sequences, respectively. 

The null hypothesis H0 is formulated as follows 

H0: the mean of the two sequences are equal             (2.22) 

For a given confidence level α and γ = N1+ N2-1, we compare the t-values with the 

value tα,γ in t-test table. If the following condition satisfies, 

 ,tt                   (2.23) 

We reject the hypothesis and conclude that the means of the two sequences are 

different, and we can also say that in this case there is a statistically significant difference 

between the sequences. 

The nonparametric Mann–Whitney-Wilcoxon test is more efficient on non-normal 

distributions than the t-test, and is nearly as efficient as the t-test for normal distributions 

[72]. The null hypothesis H0 is formulated as follows 

H0: the medians of the two sequences are equal             (2.24) 

We first determine the mean E0 and variance var0 of the sum of the ranks Γ assigned to 

the first group of samples. They are calculated as follows,  
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 
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E s                  (2.25) 

where Ns = min(N1, N2) and N1, N2 are the number of two samples. 
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    (2.27) is used for large-sample approximation (the number of instance is larger than 

20), where g denotes the number of tied groups and tiej is the size of tied group j. The 

term tie is used in connection with rank order, when some values we test are the same, 

they are put together as a tied group. Tied observation is helpful for making the test 

results more exact for large-sample. The statistic of interest reads as follows 

0

0

var

EΓ
Γ* 

                    (2.28) 

*Γ has an asymptotic normal distribution, N (0, 1). If 2/
* z|Γ|  , we reject the 

hypothesis at the α (usually α = 0.05) level of significance and the conclusion is: “The two 

sequences are significantly different”. Otherwise, we do not reject the hypothesis. 

2.4 Evaluation Criteria of Information Granules 

Commonly, the design of fuzzy models is guided by a numeric-driven performance 

index (e.g. RMSE or mean-squared error, MSE). This means that, in spite of using fuzzy 

sets as integral architectural components, fuzzy model outputs are deemed numeric and 

their performance is evaluated on the basis of this numeric manifestation of the fuzzy 
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model. As mentioned in the introduction, the information granules are constructed in 

various formalisms: intervals, fuzzy sets, rough sets, etc. For example, the granule 

generated in a Mamdani fuzzy model is represented in a fuzzy-sets form. The numeric 

performance of fuzzy models implies that they are legitimately compared with other 

numeric models, such as neural networks, and that in such cases they may exhibit lower 

quality. These methodological considerations concerning the evaluation of performance do 

not seem to have full justification. 

To evaluate the various granules, a principle of justifiable information granularity is 

introduced in [44]. The term “justifiable” pertains to two requirements: (i) highly 

accumulated numeric experimental evidence contains in the granules, and (ii) specific 

enough to define an articulated semantics (meaning) of the granules. Guided by the 

principle of justifiable, two criteria are frequently encountered in literatures to assess the 

performance of the information granularity [45]-[48], namely coverage and specificity. 

2.4.1 Coverage criterion 

A fundamental criterion used to assess the performance of the granular model 

concerns coverage. In essence, coverage expresses an extent to which information 

granule produced by the granular model Yk “covers” target output yk, viz. the 

experimental datum is represented by the result produced by the model. Considering a 

collection of data, the overall coverage is expressed as the following sum 

 



N

k

kk Yy
N

cov
1

,incl
1

                (2.29) 

Evidently, the higher the coverage, the better the model with respect of its modeling 

capabilities. The inclusion predicate (incl) has to be specified depending upon the formal 

way in which information granule Yk has been formalized.  
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If Yk comes in the form of a certain interval, the inclusion predicate is expressed as 

follows, 

 


 


otherwise0

1
,incl

kk
kk

Yy
Yy                (2.30) 

In a nutshell, by using the above performance measure one counts the number of 

instances of inclusion of data yk in the granular output of the model and returns average 

value computed over all data. In an ideal situation, cove returns 1, viz. all data are “covered” 

by the granular output.  

In case of Yk being fuzzy sets, the inclusion operation returns a membership value of yk 

in Yk, namely Yk(yk). Assume the fuzzy sets are described by fuzzy numbers [lk
*, yk

*, uk
*], 

and the membership function is expressed by left- and right- hand bounded function fk and 

gk as shown in Figure 2.1.  

 

Figure 2.1. Examples of membership functions. 

 

In virtue of the existing membership function Yk, the coverage is computed as the 

membership grade of the outcome fuzzy sets. 

 
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2.4.2 Specificity criterion 

The coverage plays an important role, however one has to take into consideration the 

quality of the granular output. It is expressed in the form of information specificity. This 

measure evaluates how specific (detailed) a certain information granule Yk is. In general, by 

specificity of Yk , sp(Yk) we view a functional defined over Yk satisfying the condition of 

monotonicity: if Yk ⊂ Yk’ then sp(Yk) ≥ sp(Yk’), and the boundary condition sp({y}) = 1. 

When considering an interval form of Yk, the shorter the interval, the higher its 

specificity becomes. In a limit case, once Yk reduces to a single point, the specificity attains 

its maximal value of 1. For example, one among possible alternatives using which the 

specificity can be expressed comes in the following form 

 


 
N

k

kk yy
N

sp
1

exp
1

                 (2.32) 

Obviously, instead of the exponential function used above, one could consider any 

continuous decreasing function of the length of the interval. 

When Yk is encountered as fuzzy sets, the calculations specificity of Yk involves 

evaluating the size of the fuzzy sets, namely the area under the membership function curves. 

Intuitively it relates to the “size” of the fuzzy set. If the fuzzy set is a single-element entity, 

its specificity attains 1. The larger the size, the lower the specificity. The calculations 

specificity of the fuzzy set Yk involves the left- and right- hand side parts of the 

membership function (fk(x) and gk(x)) with applying a series of its -cuts to evaluate the 

size of the output fuzzy sets, 
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where range is computed the range of target outputs, as ymax - ymin. In fact, the part of 

expression in the integral formula    
 

1

0

11  dfg kk  is calculated the area under the 

left- and right- hand side membership functions. 

The performance of the information granularity and granular model in this research is 

assessed by considering the criteria of coverage and specificity.  

It is worth stressing that these two values depend upon the predetermined level of 

information granularity ɛ. To form a measure being independent from this level and 

produce a global characterization, we form evaluation indicator for various values of ɛ. 

This fact could be stressed by using the alternative notation cov() and sp(). 

2.4.3 The overall performance indicator 

The performance of the granular model is assessed by considering the criteria of 

coverage and specificity. We strive to simultaneously maximize the coverage and the 

specificity. Apparently, these two measures are in conflict. Higher coverage values imply 

lower specificity values. 

For different situations and concerns, the indicator can be considered as coverage, 

specificity, or both coverage and specificity criterions. In coverage coordinate, specificity 

coordinates or coverage-specificity coordinates, we form indicator for various values of ɛ, 

respectively, 

)(covQ                        (2.34) 

)(spQ                           (2.35) 

)()(  spcovQ                      (2.36) 

 For some given ε, the optimization of (2.34)-(2.36) results in an optimal allocation of 

information granularity.  
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When the objective is to maximize (2.36) through an allocation of information 

granularity ε (design asset), viz. by designing (optimizing) the transformation module, 

coverage, specificity and Q are related to the allocation of information granularity ε, 

which is illustrated as Figure 2.2. The plots display the general characteristics of the 

components of the objective function. It is also noticeable that the coverage and 

specificity are in conflict and have to be compromised. 

 

cov

sp

Q

ε0 1

1

 

Figure 2.2. Example relationship between coverage, specificity, V and the allocation 

of information granularity ε. 

 

 In some cases, (2.36) is considered as following form, 

  )()( spcovQ                    (2.37) 

where β assuming non-negative numbers is an additional coefficient (weight) that controls 

the impact of specificity criterion on the objective values. Higher value of β underlines the 

more significance of specificity. For instance, if β = 0, the fitness function is only focused 

on coverage criterion. If 0 < β < 1, the coverage has more effect on the fitness values than 

specificity. If β = 1, the coverage and specificity have the same importance. If β > 1, the 

fitness function has more influenced by specificity. 

The optimization criterion (2.36) can also be modified by focusing on one criterion and 

requesting that another one satisfies some constraint. For instance, we may optimize 
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coverage and the same time requesting that the specificity does not go beyond some 

threshold , which leads to the problem in the form 

Maximize allocation of information granularity cov(ε) subject to sp(ε) > γ     (2.38) 

where the maximization is expressed in a general fashion (the details will be discussed later 

in one of the subsequent sections). 

 

 

Figure 2.3 Performance of the granular model expressed in the coverage –specificity 

coordinates: (a) monotonically decreasing values of specificity with the increase of 

coverage, (b) significant drop in the specificity with some limited increase in coverage at 

= i, (c) granular model characterized by low AUC value 

 

To develop a global measure of performance being independent from this level and 

produce a global characterization of the model, the characteristics of the obtained granular 

model can be displayed in the coverage and specificity coordinates. In the 

coverage-specificity coordinates we form evaluation for the model for various values of ɛ 

and subsequently estimation of an area under the curve (AUC). They deliver a 

comprehensive insight into the performance of the model and their dependence upon the 

changes in the values of . Several plots, see Figure 2.3, are displayed showing various 

ways in which increasing values of  impact the coverage and specificity. For  = 0, the 

specificity is 1 while the coverage is practically equal to 0. With the increase of , the 

coverage increases but we pay a price of specificity reduction as the values of this measure 
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are reduced. There could be segments of the curve where coverage still increases not 

impacting the specificity in a significant measure.  

Higher values of AUC indicate that for some values of , the granular model “covers” 

more data yet producing results of higher specificity implying a high quality of the model 




 )(
1

Q
M

V                     (2.39) 

where M is the number of values assumed by . In general, if an infinite number of the 

levels of information granularity is sought, the above expression is replaced by an integral 

over , namely 

 
1

0

 dQV                      (2.40) 

Refer to Figure 2.3 in which the performance of the granular model (expressed in the 

AUC value) in Figure 2.3 (c) is far lower than the one in Figure 2.3 (b). 

Although the result – a granular fuzzy model, may, on surface, exhibit some close 

resemblance with type-2 fuzzy models present quite commonly in the literature, there are 

two important differences. First, the design promoted here exhibits two well-delineated 

phases whereas type-2 fuzzy models are built in a single-step process, which inevitably 

engages a huge search space (and what implies a huge computing overhead and eventual 

inefficiency). Second, what is even more important, the evaluation of such models is 

carried out in a “traditional” manner and this entails the use of the mechanisms of order 

reduction and a conversion (decoding) of the result into a numeric outcome so that the 

standard RMSE (or any other number-oriented performance index) can be used. In other 

words, while the enhanced flexibility has been brought to the picture by type-2 fuzzy sets, 

their potential in system modeling has not been taken advantage of. Type-2 fuzzy model is 

constructed by being built by the numerically navigated optimization criterion (which 
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involves a numeric manifestation of the model). In contrast, the granular fuzzy model is 

constructed through the guidance offered by the two measures of performance discussed en 

block, namely coverage and specificity. 

2.5 Optimization Methods 

The optimization of the granular data and fuzzy model is embarked on the allocation of 

information granularities regarding to the data or the architecture of the fuzzy model. 

Generally, the two performance indexes, coverage and specificity, are conflicting, besides, 

in most cases, the fitness function is nonconvex or not deferential guaranteed. In light of 

this, some population-based optimization algorithms are resorted, such as the particle 

swarm optimization (PSO) [73], Differential Evolution (DE) [74] to allocate the 

information granularities. 

2.5.1 PSO algorithm 

PSO algorithm is a well-known swarm intelligence algorithm commonly used because 

of its simplicity and effectiveness for solving complex problem. Each individual in PSO 

searches the solution space on a basis of its own experience and a collective experience 

collected so far by the entire swarm. The formulas governing the PSO search concern the 

position and velocity of the particle, namely posi and veli. The velocity and position of the 

ith particle are updated at each generation during the optimization process,  

iii velpospos                     (2.41) 

)()( 2211 ibestibestii posgrandposqrandvelvel ••     (2.42) 

where i stands for in index of the individual particle, and λ is an inertia weight. qbest is the 

personal best solution found by the ith particle so far, and gbest is the global best solution 

obtained so far by the entire swarm. ξ1 and ξ2 are two acceleration coefficients while rand1 
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and rand2 are vectors of random numbers coming from the uniform distribution over [0, 1]. 

The symbol · indicates that the vectors are multiplied coordinate-wise. 

2.5.2 DE algorithm 

DE algorithm is another popular population-based evolutionary optimization method. 

The population evolves towards to an optimum solution through a series of evolution 

operations, such as mutation, crossover, and selection. At the beginning, the population 

pop is initialized randomly. Then, in each generation, a mutant vector mv is generated as 

follows: 

 321 qqiqi F poppoppopmv                 (2.43) 

where q1, q2, and q3 ∈{1, 2, …, NP} are random exclusive integer indexes, NP is the 

population size and F is the scaling factors positioned in the (0, 2] interval and treated as 

control parameters. The crossover operation is used to produce a trial vector (denote by tv) 

by mixing mv and po, 


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i,j po

jjCRmv
tv             (2.44) 

where rand[0, 1) stands for a random number coming from the uniform distribution within 

the range [0, 1) and CR (0<CR<1) is crossover rate, which controls how many components 

of tv are inherited from mv. jrand is an integer index that is selected randomly from the 

uniform distribution spread over the range [1, D], which guarantees that at least one 

component of tv is inherited from mv. 

For each variable j in the i-th individual, if the trial vector tvj,i is located beyond the 

boundaries of the search space [pomin, pomax], the correction operation is triggered as shown 

below, 
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Once all the trial vectors have been modified, a selection process determines the 

survivors for the next generation, 


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where Q is the fitness function of the optimization. 

2.6 Summary 

This chapter covers the main approaches and algorithms that are essential to the 

design of the granular, fuzzy rule-based models in this thesis. Overall, the fuzzy 

clustering algorithm (in particular, FCM) is used to form numeric, fuzzy rule-based 

models. The statistical-analysis methods are used to compare the performance of numeric 

results, and coverage and specificity criteria are introduced to evaluate and optimize the 

granular fuzzy rule-based models. Some population-based optimization methods (PSO 

and DE) are implemented to search for the optimal allocation of information granularity. 
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Chapter 3  

Granulation and Degranulationa 

Information granules are examples of abstract entities delivering a concise and efficient 

characterization of numeric data at a higher level of abstraction [75][76]. Fuzzy clustering 

provides a way to describe an imprecise allocation of data to the clusters (by making them 

granular) and captured by membership functions and generate information granules. In 

particular, as a fuzzy clustering method based on objective function, FCM becomes a 

visible technique predominantly because of its simplicity and efficiency [77]. Thus, FCM 

along with its numerous extensions are a clustering method frequently used in the 

formation of information granules [66][78]-[80]. In general, clustering realizes 

information granulation, viz. encoding scheme [81]-[83] by representing any numeric 

datum in terms of the already constructed information granules. In the FCM algorithm, the 

structure in the data set is expressed in terms of prototypes (clusters) and partition matrices. 

Subsequently, data are encoded to information granules with the aid of constructed 

prototypes and partitions. 

The fuzzy clustering techniques are basically focused on the abstraction of the original 

data. In other words, numeric data is represented by information granules (linguistic data) 

and described by prototypes and partition matrices. We are also interested in the 

reconstruction of numeric results on a basis of already constructed information granules. 

This could be considered as an inverse problem of generic clustering or granulation. In the 

sequel, the reconstruction of information granules, usually referring to as degranulation or 

decoding process, returns a numeric result. The concept of granulation-degranulation plays 

a visible role in Granular Computing, just as fuzzification-defuzzification in fuzzy control 

systems, and analog-to-digital (A/D) as well as digital-to-analog (D/A) conversion in 

                                                 
a A version of this chapter has been published as [128]. 
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digital signal processing [81][83]. In the granulation-degranulation scheme, this leads to 

some unavoidable deterioration of original data. Practically, the degranulation 

(reconstruction) is frequently noted in the literature when assessing the performance of 

clustering by assessing the degranulation deterioration criterion, such as [82][84][85]. 

Simply put, the lower the degranulation error is, the better performance of the clustering is. 

In these studies, the reconstruction error depends on the granulation scheme and its 

parameters. In the context of the FCM method, these parameters involve the number of 

clusters (information granules) and the value of the fuzzification coefficient. In [81] an 

impact of these two parameters of granulation procedure on the reconstruction error has 

been thoroughly investigated and quantified. Thus, the degranulation error is used to 

determine the optimal values of the number of clusters and fuzzification coefficients for 

fuzzy clustering. Being cognizant of the centrality of the granulation-degranulation 

schemes, it is of interest to study further enhancements of the existing schemes by 

augmenting the degranulation procedure with intent to minimize the associated 

reconstruction (degranulation) error.  

The main objective of this study is to develop an augmented mechanism of data 

reconstruction to enhance the performance of granulation-degranulation scheme, namely 

to reduce the deterioration of the reconstruction results. Here, unlike the other methods 

only aimed at finding the optimal clustering parameters (viz. the number of clusters and the 

fuzzification coefficient), there are two more ways proposed to reduce the reconstruction 

losses. First, we introduce a linear transformation of the originally FCM-produced partition 

matrix to carefully capture high-level associations among the data being clustered. Second, 

we develop an adjustment mechanism of the prototypes. The merit of the augmented 

clustering mechanism is to discover more suitable information granules, since both the 

partition matrix and prototypes are modified. An overall development environment is 

implemented with the use of population-based optimization. 
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3.1 Granulation and Degranulation Scheme 

Granulation  

With the FCM algorithm, the data set is structured and expressed in terms of prototypes 

and partition matrices. Subsequently, data are granulated or encoded to information 

granules with the aid of the prototypes and partitions. The granulation of data zk results in 

their representation in terms of the membership grades contained in the k-th column of the 

partition matrix. Each column is a result of the granulation of the corresponding instance of 

the data, which means a numeric datum zk is represented in terms of an information granule 

uk, as described in (2.4). 

Degranulation  

In the degranulation process, we transform the internal representation of zk described in 

terms of information granules into a numeric counterpart (we say that it has been 

degranulated). The degranulation is realized on a basis of the prototypes and the k-th 

column of the partition matrix U [81], 
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In this expression, each prototype is weighted by the activation level (membership 

degree) of the corresponding information granules. In virtue of the underlying processing 

described above the degranulation mechanism relies on the membership grades and the 

prototypes, see Figure 3.1.  
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Figure 3.1.  General granulation-degranulation scheme 

 

The reconstruction error is quantified in terms of the following performance index 
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with the distance ||.|| computed in the same way as in (2.2). 

The values of PI are impacted by the number of clusters c and the fuzzification 

coefficient m. In general, the reconstruction error is a decreasing function of the number of 

clusters. This is intuitively convincing. The dependence of PI upon the values of m is not 

obvious and, in general, becomes data dependent. It has been shown that usually PI 

regarded as a function of m shows a certain minimum and quite often the optimal value of 

m is different from the value of 2, which is commonly encountered in the literature.  

3.2 An Augmented Granulation and Degranulation Scheme 

It is evident that the forming and quantizing of the information granularity within the 

granulation-degranulation scheme leads to some deterioration of the original data. In the 

context of granulation and degranulation scheme, the error V depends on two parameters: a 

number of clusters (information granules) and the fuzzification coefficient, which has been 

thoroughly investigated and quantified in. Here, we develop an augmented mechanism of 

reconstruction to enhance the performance of granulation-degranulation scheme in two 
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ways by introducing an interactive (interaction) linkage matrix and a mechanism of 

modification of the FCM-based prototypes as illustrated in Figure 3.2.  

 

Granulation
De-

Granulation

u1,u2,…,uc

z z~

r1,r2,…,rc r1,r2,…,rc

G1

G2

~   ~         ~

u1,u2,…,uc
~   ~         ~

 

Figure 3.2.  Granulation and degranulation: an augmented structure 

 

The objective of the interaction matrix is to modify the partition matrix and allow for an 

interaction at the level of information granules so that the reconstruction error can be 

minimized. Prototypes produced by the FCM are in some sense (weighted) averages of the 

groups of data clustered and as such are obviously not capable of representing the data that 

are distantly positioned from these prototypes. Possible modifications of the prototypes are 

considered to increase their dispersion in the data space. 

In general, such interaction can be captured in the form of a certain mapping that 

transforms original information granules, say ui, to new information granules 

incorporating the linkages (associations) among uis. Those linkages are realized in the 

form of a c by c dimensional interaction matrix Wij. Thus, the transformation of the 

partition matrix is carried out in the form 

ciuWu~
c

j
jkijik  ..., ,2 ,1

1




                     (3.3) 
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A result comes as a matrix U
~

, which consists of fuzzy sets 
i

~u  whose membership 

functions are located at the successive rows of the partition matrix. In other words, 
i

~u is 

expressed as 
i

~u  = G1(u1, u2, …, uc). The interaction matrix realizes the relationship 

among the elements of the partition matrix in both inhibitory and excitatory manner. The 

value of Wij is contained within the range [-1, 1]. 

The prototypes are adjusted in terms of their location in the feature (data) space by 

admitting an expansion of its individual coordinates. The modification is expressed as i
~r = 

G2(ri) , where G2 stands for the expansion operator of the individual coordinates of the data 

space. The i-th prototype ri now becomes i
~r  with the coordinates located in the range 

[minj(1-), maxj (1+)] where  is a positive expansion coefficient and rangej stands for 

the difference between the largest and the smallest value of the j-th variable of the data x1j, 

x2j, …, xNj, namely minj = mink=1,2,…,Nxkj, maxj = maxk=1,2,…,Nxkj. The expansion coefficient 

controls the expansion of the space.  

Because of the use of these two transformation mechanisms, the reconstruction 

mechanism results in the following expression, 
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The objective function is similar as in formula (3.2). It is easy to demonstrate that the 

objective function is nonconvex and complex with regard to the optimized parameters.  

3.3 Experimental Studies 

We present a series of experiments involving both synthetic data and several publicly 

available data, and report on comparative studies by contrasting the performance and the 
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main results produced by the proposed modified reconstruction approach with the results 

produced by the original method. In the experiments, the data set is split into its training 

(70%) and testing part (30%). The value of the expansion coefficient  was set to 0.2.  

For a given data set, we select a range of the number of clusters. The granulation 

scheme was carried out by the FCM algorithm by sweeping across the values of the 

fuzzification coefficient positioned within the range [1.1, 3] with the step size of 0.1. When 

running the clustering algorithm, the stopping criterion expressed by the minimum changes 

of the objective function F is set as 10-5. Then the data are reconstructed as described in 

Section 2. We record the minimal values of PI associated with the optimal value of the 

fuzzification coefficient. 

We implement DE algorithms, and to compare the performances coming from different 

optimization algorithm, here we involve two variant DE algorithms, namely, 

success-history based adaptive differential evolution (SHADE) and SHADE with a linear 

population size reduction strategy (L-SHADE). 

SHADE algorithm is an efficient DE variant, which improves JADE [86] by using a 

history based parameter adaptation scheme [87]. The mutation strategy used by JADE is 

current-to-pbest/1 strategy:  

   ~

qqii

p

iii FF 21best -- popopopopomv                (3.5) 

where 
p

bestpo

 

is randomly chosen as one of the top 100p% individuals in the current 

population. 
~

q2po  is randomly chosen from the current population and the archive. Unlike 

JADE which generates new control parameter settings based on some distribution around a 

single pair of parameters CR  and F , SHADE uses a historical memory MF and MCR to 

preserve a collection of CR  and F  values which have helped SHADE to produce 

promising solutions in the previous generations, and then generate new CR, F pairs by 
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directly sampling the parameter space close to one of the preserved pairs. Essentially, the 

parameters of SHADE are adapted by learning previous search experience on-line 

 10,randn .MCR
irand,CRii                       (3.6) 

 10,randc .MF
irand,Fii                        (3.7) 

where randn and randc denote normal distribution and Cauchy distribution, respectively. 

randi is an index randomly selected from the uniform distribution over [1, H] whereas H is 

the memory size. Once the control parameters Fi and CRi have been assigned for each 

individual poi of the population, the corresponding mutant vector mvi is generated as in 

(17). In SHADE, each individual poi has an associated pi, which is uniformly random 

generated in [2/NP, 0.2]. The indices q1 and q2 ∈{1, 2, …, NP} are randomly selected 

integer numbers such that they are different from i. After generating mutant vector mvi, the 

correction and selection operation are similar as in the canonical DE algorithm. 

L-SHADE algorithm augments SHADE with a linear population size reduction (LPSR) 

technique, which enhances the performance of SHADE by continuously reducing the 

population of the individuals [88]. L-SHADE is the winner of CEC 2014 competition when 

dealing with real parameter single objective numerical optimization. 

The mutation strategy is also current-to-pbest as in equation (41), but in L-SHADE, the 

parameter p is static and its value is set manually. The crossover, correction and selection 

operations are implemented through (2.43)-(2.46), respectively. As in SHADE, the control 

parameters Fi and CRi that succeed to generate better solutions are recorded in 

historical-memory at each generation, so that they can be adjusted automatically. 

Furthermore, a linear population size reduction technique is applied to reduce the size 

of population in successive generations. The population size in the consecutive generation 

G+1 is computed as 
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where NPmin is the possible smallest value such that the evolutionary operators can be 

implemented, NPinit is the initial population size, NFE is the number of evaluations of the 

fitness at current generation, and NFEmax is the allowed maximal number of fitness 

evaluations. When NPG+1 < NPG, the (NPG - NPG+1) worst-ranking individuals are removed 

from the population. 

In the sequel, we process the modified reconstruction scheme as described in Section 3. 

The interaction matrices and the prototypes are optimized by running the DE, SHADE, and 

L-SHADE algorithms. To fully compare the algorithms, the numbers of used fitness 

evaluations was set to D×10,000. The parameters settings of the algorithms are completed 

on a basis of the recommendations available in the literature and by running some 

trial-and-error experiments. According to the experience gained here, the sound setting of 

the parameters is listed below: 

• DE: CR = 0.9, F = 0.5 [74], NP = 100. 

• SHADE: p = rand(2/ NP, 0.2), NP = 100, H = 100 [87]. 

• L-SHADE: p = 0.11, H = 6, the minimal population size is 4, external archive size rate 

rarc is 2.6 [88], initial NP = 18D, the external archive size is set to NP×rarc. 

3.3.1 A Synthetic Data Set 

The first experiment involves a group (500 instances) of two-dimensional synthetic 

data, which are generated randomly using normal distributions centered around five 

prototypes r1 = [-7, -6]T, r2 = [-6, -8.5]T, r3 = [-0.5, 1]T, r4 = [8, 4]T, r5 = [6, -7.5]T, The 

standard deviation of the data in each cluster is set to 4. 

Table 3.1 contrasts the performance produced by the original and improved 

reconstruction method and then offers a comparative analysis of the optimization 
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performance. In this experiment, the optimal value of the fuzzification coefficient of each 

model (c is selected as 6, 10, 15, 20) is 1.6, 1.7, 1.5 and 1.6, respectively. In general, 

comparing the results produced by the original and the modified reconstruction approach, 

we conclude that the improvement provided by the proposed modified method is visible for 

the most cases both for the training and testing data. Comparing DE, SHADE and 

L-SHADE algorithms, SHADE and L-SHADE provide better results than DE, and 

L-SHADE has better performance on testing data. In addition, as expected, the higher the 

number of clusters, the lower the reconstruction error becomes. 

 

Table 3.1. PI for synthetic data sets for selected number of clusters and the 

corresponding optimal values of the fuzzification coefficient 

 
Training data Testing data 

c = 6 c = 10 c = 15 c = 20 c = 6 c = 10 c = 15 c = 20 

Original 0.2910 0.1607 0.1006 0.0735 0.3128 0.2023 0.1261 0.0943 

DE 0.1814 0.0797 0.0559 0.0690 0.2142 0.1148 0.0852 0.0878 

SHADE 0.1573 0.0493 0.0401 0.0108 0.1938 0.0817 0.1041 2.8041 

L-SHADE 0.1568 0.0556 0.0422 0.0169 0.1656 0.1064 0.0894 0.0459 

 

To visualize the modifications and contrast the performance associated with the 

proposed methods, we consider the experimental results of L-SHADE as an example and 

plot the values of the interaction matrix and visualize the changes in the position of the 

prototypes, refer to Figure 3.3 and Figure 3.4. The interaction matrix and the prototypes 

have been affected more visibly.  

The elements on the diagonal of the matrix are no longer kept close to one, and all the 

elements show some departure towards negative or positive values. Similarly, most 

prototypes have been moved visibly from their original locations. Interestingly, when the 

number of cluster becomes larger, say, c = 15 and c = 20, some of the modified prototypes 

being optimized overlap or are positioned close to each other. We note that this could offer 

some potential to reduce the number of the prototypes, which entails a useful compression 

effect.  
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(a)        (b) 

  

(c)        (d) 

Figure 3.3. Plots of interaction matrices optimized by the L-SHADE method: (a) c = 6, 

(b) c = 10, (c) c = 15, (d) c = 20. 

 

  

(a)        (b) 
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(c)        (d) 

Figure 3.4. Plots of the modified prototypes optimized by the L-SHADE method – 

black circles: original prototypes, gray circles: modified prototypes: (a) c = 6, (b) c = 10, 

(c) c = 15, (d) c = 20. 

3.3.2 Publicly Available Data Sets 

To demonstrate the usefulness and quantify the performance of the introduced 

approach, we report on a series of real-world data sets. All the data come from UCI 

machine learning repository (http://archive.ics.uci.edu/ml/). To make the experiments 

statistically sound, the 10-fold cross validation was used. The obtained results (the average 

values of Q and their standard deviations) are contained in Table 3.2. The obtained optimal 

values of the fuzzification coefficient are listed in Table 3.3. We also compare the four 

approaches using statistical testing with the results presented in Table 3.4. The two-tailed 

t-test is engaged to test whether the two group of results are statistically different. The 

significance level of the null hypothesis is set as 0.05. The ‘+’ sign indicates that the 

differences between the results are significantly different and better. The ‘-’ sign denotes 

statistically significant difference and worse, whereas ‘o’ indicates that there is no 

statistical difference.  

http://archive.ics.uci.edu/ml/
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Table 3.2. PI for real-world data sets for selected number of clusters and the corresponding optimal values of the fuzzification 

coefficient 

 
Methods 

Training data Testing data 

 c = 6 c = 10 c = 15 c = 20 c = 6 c = 10 c = 15 c = 20 

Auto-MPG 

Original 1.700±0.045 1.205±0.035 0.903±0.027 0.743±0.035 1.707±0.360 1.303±0.360 1.095±0.364 0.933±0.229 

DE 1.515±0.064 1.184±0.257 0.875±0.043 0.720±0.031 1.623±0.235 1.282±0.333 1.058±0.297 0.890±0.211 

SHADE 1.451±0.051 0.914±0.102 0.559±0.083 0.399±0.024 1.522±0.354 1.157±0.203 0.871±0.263 1.021±0.882 

L-SHADE 1.472±0.061 0.940±0.114 0.589±0.084 0.444±0.091 1.622±0.269 1.155±0.257 0.841±0.235 0.735±0.302 

Glass 

identification 

Original 4.627±0.379 3.010±0.165 2.277±0.080 1.726±0.089 4.589±1.377 4.128±0.929 3.535±1.138 2.922±1.010 

DE 4.147±0.598 3.009±0.165 2.260±0.074 1.710±0.064 5.284±1.061 4.137±0.926 3.539±0.876 2.851±1.017 

SHADE 4.015±0.188 2.424±0.188 1.532±0.348 1.114±0.298 4.815±1.413 4.676±0.300 3.853±1.454 4.495±2.115 

L-SHADE 4.092±0.175 2.527±0.356 1.547±0.247 1.132±0.274 5.393±1.705 4.595±1.164 4.034±1.747 3.974±1.089 

Boston 

housing 

Original 5.155±0.107 3.762±0.263 2.897±0.156 2.381±0.109 5.356±0.424 3.917±0.603 3.310±0.308 2.834±0.409 

DE 4.892±0.336 3.457±0.719 2.828±0.198 2.333±0.161 5.330±0.317 3.867±0.901 3.317±0.381 2.817±0.446 

SHADE 4.734±0.287 3.115±0.374 2.327±0.346 1.710±0.357 5.272±0.383 3.949±1.097 3.028±0.570 2.684±1.330 

L-SHADE 4.723±0.243 3.258±0.374 2.357±0.271 1.712±0.387 5.219±0.238 3.857±0.502 3.050±0.155 2.678±0.420 

Red wine 

Original 6.577±0.303 5.084±0.174 4.488±0.052 4.021±0.101 6.711±0.606 5.380±0.321 4.841±0.238 4.379±0.186 

DE 6.429±0.294 4.953±0.211 4.374±0.060 3.846±0.100 6.654±0.468 5.282±0.337 4.702±0.300 4.235±0.415 

SHADE 6.216±0.306 4.589±0.488 3.746±0.079 3.351±0.183 6.381±0.441 4.937±0.535 4.336±0.357 4.112±0.691 

L-SHADE 6.312±0.293 4.644±0.405 3.952±0.156 3.470±0.189 6.532±0.455 4.997±0.453 4.401±0.228 3.932±0.264 

Parkinson 

Original 7.325±0.244 5.488±0.225 4.256±0.130 3.492±0.102 9.121±1.297 7.574±1.371 6.019±1.066 5.403±0.501 

DE 6.800±0.254 5.013±0.712 3.431±0.488 2.993±1.054 8.718±0.602 6.903±1.369 6.554±1.537 5.179±0.555 

SHADE 6.472±0.430 4.544±0.631 3.162±0.144 2.279±0.351 8.909±1.506 6.825±2.117 7.410±4.073 6.781±1.995 

L-SHADE 6.638±0.250 4.635±0.572 3.114±0.336 2.296±0.311 8.622±1.259 7.103±1.726 6.476±1.706 6.011±2.681 

Breast 

Cancer 

Original 13.38±0.31 10.97±0.32 9.524±0.340 8.381±0.194 13.94±1.22 11.96±1.27 10.82±1.09 9.965±1.204 

DE 12.80±0.16 10.15±0.28 8.420±0.545 8.131±0.843 13.28±1.34 11.25±1.03 10.38±1.23 9.501±1.148 
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Wisconsin 

(Diagnostic) 

SHADE 12.51±0.35 9.713±0.157 8.008±0.121 7.064±0.201 13.06±1.10 11.54±1.24 10.62±5.37 10.91±2.74 

L-SHADE 12.55±0.21 9.680±0.263 8.095±0.317 7.090±0.204 13.01±0.99 11.35±1.20 10.06±0.88 9.687±1.367 

Wilt 

Original 2.229±0.017 1.497±0.031 1.151±0.013 0.949±0.031 2.148±0.087 1.503±0.302 1.113±0.178 0.981±0.118 

DE 2.180±0.021 1.432±0.050 1.107±0.029 0.924±0.037 2.106±0.069 1.484±0.297 1.109±0.189 0.968±0.381 

SHADE 2.156±0.019 1.258±0.046 1.010±0.023 0.892±0.021 2.088±0.092 1.313±0.182 1.004±0.201 0.966±0.287 

L-SHADE 2.157±0.022 1.266±0.039 1.016±0.019 0.905±0.026 2.351±0.167 1.320±0.196 1.001±0.163 0.971±0.078 

Combined 

Cycle Power 

Plant 

Original 1.087±0.003 0.790±0.010 0.603±0.012 0.503±0.006 1.095±0.036 0.795±0.014 0.612±0.022 0.507±0.021 

DE 0.872±0.004 0.625±0.012 0.569±0.015 0.470±0.009 0.893±0.041 0.631±0.019 0.569±0.026 0.458±0.027 

SHADE 0.847±0.003 0.566±0.009 0.389±0.011 0.294±0.005 0.872±0.055 0.595±0.235 0.401±0.243 0.312±0.252 

L-SHADE 0.838±0.002 0.550±0.013 0.381±0.010 0.312±0.004 0.859±0.047 0.589±0.026 0.399±0.037 0.319±0.048 

User 

Knowledge 

Modeling 

Original 2.245±0.018 1.632±0.035 1.226±0.027 1.028±0.031 2.414±0.109 1.770±0.064 1.378±0.095 1.248±0.077 

DE 1.819±0.057 1.195±0.074 1.162±0.030 0.980±0.027 1.985±0.308 1.369±0.095 1.309±0.144 1.179±0.096 

SHADE 1.769±0.146 1.071±0.054 0.722±0.043 0.546±0.018 2.034±0.191 1.360±0.298 1.175±0.690 1.507±1.653 

L-SHADE 1.789±0.075 1.100±0.057 0.775±0.036 0.592±0.016 1.975±0.371 1.300±0.222 1.171±0.370 1.054±0.241 

Seeds 

Original 1.194±0.042 0.780±0.043 0.573±0.026 0.454±0.025 1.309±0.250 0.918±0.195 0.729±0.213 0.617±0.067 

DE 1.037±0.031 0.642±0.235 0.546±0.029 0.426±0.031 1.152±0.176 0.884±0.177 0.711±0.206 0.564±0.122 

SHADE 0.992±0.047 0.485±0.028 0.245±0.054 0.153±0.046 1.279±0.373 0.813±0.242 0.728±2.043 0.832±1.189 

L-SHADE 1.012±0.044 0.499±0.096 0.261±0.054 0.161±0.053 1.253±0.293 0.815±0.120 0.587±0.218 0.550±0.135 

Gamma 

Telescope t 

Original 4.314±0.016 3.401±0.024 2.817±0.023 2.526±0.019 4.336±0.170 3.431±0.171 2.847±0.083 2.561±0.098 

DE 4.125±0.027 3.154±0.035 2.685±0.046 2.215±0.050 4.132±0.243 3.156±0.249 2.718±0.254 2.539±0.194 

SHADE 4.038±0.023 2.986±0.019 2.110±0.037 1.921±0.034 4.281±0.251 3.319±0.313 2.702±0.140 2.367±0.205 

L-SHADE 4.022±0.019 2.997±0.024 2.091±0.020 1.957±0.026 4.095±0.210 3.102±0.215 2.198±0.179 2.116±0.157 

Wholesale 

customers 

Original 2.814±0.120 1.907±0.088 1.411±0.066 1.131±0.042 3.705±0.684 3.217±0.482 2.696±0.505 2.321±0.522 

DE 2.601±0.280 1.895±0.098 1.388±0.059 0.921±0.037 3.931±0.763 3.206±0.461 2.659±0.503 2.310±0.482 

SHADE 2.482±0.467 1.540±0.229 1.015±0.184 0.761±0.204 3.816±0.599 3.291±0.664 2.751±0.566 2.634±0.324 

L-SHADE 2.477±0.426 1.684±0.088 1.027±0.199 0.772±0.185 3.886±1.341 3.073±0.499 3.482±2.179 2.126±0.501 
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Table 3.3. Optimal values of the fuzzification coefficient m of the constructed 

models 

 c = 6 c = 10 c = 15 c = 20 

Auto-MPG 1.4±0.1 1.4±0.1 1.4±0.1 1.4±0.0 

Glass identification 1.2±0.1 1.1±0.1 1.2±0.1 1.2±0.1 

Boston housing 1.3±0.1 1.2±0.0 1.2±0.0 1.3±0.1 

Red wine 1.1±0.0 1.2±0.1 1.2±0.0 1.2±0.0 

Parkinson 1.3±0.0 1.3±0.1 1.3±0.1 1.3±0.1 

Breast Cancer 1.2±0.0 1.2±0.0 1.2±0.0 1.2±0.0 

Wilt 1.2±0.1 1.2±0.0 1.2±0.1 1.2±0.1 

Combined Power 1.4±0.0 1.4±0.0 1.4±0.0 1.4±0.0 

knowledge 1.3±0.0 1.3±0.0 1.3±0.0 1.3±0.0 

seeds 1.4±0.0 1.4±0.1 1.5±0.1 1.5±0.0 

Gamma Telescope 1.2±0.0 1.2±0.0 1.2±0.0 1.2±0.0 

wholesale 1.2±0.1 1.2±0.0 1.3±0.1 1.3±0.1 

 

Table 3.4. Statistical comparison of the augmented reconstruction scheme versus 

the original reconstruction approach 

 
Methods 

Training data Testing data 

 c = 6 c = 10 c = 15 c = 20 c = 6 c = 10 c = 15 c = 20 

Auto-MPG 

DE + + + + + o + + 

SHADE + + + + + + o o 

L-SHADE + + + + + + + o 

Glass 

identification 

DE + + + + o o o o 

SHADE + + + + o o o o 

L-SHADE + + + + o o o o 

Boston 

housing 

DE + + o o o + - + 

SHADE + + + + o o o o 

L-SHADE + + + + o o + + 

Red wine 

DE + + + + + + + + 

SHADE + + + + + + o o 

L-SHADE + + + + + + + + 

Parkinson 

DE + + + + + o o o 

SHADE + + + + o o o o 

L-SHADE + + + + + + o o 

Breast 

Cancer 

Wisconsin 

DE + + + + + + o + 

SHADE + + + + + o o o 

L-SHADE + + + + + + o o 

Wilt 
DE + + + + o o o o 

SHADE + + + + o + o o 
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L-SHADE + + + + + + + + 

Combined 

Cycle Power 

Plant 

DE + + + + o + + + 

SHADE + + + + + o o o 

L-SHADE + + + + + + + + 

User 

Knowledge 

Modeling 

DE + + + + + + + + 

SHADE + + + + + + o o 

L-SHADE + + + + + + o + 

Seeds 

DE + + o + + + + + 

SHADE + + + + o o o o 

L-SHADE + + + + + + + + 

Gamma 

Telescope 

DE + + + + + + o o 

SHADE + + + + o o o o 

L-SHADE + + + + + + + + 

Wholesale 

customers 

DE + o + + o o + o 

SHADE + + + + o o o - 

L-SHADE + + + + o + o + 

 

Table 3.5. Average optimization time (in hours) of the optimization algorithms 

Methods DE SHADE L-SHADE 

c 6 10 15 20 6 10 15 20 6 10 15 20 

Auto-MPG 0.10 0.29 0.95 2.10 0.07 0.22 0.52 1.22 0.05 0.15 0.45 1.18 

Glass identification 0.13 0.33 0.54 1.68 0.06 0.17 0.50 0.67 0.06 0.12 0.31 0.52 

Boston housing 0.19 0.50 1.74 2.13 0.10 0.27 0.92 1.22 0.09 0.24 0.89 1.17 

Red wine 0.40 1.11 3.13 4.94 0.24 0.71 1.70 4.12 0.21 0.64 1.64 4.03 

Parkinson 0.24 0.56 1.48 3.04 0.13 0.32 0.82 1.61 0.10 0.23 0.53 1.54 

Breast Cancer 0.75 1.83 3.51 6.84 0.29 0.76 1.94 2.12 0.24 0.56 1.67 2.01 

Wilt 1.01 2.14 2.57 4.61 0.82 1.61 3.10 3.92 0.71 1.43 2.86 3.57 

Combined Power 0.17 1.81 2.25 4.72 0.11 1.02 1.28 2.53 0.08 0.89 1.07 2.48 

User Knowledge 0.08 0.26 0.87 1.99 0.05 0.16 0.48 1.07 0.05 0.12 0.31 0.64 

Seeds 0.08 0.23 0.69 1.39 0.04 0.12 0.38 0.95 0.04 0.10 0.34 0.50 

Gamma Telescope 5.12 9.73 12.4 21.6 2.16 4.83 9.61 16.2 1.94 4.15 8.71 15.8 

Wholesale 0.10 0.45 1.27 2.67 0.06 0.17 0.61 1.30 0.05 0.12 0.58 1.17 

 

The augmented reconstruction is based on the original reconstruction with the 

optimal values of the fuzzification coefficients m for 10-fold sets of each data. As 

reported in Table 3.5, the average optimal values of fuzzification coefficient and their 

standard deviations for these data sets are located far lower than 2. In particular, these 

values fall within the region ranging in-between 1.1 to 1.5, which is consistent with the 

conclusions made in [81]. 
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In light of the reported experimental results, as shown in Table 3.3 and Table 3.5, 

the modified reconstruction method demonstrates a remarkably improved performance 

over the performance delivered by the original reconstruction approach. The 

reconstruction performances are enhanced significantly for almost all the training data 

and majority of the testing data. Furthermore, comparing the three optimization 

techniques, the performance of SHADE and L-SHADE has advantages over the 

training data set over the DE optimization, however if we need to make a trade-off on 

the performance over the training and testing data, the L-SHADE method is preferable. 

In addition, due to the execution time shown in Table 6, the L-SHADE method also has 

an advantage with regard to its computation efficiency. Thus, the L-SHADE method is 

particularly worth utilizing. 

Moreover, as visualized in Table 3.5, the following parameters heavily impact the 

computing overhead: the size of the data (in terms of the number of data and their 

dimensionality) and the number of clusters. As to the performance of reconstruction, 

more clusters helps achieve better reconstruction results. One should be prudent with 

respect to the implementation of the optimization method. In some cases, when the 

number of clusters becomes higher (say c = 20), some overfitting occurs because of too 

many parameters to optimize. As a result, the interactive matrix and modified 

prototypes might be impacted by noise. In addition, since , the number 

of optimized variables grows with the increasing number of clusters and the efficiency 

of the optimization might decrease. In sum, a lower number of clusters, say 5-15, is a 

sound alternative. 

3.4 Summary 

In this study, we have augmented the granulation-degranulation scheme to improve 

the performance of the reconstruction (degranulation) mechanism in the two different 

ways. The transformation of the originally developed partition matrices introduces both 

excitatory and inhibitory interaction between the membership grades of the individual 

data. The adjustment of the prototypes becomes helpful in the dynamic range expansion 

ncccD 
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and compensating for the averaging effect reflective in the position of the prototypes 

being produced by the FCM method. Overall, the proposed method is beneficial to 

reduce the deterioration of the reconstruction results and enhance the performance of 

the overall granulation-degranulation scheme, which is meaningful for transforming 

data between numeric form and granular format. In addition, several population-based 

optimization algorithms have been used to carry out optimization. The comparative 

studies of different optimization methods convincingly demonstrate an importance of 

the selection of an efficient algorithm. 
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Chapter 4  

Logic Operators and Granular Operations – A Statistical 

Reviewb 

After obtaining the information granules, we embark on considering the process 

between the information granules. Logic operators, in the role of aggregation 

connectives, have been proven to be useful tools for information fusion. They are 

accordingly at the center of research into the theory of fuzzy sets and have subsequently 

fueled a vast array of applications. In granular computing, there is also a need for 

aggregating several information granules into a single output granule. Therefore, this 

chapter characterizes them by analytical properties. 

The abundance of logic operations and aggregation operators is profound. In 

particular, the studies on triangular norms, nullnorms and uninorms [89]-[94] have 

been mushrooming. Analytical investigations have been blooming bringing a vast of 

theoretical findings. Interestingly, all the investigations were very much confined to 

analyses carried out at the numeric levels. Sometimes one may raise some arguments as 

to the applied relevance of developing so many t-norms and their eventual non-distinct 

behavior, which might benefit in a tangible way fuzzy reasoning schemes, fuzzy 

models, and fuzzy classifiers contributing to possible improvements of their 

performance. Notably almost all constructs of fuzzy sets use in one way or another 

fuzzy operators and composition operators, just to recall all schemes of approximate 

reasoning [95]-[98]. If we pose a bit and reflect upon the developments of fuzzy sets, 

we may eventually conclude that an over-emphasized numeric facet of fuzzy sets and 

their processing is somewhat counter-intuitive and does not lie in the spirit of any 

linguistic processing and system modeling, computing with words and alike – all these 

paradigms which were positioned at the heart of fuzzy sets from their very inception.  

                                                 
b A version of this chapter has been published as [129]. 
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The problem we are concerned with is about determining whether different t-norms 

produce results that are indeed different and tangibly distinguishable. Being more 

precise, we check whether the results produced by two t-norms (or t-conorms) in the 

presence of some data D yield differences that are significantly different with the notion 

of difference being quantified in some well-defined statistical terms and being more 

precise articulated through testing appropriate statistical hypothesis.  

Furthermore, generally, the logic operators deal with numeric aggregations of data 

or fuzzy sets information granules. But how about when the information granule is as 

the form of interval sets? Thus, here our line of thought is to explore another alternative. 

We propose a concept of granular operators implied by t-norms. Those operators are 

granular in the sense that we admit here a granular (interval-valued) outcome of the 

operation carried out on granular arguments. So that it “covers” the results produced by 

some other t-norms. In the realization of this granular construct, we engage the 

principles of Granular Computing and assess the quality of the granular operator in 

terms of its coverage and specificity criteria. 

4.1 Logic Operators – A Brief Review 

A t-norm is a binary operator T: [0, 1]2→[0, 1], defined in the unit square, which 

satisfies the following properties [90]: 

(a) Commutativity: T(x1, x2) = T(x2, x1)  

(b) Associativity: T(x1, T(x2, x3)) = T(T(x1,x2) , x3) 

(c) Monotonicity: T(x1, y) ≤ T(x2, y) if x1 ≤ x2 

(d) Boundary condition: T(x1, 1) = x1  

A t-conorm S: [0, 1]2→[0, 1] can be defined as S(x1, x2) = 1-T(x1, x2). The first three 

properties of t-conorms are the same as those of t-norms while the boundary condition 

reads as S(x1, 0) = x1. 
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In the existing plethora of t-norms and t-conorms, we consider several 

representative families of t-norms and t-conorms, see Table 4.1. The t-norms reported 

here come with their duals. 

 

Table 4.1. Selected examples of t-norms and t-conorms 

Names t-norms t-conorms 

Logical 1 1 2 1 2( , ) min( , )T x x x x
 1 1 2 1 2( , ) max( , )S x x x x

 

Hamacher 
1 2

2 1 2

1 2 1 2

( , )
x x

T x x
x x x x


 

 1 2 1 2
2 1 2

1 2

2
( , )

1

x x x x
S x x

x x

 



 

Algebraic 3 1 2 1 2( , )T x x x x  
3 1 2 1 2 1 2( , )S x x x x x x    

Einstein 
1 2

4 1 2

1 2

( , )
1 (1 )(1 )

x x
T x x

x x


  
 1 2

4 1 2

1 2

( , )
1

x x
S x x

x x





 

Lukasiewicz    01max 21215 ,xxx,xT      1min 21215 ,xxx,xS   

Drastic 

1 2

6 1 2 2 1

1 2

1

( , ) 1

0 , 1

x x

T x x x x

x x




 
 

 

1 2

6 1 2 2 1

1 2

0

( , ) 0

1 , 0

x x

S x x x x

x x




 
 

 

Triangular 1 
1 1 2

7 1 2

2
( , ) cot [cot cot ]

2 2

x x
T x x

 


 

 1 1 2
7 1 2

2
( , ) tan [tan tan ]

2 2

x x
S x x

 


 

 

Triangular 2 1 2
8 1 2

2
( , ) arcsin(sin sin )

2 2

x x
T x x

 




 1 2
8 1 2

2
( , ) arccos(cos cos )

2 2

x x
S x x

 




 

 

4.2 Statistical Distinguishability of Logic Operators 

Regarding statistical analyses of results produced by t-norms, there have been only 

a few studies reported so far, cf. [99][100]. The investigations covered here build upon 

the findings presented in the literature, however we move beyond them by looking at 

the family of triangular norm and the usage of data sets. 

As a suitable test, we use here a nonparametric Mann–Whitney-Wilcoxon test 

[70][100]. It is more suitable than a well-known t-test [69] as it is more efficient on 

non-normal distributions than the t-test, and is nearly as efficient as the t-test for normal 

distributions [72]. The null hypothesis H0 is formulated as follows 

H0: medians of samples of results produced by T1 and T2 are equal   (4.1) 
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Hence in testing hypothesis, it is essential to involve data of a certain nature. Two 

alternatives are considered with this regard: 

Random data The data is drawn at random from a uniform distribution expressed 

over [0, 1].  

Data produced through fuzzy clustering (FCM) Here we engage a clustering 

procedure to arrive at membership values and use them for testing purposes. There are 

two motivating factors here: clustering is commonly used to produce membership 

grades and clustering is quite commonly regarded as an essential design procedure in 

fuzzy modeling.  

Once the data have been decided upon, either being drawn randomly or formed 

through the use of the FCM algorithm, the hypothesis H0 is tested and conclusion 

formulated. In order to base an overall conclusion on a solid footing, the experiment is 

repeated a large number of times (say, 10,000) by involving different input data and a 

final count of the number of times when the hypothesis has been rejected is reported as 

well, and we compute the proportion r of statistically different tests as follows, 

sets dataofnumber 

rejectedbeen  has  hypothesis   timesofnumber 0H
r        (4.2) 

The process described above (viz. produce the data set, test hypothesis, draw a 

conclusion) is carried out for both t-norms and t-conorms. In case of triangular norms 

with some parameters, the testing can involve different values of the parameters and 

checking how much distant the values should be to make the results statistically 

different. 

4.3 Granular Indistinguishability of Triangular Norms 

Instead of numeric arguments of T leading to the numeric outcome T(x1, x2), let us 

assume that the arguments are granular, viz. intervals X1 = (x1
-, x1

+) and X2 = (x2
-, x2

+)  

having width 2ε and spanned over the original numeric values x and y 
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)min(1,

)max(0,

),1min(

),0max(

22

2

-

2

11

1

-

1





















xx

xx

xx

xx

            (4.3) 

where   assumes values ranging from 0 to 0.5, which is referred to as a level of 

information granularity [101][102]. Evidently, the result Y = T(X1, X2) is also of interval 

form. In light of the monotonicity property of triangular norms, we have Y = [y-, y+] 

where y- = T[x1
-, x2

-] and y+ = T[x1
+, x2

+]. We can recall Y to be produced in this way a 

granular t-norm T (more specifically, it is a t-norm operating on granular-interval 

valued arguments). The assessment of indistinguishability of t-norms can be realized in 

the setting of Granular Computing. Given is a reference t-norm, call it T0. Consider 

some other t-norm, T. We say that T and T0 are ε–indistinguishable in light of data D = 

{(x1, x2)} if the following property is satisfied 

T(x1, x2) ∈T0(X1, X2) for all (x1, x2) ∈D          (4.4) 

The property defined in this way is of binary character, namely the ε–

indistinguishability holds or not. Obviously, its satisfaction depends upon the value of ε. 

Instead we can admit a gradual nature of its satisfaction by counting how many times 

the inclusion predicate T(x1, x2) ∈T0(X1, X2) is true, incl(T(x1, x2), T0(X1, X2)). 

Considering the data D, we determine the coverage measure (normalized count of 

satisfaction of the inclusion predicate) as in (48). The plot of this measure versus ε can 

visualize the capabilities of making T indistinguishable from T0. Thus, to produce some 

global descriptor of coverage, we determine area under the curve (AUC) as in (2.36), 

the higher the AUC value, the more indistinguishable T and T0 are.  

4.4 Experimental Studies 

In this section, we present a suite of experimental results showing both the 

statistically-oriented and Granular Computing-based distinguishabilty properties of 
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t-norms. Because of duality, we only report the comparisons involving t-norms and the 

results of t-conorms comparisons are the same. The level of significance is set as 0.05. 

Besides, the data produced through FCM clustering is Boston housing data set cited 

form UCI machine learning repository. The number of clusters (c) is selected as 2 and 

10, and fuzzification coefficient (m) is set as 1.1 and 2.0. 

4.4.1 Statistical Difference of T-norms 

We test non-parametric t-norms listed in Table 4.1 and the results of r values are 

shown in Figure 4.1 Different t-norms (described their corresponding indexes, see 

Table 4.1) are positined on x and y-coordinates. In general, Lukasiewicz t-norm (T5) 

and Drastic t-norm (T6) behave significantly differently from other t-norms. The 

Algebraic (T3) and Einstein (T4) also demonstrate statistical difference in some cases, 

some of which were reported in the literature [99]. We can notice that, when the input 

data is coming from FCM clustering (c = 10, m = 2.0), most of the t-norms or t-conorms’ 

outcomes are statistically different from the others. This also indicates that the inputs 

variables show an important effect on the values of r. 

 

(a)                (b)                     (c) 

Figure 4.1. Values of r for eight non-parametric t-norms with data: (a) randomly 

distributed data, (b) results of FCM clustering (c = 2, m = 2.0), (c) results of FCM 

clustering (c = 10, m = 2.0) 

4.4.2 Coverage Ratio of Granular Operators 

Figure 4.2 shows the coverage implied by every T0 selection, and value of εis set 

within the range of [0, 0.5]. X-axis shows the value of ε and Y-axis represents the 

subscript of T t-norms while Z-axis shows the coverage results. The inputs veriables 
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exhibit a uniform random distribution. And Table 4.2 shows the AUC valuese when 

comparing the coverage performance. 

As it can be seen in the bar plot of Figure 4.2, some T0 selection have good coverage 

performance, such as Hamacher t-norm and Triangular t-norms, but some have worse 

coverage performance, such as Lukasiewicz t-norm and Drastic t-norm. Combining 

with the results we obtained above, we know that Lukasiewicz t-norm and Drastic 

t-norm are significantly different from other t-norms in most of the cases, so it can 

hardly cover or be covered by other granular operators, which is also testfied and shown 

in Figure 4.2 (e) and (f). Therefore, in the rest part of coverage computation, we exclude 

those two t-norms and evaluate the coverage performance of remaning 6 families of 

t-norms, as shown in Figure 4.2 (a) to (d) and Figure 4.2 (g) to (h). The inputs of those 

granular operators are 10,000 groups of pairs of data (x, y) uniformly distributed within 

the range of [0, 1], and we also tested groups of an equal amount of inputs obtained by 

FCM processing. 

As shown in Figure 4.3, the coverages are monotonically ascending with extending 

the intervals of granularity. Those 6 sorts of t-norms approach to 100% at a certain 

value of . According to the results, we could conclude that T0 selected as Hamacher 

t-norm (T2) and Triangular t-norms (T7, T8) have better coverage performance, in other 

words, they can cover the results of granular operators with smaller granular intervals. 

In addition, the inputs also have some considerable impact on the increasing of 

coverage ratio. More specifically, for those six granular operators, the coverage 

performance for FCM clustering results is better than randomly distributed data sets.  

 

(a)                                (b) 
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(c)                            (d) 

 

(e)                            (f) 

 

(g)                            (h) 

Figure 4.2. Coverage relationship obtained for granular operators with regard to 

other t-norms: (a) T0 selected as T1, (b) T0 selected as T2, (c) T0 selected as T3, (d) T0 

selected as T4, (e) T0 selected as T5, (f) T0 selected as T6, (g) T0 selected as T7, (h) T0 

selected as T8. 

 

  (a)                         (b) 
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(c)                         (d) 

 

   (e)                         (f) 

 

    (g)                         (h) 

Figure 4.3. Coverage produced by different granular operators: (a) T0 selected as 

T1, (b) T0 selected as T2, (c) T0 selected as T3, (d) T0 selected as T4, (e) T0 selected as 

T5, (f) T0 selected as T6, (g) T0 selected as T7, (h) T0 selected as T8. 

 

Table 4.2. AUC values obtained for comparing the coverage performance 

Inputs T1 T2 T3 T4 T5 T6 T7 T8 

Random data 0.4503 0.4725 0.4681 0.4518 0.3877 0.2572 0.4730 0.4741 

FCM: c = 2, m = 1.1 0.4770 0.4885 0.4853 0.4766 0.4409 0.3728 0.4885 0.4893 

FCM: c = 2, m = 2.0 0.4718 0.4845 0.4817 0.4716 0.4307 0.3459 0.4847 0.4855 

FCM: c = 10, m = 1.1 0.4752 0.4870 0.4842 0.4755 0.2870 0.2154 0.4872 0.4875 

FCM: c = 10, m = 2.0 0.4730 0.4848 0.4757 0.4624 0.2811 0.1908 0.4850 0.4815 
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4.5 Summary 

In this chapter, we have offered a qualitative view at logic operators realized by 

triangular norms by comparing them in terms of their statistical non-distinguishability. 

The alternative approach is formulated in terms of information granules involving 

granular logic operators. In both ways, logic operators are cast in a more abstract setting 

thus supporting a new direction in more abstract way of treating and interpreting fuzzy 

computations and fuzzy modeling. These investigations are beneficial in identifying 

distinct groups of t-norms thus facilitating emergence substantial differences among 

results produced by t-norms. 
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Chapter 5  

Granular Input Space of Fuzzy Rule-Based Modelsc 

From this chapter, we start to develop granular fuzzy rule-based models based on 

the framework of numeric fuzzy rule-based models. Commonly, when we take 

advantage of a model, the first thing we can manipulate is the input. The granular 

input space plays a vital role. Here our focus is on the construction of inputs of the 

model in the form of information granules with the objective of gaining better insight 

into the roles the individual input variables play in the model. The investigations 

dealing with the exploration of the granular input space and its construction are 

subjects of this study. 

It becomes obvious that different input variables exhibit a different impact on the 

outputs of the model. A quantification of this impact relates to some sensitivity analysis. 

Here we formulate the problem in the setting of information granules. We are interested 

in the following problem: if we make some input variable to become an information 

granule, what is its impact on the granularity of the result? Assuming that we have at 

our disposal a certain level of information granularity (regarded as a useful design 

asset), the problem is: how this asset becomes distributed (allocated) across all input 

variables so that the granular output exhibits the highest level of information 

granularity as possible? In this setting information granules and their level of 

information granularity (specificity) are important design characteristics to be 

optimized. Intuitively, one may anticipate that in this allocation exercise, an input 

variable whose impact on the output is quite limited, comes as an information granule 

of low specificity. The opposite holds true in case of any input variable, which 

significantly exhibit the output of the model. Here to retain a high specificity of the 

output results, this input variable has to be kept quite specific. It is important to note 

that information granules associated with the certain input variable is a tangible, easily 

interpretable and practically sound outcome of the process of allocation of information 

                                                 
c A version of this chapter has been published as [130]. 
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granularity. Consider that we have some limited resources to acquire input data and an 

acquisition of the input variables comes with a certain cost. The precision of the 

acquired input variable is related with the granularity of the variable: higher granularity 

implies higher precision (specificity) of the variable. Our intent is to distribute the 

resources so that the quality of the granularity of the result produced becomes 

maximized, viz. its specificity is the highest one. 

The objective of this study is to establish a systematic way of allocation information 

to input variables by solving a certain optimization problem of specificity 

maximization. An overall view of the optimization framework is schematically 

visualized in Figure 5.1. We proceed with an existing fuzzy model (which is a numeric 

mapping y = f(x)) and establish a way of allocating information granularity across the 

input variables (making them granular (denoted here by X) so that the granular output 

of the fuzzy model Y = f(X) exhibits the highest level of specificity. In essence, the 

optimization problem boils down to a development of a granular input space. 

 

 

Figure 5.1. The concept of granular input space in fuzzy model systems 

 

5.1 Formation of Granular Inputs of Fuzzy Models 

The specificity measures the quality of the outputs being specific rather than 

general. In a concise and formal way, we express the problem in the following way. 

 

Given some input data and a certain predetermined level of 

information granularity ε, realize an optimal allocation of this 

information granularity across the input variables so that the 

(5.1) 
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specificity of the corresponding output of the fuzzy model is 

maximized. 

In what follows, we elaborate on the related details that bring more clarification to 

the problem. The vector of numeric inputs x is made granular, denoted here by X, viz. 

the coordinates of the vector become information granules, say intervals. The granular 

inputs X are formed by allocating levels of information granularity to the individual 

coordinates of the input x so that the requirement ε1
++ε1

-+ε2
++ε2

-+…+εn
++εn

- = nε is 

satisfied where ε1
+, ε1

-, ε2
+, ε2

-, etc. assume values in the unit interval, εi
+, εi

- ∈ [0,1], 

associated with the corresponding numeric values x1, x2,…, xn. We form the granular 

(interval-valued) input X = [X1, X2, …, Xt, …, Xn] coming in the following way 

] ,[],[ ttttttttt rangerange    xxxxX            (5.2) 

t = 1, 2, …, n. The range of the corresponding input is expressed in a standard way 

rangei = max(xt) - min(xt)                  (5.3) 

The way of forming the interval-valued input can be interpreted as follows: we 

make it interval-valued with the interval positioned symmetrically around the original 

input value with the width being a fraction of the range of the corresponding variable. It 

is apparent that the higher the value of i, the broader the interval Xi.   

The specificity of the result generated by the granular model is response to the input 

X (which is some interval Y = [y-, y+]) is regarded as in (5.2), and the optimization 

problem can be expressed as the maximization of the specificity under the formula 

(2.35), which is subjected to constrains i
-, i

+∈[0, 1] and  n
n

i i

n

i i  







11
. 

One has to remark here that the optimal allocation of granularity is data dependent. 

The calculations of the granular output of the rule-based fuzzy model require attention. 

For a given Xk, we determine its membership grade to each information granule (being 

described by the corresponding prototype) by determining the following bounds, 
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Then the degree of membership (activation level) of the i-th rule becomes an 

interval ][ 

i,ki,k ,  with the bounds expressed as follows, 

 21min i,ki,ki,k , 
                    (5.6) 

 21max i,ki,ki,k , 
                    (5.7) 

In the sequel, the interval-valued output of is computed in the form 

        



 
c

i

kikikikikk ffyy
1

,,, XX              (5.8) 

where 

          ikik

T

i

T

iiikiki ff vxvxaaXX   ， ,,,       (5.9) 

The operations shown in circles indicate that the operations of addition and 

multiplication are carried out for intervals rather than numbers as the calculations of 

interval arithmetic.  

The optimization problem (5.1) is challenging given the complex dependence of the 

specificity of the output vis-à-vis the individual levels of information granularity. We 

consider a variant particle swarm optimizer (PSO) approach, comprehensive learning 
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PSO (CLPSO) [103] is considered. Once the optimization has been completed, the 

level of granularity associated with the t-th input variable can be described as the 

following sum 

  ttt                (5.10) 

t = 1, 2, …, n. To make this sum independent of the level of information granularity 

, we consider the integral It 




dI
max

tt )(
0

            (5.11) 

where max is the maximal value of  used in the allocation of information granularity, 

max <1. 

5.2 Global Sensitivity Analysis 

In its generic way, a global sensitivity analysis is aimed at the exploration of impact 

of the variance of outcomes of a certain model attributed to the variability of input 

variables. As such, this analysis is commonly exploited as a sensitivity analysis along 

with other approaches including regression method, elementary effect method, 

meta-model based method and variance-based method [104]-[106]. The variance-based 

global sensitivity analysis [105]-[107] is concerned with the relationships assuming the 

following format 

RRggy n  :)(x           (5.12) 

where y is the output of the model, x is the vector of n variables, and g is the model 

function. The underlying idea is to quantify the variance of the output implied by the 

variance of different input variables and express an interaction present among the 

variables. Typically, such calculations rely on the Sobol’s sensitivity indexes 
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[106][108]. They describe an impact of the individual variable, pairs of input variables, 

triples of them, etc. by invoking the following formulas 

 ijkji

ij

ij
i

i S,SS
yTV

TV
S,

yTV

TV
S

)()(
       (5.13) 

 ~iijkijiT SSSSS
i

          (5.14) 

where TV(y) is the total variance of the output y, TVi is the variance of the output being 

affected by the i-th input variable, and TVij is the variance of the output being impacted 

by the i-th and j-th input variable. In other words, the so-called first order index Si 

quantifies the contribution of a single individual input variable to the variance of the 

output. The second order index Sij expresses the contribution of interaction of the i-th 

and j-th input variables, and so on for higher order effects (Si~, which represents the 

effects indices containing the interaction influence of the i-th input variable along with 

any other variables). Total order effect STi is used to express the overall output 

sensitivity variance influenced by the i-th input variable, including all variance caused 

by its interaction with any other input variables. The larger value of the index becomes, 

the greater impact the input variable exhibits on the output. 

5.3 Experiment Studies 

We report a series of experiments here concerns some publicly available data sets 

coming from UCI machine learning repository and CMU StatLib library 

(http://lib.stat.cmu.edu/datasets/) to investigate the proposed approach. we carried out 

FCM-based clustering for different number of clusters (c) and values of the 

fuzzification coefficient (m) to develop the fuzzy model. In the sequel, the inputs were 

made granular realizing a process of optimal allocation of information granularity. 

Each data is split into 10-fold, and for each predetermined level of information 

granularity ɛ the experiment was repeated 10 times. 

http://lib.stat.cmu.edu/datasets/
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(a)                (b)               (c) 

 

(d)                 (e)               (f) 

 

(g)                 (h)                (i) 

 

(j)                 (k)                (l) 

Figure 5.2. The integral of optimal granularity interval of the fuzzy models (m = 

2.0): (a) Boston housing, (b) Auto MPG, (c) Stock, (d) PM10, (e) Red wine, (f) Forest 

fires, (g) Airfoil Self-Noise, (h) Cloud, (i) Concrete Strength, (j) Energy efficiency, (k) 

NO2, (l) Servo. The white bars: c = 2, the gray bars: c = 5, and the black bars: c = 9. 
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(a)                (b)              (c) 

 

(d)                 (e)                (f) 

 

(g)                 (h)                (i) 

 

(j)                 (k)                (l) 

Figure 5.3. Results of global sensitivity: (a) Boston housing, (b) Auto MPG, (c) 

Stock, (d) PM10, (e) Red wine, (f) Forest fires, (g) Airfoil Self-Noise, (h) Cloud, (i) 

Concrete Strength, (j) Energy efficiency, (k) NO2, (l) Servo. 

 

Figure 5.2 and Figure 5.3 summarize the results of the integral of optimal 

granularity interval of fuzzy models and the global sensitivity analysis results for the 

corresponding data sets. 
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A number of low sensitive input variables are associated with broader intervals. 

As an example, consider the Airfoil Self-Noise data. The frequency input exhibits 

higher sensitivity, see Figure 5.3 (g), thus narrow intervals are allocated to that 

variable, Figure 5.2 (g). In contrast, velocity variable has the lowest value of 

sensitivity and as such comes with the highest value of the integral of granularity 

allocation. In conclusion, resorting to CLPSO approach, the granularities tend to 

allocate to the low sensitive input variables to void high influence on the outputs, and 

vice versa, so that it is helpful to improve the specificity of outputs. Nevertheless, it 

should be noticed that, the proposed method is used for modeling purpose and allows 

us to use the data in various resolutions efficiently. Though some significant 

characteristics of the results obtained by the proposed approach and the standard 

sensitivity analysis are verified mutually, they cannot be substituted by each other. 

Because, when the sensitivities of two variables are very close, it is difficult for 

granularity allocation to distinguish them from each other. Meanwhile, sensitivity is 

not the only condition of input variables granularity allocation. 

5.4 Summary 

In this study, we have focused on the concept of the granular input space and its 

optimization. The direct linkages between the granular space formed in this way and 

the analysis of impact of input variables in the already developed models have been 

identified. The granular input space delivers an interesting vehicle to realize a global 

sensitivity analysis and offer a way of forming information granules of input variables. 
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Chapter 6  

Granular Processing Module of Fuzzy Rule-Based Models 

In this chapter, we study several different ways to design the granular fuzzy 

rule-based models by generalizing the processing modules and parameters of fuzzy 

rule-based models to granular forms. 

6.1 Granular Interactive Rule Matrix of Fuzzy Modelsd 

Initially, we are interested in the fuzzy rules, which contain prior knowledge 

obtained from learning processes or experts. Our focus is on two questions in this study: 

How are the rules generated, and what is the relationship between the rules? A spectrum 

of studies appears in the literature that are focused on the analysis of fuzzy models and 

that elaborate on the knowledge representation realized by such modules. There are 

also discussions reported on the quality of the rules and investigations of various 

reasoning or aggregation mechanisms [109]-[112]. Possible interactive relationships 

between the rules are usually discussed and realized by means of mechanisms of 

aggregation or decomposition, and subsequently implemented to improve the 

performance of fuzzy models, fuzzy classifiers and decision-making schemes 

[113]-[116]. The concept of formation and interaction within hierarchies of fuzzy 

models is related to some aspects of deep learning, in which we inherently encounter a 

collection of layers of processing facilitating a formation of additional features 

emerging at the higher levels of abstraction[117][118]. Likewise, the available design 

procedures are also highly diversified both in terms of general development strategies 

as well as the detailed optimization vehicles being used in their construction 

[114][115]. 

Interestingly, within the plethora of architectural enhancements of fuzzy rule-based 

models, a question of interaction among the rules and a possible usage of the interaction 

mechanism towards the enhancements of the performance of the rule-based models has 

                                                 
d A version of this chapter has been published as [131]. 
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not been studied. By interaction among the rules we mean a mechanism of engaging 

existing fuzzy sets standing the corresponding rules in a formation of new fuzzy sets so 

that the fuzzy sets formed in this manner give rise to more efficient structure of the 

overall model. This is an original and promising development direction whose main 

features and associated improvements are worth considering. One objective in this 

study is to introduce the concept of interactive rules, study their properties and show 

ways they deliver additional functionality to fuzzy models. Afterwards, we augment the 

numeric model by building its granular augmentation (generalization). Here, 

information granularity is introduced into the already formed rule-based model by 

making the weights of the interaction matrix granular. 

6.1.1 Forming Interaction Among Fuzzy Rules 

A TS architecture of the fuzzy model is considered, and a generic architecture of the 

model dwells upon a collection of “c” rules assuming in the form as (2.6). Here we 

focus on the interaction between the fuzzy rules, so fi(x) is simply regarded as some 

numeric representatives yi distributed across the output space. The output of inference 

(reasoning) scheme is as shown below 

i

c

i

i yAŷ )(
1=

x                   (6.1) 

In general, the design of rule-based models entails two fundamental phases: 

(i) granulation of input space. The input space is granulated by forming a 

collection of fuzzy sets (Ai) and in this way revealing a structure in the space of input 

data. Commonly FCM is used here. From the design perspective, the main parameters 

of the FCM such as the number of clusters c (number the rules) and the fuzzification 

coefficient m can be adjusted according to the needs of fuzzy modeling. 

(ii) determination of the conclusions of the rules. This design phase follows the 

formation of information granules in Rn and is concerned with a specification of a class 

of local models (type of functions fi) and estimation their parameters. Given that the 
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type of the function has been already fixed (mi), the values of these constants are 

optimized in a supervised mode by minimizing a certain performance index Q in such a 

way that a distance between the data and the corresponding results produced by the 

model are made as close as possible. The supervised mode of learning (estimation) is 

based in input-output data (xk, targetk) and quite commonly MSE is expressed as sum of 

squared errors 

 



N

k
kk ŷtargetMSE

1

2
               (6.2) 

where kŷ  is the output of the rule-based model produced for the given input xk; yk= 

FM(xk), where FM is governed by (6.2). Likewise, one can consider an RMSE version 

of  (6.3) taking on the following form 





N

k

kk ytarget
N

RMSE
1

2)(
1

           (6.3) 

For the design purposes, the data are split into training and testing parts or 

eventually training-validation-testing parts and the corresponding values of RMSE 

index serve as indicators of the performance of the model. 

There are discussions reported on the quality of the rules and investigations of 

various reasoning or aggregation mechanisms [109]-[116]. Here, interactive rules are 

augmented by bringing some efficient schemes so that the introduced effect of 

interaction can be exploited to improve the quality of the resulting model. In general, 

the interaction can be accomplished in a form of a certain mapping g transforming 

original fuzzy sets standing in the rules, namely A1, A2, …, Ac into new fuzzy sets A*1, 

A*2, …, A*c’ where each newly formed fuzzy set is based upon the original fuzzy set. In 

an explicit way, we can consider A*
i to be formed with the aid of a certain interaction 

matrix W followed by a nonlinear mapping g, viz.  

A*i= g(A1, A2, …, Ac)              (6.4) 
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i = 1, 2, …, c’. Formally, the above mapping g realizes a transformation from [0, 1]c 

to [0,1]. From the point of view of the processing realized in this way, we encounter a 

new processing module of the architecture of the rule-based model as displayed in 

Figure 6.1. 

 

 

Figure 6.1. Augmentation of rule-based models by a functional module realizing 

interaction among the rules 

 

We consider a class of mappings (transformations) in the concise form 

A*i= g(WA)              (6.5) 

W is a matrix of interactions whose usage supports a transformation of the fuzzy 

sets A1, A2, .., Ac into the new transformed fuzzy sets. The entries of the matrix assume 

numeric values coming from some predetermined range of values being distributed 

symmetrically around 0 and embracing both negative and positive values. This helps 

realize both inhibitory as well as excitatory influence exerted by the original fuzzy sets. 

From the structural point of view, we note that the augmented fuzzy models exhibit an 

additional processing layer and help realize some additional faculties of deep learning. 

Expressing explicitly the fuzzy sets, we obtain the following expression 
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With regard to the nature of the interaction completed in terms of (64), we 

distinguish three cases: 

(a) the same number of new fuzzy sets, namely c = c’. The new fuzzy sets come in 

the same number however they arise through an interaction among Ai. 

(b) reduction effect, c’ < c. Through this transformation, we end up with the lower 

number of fuzzy sets and effectively, the lower number of rules 

(c) expansion effect, c’ > c. Here we form a larger collection of fuzzy sets and in 

this way, increase the number of rules.  

The interaction among the rules, which is realized through the mapping presented 

above (64) is quantified by taking a sum of absolute values of entries of W outside the 

main diagonal. 

6.1.2 Realization of Interaction Fuzzy Rule-Based Models 

Proceeding with the detailed discussion of the augmented architectures of the 

rule-based models, we consider several optimization strategies. 

topology-1 This model serves as a reference structure. Its formal description is 

given by (40). 

topology-2 here we have an augmented version of the reference model where the 

output is described in the form by (6.6). The nonlinear function g is specified as a 

limiter taking on the form 

















0 if0

1 if1

[0,1]  if

)(







g                (6.7) 

The entries of the transformation matrix are confined to the [-2, 2] interval.  

topology-3 this model is described by (6.6) but now the nonlinear function is 

specified to be a sigmoidal one, namely 
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


g                  (6.8) 

where  (>0) is a steepness factor of the sigmoidal function.  

Following these topologies of the models, we list several development scenarios, 

which along with the topologies of the models lead to five models of rule-based 

architectures: 

Model-1 here we optimize the conclusions of the rules, namely y1, y2, …, yc. 

Model-2 as the structure is augmented by the transformation matrix W, its entries 

are now optimized, and assume that c = c’. 

Model-3 in this structure, in addition to learning W, the steepness factor is also 

optimized. The observation as made in case of Model-2 holds here.  

Model-4 we make the development as discussed in Model-2 more advanced by 

allowing learning W as well as y1, y2, …, yc. 

Model-5 here we follow Model-3 but we optimize the constant values in the 

conclusion parts y1, y2, …, yc of the rules. 

6.1.3 Allocation of Granular Interaction Fuzzy Rule-Based Model 

Information granularity is introduced into the already formed rule-based model by 

making the weights of the interaction matrix granular. These granular weights can be 

built around the original numeric entries of the weight matrix, Wij, i, j =1, 2,…, c in 

many different ways and the strategy itself can be optimized. Here we consider two 

optimization scenarios in which information granules are constructed for the numeric 

parameters as shown in Figure 6.2. 

(I) The first realizes a symmetric and uniform allocation of the level of information 

granularity. Given some predefined level of information granularity , we compute the 

product ·range (where range is the length of the values the weights Wij assume, say for 

the values of the weights ranging from -1 to 1, meaning that the range is 2) and build a 

symmetric interval around Wij with the bounds expressed as follows, 
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where if necessary, the bounds of the above interval are clipped so that they are retained 

within the interval [-2, 2]. 

 

 

Figure 6.2. Two scenarios of allocation of information granularity: 

uniform (I) and nonuniform (II) 

 

(II) We form intervals that exhibit a uniform allocation (are of the same length) but 

are asymmetrically distributed around the numeric value. The resulting interval comes 

in the form 

])1( ,[ rangeWrangeW ijij            (6.10) 

where is a so-called asymmetricity index assuming values in the unit interval. The 

values of can be subject to optimization. 

 The criteria used to assess the performance of the granular model concerns 

coverage of the data and is taken as (2.29). we also compute the specificity of the 

interval produced by the granular model as (2.32). The criterion used to assess the 

performance of the granular model concerns both coverage and specificity, so the 

global indicator used here is as in (2.36). 

6.1.4 Experimental Studies 

we present a synthetic data experiment to demonstrate the performance of the 

proposed method. A low-dimensional synthetic data is used here for illustrative 
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purposes. We are concerned with the two-variable nonlinear function [65][67] 

described in the following form 

21
2

50
1 )1(


 xxy

.
                 (6.11) 

where the two independent variables (x1 and x2) assume values in [1, 6]. The learning is 

realized by using a data set composed of 676 data pairs where the inputs are distributed 

randomly in the Cartesian product [1, 6]×[1, 6]. The 10-fold cross validation method is 

used. In the experiments, the range of the entries of the weight matrix Wij is restricted to 

the interval [-2, 2]. The range of the parameter  standing in the sigmoidal function is 

confined to [0.1, 30], which is sufficient to make the function exhibiting a broad 

spectrum of steepness levels.  

To contrast the behavior of the generic model and its successive refinements, some 

example membership functions of Ai and those obtained after their nonlinear 

transformation are displayed in Figure 6.3. It is noticed that the original membership 

functions have been affected because of the optimized interaction among them. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 6.3. Plots of membership functions of Ai obtained for the fuzzy models for 

c = 3 and m = 2: (a) model-1, (b) model-2, (c) model-3, (d) model-4, (e) model-5. 

 

Proceeding with a more comprehensive experimentation we developed the models 

for selected values of the number of rules (c) and the values of the fuzzification 

coefficient m set to 1.1, 2.0, and 2.8. The range of admissible values of  was set to [0, 

30]. The results are reported by displaying the values of the performance index 

obtained by running the 10-fold cross validation; both the mean values and the 

corresponding standard deviations are presented, refer to Figure 6.4. 
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Figure 6.4. Performance of the models obtained for selected values of the 

parameters c and m 

 

Table 6.1. Results of statistical testing - Synthetic data 

model Training sets Testing sets 

c 3 5 7 9 3 5 7 9 

1 vs. 2 + + + + + + - + + - + + - + + - + + - + + - + + 

1 vs. 3 + + + + + + + + + + + + - + + - + + + + + + + + 

1 vs. 4 + + + + + + + + + + + + + + + - + + + + + + + + 

1 vs. 5 + + + + + + + + + + + + + + + + + + + + + + + + 

 

As Figure 6.4 visualizes, in all the models, the increase in the number of clusters 

leads to the decrease of the training and testing error. Obviously, by having more 

clusters, the model is able to produce more details of the data leading to the reduction of 

the training and testing errors. The performance of the proposed models (models 2-5) is 

better than the one of the original model (model 1). Moreover, the t-test run at the 

confidence level of 0.05 shows the improvement of the proposed models vis-à-vis the 
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original model, see Table 6.1. The first columns concern m = 1.1, gray columns refer 

to m = 2.0, and the darker columns deal with m = 2.8. The plus sign denotes that the 

results produced by the two models are statistically different (the differences are 

statistically significant). In general, the performance of the fuzzy models endowed with 

the interaction layer is significantly improved in the most cases, and the best results are 

produced by model 4 and model 5. In other words, we can use a lower number of 

clusters (rules) to obtain the same performance as in the case of some models composed 

of the larger number of rules. 

Now we present the results for the granular augmentation of the fuzzy models as 

discussed. In particular, we show the plots of the coverage versus the specificity and the 

corresponding AUC (V) values. As can be seen from Figure 6.5 and Figure 6.6, the 

AUC (V) values corresponding to the coverage versus the specificity of the proposed 

models (models 2-5) are higher than those reported for the original models (model 1). 

 

Figure 6.5. AUC corresponding to the coverage versus the specificity in granular 

scenario (a) 
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Figure 6.6. AUC corresponding to the coverage versus the specificity in granular 

scenario (b) 

 

6.2 Granular Interval Prototypes and Parameters of Fuzzy 

Modelse 

Considering the uncertainty and inaccuracy of prototypes and parameters, we 

make these numeric values embraced by information granules—that is, we make the 

fuzzy model granular—in the sense that its original numeric parameters and 

constructions (prototypes) are generalized to become granular parameters and 

prototypes. These parameters and prototypes are made granular in the sequel resulting 

in a granular fuzzy model. With the use of information granulation of the parameters 

and prototypes of fuzzy models, the resulting granular fuzzy model offers higher level 

                                                 
e A version of this chapter has been accepted to published as [132]. 
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tolerance to noise and modeling errors and helps produce results of practical relevance. 

Therefore, Granular model augments the existing numeric results by generating 

prediction intervals so that one can expect where the real-world outcome is going to be 

located. The practical relevance of non-numeric prediction has been recognized and 

emphasized in system modeling in the past; one can refer here to the use of prediction 

intervals in power systems reported in [119][120] or allude to interval-like prediction in 

models of linear regression. Information granularity along with its level of granularity 

is regarded as a certain design asset facilitating the evaluation of the fuzzy model. 

In the study, we propose a two-phase development process of granular fuzzy 

models, which, in our opinion, is both legitimate and sound from the perspective of the 

introduced optimization criteria as well as the underlying optimization. The first phase 

concerns the development of a fuzzy model. Here we resort ourselves to the spectrum 

of existing well-established design practices of fuzzy models. No change is being made 

to the design. We take full advantage of what has been fully documented in the 

literature and successfully used so far. The second design phase is the crux of the 

overall construct: here we augmented the already constructed fuzzy model by making 

its parameters and prototypes granular (represented by information granules). The 

optimization is guided by the aggregate criterion of coverage and specificity (which is 

fully in line with a way in which the quality of information granules is quantified 

vis-à-vis the available numeric evidence). 

There are several facets of originality of this study. By bringing the concept, 

performance measures, and ensuing algorithms of the granular evaluation, we embark 

on a new and uncharted territory of building and expressing performance of granular 

fuzzy models in a holistic way. The way of an effective building granular fuzzy models 

realized on a basis of the existing model [52][121] and an assessment of its 

performance brings another aspect of originality.  

In spite of the presence of fuzzy sets used in the development of fuzzy models, these 

models manifest as numeric constructs (viz. the output of the fuzzy model is numeric). 

The radical design departure leading to an evident enhancement of the ensuing model is 
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to admit granular parameters of the model. The original numeric values of the 

parameter of the fuzzy model (say, prototypes of the clusters v1, v2, …, vc, w1, w2, …, wc 

and parameters of the local models a1, a2, …, ac) are generalized to the form of 

information granules V1, V2, …, Vc, W1, W2,…, Wc, A1, A2, .., Ac so that they are 

distributed around the original numeric values . To form granular parameters, we admit 

a certain level of information granularity () (the details will be discussed in the 

consecutive sections) and allocate it across the parameters of the model so that a certain 

optimization criterion becomes optimized.   

Such information granules are formed around the original numeric values of the 

parameters. Alluding to the generic structure of the rule-based model governed by (2.6), 

instead of numeric values of the parameters we consider information granules located 

around the numeric values of the parameters. Formally, as a follow-up of the original 

formulas, we describe the resulting granular model as follows 

)(then))((isif i

T

iiii WŶBG VxAxx              (6.12) 

the capital letters emphasize that the corresponding components are information 

granules and G(Bi(x)) denotes an interval of levels of activation (firing) of the rule 

generated on a basis of the granular prototypes, viz. G(Bi(x)) =[Bi
-(x), Bi

+(x)]. The 

operations  and  are carried out for information granules as the calculations in 

interval arithmetic. Next the output of the model follows a generalizes (6.12) and comes 

in the form 

))(())((
1

i

T

i

c

i

ii WBGŶ VxAx 



            (6.13) 

To admit granular parameters and prototypes, and optimize an allocation of 

information granularity, two fundamental issues have to be studied in depth: 

(i) a way of characterizing the quality of the granular models This problem is more 

advanced that the one encountered in (numeric) fuzzy models. In any possible 
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evaluation of the granular model one has to take this into consideration a fact that a 

numeric data is confronted with an information granule produced by the granular model. 

This calls for a prudent quantification of the result. 

(ii) optimization of allocation of information granularity across the fuzzy models 

How the level of information granularity (being treated as an essential design asset) can 

be distributed across the parameters and prototypes of the fuzzy rule-based model to 

yield the best performance of the granular model is the crux of the design problem. 

We note that way of proceeding with a granular fuzzy model exhibits a significant 

level of generality. We have not committed to any particular formalism of realization of 

information granules. In the ensuing detailed investigations, we confine ourselves to 

intervals as this helps focus on the essence of the approach and avoid venturing into 

computational details. 

There are several essential components contributing to the entire construction: 

• a level of information granularity ɛ is provided in advance. It can be regarded as 

a supplied design asset so that the model is made granular. The values of ɛ are 

confined to the unit interval. The higher the values of ɛ, the more design 

flexibility is being offered. In the limit when ɛ = 0 the granular model becomes 

the original one (numeric model), 

• a way of allocation information granularity, viz. a method of making the 

original numeric parameters granular, 

• a way of expressing the quality of the produced granular model. 

6.2.1 Granulation of the Parameters of Fuzzy Models 

Given the numeric value of the parameter of the local model, say aij, i = 1, 2, …, c, 

j = 1, 2, …, n, we make it granular by admitting a certain interval [aij
-, aij

+] formed 

around the original numeric value. Obviously, because of the granular form of the 

parameters A= [a-, a+], the numeric outputs become effectively granular (more 

specifically, intervals) Y = [y-, y+] whose bounds are described in the following form, 
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Allocation of granularity of parameters 

(I) Uniform and symmetric allocation of granularity. The first scenario realizes a 

symmetric and uniform allocation of the level of information granularity by building 

the bounds of the intervals as follows 
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where . 

(II) Nonuniform and asymmetric allocation of granularity. Here we consider the 

length of each interval around the numeric values of the parameters is not equal. 
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The variables and  are satisfied the following conditions, 

                (6.19) 
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6.2.2 Granulation of the Prototypes of Fuzzy Models 

The prototype produced by the FCM algorithm is numeric. To generalize it to a 

granular construct, we build a hyper-rectangle prototype Vi. A two-dimensional (n = 2) 

cn2/0  

eij
- 

ij

1,0  

ijij 
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illustration is displayed in Figure 6.7. In general, we admit the sides of the hypercube to 

be of different lengths and distributed asymmetrically around the prototypes. The 

resulting granular prototype is fully described by 2n parameters (4 in the 

two-dimensional case).  

 

Figure 6.7. Constructing a granular prototype; a two-dimensional example. range1 

and range2 are the ranges of values assumed by the corresponding variables x1 and x2. 

 

Given a certain data x, a level of activation of the i-th rule comes in the form of an 

interval. Alluding to the way in which this is done in fuzzy models, here we have to 

express on how to determine a distance between a numeric vector and the hyper 

rectangular information granule Vi. Intuitively, the result should be non-numeric and 

we should take into consideration a range of possible values assumed by the distance 

involving their extreme values. An intuitively sound option would be to take the most 

distant and the closest vertices of Vi. This, however, becomes computationally 

questionable when n attains higher values as we have to consider 2n vertices of the 

hyper rectangle to determine the bounds of these distance values. An alternative is to 

project the hyper rectangle on the corresponding axes and determine the distance 

between the projected x, say xj and the most distant and the closest point of the interval 

resulting from the projection of the hyper rectangle on the same j-th input variable, for 

details refer to Figure 6.7.  

We arrive at the detailed formulas 
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               (6.23) 

               (6.24) 

where is a standard deviation of the j-th variable while and  are defined as 

follows, 

                (6.25) 

               (6.26) 
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The output interval reads as follows 
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Allocation of granularity of prototypes 

(I) Uniform and symmetric allocation of granularity. The first scenario realizes a 

symmetric and uniform allocation of the level of information granularity by building 

the bounds of the intervals as follows 

     (6.32) 
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 (II) Nonuniform and asymmetric allocation of granularity. Here we consider the 

length of each interval around the numeric values of the parameters is not equal. 
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6.2.3 Granulation of the Parameters and Prototypes of Fuzzy models 

Based on the above two strategies, we consider combining the granulation of both 

parameters and prototypes. The components of granulation, for instance, the 

granulating parameters, distance and partitions calculation, are same as previous 

description. In contrast, the calculation of granular output is changed as following 

expression, which contains all granular components of the rule-based fuzzy model. 
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In the sequel, we carefully look at the ways of allocating information granularity and 

the quality of the granular model. 

Allocation of granularity of both parameters and prototypes of fuzzy models 

(I) Uniform and symmetric allocation of granularity.  

            
   (6.41) 
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where ))1((2/0  nccn . 

 (II) Nonuniform and asymmetric allocation of granularity. Here we consider the 

length of each interval around the numeric values of the parameters is not equal. 
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The variables , , , and  are satisfied the following 

conditions, 

              (6.49) 
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In (II) case given the large number of values to be determined, it can consider 

resorting to some evolutionary optimization techniques, such as particle swarm 

optimization (PSO), genetic algorithm (GA), and differential evolution (DE).  

6.2.4 Experimental Studies 

A two-variable nonlinear function comes in (6.11), where x1 and x2 are two 

independent variables assuming values within the range [1, 5]. The data set is 

composed of 900 (30×30) input-output data pairs where each input is distributed 

according to the uniform random distribution in [1, 5]. The data set is split into a 

training set (70%) and testing set (30%). The initial values of ɛ are used in the range [0, 

1] with a step 0.1. 
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To quantify the performance of the granular fuzzy rule-based models, we 

implement coverage, specificity and the global index as described in (2.29), (2.32), and 

(2.39), respectively. 

Figure 6.8 displays the relationships between coverage and specificity obtained for 

different granular models when allocating information granularity. The lines with 

circles represent a uniform allocation of information granularity while the lines with 

pentagram correspond to the case where information granularity has been optimized. 

As expected, considering the conflicting nature of the coverage and specificity criteria, 

the increase in the specificity comes at the expense of the decreasing values of coverage. 

Table 6.2 includes V values corresponding to the two scenarios of allocation of 

information granularity. Some general tendencies are apparent. The V values of the 

granular models with the optimized granular parameters are higher with those produced 

when realizing a uniform allocation of information granularity. Furthermore, one can 

quantify the improvement delivered by the PSO method. The obtained curves display 

different shapes and in some cases. For example, Figure 4 for c = 5 and c = 9, there are 

relatively flat regions of the curve meaning that one can increase coverage (by 

increasing the value of ) not sacrificing much the specificity of the results. With the 

optimized model, some of the coverage and specificity values have improved meaning 

that the model leads to the better coverage with the similar values of specificity. or in 

some cases the coverage is not enhanced too much but the specificity has some 

improvement. Moreover, in some cases (for instance, when c = 2), after optimization, 

the specificity has shown a significant improvement while the coverage is reduced, and 

the points in the coverage-specificity coordinates are positioned very closely. A 

possible reason is that in those models, the allocation of information granularity has a 

strong impact on the specificity improvement and a far less visible effect on coverage 

enhancement. As a result, one improved specificity with sacrificing the coverage.  
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Figure 6.8.Coverage versus the specificity obtained by three ways of allocation of 

information granularity across the parameters of the model: granulation of parameters 

of linear models in the condition part – first row, granulation of prototypes – second 

row, granulation of parameters and prototypes – third row. 

 

Table 6.2. Comparison of V values of granular models after optimization of 

allocation of information granularity 

Granularity  
c = 2 c = 5 c = 9 

Training Testing Training Testing Training Testing 

Parameters 0.1721 0.1361 0.1587 0.0953 0.2904 0.1476 

Prototypes 0.4120 0.3981 0.4927 0.4587 0.5104 0.4553 

Para. & Prot. 0.4058 0.3809 0.4661 0.4355 0.4905 0.4328 
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6.3 Granular Fuzzy Sets the Conclusion Part Parameters of Fuzzy 

Modelsf 

As mentioned in the introduction, information granules augmenting fuzzy models 

can be formalized in different ways by invoking intervals, fuzzy sets, rough sets, 

shadowed sets, and probabilistic sets—to name a few alternatives. We have 

considered several development techniques for granular models that numeric models 

are granulated yielding granular intervals. In this chapter, to illustrate another 

promising alternative, we consider formalizing information granules in a formation of 

fuzzy sets for TS fuzzy rule-based models. We note that a granular model augmented 

by fuzzy sets offer visible advantages over the augmentation involving interval 

information granules. Moreover, fuzzy sets help quantify linguistic variables, which is 

helpful in improving the interpretability of granular fuzzy models. In light of this 

observation, it becomes apparent that this form of information granularity delivers an 

enhancement of the original fuzzy model. 

The underlying objective of this study is to establish a concept of granular fuzzy 

models, highlight their key features and advantages as well as develop a 

comprehensive and efficient design strategy of such models. The essence of the 

proposed design is that the granular model is being built on a basis of the already 

existing fuzzy model so that the resulting construct is built in an efficient way and 

may fully benefit from the already constructed fuzzy model. The original performance 

index (involving two important criteria pertinent to information granules, namely 

coverage and specificity) is prudently formed to navigate the construction of the 

granular model.  

In this study, we concentrate on TS fuzzy rule-based model as a framework to 

develop granular fuzzy models. The objective and originality of this study is to 

establish an appropriate (optimal) way of allocation of information granularity around 

the parameters of fuzzy models, so that the parameters of generic fuzzy models can be 

                                                 
f A version of this chapter has been published as [133]. 



87 

 

augmented to the fuzzy sets form. In the sequel, the output of the granular model 

becomes a fuzzy set. Two methods are implemented to evaluate the performance of the 

established granular fuzzy model. Firstly, we involve the principle of justifiable 

information granularity that assess the coverage and specificity of the resulting fuzzy 

set. 

6.3.1 Fuzzy Rule-Based System Modeling 

Here we consider granulating the parameters in the conclusion parts of fuzzy rules, 

therefore, the function fi(x) in the conclusion parts is slightly different from above two 

sections. The series of “if-then” statements (rules) assuming the following form and 

modeling a relationship between input variables x and output variable 

If x is Ai then yi is fi(x) = pi0+pi1x1+…+pinxn    (6.51) 

where yi is a linear function of the input variables parameters pi0, pi1, …, pin, and n is the 

number of input variables. The following process of computing the output of the model 

are the same as described above in (2.8). 

6.3.2 Formation of Granular Fuzzy Model 

We augment the generic topology of the fuzzy model to form a granular fuzzy 

model, in which the parameters pi0, pi1, …, pij, …, pin of the linear functions are 

extended to some fuzzy sets (for instance, triangular fuzzy sets and parabolic fuzzy 

sets). The parametric version of such fuzzy numbers can be expressed as follows 

][  ijijijij p,p,pP           (6.52) 

where pij
-, pij

+ (j = 0, 1, …, n) are the lower and upper bounds of the corresponding 

fuzzy sets, which is calculated as follows, 
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where εij
-, εij

+ are levels (allocation) of information granularity allocated to the 

corresponding numeric parameters.  

As a result, the granular rules are augmented as following form, 

If x is Ai then Yi = Pi0⊕Pi1 x1 ⊕… ⊕ Pin xn   (6.55) 

where Yi is a fuzzy set output of the i-th rule, and the operation  and  denote addition 

and multiplication of fuzzy numbers. 

Following the rules of fuzzy arithmetic, the resulting fuzzy set Yik associated with 

the i-th rule for input xk is expressed as a fuzzy number with the following membership 

function, 
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where the lower and upper bounds of the membership function are expressed as 
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The minimum and maximum operators are applied individually to each coordinate 

(variable), j =1,2…n. Then, the original formula is described as the resulting fuzzy set 

of output in the form 
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1

          (6.59) 



89 

 

where 
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To restrict the fuzzy set to positioned within the output space, the following 

clipping operation is introduced, 
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where ymax and ymin are the bounds of the output space. 

As a result, any granular fuzzy model yields a result coming in a form of a fuzzy set. 

The parametric membership functions of triangular fuzzy sets and parabolic fuzzy sets 

are expressed in terms of left- and right- hand parametric bounded functions fk and gk, 

as shown in Figure 6.9. The output fuzzy set is characterized by the following triple 
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(a)           (b) 

Figure 6.9. Examples of membership functions of (a) triangular fuzzy set, (b) 

parabolic fuzzy set. 

 

As the result of the granular fuzzy model is an information granule (fuzzy set), its 

performance has to be carefully assessed vis-à-vis the granules in the form of intervals. 

The coverage measures the membership values of the fuzzy sets as described in (2.31), 

and the specificity evaluates the size of the fuzzy sets as in (2.33). As we consider the 

triangular membership function and parabolic membership function here, the resulting 

specificity computed with the use of (2.33) concerning triangular membership function 

and parabolic membership function, 
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Here we implement the formula (2.37) to combine coverage and specificity 

criteria, because it is able to not only optimize the two criteria at the same time but 

also control the impact of specificity. The global performance index is calculated as 

(2.39). 

ε is a predetermined level of information granularity and used to restrict the 

allocation of information granularity εij
- and εij

+ within a certain range as following 

condition expressing an overall balance of information granularity, 
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6.3.3 Experimental Studies 

A two-variable nonlinear function comes in the same as (6.11). The settings of 

generate data sets are same as in Chapter 6.2. The fuzzification coefficient (m) used in 

the FCM algorithm assumes three selected values, namely 1.1, 2.0, and 2.9. The 

predetermined values of ε is set as 0.1, 0.2, …, 0.5. The search space of each element εij
-
 

and εij
+ is set within the range [0, 1]. 

The global evaluation of the granular model (expressed in terms of V) is presented 

in Table 6.3-Table 6.8. To optimize allocation of information granularity, we maximize 

the values of Q in (2.37) and setting β = 1. Here we present three different ways to 

allocate the information granularity. First, no optimization is considered - we allocate 

information granularity symmetrically and at the same level. Then PSO and DE 

algorithm optimize the allocation process. Contrasting the results of constant 

(non-optimized) allocation and optimal allocation, there is an improvement in the range 

of 4%~31%. This indicates that the optimization of allocation plays an important role. 

Moreover, by comparing the results produced by the PSO and DE, the differences in 

their performance are negligible positioned in the range -0.02%~0.5%. Some 

illustration of the performance of PSO and DE reported in successive generations is 

presented in Figure 6.10. The computing overhead of the two approaches is similar 

however PSO is slightly faster than the DE in producing the best results. In conclusion, 

we note that PSO algorithm exhibits a comparatively limited advantage over the DE 

mechanism.  

 

Table 6.3. Values of V for triangular membership functions and m = 1.1 

Optimization Data 
c 

3 5 7 9 11 13 15 

None 
Training 0.4763 0.5063 0.6431 0.7646 0.7960 0.7933 0.8575 

Testing 0.4996 0.5183 0.6482 0.7614 0.7903 0.7875 0.8466 

PSO 
Training 0.6147 0.6490 0.7451 0.8269 0.8451 0.8440 0.8921 

Testing 0.6235 0.6420 0.7298 0.8227 0.8370 0.8373 0.8804 
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DE 
Training 0.6140 0.6490 0.7451 0.8267 0.8449 0.8438 0.8918 

Testing 0.6282 0.6420 0.7298 0.8226 0.8369 0.8372 0.8801 

 

Table 6.4. Values of V for triangular membership functions and m = 2.0 

Optimization Data 
c 

3 5 7 9 11 13 15 

None 
Training 0.3889 0.4546 0.4388 0.4743 0.5305 0.5768 0.5882 

Testing 0.4100 0.4384 0.4350 0.4545 0.5093 0.5426 0.5610 

PSO 
Training 0.5130 0.5609 0.5595 0.5881 0.6468 0.6671 0.6923 

Testing 0.5138 0.5400 0.5468 0.5655 0.6203 0.6315 0.6582 

DE 
Training 0.5130 0.5610 0.5573 0.5876 0.6465 0.6651 0.6902 

Testing 0.5138 0.5400 0.5462 0.5672 0.6204 0.6301 0.6573 

 

Table 6.5. Values of V for triangular membership functions and m = 2.9 

Optimization Data 
c 

3 5 7 9 11 13 15 

None 
Training 0.4280 0.4044 0.4476 0.5587 0.5834 0.5822 0.6467 

Testing 0.4077 0.3912 0.4312 0.5332 0.5619 0.5429 0.5920 

PSO 
Training 0.5381 0.5146 0.5513 0.6334 0.6449 0.6508 0.7004 

Testing 0.5141 0.5008 0.5299 0.6101 0.6241 0.6142 0.6442 

DE 
Training 0.5369 0.5147 0.5509 0.6329 0.6431 0.6498 0.6988 

Testing 0.5143 0.5006 0.5292 0.6090 0.6231 0.6136 0.6423 

 

Table 6.6. Values of V for parabolic membership functions and m = 1.1 

Optimization Data 
c 

3 5 7 9 11 13 15 

None 
Training 0.5800 0.6094 0.7346 0.8424 0.8585 0.8563 0.9015 

Testing 0.5947 0.6165 0.7334 0.8378 0.8495 0.8482 0.8929 

PSO 
Training 0.7232 0.7541 0.8300 0.8947 0.9037 0.9045 0.9415 

Testing 0.7275 0.7417 0.8103 0.8864 0.8853 0.8913 0.9276 

DE 
Training 0.7200 0.7531 0.8289 0.8938 0.9034 0.9027 0.9404 

Testing 0.7274 0.7418 0.8040 0.8854 0.8856 0.8907 0.9274 

 

Table 6.7. Values of V for parabolic membership functions and m = 2.0 

Optimization Data 
c 

3 5 7 9 11 13 15 

None 
Training 0.4890 0.5596 0.5465 0.5832 0.6386 0.6819 0.6997 

Testing 0.5006 0.5363 0.5417 0.5641 0.6133 0.6523 0.6709 

PSO 
Training 0.6151 0.6652 0.6705 0.7016 0.7549 0.7702 0.7977 

Testing 0.6020 0.6341 0.6495 0.6779 0.7245 0.7337 0.7633 
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DE 
Training 0.6152 0.6650 0.6673 0.6989 0.7542 0.7679 0.7960 

Testing 0.6020 0.6365 0.6521 0.6752 0.7242 0.7332 0.7608 

 

Table 6.8. Values of V for parabolic membership functions and m = 2.9 

Optimization Data 
c 

3 5 7 9 11 13 15 

None 
Training 0.5118 0.5033 0.5443 0.6496 0.6639 0.6671 0.7086 

Testing 0.4941 0.4868 0.5278 0.6250 0.6443 0.6350 0.6703 

PSO 
Training 0.6276 0.6202 0.6524 0.7347 0.7459 0.7506 0.7939 

Testing 0.6026 0.6000 0.6280 0.7069 0.7211 0.7119 0.7465 

DE 
Training 0.6269 0.6201 0.6520 0.7345 0.7440 0.7488 0.7918 

Testing 0.6028 0.6006 0.6287 0.7068 0.7192 0.7127 0.7449 

 

Furthermore, as shown in the tables, the number of clusters and fuzzification 

coefficients significantly impact the overall performance. Not surprising, the more 

number of clusters, the higher values of V index are, so having more clusters, the model 

becomes more capable to capture more details of the data, which happens not only in 

the numeric fuzzy models but also resulting in granular fuzzy models. In addition, when 

the number of cluster is relatively lower (in the range 3-7), the performance of the 

model improves remarkably according to the increasing number of clusters. Whereas, 

when the number of clusters is higher (greater than 9), the enhancement of performance 

with more clusters becomes slight. The fuzzification coefficient has notable influence 

on the membership function Ai used to construct the fuzzy model. Generally, the V 

index is higher when the fuzzification coefficient is small (say 1.1), since error of the 

fuzzy models with m = 1.1 is lower than other two cases. Above all, it seems pertinent 

to notice that the performance of the granular fuzzy model is considerably depends on 

the performance of the established fuzzy model. In addition, it is visible that the 

performance of parabolic membership function model is better than the triangular 

membership function model. Due to the characteristic of the membership functions, for 

the same fuzzy numbers, parabolic membership function usually has higher 

membership grades than triangular fuzzy sets, so the coverage is higher naturally. 

Despite the specificity of parabolic fuzzy sets is relatively lower than the triangular 

fuzzy sets, the advantage of coverage still dominates the overall performance. 
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(a)        (b) 

Figure 6.10. Values of fitness function in successive generations for triangular 

membership c = 15 and ε = 0.5: (a) triangular membership function model, (b) 

parabolic membership function model. 

 

(a)        (b)        (c) 

Figure 6.11. Coverage and specificity for triangular membership function model 

with PSO optimization– Training data: (a) m = 1.1, (b) m = 2.0, (c) m = 2.9. 

 

(a)        (b)        (c) 

Figure 6.12. Coverage and specificity criteria for parabolic membership function 

model with PSO optimization– Training data: (a) m = 1.1, (b) m = 2.0, (c) m = 2.9. 

 

To visualize more results produced by the granular fuzzy model, the coverage and 

specificity indexes obtained for each model after the completion of optimal allocation 

are shown in Figure 6.11 and Figure 6.12. Figure 6.13 and Figure 6.14 display some 

fuzzy sets. The coverage increases while specificity gets lower with the increasing 
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values of the predetermined values of information granularity ε. Furthermore, the 

number of clusters and the fuzzification coefficient exhibits a direct impact on the 

coverage index. The coverage performance is better when the number of clusters is 

higher or fuzzification coefficient is lower, since in these cases, the errors of the 

established numeric fuzzy models becomes relatively smaller. In contrast, the impact 

on specificity index due to the number of clusters or fuzzification coefficient is much 

lower. Therefore, we conclude that predetermined information granularity ε is the most 

important factor affecting the specificity criterion. In addition, comparing the granular 

models in case of two types of membership functions (triangular and parabolic), it is 

worth noting that in the vast majority of the cases, the coverage and specificity implied 

by parabolic fuzzy sets yields better results. This conclusion can be confirmed by 

looking at Figure 6.13 and Figure 6.14. In those figures, we use gradient color to show 

the membership grades. Darker color relates to high value of membership grade. The 

solid diagonal line represents the model outputs are exactly the same as the target 

outputs. For the many of fuzzy set outputs come from parabolic membership function 

models, the color on the diagonal is deeper and the range of the fuzzy sets is shorter, so 

both the coverage and specificity is better. A possible reason behind this is as follows. 

Contrasting the membership grades of triangular and parabolic fuzzy sets for the same 

fuzzy number, the membership grades of parabolic membership function are higher, so 

the parabolic fuzzy sets are more efficient to provide higher coverage at lower 

specificity. 

The values of εij ( εij = εij
- + εij

+) allocated across the variables and rules (clusters) are 

shown as circles in Figure 6.15 and Figure 6.16. The different radii of the circles 

represent different values of εij. The larger the radius, the higher the value of allocated 

information granularity. Generally, information granularity allocation of triangular 

membership function model and parabolic membership function model exhibit a 

similar tendency, and the fuzzification coefficient has significant impact on the 

allocation. When m = 1.1, the information granularity is allocated on almost every 
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variable, whereas, when m = 2.0 and m = 2.9, the information granularity is mostly 

allocated to a single variable, and others assume values close to zero.   

 

(a)        (b)        (c) 

Figure 6.13. Output y for triangular fuzzy sets c = 15 and ε = 0.5 with PSO 

optimization– Training data: (a) m = 1.1, (b) m = 2.0, (c) m = 2.9. 

 

(a)        (b)        (c) 

Figure 6.14. Output y for parabolic fuzzy sets c = 15 and ε = 0.5 with PSO 

optimization– Training data: (a) m = 1.1, (b) m = 2.0, (c) m = 2.9. 

  

(a)        (b)        (c) 

Figure 6.15. Plot of allocated levels of information granularity in case of 

triangular fuzzy sets c = 15 and ε = 0.5 with PSO optimization: (a) m = 1.1, (b) m = 

2.0, (c) m = 2.9. 
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(a)        (b)        (c) 

Figure 6.16. Plots of allocated levels of information granularity in case of 

parabolic fuzzy sets c = 15 and ε = 0.5 with PSO optimization: (a) m = 1.1, (b) m = 

2.0, (c) m = 2.9. 

6.4 Summary 

In this chapter, we developed several granular fuzzy rule-based models by 

constructing varieties of information granules among the different components of fuzzy 

rule-based models. In Chapter 6.1, we have augmented granular fuzzy rule-based 

models by two steps. First, an extended, versatile structure of the rules produced 

thorough the transformation of condition fuzzy sets is built, which leads to carefully 

structured membership functions facilitating the overall mapping realized by the rules. 

The deformation of the original membership functions of the condition part is useful to 

evaluate a nature and a strength of interaction among the rules, which helps enhance the 

performance of the model. Second, for the already constructed rules, the model is 

generalized to its granular version where the transformation matrix is extended to its 

granular (interval-valued) version. In Chapter 6.2, we augmented numeric fuzzy 

models to granular by forming information granules around numeric values of the 

parameters and prototypes of the models. In Chapter 6.3, we have developed the 

conceptual generalization of fuzzy rule-based models in the form of granular fuzzy sets 

and presented a comprehensive design by carrying out an optimal allocation of 

information granularity across the numeric parameters of the conclusion parts of the 

original model.  

The models (and it can be any other models, in general) are evaluated in granular 

concept brings another more general perspective at the comprehensive evaluation of 
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models and enriches a look at system modeling. We showed that the coverage and 

specificity measures serve as the two essential measures quantifying a well-rounded 

way of expressing the quality of the granular model. The characterization of the 

granular model in terms of its coverage-specificity relationships or the global descriptor 

coming in the form of the AUC measure becomes beneficial to a holistic assessment of 

the quality of the rule-based models. These two components are crucial in the 

evaluation of the performance of the granular fuzzy rule-based models. The achieving 

the tradeoff is facilitated by bringing the parameter granular using which one strikes a 

sound compromise between the coverage and specificity requirements. The 

optimization process is guided by the global performance index, which includes the 

coverage and specificity of the obtained granular results. So that the granular output 

could cover target evidence as specifically as possible, which makes the granular output 

of the fuzzy rule-based model of higher practical relevance.  
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Chapter 7  

Granular Output of Fuzzy Rule-Based Modelsg 

Granular input space and internal architecture issues are studied in chapters 5 and 

6, and information granularity is directly allocated around the numeric input variables 

and parameters values. This chapter introduces a more straightforward and concise 

approach that the allocation of information granularity in output space is considered to 

develop. The output space is typically one-dimensional as the common architectures 

involve multi-input single-output models. It is nearly useless to simply allocate the 

information granularity around the only one coordinate of output variable. So, we 

expect a mechanism that can allocate the information granularity according to the 

individual output instance, which is, furthermore, a nonlinear mapping from an 

individual output instance to a granular allocation of output. 

The output of numeric model is made granular by associating information 

granularity to the numeric outputs produced by the original model. The granular output 

space of models plays a vital role because it has several advantages over other two 

categories. The allocation of information granularity to input space is quite related to 

the quality of the model one has started with and the sensitivity of the input variables. 

Thus, if the numeric model has been constructed, the enhancement of the granular 

model would be limited. As to the granular the constructions of models, the 

performance of granular model could be improved by augmentation of parameters and 

constructive elements with the allocation of granularity, however, in many cases, 

allocation of information granularity is quite complicated since the parameters and 

elements are usually represented in multi-dimensions. The curse of dimensionality 

would likely bring the unacceptable computation consumption of the allocation. In 

contrast, the granular output space of models is more straightforward and concise in 

the implementation, because the dimension of the output space is generally low (being 

                                                 
g A version of this chapter has been accepted to published as [134]. 
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one-dimensional), and it is also beneficial to remedy some deficiencies of the numeric 

output.  

For the clarity and conciseness of the presentation, we focus on the realization of 

information granules in the form of intervals, however the underlying conceptual 

framework is equally suitable to cope with other formal realizations of information 

granules (say, fuzzy sets, rough sets). It is worth emphasizing that, even though the 

granular output we produced in this study is in the form of intervals, it is fundamentally 

different from the proposed interval, possibilistic regression algorithms or its related 

works, e.g. in [122]-[127], where the interval outputs are produced by extending the 

data or the parameters of the regression model to the interval format. However, the 

proposed method delivers a totally different perspective by forming a granular output 

space. Furthermore, the conceptual and ensuing algorithmic setting are general in the 

sense that it applies to a variety of categories of models including such commonly 

studied as neural networks, rule-based models, cognitive maps, to name a few 

examples. 

7.1 Granular Output Space and Its Rule-Based Realization 

The underlying idea introduced in this study is to develop a mechanism of 

allocation of information granularity across the output space. The originally 

constructed model, Figure 7.1, is augmented by a functional transformation module, 

which along with the granulation block transforms a numeric output into an 

information granule. The role of the transformation module is to realize a nonlinear 

mapping from the numeric output to the corresponding level of information 

granularity (ε). The function of the granulation block is on a basis of the provided 

level of information granularity to translate the numeric output to the information 

granule. In light of the interval-valued form of information granules, the numeric 

output y is elevated to the form of a certain interval Y distributed around of y and a 

length determined by the level of information granularity ε. The optimization of the 

allocation of information granularity implies some modifications to the transformation 
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module. The module itself is a nonlinear mapping, which can be realized in many 

ways. In this study, we consider its implementation in the form of a fuzzy rule-based 

model.   

 

Figure 7.1. Granular model of granular output space of numeric models 

 

The original numeric model is viewed as a multiple input - single output model M 

such that M(x) = y. We do not make any assumption about the form of the model; it 

could be a neural network, regression model, cognitive map, polynomial function, etc.  

The transformation module generating a level of information granularity is a 

rule-based model, which is described as a collection of single input – two output rules 

in the format 

if y is Ai then information granularity is (i
-, i

+)      (7.1) 

i=1, 2,…, c where i
-, i

+ imply the location of the interval of the output, with the 

values of i
-, i

+ located in the [0,1] interval while Ai is a fuzzy set formed in the output 

space Y. From the perspective of the rule-based architecture, (1) can be viewed as a TS 

fuzzy rule-based model of type-0 (viz. the conclusion part is a constant). From the 

structural point of view, the resulting mapping is piecewise linear of the output space to 

the levels of information granularity. 

Let us look at the above rules governing an allocation of information granularity. 

(i) fuzzy sets of the condition part. Typically, as a sound initial position we consider 

a collection of fuzzy sets of finite supports distributed uniformly across the output 

space. The simplest alternative is a collection of fuzzy sets with triangular membership 

functions and ½ overlap between adjacent fuzzy sets, see Figure 7.2. The range of the 
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output spreads across the extreme values of target output (namely, interval [targetmin, 

targetmax]). The fuzzy sets are uniquely described by their modal values sv1 (= 

targetmin), sv2,…, svc (= targetmax). 

ymin ymax

1

y

Membership

grade

(sv1) sv2 svi svc-1 (svc)… …
 

Figure 7.2. A collection of fuzzy sets defined in the output space 

 

(ii) inference mechanism governing an allocation of information granularity. We 

determine the levels of information granularity (i
-, i

+) for any numeric output y by 

implementing a standard inference mechanism. As Ais form a partition (any two 

adjacent fuzzy sets overlap at ½ level). The allocated information granularity (-, +) 

associated with the given output y is expressed in the following way 

             (7.2) 

            (7.3) 

In view of the form of the membership functions of Ai, both ε- and ε+ are piecewise 

nonlinear mappings of the output. 

The information granulation module transforms the original numeric output y to an 

interval Y in the form, 

         (7.4) 
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where range = targetmax-targetmin. It is apparent that the length of Y is dependent on 

the specific value of y as ε- and ε+ are both functions of y.  

7.2 Optimization of Granular Output Space 

The construction of the optimal granular model through the buildup of the granular 

output space involves two main components: (i) allocation of information granularity 

through optimizing the corresponding rule-based model supporting this allocation 

process, and (ii) formulation of a suitable performance index using which the optimal 

allocation of information granularity is achieved. 

Here we consider three strategies to allocate information granularity across the 

output space of the model (viz the allocation of levels of information granularity to 

each of the c rules). 

(1) no optimization- uniform distribution of information granularity. In this 

strategy, we are not using the fuzzy rule-based model, but allocate the information 

granularity according to the overall level of information granularity ε, namely, 

2


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ii                 (7.5) 

i=1, 2,…c. In this strategy, the specificity of the results is a linearly decreasing 

function of . We have    
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(2) symmetric allocation of information granularity. We assume the level of 

information granularity associated with each rule is symmetric in the following sense, 
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Obviously, in virtue of the constraint imposed on the level of information 

granularity, we have 

  c
c

i
i 

1

                  (7.7) 

We optimize the allocation of information granularity by maximizing the values 

of V with respect to both εi and the modal values of the fuzzy sets forming the 

condition parts of rules, namely a2, a3, …, ac-1. The optimization problem reads as 

follows 

V
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(3) asymmetric allocation of information granularity. Here the information 

granularity (i
-, i

+) allows the intervals to be allocated asymmetrically with respect to 

the original numeric value. Thus, we maximize V with respect to i
-, i

+ and a2, a3, …, 

ac-1 and the overall optimization problem reads as   

V
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To quantify the performance of the granular fuzzy rule-based models, we assess 

coverage to represent the ability of the output information granule to cover the 

experimental data as (2.29). However, to evaluate the specificity, we attempt another 

function of the length of the interval as follows,  
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The maximum operation is used here to prevent the situation when yk
+-yk

- is higher 

than range and this could result in a negative value of the specificity. The overall 

performance of information granules is quantified by (2.37). 

The level of information granularity is a design asset whose proper allocation is 

crucial to the optimization of the granular model meaning. This entails that given 

some level of information granularity ε, ε ∈[0, 1]. We distribute it in such a way that 

the criterion (8) becomes maximize. At the same time, we request that the following 

balance of information granularity becomes satisfied 

  c
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11

           (7.9) 

To evaluate a global characterization of the model, we compute the overall 

performance index as described in (2.39). 

7.3 Experiment Studies 

A single input - single output synthetic data composed of 400 input-output pairs 

are described as follows 

              (7.10) 

where the values of x are uniformly random distributed in the range of [0, 4]. The data is 

split into training set (70%) and testing set (30%).  

Assume that the developed model comes in the form 

             (7.11) 

First, we compare the performance of the granular output allocated by the three 

proposed strategies (symmetrically constant allocation and fuzzy rule-based model 

allocation after optimization), the V values versus the different levels of information 

granularity are plotted in Figure 7.3. Here the control coefficient β is set as 1. With the 
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first allocation strategy, Q raises at the beginning, since the coverage increases with 

the extending level of information granularity. Then, Q declines gradually after the 

coverage reaching the extreme level (in most of cases cov = 1) and specificity values 

keep going down until sp = 0. The improvement coming from the other two strategies 

is quite visible. The values of Q are not only higher but also it increases when the 

predetermined level of information granularity ε is lower, then it maintains at a higher 

level. Thus, we reckon that, with the optimization respecting to the objective function, 

it is helpful to make a tradeoff between the conflicting two criteria (coverage and 

specificity). In addition, not surprisingly, strategy 3 is better than strategy 2, because it 

is more flexible to optimize. The results are also confirmed in Table 7.1. The overall 

performance associated with the third strategy is superior to the performance produced 

by the two other strategies. Furthermore, the number of rules has effect on the output 

performance. No surprisingly, the more number of rules, the fuzzy model is more 

capable to capture the characteristic of the target data, so the overall performance of 

the granular output is better.  

In Figure 7.4 and Figure 7.5, we display the details of coverage and specificity 

corresponding to the level of information granularity. Generally, coverage increases 

and specificity decreases with the increasing value of information granularity (ε). 

Nevertheless, due to the optimization procedures in the strategies 2 and 3, the coverage 

improves faster and the specificity is able to retain at a certain level. Particularly, the 

specificity results of the two strategies are relatively similar, which indicates that the 

optimization regarding to the objective function is conducive to maintain the 

specificity of the granular output. Meanwhile, the symmetric and asymmetric 

allocation strategy have different impact on coverage performance. In strategy 3, the 

coverage can quickly reach 100%, while in strategy 2, the coverage never approaches 

to 100% since it has to make tradeoff with another conflicting criterion (specificity). In 

conclusion, the asymmetric allocation strategy should be the more reasonable option. 
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(a)                (b)              (c) 

Figure 7.3. Plots of the fitness values (Q) vs. the level of information granularity 

(ε): (a) c = 5, (b) c = 10, (c) c = 20. solid lines: training data set, dashed lines: testing 

data set. 

 

Table 7.1. V values of granular models’ outputs 

Data set c = 5 c = 10 c = 20 

Strategy 1 
Training 0.2447 0.2447 0.2447 

Testing 0.2460 0.2460 0.2460 

Strategy 2 
Training 0.4955 0.5290 0.5527 

Testing 0.4857 0.5219 0.5512 

Strategy 3 
Training 0.5581 0.7015 0.7365 

Testing 0.5590 0.6922 0.7289 

 

 

(a)                (b)              (c) 

Figure 7.4. Plots of the Coverage vs. the level of information granularity (ε): (a) c 

= 5, (b) c = 10, (c) c = 20. Solid lines: Training data set, Dashed lines: Testing data 

set. 
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(a)                (b)              (c) 

Figure 7.5. Plots of Specificity vs. the level of information granularity (ε): (a) c = 

5, (b) c = 10, (c) c = 20. Solid lines: Training data set, Dashed lines: Testing data set. 

 

 

(a)                (b)              (c) 

Figure 7.6. Distributions of the optimized fuzzy sets of the fuzzy models (ε = 0.4): 

(a) c = 5, (b) c = 10, (c) c = 20. 

 

 

(a)                (b)              (c) 

Figure 7.7. Distribution of allocated information granularity (ε = 0.4): (a) c = 5, (b) 

c = 10, (c) c = 20. points: corresponding error. 

 

To demonstrate some detail of the allocation of information granularity obtained 

by the third strategy, we report some more results taking that the predetermined level 

of information granularity is 0.4 as an example. In Figure 7.6, we display the 
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distribution of the optimized fuzzy numbers (svi). The change of the distributions after 

optimization is quite visible. Then, in Figure 7.7 we illustrate the distribution of the 

allocated information granularity (-εi
-, εi

+). The dots in the plots are shown the 

corresponding error of the model outputs, which is calculated as (target - y)/range. As 

we can see from the figures, the distribution is related to the error of target output. 

Moreover, the more number of rules, the more elaborated the distribution is. 

 

 

(a)                (b)              (c) 

Figure 7.8. Plots of the performance of the fitness function in successive 

generations (ε = 0.4): (a) c = 5, (b) c = 10, (c) c = 20. 

 

The optimization processes are included in Figure 7.8. It is noticeable that the most 

visible improvement occurs at some initial generations of the method and then beyond 

some certain generations (60 ~ 200) there is no increase in the values of the fitness 

function. To illustrate an overall impression of the granular outputs and numeric 

output, in Figure 7.9 and Figure 7.10, the target output, model output and granular 

outputs are plotted. As it is seen, even though the model output is inaccuracy, the 

granular output covers the most of target output and captures its main characteristic. 

Furthermore, the number of rules of the fuzzy rule-based model for allocation has 

significant effect on the granular output. Generally, the more number of rules, the 

more specific the granular output is.  

In Figure 7.11 and Figure 7.12, we contrast 3 different values of the control 

coefficient β to demonstrate its impact on the output performance. As shown in the 

figures, if β is 0, the fitness function is only focused on coverage criterion, so the 

granular intervals are too extended. If β equals 3, the specificity has too much 
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influence on the overall performance to have excepted coverage performance. By 

contrast, the outcomes are much better when β is set as 0.5 or 1. In conclusion, it is 

reasonable to set the control coefficient β around 1 (probably 1.0±0.5). 

 

 

(a)                (b)              (c) 

Figure 7.9. Plots of target, model and granular output of training data sets (ε = 0.4): 

(a) c = 5, (b) c = 10, (c) c = 20. 

 

(a)                (b)              (c) 

Figure 7.10. Plots of target, model and granular output of testing data sets (ε = 0.4): 

(a) c = 5, (b) c = 10, (c) c = 20. 

 

(a)                (b)              (c) 

Figure 7.11. Plots of target, model and granular output of training data sets (ε = 

0.4, c = 5): (a) β = 0, (b) β = 0.5, (c) β = 3. 
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 (a)                 (b)            (c) 

Figure 7.12. Plots of target, model and granular output of testing data sets (ε = 0.4, 

c = 5): (a) β = 0, (b) β = 0.5, (c) β = 3. 

7.4 Summary 

The study offered the way of designing granular models through the development 

of the granular output space. The development of the model is composed of the two 

essential phases. The first one concerns a formation of the numeric model while in the 

second phase the model becomes endowed with a granular output space. The 

optimization of the space engages information granularity being viewed as the design 

asset whose optimal allocation helps maximize the performance index capturing the 

quality of information granules formed by the model, namely the coverage and the 

specificity factor. In contrast to the formation of the granular parameter space studied 

so far (completed either through allocation of information granularity across 

parameters of the model or the input space), the alternative presented in this study 

comes with competitive results and associates with a lower computing overhead.  
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Chapter 8  

Major contributions, conclusions and Future Studies 

This thesis focuses on the development and evaluation of granular fuzzy 

rule-based models to offer a new and attractive system-modeling methodology at the 

level of information granules. 

8.1 Major contributions 

The methods proposed in this thesis revolve around the main procedures and 

components of a fuzzy rule-based model framework to establish a higher-level granular 

form. The major contributions proposed in this dissertation are summarized as follows, 

(1) We have augmented the granulation-degranulation scheme, which is beneficial 

to reduce the deterioration of the reconstruction results and to enhance the 

performance of the overall granulation-degranulation scheme. The improved 

granulation-degranulation scheme is meaningful for generating better clusters 

(prototypes) for building fuzzy rule-based models.  

(2) We consider the process between the information granules by using logic 

operators. In Granular Computing, there is also a need for aggregating several 

information granules into a single output granule. Therefore, we present a study 

to characterize them by analytical properties. This study is helpful for selecting 

an appropriate logic operator for fuzzy modeling. 

(3) We consider three main functional modules of fuzzy rule-based models to 

develop them to granular forms. First, we focus on the concept of granular input 

space. The direct linkages have been identified between the granular space 

formed in this way and the analysis of the impact of input variables in the 

already developed models. Second, we design granular fuzzy rule-based models 

by granulating several components of processing modules of fuzzy models such 

as the interactive rule matrix, the prototypes and parameters in the condition 

parts of rules, and the parameters of the conclusion parts of rules. Finally, we 
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offer a way to design granular models through the development of granular 

output space. 

8.2 Conclusions 

Overall, the studies discussed in this dissertation show some interesting 

conclusions: 

(1) The experimental studies demonstrate that the resulting granular outputs could 

cover most of target evidences as specifically as possible, which makes the 

granular output of the fuzzy rule-based model more tolerant to error and of 

higher practical relevance. 

(2) We show that the coverage and specificity measures serve as the two essential 

measures —the coverage and specificity— that quantify a well-rounded way of 

expressing the quality of the granular model. The proposed granular fuzzy 

rule-based models are evaluated and analyzed by invoking two criteria guided 

by principle of justifiable information granularity. Basically, the increase in 

specificity comes at the expense of the decreasing values of coverage, which is 

realized as the conflicting nature of the coverage and specificity criteria. The 

characterization of the granular model in terms of its coverage-specificity 

relationships—or the global descriptor coming in the form of the AUC (V) 

measure—becomes beneficial to a holistic assessment of the quality of the 

rule-based models. These two components are crucial in the evaluation of the 

performance of the granular fuzzy rule-based models. 

(3) To optimize the allocation of the information granularity of granular fuzzy 

rule-based models, we usually tested and implemented several scenarios: for 

instance, different number of prototypes (rules) and uniform and non-uniform 

allocation strategies. Generally, the fuzzy rule-based models constructed with 

more rules perform better, as they are better able to capture the data structure. 

The non-uniform strategy often provides better performance because of its 

flexibility in the allocation of information granularity. The complexity of 
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models and allocation strategies is related to both performance and efficiency; 

therefore, we need to have the trade-off in mind for setting the models. 

(4) The optimizations we carried out in the experiments implement PSO, DE and 

their variants, because in most cases the fitness function is nonconvex or not 

deferentially guaranteed. In the experimental studies, these population-based 

search algorithms show robustness, performance, and implementation 

flexibility for the allocation of information granularity. 

8.3 Future Studies 

Several promising directions are worth placing on the research agenda of future 

research. We may highlight three of them by exhibiting some potential and direct 

practical implications: 

(1) In the realm of reconstruction of information granules, First, various 

alternatives of interaction matrices could be considered, especially for highly 

dimensional problems. Second, one could consider this approach as a certain 

way of coping with a non-stationary environment (say, data streams) and in 

this setting, the introduced adjustment mechanisms endow the method with the 

required calibration capabilities. The quality of the clusters produced for some 

initial data in the stream could be improved not by running clustering on a new 

data but rather by adjusting the existing structure in the way discussed above. 

In this sense, the clusters are built in an evolutionary manner rather than in an 

abrupt way when moving from one segment of the data stream to another and 

in this way, retain a desirable property of continuity. 

(2) Engagement of other formalisms of Granular Computing. The principles of 

granular fuzzy models were outlined with the use of intervals or fuzzy sets. 

While this was done for illustrative purposes as being conceptually the simplest 

and computationally feasible, the fundamentals can be used exploited by 

involving other formal settings. 
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(3) Designing of granular models of higher type. Following the design process 

discussed in this study, the numeric parameters of the model are transformed 

(generalized) into information granules of Type-1. To enhance the coverage of 

the data, the granular parameters and constructions can be further generalized to 

build information granules of Type-2 (say, granular intervals generalizing 

intervals with numeric bounds to the intervals whose bounds are information 

granules themselves). 

(4) The concept of granularity can be contrasted with the ideas of granular input, 

parameters, and output space in terms of their performances. Along the same 

line, a combined topology of granular multiple modules can be considered and 

optimized, which comes from a hybrid approach of granular modeling. 

(5) Two criteria are used to evaluate the performance of a granular fuzzy rule-based 

models: coverage and specificity. We are aware of the conflicting nature of 

these two indices, but we concentrated on the construction of the granular fuzzy 

modeling in previous studies and followed a relatively simplified strategy: We 

calculated the AUC of the two indices or multiply them into a global indicator 

for the optimization. The weakness of this process is obvious, so a viable 

alternative is to invoke bi-objective optimization with the intent to establish 

some sound trade-offs in a family of solutions. 
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