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Abstract

Fuzzy rule-based models have been studied for decades and emerged in a diversity of
architectures and design approaches. They play a vital and unique role by forming a
human-centric computing framework. In general, fuzzy rule-based models are regarded as
numeric constructs; as such they are optimized and evaluated at the numeric level.
However, no ideal fuzzy models that fully capture (coincide with) all numeric
experimental data. Information granularity is a perspective to represent and recognize the
abstraction of information as the observation method of humans. In this perspective, the
numeric data can be presented at various levels of resolution or scales. By bringing a
concept of information granularity into fuzzy rule-based models, we give up on obtaining
precise numeric models, whereas we make them into granular form and produce granular
results. Subsequently, the outputs provided by granular fuzzy rule-based models are
aligned well with the experimental data and deliver better insight into credibility.

The fundamental objective of this thesis is to establish a comprehensive, systematic
method for developing granular fuzzy rule-based models, so that the granular outputs of
the models can embrace (cover) the target experimental data as much as possible,
meanwhile the granular outputs are as specific as possible. To accomplish these objectives,
we study several fundamental design issues that emerge in the realm of Granular
Computing. First, we propose an advanced scheme of granulation and degranulation to
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abstract information granules from numeric data. Second, we investigate several
commonly known logic operators that are used in fuzzy modeling and granular fuzzy
modeling. Afterwards, we design a series of development strategies for granular fuzzy
rule-based models by admitting and allocating a certain level of information granularity
around numeric values. Our proposed granular rule-based models could be classified into
three groups: granular input space of the models, granular processing modules of the
models, and granular output space of the models. Unlike the standard
numeric-performance measure of fuzzy models that come in the form of the
root-mean-square error (RMSE), two pertinent performance measures are introduced and
implemented to evaluate the performance of granular fuzzy rule-based models: namely,
coverage and specificity. We develop several protocols of forming and allocating
information granules to cope with different strategies of granular modeling and analyze
how different protocols lead to improve the performance of granular models. Some
commonly used population-based optimization algorithms—for instance, particle-swarm
optimization (PSO) and differential evolution (DE)—are used to optimize the allocation of
information granularity, and coverage and specificity criteria are used to guide the
optimization. A series of experimental studies is reported which offers a comprehensive
overview of the underlying realization and performance of the granular fuzzy rule-based

models.
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Chapter 1

Introduction

Fuzzy set theory has witnessed an impressive growth since its inception when Zadeh
published the first paper on fuzzy sets [1]. Fuzzy theory is an attractive research direction,
as it is the one of the most comprehensible and acceptable of perspectives for describing,
understanding and exploring the world by mimicking the habit of human cognition and
behavior. Commonly, the feelings and words of human beings expressed in the natural
language usually have un-sharp (fuzzy) boundaries. One significant contribution of fuzzy
theory is to provide a principal for describing things on a basis of gradation and pluralism
rather than via binarization [2]. Fuzzy models (usually encountered as fuzzy rule-based
models) are developed originating from fuzzy theory to describe nonlinear systems. They
establish a kind of inference systems that imitates the reasoning methods of humans. They
have been studied for decades and produced many diverse architectures and design
approaches, as for example in [3]-[10]. In the existing diversity of fuzzy models, fuzzy
logic theory plays a vital and unique role by forming a human-centric computing
framework [11].

As time goes on, fuzzy logic theory has evolved into a more advanced perspective:
information granularity, to represent and recognize the abstraction of information as the
observation method of humans. Generally, we used to have two broad approaches to
reasoning: inductive and deductive methods. In induction, we tend to recognize patterns
by grouping them together as information entities according to their internal or external
similarity and then developing them into general conclusions or theories. In deductive
reasoning, we use inductively obtained results to process information which is usually
abstract, fuzzy, concise and imprecise, and we are willing to accept that the reasoning
outcomes are vague if it contains useful information. These forms of abstract information

entities are termed information granules [12]-[16]. In this perspective, the numeric data



can be presented at various levels of resolution or scales, and operated more efficiently.
Thus, in recent literature, researchers are interested in realizing and processing data at an
abstract or extended level rather than crisp form when they handle issues in the fields of
machine learning and data mining [17]-[22].

To use information granules, and to help users understand them, Granular Computing
[23][24][26]-[28] and granular modeling [25][31][32][33][36]-[38] have been growing
quickly as a paradigms of information processing for information granules in the domain of
human-centric systems [28]. In Granular Computing, usually, values, variables, and model
systems are granulated in an abstract way, as the manner of human cognition [29]-[37][39].
Among the existing possible perspectives in Granular Computing, we may regard the
information granules as interval sets, fuzzy sets, rough sets [40], shadowed sets [41],
probabilistic sets, etc. Regardless of how we refer to them, it is a beneficial challenge to set
up and design a comprehensive framework to develop and process information granules
with an appropriate methodology.

Fuzzy rule-based models are presented as a well-structured framework for processing
information granules because of its ability to handle numeric and semantic information in
one system. Furthermore, fuzzy rule-based models are able to represent and exploit the
knowledge acquired from data learning processes or experts’ experiences, and the models
can be interpreted by humans as well. Therefore, we construct granular models based on
fuzzy rule-based models to develop an advanced way to describe complex nonlinear
system. Consequently, granular fuzzy rule-based models underlie the remarkable human
ability to engage in rational reasoning when information is imprecise, uncertain, partially

known and partial true [23].

1.1 Motivation

One of the most common features of fuzzy models is that they produce numeric results

[42], and that the design of the models is carried out at the numeric level guided by a



performance index that is typical for numeric models. However, there are no ideal fuzzy
models that fully capture (coincide with) all numeric experimental data. In other words, we
cannot without any error capture all the inputs that form the output data by the outputs of
the model [43]. This is due to the error that comes from almost everywhere in such a model:
e.g., the deficiencies of the model’s design and the inaccurate parameters of the model.
Even the inputs of the model are possibly unreliable (due to measurement error). Thus,
error and noise in numeric values are almost inevitable when we develop and use a numeric
model. Even more advanced fuzzy models such as those that exploit Type-2 or
interval-valued fuzzy sets are susceptible to (encounter) the same error. Moreover, to a
certain extent, there is no expectation that minute variations in models could have a
significant influence on resulting outputs. Do we indeed care about the difference between
the outside temperature is 24 °C and 26 °C? An over-emphasized numeric facet of
processing is somewhat counter-intuitive and does not lie in the spirit of any fuzzy
processing and system modeling. In general, excessive design effort is wasted, as the
model is assessed as a purely numeric construct in the end.

With Granular Computing, we give up obtaining precise numeric models and focus
instead on making the models to granular forms, which produce granular outputs capturing
target or crucial information of the experimental data. This study presents our efforts
toward the granulation of data and fuzzy rule-based models. The fuzzy rule-based models
are made granular by admitting and allocating granular parameters at a certain level of
granularity so that the granular output of the model can embrace (cover) the target data as
much as possible and are as specific as possible [44]-[50]. The resulting granular fuzzy
models offer higher tolerance to data noise and modeling errors, and help to produce results
that are of practical relevance. The main characteristic of granular fuzzy modeling is the
veracious, interpretable, and semantically-oriented transparency of the developed

constructs [51][52].



It is obvious that the performance index used to evaluate the granular fuzzy model
should not manifest as numeric constructs such as the RMSE or the like because it involves
information granularity. Therefore, we turn to two pertinent performance indexes that
information granules are guided to form—namely, coverage and specificity criteria—to
evaluate and analyze the performance and guide the optimization of the granular fuzzy

model.

1.2  Objective and originality

As illustrated in Figure 1.1, the fundamental objective of this study is to establish a
comprehensive, systematic method with which to handle the information granules obtained
from data based on the fuzzy rule-based model framework. First, we design the granulation
and degranulation scheme transforming information granularity from/to numeric data sets,
and its augmented approach. Second, we investigate several commonly known logic
operators that are used in fuzzy modeling and granular fuzzy modeling. Afterwards, we
design a series of new development strategies for granular fuzzy rule-based models by
admitting and allocating a certain level of information granularity around numeric values.
As a general architecture of fuzzy models can be highlighted three main functional
modules, that is: input interface, processing module and output interface, our proposed
granular fuzzy rule-based models could be classified into three groups: granular input
space of the models, granular processing modules of the models, and granular output space
of the models. The performance of granular fuzzy rule-based models is evaluated by two
pertinent criteria coverage and specificity. From a methodological point of view, one can
stress that granular modeling delivers a successive layer of system modeling. The approach
advocated here builds upon an already constructed numeric model and makes it better
aligned with the system under consideration by involving the concept of information

granules.
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Figure 1.1. A general roadmap of the research

The originality of the research in this thesis is mainly as follows.

(1) We develop a novel augmented mechanism of data reconstruction to reduce the
deterioration of a granulation-degranulation scheme, which is of benefit for the
transformation of numeric data and information granules.

(2) We design mechanisms of allocation of information granularity across the
components of the fuzzy rule-based model in several new strategies which serve as sound
vehicles for improving the performance of the model being sought at the higher level of
abstraction of information granules.

(3) We provide comprehensive criteria to assess and analyze the performance of the
granular fuzzy rule-based models to cope with different strategies.

Overall, the proposed study realizes a new original framework that emphasizes the
nature of a granular fuzzy model being regarded as an enhancement of the original fuzzy

model in an advanced perspective.



1.3 Organization

The thesis is structured into the following chapters:

To make the study self-contained and easy to follow, Chapter 2 covers some useful
background ideas involved in this study, including fuzzy clustering, fuzzy rule-based
modeling, statistical analysis, evaluation criteria of information granules, and
population-based optimization methods.

Chapter 3 proposes an augmentation mechanism for the generic data reconstruction
approach by introducing transformation mapping of the originally produced partition
matrix and by setting up an adjustment mechanism modifying a localization of the
prototypes to enhance the quality of reconstruction.

Chapter 4 poses a question whether two t-norms produce distinct results. The problem
is formally expressed as a certain kind of hypothesis testing in which a null hypothesis
concerns the equality of medians of membership grades produced by two triangular norms.
In the sequel, we introduce a concept of granular t-norms and discuss an idea of the
granular equivalence of logic operators. This study is an indispensable reference for
selecting logic operators for fuzzy modeling and granular modeling.

Chapter 5 introduces a concept of a granular input space in fuzzy rule-based modeling
and develops an algorithmic framework that supports an optimization of the specificity of
the model exposed to granular inputs data. For illustrative purposes, the study is focused on
information granules that are formalized in terms of intervals. However, the proposed
approach is equally relevant for other formalisms of information granules.

Chapter 6 discusses the concepts and developments of granular fuzzy rule-based
models in the processing module of Takagi-Sugeno fuzzy rule-based models. We present
augmentation for fuzzy models by forming information granules around the numeric
values of the parameters and constructions of the models, and show how different
protocols of allocating information granules lead to improve the performance of granular

models.



Chapter 7 proposes a method of granular output space and develops an optimization
process for the allocation of information granularity across this space. We endow the
output space with a mechanism for the optimal allocation of information granularity, which
is to say that the numeric results formed by the original model are augmented by
interval-information granules whose level of information granularity is determined by the
developed mechanism.

Chapter 8 draws the main conclusions of this thesis and lists several promising

directions for future research.



Chapter 2

Background

This chapter briefly covers some useful prerequisites that make this study

self-contained and easy to follow.

2.1 Fuzzy Clustering

Data clustering is a process of grouping data instances from original data sets into a
number of clusters, so that the features depending on the nature of the data are as similar as
possible. In granular computing, clustering is one of the approaches most commonly used
to generate information granules. For instance, depending upon the nature of the
underlying clustering algorithm, the information granules produced arise as sets, fuzzy sets
or rough sets. In fuzzy clustering, the distinctions of each datum are measured in the terms
of the membership grades. In particular, fuzzy C-means (FCM) [53] along with its
numerous extensions [54]-[60], is one variety of the clustering method most frequently
used in the formation of information granules.

The generic version of the FCM algorithm minimizes the following objective function

OF coming in the following form
c N m 2
OFZZZuikllzk _”i” 2.1)
i=lk=1

where z is the data to be clustered containing N data instances, c is a predetermined number
of clusters, uix € [0, 1] is the elements of partition matrix and 2::1 u, =1, mis a

fuzzification coefficient that is usually greater than 1, r; is prototypes obtained by

clustering, and ||.|| 1s denoted the weighted Euclidean distance expressed as
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where oj is a standard deviation of the j-th variable of the multivariable data. Obviously,
the choice of the distance function impacts the geometry of the clusters and this entails

modeling capabilities supported by the ensuing rule-based models.
The objective function OF is minimized iteratively by updated the prototypes and the
partition matrix successively. In each iteration, the entries of r; and the k-th data instance is
represented in terms of the membership grades in the partition matrix. The prototypes and

each element in the partition matrix are calculated as follows, respectively,

N m
DU Ty
S B 2.3)
2
k=1
1
Uy = D) (2.4)
& ls=r)
Hs )

The results of clustering of the data partitioned into ¢ clusters come in the form of the
partition matrix U=[ui],i=1, 2,...,c; k=1, 2,.., N and a collection of prototypes r1, r2, ...,
Fe.

As to the input-output pairs of data (x, yx), k=1, 2,..., N are concatenated data zx = [xx
vi]. The FCM clustering is completed in this data space. Thus, the prototypes r; produced
by the FCM are expressed as r;=[v; wi], where v; and w; are the prototypes positioned in the

input and output spaces, respectively.



2.2 Fuzzy Rule-based Model Systems

The fuzzy rule-based modeling is an approach to using fuzzy logic to describe and
handle complex nonlinear relationships by formulating if-then rules that are overlapped
through input and output space and contain extractions of knowledge in the following

form;

If antecedent proposition then consequent proposition (2.5)

A fuzzy rule-based model system is a collection of rules with a certain model structure.
In particular, Takagi-Sugeno (TS) [3] and Mamdani [4] fuzzy rule-based structures have
become much renowned over the years. In the Mamdani structure, both the antecedent and
consequent are linguistic; in TS models, on the other hand, the antecedent of the model is
described by linguistic expressions and the consequents are numeric. This study
concentrates on a fuzzy TS, multi-input, single-output (MISO) system. The rationale
behind this choice is as follows: a TS fuzzy rule-based model can be regarded as a
combination of linguistic and mathematical function modeling, and the output of such a
model is crisp and valid. Therefore, TS fuzzy models are commonly encountered in fuzzy
modeling and come with a great deal of well-established design practices (quite commonly
engaging techniques of evolutionary optimization) and applications, thereby
demonstrating their usefulness and relevance. For example, see [61]-[65].

The generic TS fuzzy model yields an aggregation of a collection of fuzzy rules, which

are expressed as,

Thei-thrule: If x; is 4 and...x, is 4;, then vi=f(x,.0x,) (2.6)
%/—/
condition part conclusion part

where i = 1, 2,..., ¢, and c is the number of rules, x is a n-dimensional input variable. 4 is

the membership function (fuzzy sets) respecting to the input variable. The membership

10



functions can be estimated relying on expert experience or by admitting a data driven
approach. In the second alternative, clustering algorithm plays an important role to
generate clusters (prototypes) and determine the rule structure of the model [66]-[68]. In
the conclusion part, y; is the output of the i-th rule described by some local function fi(x),
which is typically regarded as a linear function or simply as some constant values.

When arranging all the rules together involving their condition parts, the output of the

model is aggregated by taking the weighted average of the output of each rule.

ZAi(x)fi(x)
y= tzlc— 2.7)
ZAi(x)

i=1

If we consider implementing FCM clustering to form the membership function (fuzzy
set), it holds that Y7 4, (x)= 1. The output of the fuzzy models can be rewritten in the

following expression,
=2 A4(x)fi(x) 28)
i=1

In the original TS fuzzy model, fi(x) in the conclusion parts of the rules is adopted as

a linear function as follows,
Ji (X, %y,.,X,) = po + P1X| + PyXy +...F DX, (2.9)

In some cases, for the sake of simplification, p1, p2, ..., p» can be defined as zeros, so
that the function is simplified as a constant value. The parameters vector p in the linear
function is identified by using the Least square estimation approach as calculated as

follows.
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p=x"x" 3 (2.10)

Another alternative of fuzzy modeling approach is involving the prototypes obtained
from clustering to the local function. Namely, fi(x) stands for a local linear function

interpreted as a hyperplane governed by the following expression,
f(x)=w,+a] (x-v,) 2.11)

where v; is a cluster (prototype) capturing the location of the rule in the input space R”

and w; is the corresponding value in the output space, then
p=2 A +a] (x-v) (2.12)
i=1

Let us introduce some auxiliary notation as shown below,

¥ =4(x)(x-v,) (2.13)

0=3 A(xX)w, (2.14)

i=1

Then the above model is concisely described in the form
y=0+3a¥ (2.15)
i=1

We introduce the following concise notation,

P=[n-6.39,-0,,..yy-64] (2.16)

12



In the sequel, the parameters of the model are arranged into the cn-dimensional vector

T
a=[a,, A,y ..., A, Ay,yyy wey Qypy ey Appy Ayyy ooy Ay (2.17)

s Uy

Furthermore, the data are structured in the matrix format

51/11 5”12 l‘”lc
~ 14 14 4
25 (2.18)
5UN1 5UNl SUNc
Then
N c T 2 ~ \T ~
MSE:ICZ(yk_@k_Zai Tkij :(IN’_W“) (ﬁ—‘l’a) (2.19)
=1 i=1

Minimizing (2.19), we estimate the parameters a by the Least square estimation as,
R
a,, =\V'¥) ¥ p (2.20)

Statistical Analysis

Statistical comparison is used in these studies to determine if the difference between

two methods is statistically significant. We involve two methods here: One is a t-test [69];

the other is a non-parametric Mann-Whitney-Wilcoxon test [70]. The #-test is a commonly

used approach and is relatively easy to understand and perform. However, it is not suitable

for all comparisons. For instance, if the data for either test is not normally distributed, then

a different test should be employed: e.g., the Mann-Whitney-Wilcoxon test.

The t-test is used to verify that if the means of two sequences of methods is

13



essentially different from one another [71]. We assume the two considered sequences xi,
X2, ..., xy1 and y1, y2, ..., yn1 are normally distributed, and the standard deviation of the
two sequences Ax and Ay are the same too. The #-values is calculated as following

formula,

{= x_y \/NINZ(N1+N2_2) (221)
\/(N1 —1)Ax* + (N, —1)4y? N+ N,
where X,y are the mean of the two sequences, respectively.
The null hypothesis Ho is formulated as follows
Ho: the mean of the two sequences are equal (2.22)

For a given confidence level a and y = Ni+ N>-1, we compare the z-values with the

value 74, in ¢-test table. If the following condition satisfies,
1>z, (2.23)

We reject the hypothesis and conclude that the means of the two sequences are
different, and we can also say that in this case there is a statistically significant difference
between the sequences.

The nonparametric Mann—Whitney-Wilcoxon test is more efficient on non-normal
distributions than the #-test, and is nearly as efficient as the #-test for normal distributions

[72]. The null hypothesis Ho is formulated as follows
Hy: the medians of the two sequences are equal (2.24)

We first determine the mean Ey and variance varo of the sum of the ranks /" assigned to

the first group of samples. They are calculated as follows,
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EO :NY(NI_;N2+1) (225)

where Ns = min(N1, N2) and Ni, N are the number of two samples.

var, = NINZ(N112+N2 +1) (2.26)

NN, le(tiej -1 iej(tiej +1)
N +N,+1-
R (N1+N2)(N1+N2_1)

vary =

(2.27)

(2.27) is used for large-sample approximation (the number of instance is larger than
20), where g denotes the number of tied groups and fie; is the size of tied group j. The
term tie is used in connection with rank order, when some values we test are the same,
they are put together as a tied group. Tied observation is helpful for making the test

results more exact for large-sample. The statistic of interest reads as follows

« I'—E

" T

S

(2.28)

I"" has an asymptotic normal distribution, N (0, 1). If | I i >z,,,, we reject the

hypothesis at the o (usually o = 0.05) level of significance and the conclusion is: “The two

sequences are significantly different”. Otherwise, we do not reject the hypothesis.

2.4 Evaluation Criteria of Information Granules

Commonly, the design of fuzzy models is guided by a numeric-driven performance
index (e.g. RMSE or mean-squared error, MSE). This means that, in spite of using fuzzy
sets as integral architectural components, fuzzy model outputs are deemed numeric and

their performance is evaluated on the basis of this numeric manifestation of the fuzzy
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model. As mentioned in the introduction, the information granules are constructed in
various formalisms: intervals, fuzzy sets, rough sets, etc. For example, the granule
generated in a Mamdani fuzzy model is represented in a fuzzy-sets form. The numeric
performance of fuzzy models implies that they are legitimately compared with other
numeric models, such as neural networks, and that in such cases they may exhibit lower
quality. These methodological considerations concerning the evaluation of performance do
not seem to have full justification.

To evaluate the various granules, a principle of justifiable information granularity is
introduced in [44]. The term “justifiable” pertains to two requirements: (i) highly
accumulated numeric experimental evidence contains in the granules, and (ii) specific
enough to define an articulated semantics (meaning) of the granules. Guided by the
principle of justifiable, two criteria are frequently encountered in literatures to assess the

performance of the information granularity [45]-[48], namely coverage and specificity.

2.4.1 Coverage criterion

A fundamental criterion used to assess the performance of the granular model
concerns coverage. In essence, coverage expresses an extent to which information
granule produced by the granular model Y; “covers” target output yx, viz. the
experimental datum is represented by the result produced by the model. Considering a

collection of data, the overall coverage is expressed as the following sum

N
cov = %Zincl(yk, Y,) (2.29)

k=1

Evidently, the higher the coverage, the better the model with respect of its modeling
capabilities. The inclusion predicate (incl) has to be specified depending upon the formal

way in which information granule Yx has been formalized.
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If Yx comes in the form of a certain interval, the inclusion predicate is expressed as

follows,

. 1 y ey,
nely )=y 230

In a nutshell, by using the above performance measure one counts the number of
instances of inclusion of data y; in the granular output of the model and returns average
value computed over all data. In an ideal situation, cove returns 1, viz. all data are “covered”
by the granular output.

In case of Y being fuzzy sets, the inclusion operation returns a membership value of yx
in Yi, namely Yx(vk). Assume the fuzzy sets are described by fuzzy numbers [Ix", vk, ux ],
and the membership function is expressed by left- and right- hand bounded function f; and

g as shown in Figure 2.1.

>
Te y? ik Y

Figure 2.1. Examples of membership functions.

In virtue of the existing membership function Y, the coverage is computed as the

membership grade of the outcome fuzzy sets.

S il <y <y
incl(yk,Yk): g () 1 ye <y <uyy (2.31)
0 otherwise
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2.4.2 Specificity criterion

The coverage plays an important role, however one has to take into consideration the
quality of the granular output. It is expressed in the form of information specificity. This
measure evaluates how specific (detailed) a certain information granule Yy is. In general, by
specificity of Yi, sp(Yx) we view a functional defined over Y; satisfying the condition of
monotonicity: if Yx € Yi" then sp(Yx) = sp(Yi’), and the boundary condition sp({y}) = 1.

When considering an interval form of Yi, the shorter the interval, the higher its
specificity becomes. In a limit case, once Y reduces to a single point, the specificity attains
its maximal value of 1. For example, one among possible alternatives using which the

specificity can be expressed comes in the following form
1 & . _
sp=-> ey~ (2.32)
k=1

Obviously, instead of the exponential function used above, one could consider any
continuous decreasing function of the length of the interval.

When Y; is encountered as fuzzy sets, the calculations specificity of Yi involves
evaluating the size of the fuzzy sets, namely the area under the membership function curves.
Intuitively it relates to the “size” of the fuzzy set. If the fuzzy set is a single-element entity,
its specificity attains 1. The larger the size, the lower the specificity. The calculations
specificity of the fuzzy set Vi involves the left- and right- hand side parts of the
membership function (fi(x) and gi(x)) with applying a series of its a-cuts to evaluate the

size of the output fuzzy sets,

sp :1_.1[(yk_fk_l(a))—i'(gl:](a)_yk)da:1_.1[gl;1(a)_ k_l(a)da (2.33)
g 0 range 0 range ’
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where range is computed the range of target outputs, as ymax — ymin. In fact, the part of
1
expression in the integral formula [ g (@)~ f(a)da is calculated the area under the
0
left- and right- hand side membership functions.
The performance of the information granularity and granular model in this research is
assessed by considering the criteria of coverage and specificity.
It is worth stressing that these two values depend upon the predetermined level of
information granularity e. To form a measure being independent from this level and
produce a global characterization, we form evaluation indicator for various values of e.

This fact could be stressed by using the alternative notation cov(¢) and sp(é&).

2.4.3 The overall performance indicator

The performance of the granular model is assessed by considering the criteria of
coverage and specificity. We strive to simultaneously maximize the coverage and the
specificity. Apparently, these two measures are in conflict. Higher coverage values imply
lower specificity values.

For different situations and concerns, the indicator can be considered as coverage,
specificity, or both coverage and specificity criterions. In coverage coordinate, specificity
coordinates or coverage-specificity coordinates, we form indicator for various values of ¢,

respectively,

O =cov(¢) (2.34)
O=sp(e) (2.35)
O = cov(e)sp(g) (2.36)

For some given ¢, the optimization of (2.34)-(2.36) results in an optimal allocation of

information granularity.
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When the objective is to maximize (2.36) through an allocation of information
granularity ¢ (design asset), viz. by designing (optimizing) the transformation module,
coverage, specificity and Q are related to the allocation of information granularity e,
which is illustrated as Figure 2.2. The plots display the general characteristics of the
components of the objective function. It is also noticeable that the coverage and

specificity are in conflict and have to be compromised.

A
1 =
N -
AN —
N ~
N e -——=" cov
AN e — ==
P4 — 0
N
/ N
/ B
/ N N
/ J N
/
0 & 1

Figure 2.2. Example relationship between coverage, specificity, /" and the allocation

of information granularity e.

In some cases, (2.36) is considered as following form,

0= cov(g)(sp(g))ﬂ (2.37)

where £ assuming non-negative numbers is an additional coefficient (weight) that controls
the impact of specificity criterion on the objective values. Higher value of  underlines the
more significance of specificity. For instance, if § = 0, the fitness function is only focused
on coverage criterion. If 0 < < 1, the coverage has more effect on the fitness values than
specificity. If f = 1, the coverage and specificity have the same importance. If f > 1, the
fitness function has more influenced by specificity.

The optimization criterion (2.36) can also be modified by focusing on one criterion and

requesting that another one satisfies some constraint. For instance, we may optimize
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coverage and the same time requesting that the specificity does not go beyond some

threshold y, which leads to the problem in the form
Maximize allocation of information granularity COV(S) SUbjeCt to Sp(g) >y (23 8)

where the maximization is expressed in a general fashion (the details will be discussed later

in one of the subsequent sections).

* s A sp A

™ —

£ H.S‘r

> N

Lagll L
1 cov 1 cov 1 cov

cov(E)*sp(e)
Figure 2.3 Performance of the granular model expressed in the coverage —specificity
coordinates: (a) monotonically decreasing values of specificity with the increase of
coverage, (b) significant drop in the specificity with some limited increase in coverage at

&= g, (c) granular model characterized by low AUC value

To develop a global measure of performance being independent from this level and
produce a global characterization of the model, the characteristics of the obtained granular
model can be displayed in the coverage and specificity coordinates. In the
coverage-specificity coordinates we form evaluation for the model for various values of €
and subsequently estimation of an area under the curve (AUC). They deliver a
comprehensive insight into the performance of the model and their dependence upon the
changes in the values of & Several plots, see Figure 2.3, are displayed showing various
ways in which increasing values of ¢ impact the coverage and specificity. For ¢ = 0, the
specificity is 1 while the coverage is practically equal to 0. With the increase of &, the

coverage increases but we pay a price of specificity reduction as the values of this measure
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are reduced. There could be segments of the curve where coverage still increases not
impacting the specificity in a significant measure.
Higher values of AUC indicate that for some values of &, the granular model “covers”

more data yet producing results of higher specificity implying a high quality of the model
V=3 0) (2:39)
M7 '

where M is the number of values assumed by ¢. In general, if an infinite number of the
levels of information granularity is sought, the above expression is replaced by an integral

over & namely

V= }Q(g)dg (2.40)

0

Refer to Figure 2.3 in which the performance of the granular model (expressed in the
AUC value) in Figure 2.3 (c) is far lower than the one in Figure 2.3 (b).

Although the result — a granular fuzzy model, may, on surface, exhibit some close
resemblance with type-2 fuzzy models present quite commonly in the literature, there are
two important differences. First, the design promoted here exhibits two well-delineated
phases whereas type-2 fuzzy models are built in a single-step process, which inevitably
engages a huge search space (and what implies a huge computing overhead and eventual
inefficiency). Second, what is even more important, the evaluation of such models is
carried out in a “traditional” manner and this entails the use of the mechanisms of order
reduction and a conversion (decoding) of the result into a numeric outcome so that the
standard RMSE (or any other number-oriented performance index) can be used. In other
words, while the enhanced flexibility has been brought to the picture by type-2 fuzzy sets,
their potential in system modeling has not been taken advantage of. Type-2 fuzzy model is

constructed by being built by the numerically navigated optimization criterion (which

22



involves a numeric manifestation of the model). In contrast, the granular fuzzy model is
constructed through the guidance offered by the two measures of performance discussed en

block, namely coverage and specificity.

2.5 Optimization Methods

The optimization of the granular data and fuzzy model is embarked on the allocation of
information granularities regarding to the data or the architecture of the fuzzy model.
Generally, the two performance indexes, coverage and specificity, are conflicting, besides,
in most cases, the fitness function is nonconvex or not deferential guaranteed. In light of
this, some population-based optimization algorithms are resorted, such as the particle
swarm optimization (PSO) [73], Differential Evolution (DE) [74] to allocate the

information granularities.

2.5.1 PSO algorithm

PSO algorithm is a well-known swarm intelligence algorithm commonly used because
of its simplicity and effectiveness for solving complex problem. Each individual in PSO
searches the solution space on a basis of its own experience and a collective experience
collected so far by the entire swarm. The formulas governing the PSO search concern the
position and velocity of the particle, namely pos; and vel;. The velocity and position of the

ith particle are updated at each generation during the optimization process,

pos; = pos, +vel, (2.41)

vel, = A-vel, + & -rand, ®(q,,, — pos;)+ &, -rand, ® (g, — pos;) (2.42)

where i stands for in index of the individual particle, and 4 is an inertia weight. gpes is the
personal best solution found by the ith particle so far, and gpes is the global best solution

obtained so far by the entire swarm. £ and & are two acceleration coefficients while rand,
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and rand, are vectors of random numbers coming from the uniform distribution over [0, 1].

The symbol + indicates that the vectors are multiplied coordinate-wise.

2.5.2 DE algorithm

DE algorithm is another popular population-based evolutionary optimization method.
The population evolves towards to an optimum solution through a series of evolution
operations, such as mutation, crossover, and selection. At the beginning, the population
pop is initialized randomly. Then, in each generation, a mutant vector mv is generated as

follows:
my, = pop,, +F, ~(popq72 —popq3) (2.43)

where ¢1, g2, and g3 € {1, 2, ..., NP} are random exclusive integer indexes, NP is the
population size and F is the scaling factors positioned in the (0, 2] interval and treated as
control parameters. The crossover operation is used to produce a trial vector (denote by #v)

by mixing mv and po,

(2.44)

Ji

. {mvﬂ. if rand[0,1)<CRor j=j _

po,, otherwise

where rand[0, 1) stands for a random number coming from the uniform distribution within
the range [0, 1) and CR (0<CR<1) is crossover rate, which controls how many components
of #v are inherited from mv. j.unq 1s an integer index that is selected randomly from the
uniform distribution spread over the range [1, D], which guarantees that at least one
component of #v is inherited from mv.

For each variable j in the i-th individual, if the trial vector #v;; is located beyond the
boundaries of the search space [pomin, pomax], the correction operation is triggered as shown

below,
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tv.. =

Ji

0in i +P0,;)/2 v, <po. .
{(p mn, ; p J ) J p ] (245)

(pomax,j +p0j,[)/2 if V> POy

Once all the trial vectors have been modified, a selection process determines the

survivors for the next generation,

(2.46)

B { v, if Q(tv,)<0(po,)
po; =

po, otherwise
where Q is the fitness function of the optimization.

2.6 Summary

This chapter covers the main approaches and algorithms that are essential to the
design of the granular, fuzzy rule-based models in this thesis. Overall, the fuzzy
clustering algorithm (in particular, FCM) is used to form numeric, fuzzy rule-based
models. The statistical-analysis methods are used to compare the performance of numeric
results, and coverage and specificity criteria are introduced to evaluate and optimize the
granular fuzzy rule-based models. Some population-based optimization methods (PSO

and DE) are implemented to search for the optimal allocation of information granularity.
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Chapter 3

Granulation and Degranulation®

Information granules are examples of abstract entities delivering a concise and efficient
characterization of numeric data at a higher level of abstraction [75][76]. Fuzzy clustering
provides a way to describe an imprecise allocation of data to the clusters (by making them
granular) and captured by membership functions and generate information granules. In
particular, as a fuzzy clustering method based on objective function, FCM becomes a
visible technique predominantly because of its simplicity and efficiency [77]. Thus, FCM
along with its numerous extensions are a clustering method frequently used in the
formation of information granules [66][78]-[80]. In general, clustering realizes
information granulation, viz. encoding scheme [81]-[83] by representing any numeric
datum in terms of the already constructed information granules. In the FCM algorithm, the
structure in the data set is expressed in terms of prototypes (clusters) and partition matrices.
Subsequently, data are encoded to information granules with the aid of constructed
prototypes and partitions.

The fuzzy clustering techniques are basically focused on the abstraction of the original
data. In other words, numeric data is represented by information granules (linguistic data)
and described by prototypes and partition matrices. We are also interested in the
reconstruction of numeric results on a basis of already constructed information granules.
This could be considered as an inverse problem of generic clustering or granulation. In the
sequel, the reconstruction of information granules, usually referring to as degranulation or
decoding process, returns a numeric result. The concept of granulation-degranulation plays
a visible role in Granular Computing, just as fuzzification-defuzzification in fuzzy control

systems, and analog-to-digital (A/D) as well as digital-to-analog (D/A) conversion in

& A version of this chapter has been published as [128].
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digital signal processing [81][83]. In the granulation-degranulation scheme, this leads to
some unavoidable deterioration of original data. Practically, the degranulation
(reconstruction) is frequently noted in the literature when assessing the performance of
clustering by assessing the degranulation deterioration criterion, such as [82][84][85].
Simply put, the lower the degranulation error is, the better performance of the clustering is.
In these studies, the reconstruction error depends on the granulation scheme and its
parameters. In the context of the FCM method, these parameters involve the number of
clusters (information granules) and the value of the fuzzification coefficient. In [81] an
impact of these two parameters of granulation procedure on the reconstruction error has
been thoroughly investigated and quantified. Thus, the degranulation error is used to
determine the optimal values of the number of clusters and fuzzification coefficients for
fuzzy clustering. Being cognizant of the centrality of the granulation-degranulation
schemes, it is of interest to study further enhancements of the existing schemes by
augmenting the degranulation procedure with intent to minimize the associated
reconstruction (degranulation) error.

The main objective of this study is to develop an augmented mechanism of data
reconstruction to enhance the performance of granulation-degranulation scheme, namely
to reduce the deterioration of the reconstruction results. Here, unlike the other methods
only aimed at finding the optimal clustering parameters (viz. the number of clusters and the
fuzzification coefficient), there are two more ways proposed to reduce the reconstruction
losses. First, we introduce a linear transformation of the originally FCM-produced partition
matrix to carefully capture high-level associations among the data being clustered. Second,
we develop an adjustment mechanism of the prototypes. The merit of the augmented
clustering mechanism is to discover more suitable information granules, since both the
partition matrix and prototypes are modified. An overall development environment is

implemented with the use of population-based optimization.
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3.1 Granulation and Degranulation Scheme

Granulation

With the FCM algorithm, the data set is structured and expressed in terms of prototypes
and partition matrices. Subsequently, data are granulated or encoded to information
granules with the aid of the prototypes and partitions. The granulation of data zi results in
their representation in terms of the membership grades contained in the k-th column of the
partition matrix. Each column is a result of the granulation of the corresponding instance of
the data, which means a numeric datum zx is represented in terms of an information granule
uy, as described in (2.4).

Degranulation

In the degranulation process, we transform the internal representation of zx described in
terms of information granules into a numeric counterpart (we say that it has been
degranulated). The degranulation is realized on a basis of the prototypes and the -th

column of the partition matrix U [81],

DUt

A (3.1
)y
i=1

m
U

In this expression, each prototype is weighted by the activation level (membership
degree) of the corresponding information granules. In virtue of the underlying processing
described above the degranulation mechanism relies on the membership grades and the

prototypes, see Figure 3.1.
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Figure 3.1. General granulation-degranulation scheme

The reconstruction error is quantified in terms of the following performance index

2 (3.2)

PI 1%” Z
_Nk=1zk Tk

with the distance ||.|| computed in the same way as in (2.2).

The values of PI are impacted by the number of clusters ¢ and the fuzzification
coefficient m. In general, the reconstruction error is a decreasing function of the number of
clusters. This is intuitively convincing. The dependence of P/ upon the values of m is not
obvious and, in general, becomes data dependent. It has been shown that usually P/
regarded as a function of m shows a certain minimum and quite often the optimal value of

m is different from the value of 2, which is commonly encountered in the literature.

3.2 An Augmented Granulation and Degranulation Scheme

It is evident that the forming and quantizing of the information granularity within the
granulation-degranulation scheme leads to some deterioration of the original data. In the
context of granulation and degranulation scheme, the error V' depends on two parameters: a
number of clusters (information granules) and the fuzzification coefficient, which has been
thoroughly investigated and quantified in. Here, we develop an augmented mechanism of

reconstruction to enhance the performance of granulation-degranulation scheme in two
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ways by introducing an interactive (interaction) linkage matrix and a mechanism of

modification of the FCM-based prototypes as illustrated in Figure 3.2.
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Granulation
r,r,ccc,re 7‘1,17'2,'",}76-

\Gz

Figure 3.2. Granulation and degranulation: an augmented structure

The objective of the interaction matrix is to modify the partition matrix and allow for an
interaction at the level of information granules so that the reconstruction error can be
minimized. Prototypes produced by the FCM are in some sense (weighted) averages of the
groups of data clustered and as such are obviously not capable of representing the data that
are distantly positioned from these prototypes. Possible modifications of the prototypes are
considered to increase their dispersion in the data space.

In general, such interaction can be captured in the form of a certain mapping that
transforms original information granules, say u;, to new information granules
incorporating the linkages (associations) among u;s. Those linkages are realized in the
form of a ¢ by ¢ dimensional interaction matrix Wj. Thus, the transformation of the

partition matrix is carried out in the form

C
Uy = ZWZjujk i=12,..c (3.3)
j=l
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A result comes as a matrix U , which consists of fuzzy sets #, whose membership

functions are located at the successive rows of the partition matrix. In other words, #, is

expressed as u, = Gi(u1, u2, ..., uc). The interaction matrix realizes the relationship

among the elements of the partition matrix in both inhibitory and excitatory manner. The
value of Wj; is contained within the range [-1, 1].

The prototypes are adjusted in terms of their location in the feature (data) space by

admitting an expansion of its individual coordinates. The modification is expressed as 7. =

G (r) , where G stands for the expansion operator of the individual coordinates of the data

space. The i-th prototype r; now becomes ¥, with the coordinates located in the range

[min;(1-4), max; (1+1)] where p is a positive expansion coefficient and range; stands for
the difference between the largest and the smallest value of the j-th variable of the data xi;,
X2j, ..., XNj, Namely min; = min=12,.. NXkj, max; = maxi=12,... NXx. Lhe expansion coefficient
controls the expansion of the space.

Because of the use of these two transformation mechanisms, the reconstruction

mechanism results in the following expression,

== (3.4)

The objective function is similar as in formula (3.2). It is easy to demonstrate that the

objective function is nonconvex and complex with regard to the optimized parameters.

3.3 Experimental Studies

We present a series of experiments involving both synthetic data and several publicly

available data, and report on comparative studies by contrasting the performance and the
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main results produced by the proposed modified reconstruction approach with the results
produced by the original method. In the experiments, the data set is split into its training
(70%) and testing part (30%). The value of the expansion coefficient x was set to 0.2.

For a given data set, we select a range of the number of clusters. The granulation
scheme was carried out by the FCM algorithm by sweeping across the values of the
fuzzification coefficient positioned within the range [1.1, 3] with the step size of 0.1. When
running the clustering algorithm, the stopping criterion expressed by the minimum changes
of the objective function F is set as 10°. Then the data are reconstructed as described in
Section 2. We record the minimal values of P/ associated with the optimal value of the
fuzzification coefficient.

We implement DE algorithms, and to compare the performances coming from different
optimization algorithm, here we involve two variant DE algorithms, namely,
success-history based adaptive differential evolution (SHADE) and SHADE with a linear
population size reduction strategy (L-SHADE).

SHADE algorithm is an efficient DE variant, which improves JADE [86] by using a
history based parameter adaptation scheme [87]. The mutation strategy used by JADE is

current-to-pbest/1 strategy:
my; = po, + Fz ’ (polfest - poi)+ F; ’ (poql - po;z) (3-5)

where pol ., is randomly chosen as one of the top 100p% individuals in the current

population. po,_, is randomly chosen from the current population and the archive. Unlike

JADE which generates new control parameter settings based on some distribution around a

single pair of parameters f, and ., SHADE uses a historical memory Mr and Mcr to

preserve a collection of CR and F values which have helped SHADE to produce

promising solutions in the previous generations, and then generate new CR, F pairs by
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directly sampling the parameter space close to one of the preserved pairs. Essentially, the

parameters of SHADE are adapted by learning previous search experience on-line

CR, =randn, (M, .0.1) (3.6)

F = randci(MF 0 1) 3.7

Jrand; >

where randn and randc denote normal distribution and Cauchy distribution, respectively.
rand; is an index randomly selected from the uniform distribution over [1, H] whereas H is
the memory size. Once the control parameters /; and CR; have been assigned for each
individual po; of the population, the corresponding mutant vector mv; is generated as in
(17). In SHADE, each individual po; has an associated p;, which is uniformly random
generated in [2/NP, 0.2]. The indices g1 and g2 € {1, 2, ..., NP} are randomly selected
integer numbers such that they are different from i. After generating mutant vector myv;, the
correction and selection operation are similar as in the canonical DE algorithm.

L-SHADE algorithm augments SHADE with a linear population size reduction (LPSR)
technique, which enhances the performance of SHADE by continuously reducing the
population of the individuals [88]. L-SHADE is the winner of CEC 2014 competition when
dealing with real parameter single objective numerical optimization.

The mutation strategy is also current-to-pbest as in equation (41), but in L-SHADE, the
parameter p is static and its value is set manually. The crossover, correction and selection
operations are implemented through (2.43)-(2.46), respectively. As in SHADE, the control
parameters F; and CR; that succeed to generate better solutions are recorded in
historical-memory at each generation, so that they can be adjusted automatically.

Furthermore, a linear population size reduction technique is applied to reduce the size
of population in successive generations. The population size in the consecutive generation

G+1 is computed as
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NP, — NP,

NP, =round nit \. NFE + NP, ;, (3.8)
NFE,__

where NPmin is the possible smallest value such that the evolutionary operators can be
implemented, NP is the initial population size, NFE is the number of evaluations of the
fitness at current generation, and NFEmax is the allowed maximal number of fitness
evaluations. When NPg+1 < NPg, the (NPg - NPg+1) worst-ranking individuals are removed
from the population.

In the sequel, we process the modified reconstruction scheme as described in Section 3.
The interaction matrices and the prototypes are optimized by running the DE, SHADE, and
L-SHADE algorithms. To fully compare the algorithms, the numbers of used fitness
evaluations was set to D X 10,000. The parameters settings of the algorithms are completed
on a basis of the recommendations available in the literature and by running some
trial-and-error experiments. According to the experience gained here, the sound setting of

the parameters is listed below:

e DE:CR=09,F=0.5[74], NP =100.
e SHADE: p =rand(2/ NP, 0.2), NP = 100, H= 100 [87].
e L[-SHADE: p=0.11, H= 6, the minimal population size is 4, external archive size rate

" 1s 2.6 [88], initial NP = 18D, the external archive size is set to NP X 7.

3.3.1 A Synthetic Data Set

The first experiment involves a group (500 instances) of two-dimensional synthetic
data, which are generated randomly using normal distributions centered around five
prototypes r1 = [-7, -6]7, r» = [-6, -8.5]", rs = [-0.5, 117, ra = [8, 417, rs = [6, -7.5]", The
standard deviation of the data in each cluster is set to 4.

Table 3.1 contrasts the performance produced by the original and improved

reconstruction method and then offers a comparative analysis of the optimization
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performance. In this experiment, the optimal value of the fuzzification coefficient of each
model (c is selected as 6, 10, 15, 20) is 1.6, 1.7, 1.5 and 1.6, respectively. In general,
comparing the results produced by the original and the modified reconstruction approach,
we conclude that the improvement provided by the proposed modified method is visible for
the most cases both for the training and testing data. Comparing DE, SHADE and
L-SHADE algorithms, SHADE and L-SHADE provide better results than DE, and
L-SHADE has better performance on testing data. In addition, as expected, the higher the

number of clusters, the lower the reconstruction error becomes.

Table 3.1. PI for synthetic data sets for selected number of clusters and the

corresponding optimal values of the fuzzification coefficient

Training data Testing data
c=6 c=10 c=15 ¢=20 |c=6 c=10 c=15 ¢=20

Original 0.2910 0.1607 0.1006 0.0735 | 0.3128 0.2023 0.1261 0.0943
DE 0.1814 0.0797 0.0559 0.0690 | 0.2142 0.1148 0.0852 0.0878
SHADE 0.1573 0.0493 0.0401 0.0108 | 0.1938 0.0817 0.1041 2.8041
L-SHADE | 0.1568 0.0556 0.0422 0.0169 | 0.1656 0.1064 0.0894 0.0459

To visualize the modifications and contrast the performance associated with the
proposed methods, we consider the experimental results of L-SHADE as an example and
plot the values of the interaction matrix and visualize the changes in the position of the
prototypes, refer to Figure 3.3 and Figure 3.4. The interaction matrix and the prototypes
have been affected more visibly.

The elements on the diagonal of the matrix are no longer kept close to one, and all the
elements show some departure towards negative or positive values. Similarly, most
prototypes have been moved visibly from their original locations. Interestingly, when the
number of cluster becomes larger, say, ¢ = 15 and ¢ = 20, some of the modified prototypes
being optimized overlap or are positioned close to each other. We note that this could offer
some potential to reduce the number of the prototypes, which entails a useful compression

effect.
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Figure 3.3. Plots of interaction matrices optimized by the L-SHADE method: (a) ¢ = 6,

(b) ¢ = 10, (c) ¢ = 15, (d) ¢ = 20.
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(c) (d)
Figure 3.4. Plots of the modified prototypes optimized by the L-SHADE method —

black circles: original prototypes, gray circles: modified prototypes: (a) ¢ = 6, (b) ¢ = 10,
() c=15,(d) c=20.

3.3.2 Publicly Available Data Sets
To demonstrate the usefulness and quantify the performance of the introduced
approach, we report on a series of real-world data sets. All the data come from UCI

machine learning repository (http://archive.ics.uci.edu/ml/). To make the experiments

statistically sound, the 10-fold cross validation was used. The obtained results (the average
values of O and their standard deviations) are contained in Table 3.2. The obtained optimal
values of the fuzzification coefficient are listed in Table 3.3. We also compare the four
approaches using statistical testing with the results presented in Table 3.4. The two-tailed
t-test is engaged to test whether the two group of results are statistically different. The
significance level of the null hypothesis is set as 0.05. The ‘+’ sign indicates that the
differences between the results are significantly different and better. The ‘-’ sign denotes
statistically significant difference and worse, whereas ‘o’ indicates that there is no

statistical difference.
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Table 3.2. PI for real-world data sets for selected number of clusters and the corresponding optimal values of the fuzzification

coefficient
Training data Testing data

Methods
c=6 c=10 c=15 c=20 c=6 c=10 c=15 c=20
Original | 1.700+0.045 1.205+0.035 0.903+0.027 0.743+0.035 | 1.70740.360 1.303+0.360 1.095+0.364 0.933+0.229
DE 1.51540.064 1.184+0.257 0.875+0.043 0.720+0.031 | 1.623+0.235 1.282+0.333 1.058+0.297 0.890+0.211
AUO-MPG 1 G HADE | 145140051 0.914£0.102 0.550+0.083 0399+0.024 | 152240354 1.157+0203 0.871<0263 1.021+0.882
L-SHADE | 1.47240.061 0.940+0.114 0.589+0.084 0.444+0.091 | 162240269 1.155£0.257 0.841£0.235 0.735+0.302
Original | 4.62740.379 3.010+0.165 2.277+0.080 1.726+0.089 | 4.589+1377 4.1280.929 3.535:1.138 2.922:+1.010
Glass DE 4.147£0.598  3.009+0.165 2.260+0.074 1.710+0.064 | 5.284+1.061 4.137+0.926 3.539+0.876 2.851+1.017
identification | SHADE | 4.015£0.188 2.424+0.188 1.53240348 1.11420.298 | 4.815:1.413 4.676:0300 3.853+1.454 4.495+2.115
L-SHADE | 4.092+0.175 2.527+0.356 1.547+0.247 1.132+0.274 | 5.393+1.705 4.595+1.164 4.034+1.747 3.974+1.089
Original | 5.15540.107 3.762+0.263 2.897+0.156 2.381+0.109 | 5.356:0.424 3.917+0.603 3.310+0.308 2.834::0.409
Boston DE 489240336 3.457+0.719 2.828+0.198 2.333£0.161 | 5330+0.317 3.867+0.901 3317+0.381 2.817:0.446
housing SHADE | 4.734£0287 3.115£0.374 2327+0.346 1.710£0.357 | 5.272+0.383 3.949+1.097 3.028+0.570 2.684+1.330
L-SHADE | 472340243 3.258£0374 2.357+0271 1.71240.387 | 5.219£0.238 3.857+0.502 3.050+0.155 2.678+0.420
Original | 6.577+0.303 5.084+0.174 4.488+0.052 4.021£0.101 | 6.7110.606 5.3800.321 4.841+0.238 4.379+0.186
, DE 642940294 4.953:0211 4374£0.060 3.846:0.100 | 6.654+0.468 5.282+0.337 4.702+0.300 4.235:0.415
Red wine SHADE | 6.216£0.306 4.589+0.488 3.746:0.079 3.351+0.183 | 6.381+0.441 4.937+0.535 4336£0.357 4.112:0.691
L-SHADE | 6.31240.293 4.6440405 3.952+0.156 3.470+0.189 | 6.532+0.455 4.997+0.453 4.401£0.228 3.932:+0.264
Original | 7.325£0244 5.488+0225 4.256:0.130 3.492+0.102 | 9.121£1.297 7.574£1371 6.019£1.066 5.403+0.501
beg | DE 6.800£0254 5.013£0.712 3.431£0.488 2.993+1.054 | 8.718+0.602 6.903+1.369 6.554+1.537 5.179+0.555
SHADE | 6.47240430 4.544+0.631 3.162+0.144 2279+0351 | 8.909+1.506 6.825+2.117 7.410+4.073 6.781+1.995
L-SHADE | 6.6380.250 4.635£0.572 3.114£0336 22960311 | 8.622+1259 7.103£1.726 6.476£1.706 6.011+2.681
Breast Original | 1338031 1097032 9.524+0340 8.381+0.194 | 13.94122 11.96£127 10.82+1.09 9.965+1.204
Cancer DE 12.80+0.16  10.15:028 8.420+0.545 8.13120.843 | 13.28+1.34  11.25:+1.03  10.38+123 9.501+1.148
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Wisconsin | SHADE | 12514035 9.713+0.157 8.008+0.121 7.064+0.201 | 13.06:1.10  11.54+124  10.62+537  10.91+2.74
(Diagnostic) | L-SHADE | 12.55:021 9.68040.263 8.095:0317 7.090+0.204 | 13.01+0.99  11.35:120  10.06+0.88 9.687+1.367
Original | 2.229:0.017 1.497+0.031 1.15120.013 0.949+0.031 | 2.148+0.087 1.503+0.302 1.113+0.178 0.981+0.118

_ DE 2.180£0.021 1.432+0.050 1.107+0.029 0.924+0.037 | 2.106£0.069 1.484+0.297 1.109+0.189 0.968+0.381
Wilt SHADE | 2.156£0.019 1.258+0.046 1.010:0.023 0.892+0.021 | 2.088+0.092 1.313+0.182 1.004:0.201 0.966:0.287
L-SHADE | 2.15740.022 1.266£0.039 1.016:0.019 0.905:0.026 | 2.351£0.167 1.320£0.196 1.0010.163 0.971+0.078

. Original | 1.087£0.003 0.790+0.010 0.603+0.012 0.503+0.006 | 1.095£0.036 0.795:0.014 0.612£0.022 0.5070.021
Combined | |, 0.872£0.004 0.625:0.012 0.569+0.015 0.470+0.009 | 0.893£0.041 0.631£0.019 0.569+0.026 0.458+0.027
Cycle POWer | (LADE | 0.84740.003 0.566£0.009 03890011 0294+0.005 | 0.87240.055 0.595:0235 040140243 0.31240.252
Plant L-SHADE | 0.838£0.002 0.55040.013 0.381:0.010 0.312:0.004 | 0.8590.047 0.589+0.026 0.399+0.037 0.319+0.048
Original | 2.245:0.018 1.632:0.035 1226+0.027 1.028+0.031 | 2.414+0.109 1.770+0.064 1.378+0.095 1.248+0.077

User DE 1.819+0.057 1.195+0.074 1.162+0.030 0.980+0.027 | 1.985£0.308 1.369+0.095 1.309+0.144 1.179+0.096
Knowledge | HADE | 176940146  1.07140.054 07220043 0.546:0.018 | 2.03440.191 136040298 1.175£0.690 1.5071.653
Modeling L-SHADE | 1.789+0.075 1.100£0.057 0.775£0.036 0.592+0.016 | 1.975:0.371 1.300£0222 1.171£0370 1.054+0.241
Original | 1.194:0.042 0.780+0.043 0.573+0.026 0.454+0.025 | 1.309+0.250 0.918+0.195 0.729+0.213 0.617:0.067

DE 1.037£0.031 0.642+0.235 0.546:0.029 0.426+0.031 | 1.152+0.176 0.884+0.177 0.71120.206 0.5640.122

Seeds SHADE | 0.992+0.047 0.485£0.028 0.245:0.054 0.153£0.046 | 1.279+0373 0.813+0.242 0.728+2.043 0.832+1.189
L-SHADE | 1.012+0.044 0.499+0.096 0.261+0.054 0.161+0.053 | 1.2530.293 0.815:0.120 0.587+0.218  0.550:£0.135

Original | 43140016 3.401£0.024 2.817£0.023 2.526:0.019 | 4336:0.170 3.43120.171 2.847+0.083 2.561+:0.098

Gamma DE 412550027 3.154+0.035 2.685+0.046 2.215£0.050 | 4.132+0243 3.156+0.249 2.718£0.254 2.539+0.194
Telescopet | SHADE | 4.038:0.023 2.986:0.019 2.110+0.037 1.921+0.034 | 428120251 3.319+0313 2.702+0.140 2.367+0.205
L-SHADE | 4.022+0.019 2.997+0.024 2.091:0.020 1.957+0.026 | 4.095:0.210 3.102£0215 2.198+0.179 2.11620.157

Original | 2.814+0.120 1.907+0.088 1.411+0.066 1.13120.042 | 3.705:0.684 3.217+0.482 2.696:0.505 2.321:0.522

Wholesale | DE 260140280 1.895£0.098 1.388+0.059 0.921£0.037 | 3.931+0.763 3.206:0.461 2.659+0.503 2.3100.482
customers | SHADE | 2.482+0.467 1.54040.229 1.015+0.184 0.761£0.204 | 3.8160.599 3.291+0.664 2.751+0.566 2.634+0.324
L-SHADE | 247760426 1.684+0.088 1.027+0.199 0.772:0.185 | 3.886:1341 3.073:0499 348242179 2.126+0.501
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Table 3.3. Optimal values of the fuzzification coefficient m of the constructed

models
c=6 c=10 c=15 c=20
Auto-MPG 1.4+0.1 1.4+0.1 1.4+0.1 1.4+0.0
Glass identification 1.2+0.1  1.1+0.1  1.2+0.1  1.2+0.1
Boston housing 1.320.1 1.2#0.0 1.2+0.0 1.3%0.1
Red wine 1.1£0.0 1.2+0.1 1.2£0.0 1.2+0.0
Parkinson 1.3£0.0  1.3%0.1 1.3+0.1 1.3+0.1
Breast Cancer 1.240.0 1.2+0.0 1.2£0.0 1.2+0.0
Wilt 1.2+40.1  1.2+0.0 1.2+0.1  1.2+0.1
Combined Power 1.4£0.0 1.4+£0.0 1.4+0.0 1.4%0.0
knowledge 1.3£0.0 1.3+0.0 1.3%0.0 1.3+0.0
seeds 1.4£0.0  1.4%0.1 1.5+0.1 1.5+0.0
Gamma Telescope 1.2£0.0 1.2+0.0 1.2+0.0 1.2+0.0
wholesale 1.2+0.1 1.2+0.0  1.3%0.1 1.3+£0.1

Table 3.4. Statistical comparison of the augmented reconstruction scheme versus

the original reconstruction approach

Training data Testing data
Methods
c=6 ¢c=10 ¢c=15 ¢=20| ¢c=6 ¢=10 c=15 ¢=20
DE + + + + + o + +
Auto-MPG SHADE + + + + + + o o
L-SHADE + + + + + + + o
DE + + + + o o (o] o
Glass
. . . SHADE + + + + 0 o o o
identification
L-SHADE + + + + o o o] (o]
DE + + o] (o] o] + - +
Boston
. SHADE + + + + o o] o o
housing
L-SHADE + + + + o (o} + +
DE + + + + + + + +
Red wine SHADE + + + + + + o o
L-SHADE + + + + + + + +
DE + + + + + o o o
Parkinson SHADE + + + + o o o o
L-SHADE + + + + + + o 0
Breast DE + + + + + + o +
Cancer SHADE + + + + + o o o
Wisconsin L-SHADE + + + + + + o o
. DE + + + + o o] o o
Wilt
SHADE + + + + o + o o

N
o




L-SHADE + + + + + + + +
Combined DE + + + + o) + + +
Cycle Power | SHADE + + + + + o) o o
Plant L-SHADE + + + + + + + +
User DE + + + + + + + +
Knowledge | SHADE + + + + + + o o
Modeling L-SHADE + + + + + + o +

DE + + 0 + + + + +
Seeds SHADE + + + + o o) o o

L-SHADE + + + + + + + +

DE + + + + + + o o)
Gamma

SHADE + + + + o] o] o o
Telescope

L-SHADE + + + + + + + +

DE + 0 + + o) ) + o
Wholesale

SHADE + + + + o] o o -
customers

L-SHADE + + + + o} + o +

Table 3.5. Average optimization time (in hours) of the optimization algorithms

Methods DE SHADE L-SHADE

c 6 10 15 20 6 10 15 20 6 10 15 20
Auto-MPG 0.10 029 095 210|007 022 052 122|005 0.15 045 1.18
Glass identification | 0.13 033 0.54 1.68 | 0.06 0.17 050 0.67 | 0.06 0.12 031 0.52
Boston housing 0.19 050 174 213 | 0.10 027 092 122 0.09 024 089 1.17
Red wine 040 1.11 3.13 494 | 024 071 170 4.12 | 021 0.64 1.64 4.03
Parkinson 024 056 148 3.04 |0.13 032 082 1.61 | 010 023 053 1.54
Breast Cancer 075 183 351 6.84 ] 029 076 194 212|024 0.56 1.67 2.01
Wilt 1.01 214 257 461|082 1.61 310 392|071 143 286 3.57
Combined Power 0.17 181 225 472|011 1.02 128 253 |0.08 0.8 1.07 248
User Knowledge 0.08 026 087 199|005 0.16 048 1.07 | 0.05 0.12 031 0.64
Seeds 0.08 023 069 139|004 0.12 038 095 0.04 0.10 034 0.50
Gamma Telescope | 5.12 9.73 124 216 | 2.16 483 9.61 162 | 194 415 871 158
Wholesale 0.10 045 127 267|006 0.17 061 1301 0.05 0.12 0.58 1.17

The augmented reconstruction is based on the original reconstruction with the

optimal values of the fuzzification coefficients m for 10-fold sets of each data. As

reported in Table 3.5, the average optimal values of fuzzification coefficient and their

standard deviations for these data sets are located far lower than 2. In particular, these

values fall within the region ranging in-between 1.1 to 1.5, which is consistent with the

conclusions made in [81].
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In light of the reported experimental results, as shown in Table 3.3 and Table 3.5,
the modified reconstruction method demonstrates a remarkably improved performance
over the performance delivered by the original reconstruction approach. The
reconstruction performances are enhanced significantly for almost all the training data
and majority of the testing data. Furthermore, comparing the three optimization
techniques, the performance of SHADE and L-SHADE has advantages over the
training data set over the DE optimization, however if we need to make a trade-off on
the performance over the training and testing data, the L-SHADE method is preferable.
In addition, due to the execution time shown in Table 6, the L-SHADE method also has
an advantage with regard to its computation efficiency. Thus, the L-SHADE method is
particularly worth utilizing.

Moreover, as visualized in Table 3.5, the following parameters heavily impact the
computing overhead: the size of the data (in terms of the number of data and their
dimensionality) and the number of clusters. As to the performance of reconstruction,
more clusters helps achieve better reconstruction results. One should be prudent with
respect to the implementation of the optimization method. In some cases, when the
number of clusters becomes higher (say ¢ = 20), some overfitting occurs because of too
many parameters to optimize. As a result, the interactive matrix and modified
prototypes might be impacted by noise. In addition, since D =cxc+cxn, the number
of optimized variables grows with the increasing number of clusters and the efficiency
of the optimization might decrease. In sum, a lower number of clusters, say 5-15, is a

sound alternative.

3.4 Summary

In this study, we have augmented the granulation-degranulation scheme to improve
the performance of the reconstruction (degranulation) mechanism in the two different
ways. The transformation of the originally developed partition matrices introduces both
excitatory and inhibitory interaction between the membership grades of the individual

data. The adjustment of the prototypes becomes helpful in the dynamic range expansion
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and compensating for the averaging effect reflective in the position of the prototypes
being produced by the FCM method. Overall, the proposed method is beneficial to
reduce the deterioration of the reconstruction results and enhance the performance of
the overall granulation-degranulation scheme, which is meaningful for transforming
data between numeric form and granular format. In addition, several population-based
optimization algorithms have been used to carry out optimization. The comparative
studies of different optimization methods convincingly demonstrate an importance of

the selection of an efficient algorithm.
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Chapter 4
Logic Operators and Granular Operations — A Statistical

Review”

After obtaining the information granules, we embark on considering the process
between the information granules. Logic operators, in the role of aggregation
connectives, have been proven to be useful tools for information fusion. They are
accordingly at the center of research into the theory of fuzzy sets and have subsequently
fueled a vast array of applications. In granular computing, there is also a need for
aggregating several information granules into a single output granule. Therefore, this
chapter characterizes them by analytical properties.

The abundance of logic operations and aggregation operators is profound. In
particular, the studies on triangular norms, nullnorms and uninorms [89]-[94] have
been mushrooming. Analytical investigations have been blooming bringing a vast of
theoretical findings. Interestingly, all the investigations were very much confined to
analyses carried out at the numeric levels. Sometimes one may raise some arguments as
to the applied relevance of developing so many t-norms and their eventual non-distinct
behavior, which might benefit in a tangible way fuzzy reasoning schemes, fuzzy
models, and fuzzy classifiers contributing to possible improvements of their
performance. Notably almost all constructs of fuzzy sets use in one way or another
fuzzy operators and composition operators, just to recall all schemes of approximate
reasoning [95]-[98]. If we pose a bit and reflect upon the developments of fuzzy sets,
we may eventually conclude that an over-emphasized numeric facet of fuzzy sets and
their processing is somewhat counter-intuitive and does not lie in the spirit of any
linguistic processing and system modeling, computing with words and alike — all these

paradigms which were positioned at the heart of fuzzy sets from their very inception.

b A version of this chapter has been published as [129].
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The problem we are concerned with is about determining whether different t-norms
produce results that are indeed different and tangibly distinguishable. Being more
precise, we check whether the results produced by two t-norms (or t-conorms) in the
presence of some data D yield differences that are significantly different with the notion
of difference being quantified in some well-defined statistical terms and being more
precise articulated through testing appropriate statistical hypothesis.

Furthermore, generally, the logic operators deal with numeric aggregations of data
or fuzzy sets information granules. But how about when the information granule is as
the form of interval sets? Thus, here our line of thought is to explore another alternative.
We propose a concept of granular operators implied by t-norms. Those operators are
granular in the sense that we admit here a granular (interval-valued) outcome of the
operation carried out on granular arguments. So that it “covers” the results produced by
some other t-norms. In the realization of this granular construct, we engage the
principles of Granular Computing and assess the quality of the granular operator in

terms of its coverage and specificity criteria.

4.1 Logic Operators — A Brief Review

A t-norm is a binary operator T: [0, 1]>—[0, 1], defined in the unit square, which

satisfies the following properties [90]:

(a) Commutativity: T(x1, x2) = T(x2, x1)

(b) Associativity: T(x1, T(x2, x3)) = T(T(x1,x2) , X3)
(c) Monotonicity: T(x1, y) < T(x2, y) if x1 < x2

(d) Boundary condition: 7(x1, 1) = xi

A t-conorm S: [0, 1]>—[0, 1] can be defined as S(x1, x2) = 1-T(x1, x2). The first three
properties of t-conorms are the same as those of t-norms while the boundary condition

reads as S(x1, 0) = x1.
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In the existing plethora of t-norms and t-conorms, we consider several

representative families of t-norms and t-conorms, see Table 4.1. The t-norms reported

here come with their duals.

Table 4.1. Selected examples of t-norms and t-conorms

Names t-norms t-conorms
Logical T,(x,,x,) = min(x,, x,) S, (x,,x,) =max(x,,x,)
XX X, +x, —2x.x
Hamacher T, (x,x,) = 172 S, (x,,x,) =122 1%
X, +x, = XX, I-xx,
Algebraic T(x,x,)=xx, S, (x,%,) =X, +X, — XX,
XX X, +x
Einstein E(xpxz) =—"12 S4 (xpxz) = 2
I+(1-x)1-x,) 1+ x,x,
Lukasiewicz Ts(xl ,Xo ) = rnax(x, +x, —1, 0) Ss (x1 s xz): rnin(x1 + X5, 1)
x, x,=1 x,  x,=0
Drastic T (x,x)=4x, x =1 S (x,x)=<x, x,=0
0 x,x, <1 1 x,x,>0
Triangular 1 T, (x,x,) = 2 cot™'[cot N 4 cot Z2 1 S, (x,x,) = Ed tan"'[tan N 4 tan 722 1
T 2 2 T 2 2
. 2 . TTX L TTX, 2 X, TX,
Triangular 2 7;(x,,x,) = —arcsin(sin —-sin ) Sg (x,,x,) = —arccos(cos cos )
V4 2 2 T 2 2

4.2

Statistical Distinguishability of Logic Operators

Regarding statistical analyses of results produced by t-norms, there have been only

a few studies reported so far, cf. [99][100]. The investigations covered here build upon

the findings presented in the literature, however we move beyond them by looking at

the family of triangular norm and the usage of data sets.

As a suitable test, we use here a nonparametric Mann—Whitney-Wilcoxon test

[70][100]. It is more suitable than a well-known #-test [69] as it is more efficient on

non-normal distributions than the #-test, and is nearly as efficient as the #-test for normal

distributions [72]. The null hypothesis Ho is formulated as follows

Hy: medians of samples of results produced by 7' and 7> are equal
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Hence in testing hypothesis, it is essential to involve data of a certain nature. Two

alternatives are considered with this regard:

Random data The data is drawn at random from a uniform distribution expressed
over [0, 1].
Data produced through fuzzy clustering (FCM) Here we engage a clustering

procedure to arrive at membership values and use them for testing purposes. There are
two motivating factors here: clustering is commonly used to produce membership
grades and clustering is quite commonly regarded as an essential design procedure in
fuzzy modeling.

Once the data have been decided upon, either being drawn randomly or formed
through the use of the FCM algorithm, the hypothesis Ho is tested and conclusion
formulated. In order to base an overall conclusion on a solid footing, the experiment is
repeated a large number of times (say, 10,000) by involving different input data and a
final count of the number of times when the hypothesis has been rejected is reported as

well, and we compute the proportion 7 of statistically different tests as follows,

e number of times hypothesisH has been rejected

(4.2)
number ofdata sets

The process described above (viz. produce the data set, test hypothesis, draw a
conclusion) is carried out for both t-norms and t-conorms. In case of triangular norms
with some parameters, the testing can involve different values of the parameters and
checking how much distant the values should be to make the results statistically

different.

4.3 Granular Indistinguishability of Triangular Norms

Instead of numeric arguments of 7 leading to the numeric outcome 7(x1, x2), let us
assume that the arguments are granular, viz. intervals X; = (x17, x17) and Xz = (x2, x27)

having width 2¢ and spanned over the original numeric values x and y

47



x, =max(0,x, —¢)
x, =min(L,x, + &) 3
x, =max(0, x, —€) .

x, =min(l,x, + &)

where . assumes values ranging from 0 to 0.5, which is referred to as a level of
information granularity [101][102]. Evidently, the result ¥ = 7(X1, X>) is also of interval
form. In light of the monotonicity property of triangular norms, we have Y = [y, y']
where y = TTx1", x2'] and y* = TTx1", x2"]. We can recall Y to be produced in this way a
granular t-norm 7 (more specifically, it is a t-norm operating on granular-interval
valued arguments). The assessment of indistinguishability of t-norms can be realized in
the setting of Granular Computing. Given is a reference t-norm, call it 7o. Consider
some other t-norm, 7. We say that 7' and 7 are e—indistinguishable in light of data D =

{(x1, x2)} if the following property is satisfied

T(x1, x2) € To(X1, X2) for all (x1, x2) €D (4.4)

The property defined in this way is of binary character, namely the &—
indistinguishability holds or not. Obviously, its satisfaction depends upon the value of ¢.

Instead we can admit a gradual nature of its satisfaction by counting how many times
the inclusion predicate 7(x1, x2) € To(X1, X2) is true, incl(7(x1, x2), To(X1, X2)).

Considering the data D, we determine the coverage measure (normalized count of
satisfaction of the inclusion predicate) as in (48). The plot of this measure versus ¢ can
visualize the capabilities of making 7 indistinguishable from 7. Thus, to produce some
global descriptor of coverage, we determine area under the curve (AUC) as in (2.36),

the higher the AUC value, the more indistinguishable 7" and 7 are.

4.4 Experimental Studies

In this section, we present a suite of experimental results showing both the

statistically-oriented and Granular Computing-based distinguishabilty properties of
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t-norms. Because of duality, we only report the comparisons involving t-norms and the
results of t-conorms comparisons are the same. The level of significance is set as 0.05.
Besides, the data produced through FCM clustering is Boston housing data set cited
form UCI machine learning repository. The number of clusters (c) is selected as 2 and

10, and fuzzification coefficient (m) is set as 1.1 and 2.0.

4.4.1 Statistical Difference of T-norms

We test non-parametric t-norms listed in Table 4.1 and the results of » values are
shown in Figure 4.1 Different t-norms (described their corresponding indexes, see
Table 4.1) are positined on x and y-coordinates. In general, Lukasiewicz t-norm (75)
and Drastic t-norm (7s) behave significantly differently from other t-norms. The
Algebraic (73) and Einstein (74) also demonstrate statistical difference in some cases,
some of which were reported in the literature [99]. We can notice that, when the input
data is coming from FCM clustering (¢ = 10, m = 2.0), most of the t-norms or t-conorms’
outcomes are statistically different from the others. This also indicates that the inputs

variables show an important effect on the values of 7.

e R e

‘ . > o ||| B>

UL | ] U | |

sl | eS| | L e Se e

t-norm : t-nom t-norm 1 b ¥ tnom tnorm I o
(a) (b) (c)

Figure 4.1. Values of r for eight non-parametric -norms with data: (a) randomly
distributed data, (b) results of FCM clustering (¢ = 2, m = 2.0), (¢) results of FCM

clustering (¢ = 10, m = 2.0)

4.4.2 Coverage Ratio of Granular Operators
Figure 4.2 shows the coverage implied by every Tj selection, and value of ¢ is set
within the range of [0, 0.5]. X-axis shows the value of ¢ and Y-axis represents the

subscript of 7" t-norms while Z-axis shows the coverage results. The inputs veriables
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exhibit a uniform random distribution. And Table 4.2 shows the AUC valuese when
comparing the coverage performance.

As it can be seen in the bar plot of Figure 4.2, some 7o selection have good coverage
performance, such as Hamacher t-norm and Triangular t-norms, but some have worse
coverage performance, such as Lukasiewicz t-norm and Drastic t-norm. Combining
with the results we obtained above, we know that Lukasiewicz t-norm and Drastic
t-norm are significantly different from other t-norms in most of the cases, so it can
hardly cover or be covered by other granular operators, which is also testfied and shown
in Figure 4.2 (e) and (f). Therefore, in the rest part of coverage computation, we exclude
those two t-norms and evaluate the coverage performance of remaning 6 families of
t-norms, as shown in Figure 4.2 (a) to (d) and Figure 4.2 (g) to (h). The inputs of those
granular operators are 10,000 groups of pairs of data (x, y) uniformly distributed within
the range of [0, 1], and we also tested groups of an equal amount of inputs obtained by
FCM processing.

As shown in Figure 4.3, the coverages are monotonically ascending with extending
the intervals y of granularity. Those 6 sorts of t-norms approach to 100% at a certain
value of y. According to the results, we could conclude that 7o selected as Hamacher
t-norm (72) and Triangular t-norms (77, T3) have better coverage performance, in other
words, they can cover the results of granular operators with smaller granular intervals.
In addition, the inputs also have some considerable impact on the increasing of
coverage ratio. More specifically, for those six granular operators, the coverage

performance for FCM clustering results is better than randomly distributed data sets.

50



t-norm

Vi) (—
,vmv\nﬂlovﬁj
‘>>v0|l|.l‘lql.o
0\‘ D V—
Vﬂw\,l ‘

t-norm

)

d

(

(©)

t-norm

¢

(e)

t-norm

(h)
Figure 4.2. Coverage relationship obtained for granular operators with regard to

(g

(b) To selected as 7>, (c) Ty selected as 73, (d) To

3

other t-norms: (a) 7o selected as T

(f) To selected as Tk, (g) To selected as 77, (h) To

selected as T4, (e) To selected as 75,

selected as Ts.

=
o
2 (=]
P=°oTd
STy
m__ n €
FEEEC
Taa= =
20 0 0o
Eoovoo
===
E0000
SLwoo
[iitt
i
= o @ ~ E!ﬁ/d [ o -
S 5 6 5 o & o & o
abeionon

11
20

1.1
20
005 01 015 02 025 03 03 04 045 05

=10m=1.
10, m=

—— Uniformly distributed data ||
2,m
2,m

—+-FCM:¢c
——FCM: ¢

—&—FCM:c
—&—FCM: ¢

o1

abeiano)

0 005 01 015 02 02 03 035 04 045 05

]

(b)

(a)

51



—+-FCM:c=2,m=1.1
—+—FCM:c=2,m=20
——FCM:c=10m=141 i 02d
—5—FCM:c =10, m=2.0

——Uniformly distributed data || 04 ‘\‘

— Uniformly distributed data
—+-FCM:c=2,m=1.1
——FCM:c=2,m=20
——FCM:c=10m=141
—8—FCM:c=10,m=2.0

o

ol

0 005 01 015 02 025 03 035 04 045 05

¥

(©)

1
0 005 01 015 02 025 03 035 04 045 05

%

(d)

— Uniformly distributed data
—+-FCM:c=2m=1.1
—+—FCM:c=2,m=2.0
—&—FCM:c=10m=11

—=—FCM:¢=10,m=2.0

0g 09
08 08
~
o7 y 07
@ - o
EDE "/ gme
o o
3 05 ,I 3 05
© v T3 e 8]
af; Uniformly distributed data || 04
i —+<-FCM:e=2,m=1.1
3 ——FCM:c=2,m=20 o3
02 —&—FCM:c=10m=11 H 02
—=—FCM:c=10,m=2.0
Moo 01 09 02 0% 03 0% 04 04 05 ¢
i
(e)
1 1
03 03
08 08
07 07
o Q
gos Qos
o [ o
3 05 g 305
o - = ©
04 — Uniformly distributed data || 04
—+-FCM:c=2,m=1.1
03, —+—FCM:c=2,m=20 03,
02 ——FCM:c=10m=141 i 0.2
—&—FCM:c=10,m=2.0
Mo om 01 005 0z 0% 03 0% 04 046 05 ¢

¥

(2)

o L L L T T T T T T
0 005 01 015 02 02 03 035 04 045 05

¥

®

— Uniformly distributed data
—+-FCM:c=2,m=1.1
——FCM:c=2,m=20
——FCM:c=10m=141
—8—FCM:c=10,m=2.0

o
0 005 01 015 02 025 03 035 04 045 05

%

(h)

Figure 4.3. Coverage produced by different granular operators: (a) 7o selected as

T1, (b) Ty selected as T2, (¢) To selected as T3, (d) 7o selected as T4, (e) To selected as

Ts, (f) To selected as T, (g) To selected as 77, (h) Ty selected as Ts.

Table 4.2. AUC values obtained for comparing the coverage performance

Inputs T T T3 T4 Ts Te T7 Ts
Random data 0.4503 0.4725 04681 0.4518 0.3877 02572 0.4730 0.4741
FCM:c=2,m=1.1 0.4770 0.4885 0.4853 0.4766 0.4409 03728 0.4885 0.4893
FCM:c=2,m=2.0 0.4718 0.4845 0.4817 0.4716 0.4307 03459 0.4847 0.4855
FCM:c=10,m=1.1 0.4752 0.4870 0.4842 0.4755 0.2870 0.2154 0.4872  0.4875
FCM:c=10,m=2.0 04730 0.4848 0.4757 0.4624 0.2811 0.1908 0.4850 0.4815
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4.5 Summary

In this chapter, we have offered a qualitative view at logic operators realized by
triangular norms by comparing them in terms of their statistical non-distinguishability.
The alternative approach is formulated in terms of information granules involving
granular logic operators. In both ways, logic operators are cast in a more abstract setting
thus supporting a new direction in more abstract way of treating and interpreting fuzzy
computations and fuzzy modeling. These investigations are beneficial in identifying
distinct groups of t-norms thus facilitating emergence substantial differences among

results produced by t-norms.
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Chapter 5

Granular Input Space of Fuzzy Rule-Based Models®

From this chapter, we start to develop granular fuzzy rule-based models based on
the framework of numeric fuzzy rule-based models. Commonly, when we take
advantage of a model, the first thing we can manipulate is the input. The granular
input space plays a vital role. Here our focus is on the construction of inputs of the
model in the form of information granules with the objective of gaining better insight
into the roles the individual input variables play in the model. The investigations
dealing with the exploration of the granular input space and its construction are
subjects of this study.

It becomes obvious that different input variables exhibit a different impact on the
outputs of the model. A quantification of this impact relates to some sensitivity analysis.
Here we formulate the problem in the setting of information granules. We are interested
in the following problem: if we make some input variable to become an information
granule, what is its impact on the granularity of the result? Assuming that we have at
our disposal a certain level of information granularity (regarded as a useful design
asset), the problem is: how this asset becomes distributed (allocated) across all input
variables so that the granular output exhibits the highest level of information
granularity as possible? In this setting information granules and their level of
information granularity (specificity) are important design characteristics to be
optimized. Intuitively, one may anticipate that in this allocation exercise, an input
variable whose impact on the output is quite limited, comes as an information granule
of low specificity. The opposite holds true in case of any input variable, which
significantly exhibit the output of the model. Here to retain a high specificity of the
output results, this input variable has to be kept quite specific. It is important to note
that information granules associated with the certain input variable is a tangible, easily

interpretable and practically sound outcome of the process of allocation of information

¢ A version of this chapter has been published as [130].
54



granularity. Consider that we have some limited resources to acquire input data and an
acquisition of the input variables comes with a certain cost. The precision of the
acquired input variable is related with the granularity of the variable: higher granularity
implies higher precision (specificity) of the variable. Our intent is to distribute the
resources so that the quality of the granularity of the result produced becomes
maximized, viz. its specificity is the highest one.

The objective of this study is to establish a systematic way of allocation information
to input variables by solving a certain optimization problem of specificity
maximization. An overall view of the optimization framework is schematically
visualized in Figure 5.1. We proceed with an existing fuzzy model (which is a numeric
mapping y = f(x)) and establish a way of allocating information granularity across the
input variables (making them granular (denoted here by X) so that the granular output
of the fuzzy model Y = f(X) exhibits the highest level of specificity. In essence, the

optimization problem boils down to a development of a granular input space.

Fuzzy Model

i
: Granularity
- Allocation

g — —

v
X Fuzzy Model Y

Figure 5.1. The concept of granular input space in fuzzy model systems

5.1 Formation of Granular Inputs of Fuzzy Models

The specificity measures the quality of the outputs being specific rather than

general. In a concise and formal way, we express the problem in the following way.

Given some input data and a certain predetermined level of
(5.1

information granularity ¢, realize an optimal allocation of this

information granularity across the input variables so that the
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specificity of the corresponding output of the fuzzy model is

maximized.

In what follows, we elaborate on the related details that bring more clarification to
the problem. The vector of numeric inputs x is made granular, denoted here by X, viz.
the coordinates of the vector become information granules, say intervals. The granular
inputs X are formed by allocating levels of information granularity to the individual
coordinates of the input x so that the requirement g1 +e1+ex +ex+.. . +e, +e = ne is
satisfied where €17, 17, &2, €27, etc. assume values in the unit interval, &", &7 € [0,1],
associated with the corresponding numeric values xi, x2,..., X,. We form the granular

(interval-valued) input X = [ X1, X, ..., X, ..., X,] coming in the following way

X, =[x, ,x =[x, —¢, range,, x, + & range,| (5.2)
t=1,2, ..., n The range of the corresponding input is expressed in a standard way
range; = max(x;) - min(x;) (5.3)

The way of forming the interval-valued input can be interpreted as follows: we
make it interval-valued with the interval positioned symmetrically around the original
input value with the width being a fraction of the range of the corresponding variable. It
1s apparent that the higher the value of &, the broader the interval X.

The specificity of the result generated by the granular model is response to the input
X (which is some interval Y = [y, y']) is regarded as in (5.2), and the optimization

problem can be expressed as the maximization of the specificity under the formula

(2.35), which is subjected to constrains &, & €[0, 1] and DoE+D> & =ne.
One has to remark here that the optimal allocation of granularity is data dependent.

The calculations of the granular output of the rule-based fuzzy model require attention.

For a given Xi, we determine its membership grade to each information granule (being

described by the corresponding prototype) by determining the following bounds,
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L _
Ay = i} 2/ 1) (5.4)
ZC: [ X vl
ENE A
) 1
Ay = X 2/(m1) (5.5)
ZC: | xe —v; |l
ENE R

Then the degree of membership (activation level) of the i-th rule becomes an

interval [Ot,; ; ,Ot,: .] with the bounds expressed as follows,

;= min(a,i’i ,a,f}i) (5.6)

i
v ( 1 2 ) 57
a; =max\q; ;, (5.7)

In the sequel, the interval-valued output of is computed in the form

[yk,y;]=§[%,aki]®[ﬁ(xk )£ (X)) (5.8)

@

where
[ﬁ_(Xk)afi+(Xk)]:[a)i’a)z‘]@[air:a;]@[xlz Vi x; _vi] (5.9

The operations shown in circles indicate that the operations of addition and
multiplication are carried out for intervals rather than numbers as the calculations of
interval arithmetic.

The optimization problem (5.1) is challenging given the complex dependence of the
specificity of the output vis-a-vis the individual levels of information granularity. We

consider a variant particle swarm optimizer (PSO) approach, comprehensive learning
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PSO (CLPSO) [103] is considered. Once the optimization has been completed, the
level of granularity associated with the #-th input variable can be described as the

following sum

lo=g +& (5.10)
t=1,2, ..., n. To make this sum independent of the level of information granularity
& we consider the integral /;
L= [t,(e)de (5.11)
0

where &nax 1s the maximal value of £used in the allocation of information granularity,

Emax <1.

5.2  Global Sensitivity Analysis

In its generic way, a global sensitivity analysis is aimed at the exploration of impact
of the variance of outcomes of a certain model attributed to the variability of input
variables. As such, this analysis is commonly exploited as a sensitivity analysis along
with other approaches including regression method, elementary effect method,
meta-model based method and variance-based method [104]-[106]. The variance-based
global sensitivity analysis [105]-[107] is concerned with the relationships assuming the

following format

y=g(x) g:R">R (5.12)

where y is the output of the model, x is the vector of n variables, and g is the model
function. The underlying idea is to quantify the variance of the output implied by the
variance of different input variables and express an interaction present among the

variables. Typically, such calculations rely on the Sobol’s sensitivity indexes
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[106][108]. They describe an impact of the individual variable, pairs of input variables,

triples of them, etc. by invoking the following formulas

: TV,
- TV, ;=5 -8, S = (5.13)
V(y) v (y)
Sy =S+ 8+ Sy +=2S, (5.14)

where TV(y) is the total variance of the output y, TV; is the variance of the output being
affected by the i-th input variable, and 7V is the variance of the output being impacted
by the i-th and j-th input variable. In other words, the so-called first order index S;
quantifies the contribution of a single individual input variable to the variance of the
output. The second order index Sj; expresses the contribution of interaction of the i-th
and j-th input variables, and so on for higher order effects (S;-, which represents the
effects indices containing the interaction influence of the i-th input variable along with
any other variables). Total order effect St; is used to express the overall output
sensitivity variance influenced by the i-th input variable, including all variance caused
by its interaction with any other input variables. The larger value of the index becomes,

the greater impact the input variable exhibits on the output.

5.3 Experiment Studies

We report a series of experiments here concerns some publicly available data sets
coming from UCI machine learning repository and CMU StatLib library

(http://lib.stat.cmu.edu/datasets/) to investigate the proposed approach. we carried out

FCM-based clustering for different number of clusters (c) and values of the
fuzzification coefficient (m) to develop the fuzzy model. In the sequel, the inputs were
made granular realizing a process of optimal allocation of information granularity.
Each data is split into 10-fold, and for each predetermined level of information

granularity ¢ the experiment was repeated 10 times.
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Figure 5.2. The integral of optimal granularity interval of the fuzzy models (m =

2.0): (a) Boston housing, (b) Auto MPG, (c) Stock, (d) PM10, (e) Red wine, (f) Forest

fires, (g) Airfoil Self-Noise, (h) Cloud, (i) Concrete Strength, (j) Energy efficiency, (k)

NO2, (1) Servo. The white bars: ¢ = 2, the gray bars: ¢ =
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Figure 5.3. Results of global sensitivity: (a) Boston housing, (b) Auto MPG, (c)

Stock, (d) PM10, (e) Red wine, (f) Forest fires, (g) Airfoil Self-Noise, (h) Cloud, (i)

Concrete Strength, (j) Energy efficiency, (k) NO2, (1) Servo.

Figure 5.2 and Figure 5.3 summarize the results of the integral of optimal

granularity interval of fuzzy models and the global sensitivity analysis results for the

corresponding data sets.
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A number of low sensitive input variables are associated with broader intervals.
As an example, consider the Airfoil Self-Noise data. The frequency input exhibits
higher sensitivity, see Figure 5.3 (g), thus narrow intervals are allocated to that
variable, Figure 5.2 (g). In contrast, velocity variable has the lowest value of
sensitivity and as such comes with the highest value of the integral of granularity
allocation. In conclusion, resorting to CLPSO approach, the granularities tend to
allocate to the low sensitive input variables to void high influence on the outputs, and
vice versa, so that it is helpful to improve the specificity of outputs. Nevertheless, it
should be noticed that, the proposed method is used for modeling purpose and allows
us to use the data in various resolutions efficiently. Though some significant
characteristics of the results obtained by the proposed approach and the standard
sensitivity analysis are verified mutually, they cannot be substituted by each other.
Because, when the sensitivities of two variables are very close, it is difficult for
granularity allocation to distinguish them from each other. Meanwhile, sensitivity is

not the only condition of input variables granularity allocation.

5.4 Summary

In this study, we have focused on the concept of the granular input space and its
optimization. The direct linkages between the granular space formed in this way and
the analysis of impact of input variables in the already developed models have been
identified. The granular input space delivers an interesting vehicle to realize a global

sensitivity analysis and offer a way of forming information granules of input variables.
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Chapter 6

Granular Processing Module of Fuzzy Rule-Based Models

In this chapter, we study several different ways to design the granular fuzzy
rule-based models by generalizing the processing modules and parameters of fuzzy

rule-based models to granular forms.

6.1 Granular Interactive Rule Matrix of Fuzzy Models?

Initially, we are interested in the fuzzy rules, which contain prior knowledge
obtained from learning processes or experts. Our focus is on two questions in this study:
How are the rules generated, and what is the relationship between the rules? A spectrum
of studies appears in the literature that are focused on the analysis of fuzzy models and
that elaborate on the knowledge representation realized by such modules. There are
also discussions reported on the quality of the rules and investigations of various
reasoning or aggregation mechanisms [109]-[112]. Possible interactive relationships
between the rules are usually discussed and realized by means of mechanisms of
aggregation or decomposition, and subsequently implemented to improve the
performance of fuzzy models, fuzzy classifiers and decision-making schemes
[113]-[116]. The concept of formation and interaction within hierarchies of fuzzy
models is related to some aspects of deep learning, in which we inherently encounter a
collection of layers of processing facilitating a formation of additional features
emerging at the higher levels of abstraction[117][118]. Likewise, the available design
procedures are also highly diversified both in terms of general development strategies
as well as the detailed optimization vehicles being used in their construction
[114][115].

Interestingly, within the plethora of architectural enhancements of fuzzy rule-based
models, a question of interaction among the rules and a possible usage of the interaction

mechanism towards the enhancements of the performance of the rule-based models has

4" A version of this chapter has been published as [131].
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not been studied. By interaction among the rules we mean a mechanism of engaging
existing fuzzy sets standing the corresponding rules in a formation of new fuzzy sets so
that the fuzzy sets formed in this manner give rise to more efficient structure of the
overall model. This is an original and promising development direction whose main
features and associated improvements are worth considering. One objective in this
study is to introduce the concept of interactive rules, study their properties and show
ways they deliver additional functionality to fuzzy models. Afterwards, we augment the
numeric model by building its granular augmentation (generalization). Here,
information granularity is introduced into the already formed rule-based model by

making the weights of the interaction matrix granular.

6.1.1 Forming Interaction Among Fuzzy Rules

A TS architecture of the fuzzy model is considered, and a generic architecture of the
model dwells upon a collection of “c” rules assuming in the form as (2.6). Here we
focus on the interaction between the fuzzy rules, so fi(x) is simply regarded as some
numeric representatives y; distributed across the output space. The output of inference

(reasoning) scheme is as shown below
y=2 Ay, (6.1)
i=

In general, the design of rule-based models entails two fundamental phases:

(1) granulation of input space. The input space is granulated by forming a
collection of fuzzy sets (4;) and in this way revealing a structure in the space of input
data. Commonly FCM is used here. From the design perspective, the main parameters
of the FCM such as the number of clusters ¢ (number the rules) and the fuzzification
coefficient m can be adjusted according to the needs of fuzzy modeling.

(i) determination of the conclusions of the rules. This design phase follows the
formation of information granules in R" and is concerned with a specification of a class

of local models (type of functions f;) and estimation their parameters. Given that the
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type of the function has been already fixed (m;), the values of these constants are
optimized in a supervised mode by minimizing a certain performance index Q in such a
way that a distance between the data and the corresponding results produced by the
model are made as close as possible. The supervised mode of learning (estimation) is
based in input-output data (x, targetr) and quite commonly MSE is expressed as sum of

squared errors

ul MY,
MSE =Y (target, - 7,) (6.2)
k=1

where ﬁk is the output of the rule-based model produced for the given input xx; yi=

FM(xx), where FM is governed by (6.2). Likewise, one can consider an RMSE version

of (6.3) taking on the following form

N
RMSE = \/%Z(targetk -’ (6.3)

k=1

For the design purposes, the data are split into training and testing parts or
eventually training-validation-testing parts and the corresponding values of RMSE
index serve as indicators of the performance of the model.

There are discussions reported on the quality of the rules and investigations of
various reasoning or aggregation mechanisms [109]-[116]. Here, interactive rules are
augmented by bringing some efficient schemes so that the introduced effect of
interaction can be exploited to improve the quality of the resulting model. In general,
the interaction can be accomplished in a form of a certain mapping g transforming
original fuzzy sets standing in the rules, namely 41, 42, ..., Ac into new fuzzy sets 4%,
A*, ..., A*. where each newly formed fuzzy set is based upon the original fuzzy set. In
an explicit way, we can consider 4; to be formed with the aid of a certain interaction

matrix W followed by a nonlinear mapping g, viz.

A*=g(A41, A2, ..., Ac) (6.4)
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i=1,2,...,c’. Formally, the above mapping g realizes a transformation from [0, 1]¢
to [0,1]. From the point of view of the processing realized in this way, we encounter a
new processing module of the architecture of the rule-based model as displayed in

Figure 6.1.

Functional Module

Figure 6.1. Augmentation of rule-based models by a functional module realizing

interaction among the rules

We consider a class of mappings (transformations) in the concise form
A*= g(WA) (6.5)

W is a matrix of interactions whose usage supports a transformation of the fuzzy
sets A1, A2, .., Ac into the new transformed fuzzy sets. The entries of the matrix assume
numeric values coming from some predetermined range of values being distributed
symmetrically around 0 and embracing both negative and positive values. This helps
realize both inhibitory as well as excitatory influence exerted by the original fuzzy sets.
From the structural point of view, we note that the augmented fuzzy models exhibit an
additional processing layer and help realize some additional faculties of deep learning.

Expressing explicitly the fuzzy sets, we obtain the following expression
y= Z{g(ZszAj (x)ﬂ% (6.6)
=1\ =1
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With regard to the nature of the interaction completed in terms of (64), we

distinguish three cases:

(a) the same number of new fuzzy sets, namely ¢ = ¢’. The new fuzzy sets come in
the same number however they arise through an interaction among 4;.

(b) reduction effect, ¢’ < c¢. Through this transformation, we end up with the lower
number of fuzzy sets and effectively, the lower number of rules

(c) expansion effect, ¢’ > c¢. Here we form a larger collection of fuzzy sets and in

this way, increase the number of rules.

The interaction among the rules, which is realized through the mapping presented
above (64) is quantified by taking a sum of absolute values of entries of /¥ outside the

main diagonal.

6.1.2 Realization of Interaction Fuzzy Rule-Based Models

Proceeding with the detailed discussion of the augmented architectures of the
rule-based models, we consider several optimization strategies.

topology-1 This model serves as a reference structure. Its formal description is
given by (40).

topology-2 here we have an augmented version of the reference model where the
output is described in the form by (6.6). The nonlinear function g is specified as a

limiter taking on the form

6 if 6¢<[0,1]
g(@)=+1 if 6>1 (6.7)
0 1ifée<0

The entries of the transformation matrix are confined to the [-2, 2] interval.
topology-3 this model is described by (6.6) but now the nonlinear function is

specified to be a sigmoidal one, namely
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1
g(0)= m (6.8)

where « (>0) is a steepness factor of the sigmoidal function.

Following these topologies of the models, we list several development scenarios,
which along with the topologies of the models lead to five models of rule-based
architectures:

Model-1 here we optimize the conclusions of the rules, namely y1, 12, ..., Ve

Model-2 as the structure is augmented by the transformation matrix W, its entries
are now optimized, and assume that ¢ = ¢’

Model-3 in this structure, in addition to learning W, the steepness factor is also
optimized. The observation as made in case of Model-2 holds here.

Model-4 we make the development as discussed in Model-2 more advanced by
allowing learning W as well as y1, y2, ..., ye.

Model-5 here we follow Model-3 but we optimize the constant values in the

conclusion parts y1, 12, ..., ye of the rules.

6.1.3 Allocation of Granular Interaction Fuzzy Rule-Based Model

Information granularity is introduced into the already formed rule-based model by
making the weights of the interaction matrix granular. These granular weights can be
built around the original numeric entries of the weight matrix, Wy, i, j =1, 2,..., ¢ in
many different ways and the strategy itself can be optimized. Here we consider two
optimization scenarios in which information granules are constructed for the numeric
parameters as shown in Figure 6.2.

() The first realizes a symmetric and uniform allocation of the level of information
granularity. Given some predefined level of information granularity & we compute the
product & range (where range is the length of the values the weights I¥j; assume, say for
the values of the weights ranging from -1 to 1, meaning that the range is 2) and build a

symmetric interval around #j; with the bounds expressed as follows,
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{W;j —%range, w; +§range} (6.9)

where if necessary, the bounds of the above interval are clipped so that they are retained

within the interval [-2, 2].

£/2 &2 £/2 €2 e/2 e/2
(D

a- ot £2- et fo- &t
)

Figure 6.2. Two scenarios of allocation of information granularity:

uniform (I) and nonuniform (II)

(IT) We form intervals that exhibit a uniform allocation (are of the same length) but
are asymmetrically distributed around the numeric value. The resulting interval comes

in the form
[(W;—y-&-range, W;+(1—y)-&-range] (6.10)

where y is a so-called asymmetricity index assuming values in the unit interval. The
values of ycan be subject to optimization.

The criteria used to assess the performance of the granular model concerns
coverage of the data and is taken as (2.29). we also compute the specificity of the
interval produced by the granular model as (2.32). The criterion used to assess the
performance of the granular model concerns both coverage and specificity, so the

global indicator used here is as in (2.36).

6.1.4 Experimental Studies
we present a synthetic data experiment to demonstrate the performance of the

proposed method. A low-dimensional synthetic data is used here for illustrative
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purposes. We are concerned with the two-variable nonlinear function [65][67]

described in the following form
y=+x""+x")? (6.11)

where the two independent variables (x1 and x2) assume values in [1, 6]. The learning is
realized by using a data set composed of 676 data pairs where the inputs are distributed
randomly in the Cartesian product [1, 6]%[1, 6]. The 10-fold cross validation method is
used. In the experiments, the range of the entries of the weight matrix W is restricted to
the interval [-2, 2]. The range of the parameter « standing in the sigmoidal function is
confined to [0.1, 30], which is sufficient to make the function exhibiting a broad
spectrum of steepness levels.

To contrast the behavior of the generic model and its successive refinements, some
example membership functions of A4; and those obtained after their nonlinear
transformation are displayed in Figure 6.3. It is noticed that the original membership

functions have been affected because of the optimized interaction among them.

= = =
2

Membership function

Membership function
Membership function

Membership function
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Figure 6.3. Plots of membership functions of Ai obtained for the fuzzy models for

¢ =3 and m = 2: (a) model-1, (b) model-2, (¢c) model-3, (d) model-4, (¢) model-5.

Proceeding with a more comprehensive experimentation we developed the models
for selected values of the number of rules (c¢) and the values of the fuzzification
coefficient m set to 1.1, 2.0, and 2.8. The range of admissible values of « was set to [0,
30]. The results are reported by displaying the values of the performance index
obtained by running the 10-fold cross validation; both the mean values and the

corresponding standard deviations are presented, refer to Figure 6.4.
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Figure 6.4. Performance of the models obtained for selected values of the

parameters ¢ and m

Table 6.1. Results of statistical testing - Synthetic data

model Training sets Testing sets

c 3 5 7 9 3 5 9
1vs.2 |+ + + + -+ -+ -+ -+ -+ -+
1vs.3 |+ + + + + + + + -+ -+ + + + +
lvs. 4|+ + + + + + + + + -+ + + + +
lvs.5 |+ + + + + + + + + + + + + + +

As Figure 6.4 visualizes, in all the models, the increase in the number of clusters
leads to the decrease of the training and testing error. Obviously, by having more
clusters, the model is able to produce more details of the data leading to the reduction of
the training and testing errors. The performance of the proposed models (models 2-5) is
better than the one of the original model (model 1). Moreover, the #-test run at the

confidence level of 0.05 shows the improvement of the proposed models vis-a-vis the
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original model, see Table 6.1. The first columns concern m = 1.1, gray columns refer
to m = 2.0, and the darker columns deal with m = 2.8. The plus sign denotes that the
results produced by the two models are statistically different (the differences are
statistically significant). In general, the performance of the fuzzy models endowed with
the interaction layer is significantly improved in the most cases, and the best results are
produced by model 4 and model 5. In other words, we can use a lower number of
clusters (rules) to obtain the same performance as in the case of some models composed
of the larger number of rules.

Now we present the results for the granular augmentation of the fuzzy models as
discussed. In particular, we show the plots of the coverage versus the specificity and the
corresponding AUC (V) values. As can be seen from Figure 6.5 and Figure 6.6, the
AUC (V) values corresponding to the coverage versus the specificity of the proposed

models (models 2-5) are higher than those reported for the original models (model 1).
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Figure 6.5. AUC corresponding to the coverage versus the specificity in granular

scenario (a)
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6.2 Granular Interval Prototypes and Parameters of Fuzzy

Models*®

Considering the uncertainty and inaccuracy of prototypes and parameters, we
make these numeric values embraced by information granules—that is, we make the
fuzzy model granular—in the sense that its original numeric parameters and
constructions (prototypes) are generalized to become granular parameters and
prototypes. These parameters and prototypes are made granular in the sequel resulting
in a granular fuzzy model. With the use of information granulation of the parameters

and prototypes of fuzzy models, the resulting granular fuzzy model offers higher level

¢ A version of this chapter has been accepted to published as [132].
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tolerance to noise and modeling errors and helps produce results of practical relevance.
Therefore, Granular model augments the existing numeric results by generating
prediction intervals so that one can expect where the real-world outcome is going to be
located. The practical relevance of non-numeric prediction has been recognized and
emphasized in system modeling in the past; one can refer here to the use of prediction
intervals in power systems reported in [119][120] or allude to interval-like prediction in
models of linear regression. Information granularity along with its level of granularity
is regarded as a certain design asset facilitating the evaluation of the fuzzy model.

In the study, we propose a two-phase development process of granular fuzzy
models, which, in our opinion, is both legitimate and sound from the perspective of the
introduced optimization criteria as well as the underlying optimization. The first phase
concerns the development of a fuzzy model. Here we resort ourselves to the spectrum
of existing well-established design practices of fuzzy models. No change is being made
to the design. We take full advantage of what has been fully documented in the
literature and successfully used so far. The second design phase is the crux of the
overall construct: here we augmented the already constructed fuzzy model by making
its parameters and prototypes granular (represented by information granules). The
optimization is guided by the aggregate criterion of coverage and specificity (which is
fully in line with a way in which the quality of information granules is quantified
vis-a-vis the available numeric evidence).

There are several facets of originality of this study. By bringing the concept,
performance measures, and ensuing algorithms of the granular evaluation, we embark
on a new and uncharted territory of building and expressing performance of granular
fuzzy models in a holistic way. The way of an effective building granular fuzzy models
realized on a basis of the existing model [52][121] and an assessment of its
performance brings another aspect of originality.

In spite of the presence of fuzzy sets used in the development of fuzzy models, these
models manifest as numeric constructs (viz. the output of the fuzzy model is numeric).

The radical design departure leading to an evident enhancement of the ensuing model is
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to admit granular parameters of the model. The original numeric values of the
parameter of the fuzzy model (say, prototypes of the clusters vi, va, ..., ve, wi, wa, ..., We
and parameters of the local models ai, a», ..., ac) are generalized to the form of
information granules Vi, V2, ..., Ve, Wi, Wa,..., We, A1, Ao, .., Ac so that they are
distributed around the original numeric values . To form granular parameters, we admit
a certain level of information granularity (&) (the details will be discussed in the
consecutive sections) and allocate it across the parameters of the model so that a certain
optimization criterion becomes optimized.

Such information granules are formed around the original numeric values of the
parameters. Alluding to the generic structure of the rule-based model governed by (2.6),
instead of numeric values of the parameters we consider information granules located
around the numeric values of the parameters. Formally, as a follow-up of the original

formulas, we describe the resulting granular model as follows
if xis G(B,(x)) thenf’i =W, @A ®(x-V) (6.12)

the capital letters emphasize that the corresponding components are information
granules and G(Bi(x)) denotes an interval of levels of activation (firing) of the rule
generated on a basis of the granular prototypes, viz. G(Bi(x)) =[Bi(x), Bi'(x)]. The
operations @ and ® are carried out for information granules as the calculations in
interval arithmetic. Next the output of the model follows a generalizes (6.12) and comes

in the form

=Y GB(x)OW,® 4 ®(x—V,) (6.13)

i=1
@
To admit granular parameters and prototypes, and optimize an allocation of
information granularity, two fundamental issues have to be studied in depth:
(1) a way of characterizing the quality of the granular models This problem is more

advanced that the one encountered in (numeric) fuzzy models. In any possible
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evaluation of the granular model one has to take this into consideration a fact that a
numeric data is confronted with an information granule produced by the granular model.
This calls for a prudent quantification of the result.

(i1) optimization of allocation of information granularity across the fuzzy models
How the level of information granularity (being treated as an essential design asset) can
be distributed across the parameters and prototypes of the fuzzy rule-based model to
yield the best performance of the granular model is the crux of the design problem.

We note that way of proceeding with a granular fuzzy model exhibits a significant
level of generality. We have not committed to any particular formalism of realization of
information granules. In the ensuing detailed investigations, we confine ourselves to
intervals as this helps focus on the essence of the approach and avoid venturing into
computational details.

There are several essential components contributing to the entire construction:

e alevel of information granularity ¢ is provided in advance. It can be regarded as

a supplied design asset so that the model is made granular. The values of ¢ are
confined to the unit interval. The higher the values of ¢, the more design
flexibility is being offered. In the limit when ¢ = 0 the granular model becomes
the original one (numeric model),

e a way of allocation information granularity, viz. a method of making the

original numeric parameters granular,

e away of expressing the quality of the produced granular model.

6.2.1 Granulation of the Parameters of Fuzzy Models

Given the numeric value of the parameter of the local model, say a;;, i =1, 2, ..., c,
j=1,2, ..., n, we make it granular by admitting a certain interval [a;, a;'] formed
around the original numeric value. Obviously, because of the granular form of the
parameters A= [a, a'], the numeric outputs become effectively granular (more

specifically, intervals) Y = [y, y'] whose bounds are described in the following form,
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b= 4 (x)® 0 8 a7 o (x, -v,)] (6.14)

i=1

Allocation of granularity of parameters
(D) Uniform and symmetric allocation of granularity. The first scenario realizes a
symmetric and uniform allocation of the level of information granularity by building

the bounds of the intervals as follows

o min(a, (1-&y ). a; (1+&,)) if a; #0 (6.15)
i —& if a; =0 '

4 max(a!./.(l—go), a!./.(l+50)) ifa,#0 (6.16)
v & if a, =0 '

where &, =¢2cn .

(IT) Nonuniform and asymmetric allocation of granularity. Here we consider the

length of each interval around the numeric values of the parameters is not equal.

{min(aU.(l —&;)a(i+) ifa, 20

a, = a ) 6.17
’ & if a; =0 6.17)
. [max(a,(1-5; ) a,(1+5])) ifa, 20
a; = ‘ . 6.18
Y &y if a;, =0 (6.18)
The variables 6‘,; and 8; are satisfied the following conditions,
OSg;,g;Sl (6.19)

y (igﬁ +ig;J:g (6.20)
i=l \_j=1 J=1

6.2.2 Granulation of the Prototypes of Fuzzy Models
The prototype produced by the FCM algorithm is numeric. To generalize it to a

granular construct, we build a hyper-rectangle prototype V;. A two-dimensional (n =2)
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illustration is displayed in Figure 6.7. In general, we admit the sides of the hypercube to
be of different lengths and distributed asymmetrically around the prototypes. The
resulting granular prototype is fully described by 2" parameters (4 in the

two-dimensional case).

1&
+ A
x &, range
2 | &y TANgE)
_ N
€ rangep ! € range
- - - ----- >
v
L
I
-
:82 range,
)C2_ *
- +
X] X1

Figure 6.7. Constructing a granular prototype; a two-dimensional example. range;

and range> are the ranges of values assumed by the corresponding variables x1 and x».

Given a certain data x, a level of activation of the i-th rule comes in the form of an
interval. Alluding to the way in which this is done in fuzzy models, here we have to
express on how to determine a distance between a numeric vector and the hyper
rectangular information granule V. Intuitively, the result should be non-numeric and
we should take into consideration a range of possible values assumed by the distance
involving their extreme values. An intuitively sound option would be to take the most
distant and the closest vertices of V.. This, however, becomes computationally
questionable when 7 attains higher values as we have to consider 2" vertices of the
hyper rectangle to determine the bounds of these distance values. An alternative is to
project the hyper rectangle on the corresponding axes and determine the distance
between the projected x, say x; and the most distant and the closest point of the interval
resulting from the projection of the hyper rectangle on the same j-th input variable, for
details refer to Figure 6.7.

We arrive at the detailed formulas
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L iy eV

A(x,)= Z[Hj‘_:”} (6.21)
B 1j if x eV
! 7D if x, ¢V,

A (x,)= Z[‘sz v“U (6.22)
A if x_ eV

(6.23)

(6.24)

where o, is a standard deviation of the j-th variable while b, and b; are defined as

follows,
X, if Xy <X;
by =1 x, ifx; <x, <x; (6.25)
xj+. if x,; > x;.
x; if x,; <x;
b; =1 x, ifx <x, <x; (6.26)
X; if x,; > x;
=[b;,b,,. b ] (6.27)
[b:’ bl;’ * bz;] (628)
Then
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4 (x,)= mm(Ail (x ) 47 (x, )) (6.29)

A () =max(4)(x, ) A4°(x,) (6.30)
The output interval reads as follows
[y;, J’Z]: Z[Ai_(xk ), Ai+(xk )]® [[Wi_ﬁ W;]@“z‘r ® [xk —V, . X _";r]] (6.31)

Allocation of granularity of prototypes
(1) Uniform and symmetric allocation of granularity. The first scenario realizes a
symmetric and uniform allocation of the level of information granularity by building

the bounds of the intervals as follows

v, —> V;([gorangf, gjrang;, ..., E;rang; Ln) (6.32)

whererange’ =x__ —Xx_. .
o, = min(co,. —g,range’ @, + &, range; ) (6.33)
o = max(a)i — g range’ , ), + £,range’ ) (6.34)

where &, =&2c(n+1)and range =y . —V.. .

(I1) Nonuniform and asymmetric allocation of granularity. Here we consider the

length of each interval around the numeric values of the parameters is not equal.

v— X v+ X Vv— X v+ X v— X v+ X
v, —> V;(gn rang; , &, rang; , &, rang; , &, rang; , ..., €, rang; , &, rang; ) (6.35)

W, = mjn(wl. —&" range’ ,w, + & range’ ) (6.36)

w = max(wl. —&" range’ ,w, + & range/ ) (6.37)

v+

The variables &;; , &,

— + . . ..
i 8l-w , and Eiw are satisfied the following conditions,
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0<e&,e",&" e <1 (6.38)

=& 58 56 j

c

e

& +
=1\j=1 J

6.2.3 Granulation of the Parameters and Prototypes of Fuzzy models

M=
M=

]

g +&" + gle =¢ (6.39)

1

Based on the above two strategies, we consider combining the granulation of both
parameters and prototypes. The components of granulation, for instance, the
granulating parameters, distance and partitions calculation, are same as previous
description. In contrast, the calculation of granular output is changed as following

expression, which contains all granular components of the rule-based fuzzy model.
eyt J= Sl G arGelo o i Jola " Jo L, v —vi]] (6:40)

In the sequel, we carefully look at the ways of allocating information granularity and
the quality of the granular model.
Allocation of granularity of both parameters and prototypes of fuzzy models

(D) Uniform and symmetric allocation of granularity.

min(a,(1-¢,),a,(1+¢,)) ifa,#0
o = (4,1 =c)ra,(1+2)) Y (6.41)
—£, ifa, =0

max(a,(1-¢,),a,(1+¢ ifa, #0
a+: ( tj( 0) j( 0)) ij (6_42)
& ifa; =0

v, > K([eorangf, grang;, ..., jrang; ]M) (6.43)

where & =82(cn+c(n+l)).

(IT) Nonuniform and asymmetric allocation of granularity. Here we consider the

length of each interval around the numeric values of the parameters is not equal.
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o min(a,;(1-&),a,(1+&")) ifa,#0 (6.44)

a— : _
2 ifa; =0

) max(a,(1-g)a,(1+") ifa, 20
a; = (6.45)

a+ : _
& ifa, =0

v— X v+ X v— X v+ X v— X v+ X
v, > Vi(g1 rang; , €y rang; , &, rang; , &, rang; ,..., €, rang; , &, rang, ) (6.46)

1 1

- _ . w— y w+ y
w, —mln(wl.—gl. range’,w, +¢& range[) (6.47)
+ w— y w+ y
w; —max(wi—gi range; , W, +& range,.) (6.48)
. wW— wt a— v— a+ v+ . .
The variables &' ,&" ,&; , & , & and §; are satisfied the following

conditions,

0<el,e,6 ¢

e e <1 (6.49)

[/t
C

n n n n
NS+ Sar S s Sarvervar]-e @)
J=1 J=1 J=1 J=1

i=1
In (II) case given the large number of values to be determined, it can consider

resorting to some evolutionary optimization techniques, such as particle swarm

optimization (PSO), genetic algorithm (GA), and differential evolution (DE).

6.2.4 Experimental Studies

A two-variable nonlinear function comes in (6.11), where x; and x; are two
independent variables assuming values within the range [1, 5]. The data set is
composed of 900 (30x30) input-output data pairs where each input is distributed
according to the uniform random distribution in [1, 5]. The data set is split into a
training set (70%) and testing set (30%). The initial values of ¢ are used in the range [0,

1] with a step 0.1.
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To quantify the performance of the granular fuzzy rule-based models, we
implement coverage, specificity and the global index as described in (2.29), (2.32), and
(2.39), respectively.

Figure 6.8 displays the relationships between coverage and specificity obtained for
different granular models when allocating information granularity. The lines with
circles represent a uniform allocation of information granularity while the lines with
pentagram correspond to the case where information granularity has been optimized.
As expected, considering the conflicting nature of the coverage and specificity criteria,
the increase in the specificity comes at the expense of the decreasing values of coverage.
Table 6.2 includes V' values corresponding to the two scenarios of allocation of
information granularity. Some general tendencies are apparent. The V values of the
granular models with the optimized granular parameters are higher with those produced
when realizing a uniform allocation of information granularity. Furthermore, one can
quantify the improvement delivered by the PSO method. The obtained curves display
different shapes and in some cases. For example, Figure 4 for ¢ =5 and ¢ = 9, there are
relatively flat regions of the curve meaning that one can increase coverage (by
increasing the value of &) not sacrificing much the specificity of the results. With the
optimized model, some of the coverage and specificity values have improved meaning
that the model leads to the better coverage with the similar values of specificity. or in
some cases the coverage is not enhanced too much but the specificity has some
improvement. Moreover, in some cases (for instance, when ¢ = 2), after optimization,
the specificity has shown a significant improvement while the coverage is reduced, and
the points in the coverage-specificity coordinates are positioned very closely. A
possible reason is that in those models, the allocation of information granularity has a
strong impact on the specificity improvement and a far less visible effect on coverage

enhancement. As a result, one improved specificity with sacrificing the coverage.
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Figure 6.8.Coverage versus the specificity obtained by three ways of allocation of
information granularity across the parameters of the model: granulation of parameters
of linear models in the condition part — first row, granulation of prototypes — second

row, granulation of parameters and prototypes — third row.

Table 6.2. Comparison of V' values of granular models after optimization of

allocation of information granularity

. c=2 c=35 c=9
Granularity Training  Testing  Training  Testing  Training  Testing
Parameters 0.1721 0.1361 0.1587 0.0953 0.2904 0.1476
Prototypes 0.4120 0.3981 0.4927 0.4587 0.5104 0.4553
Para. & Prot. 0.4058 0.3809 0.4661 0.4355 0.4905 0.4328
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6.3 Granular Fuzzy Sets the Conclusion Part Parameters of Fuzzy

Modelsf

As mentioned in the introduction, information granules augmenting fuzzy models
can be formalized in different ways by invoking intervals, fuzzy sets, rough sets,
shadowed sets, and probabilistic sets—to name a few alternatives. We have
considered several development techniques for granular models that numeric models
are granulated yielding granular intervals. In this chapter, to illustrate another
promising alternative, we consider formalizing information granules in a formation of
fuzzy sets for TS fuzzy rule-based models. We note that a granular model augmented
by fuzzy sets offer visible advantages over the augmentation involving interval
information granules. Moreover, fuzzy sets help quantify linguistic variables, which is
helpful in improving the interpretability of granular fuzzy models. In light of this
observation, it becomes apparent that this form of information granularity delivers an
enhancement of the original fuzzy model.

The underlying objective of this study is to establish a concept of granular fuzzy
models, highlight their key features and advantages as well as develop a
comprehensive and efficient design strategy of such models. The essence of the
proposed design is that the granular model is being built on a basis of the already
existing fuzzy model so that the resulting construct is built in an efficient way and
may fully benefit from the already constructed fuzzy model. The original performance
index (involving two important criteria pertinent to information granules, namely
coverage and specificity) is prudently formed to navigate the construction of the
granular model.

In this study, we concentrate on TS fuzzy rule-based model as a framework to
develop granular fuzzy models. The objective and originality of this study is to
establish an appropriate (optimal) way of allocation of information granularity around

the parameters of fuzzy models, so that the parameters of generic fuzzy models can be

A version of this chapter has been published as [133].
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augmented to the fuzzy sets form. In the sequel, the output of the granular model
becomes a fuzzy set. Two methods are implemented to evaluate the performance of the
established granular fuzzy model. Firstly, we involve the principle of justifiable
information granularity that assess the coverage and specificity of the resulting fuzzy

set.

6.3.1 Fuzzy Rule-Based System Modeling

Here we consider granulating the parameters in the conclusion parts of fuzzy rules,
therefore, the function fi(x) in the conclusion parts is slightly different from above two
sections. The series of “if-then” statements (rules) assuming the following form and

modeling a relationship between input variables x and output variable
If x is A; then y; is fi(x) = piotpixit... tpimxs (6.51)

where y; is a linear function of the input variables parameters pio, pi1, ..., pin, and n is the
number of input variables. The following process of computing the output of the model

are the same as described above in (2.8).

6.3.2 Formation of Granular Fuzzy Model

We augment the generic topology of the fuzzy model to form a granular fuzzy
model, in which the parameters pi, pi1, ..., pij, ..., pin Of the linear functions are
extended to some fuzzy sets (for instance, triangular fuzzy sets and parabolic fuzzy

sets). The parametric version of such fuzzy numbers can be expressed as follows

P.=[p;.p; p;] (6.52)

where pi, pi” (G =0, 1, ..., n) are the lower and upper bounds of the corresponding

fuzzy sets, which is calculated as follows,

] {Hﬂn(l’fj@‘gy)’l’y(”g;)) Py #0 (6.53)
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Py = el P; =0

y

+ {max(py(l—ey.),pij(ﬂgij )) py #0 (6.54)
where ¢, ¢; are levels (allocation) of information granularity allocated to the
corresponding numeric parameters.

As a result, the granular rules are augmented as following form,
If x is A; then Y; = Po®Pi®x1 ©... ® Py ®xn (6.55)

where Y is a fuzzy set output of the i-th rule, and the operation @ and ® denote addition
and multiplication of fuzzy numbers.

Following the rules of fuzzy arithmetic, the resulting fuzzy set Yi associated with
the i-th rule for input xi is expressed as a fuzzy number with the following membership

function,
Y, =|: by, P+ Zpijxjk’ ubik:| (6.56)
=
where the lower and upper bounds of the membership function are expressed as

lbl.kzmin(pl._o, p;[))-l—imin(p;xjk, p;xjk) (6.57)

J=1

ub,.kzmax<p[_0, p[+0)+imax(p,;xjk, p;xjk) (6.58)

J=1

The minimum and maximum operators are applied individually to each coordinate
(variable), j =1,2...n. Then, the original formula is described as the resulting fuzzy set

of output in the form

[l ’j}k’uk]:ZAik(@Yik (6.59)

i=1
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where

l,=) 4,lb, (6.60)

i=1

Vi zzAik[piO—i_Zpijxij (6.61)
i=1 j=1
u, =) Ayub, (6.62)
=1

To restrict the fuzzy set to positioned within the output space, the following

clipping operation is introduced,

lk yminglkgymax
IZ =9 Ymin le < Vinin (6.63)
Ymax lk > Ymax

Uy yminguk Symax

U =9 Ymin U < Vmin (6.64)
Ymax uy > Ymax

Ve l/j <V Su,

$ <l (6.65)

* A *
Uy Vi > Uy

where ymax and ymin are the bounds of the output space.

As aresult, any granular fuzzy model yields a result coming in a form of a fuzzy set.
The parametric membership functions of triangular fuzzy sets and parabolic fuzzy sets
are expressed in terms of left- and right- hand parametric bounded functions f; and g,

as shown in Figure 6.9. The output fuzzy set is characterized by the following triple

V=11 viu] (6.66)
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Figure 6.9. Examples of membership functions of (a) triangular fuzzy set, (b)

parabolic fuzzy set.

As the result of the granular fuzzy model is an information granule (fuzzy set), its
performance has to be carefully assessed vis-a-vis the granules in the form of intervals.
The coverage measures the membership values of the fuzzy sets as described in (2.31),
and the specificity evaluates the size of the fuzzy sets as in (2.33). As we consider the
triangular membership function and parabolic membership function here, the resulting
specificity computed with the use of (2.33) concerning triangular membership function

and parabolic membership function,

1u, -1

spp =1-—2 "k (6.67)
2 range
2u, 1]

sp = 1-2M % (6.68)
3 range

Here we implement the formula (2.37) to combine coverage and specificity
criteria, because it is able to not only optimize the two criteria at the same time but
also control the impact of specificity. The global performance index is calculated as
(2.39).

¢ 1s a predetermined level of information granularity and used to restrict the
allocation of information granularity ¢; and &;* within a certain range as following
condition expressing an overall balance of information granularity,
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S el )=ce (6.69)

i=1 j=0

6.3.3 Experimental Studies

A two-variable nonlinear function comes in the same as (6.11). The settings of
generate data sets are same as in Chapter 6.2. The fuzzification coefficient () used in
the FCM algorithm assumes three selected values, namely 1.1, 2.0, and 2.9. The
predetermined values of ¢ is set as 0.1, 0.2, ..., 0.5. The search space of each element ¢;;
ande;" is set within the range [0, 1].

The global evaluation of the granular model (expressed in terms of V) is presented
in Table 6.3-Table 6.8. To optimize allocation of information granularity, we maximize
the values of Q in (2.37) and setting f = 1. Here we present three different ways to
allocate the information granularity. First, no optimization is considered - we allocate
information granularity symmetrically and at the same level. Then PSO and DE
algorithm optimize the allocation process. Contrasting the results of constant
(non-optimized) allocation and optimal allocation, there is an improvement in the range
of 4%~31%. This indicates that the optimization of allocation plays an important role.
Moreover, by comparing the results produced by the PSO and DE, the differences in
their performance are negligible positioned in the range -0.02%~0.5%. Some
illustration of the performance of PSO and DE reported in successive generations is
presented in Figure 6.10. The computing overhead of the two approaches is similar
however PSO is slightly faster than the DE in producing the best results. In conclusion,
we note that PSO algorithm exhibits a comparatively limited advantage over the DE

mechanism.

Table 6.3. Values of V for triangular membership functions and m = 1.1

c

Optimization  Data 3 5 7 9 11 13 15

Training 0.4763 0.5063 0.6431 0.7646 0.7960 0.7933  0.8575

Testing 0.4996 0.5183 0.6482 0.7614 0.7903 0.7875 0.8466

Training 0.6147 0.6490 0.7451 0.8269 0.8451 0.8440 0.8921

Testing 0.6235 0.6420 0.7298 0.8227 0.8370 0.8373 0.8804
91

None

PSO



Training 0.6140 0.6490 0.7451 0.8267 0.8449 0.8438 0.8918

DE .
Testing 0.6282 0.6420 0.7298 0.8226 0.8369 0.8372  0.8801

Table 6.4. Values of V for triangular membership functions and m = 2.0

c

Optimization ~ Data 3 5 7 9 11 13 15

Training 0.3889 0.4546 0.4388 0.4743 0.5305 0.5768 0.5882

None Testing 04100 04384 04350 04545 05093 0.5426 0.5610
SO Training 0.5130 0.5609 0.5595 0.5881 0.6468 0.6671 0.6923

Testing 0.5138 05400 0.5468 0.5655 0.6203 0.6315 0.6582
oF Training 05130 0.5610 05573 0.5876 0.6465 0.6651 0.6902

Testing 0.5138 0.5400 0.5462 0.5672 0.6204 0.6301 0.6573

Table 6.5. Values of V for triangular membership functions and m =2.9

c

Optimization  Data 3 5 7 9 11 13 15

Training 0.4280 0.4044 0.4476 0.5587 0.5834 0.5822 0.6467

None Testing 0.4077 0.3912 0.4312 0.5332  0.5619 0.5429 0.5920
PSO Training 0.5381 0.5146 0.5513 0.6334 0.6449 0.6508 0.7004
Testing 0.5141 0.5008 0.5299 0.6101 0.6241 0.6142 0.6442

DE Training 0.5369 0.5147 0.5509 0.6329 0.6431 0.6498 0.6988

Testing 0.5143  0.5006 0.5292 0.6090 0.6231 0.6136 0.6423

Table 6.6. Values of V for parabolic membership functions and m = 1.1

D c
Optimization ~ Data

3 5 7 9 11 13 15
None Training 0.5800 0.6094 0.7346 0.8424 0.8585 0.8563 0.9015
Testing 0.5947 0.6165 0.7334 0.8378 0.8495 0.8482 0.8929
PSO Training 0.7232  0.7541 0.8300 0.8947 0.9037 0.9045 0.9415
Testing 0.7275 0.7417 0.8103 0.8864 0.8853 0.8913 0.9276
DE Training 0.7200 0.7531 0.8289 0.8938 0.9034 0.9027 0.9404

Testing 0.7274 0.7418 0.8040 0.8854 0.8856 0.8907 0.9274

Table 6.7. Values of V' for parabolic membership functions and m = 2.0

T c
Optimization  Data

3 5 7 9 11 13 15
None Training 0.4890 0.5596 0.5465 0.5832 0.6386 0.6819 0.6997
Testing 0.5006 0.5363 0.5417 0.5641 0.6133 0.6523 0.6709
PSO Training 0.6151 0.6652 0.6705 0.7016 0.7549 0.7702 0.7977

Testing 0.6020 0.6341 0.6495 0.6779 0.7245 0.7337  0.7633
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Training 0.6152  0.6650 0.6673 0.6989 0.7542 0.7679 0.7960

DE .
Testing 0.6020 0.6365 0.6521 0.6752 0.7242 0.7332  0.7608

Table 6.8. Values of V for parabolic membership functions and m = 2.9

c

Optimization ~ Data 3 5 7 9 11 13 15

Training 0.5118 0.5033 0.5443 0.6496 0.6639 0.6671 0.7086

None Testing 0.4941 0.4868 0.5278 0.6250 0.6443 0.6350 0.6703
P3O Training 0.6276 0.6202 0.6524 0.7347 0.7459 0.7506  0.7939
Testing 0.6026 0.6000 0.6280 0.7069 0.7211 0.7119  0.7465

DE Training 0.6269 0.6201 0.6520 0.7345 0.7440 0.7488 0.7918

Testing 0.6028 0.6006 0.6287 0.7068 0.7192 0.7127  0.7449

Furthermore, as shown in the tables, the number of clusters and fuzzification
coefficients significantly impact the overall performance. Not surprising, the more
number of clusters, the higher values of V' index are, so having more clusters, the model
becomes more capable to capture more details of the data, which happens not only in
the numeric fuzzy models but also resulting in granular fuzzy models. In addition, when
the number of cluster is relatively lower (in the range 3-7), the performance of the
model improves remarkably according to the increasing number of clusters. Whereas,
when the number of clusters is higher (greater than 9), the enhancement of performance
with more clusters becomes slight. The fuzzification coefficient has notable influence
on the membership function 4; used to construct the fuzzy model. Generally, the V'
index is higher when the fuzzification coefficient is small (say 1.1), since error of the
fuzzy models with m = 1.1 is lower than other two cases. Above all, it seems pertinent
to notice that the performance of the granular fuzzy model is considerably depends on
the performance of the established fuzzy model. In addition, it is visible that the
performance of parabolic membership function model is better than the triangular
membership function model. Due to the characteristic of the membership functions, for
the same fuzzy numbers, parabolic membership function usually has higher
membership grades than triangular fuzzy sets, so the coverage is higher naturally.
Despite the specificity of parabolic fuzzy sets is relatively lower than the triangular

fuzzy sets, the advantage of coverage still dominates the overall performance.
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Figure 6.10. Values of fitness function in successive generations for triangular
membership ¢ = 15 and ¢ = 0.5: (a) triangular membership function model, (b)

parabolic membership function model.
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Figure 6.11. Coverage and specificity for triangular membership function model

with PSO optimization— Training data: (a) m = 1.1, (b) m =2.0, (c) m = 2.9.
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Figure 6.12. Coverage and specificity criteria for parabolic membership function

model with PSO optimization— Training data: (a) m = 1.1, (b) m = 2.0, (c) m =2.9.

To visualize more results produced by the granular fuzzy model, the coverage and
specificity indexes obtained for each model after the completion of optimal allocation
are shown in Figure 6.11 and Figure 6.12. Figure 6.13 and Figure 6.14 display some

fuzzy sets. The coverage increases while specificity gets lower with the increasing
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values of the predetermined values of information granularity ¢. Furthermore, the
number of clusters and the fuzzification coefficient exhibits a direct impact on the
coverage index. The coverage performance is better when the number of clusters is
higher or fuzzification coefficient is lower, since in these cases, the errors of the
established numeric fuzzy models becomes relatively smaller. In contrast, the impact
on specificity index due to the number of clusters or fuzzification coefficient is much
lower. Therefore, we conclude that predetermined information granularity ¢ is the most
important factor affecting the specificity criterion. In addition, comparing the granular
models in case of two types of membership functions (triangular and parabolic), it is
worth noting that in the vast majority of the cases, the coverage and specificity implied
by parabolic fuzzy sets yields better results. This conclusion can be confirmed by
looking at Figure 6.13 and Figure 6.14. In those figures, we use gradient color to show
the membership grades. Darker color relates to high value of membership grade. The
solid diagonal line represents the model outputs are exactly the same as the target
outputs. For the many of fuzzy set outputs come from parabolic membership function
models, the color on the diagonal is deeper and the range of the fuzzy sets is shorter, so
both the coverage and specificity is better. A possible reason behind this is as follows.
Contrasting the membership grades of triangular and parabolic fuzzy sets for the same
fuzzy number, the membership grades of parabolic membership function are higher, so
the parabolic fuzzy sets are more efficient to provide higher coverage at lower
specificity.

The values of ¢; ( &5 = &; + &) allocated across the variables and rules (clusters) are
shown as circles in Figure 6.15 and Figure 6.16. The different radii of the circles
represent different values of ¢;;. The larger the radius, the higher the value of allocated
information granularity. Generally, information granularity allocation of triangular
membership function model and parabolic membership function model exhibit a
similar tendency, and the fuzzification coefficient has significant impact on the

allocation. When m = 1.1, the information granularity is allocated on almost every
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variable, whereas, when m = 2.0 and m = 2.9, the information granularity is mostly

allocated to a single variable, and others assume values close to zero|
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Figure 6.13. Output y for triangular fuzzy sets ¢ = 15 and ¢ = 0.5 with PSO

optimization— Training data: (a) m = 1.1, (b) m = 2.0, (c) m = 2.9.
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Figure 6.14. Output y for parabolic fuzzy sets ¢ = 15 and ¢ = 0.5 with PSO

optimization— Training data: (a) m = 1.1, (b) m = 2.0, (c) m = 2.9.
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Figure 6.15. Plot of allocated levels of information granularity in case of

triangular fuzzy sets ¢ = 15 and ¢ = 0.5 with PSO optimization: (a) m = 1.1, (b) m =

2.0, (c) m=2.9.
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Figure 6.16. Plots of allocated levels of information granularity in case of
parabolic fuzzy sets ¢ = 15 and ¢ = 0.5 with PSO optimization: (a) m = 1.1, (b) m =
2.0,(c)ym=2.9.

6.4 Summary

In this chapter, we developed several granular fuzzy rule-based models by
constructing varieties of information granules among the different components of fuzzy
rule-based models. In Chapter 6.1, we have augmented granular fuzzy rule-based
models by two steps. First, an extended, versatile structure of the rules produced
thorough the transformation of condition fuzzy sets is built, which leads to carefully
structured membership functions facilitating the overall mapping realized by the rules.
The deformation of the original membership functions of the condition part is useful to
evaluate a nature and a strength of interaction among the rules, which helps enhance the
performance of the model. Second, for the already constructed rules, the model is
generalized to its granular version where the transformation matrix is extended to its
granular (interval-valued) version. In Chapter 6.2, we augmented numeric fuzzy
models to granular by forming information granules around numeric values of the
parameters and prototypes of the models. In Chapter 6.3, we have developed the
conceptual generalization of fuzzy rule-based models in the form of granular fuzzy sets
and presented a comprehensive design by carrying out an optimal allocation of
information granularity across the numeric parameters of the conclusion parts of the
original model.

The models (and it can be any other models, in general) are evaluated in granular

concept brings another more general perspective at the comprehensive evaluation of
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models and enriches a look at system modeling. We showed that the coverage and
specificity measures serve as the two essential measures quantifying a well-rounded
way of expressing the quality of the granular model. The characterization of the
granular model in terms of its coverage-specificity relationships or the global descriptor
coming in the form of the 4UC measure becomes beneficial to a holistic assessment of
the quality of the rule-based models. These two components are crucial in the
evaluation of the performance of the granular fuzzy rule-based models. The achieving
the tradeoff is facilitated by bringing the parameter granular using which one strikes a
sound compromise between the coverage and specificity requirements. The
optimization process is guided by the global performance index, which includes the
coverage and specificity of the obtained granular results. So that the granular output
could cover target evidence as specifically as possible, which makes the granular output

of the fuzzy rule-based model of higher practical relevance.
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Chapter 7
Granular Output of Fuzzy Rule-Based Models?®

Granular input space and internal architecture issues are studied in chapters 5 and
6, and information granularity is directly allocated around the numeric input variables
and parameters values. This chapter introduces a more straightforward and concise
approach that the allocation of information granularity in output space is considered to
develop. The output space is typically one-dimensional as the common architectures
involve multi-input single-output models. It is nearly useless to simply allocate the
information granularity around the only one coordinate of output variable. So, we
expect a mechanism that can allocate the information granularity according to the
individual output instance, which is, furthermore, a nonlinear mapping from an
individual output instance to a granular allocation of output.

The output of numeric model is made granular by associating information
granularity to the numeric outputs produced by the original model. The granular output
space of models plays a vital role because it has several advantages over other two
categories. The allocation of information granularity to input space is quite related to
the quality of the model one has started with and the sensitivity of the input variables.
Thus, if the numeric model has been constructed, the enhancement of the granular
model would be limited. As to the granular the constructions of models, the
performance of granular model could be improved by augmentation of parameters and
constructive elements with the allocation of granularity, however, in many cases,
allocation of information granularity is quite complicated since the parameters and
elements are usually represented in multi-dimensions. The curse of dimensionality
would likely bring the unacceptable computation consumption of the allocation. In
contrast, the granular output space of models is more straightforward and concise in

the implementation, because the dimension of the output space is generally low (being

& A version of this chapter has been accepted to published as [134].
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one-dimensional), and it is also beneficial to remedy some deficiencies of the numeric
output.

For the clarity and conciseness of the presentation, we focus on the realization of
information granules in the form of intervals, however the underlying conceptual
framework is equally suitable to cope with other formal realizations of information
granules (say, fuzzy sets, rough sets). It is worth emphasizing that, even though the
granular output we produced in this study is in the form of intervals, it is fundamentally
different from the proposed interval, possibilistic regression algorithms or its related
works, e.g. in [122]-[127], where the interval outputs are produced by extending the
data or the parameters of the regression model to the interval format. However, the
proposed method delivers a totally different perspective by forming a granular output
space. Furthermore, the conceptual and ensuing algorithmic setting are general in the
sense that it applies to a variety of categories of models including such commonly
studied as neural networks, rule-based models, cognitive maps, to name a few

examples.

7.1  Granular Output Space and Its Rule-Based Realization

The underlying idea introduced in this study is to develop a mechanism of
allocation of information granularity across the output space. The originally
constructed model, Figure 7.1, is augmented by a functional transformation module,
which along with the granulation block transforms a numeric output into an
information granule. The role of the transformation module is to realize a nonlinear
mapping from the numeric output to the corresponding level of information
granularity (¢). The function of the granulation block is on a basis of the provided
level of information granularity to translate the numeric output to the information
granule. In light of the interval-valued form of information granules, the numeric
output y is elevated to the form of a certain interval Y distributed around of y and a
length determined by the level of information granularity e. The optimization of the

allocation of information granularity implies some modifications to the transformation
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module. The module itself is a nonlinear mapping, which can be realized in many
ways. In this study, we consider its implementation in the form of a fuzzy rule-based

model.

Fuzzy rule- .

based model ’
x y ) Y
—» Model » Granulation —»

Figure 7.1. Granular model of granular output space of numeric models

The original numeric model is viewed as a multiple input - single output model M
such that M(x) = y. We do not make any assumption about the form of the model; it
could be a neural network, regression model, cognitive map, polynomial function, etc.

The transformation module generating a level of information granularity is a
rule-based model, which is described as a collection of single input — two output rules

in the format

if y is A; then information granularity is (&, &) (7.1)

i=1, 2,..., c where &, & imply the location of the interval of the output, with the
values of &, &' located in the [0,1] interval while 4;is a fuzzy set formed in the output
space Y. From the perspective of the rule-based architecture, (1) can be viewed as a TS
fuzzy rule-based model of type-0 (viz. the conclusion part is a constant). From the
structural point of view, the resulting mapping is piecewise linear of the output space to
the levels of information granularity.

Let us look at the above rules governing an allocation of information granularity.

(1) fuzzy sets of the condition part. Typically, as a sound initial position we consider
a collection of fuzzy sets of finite supports distributed uniformly across the output
space. The simplest alternative is a collection of fuzzy sets with triangular membership

functions and 'z overlap between adjacent fuzzy sets, see Figure 7.2. The range of the
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output spreads across the extreme values of target output (namely, interval [targetmin,
targetmax]). The fuzzy sets are uniquely described by their modal values svi (=

targetmin), SV2,..., SVe (= targetmax).

Membership 4
grade

-

y

Ymi e Y
( S‘TS sV SVi SVel (5w

Figure 7.2. A collection of fuzzy sets defined in the output space

(i1) inference mechanism governing an allocation of information granularity. We
determine the levels of information granularity (&, &") for any numeric output y by
implementing a standard inference mechanism. As 4;s form a partition (any two
adjacent fuzzy sets overlap at ' level). The allocated information granularity (&, &")

associated with the given output y is expressed in the following way

e =2 4()e; (72)

e =>4 (7.3)

In view of the form of the membership functions of 4;, both & and &" are piecewise
nonlinear mappings of the output.
The information granulation module transforms the original numeric output y to an

interval Y in the form,

Y= [y —& range,y + 5+range] (7.4)
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where range = targetmax-targetmin. It is apparent that the length of Y is dependent on

the specific value of y as ¢ and ¢" are both functions of y.

7.2 Optimization of Granular Qutput Space

The construction of the optimal granular model through the buildup of the granular
output space involves two main components: (i) allocation of information granularity
through optimizing the corresponding rule-based model supporting this allocation
process, and (ii) formulation of a suitable performance index using which the optimal
allocation of information granularity is achieved.

Here we consider three strategies to allocate information granularity across the
output space of the model (viz the allocation of levels of information granularity to
each of the c rules).

(1) no optimization- uniform distribution of information granularity. In this
strategy, we are not using the fuzzy rule-based model, but allocate the information

granularity according to the overall level of information granularity ¢, namely,
(7.5)

i=1, 2,...c. In this strategy, the specificity of the results is a linearly decreasing

. - £ . £
function of &. We have y, =y, —Erange Vi =y, + Erange

N t_ 7 N .
p=— S max| [1-26 7% | o= L[ _£range
Nio range Nio range
1 N
=—>ll-¢)=1-¢
NH( )

(2) symmetric allocation of information granularity. We assume the level of

information granularity associated with each rule is symmetric in the following sense,

e =gt =fi (7.6)



Obviously, in virtue of the constraint imposed on the level of information

granularity, we have
S —co (7.7)
i=1

We optimize the allocation of information granularity by maximizing the values
of V" with respect to both & and the modal values of the fuzzy sets forming the
condition parts of rules, namely a2, a3, ..., ac1. The optimization problem reads as

follows

&1,E],--,€,07,03,..., A

subject to constraint

C
>e=ce, £=20
i=1

(3) asymmetric allocation of information granularity. Here the information
granularity (&, &) allows the intervals to be allocated asymmetrically with respect to
the original numeric value. Thus, we maximize V with respect to &, & and a2, a3, ...,

ac-1 and the overall optimization problem reads as
subject to constraint

To quantify the performance of the granular fuzzy rule-based models, we assess
coverage to represent the ability of the output information granule to cover the
experimental data as (2.29). However, to evaluate the specificity, we attempt another

function of the length of the interval as follows,

N +
sziZmax (I-M}O (7.8)
N5 range
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The maximum operation is used here to prevent the situation when y;"-yx is higher
than range and this could result in a negative value of the specificity. The overall
performance of information granules is quantified by (2.37).

The level of information granularity is a design asset whose proper allocation is
crucial to the optimization of the granular model meaning. This entails that given
some level of information granularity ¢, ¢ €[0, 1]. We distribute it in such a way that
the criterion (8) becomes maximize. At the same time, we request that the following

balance of information granularity becomes satisfied
Ze{ +ZEI~+ =ce (7.9)

To evaluate a global characterization of the model, we compute the overall

performance index as described in (2.39).

7.3 Experiment Studies

A single input - single output synthetic data composed of 400 input-output pairs

are described as follows
y=x2—4~x-sin(x) (7.10)

where the values of x are uniformly random distributed in the range of [0, 4]. The data is
split into training set (70%) and testing set (30%).

Assume that the developed model comes in the form
y=x (7.11)

First, we compare the performance of the granular output allocated by the three
proposed strategies (symmetrically constant allocation and fuzzy rule-based model
allocation after optimization), the V values versus the different levels of information

granularity are plotted in Figure 7.3. Here the control coefficient £ is set as 1. With the

105



first allocation strategy, Q raises at the beginning, since the coverage increases with
the extending level of information granularity. Then, O declines gradually after the
coverage reaching the extreme level (in most of cases cov = 1) and specificity values
keep going down until sp = 0. The improvement coming from the other two strategies
is quite visible. The values of Q are not only higher but also it increases when the
predetermined level of information granularity € is lower, then it maintains at a higher
level. Thus, we reckon that, with the optimization respecting to the objective function,
it is helpful to make a tradeoff between the conflicting two criteria (coverage and
specificity). In addition, not surprisingly, strategy 3 is better than strategy 2, because it
is more flexible to optimize. The results are also confirmed in Table 7.1. The overall
performance associated with the third strategy is superior to the performance produced
by the two other strategies. Furthermore, the number of rules has effect on the output
performance. No surprisingly, the more number of rules, the fuzzy model is more
capable to capture the characteristic of the target data, so the overall performance of
the granular output is better.

In Figure 7.4 and Figure 7.5, we display the details of coverage and specificity
corresponding to the level of information granularity. Generally, coverage increases
and specificity decreases with the increasing value of information granularity ().
Nevertheless, due to the optimization procedures in the strategies 2 and 3, the coverage
improves faster and the specificity is able to retain at a certain level. Particularly, the
specificity results of the two strategies are relatively similar, which indicates that the
optimization regarding to the objective function is conducive to maintain the
specificity of the granular output. Meanwhile, the symmetric and asymmetric
allocation strategy have different impact on coverage performance. In strategy 3, the
coverage can quickly reach 100%, while in strategy 2, the coverage never approaches
to 100% since it has to make tradeoff with another conflicting criterion (specificity). In

conclusion, the asymmetric allocation strategy should be the more reasonable option.
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Figure 7.3. Plots of the fitness values (Q) vs. the level of information granularity
(e): (@) c =5, (b) c =10, (c) ¢ = 20. solid lines: training data set, dashed lines: testing

data set.

Table 7.1. V values of granular models’ outputs

Data set c=5 c¢=10 ¢=20
Training 0.2447 0.2447 0.2447

Strategy 1 )
Testing 0.2460 0.2460 0.2460
Training 0.4955 0.5290 0.5527
Strategy 2 )
Testing 0.4857 0.5219 0.5512
Training 0.5581 0.7015 0.7365
Strategy 3 )
Testing 0.5590 0.6922 0.7289
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Figure 7.4. Plots of the Coverage vs. the level of information granularity (¢): (a) ¢
=5, (b) ¢ =10, (c) ¢ = 20. Solid lines: Training data set, Dashed lines: Testing data

set.
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To demonstrate some detail of the allocation of information granularity obtained
by the third strategy, we report some more results taking that the predetermined level

of information granularity is 0.4 as an example. In Figure 7.6, we display the
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distribution of the optimized fuzzy numbers (sv;). The change of the distributions after
optimization is quite visible. Then, in Figure 7.7 we illustrate the distribution of the
allocated information granularity (-&7, &'). The dots in the plots are shown the
corresponding error of the model outputs, which is calculated as (target - y)/range. As
we can see from the figures, the distribution is related to the error of target output.

Moreover, the more number of rules, the more elaborated the distribution is.
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Figure 7.8. Plots of the performance of the fitness function in successive

generations (¢ = 0.4): (a) c =5, (b) c =10, (c) ¢ = 20.

The optimization processes are included in Figure 7.8. It is noticeable that the most
visible improvement occurs at some initial generations of the method and then beyond
some certain generations (60 ~ 200) there is no increase in the values of the fitness
function. To illustrate an overall impression of the granular outputs and numeric
output, in Figure 7.9 and Figure 7.10, the target output, model output and granular
outputs are plotted. As it is seen, even though the model output is inaccuracy, the
granular output covers the most of target output and captures its main characteristic.
Furthermore, the number of rules of the fuzzy rule-based model for allocation has
significant effect on the granular output. Generally, the more number of rules, the
more specific the granular output is.

In Figure 7.11 and Figure 7.12, we contrast 3 different values of the control
coefficient B to demonstrate its impact on the output performance. As shown in the
figures, if f is 0, the fitness function is only focused on coverage criterion, so the

granular intervals are too extended. If f equals 3, the specificity has too much
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influence on the overall performance to have excepted coverage performance. By

contrast, the outcomes are much better when /S is set as 0.5 or 1. In conclusion, it is
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7.4 Summary

The study offered the way of designing granular models through the development
of the granular output space. The development of the model is composed of the two
essential phases. The first one concerns a formation of the numeric model while in the
second phase the model becomes endowed with a granular output space. The
optimization of the space engages information granularity being viewed as the design
asset whose optimal allocation helps maximize the performance index capturing the
quality of information granules formed by the model, namely the coverage and the
specificity factor. In contrast to the formation of the granular parameter space studied
so far (completed either through allocation of information granularity across
parameters of the model or the input space), the alternative presented in this study

comes with competitive results and associates with a lower computing overhead.
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Chapter 8

Major contributions, conclusions and Future Studies

This thesis focuses on the development and evaluation of granular fuzzy
rule-based models to offer a new and attractive system-modeling methodology at the

level of information granules.

8.1 Major contributions

The methods proposed in this thesis revolve around the main procedures and
components of a fuzzy rule-based model framework to establish a higher-level granular
form. The major contributions proposed in this dissertation are summarized as follows,

(1) We have augmented the granulation-degranulation scheme, which is beneficial
to reduce the deterioration of the reconstruction results and to enhance the
performance of the overall granulation-degranulation scheme. The improved
granulation-degranulation scheme is meaningful for generating better clusters
(prototypes) for building fuzzy rule-based models.

(2) We consider the process between the information granules by using logic
operators. In Granular Computing, there is also a need for aggregating several
information granules into a single output granule. Therefore, we present a study
to characterize them by analytical properties. This study is helpful for selecting
an appropriate logic operator for fuzzy modeling.

(3) We consider three main functional modules of fuzzy rule-based models to
develop them to granular forms. First, we focus on the concept of granular input
space. The direct linkages have been identified between the granular space
formed in this way and the analysis of the impact of input variables in the
already developed models. Second, we design granular fuzzy rule-based models
by granulating several components of processing modules of fuzzy models such
as the interactive rule matrix, the prototypes and parameters in the condition

parts of rules, and the parameters of the conclusion parts of rules. Finally, we
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offer a way to design granular models through the development of granular

output space.

8.2 Conclusions

Overall, the studies discussed in this dissertation show some interesting

conclusions:

(1) The experimental studies demonstrate that the resulting granular outputs could
cover most of target evidences as specifically as possible, which makes the
granular output of the fuzzy rule-based model more tolerant to error and of
higher practical relevance.

(2) We show that the coverage and specificity measures serve as the two essential
measures —the coverage and specificity— that quantify a well-rounded way of
expressing the quality of the granular model. The proposed granular fuzzy
rule-based models are evaluated and analyzed by invoking two criteria guided
by principle of justifiable information granularity. Basically, the increase in
specificity comes at the expense of the decreasing values of coverage, which is
realized as the conflicting nature of the coverage and specificity criteria. The
characterization of the granular model in terms of its coverage-specificity
relationships—or the global descriptor coming in the form of the AUC (V)
measure—becomes beneficial to a holistic assessment of the quality of the
rule-based models. These two components are crucial in the evaluation of the
performance of the granular fuzzy rule-based models.

(3) To optimize the allocation of the information granularity of granular fuzzy
rule-based models, we usually tested and implemented several scenarios: for
instance, different number of prototypes (rules) and uniform and non-uniform
allocation strategies. Generally, the fuzzy rule-based models constructed with
more rules perform better, as they are better able to capture the data structure.
The non-uniform strategy often provides better performance because of its

flexibility in the allocation of information granularity. The complexity of
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models and allocation strategies is related to both performance and efficiency;
therefore, we need to have the trade-off in mind for setting the models.

(4) The optimizations we carried out in the experiments implement PSO, DE and
their variants, because in most cases the fitness function is nonconvex or not
deferentially guaranteed. In the experimental studies, these population-based
search algorithms show robustness, performance, and implementation

flexibility for the allocation of information granularity.

8.3 Future Studies

Several promising directions are worth placing on the research agenda of future
research. We may highlight three of them by exhibiting some potential and direct
practical implications:

(1) In the realm of reconstruction of information granules, First, various
alternatives of interaction matrices could be considered, especially for highly
dimensional problems. Second, one could consider this approach as a certain
way of coping with a non-stationary environment (say, data streams) and in
this setting, the introduced adjustment mechanisms endow the method with the
required calibration capabilities. The quality of the clusters produced for some
initial data in the stream could be improved not by running clustering on a new
data but rather by adjusting the existing structure in the way discussed above.
In this sense, the clusters are built in an evolutionary manner rather than in an
abrupt way when moving from one segment of the data stream to another and
in this way, retain a desirable property of continuity.

(2) Engagement of other formalisms of Granular Computing. The principles of
granular fuzzy models were outlined with the use of intervals or fuzzy sets.
While this was done for illustrative purposes as being conceptually the simplest
and computationally feasible, the fundamentals can be used exploited by

involving other formal settings.
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(3) Designing of granular models of higher type. Following the design process
discussed in this study, the numeric parameters of the model are transformed
(generalized) into information granules of Type-1. To enhance the coverage of
the data, the granular parameters and constructions can be further generalized to
build information granules of Type-2 (say, granular intervals generalizing
intervals with numeric bounds to the intervals whose bounds are information
granules themselves).

(4) The concept of granularity can be contrasted with the ideas of granular input,
parameters, and output space in terms of their performances. Along the same
line, a combined topology of granular multiple modules can be considered and
optimized, which comes from a hybrid approach of granular modeling.

(5) Two criteria are used to evaluate the performance of a granular fuzzy rule-based
models: coverage and specificity. We are aware of the conflicting nature of
these two indices, but we concentrated on the construction of the granular fuzzy
modeling in previous studies and followed a relatively simplified strategy: We
calculated the AUC of the two indices or multiply them into a global indicator
for the optimization. The weakness of this process is obvious, so a viable
alternative is to invoke bi-objective optimization with the intent to establish

some sound trade-offs in a family of solutions.
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