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Abstract

Proportional, integral and derivative (PID) controller tuning guidelines in process

industry have been in place for over six decades. Nevertheless despite their long

design history PID tuning has remained an ’art’ and no single comprehensive solution

yet exists. In this study various considerations, with new and different perspectives,

have been taken into account in PID tuning design. This study explores the issue of

PID tuning from a practical point of view with particular focus on robust design in

the presence of typical problems in process industry: process changes, valve stiction

effects and unmeasured disturbances.

The IMC tuning rule is recommended for setpoint tracking, while in the case

of regulation, a newly proposed tuning rule, based on a combination of IMC and

Ziegler-Nichols method, is demonstrated to give satisfactory results. The results were

evaluated by simulation and were also validated on a computer-interfaced pilot scale

continuous stirred tank heater (CSTH) process.
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ε : IMC filter time constant τi : integral time

ω : frequency θ : deadtime

ωgc : gain crossover frequency θ0 : original deadtime
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Chapter 1

A Literature Review on PID
Controller Tuning + Thesis
Objectives

1.1 Preface

PID controllers have been used in industry for more than seven decades [31]. From the

onset of their introduction, the problem of effective tuning of the controllers has been

an active area of research and discussion. One of the first pioneers of PID controller

tuning were Ziegler and Nichols who proposed a very simple and handy method for

regulatory control in 1942 [47]. Since then, a large number of methods have been

suggested to address this critical issue based on different design objectives. To this

date, the number of proposed tuning rules for PID controllers has surpassed one

thousand and still is increasing [31]. It has been reported that 293 tuning rules out

of 408 separately explored tuning rules were proposed after 1992 [31]. This chapter

covers some of important tuning rules found in the literature.

A survey in [19] revealed that of the PID controllers loops evaluated at a particular

time in industry, around 30% were operating in the manual mode and furthermore

65% of them were producing less variance in the manual than in the feedback mode.

These statistics clearly show poor tuning of PID controllers and that open loop control

in some instances delivered better results than closed loop control (see 2.1.1).

The tuning rules covered here are mainly concerned with Single Input Single

Output (SISO) systems. Other structures such as cascade and multiple inputs /

multiple outputs (MIMO) are not covered in this briefing.

The handbook of PI and PID controller tuning techniques by O’Dwyer [30] has

gathered a comprehensive collection of tuning rules and is certainly useful for looking

up a specific tuning technique.
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Some of the methods for PID controller tuning both in frequency and time domains

are presented in this chapter; however the content is not exhaustive due to the high

volume of research papers in this area. It may not be an exaggeration to say that

the most difficult review in control theory belongs to PID controllers due to the large

volume of literature in this field.

A couple of good review papers are used as the main framework of this chapter

and the reader can refer to these for a more detailed analysis. This author would like

to boldly acknowledge the great work of Unar et al. (1996) [41], van der Zalm et al.

(2004) [42], and O’Dwyer (2006) [31].

In the literature for PID controller tuning, the author sees a need for classification

of existing methods to present the tuning rules in a systematic manner.

1.2 Classical Classification of PID Controller Tun-

ing Algorithms

PID controller tuning methods can be divided into time domain and frequency do-

main methods. For each class, different types of algorithms have been proposed.

Time domain methods can be further subdivided to continuous cycling methods, op-

timization methods, and reaction-curve methods. For the frequency domain methods

we have pole placement methods and loop shaping methods. Figure 1.1 shows a tree

diagram of these structures.

Figure 1.1: Organization of various PID controller tuning methods
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The classification is based on the approach that each tuning rule uses to calcu-

late controller parameters. Nevertheless, overlapping between tuning categories does
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occur and the mentioned classes are not mutually exclusive. For example, the Ziegler-

Nichols technique belongs to both continuous cycling and reaction-curve method cate-

gories. The user can decide to choose any one based on the availability of data/model

and ease of the use. In addition to the algorithms in the above table, there are also

other nonconventional methods not reviewed here.

Rather than the inherent algorithm used in each tuning rule, it is also possible to

classify the tuning rules based on the computational method. Figure 1.2 depicts such

an organization.

Figure 1.2: Classification of PID controller tuning rules based on the computational
approach

Some old and new tuning techniques in each of the classes mentioned are described

in the following sections.

1.3 Time Domain Methods

1.3.1 Continuous Cycling Techniques

Continuous cycling technique consist of tuning rules which allow the process to reach

to the verge of instability and by observing the output response it is possible to

calculate tuning parameters.

The main advantage of this class is that they are model free and easy to perform.

However, a number of disadvantages of such methods are listed below [31]:

• Instability needs to be observed by increasing the proportional gain

• Unique performance could not be achieved due to the empirical nature

• The trial and error nature of the method

• The need to upset the process variable during the test

• Confounding of limit cycle with instability bounds

• Doubt in safety and practicality of the algorithm

Modifications to the main theory have been proposed to use decay ratio of 0.25 or

a phase lag of 135◦ instead of instability to mitigate some of the above concerns [30].
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Ziegler-Nichols Class of tuning rules

This class of tuning rules (which includes the Ziegler-Nichols rule and its modifi-

cations) tries to find the controller parameters by measuring the ultimate gain and

period of a system. The empirical procedure would be carried out as follows: First,

the controller is set to proportional only mode. By gradually increasing the controller

gain, one would finally encounter continuous cycling. By noting the period of oscil-

lations in the critically stable mode (Pu) and the controller gain which is referred to

as ultimate gain (Ku), it is feasible to calculate the PID controller parameters.

The Ziegler-Nichols tuning rule [47] was proposed in 1942 based on a number of

trial and error experiments conducted to produce 1/4 decay ratio for regulatory con-

trol. That decay ratio corresponds to a damping factor of 0.21 [42]. The disadvantage

of the Ziegler-Nichols tuning rule is that it is aggressive (but obviously that was not

the drawback at that time) and it also suffers from poor robustness [1].

Hang et al. [21] proposed a refined Ziegler-Nichols rule in 1991. They incorporated

a setpoint weighting factor to proportional action and claimed lower overshoots and

better setpoint tracking for their tuning rule. It is possible to show that such a

parameter adds a feedforward mechanism in addition to feedback.

Relay-Based Tuning

Sometimes instead of manually increasing the proportional gain, a relay generator

is used to produce the continuous cycling situation. This method was proposed by

Astrom and Hagglund in 1994 and was claimed as one of the most important method

commercially used [24]. In this technique, the ultimate period is read in the same

way as before while for ultimate gain the equality shown in Eqn. 1.1 can be used:

Ku =
4d

πa
(1.1)

Figure 1.3: Relay-based tuning schematic
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In the above equation, d and a represent relay and output oscillations amplitudes

respectively. Using a relay has two advantages over the previous method [42]. The
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first benefit of using a relay is that the process would not be driven to instability and

furthermore other points on the Nyquist curve could be identified by adding hysteresis

and integrators to the plain relay. A book on relay tuning was written by Yu in 2006

which can be served as a reference for more details [45].

1.3.2 Optimization Techniques

The idea for this class of tuning rule is to minimize a performance function of error

and time with determined orders. In this way, parameters which give the optimal

solution can be calculated. One general format of the optimization function is given

in Equation 2.24. These tuning rules are normally optimized to give good perfor-

mance for setpoint tracking or regulation in a system. The optimization methods are

powerful [5], they can solve whatever criteria are specified by the designer. However,

their drawback is that there can be several local minima for a system which could

’mask’ the optimal solution. Computational intensity is another concern for this class

of methods.

1.3.3 Integral of Error and Time Methods

These methods are formulated by optimizing (minimizing) a function of error and

possibly time with corresponding powers (weights). (See section 2.6.1 for examples

of these functions). When the speed becomes more important in the design, the cost

function would be penalized by higher orders of time. The choice of those orders is

hence a design factor based on problem conditions.

Lopez and coworkers [25] proposed a tuning rule for this class. However, among the

set of tuning rules in this category, ITAE is claimed (1990) to yield better performance

[32]. Nishikawa’s tuning rule [29] also received attention in the literature as a powerful

method based on an exponential time weighted ISE.

1.3.4 Linear Quadratic Regulator Methods

There are many tuning rules in the literature based on LQR techniques. The methods

proposed by Athans [6], Williamson [44], Parker [34], Calovic and Cuk [12] are a few

of these.

1.3.5 Reaction-Curve Techniques

This class of tuning rules, sometimes called step response methods, represents the

simplest form of calculating tuning parameters. The process is excited by a simple
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step test in open loop condition and some characteristic properties are then measured

[31]. Figure 1.4 depicts the details of such a procedure.

These methods are simple to carry out and were mostly proposed in the beginning

period of the tuning era. However, they do not always provide accurate models due

to disturbances in the process. A large step test might be required to achieve the

desired Signal to Noise Ratio (SNR) [36].

Figure 1.4: Reaction curve of a system
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An example of this category can be found in [47]. The Cohen and Coon tuning

rule [18] was proposed in 1953 for rejecting process disturbances and was designed

again based on the quarter amplitude ratio criterion and calculates the controller

parameters given an open loop step response. The tuning rule has the disadvantage

of poor (oscillatory) performance in some conditions.

In 2001, Mann [26] introduced the normalized deadtime factor and categorized

the FOPTD models into three regions based on that factor. It is possible to obtain

the tuning parameters based on desired overshoot for each category. The drawback

of this technique is that the tuning equations are rather complex.

1.4 Frequency Domain Methods

1.4.1 Pole Placement Techniques

These types of tuning rules rely on designing (placing) the closed loop poles of a

process. There are different approaches for doing that; some place only the closed
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loop poles, others may not only place the poles but also shape the zeros as well. In

contrast, by using conventional PID controller, it may not be possible to place all of

the poles, so only the dominant pole is placed for this scenario.

The design notion in this class is based on re-assigning the system’s poles with

faster modes. The drawback, however, is that some modes may become uncontrollable

due to pole/zero cancellation and the performance degrades if they become excited.

Direct Synthesis

Direct synthesis allows an engineer to design the analytical solution for a closed loop

dynamic of a given process. Equivalently, all of the zeros and poles of a system would

be placed by using such techniques. It is straightforward to see that for first order plus

time delay (FOPTD) and second order plus time delay SOPTD models, PI and PID

controllers can help achieve the desired performance. The number of poles that can

be placed is equal to the number of controller parameters. Therefore these techniques

can be used for process models with the maximum order of 2 if a PID controller is

selected [42].

Dominant Pole Design

Contrary to the direct synthesis method, it is not always possible to assign all of the

poles and zeros of a system using a PID controller, this case mostly happens in more

complicated processes with higher orders. For such cases, the design would mainly

focus on placing the slowest or dominant pole of a system.

Internal Model Control

IMC design technique is one of the popular methods used in control theory. It has

some attractive features which distinguish it from others as a powerful and robust

design tool. Accordingly special emphasis is given to this method in this chapter and

in the whole thesis. Consider the following IMC schematic:

Figure 1.5: Original IMC structure
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In this block diagram, CIMC(s) represents the IMC controller while P (s) and Pn(s)

represent the actual and nominal models of the process, respectively. Interestingly,

the above diagram can be rearranged and redrawn as a conventional feedback loop

as shown in Figure 1.6.

Figure 1.6: Re-arranged IMC structure
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In this figure, the IMC controller and the conventional controller one can be

converted to each other by the following equations:

C(s) =
CIMC(s)

1− CIMCPn(s)
(1.2)

CIMC(s) =
C(s)

Pn(s)[1 + C(s)]
(1.3)

One of the excellent features of IMC formulation is that it can take into account

the uncertainties inside the process model and hence it is worthy of attention in

robustness analysis.

Using the above configuration, the dynamics from the setpoint variable (SP) and

disturbance variable (DV) to the process variable (PV) can be explained via:

Y (s) =
CIMC(s)P (s)

1 + CIMC(s)∆P (s)
Ysp(s) +

1− CIMC(s)Pn(s)

1 + CIMC(s)∆P (s)
D(s) (1.4)

Let ∆P (s) denote an additive model plant mismatch (i.e. P (s) − Pn(s)). From

the setpoint tracking criterion ( Y (s)
Ysp(s)

= 1) and the disturbance rejection criterion

(Y (s)
D(s)

= 0), we can deduce that the following relation should be hold:

CIMC(s) = Pn(s)−1 The IMC controller acts as exact inverse of the nominal process
(1.5)

The procedure to design an IMC controller is explained in the next section.
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IMC Design Procedure [10]

Consider a process with a transfer function of

Pn(s) =
N(s)

D(s)
e−θs (1.6)

in which N(s) and D(s) represent the numerator and denominator polynomials

of the process. Assuming that the process is stable and there are no RHP zeros, the

IMC controller has the following structure:

CIMC(s) =
D(s)

N(s)(εs + 1)r
(1.7)

Here r denotes the relative order of N(s)
D(s)

1 and ε is the so called IMC filter time

constant which plays an important role in the robust design of a system. To avoid

excessive amplification of noise, a lower limit on ε needs to be imposed based on [10]:

ε ≥
{

lim
s→∞

(
D(s)N(0)

20srN(s)D(0)

)}1/r

(1.8)

As mentioned earlier, ε remains a user-defined parameter based on design require-

ments (for example to accommodate model uncertainty). For a special case of a

FOPTD process, the IMC controller has the form τs+1
Kp(εs+1)

.

The design method for models with RHP zero and also inherently unstable pro-

cesses is a little bit different and can be found in the literature ([28] and [10]). One

issue involving IMC technique is that it does not always result in a PID controller

structure. This necessitates some approximations to derive the tuning rules.

The IMC concept was originally introduced in 1980 by Morari and his colleagues

work [27]. Other researchers in this field are Rivera et al. [35], Chien et al. [14]

and Chia et al. [13]. IMC methodology is model based and is claimed to result in

better responses compared to other methods [35]. In [35], the following advantages

are mentioned for IMC:

• Direct incorporation of uncertainty in IMC design

• The user defined desired closed loop time constant can manipulate the trade-off

between control performance and robustness against model plant mismatch

A list of IMC-based controller settings was developed by Chien and Fruehhauf in

1990 [15]. IMC has proved to be a popular and robust tuning rule in both theory and

1The relative order of the polynomial fraction of (A(s))/(B(s)) is defined as the order of B minus
the order of A
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practice. One of the advantages of IMC is the introduction of the desired closed loop

time constant which can be used by operators to manipulate the degree of robustness.

The IMC tuning rule is suitable for setpoint tracking; however, it may perform poorly

against disturbances.

Vilanova (2008) [43] proposed a robust IMC based ISA tuning rule for setpoint

tracking. Two user defined parameters are incorporated, TM (desired closed loop time

constant) to manipulate the speed of response and the z factor for direct tuning of

robustness. The main advantage of the tuning rule is an increased degree of freedom

for the design, but at the same time that can also be assumed as its disadvantage.

There are no clear guidelines for specifying these parameters which may be sometimes

confusing. The tuning rule is discussed more thoroughly in chapter 3.

Shamsuzzoha and Lee (2007) [37], reported that IMC demonstrates sluggish dis-

turbance rejection, especially when the deadtime to time constant ratio is small. To

alleviate this problem they proposed an IMC-PID tuning method for improved dis-

turbance rejection. It was claimed that the proposed rule provides better response

for lag-dominant processes where the controllers are tuned to have the same degree

of robustness based on maximum sensitivity.

An extension of IMC design for digital PID controllers has been presented by Zhu

and Saucier [46].

1.4.2 Loop Shaping Techniques

These techniques try to shape the Nyquist curve of a given system. Different frequency

domain indices can be used such as gain and phase margins and sensitivity maxima

to obtain the desired frequency behavior. Those indices normally impose circular

constraints on the Nyquist plain and the curve should be designed to fall outside

those regions. Figure 2.7 shows an example of a loop shaping design. It is normal to

solve an optimization problem simultaneously with the loop shaping.

The effects of controller parameters on a Nyquist plot are graphically shown in

Figure 1.7.

Astrom and Haglund developed their (A-H) tuning rule in 1984 [3]. The method-

ology is based on the effect of each controller parameter in shaping the Nyquist curve

as described in [5]. The advantage of this method is that the controller can be de-

signed based on a desired gain and phase margin and does not need a process model,

however, it has been reported that it will not perform well in cases of high deadtime

[41].

Astrom and Hagglund [4] also suggested the A(strom)MIGO tuning rule for in-
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Figure 1.7: The Nyquist curve shaped by PID controller parameters
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creased robustness. The tuning rule is a modification of the MIGO tuning rule which

alleviates the problem of the derivative cliff [5]. The original term stands for M-

constrained Integral Gain Optimization and therefore tries to maximize the integral

gain which is an important factor in regulatory control. The tuning is calculated

subject to the constraint of 1.4 for maximum sensitivity.

Ho et al. [22] also proposed a tuning rule based on gain and phase margins for

PI and PID controllers. Due to the nonlinear relation of stability margins in respect

to controller parameters, some approximations are made in the tuning rule to get an

analytical solution. The authors suggested a PI controller for FOPTD and a PID

controller for SOPTD models. It has been reported that the performance of this

tuning rule is comparable to IMC [41].

A frequency domain method proposed by Barnes et al. [7] makes use of the least

squares and tries to fit the system to the desired open loop plot.
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1.5 Thesis Objectives

There are a large number of PID controller tuning rules in textbooks and generally

in the literature for the control design. However for an engineer it is difficult to

decide upon which to employ. The reason is simple, there is less attention to develop

a guideline and manual for making the decision than the proposition of the tuning

rules themselves.

The focus of this MSc thesis is on analytical tuning rules of PID controller for

FOPTD processes and the theme is to evaluate the robustness of such techniques. A

quite recent robust technique (ISA-based IMC by Vilanova [43]) was picked as the

initial starting point for this arena. During the reproduction of the results in the

Vilanova’s paper, the idea of using a negative derivative action was suggested by the

tuning rule for increased robustness. A considerable amount of time was spent on

that idea to show the usefulness of application of such a structure. The results are

presented in the next chapter 3.

The next effort was to evaluate and compare some of the tuning rules in the

literature. It is difficult to tell which tuning rule is the best even when one considers

the same design objectives in section 4.2. The tuning rules are still evolving and

on the other hand research papers only provide comparisons with a handful of well

known techniques. A lack of standard benchmarks and a comprehensive evaluation on

proposed tuning rules are among the shortcomings in this context [31]. The other fact

on the ground which is often ignored is the presence of process abnormalities. Those

may include valve stiction, Model Plant Mismatch and noisy measurements. The

describing equations for some of these phenomena (especially valve stiction) are quite

complex and an analytical solution may not be feasible to be obtained. To perform

such a global evaluation, the TUNIX Simulation Package was developed under the

MATLAB environment to carry out and organize computer simulations. The lack of

such a standard and convenient tool is highly felt in this regard. For more info refer

to Appendix D.

This research effort deals with PID controller tuning in a different and unique way.

First, the tuning rules are categorized based on servo and regulatory requirements.

Then, for each category an evaluation and comparison is conducted to analyze the

robustness behavior. A new tuning rule is also proposed for regulatory control to fill

the gap which was seen by the industry practitioners. The results in the simulation

environment are furthermore validated on a real pilot process. The content was

organized to be practical and results seemed to be of interest for some of the engineers

working in industry. Thus this thesis contributes comprehensiveness and practicality
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to the field of PID controller tuning.

1.6 Organization of the Thesis

In chapter 1 we discussed about various PID controller tuning techniques in both fre-

quency and time domains. In chapter 2, some relevant basic theory for this thesis is

covered. In chapter 3 one of the robust techniques proposed by Vilanova is described.

Some well-known techniques in a real simulation environment are evaluated and com-

pared in the presence of prevalent process abnormalities in chapter 4. General tuning

guidelines for PID controller are also suggested in this chapter. In chapter 5 some of

the simulation results are validated on a real continuous stirred tank heater (CSTH)

case study. Conclusion are drawn and future directions for this work are suggested

in chapter 6.

Organization of the appendices is as follows: Appendix (A) consists of the paper

titled ”Guidelines for Robust PID Controller Tuning of FOPTD Processes” which has

been submitted to the CSChE 2009 conference in Montreal. Appendix (B) covers the

details of identification of the CSTH process using first principle models and exper-

imental approaches; Appendix(C) contains an introductory talk about MATLAB’s

OPC toolbox which is useful for connecting the MATLAB environment to read/write

real process variable values. The ”TUNIX Simulation Package” an interactive and

simple GUI designed by the author is introduced in Appendix (D) to automate and

facilitate the study throughout this research work.
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Chapter 2

Introduction to Theory

2.1 The Control Problem

The basic concept of control is to maintain output (sometimes called the process

variable) as close as possible to the setpoint or the target. To illustrate this, consider

the following conventional feedback loop:

 

_ 

+ 

Di 

V(s) C(s) 

Ysp 

+ 
N 

Y 

P(s) 

Figure 2.1: Schematic of a feedback single input - single output (SISO) loop

For a linear system, which is the case in this study, the dynamics could be shown

as transfer functions using the Laplace transform and the Laplace variable s. The

symbols in the figure correspond to:

Ysp : Process setpoint Y : Process variable or Output

P : Process model C : Controller model V : Valve model

Di : Input (Load) disturbance N : Measurement noise

The dynamics from different inputs to the process output are given by the following

equations:
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GYsp→Y =
Y (s)

Ysp(s)
=

C(s)V (s)P (s)

1 + C(s)V (s)P (s)
(2.1a)

GDi→Y =
Y (s)

Di(s)
=

P (s)

1 + C(s)V (s)P (s)
(2.1b)

GN→Y =
Y (s)

N(s)
=

−C(s)V (s)P (s)

1 + C(s)V (s)P (s)
(2.1c)

As seen here, the stability of all transfer functions is determined by a single char-

acteristic polynomial. However, the numerator terms are different and should be dealt

appropriately according to control objectives.

2.1.1 The Control Dilemma

Consider Figure 2.2 where the process output and control action for a first order plus

time delay (FOPTD) process are depicted. Two cases were investigated: one where

no feedback is present and the other where a PID controller takes care of the process

control.
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Figure 2.2: Manual control gives better dynamics!

Interestingly, the oscillatory response belongs to the feedback system and the

smooth output is obtained using no controller. Hence, using no controller is better

than using one. This indeed happens when the controller is mistuned with respect

to the process model. The phenomenon highlights the need for reliable and robust

tuning method.

2.2 Choice of Process and Controller

The main focus of this thesis is on First Order Plus Time Delay (FOPTD) systems.

FOPTD models are quite well used for approximating process behaviors and are most
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suitable for overdamped or nonoscillatory dynamics. The input-output behavior can

be represented by:

P (s) =
Kp

τs + 1
e−θs (2.2)

The process gain, time constant, and dead time are denoted by Kp, τ , and θ,

respectively, in the above equation. FOPTD models are also sometimes known as

three parameter models.

The PID controller dynamics in the time domain is shown by the following differ-

ential equation:

u(t) = Kc · (e(t) +
1

τi

∫ ∞

0

e(t)dt + τd
de(t)

dt
) (2.3)

I / s e u 

 D × s 

P 

 

Figure 2.3: Various actions of an ideal PID controller, P = Kc, I = Kc/τi, and
D = Kcτd

Kc is the controller gain, τi is the reset or integral time, and τD is rate or derivative

time. The three different actions are illustrated in Figure 2.3.

The PID controller structure in this study is chosen as a noninteractive industrial

ISA controller [43] with a derivative filter having a transfer function of:

C(s) = Kc · (1 +
1

τi · s +
τd · s

τf · s + 1
) (2.4)

Each PID controller parameter has a philosophy behind its usage; while the con-

troller gain takes care of the speed of response, integral time eliminates the offset and

furthermore keeps a past memory of the system’s behavior. The derivative part is

used to add an anticipatory feature for future dynamics. The secret behind PID con-

troller success is its simplicity to be easily understood by operators and its ability to

do the control task for most of control loops using only the three tuning parameters.

A simplistic design rule of thumb suggests settings such as τi/τd = 4 1 and τf/τd = 0.1

[23].

The high frequency gain for above controller is computed as:

1The same source [23] claims a value close to 2.5 as an optimal solution for most stable plants
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lim
ω→∞

|Gc(jω)| = Kc · (1 +
τd

τf

) (2.5)

To avoid excessive amplification of noise inside the feedback loop Brosilow and

Joseph [10] suggest a controller design that ensures |Gc(j∞)
Gc(0)

| < 20.

The expanded form of the controller equation is sometimes useful in PID controller

design:

C(s) =
a2 · s2 + a1 · s + a0

b2 · s2 + s
(2.6)

The two forms are equivalent and can be converted easily using the following equa-

tions:

Kc = a1 − b2a0 τi =
a1

a0

− b2

τd =
a2

a1 − b2a0

− b2 τf = b2 (2.7)

2.2.1 Time Delay Approximation

One of the difficult factors in process control is the time delay due to the transporta-

tion or analysis lag. This is an irrational term from a mathematical point of view.

However, it can be approximated in terms of rational transfer functions using Taylor

and Pade expansions. First and second order Taylor series expansions for time delay

can be written as:

e−θs ≈ 1− θs ≈ 1

1 + θs
Fist Order Taylor (2.8a)

e−θs ≈ 1

1 + θs + θ2s2
Second Order Taylor (2.8b)

First and second order Pade expansions for time delay can also be written as:

e−θs =
e−

θ
2
s

e+ θ
2
s
≈ 1− θ

2
s

1 + θ
2
s

First Order Pade (2.9a)

e−θs ≈ 1− θ
2
s + θ2

12
s

1 + θ
2
s + θ2

12
s

Second Order Pade (2.9b)

Pade approximations are twice as accurate as Taylor approximations, meaning a

2nd order Pade would do the job of a 4th order Taylor approximation.

Figure 2.4 compares the trends of those approximations against a real function.

The 2nd order Pade approximation seems to give enough accuracy up to critical

frequency, however it has a complicated form which makes its use impractical in

some techniques.
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2.3 Model Order Reduction

Many chemical processes behave in a complex way. That is they behave nonlinearly or

have a high order linear model. Nevertheless, it is feasible to approximate them with

a low order model which captures most of their dominant dynamics. In most of the

studies done on these processes, three major classes of models are used: Integrating,

FOPTD, and SOPTD (second order plus time delay). The remaining problem is

how to approximate our process effectively. Based on the situation we propose two

solutions:

1. If identification data is available

In this case we first try to identify a model with low order, if the correlation

tests fail, we might consider two options. One is to let the data fit our desired

model even if it violates the confidence intervals. The second wiser option in

the mind of the author is to isolate the slower dynamics (which are of interest

in chemical engineering) and feed them back to the identification process. For

this purpose a low-pass filter could be used.
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2. If only a high order LTI transfer function is available

For this case, we follow the half rule mentioned by Skogestad. This method does

not address nonlinear and integrating processes and another technique should

be used instead.

2.3.1 Skogestad’s Half Rule [38]

This technique depends on defining an effective time delay for our model. As men-

tioned, the time delay could be approximated by a first order Taylor expansion (see

Equation (2.8a)). That indeed means that the lags and leads inside a transfer function

are convertible to an equivalent amount of delay and vice versa.

In this method, the effective delay will consist of the true time delay, process

leads, half of the dominant time constant, and is inclusive of all other minor ones.

The exact algorithm is as follows;

Let us assume that the process is represented by:

G(s) = Kpe
−θ0s

∏m
j=1 (βjs + 1)∏n
i=1 (αis + 1)

(2.10)

where αi are process time constants in a descending order dominated by α1. It

is desirable to approximate the above model by an SOPTD system with a transfer

function of the type:

G(s) =
Kpe

−θs

(τ1s + 1)(τ2s + 1)
(2.11)

Clearly, a FOPTD model could be obtained by setting τ2 = 0

• Calculating the time constants

for a FOPTD system we consider:

τ1 = α1 +
α2

2
and τ2 = 0 (2.12a)

θ = θ0 +
α2

2
+

n∑
i=3

αi (2.12b)

For an SOPTD we could modify the equations to:

τ1 = α1 and τ2 = α2 +
α3

2
(2.13a)

θ = θ0 +
α3

2
+

n∑
i=4

αi (2.13b)
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• Adjustment for negative zeros:

The associated time constants are added to the delay calculated in the previous

section:

θ′ = θ + |β| = θ − β (2.14)

• Adjustment for small positive zeros:

The associated time constants are simply subtracted from the delay calculated

in the previous section

θ′ = θ − β (2.15)

• Adjustment for large positive zeros (if β > θ/2):

In this case, the zero should not be subtracted from the modified delay. Instead

it could be canceled by a larger time constant:

βjs + 1

αis + 1
=

1

(αi − βj)s + 1
(2.16)

It is interesting that this technique is derived intuitively. Half of the second dominant

pole is equally divided between the effective time constant and the delay. In this way

a faster response could be expected for tuning the controller. It was claimed that this

technique gives good results [38].

2.4 Process Abnormalities

The dynamics of PID controllers designed using some of conventional methods show

excellent and satisfactory trends in simulation. Nevertheless, the same structure in

a real process may not function accordingly. This deviation from ideal conditions is

due to abnormalities and nonlinearities present in the process which are not consid-

ered in the design process. They may include valve stiction and saturation, model

uncertainty, and measurement noise. Modeling valve stiction is not a trivial job;

however a brief explanation is borrowed from [17] to complement the analysis. The

model designed based on this definition is used for process simulation. The interested

reader can refer to the book by Choudhury et al.(2008) [16] for a more comprehensive

discussion.

2.4.1 Valve Stiction

One of well-known abnormalities prevailing in the process industry is valve stiction.

The term ”stiction” was originally created by combining the two key terms of ”static
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friction”. Based on a study by Bialkowski [8] 30% of all oscillatory responses in an

average plant are due to valve stiction, thus the impact of this phenomenon needs to

be addressed.

The first step in understanding this nonlinear phenomenon is to devise a model

which can be used for simulation. Modeling requires an in depth knowledge about

the real mechanism of stiction, such as mass of moving parts, spring constant and

other forces inside a conventional valve. Some approaches to this can be found in

the literature and it is initially desirable to define some of the related terminologies

quoted from Choudhury, Thornhill and Shah [17]. These are the standards used by

the American National Standard Institute (ANSI) to describe the valve stiction.

• Backlash : ”In process instrumentation, it is a relative movement between

interacting mechanical parts resulting from looseness when the motion is re-

versed.”

• Hysteresis : ”Hysteresis is that property of the element evidenced by the de-

pendence of the value of the output, for a given excursion of the input, upon

the history of prior excursions and the direction of the current traverse”

• Deadband : ”In process instrumentation, it is the range through which an

input signal may be varied, upon reversal of direction, without initiating an

observable change in output signal.”

• Deadzone : ”It is a predetermined range of input through which the output

remains unchanged, irrespective of the direction of change of the input signal.”

The effects of these parameters can be seen in Figure 2.5(a). The stiction model

proposed by [17] is used in this thesis. Figure 2.5(b) explains the mechanism and

stages of a full cycle valve stiction.

Basically, stiction causes the manipulating variable (MV) to behave differently

from the the controller output (OP) (see the block diagram in Figure 2.1). Stiction

only happens when the valve comes to a stop which is the case when the control

action changes directions.

Figure 2.5(b) consists of four consecutive phases: deadband, stickband, slip-jump

and a moving phase. To describe a full cycle, suppose that the valve is stuck and at

rest at point (A). As the controller output increases, the valve does not move until the

controller output overcomes the deadband (B) in addition to stickband (C). When

the controller output reaches this point the valve undergoes a little slip-jump until

point (D) and it continues through the moving phase to point (E). The valve could
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Figure 2.5: (a) Dynamics of hysteresis, deadband, and deadzone (adopted from
ANSI/ISA-S51.1-1979) and (b) The relationship between OP and MV in the presence
of valve stiction, Courtesy of Choudhury et al. [17]

also stick during this phase due to slow movement. The second half of stiction period

is generally the exact reverse of the first part.

The nature of a stiction problem is based on the original cause. Some stiction

scenarios are depicted in Figure 2.6. Each row represents a possible case starting

from no stiction. The left column shows the variations of MV and OP with time

while the right column shows the trends of these parameters against each other.

2.4.2 Model Uncertainty

Model uncertainty or Model Plant Mismatch (MPM) is a prevalent condition in the

process industry. It refers to the case when the identified model does not match the

real process. The uncertainty could happen in two forms: first when there exists a

nonstructural mismatch, that is, the model structure is correct but the parameters

are miscalculated and second when model structures such as model order do not

match each other (i.e., structural mismatch). Two important variables can be used

to quantify the mismatch, multiplicative and additive model errors. We denote the

uncertainty by ∆(s) and the relations between the real process and model are then:
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P (s) = Pn(s) + ∆a(s) additive (2.17a)

P (s) = 1 + ∆m(s)Pn(s) multiplicative (2.17b)

P(s) and Pn(s) represent the real and nominal models. Therefore

∆a(s) = P (s)− Pn(s) additive (2.18a)

∆m(s) =
P (s)− Pn(s)

Pn(s)
multiplicative (2.18b)

It is usually hard to obtain an exact mathematical equation describing the mis-

match; despite that, it is normal to define an upper bound or confidence interval for

the modeling error which can easily be used for derivations.

l(ω) ≥ max
ω

(|∆(jω)|) (2.19)

2.5 Nominal Sensitivity Functions

Sensitivity functions are important variables in linear time invariant (LTI) systems.

They are closely related to system’s dynamic Equations (2.1a), (2.1b), and (2.1c)
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which describe the feedback behavior. By definition [20]:

T (s) =
C(s)P (s)

1 + C(s)P (s)
=

Y (s)

Ysp(s)
= GYsp→Y (2.20a)

S(s) =
1

1 + C(s)P (s)
=

Y (s)

N(s)
= GDo→Y (2.20b)

SD(s) =
P (s)

1 + C(s)P (s)
=

Y (s)

Di(s)
= GDi→Y (2.20c)

SU(s) =
C(s)

1 + C(s)P (s)
=

Y (s)

U(s)
= GU→Y (2.20d)

Given these equations, sensitivity functions are called:

T (s) : Nominal complementary sensitivity

S(s) : Nominal sensitivity

SD(s) : Nominal input-disturbance sensitivity

SU(s) : Nominal control sensitivity

The nominal sensitivity function is actually the transfer function from the disturbance

to the process variable and the complementary sensitivity shows the dynamics from

the setpoint to the process variable. The philosophy behind these names is explained

in the next section.

Sensitivity functions are important factors in representing the trade-off between var-

ious control objectives and impose important constraints on the system’s robustness.

Sensitivity functions in Equations (2.20) exhibit some interesting properties. While

the sensitivity function(S) is a measure of how the system rejects disturbances, it is

also a measure of the degree of robustness as it will be discussed in a later section.

Note that the sum of the sensitivity and complementary sensitivity functions is always

equal to unity:

S(s) + T (s) = 1 (2.21)

2.5.1 Sensitivity and Model Uncertainty

Consider the closed-loop transfer function from a setpoint to the process variable,

denoted by T(s)

T (s) = GYsp→Y =
P (s)C(s)

1 + P (s)C(s)
(2.22)

The effect of P(s) on T(s) can be investigated by taking the derivative of the above

equation:
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∂T (s)

∂P (s)
=

C(s)[1 + P (s)C(s)]− C(s)2P (s)

[1 + P (s)C(s)]2
=

C(s)

[1 + P (s)C(s)]2

∂T (s)

T (s)
=

1

1 + P (s)C(s)

∂P (s)

P (s)
= S(s)

∂P (s)

P (s)
(2.23)

We see the sensitivity function here plays an important role in determining the

robustness of the system to changes in process dynamics. Based on Equation (2.23), it

is desirable to keep the sensitivity function as low as possible; however it is impossible

to fully achieve this over the whole frequency region and hence a compromise has to

be sought (see Bode’s Integral Theorem 2.7).

For an open-loop system it is straightforward to show that S(s) is equal to unity.

Using feedback will normally decrease the sensitivity of the system against process

changes ( 1
1+P (s)C(s)

< 1). This is actually one of main reasons to use feedback for

control [5].

2.5.2 Sensitivity and Disturbance Rejection

Sensitivity is also closely related to the way the process rejects a disturbance. Equa-

tion 2.20b shows that for frequencies where |S(jω)| < 1 the system attenuates the

disturbance and for frequencies where |S(jω)| > 1 the disturbance is amplified inside

the loop.

2.5.3 Graphical Representation

Sensitivity functions have graphical representations on the Nyquist plot. Considering

Figure 2.7, the magnitude of the sensitivity function is the inverse of length of the

vector from the critical point [-1 0] to the loop curve. The unit sensitivity circle

divides the curve into the two sections; disturbances with frequencies inside the circle

are amplified while those in the outer section become attenuated. The sensitivity

cross-over frequency (ωsc) marks the threshold.

The maximum sensitivity (MS) is also represented as the inverse of the distance

from the nearest point to the critical point and exhibits the maximum amplification

of feedback. A design constraint normally shows itself as a circle centered at the

critical point; the loop curve should be designed in such a way to fall outside that

area. For MT , this constraint is again in the shape of a circle with the center at

[−MT
2/(MT

2 − 1), 0] and radius of MT /(MT
2 − 1).
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Figure 2.7: Graphical representation of sensitivity function and peripherals

2.6 Performance versus Robustness

The variety of proposed tuning rules in the literature makes the selection of the

appropriate rule difficult. In order to evaluate and ensure the competitiveness of a

tuning rule, it is essential to define some indices for a fair comparison. This section will

go through some of those for both performance and robustness of feedback control.

2.6.1 Performance Metrics

Performance indices are divided into two subcategories: output performance measures

how the system behaves in terms of process variable with respect to the setpoint, and

controller performance measures the variations of the actuator. Both frequency and

time domain measures are discussed.

Output Performance

a) Time Domain: The integrations of process variables over time is usually in the

scope of interest. Different versions are used based on specific emphasis. The general

formulation can be represented by:

ITAE(p, q) =

∫ ∞

0

tq|e(t)|pdt (2.24)
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Some of the famous ones have the structure of: IAE (p=1, q=0), ISE (p=2,q=0), and

ISTE(p=1,q=1).

b) Frequency Domain: JSP and JD are normally used to measure the performance

for setpoint-tracking and disturbance rejection as follows:

JSP = ||1
s
S(s)||∞ = max

ω
|S(jω)

ω
| (2.25a)

JD = ||1
s
SD(s)||∞ = max

ω
|SD(jω)

ω
| (2.25b)

Controller Performance

a) Time Domain: Total variation of control effort can be used as denoted by Tv:

Tv =

∫ ∞

0

|u(t)|dt (2.26)

c) Frequency Domain: JU was proposed as an index of control performance:

JU = ||SU(s)||∞ = max
ω
|C(jω)S(jω)| (2.27)

2.6.2 Robustness Metrics

Robustness metrics are defined only for the frequency domain and measure the abil-

ity of a system to perform in nonideal conditions such as in the presence of model

uncertainty. In this section, sensitivity peaks and stability margins are covered.

Sensitivity Peaks

The maximum of sensitivity function and its complementary function can be calcu-

lated via:

MS = max
ω
|S(jω)| = 1/ min

ω
|1 + P (jω)C(jω)| (2.28a)

MT = max
ω
|T (jω)| = max

ω
| P (jω)C(jω)

1 + P (jω)C(jω)
| (2.28b)

MS actually shows the maximum amplification of disturbance by the system. On

the other hand, MT represents the maximum gain of the feedback loop. Figure 2.8

depicts MS and MT for a conventional system.

Stability (Gain, Phase and Delay) Margins

Two important quantities in linear control theory are gain and phase margins. They

form two frequency domain metrics for the degree of stability and robustness of a

system.
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The Gain margin (GM) is defined as the inverse of modulus of frequency response

at phase crossover frequency (ωp). The Phase margin (PM) is defined as the difference

of frequency response angle at gain crossover frequency (ωg) and the critical phase of

−π. In mathematical notation:

GM =
1

|G(jωp)|
2 (2.29a)

PM = 180◦ + ϕ{G(jωg)} (2.29b)

The stability theorem states that a system is critically stable if and only if GM ≤
1.

Table 2.1 outlines nominal values for phase and gain margins in addition to sen-

sitivity maxima. The data can be used as rules of thumb for controller design.

Table 2.1: Nominal values for GM, PM, MS, and MT

Nominal Values Gain Margin Phase Margin Maximum S Maximum T
Minimum 2 45 1.2 1
Maximum 5 60 2 1.5

Figure 2.9 shows the concept of phase and gain margins on a Nyquist plot.

One other related property is the delay margin which is defined as the maximum

amount of extra delay that can be tolerated by a system without jeopardizing its

stability. This parameter has a close relation to phase margin i.e.,

2Gain margin is sometimes defined in decibel units; in that case: GM(dB) = −20log(|G(jωp)|)
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DM =
PM

ωg

× π

180
(2.30)

Delay margin gives a more insightful physical sense of the system’s stability than the

phase margin.

2.6.3 Bounds of Sensitivity on Phase and Gain Margins

Interestingly, gain and phase margins are related to the maximum sensitivity. Indeed,

sensitivity maxima define a lower limit on the amount of stability margins. That is:

GM ≥ MS

MS − 1
and GM ≥ 1 +

1

MT

(2.31)

PM ≥ 2 · arcsin(
1

2MS

) and PM ≥ 2 · arcsin(
1

2MT

) (2.32)

2.7 Bode’s Integral Theorem

As noted before, it is favorable to keep sensitivity function as low as possible. How-

ever, there exists a mathematical relation on the value of sensitivity for delayed sys-

tems governed by:

∫ ∞

0

ln(|S(jω)|)dω = 0 (2.33)

29



Intuitively, the meaning of this equation is that the sensitivity cannot be kept low

over the entire frequency region. If in some region its value is low; then it may have to

be unintentionally high in another region. This phenomenon is sometimes known as

the waterbed effect [36], that is when you push push down a particular point, another

region pops out.

2.8 Robustness Stability Theorem

Assume that G0(s) is stable and l(ω) is governed by Equation (2.19). Figure 2.10

shows the basic idea behind the theorem. To ensure the stability of a system in the

presence of uncertainty it is sufficient to hold the following relation:

|1 + C(s)P (s)| < |C(s)P (s)∆P (s)| (2.34)
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Figure 2.10: Robustness stability theorem

By substituting an upper bound for model uncertainty from Equation 2.19 and

finally rearranging the variables we can define:

The robustness stability theorem states that the closed loop dynamics of a system

is robustly stable if and only if:

[T0(jω)] <
1

l(ω)
for all ω (2.35)
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Note that this theorem expresses a sufficient condition for stability and hence the

designs based on the above equation are conservative.
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Chapter 3

Review of Robust ISA Tuning
Method

The very first formative idea of this research effort was to find a robust PID con-

troller tuning which can fairly overcome the uncertainties present inside the process.

Definitions and formulations for types of MPM are given in 2.4.2. The focus is on

FOPTD systems controlled by an ISA-standard-based noninteractive PID controller.

In 2007, Vilanova proposed a robust PID controller tuning technique [43] which

was set as a benchmark for further investigations in this thesis. To become familiar

with this tuning rule, a short description of the method follows.

3.1 Summary of an IMC Based Robust ISA PID

Scheme Proposed by Vilanova [43]

The proposed tuning rule is derived using frequency domain techniques based on IMC

methodology. The process is assumed to be FOPTD and the PID controller has an

ISA based structure.

The time delay is approximated by a first order Taylor series expansion. A model

plant mismatch (MPM) margin is then introduced by defining a multiplicative mod-

eling error (Equation 2.18b) and using a weight function which encompasses the

acceptable family of plants around a nominal process. By using an analogy between

IMC formulation and conventional representation, the necessary condition to stabilize

a system is obtained. This H∞ 1 inequality relation is furthermore transformed to

1Two continuous norms are mostly used in the literature: Euclidean and infinity norms By
definition the Euclidean norm of a system is the root mean square of its impulse response:

||G||2 =

√
1
2π

∫ ∞

∞
trace{G(jω)T G(jω)}dω (3.1)
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a min-max optimization problem and by using lemma 3.1 in the original paper, the

problem is solved to get a set of robust tuning rules.

Note that two user-selected parameters: z (robustness factor) and τM (closed-

loop time constants) are introduced into the derivation to allow the trade-off between

robustness and performance. z and τM parameters should be chosen in such a way to

satisfy H∞ constraint.

In the next section of paper a simulation example is presented to show how the

method is applied. By assuming a fixed value for τM the original author tries to

calculate the optimal value for z by using the H∞ inequality which is shown graphically

in Figure 2 of Vilanova’s paper. Tracking responses for the nominal and the family

of real plants are also depicted to prove the suitability of the proposed method.

Next, an automatic tuning rule is obtained from the general rule mentioned before.

By assuming critical values for phase margin and maximum sensitivity (PM > 45◦

and MS < 2), performance and robustness parameters are furthermore eliminated to

lead to automatic tuning equations.

The proposed tuning rule is then evaluated by computer simulation. Three dif-

ferent process models have been assumed to analyze the rule for different working

conditions: lag dominant, delay dominant and balanced lag and delay. To test the

competitiveness of proposed tuning rule, two other tuning rules: SIMC (Skogestad et

al.) [38] and AMIGO (Astrom et al.) [5] have been chosen for comparison.

Simulation results are presented for setpoint tracking and regulation along with

corresponding control actions. Sensitivity (S) and complementary sensitivity (T)

functions are also illustrated in a separate graph. Other numerical criterions are also

computed for the sake of completeness. For robustness, maximum sensitivity (MS)

and maximum complementary sensitivity (MT ) are used. The performance is divided

into two subcategories: output performance in which the integrated absolute error

(IAE) (Equation 2.24) is used and input performance is measured using the total

variation (Tv) (Equation 2.26) of control action. The latter is sampled at the rate of

This norm gives out the steady state covariance of output to a unit white noise input:

||G||2 = lim
t→∞

E{y(t)T y(t)} (3.2)

E{w(t)w(t)T } = δ(t− τ)I (3.3)

By contrast, the infinity norm represents the peak gain of a system’s frequency response and for
SISO systems it is defined as:

||G||∞ = sup
ω
|G(jω)| (3.4)

The Euclidean norms become infinity when the system is unstable or has a non-zero high frequency
gain. However this is the case for infinity norm when a system has a pole on the imaginary axis.
[11]
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one tenth of the process time constant.

The results were organized in a table to find the best rule for each criterion. In

conclusion, it was claimed that the Vilanova technique behaved better than others in

tracking control.

The article was an interesting starting point for further research and therefore the

results (graphs and tables) were initially reproduced to validate the claims.

During simulations it was confirmed that the Vilanova technique is indeed a ro-

bust PID tuning rule. However, there exists a trade-off between robustness and

performance and this makes the tuning rule somehow sluggish under ideal conditions

compared to other techniques. The guidelines in ”Control Objectives” (see section

4.2) can be helpful for making the final decision.

One other interesting result was found during the reproduction of materials. It

was suggested that a negative derivative action favors robustness under some special

circumstances. That was more prominently seen in delay dominant regions.

Some authors suggested that the abnormal behavior is an artifact of the tuning

rule or may be due to the tight constraint on the optimization problem initially posed

to derive the rule; that is the constraint on the H∞ problem is so strict that it leads to

a nonrealistic derivative solution. However the τd and N parameters used in deriving

the tuning rule have the same signs, making the derivative filter stable for that specific

example. Nevertheless more study was deemed necessary to clarify the claims.

To further investigate this phenomenon, the relationships between controller pa-

rameters and robustness factor (z) at a fixed deadtime are calculated and plotted in

Figure 3.1.

As described before, one of the advantages of the Vilanova tuning rule is that

the user has two degrees of freedom in the design phase: the desired closed loop

time constant which is adjusted by τc and the z factor which manipulates desirable

robustness characterization.

The Vilanova technique recommends using less derivative action in favour of more

robustness (3rd graph in Figure 3.1). Essentially, beyond z = 2 using negative deriva-

tive time is claimed to be helpful. The most important and difficult factor in con-

trolling of an FOPTD process is deadtime and this means the amount of necessary

robustness should be determined based on the magnitude of the delay term. Figure

3.2 gives the minimum robustness factor for various time delays as recommended by

the Vilanova tuning rule.

Based on this plot and previous discussions we conclude that the Vilanova tech-

nique suggests a negative derivative action for deadtime to time constant ratios be-

yond 0.8-0.9.
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Figure 3.1: PID controller parameters as a function of robustness factor (z)

3.2 A PID Controller with Negative τd

The previous study and discussions triggered a new idea in the research of controller

tuning. Could a negative derivative action be helpful in feedback systems at all? As

far as we know negative derivative time is impossible to use in the current industrial

PID controllers. What happens if we use such a structure in the control design and

implementation?

To address this fundamental problem, the feasibility of the idea from stability

point of view was investigated. The problem was divided into two parts: first to see

whether closed loop poles are stable and second to ensure that the controller behaves

in a minimum phase fashion when negative derivative action is used.

1. Closed loop poles

Although the initial derivation by Vilanova was obtained based on a stability

assumption for FOPTD systems, we prove that the poles are stable using an

arbitrary PID controller that satisfies certain conditions.
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3.2.1 Stability Proof of a Closed Loop System Controlled
by a PID Compensator with Negative Derivative Action

Process and Controller Definition

P (s) =
Kp

τs + 1
(3.5)

C(s) = Kc(1 +
1

τis
+ τds) (3.6)

The characteristic equation can be calculated as:

∆(s) = 1 + L(s) = 1 + KpKc
τdτis

2 + τis + 1

τis + 1

Assuming k = KpKc

∆(s) = 0 → τi(kτd + τ)s2 + τi(k + 1)s + k = 0 (3.7)

The necessary and sufficient condition for a second order polynomial to have

stable roots (poles) is that all of its coefficients should be positive. Therefore

the following condition should hold to ensure stability:

τd > −τ

k
(3.8)
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Chemical processes normally have large time constants; therefore the derivative

action can be significantly negative without jeopardizing the stability.

CSTH Process Example (no deadtime)

P (s) =
1.82

60s + 1
(3.9)

PID controller parameters are set as: Kc = 0.8, τi = 79, τd = −10, and τf = 1.

It is possible to prove stability using Nyquist and Bode plots:

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Nyquist Curve for Process/Controller system

Real Axis

Im
ag

in
ar

y 
A

xi
s

10
−2

10
−1

10
0

10
1

10
2

M
ag

ni
tu

de
 (

ab
s)

10
−3

10
−2

10
−1

10
0

−225

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

 

 

Bode Diagram, Gain Margin = 4.6052 & Phase Margin = 86.2415(Deg)

Frequency  (rad/sec)

Loop TF
Process Only

Figure 3.3: Nyquist and Bode plots of the case study

It is obvious that the system is stable and even the gain and phase margins are

higher than expected. For this example the specific derivative action could be

increased even to -40 without fear of instability.

CSTH Process Example (with deadtime)

The stability of the CSTH process was investigated using root locus diagrams

for variable gain, time constant, and deadtime. The model is assumed to be

the same as in the Equation 3.9 but with a deadtime of 38 seconds. A third

order Pade approximation was used to calculate the closed loop poles of the

system. The beauty of colors was utilized in these figures with hotter colors

corresponding to the higher values of the parameter of interest. The closed loop

poles of the nominal process are marked with pink circles.
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Figure 3.4: Root locus plots for CSTH system as a function of gain, time constant,
and deadtime [Kc = 0.32, τi =, τd = −5.75, and τf = 10]
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The analysis on the root locus plots showed that a factor of 4.0 for the gain and

5.2 for the deadtime is needed to drive the system to the verge of instability.

However; in the case of the time constant the system proved to be stable for

the whole domain of the examination.

2. Closed loop zeros

In this section we first prove that the closed loop poles calculated by the Vi-

lanova tuning rule are stable, then we investigate the general case.

3.2.2 Minimum Phase Proof of a System Tuned by the
Vilanova (ISA-based) Rules

The following expression shows an expanded form of the controller transfer

function:

C(s) =
τi(τf + τd)s

2 + (τi + τf )s + 1

(τis)(τfs + 1)
(3.10)

For ISA based tuning:

τf =
τd

N
⇒ τf + τd =

τd

N
(N + 1) (3.11)

Based on the tuning rule:

τf =
τd

N
= TM

ρ + z

ρ + TM

(3.12)

N + 1 =
T

Ti

ρ

L

(ρ + TM)

(ρ + z)
(3.13)

The latter two variables are always positive, hence the postulate is proven.

3.2.3 Proof for a General First Order System

Assuming no zero/pole cancellations occur using an arbitrary PID controller

structure, the open and closed loop zeros coincide with each other. Therefore

by looking at PID controller transfer function, zeros turn out to be roots of the

following equation:
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f(s) = s2τi(τf + τd) + s(τf + τi) + 1 (3.14)

To confirm the stability, the following condition should be satisfied:

τd > −τf ⇒ |τd| < |τf | (3.15)

It seems that the derivative action should be less than its filter which is appar-

ently unusual. At the end of the chapter we will discuss this issue to draw a

final conclusion.

3.3 Justification

Two case studies are presented in this section to rationalize the use of negative deriva-

tive action. They are only simple justifications and should not be considered proofs.

• Delayed response example

Consider the step response of the underdamped second order system shown in

Figure 3.5. It has been assumed that this response belongs to a feedback delayed

process controlled by a PID controller. The full line represents the real process

variations (PV) while the dashed line shows the dynamics that the controller

is actually seeing. This situation may arise due to the transportation delay (L)

present inside the process.

Suppose the process goes through point (A) in Figure 3.5. Circle (A) represents

the point which the controller is observing. Note that the actual PV is decreas-

ing whereas the apparent PV (point A) is still growing. The same misleading

situation happens at point (B) where the PVs have reverse trends.

It is well known that the derivative action adds an anticipatory capability to the

feedback control. Nevertheless, in this particular circumstance the derivative

action is unexpectedly doing the wrong duty due to the inconsistent dynamic

trend. Application of a negative derivative action in such cases which might

be surprising in the first place, could prove to be advantageous for delayed

processes.

• Inverted pendulum case study

The second example refers to the familiar inverted pendulum control case study

in Figure 3.6. The problem is defined to move a cart with an inverted pendulum
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Figure 3.5: Two viewpoints of an underdamped system response

mounted on top from the initial position (x=0) to the final position (x=L)

without unbalancing the pendulum. Two approaches can be considered:
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Figure 3.6: Inverted pendulum case study

The more straight-forward way of doing the job, approach (b), is to move the

cart slightly after the destination point and then returning it to the final posi-

tion. This so called overshoot reaction is done to preserve the balance of the

pendulum. The second tricky way, (approach (a)), is to initially drive the cart

against the destination direction and then move it to the final position. In this

case an undershoot response is imposed by the controller (driver). The latter

approach reinforces the notion of negative derivative action, as it employs an
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initial response to counteract the future events.

We have shown the feasibility of the use of negative derivative action; however,

whether it is useful or not is still an open question. Why bother if no extra advantage

is gained? A look in the literature shows that the issue has been discussed earlier

especially with respect to IMC derivations. During IMC controller design, it is prob-

able to end up with a non-PID controller structure, and in special cases we may even

face a negative derivative format. Following are two recommendations from other

researchers to alleviate the problem:

1. Substitute the derivative part with a first order filter [10].

2. Set τd = 0 if you have encountered negative derivative action [40].

The above mentioned solutions seem to be shortcuts to simply ignore the issue.

However, we are interested to have an analysis and study possible advantages and

drawbacks of using negative derivative action which is discussed in the next section.

3.4 Possible Advantages of Using Negative Deriva-

tive Action

3.4.1 Making closed loop dynamics closer to what was orig-
inally designed

Application of negative derivative time will enables us to have a more accurate con-

troller structure and it also expands the available selection set for such a controller.

As noted before, IMC formulation does not always end up in a realizable or sensible

solution (for instance, the outcome might be a controller with unstable poles). Using

a direct structure eliminates the need for a nonexact filter or complete elimination of

the derivative part.

3.4.2 Making the Process More Robust

In section 3.1, it was pointed out that the Vilanova tuning rule (which claims to be

a robust method) calculates a negative τd for highly delayed systems. To investigate

the possible advantage of this, we tried to derive the mathematical equations of the

gain/phase margins and sensitivity functions. However, due to the high degree of

complexity, it was not feasible to solve the equations and obtain an analytical expres-

sion. Instead, a particular process model was analyzed for further investigations.
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Consider a process with the transfer function P (s) = e−0.4s

0.2s+1

The controller parameters of this system are calculated using the Vilanova tuning

rule. By keeping all of the controller parameters constant and incrementally decreas-

ing the derivative time from a positive value to a negative one, the reaction of the

system is observed on the Nyquist plot. The results are plotted in Figure 3.7:
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Figure 3.7: Behavior of the Nyquist curve as a function of derivative time (τd decreases
from a positive value to a negative value, from the top left plot to the bottom right
plot) - z = 3.18, TM = 1, Kc = 0.34, τi = 0.68, τf = 2.08.

A more interesting and general 3D graph for the gain and phase margins is also

presented in Figure 3.8 to help in understanding the concept:

3.4.3 Reduction in High Frequency Measurement Noise

Equation 2.5 calculates the high frequency gain of an ISA-based PID controller:

|C(∞)| = Kc · (1 +
τd

τf

)
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(a) (b)

Figure 3.8: Phase and gain margins as a function of PID controller parameters

It is clear from the above equation that a negative derivative time decreases the

amount of high frequency gain. This means that the controller could actually decrease

the amount of sensor noise circulating inside the feedback loop.

3.5 Disadvantages of Using Negative Derivative Ac-

tion

A disadvantage of using negative derivative action is the lack of support by major PID

controller venders. This could be just because they do not use ISA-based PID format

(which is assumed as a default here) in their DCS. Another drawback of this scheme is

the little benefit gained in some circumstances, especially when the ratio of deadtime

to time delay is not high. We also observed that in order to make the obtained

yield significant, the ratio of τd

τf
should be increased which causes the system to enter

the nonminimum phase region. The control designers normally avoid non-minimum

phase situations as they are notorious of being troublesome. These considerations

show that analysis is required before implementing negative derivative action in each

specific case. We do not recommend using negative derivative action due to these

facts.

3.6 Summary

In this chapter, the tuning rule proposed by Vilanova was described and it was shown

how a negative derivative could possibly improve the system. The proofs for sta-
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bility of poles and zeros were also presented. The advantages and disadvantages of

using negative derivative action were discussed and finally the procedure is not rec-

ommended. However, negative derivative action would be a good topic for future

research in the context of nonminimum phase systems.
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Chapter 4

Robust PID Controller Tuning of
FOPTD Processes

4.1 Abstract

The purpose of this chapter is to recommend an optimal (or at least near optimal)

PID tuning rule for a first order plus time delay (FOPTD) process. At this time, no

single comprehensive solution has yet been found for this problem. That means no

generalized rule would give you the desired response under different circumstances.

However, it is possible to design an optimal tuning rule for a single process if the model

is well known. To cope with this difficulty we propose a compromise solution. We

divide the process models into different regions and compare some of the well-known

techniques on each of them using computer aided simulation. In this way a guideline

for each domain can be devised. Different performance indices are used to obtain a

fair quantitative comparison and qualitative graphs are provided to supplement the

analysis.

4.2 Control Objectives

Before starting an analysis, the objectives of a system controller should be reviewed.

Any PID controller design should clarify its position with respect to these objectives:

• Tracking of operator’s setpoints

• Rejection of process disturbances

• Robustness to model uncertainties

• Attenuation of sensor noise
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• Stability and safety considerations

In this chapter the first three items on the above list are considered for the design

and in case of robustness, only robustness against unstructural model uncertainty is

discussed. However, in the attached paper in Appendix A, problems of valve stiction

and sensor noise are included in the design as well.

4.3 Choice of Desired Closed Loop Time Constant

In some more recent tuning rules (such as the IMC formulation), a provision is set for

the operator to specify the closed loop time constant. The choice of this user-defined

quantity has a critical role in the final dynamic response.

As a general guideline, the closed loop time constant should be less than its open-

loop counterpart to ensure the minimum speed of response( τc

τ
< 1). There are a

variety of suggestions in the literature to make the decision easier. Several examples

follow [36]:

τc <θ < τ (Chien and Fruehauf, 1990) (4.1)

τc = θ (Skogestad, 2003) (4.2)
τc

θ
< 0.8 and τc > 0.1τ (Rivera et al., 1986) (4.3)

It has also been reported in [38] that for a robust performance τc ≥ θ should

be maintained. Changing τc would compromise between two competing classes of

parameters [38]:

1. Fast speed of tracking response and disturbance rejection corresponding to

closed loop settling time

2. Stability margins and robustness of system in addition to the required control

effort

Keep in mind that increasing τc gives you less speed but more stability. In this

sense, previous guidelines could be fine tuned according to the application of interest.

Here the operator’s experience comes into play for a better process performance.

The second rule of thumb is used throughout this thesis wherever no other guide-

line is specified.
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4.4 Defining FOPTD Process Domains

FOPTD models, also known as three parameter models, are commonly used for sim-

plified analysis in process control. Process gain, time constant, and deadtime are the

varying parameters in these models. According to the literature of controller design

[5] process gain has the simplest effect on the calculation of controller parameters in

the tuning. By deriving the closed loop transfer function of a system it is clear that

the product of Kp×Kc should remain constant and therefore the controller gain is a

function of inverse Kp [Kc = f(1/Kp)]. Intuitively we can omit this parameter from

our analysis with no harm to the generality of the problem.

Both θ and τ have the dimension of time (sec). It has been observed that the

ratio of these parameters has an important effect on the final response. We define

alpha as the ratio of:

α =
θ

τ
(4.4)

Here we start the discussion based on the different values which alpha can take.

In our view, the process model could fall in one of five categories:

Process is





Pseudo-Pure Lag if α < 0.2
Lag Dominant if 0.2 < α < 0.5
Balanced Lag and Delay if 0.5 < α < 1
Delay Dominant if 1 < α < 3
Pseudo-Pure Delay if α > 3

(4.5)

The boundaries set for this classifications are not sharp and may need slight

adjustments depending on the specific situation.

Figure 4.1 shows the domains graphically:

4.5 Process Simulation

4.5.1 Defining the Test Batch

In order to implement a fair test, we have defined a standard benchmark to use in

the different modeling regions mentioned before:

G(s) =
e−αs

s + 1
(4.6)

Several different values of α have been selected to perform the tests and and

evaluation is exercised in each modeling region. The data are presented in Table 5.1.
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Table 4.1: Chosen process models for each FOPTD region
P-Pure Lag Lag Dom. Balanced Lag&Delay Delay Dom. P-Pure Delay

α 0.1 0.4 0.7 1.5 3

To make validation easier, we matched the system for each scenario to fit our

experimental model.

4.6 Methodology

Various analyses have shown [1] that to achieve good performance and robustness

characteristics for a feedback system, it is essential to differentiate between regula-

tory and tracking mechanisms. That means you need to design two sets of tuning

parameters for each fixed system. One solution to this challenge is to use a controller

with two degrees of freedom which is not in the scope of this study.

Accordingly, our approach here is to present two optimal techniques for both

step-tracking and disturbance rejection. The overall theme of controller design is

based on a robust technique which exhibits satisfactory control performance. An

important point is that our effort attempts to provide a simple and handy method

useful to the process industry. That means the method will not be sophisticated but

provide acceptable results for process practitioners. Trial and error is used to fine

tune suitable controller parameters and evaluation is carried out by both qualitative

and quantitative techniques. The main emphasis is given to the IMC technique due

to its superior robustness characteristics.
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4.6.1 Setpoint Tracking

Based on the results in [28], the IMC technique shows good performance and ro-

bustness for step-tracking and it is quite well tested in industry. The main challenge

for this method is how an operator should determine the desired closed loop time

constant. During this analysis we test different choices for τc and for each FOPTD

modeling region the best value is proposed by trial and error. Here the design is

conducted so that the response would give a 15% overshoot in the case of 10% MPM

in the worst case direction. We found this to be a suitable approach to obtain a

moderately robust tuning rule.

4.6.2 Disturbance Rejection

Industry professionals complain that the IMC tuning technique does not perform

well for rejecting process disturbances. Our tests confirmed the same observation.

To present a good tuning rule we searched for other conventional techniques and

found that the Ziegler-Nichols tuning rule is able to reject disturbances effectively.

However, the Ziegler-Nichols rule exhibits poor robustness. This led us to compare the

parameters calculated by Ziegler-Nichols and IMC tuning rules and finally resulted

in our proposed method for disturbance rejection. For the proposed tuning rule, τc

has been fine tuned to obtain little or no undershoot for the second response peak,

again in the presence of 10% MPM. However, that condition is not exhaustive and

therefore the final guidelines found at the end of this chapter for tracking are used as

well for regulation. The procedure has been carried out adaptively.

4.7 Cross Comparison of IMC and Ziegler-Nichols

Tuning Techniques

In this section the differences between Ziegler-Nichols and IMC tuning rules are com-

pared. We first consider the FOPTD process in Equation 2.2. The PID controller

parameters are calculated for different ascending ratios of time delay to time constant

(α) from 0.1 to 3. The desired closed-loop time constant is set to be equal or higher

than the time delay for IMC. The calculated ratios for controller gain, integral time,

and derivative time are plotted in Figures 4.2, 4.3, and 4.4 respectively.

• Controller Gain
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Figure 4.2: Controller gain ratios calculated by (IMC/ZN) as a function of τc

• Integral Time
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• Derivative Time

Figure 4.2 shows that Ziegler Nichols is a more aggressive tuning method than

IMC rule. This could explain the low robustness of this technique and the oscillatory

responses observed in practice. The integral graph shows a great discrepancy between

IMC and Ziegler-Nichols. The calculated τi for ZN has a much lower value in pseudo

pure lag and lag dominant regions. Interestingly, simulation tests showed that the
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IMC controller does not perform well in those areas. Figure 4.5 showcases an example

to clarify this idea:
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Figure 4.5: Dynamic responses of IMC and ZN in the lag dominant zone(α = 0.1)

To find the root cause, we look at the integral of error for a system excited by a

unit disturbance [23]:

Integral of Error (IE) =

∫ ∞

0

e(t)dt = −
∫ ∞

0

y(t)dt

= − lim
s→0

(s · 1

s
Y (s)) =

−1

ki

(4.7)
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The Integral of error is inversely proportional to the integral action. That means

lower integral time would improve the rejection of entering disturbances (assuming

nonoscillatory dynamics). From the graph of integral time ratio (Figure 4.3) we now

understand the reason behind the poor behavior of IMC technique. Lower than suffi-

cient integral time has caused a degradation of the closed loop dynamics. Surprisingly,

if you look at the relation of the integral time for IMC rule in case of FOPTD systems:

τI = τ +
θ

2
(4.8)

It is clear that you always get a low integral action for lag dominant processes

and a change is needed to alleviate the problem.

4.8 The Proposed Tuning Technique for Regula-

tory Control (ZNIMC Tuning Rule)

In the previous section we saw the defects of IMC and Ziegler Nichols techniques and

investigated the reasons behind their misbehaviors. In our design methodology we

would like to have a tuning rule that performs well and has good robustness at the

same time. In other words, a tuning rule that performs as well as the Ziegler-Nichols

rule and is as robust as the IMC technique. As discussed before that aim is impossible

to achieve so an optimal intermediate solution is sought in this analysis.

Our proposed solution keeps the core IMC structure to ensure the desired robust-

ness and substitutes the integral time formulation with the Ziegler-Nichols tuning

rule. In this way a compromise solution is obtained. The obtained PID controller

tuning technique is hereafter called ”ZNIMC” tuning rule. Equation (4.9) shows the

ZNIMC rule mathematically. The ZNIMC tuning technique can also be viewed as a

detuned version of the Ziegler-Nichols to increase the robustness.

KcKp =
τ + θ/2

τc + θ/2
τi =

Pu

2
τd =

θτ

2τ + θ
(4.9)

where Pu is the ultimate period in the critically stable condition.

An important advantages of the ZNIMC rule is that it has the conventional user

defined desired closed loop time constant in the same way as IMC does. This makes it

greatly superior to the Ziegler Nichols tuning rule. The proposed tuning algorithm was

presented to industrial practitioners as a simple solution for lag-dominant processes

[2]. In the next section we evaluate the ZNIMC tuning rule and compare it with other

conventional rules; and in the same way as setpoint tracking we propose a guideline

for robust PID tuning design.
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4.9 Results

1. Pseudo-Pure Lag Case (α = 0.1)

P (s) =
1.82 · e−6s

60 · s + 1

• Setpoint Tracking (τc = 7)
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Figure 4.6: Responses for α = 0.1, Nominal (left) and with 10% MPM (right)

Tuning IMC Vilanova ITAE Tuning IMC Vilanova ITAE
Kc 3.46 2.07 3.75 τd 2.86 0.16 2.18
τi 63 60.19 76.79 τf 0.29 10.36 0.22
ISE 11.08 13.43 10.82 ISE 11.17 12.93 11.27
ITSE 64.86 99.75 61.26 ITSE 65.99 90.03 70.56
Tv 57.7 54.48 57.05 Tv 50.1 47.33 49.99
Max(y) 1.03 1.01 1.06 Max(y) 1.16 1.07 1.25
GM 2.42 4.12 2.5 GM 1.89 3.09 1.91
PM 71.13 68.79 66.6 PM 61.97 62.77 55.7
DMn 1.95 3.17 1.69 DMn 1.35 3.09 1.91
MS 1.72 1.41 1.71 MS 2.15 1.6 2.17
MT 1 1 1 MT 1 1 1
JSP 10 15.94 11.24 JSP 9.09 14.49 10.22
JD 18.2 29.01 20.46 JD 18.2 29.01 20.46
JU 40.36 2.97 42.93 JU 41.65 3.37 43.8
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• Disturbance Rejection (τc = 7.2)
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Figure 4.7: Responses for α = 0.1, Nominal (left) and with 10% MPM (right)

Tuning ZNIMC AMIGO ZN Tuning ZNIMC AMIGO ZN
Kc 3.39 2.58 5.39 τd 2.86 2.91 2.89
τi 11.55 25.2 11.55 τf 0.29 0.29 0.29
ISE 0.77 1.94 0.35 ISE 0.89 2.05 0.47
ITSE 17.26 57.72 5.9 ITSE 18.31 56 7.89
Tv 147.1 143.7 147.8 Tv 147.3 144.1 147.9
Min(y) -0.05 -0.01 -0.02 Min(y) -0.06 0 -0.04
Max(e) 0.22 0.26 0.19 Max(e) 0.27 0.30 0.24
GM 2.63 3.28 1.65 GM 2.06 2.57 1.29
PM 35.8 59.6 36.22 PM 32.7 57.08 26.13
DMn 0.93 2.17 0.63 DMn 0.72 1.74 0.36
MS 1.68 1.45 2.58 MS 2.00 1.65 4.58
MT 1.75 1.18 1.67 MT 1.84 1.17 3.62
JSP 14.7 13.51 9.91 JSP 13.7 11.6 14.63
JD 4.66 9.76 2.49 JD 4.53 9.76 2.37
JU 39.5 29.35 69.45 JU 40.66 29.85 76.9
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2. Lag Dominant Case (α = 0.4)

P (s) =
1.82 · e−24s

60 · s + 1

• Setpoint Tracking (τc = 27)
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Figure 4.8: Responses for α = 0.4, Nominal (left) and with 10% MPM (right)

Tuning IMC Vilanova ITAE Tuning IMC Vilanova ITAE
Kc 1.01 0.52 1.16 τd 10 0.23 7.89
τi 72 60.75 81.37 τf 1 41.42 0.79
ISE 37.17 48.39 35.78 ISE 37.89 46.36 37.98
ITSE 734.9 1335.22 668.85 ITSE 761.26 1170.81 806.68
Tv 161.56 147.95 161.73 Tv 146.82 135.63 146.96
Max(y) 1.04 1 1.07 Max(y) 1.15 1.01 1.26
GM 2.37 4.12 2.25 GM 1.87 3.15 1.74
PM 70.79 68.79 66.57 PM 63.88 65.76 55.87
DMn 1.9 3.17 1.54 DMn 1.39 2.61 1.04
MS 1.75 1.41 1.84 MS 2.18 1.57 2.42
MT 1 1 1 MT 1.21 1 1.49
JSP 39 63.76 38.7 JSP 35.45 57.97 35.18
JD 70.98 116.05 70.43 JD 70.98 116.05 70.43
JU 11.86 0.79 13.34 JU 12.26 0.88 13.7

56



• Disturbance Rejection (τc = 28.8)

0 50 100 150 200 250 300 350 400
−0.2

0

0.2

0.4

0.6

0.8

Time (sec)

P
ro

c
e

s
s
 O

u
tp

u
t

 

 

0 50 100 150 200 250 300 350 400
−2

−1.5

−1

−0.5

0

Time (sec)

C
o

n
tr

o
l 
E

ff
o

rt

SETPOINT
ZNIMC
AMIGO
Ziegler−Nichols

0 50 100 150 200 250 300 350 400
−0.5

0

0.5

1

Time (sec)

P
ro

c
e

s
s
 O

u
tp

u
t

 

 

0 50 100 150 200 250 300 350 400
−2

−1.5

−1

−0.5

0

Time (sec)

C
o

n
tr

o
l 
E

ff
o

rt

SETPOINT
ZNIMC
AMIGO
Ziegler−Nichols

Figure 4.9: Responses for α = 0.4, Nominal (left) and with 10% MPM (right)

Tuning ZNIMC AMIGO ZN Tuning ZNIMC AMIGO ZN
Kc 0.97 0.73 1.51 τd 10 10.71 10.53
τi 42.11 46.08 42.11 τf 1 1.07 1.05
ISE 22.92 35.37 12.5 ISE 27 40 17.7
ITSE 1639 2947 733 ITSE 1810 3107 1109
Tv 375 364 384 Tv 377 367 385
Min(y) -0.05 -0.04 -0.03 Min(y) -0.04 -0.03 -0.13
Max(e) 0.68 0.72 0.63 Max(e) 0.82 0.86 0.79
GM 2.56 3.28 1.6 GM 2.01 2.6 1.27
PM 52.3 60.1 45.94 PM 47.7 57.65 32.87
DMn 1.31 1.98 0.76 DMn 1.02 1.65 0.43
MS 1.66 1.45 2.68 MS 2.03 1.64 4.83
MT 1.18 1.07 1.7 MT 1.24 1.09 3.85
JSP 39.29 45.86 29.88 JSP 36.5 41.29 57.03
JD 44.42 63.5 28 JD 43.9 63.3 27.85
JU 11.27 8.3 19.64 JU 11.6 8.45 21.91
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3. Balanced Lag and Delay Case (α = 0.7)

P (s) =
1.82 · e−42s

60 · s + 1

• Setpoint Tracking (τc = 48)
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Figure 4.10: Responses for α = 0.7, Nominal (left) and with 10% MPM (right)

Tuning IMC Vilanova ITAE Tuning IMC Vilanova ITAE
Kc 0.65 0.3 0.72 τd 15.56 -0.27 13.27
τi 81 61.32 86.52 τf 1.56 72.49 1.33
ISE 62.02 83.21 60.19 ISE 63.67 80.07 63.6
ITSE 2020.45 3971.66 1888.61 ITSE 2136.71 3510.22 2216.27
Tv 182.4 159.09 183.95 Tv 168.01 148.88 169.12
Max(y) 1.02 1 1.06 Max(y) 1.15 1 1.23
GM 2.4 4.12 2.26 GM 1.91 3.22 1.78
PM 71.14 68.79 68.91 PM 65.99 66.14 61.12
DMn 1.93 3.17 1.67 DMn 1.51 2.7 1.22
MS 1.73 1.41 1.83 MS 2.12 1.55 2.34
MT 1 1 1 MT 1.14 1 1.38
JSP 69 111.59 66.21 JSP 62.73 101.44 60.19
JD 125.58 203.08 120.5 JD 125.58 203.08 120.5
JU 7.53 0.55 8.33 JU 7.78 0.56 8.57
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• Disturbance Rejection (τc = 50.4)
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Figure 4.11: Responses for α = 0.7, Nominal (left) and with 10% MPM (right)

Tuning ZNIMC AMIGO ZN Tuning ZNIMC AMIGO ZN
Kc 0.62 0.46 0.96 τd 15.56 17.36 17.18
τi 68.71 56.7 68.71 τf 1.56 1.74 1.72
ISE 72.2 92.03 43.02 ISE 85.43 107.39 62.25
ITSE 8386 11509 4198 ITSE 9432 12793 6821
Tv 538 532 560 Tv 544 538 564
Min(y) -0.01 -0.04 -0.02 Min(y) 0.0 -0.05 -0.17
Max(e) 0.96 1.00 0.93 Max(e) 1.17 1.19 1.16
GM 2.51 3.29 1.56 GM 2.00 2.64 1.25
PM 64.7 62.29 54.93 PM 59.9 59.41 40.67
DMn 1.71 1.98 0.91 DMn 1.36 1.68 0.53
MS 1.67 1.44 2.79 MS 2.03 1.62 4.99
MT 1.00 1.02 1.8 MT 1.06 1.04 4
JSP 62.12 74.86 50.9 JSP 56.06 68.93 97.07
JD 110.2 122.55 71.38 JD 110.2 122.63 71.38
JU 7.25 5.29 12.7 JU 7.47 7 14.37
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4. Delay Dominant Case (α = 1.5)

P (s) =
1.82 · e−90s

60 · s + 1

• Setpoint Tracking (τc = 100)
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Figure 4.12: Responses for α = 1.5, Nominal (left) and with 10% MPM (right)

Tuning IMC Vilanova ITAE Tuning IMC Vilanova ITAE
Kc 0.4 0.14 0.38 τd 25.71 -4.28 26.93
τi 105 62.82 104.12 τf 2.57 155.34 2.69
ISE 123.91 175.8 126.26 ISE 128.98 170.71 129.73
ITSE 7995.26 17829.88 8362.44 ITSE 8754.73 16085.96 8754.34
Tv 331.89 280.61 327.88 Tv 309.72 267.31 306.45
Max(y) 1.01 1 1 Max(y) 1.15 1 1.1
GM 2.39 4.12 2.51 GM 1.96 3.35 2.06
PM 70.73 68.79 71.87 PM 65.95 65.55 67.64
DMn 1.89 3.17 2.04 DMn 1.55 2.73 1.7
MS 1.73 1.41 1.67 MS 2.06 1.52 1.95
MT 1 1 1 MT 1.08 1 1
JSP 144.99 239.1 152.29 JSP 131.81 217.37 138.45
JD 263.88 435.15 277.16 JD 263.89 435.17 277.16
JU 4.66 0.55 4.39 JU 4.82 0.5 4.54
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• Disturbance Rejection (τc = 108)
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Figure 4.13: Responses for α = 1.5, Nominal (left) and with 10% MPM (right)

Tuning IMC AMIGO ZN Tuning IMC AMIGO ZN
Kc 0.38 0.27 0.58 τd 25.71 31.03 32.51
τi 105 78.75 130.02 τf 2.57 3.1 3.25
ISE 245.3 283.7 181 ISE 299.1 341.9 264.8
ITSE 52266 62931 36185 ITSE 62382 74454 61931
Tv 846 842 876 Tv 860 856 887
Min(y) 0 -0.02 -0.02 Min(y) 0.00 -0.04 -0.26
Max(e) 1.42 1.43 1.42 Max(e) 1.69 1.69 1.68
GM 2.52 3.38 1.49 GM 2.07 2.79 1.24
PM 71.9 66.26 73.72 PM 67.6 62.49 63.42
DMn 2.04 2.1 1.43 DMn 1.69 1.78 0.98
MS 1.67 1.42 3.04 MS 1.95 1.57 5.16
MT 1 1 2.04 MT 1.00 1 4.15
JSP 153 157.5 123.03 JSP 139.1 144.66 192.91
JD 278.4 286.64 223.92 JD 278.4 286.65 223.92
JU 4.38 3.15 8.23 JU 4.52 3.22 10.01
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5. Pseudo-Pure Delay Case (α = 3)

P (s) =
1.82 · e−180s

60 · s + 1

• Setpoint Tracking (τc = 200)
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Figure 4.14: Responses for α = 3, Nominal (left) and with 10% MPM (right)

Tuning IMC Vilanova ITAE Tuning IMC Vilanova ITAE
Kc 0.28 0.08 0.21 τd 36 -21.54 51.28
τi 150 65.64 168.3 τf 3.6 310.68 5.13
ISE 243.11 355.84 293.61 ISE 254.52 349.01 287.34
ITSE 30757.75 72498.55 52406.72 ITSE 33984.08 67085.07 46581.78
Tv 796.45 693.36 713.77 Tv 743.21 657.98 673.98
Max(y) 1.01 1 0.98 Max(y) 1.15 1.01 0.99
GM 2.44 4.12 2.98 GM 2.07 3.43 2.47
PM 70.7 68.79 80.53 PM 65.37 64.97 77.73
DMn 1.89 3.17 3.4 DMn 1.56 2.72 2.96
MS 1.71 1.41 1.51 MS 1.95 1.51 1.68
MT 1 1 1 MT 1 1 1
JSP 289.94 478.08 443.42 JSP 263.6 434.69 403.18
JD 527.68 870.08 807 JD 527.73 870.24 807.16
JU 3.33 0.55 2.45 JU 3.44 0.5 2.55
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• Disturbance Rejection (τc = 216)

0 200 400 600 800 1000 1200 1400
−0.5

0

0.5

1

1.5

2

Time (sec)

P
ro

c
e

s
s
 O

u
tp

u
t

 

 

0 200 400 600 800 1000 1200 1400
−1.5

−1

−0.5

0

Time (sec)

C
o

n
tr

o
l 
E

ff
o

rt

SETPOINT
IMC (PID)
ZNIMC
AMIGO

0 200 400 600 800 1000 1200 1400
−0.5

0

0.5

1

1.5

2

Time (sec)

P
ro

c
e

s
s
 O

u
tp

u
t

 

 

0 200 400 600 800 1000 1200 1400
−1.5

−1

−0.5

0

Time (sec)

C
o

n
tr

o
l 
E

ff
o

rt

SETPOINT
IMC (PID)
ZNIMC
AMIGO

Figure 4.15: Responses for α = 3, Nominal (left) and with 10% MPM (right)

Tuning IMC ZNIMC AMIGO Tuning IMC ZNIMC AMIGO
Kc 0.27 0.27 0.19 τd 36 36 47.37
τi 150 230.31 116.13 τf 3.6 3.6 4.74
ISE 603.9 746.9 686 ISE 749.6 881.4 834.6
ITSE 224112 335425 267580 ITSE 280338 384082 325996
Tv 1094 955 1067 Tv 1121 989 1097
Min(y) 0 0 0 Min(y) 0 0 -0.02
Max(e) 1.73 1.73 1.73 Max(e) 1.95 1.95 1.95
GM 2.57 2.58 3.51 GM 2.18 2.21 2.91
PM 71.9 87.4 69 PM 66.9 85 64.58
DMn 2.04 3.68 2.23 DMn 1.39 2.67 1.89
MS 1.65 1.64 1.4 MS 1.86 1.83 1.52
MT 1 1 1 MT 1 1 1
JSP 305.9 469.3 331.2 JSP 278.1 426.7 301.62
JD 556.8 854 603.78 JD 556.8 854.2 603.84
JU 3.13 3.13 2.22 JU 3.23 3.23 2.28
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4.10 Discussion

The results from the simulation study exhibited promising tuning algorithms. For

each case of servo and regulatory control, three different tuning rules were picked. As

the response plots hinted, all of them were worthy of consideration and it is not a

good idea to completely rule out any of them. The selection of the best is well related

to the testing situation and the considerations for a specific application.

In each category, three tuning rules are intentionally chosen in this way: one with

very good performance, one with very good robustness and a compromise tuning

solution. Table 4.2 ranks these tuning rules as described.

Table 4.2: Ranking of tuning rules based on performance and robustness

−−
−−
−−
−−
−−
→

P
er

f
or

m
a
n
ce Setpoint Tracking Disturbance Rejection

←−
−−
−−
−−
−

R
ob

u
st

n
es

s

ITAE Ziegler-Nichols
IMC ZNIMC

Auto-Vilanova AMIGO

For each category the best performing tuning rule gives the best results in ideal

conditions, but as the uncertainty inside the system worsens, more robust tuning

rules become superior in performance. These results validate the trade-off between

performance and robustness for a given process. As it is almost impossible to have

an exact model of the system; use of ITAE and Ziegler-Nichols techniques are not

recommended in case of non-ideal conditions.
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Figure 4.16: Recommended choice of desired closed-loop time constant for setpoint
tracking

The results proved that the proposed ZNIMC tuning rule is a good technique in

64



simulation and results in a compromised solution. It has minor to moderate robust-

ness characteristics and hence is recommended to industrial practitioners for imple-

mentation based on these findings.

For the desired closed loop time constant, Figure 4.16 provides a guideline to

choose τc for setpoint tracking and we have used a similar guideline in case of distur-

bance rejection.

We conclude that a value around 1.2 times the deadtime is appropriate for the

desired closed loop time constant. That would correspond to a 15% overshoot in the

presence of 10% MPM.

To set standard values for the PID controller design, performance and robustness

indices for the best controller in each modelling region are presented in Tables 4.3

and 4.4. For the case of setpoint tracking the results are consistent and can be used

as excellent rules of thumb for the controller design. For the discussed degree of

robustness we recommend a gain margin of 2.4, a phase margin of 70◦, a maximum

sensitivity of 1.7, a maximum complementary sensitivity of 1, and a normalized delay

margin of 1.9. Interestingly, the suggested value for MS is in complete accordance

with the design formulation used in [23]. The very low value of variance between data

points and wide scope of α make the recommendations highly reliable.

For the case of regulatory control, from the data in Table 4.4 it is not easy to draw

meaningful patterns. The reason is that all of the indices are derived using the loop

transfer function (L(s) = P (s) ·C(s)) which is good for describing the servo behavior

(based on Equation 2.1a). However in the case of regulatory control the dynamics

are not solely determined by the loop transfer function, they are also a function

of the process model itself (see Equation 2.1b). That means the indices cannot be

defined based only on L(s), they should be defined for each specific modeling region.

Therefore, no general index can be defined for the whole design domain. In view of

these facts, loop shaping methods will not give optimal results and should not be

used for PID regulatory control designs in the framework described above.

The normalized delay margin represented itself as a better criterion than the phase

margin. Quantitative data for regulatory control in the lag dominant region show that

a difference of less than 15◦ in the phase margin could result in a normalized delay

margin ratio of more than 2.5 between Ziegler-Nichols and AMIGO tuning rules. In

other words, the discrepancy can be seen more clearly using the normalized delay

margin. This is especially useful in cases of nonstructural robustness analyses.

The values for J-factors were not constant for either servo or regulatory control.

Figure 4.17 shows the trends of these variables as a function of α. J-factors are not

much suitable to be used as controller design indices due to their variability.
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Table 4.3: Calculated robustness and performance indices for the best case scenario
(setpoint tracking)

α GM PM MS MT DMn JSP JD JU

0.1 2.42 71.1 1.72 1 1.95 10 18 40.4
0.4 2.37 70.8 1.75 1 1.9 39 71 11.9
0.7 2.4 71.1 1.73 1 1.93 69 126 7.5
1.5 2.39 70.7 1.73 1 1.89 145 264 4.7
3 2.44 70.7 1.71 1 1.89 290 528 3.3

Table 4.4: Calculated robustness and performance indices for the best case scenario
(disturbance rejection)

α GM PM MS MT DMn JSP JD JU

0.1 2.63 35.8 1.68 1.75 0.93 14.7 4.66 39.5
0.4 2.56 52.3 1.66 1.18 1.31 39.3 44.4 11.3
0.7 2.51 64.7 1.67 1 1.71 62.1 110 7.25
1.5 2.52 71.9 1.67 1 2.04 153 278 4.38
3 2.57 71.9 1.65 1 2.04 306 557 3.13

Simulations proved that the ZNIMC tuning rule performs well in lag dominant

and balanced lag and delay modeling zones. However, as alpha approaches unity the

ZNIMC tuning rule converges to the conventional IMC rule and beyond that threshold

the conventional IMC rule gives dominant results.

”Robustness” is a general term and it has to be defined before the design as one

of the control objectives. In this thesis, I investigated situations both with mild

degree of robustness and with higher demands of robustness. The controller design

in Chapter 4 was carried out based on 10% unstructural MPM in model parameters.

The outcome was seen to be robust enough for the identification errors, however, it

may not be reasonable when process shifts in the operating points occur. For higher

demands of robustness, the results in Appendix A seem to be more relevant where

30% of MPM is assumed for the controller design.

PID controllers are not recommended for delay dominant processes, higher order

systems and inherently oscillatory systems [5]. The simulation results presented in

the Appendix A showed that the application of derivative action should be limited in

noise-rich environments; nonetheless, use of a suitable derivative filter can be relieving.

The author also discourages the use of derivative action in the presence of valve

stiction.
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Chapter 5

Experimental Design for Robust
PID Controller Tuning of Pilot
Scale Continuous Stirred Tank
Heater

So far we have seen the performance of tuning rules in a simulation environment.

However, it has been observed that simulation results may not mimic reality. To

confirm and substantiate the findings in the previous chapter, we implemented the

techniques on a computer interfaced pilot process located in the process control lab-

oratory in the Department of Chemical and Materials Engineering at the University

of Alberta.

The process chosen was the continuous stirred tank heater (CSTH). The objective

was to maintain the outlet water temperature at a desired setpoint by regulating the

amount of steam flowing through the immersed coils. The process is inherently second

order, nevertheless a FOPTD model was obtained for the sake of tuning. In this way,

some degree of unstructural MPM was incorporated into the ensuing analysis.

For more comprehensive information about the process and the procedures for

identification of the model used here refer to Appendix B.

5.1 Process Model and Choices of PID Controller

The process model from steam flow (kg/hr) to tank output temperature (◦C) was

identified as a FOPTD model with a steady-state gain of 1.82, a time constant of 60

seconds, and a deadtime of 38 seconds (See Appendix B.3)

P (s) =
1.82

60s + 1
e−38s
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The process is interfaced to the deltaV (Emerson) distributed control system

(DCS). The controller gain for this specific type of interface is defined in dimen-

sionless (normalized) units. To convert the calculated controller parameters to suit

the system, the following equality was used:

Kc(dimensionless) = Kc(conventional)× Range of process varaible(PV )

Range of controller action(OP )
(5.1)

For this specific control loop we have:

Kc(dimensionless) = Kc(conventional)× (100− 0)◦C Water Temp.

(40− 0)Kg
hr

Steam
= 2.5Kc (5.2)

The calculated parameters for the PID controller obtained using various tuning

rules are presented in Table 5.1:

Table 5.1: Calculated controller parameters
Name of tuning Kc Kc(DCS) τi τd

S
er

vo

ITAE-track (1997) [39] 0.78 1.95 85.3 12.1
IMC (τc = 1.2θ) (1990) [15] 0.67 1.68 79.0 14.4

Vilanova (2008) [43] 0.33 0.83 61.2 0

R
eg

u
la

ti
on Ziegler-Nichols (1942) [47] 1.04 2.60 63.1 15.8

ZNIMC (2009) 0.67 1.68 63.1 14.4
AMIGO (2004) [4] 0.5 1.25 54.6 16

IMC-dist (2007) [37] 0.57 1.43 67.1 8.5

The nominal operating conditions of the CSTH process are given in Table 5.2

(borrowed from Table B.1)

Table 5.2: CSTH process deterministics
Process Variable Value
Water level inside the tank 20cm
Cold water flow 4.8 kg/min
Nominal steam input 10 Kg/hr
Temperature measuring sensor thermocouple #2
Manual valve position 50%
Ambient temperature 21◦C

5.2 Experimental Procedure

The main objective of this exercise is to evaluate the tuning rules and the robustness of

several different PID controllers. Three different scenarios with no, low and significant

model plant mismatches were investigated.
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In the first scenario, the process was assumed to be operating around the nominal

point and exactly matched the identified model, that is, with no MPM consideration.

In the next scenario, the nominal level of water was dropped by 25% to test the

suitability of tuning methods in that condition. Decreasing the water level decreased

the time constant of the process and also increased the gain and deadtime, though

not a significant change of deadtime. (see Appendix B.5.5).

For the last scenario, the measuring sensor was switched to a more downstream

sensor (from #2 to #3). This was done using the instrument selector provided by

DeltaV DCS. This caused the amount of deadtime to increase by a factor of about

40% (see Table B.3) which is considered a large uncertainty.

In this way, the robustness of the tuning techniques was analyzed by experimen-

tally inducing mismatches to the CSTH process.

To test the tracking performance of the tuning rules, the setpoint was changed

from 30 to 35◦C. After the response settled, the setpoint was returned to its original

value to start the next test.

For regulatory control, a disturbance was introduced into the process at 30◦C by

opening the hot water valve and maintaining a steady 0.5 kg/min flowrate. The level

however was controlled by a level controller and after some time it again reached

its nominal (20cm) value by an automatic decrease of cold water flow. This change

nevertheless had an interacting effect on the temperature loop used for this study.

The same tests were conducted for the MPM cases, this time by adding 25% MPM

in the level (L=15cm) and switching the thermocouple from location #2 to #3.

The attending tuning rules for comparison were chosen to be the same as those

in Chapter 4. That is, ITAE, IMC, and Vilanova for setpoint tracking and Ziegler-

Nichols, ZNIMC, and AMIGO for regulatory control. We also added a new IMC based

tuning rule proposed by Shamsuzzoha and Lee (2007) [37] for regulatory control to

extend the scope of comparison.
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5.3 Results

5.3.1 Scenario(a): Nominal process
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Figure 5.1: Setpoint tracking (top) and regulatory (bottom) behaviour at nominal
conditions
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5.3.2 Scenario(b): Water level dropped by 25% (L=15cm)
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Figure 5.2: Setpoint tracking (top) and regulatory (bottom) behaviour in the presence
of 25% MPM (Level=15cm)
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5.3.3 Scenario(c): Thermocouple switched from location #2→#3
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Figure 5.3: Setpoint tracking (top) and regulatory (bottom) behaviour when deadtime
is increased

5.3.4 Time domain numerical data

In order to compare tuning rules in a quantitative way, it is possible to measure the

performance of the response variable and the control effort by using the time domain

indices mentioned in section 2.6.1. Here we used ISE and ITSE for the output and Tv
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to measure the control activity or effort. Tables 5.3, 5.4, and 5.5 present the results

obtained from the experimental data.

Table 5.3: Table of comparison between ISE, ITAE and Tv indices: Scenario(a)
Tuning method ISE ITSE Tv

ITAE-Track 1460 46638 124

S
er

vo

IMC PID (τc = 1.2θ) 1417 46987 98
Vilanova 1817 83002 56

Ziegler-Nichols 1048 193500 594

R
eg

u
la

ti
on

ZNIMC (τc = 1.2θ) 705 103157 250
AMIGO 911 132614 245

IMC-Dist (τc = 1.2θ) 909 132382 244

Table 5.4: Table of comparison between ISE, ITAE and Tv indices: Scenario(b)
Tuning method ISE ITSE Tv

ITAE-Track 1474 48951 177

S
er

vo

IMC PID (τc = 1.2θ) 1504 49790 117
Vilanova 1915 83116 52

Ziegler-Nichols 1186 262651 689

R
eg

u
la

ti
on

ZNIMC (τc = 1.2θ) 610 93253 241
AMIGO 675 104759 231

IMC-Dist (τc = 1.2θ) 1108 166121 263

Table 5.5: Table of comparison between ISE, ITAE and Tv indices: Scenario(c)
Tuning method ISE ITSE Tv

ITAE-Track 1860 84954 230

S
er

vo

IMC PID (τc = 1.2θ) 1820 74338 226
Vilanova 2129 103494 80

Ziegler-Nichols 844 196780 511

R
eg

u
la

ti
on

ZNIMC (τc = 1.2θ) 674 141018 674
AMIGO 815 134968 130

IMC-Dist (τc = 1.2θ) 1013 179281 200

The integration time was approximately set to from 0 to 280 seconds in scenarios

(a)-(b) and from 0 to 360 seconds in scenario (c) for tracking and from 30 to 430

seconds in scenarios (a)-(b) and from 90 to 540 seconds in scenario (c) for regulation

measured from the beginning of each test. The integration was carried out numerically

using the trapezoidal technique.

The numerical data for the best performing tuning are highlighted in each section.

For tracking, the best result in the nominal case and also in the reduced water level
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condition was obtained using ITAE with a small margin compared to IMC. In the

case of increased deadtime, ITAE was better in ISE but IMC performed better using

the ITAE measure considering the time penalty. In all cases the Vilanova tuning rule

resulted in the least control action effort as measured by Tv.

For regulation the best results were obtained by the ZNIMC tuning rule in sce-

narios(a) and (b); however, in scenario(c) AMIGO performed better compared to

ZNIMC. On the basis of the required control effort, AMIGO was generally superior,

nevertheless, the IMC-Dist tuning rule was slightly better for the nominal process.

5.4 Discussion

The performance and robustness of selected PID controller tuning methods were

evaluated on a real process. The validation results for the real process did not fully

match the simulation outcome. Especially for regulatory control, simulation responses

did not exhibit undershoot as seen in the real case. The real process gain seemed to

be more than that of the model and the results were sometimes oscillatory specially

for Ziegler-Nichols tuning rule. The possible causes could be error in the identification

process, nonlinearity of the process and even interactions between temperature and

level loops.

Another possibility for the observed differences is a variation in disturbance mod-

els between the simulation and the experiment. In simulation, a step load disturbance

was applied, but in the experiment the disturbance transfer function was not P(s),

i.e. D(s) 6= P (s). One of the issues in evaluating tuning rules for regulation is that

analysis in scientific reports is mostly carried out based on load disturbance assump-

tions while something different could occur beyond the simulation. Unfortunately

load disturbance simulation is the only available regulatory test tool which tuning

rules could be evaluated upon.

Regardless of the discrepancy, the IMC tuning rule proved to be good for tracking;

however, the response of the ITAE tuning technique was quite similar. ISA-based

Vilanova tuning method was overall very robust but otherwise very sluggish. We

recommend using it where significant robustness is needed or when minimal control

action is desired and/or when facing a saturation problem.

The proposed tuning rule (ZNIMC) did well for regulation in the real process both

in nominal case and in the presence of small MPM with reduced water level. It did

not perform well in scenario (c) using thermocouple #3. The reason could be the

high degree of uncertainty in that case, around 40% in the estimated deadtime. The

amount of assumed mismatch for deadtime was considered to be 10% in the design
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stage (see Chapter 4). Therefore more robustness is needed in similar cases. Therefore

the desired closed loop time constant should be fine tuned to suit the application

requirements. Identification methods normally calculate the amount of uncertainty

associated with each parameter and this could be exploited to tune PID controllers.

The experimental results also showed that Ziegler-Nichols is too aggressive and hence

its use is discouraged in this context.

Use of the ISTE index is preferred over IATE because in long runs it eliminates

the effect of small deviations from the setpoint observed under steady-state condition

of the experimental results.
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Chapter 6

Conclusions and Future Directions

This research effort considered the tuning of PID controllers from a practical view-

point and did not deal deeply with mathematical derivations common in process

control theory. The author feels that the mathematical tools needed to solve this

problem are far beyond what is required; the reason why this seemingly simple prob-

lem still exists is likely a result of insufficient understanding of the problem itself.

Lack of a comprehensive approach to the tuning problem over time is also another

factor.

A motivation for this study was to find a simple tuning rule which could be used

for regulatory control as industry practitioners need practical guidelines that are

easy to implement for tuning PID controllers in process plants. Another motivation

for this study was the comments and feedback from industrial practitioners who were

interested in exploring alternative tuning rules for disturbance rejection in their tuning

software TaiJi-PID.

The theme of the thesis was on controller robustness against performance degrada-

tion in cases of model plant mismatch and in situations where process abnormalities

are encountered. The study conducted in chapter 4 was mainly concerned with MPM;

however, the results presented in the attached paper in Appendix A considers both

conditions.

As mentioned in section 4.2, for each control loop there are several control ob-

jectives to accomplish. Stability is an important consideration for processes with

aggressive operating conditions (i.e., temperature and pressure); nevertheless, for

most chemical processes that is not an issue (assuming they are open loop stable).

Other than that, a controller faces tracking and regulation objectives. A study by

Morari [28] showed that it is not possible to have optimal solutions for both situations

simultaneously. Our simulations confirmed this idea. A promising solution for that

problem is to use controllers with two degrees of freedom where the main controller is
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designed for regulation and a prefilter is used to obtain the desired tracking dynamics.

The choice of regulation or tracking also depends on the specific application. For

example, in cascade configurations the inner loop should be tuned based on tracking

as it receives the commands(setpoints) from the master loop. Another good example

is in MPC applications. Due to frequent changing of setpoints by the MPC server, it

is suggested that the client loops be tuned for tracking.

Another point to re-emphasize is the trade off between robustness and perfor-

mance which is an inevitable constraint due to the non-optimal structure of the PID

controllers. In the beginning era of control theory the focus was on maximizing the

loop performance, however, in the late 80s robustness grew in importance albeit at

the cost of lower performance. In Chapter 4 some tuning rules were ranked according

to the robustness and performance. The results again confirmed the trade off between

those variables. The best tuning rule in the context of this thesis was the one that

gave a compromised behavior. The IMC tuning rule [15] was recommended to be

used for setpoint tracking of PID controllers. The proposed tuning rule for regulation

(ZNIMC) also exhibited a compromise behavior and gave a reliable tuning technique

when the desired closed loop time constant was selected appropriately.

The tuning rule proposed by Vilanova also demonstrated a high degree of ro-

bustness for setpoint tracking; however, owing to higher robustness, its response is

somewhat sluggish. The author recommends using this tuning rule when higher ro-

bustness and lower controller action (both in magnitude and variance) are demanded.

Based on the results and discussions I had during research work, it seems that

the best results for PID controller tuning use optimization techniques. The main

issue here is the right problem formulation (i.e., selection of the cost function and

appropriate weighting factors). A drawback is the local minima trap where the op-

timal solution is not reached. The author recommends using optimization methods

in commercial software packages. On the other hand, for analytical tuning rules, the

best result seems to be obtained using pole-placement techniques, especially IMC

formulation which deals with that problem systematically. These are all good areas

for future studies.

Simulations supported the fact that the bottleneck for the maximum controller

performance seems to be highly related to the amount of deadtime in FOPTD pro-

cesses. Accordingly, using the Smith predictor method for delay dominant modeling

regions could be helpful.

The selection of performance and robustness indices in a design approach should

be based on problem requirements. I found that the normalized delay margin was a

better physical interpreter of the system than phase margin and hence using it for
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design is recommended. A nominal value of 1.9 can be estimated for this parameter.

The downside of using a normalized delay margin is that it cannot be easily converted

to the phase margin and therefore its use is not straightforward in the frequency

domain analysis.

In this study, conventional tuning rules were tested and evaluated against each

other using the TUNIX Simulation Package. Some did not perform well especially

when the nominal model and the process did not match, and some exhibited similar

trends to each other with little gain. However, based on our comparison all of the

tuning rules discussed in this thesis seemed to be worthy of consideration for future

works.

SISO (single input single output) systems were the major focus of this analysis.

However MIMO (multiple inputs multiple outputs) cases are of course a good area

for future researchers (how could the results be modified for those systems?). There

exist a considerable multivariable literature as well especially for TITO (two input two

output) systems which the interested reader could refer to. Such problems involve

decoupling issues and the construction of decentralized matrices and thus requires

additional mathematical tools and knowledge of the linear algebra.

Tuning rules were tested on FOPTD models which are used in industry for mod-

eling self regulating processes. Future analyses could consider integrating and second

order processes. The author evaluated continuous time domain systems while indus-

trial controllers are nowadays digital; therefore an extension of this study to sampled

data systems would be beneficial to the field of controller tuning.

PID controllers do not provide the most optimal solutions to control problems.

However, it seems that most of the potential of PID controllers can now be utilized by

means of available tuning rules especially in the case of setpoint tracking. Recently

a new LQR based algorithm was suggested by Pannocchia et al. [33] to replace the

conventional PID controller. It has incorporated two tuning parameters: Regulator

and Estimator, and by using these, it claims higher performance and better robust-

ness than current PID controllers. However, it seems that even if it succeeds as an

alternative to PID controller, it will take a long time for it to be adopted.
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Abstract

Proportional-Integral-Derivative (PID) controller
tuning guidelines in the process industry have been
in place for more than six decades. Nevertheless de-
spite their long design history, PID controller tuning
has remained an ’art’ and no single comprehensive
solution yet exists. Various considerations have been
taken into account in PID tuning, but in this study
tuning is carried out from a different perspective.
The conventional methods seldom take real process
abnormalities such as model plant mismatch and/or
valve stiction into account. In this paper we attempt
to view the issue of PID tuning from this perspective
and look for a robust design against real prob-
lems in the process industry. Various well known
PID techniques are evaluated and compared on a
benchmark First Order Plus Time Delay (FOPTD)
processes. Extensive simulation results are presented
and afterwards an acceptable tuning is picked and
recommended. At the end some concluding remarks
and remedies are suggested.

Key-words: ISA PID controller - FOPTD model -
robust tuning technique - process abnormality: valve
stiction, model plant mismatch - disturbance rejec-
tion
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1 Introduction

Proportional-Integral-Derivative (PID) controllers
are one of the most essential parts of process control.
Thanks to their simplicity and efficiency, they have
found wide usage and acceptance in every chemical
plant. It is estimated that around thousands of con-
trol loops are commissioned in an ordinary refinery
and a majority of them are PIDs. Based on an indus-
trial study [11] only about 5-10% of control loops are
non-PIDs. O’DWYER [11] has suggested that the
PID controller is not recommended for delay domi-
nant processes.

This wide range of application is a significant mo-
tivation to introduce reliable tuning methods. There
are many tuning techniques available in the litera-
ture; however, none of them offer an ideal compre-
hensive solution to PID performance.

There are some key issues in the tuning of the con-
troller for optimal process performance, an area that
needs attention. Considering the facts that process
models are rarely precise and accurate plus the exis-
tence of process disturbances requires that these is-
sues need to be taken into account when PID con-
trollers are tuned.

The purpose of this work is to evaluate and com-
pare some well known tuning rules and to recommend
guidelines for robust tuning methods from a practi-
cal point of view. In this paper tuning is carried out
to ensure robustness in the presence of abnormali-
ties such as model-plant-mismatch and valve stiction
mentioned in the very last paragraph.
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1.1 Control Objectives

Consider the block diagram of a feedback system:
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Figure 1: Schematic of a control feedback system

In general there are five main control objectives in
the design and configuration of a control loop

• Tracking of operator’s setpoints

• Regulation in the presence of process distur-
bances

• Robustness to model uncertainties

• Attenuation of sensor noise

• Stability and safety considerations

Please note that these objectives are not necessarily
mutually inclusive but rather they are contradictory
as suggested by Bode’s integral theorem. In summary
there is always a trade-off between robustness and
performance. The existence of such a trade-off be-
tween control objectives makes it necessary to prior-
itize the design for each application. This essentially
confirms the idea that there is no single panacea for
the tuning of an optimal controller.

In this paper we are more concerned about robust
design of system against process uncertainties and its
trade-off against overall performance. The first cri-
terion however may unwillingly make the closed-loop
system sluggish at the expense of poor performance;
nevertheless a treatment to enhance performance is
suggested in a later section.

1.2 Choice of process and controller

In this study we have focused on First-Order-Plus-
Time-Delay (FOPTD) systems with following dy-
namics

Gp(s) =
Kp

τs + 1
· e−θs (1)

FOPTD processes are a common type of systems
given that the dynamics of most overdamped pro-
cesses can be sufficiently well characterized by such
models. They are also known as three parameter
models; process gain, time constant and deadtime
being the varying parameters.

For the purpose of evaluation we use the following
standard ISA form of the PID controller as widely
used in literature with a filter applied to the deriva-
tive part.

Gc = Kc(1 +
1

τI · s +
τD · s

τf · s + 1
) (2)

Based on the recommendation of Brosilow [4] to
avoid noise amplification inside feedback loop the ra-
tio of τf

τD
is selected to be 0.1. This indeed ensures

the system to have |G(j∞)
G(0) | < 20.

2 PROBLEM ANALYSIS

By deriving the closed loop transfer function of the
system it is clear that the product of Kp×Kc should
remain constant and therefore the controller gain is
a function of inverse Kp. [Kc = f(1/Kp)].

Both τ and θ have the same dimension of time. It
is observed that the ratio of the two variables has an
important effect on the final response. Towards this
end, we define the following dimensionless parameter:

α =
τ

θ
(3)

Here we start the discussion based on different val-
ues which alpha could take. In our view, the FOPTD
process model could take anyone of the three cate-
gories:

Process type belongs to :



Lag Dominant if α < 0.5
Balanced Lag & Delay if 0.5 < α < 1
Delay Dominant if α > 1

(4)

Please note that the boundaries set for the clas-
sification are not sharp and they may need some
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slight adjustments. The FOPTD modeling regions
are shown graphically in Figure 2.
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Figure 2: FOPTD modeling zones

3 PROCESS SIMULATION

To compare and evaluate the quality of tuning rules,
we have attempted to simulate the performance of
controllers designed for each modeling zone. An ex-
tensive set of simulation runs have made, however
due to the lack of space we will only present the re-
sult for just one model per each zone. Conventional
step-tracking and disturbance rejection tests are used
for comparison.

3.1 Defining the Test Batch

In order to implement a fair test, a standard bench-
mark was defined for use in different modeling re-
gions:

Gp(s) =
e−αs

s + 1
α ∈ {0.2, 0.7, 1.3} (5)

The following robust tuning methods (such as IMC
[5], AMIGO [1], and Vilanova [14]) have been picked.
As mentioned before the emphasis was given on per-
formance in the presence of process abnormalities.

3.2 Process abnormalities

To test tuning methods, we introduced three different
abnormalities prevalent in process industry: Model
Plant Mismatch (MPM), valve stiction and sensor
noise.

The problem definition in this paper is as follows:
in case of uncertain systems 30% MPM was imposed.
That means that every FOPTD parameter was com-
puted based on a 30% error in the gain, time constant
and delay in the worst case direction. It is equivalent
to higher than normal estimated value of process gain
and deadtime and a reduced estimate of time con-
stant.

The valve stiction is introduced with the dead-band
including stick-band of 2 and a slip jump of magni-
tude 1 (See [6]). The valve stiction block is adopted
from the study by Choudhury et al. [7]. Finally mea-
surement noise with a variance of 1e(−4)and zero ran-
dom seed was applied directly to the process.

The step-tracking and disturbance rejection tests
are presented in the same plot. The magnitudes of
steps are set equal to 1 for setpoint tracking and a
step size of -0.5 in the disturbance variable for regu-
latory test case. The setpoint is entered at the start
of the simulation and the disturbance enters the pro-
cess once the setpoint level is reached. The results
are shown in Figures 3, 4 and 5.

Numerical robustness data corresponding to a sin-
gle change of each FOPTD parameter in the closed
loop condition is provided in Table 1. The models
used here are the same as before. For each parameter
{Kp, τ, θ} a 30% positive and negative change is ap-
plied to validate the worst case as well as favourable
MPM situations. The nominal closed-loop sensitivity
plots are also depicted for further reference.

4 RESULTS

The setpoint tracking and disturbance rejection re-
sponses in the presence of the process abnormalities
were drawn in Figures 3, 4, and 5. Additionally, the
sensitivity and complementary sensitivity plots were
presented for each modeling region.
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Figure 3: Responses for α = 0.2, in presence of (a): 30% mismatch, (b): valve stiction, (c): sensor noise -
(d): Sensitivity and complementary sensitivity behaviors obtained by various tuning rules

86



0 5 10 15 20
0

0.5

1

1.5

Time (sec)

P
ro

c
e
s
s
 O

u
tp

u
t

 

 

0 5 10 15 20
0.5

1

1.5

2

Time (sec)

C
o
n
tr

o
l 
E

ff
o
rt

SETPOINT
IMC (PID)
AutoVilanova
AMIGO

(a)

0 20 40 60 80 100
0

0.5

1

1.5

 

 

0 20 40 60 80 100
0.5

1

1.5

2

SETPOINT
IMC (PID)
AutoVilanova
AMIGO

(b)

0 5 10 15 20
−0.5

0

0.5

1

1.5

Time (sec)

P
ro

c
e

s
s
 O

u
tp

u
t

 

 

0 5 10 15 20
0.5

1

1.5

2

Time (sec)

C
o

n
tr

o
l 
E

ff
o

rt

SETPOINT
IMC (PID)
AutoVilanova
AMIGO

(c)

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

Frequency(rad/sec)

S
e

n
s
it
iv

it
y

 

 

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

Frequency(rad/sec)

C
o

m
p

le
m

e
n

ta
ry

 S
e

n
s
it
iv

it
y

IMC (PID)
AutoVilanova
AMIGO

(d)

Figure 4: Responses for α = 0.7, in presence of (a): 30% mismatch, (b): valve stiction, (c): sensor noise-
(d): Sensitivity and complementary sensitivity behaviors obtained by various tuning rules
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Figure 5: Responses for α = 1.3, in presence of (a): 30% mismatch, (b): valve stiction, (c): sensor noise-
(d): Sensitivity and complementary sensitivity behaviors obtained by various tuning rules
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4.1 Numerical Results

The robustness indices corresponding to each mod-
elling zone were tabulated in the Tables 2, 3, and 4
to give an indication of the robustness.

Table 1: Recommended controller design values for
robustness margins
Recommended GM PM DM MS MT

Low 2 45 NA 1.2 1
High 5 60 NA 2 1.5

Table 2: Variations of robustness measures by chang-
ing FOPTD parameters

Lag-dominant Case
IMC GM PM DM MS MT

+30%
Kp

3.36 77 0.6 1.43 1
-30% 6.23 83 1.24 1.2 1
+30%

τ
5.64 72 0.94 1.22 1

-30% 3.08 82 0.66 1.49 1
+30%

θ
3.78 74 0.77 1.38 1

-30% 4.93 86 0.89 1.26 1
Vilanova

+30%
Kp

3.17 62 0.44 1.58 1
-30% 5.89 75 0.99 1.27 1
+30%

τ
5.24 66 0.75 1.32 1.02

-30% 3 69 0.48 1.6 1
+30%

θ
3.18 62 0.57 1.58 1

-30% 5.88 75 0.69 1.27 1
AMIGO

+30%
Kp

2.52 58 0.32 1.67 1.15
-30% 4.69 60 0.56 1.28 1.11
+30%

τ
4.24 52 0.46 1.31 1.22

-30% 2.32 64 0.34 1.77 1.05
+30%

θ
2.85 51 0.35 1.58 1.22

-30% 3.65 68 0.47 1.38 1.08

Table 3: Variations of robustness measures by chang-
ing FOPTD parameters

Balanced Lag & Delay Case
IMC GM PM DM MS MT

+30%
Kp

2.81 74 1.68 1.56 1
-30% 5.23 82 3.54 1.24 1
+30%

τ
4.62 72 2.33 1.29 1

-30% 2.7 86 2.35 1.59 1
+30%

θ
3.18 71 2.13 1.48 1

-30% 4.11 85 2.55 1.32 1
Vilanova

+30%
Kp

3.17 62 1.54 1.58 1
-30% 5.89 75 3.48 1.27 1
+30%

τ
4.86 63 2.2 1.39 1

-30% 3.37 75 2.27 1.48 1
+30%

θ
3.18 62 2.01 1.58 1

-30% 5.88 75 2.43 1.27 1
AMIGO

+30%
Kp

2.53 57 1.03 1.66 1.07
-30% 4.7 67 2.07 1.27 1
+30%

τ
4.17 56 1.38 1.34 1.09

-30% 2.42 69 1.4 1.71 1
+30%

θ
2.88 52 1.18 1.6 1.13

-30% 3.57 71 1.6 1.39 1

Abbreviations used in the tables stand for [GM:
Gain Margin][PM: Phase Margin][DM: Delay Mar-
gin][MS: Maximum Sensitivity][MT: Maximum Com-
plementary Sensitivity]
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5 CONCLUSION

The results given in the last section reveal that the
task of control becomes harder as alpha becomes
larger. In general it makes sense to have a detuned
controller in this case.

Some tuning rules behaved better in some model-
ing zones: for example the AMIGO [1] tuning rule
had good responses in delay dominant region. The
tuning rules proposed by Vilanova [14] also provided
an overall robust tuning solution.

The extensive simulations, not included here be-
cause of lack of space, showed that other well known
tuning techniques such as Tyreus-Luyben [9], Cohen-
Coon [8], ITAE [13] and Ziegler-Nichols [15] no longer
satisfy uprising control demands. They sometimes
give oscillatory dynamics or end up being unstable
especially in case of severe abnormalities.

From the comparison of tuning techniques it has
been deduced that the IMC formulation gives the
best solution in terms of performance and robustness.
In most cases the correct choice of the desired closed
loop time constant (τc) is of great importance. A rule
of thumb to select the desired closed loop time con-
stant is given in Table 2. In simulations, IMC [5] PI
controller exhibited itself as a more robust controller
compared with PID version considering the same τc.

The presence of measurement noise proved to be
challenging especially in dealing with the required
control effort. The tuning rules with large deriva-
tive time constants caused a greater variance in valve
stem position. We recommend using a PI controller
in noise rich environments. Although all of the tech-
niques have derivative filters mounted inside the con-
troller, using stronger derivative filter could also help.

In summary, in abnormal conditions (i.e. presence
of valve stiction, model plant mismatch and sensor
noise), we recommend using IMC tuning with the
derivative action turned off (PI version) for servo-
control and AMIGO tuning technique for regulatory-
control. Please note that in the design of tuning con-
stants there is always a major side effect due to trade-
off between robustness and performance. To avoid
excessive sluggishness of response we suggest using a
two-degree of freedom controller where possible.
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ing FOPTD parameters

Delay Dominant Case
IMC [5] GM PM DM MS MT

+30%
Kp

2.84 74 3.13 1.55 1
-30% 5.28 82 6.57 1.24 1
+30%

τ
4.47 74 4.23 1.3 1

-30% 2.91 83 4.5 1.52 1
+30%

θ
3.21 71 3.95 1.48 1

-30% 4.13 85 4.73 1.32 1
Vilanova [14]
+30%

Kp
3.17 62 2.87 1.58 1

-30% 5.89 75 6.46 1.27 1
+30%

τ
4.46 65 3.99 1.42 1

-30% 3.75 73 4.29 1.41 1
+30%

θ
3.18 62 3.73 1.58 1

-30% 5.88 75 4.51 1.27 1
AMIGO [1]

+30%
Kp

2.58 60 1.92 1.64 1.03
-30% 4.79 72 4.14 1.27 1
+30%

τ
4.08 61 2.6 1.38 1.02

-30% 2.62 71 2.81 1.62 1
+30%

θ
2.9 56 2.3 1.62 1.07

-30% 3.55 75 3.08 1.39 1
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Appendix B

Continuous Stirred Tank Heater
(CSTH) with Time Delay Process

B.1 Process Description

The CSTH process (P-4) consists of a transparent glass tank which has two input
streams; one regulates the cold water inlet and the other regulates the inlet for hot
water. The contents of the tank are heated by a steam coil mounted inside the tank.
Two inlet stream baffles cause the inlet water to enter the tank without causing
the level to fluctuate much and also ensure good mixing. In this way, the water
temperature inside the tank can be assumed to be constant at steady-state conditions.

Figure B.1: CSTH process

B.1.1 Process Control

Two control loops act on this process; the first controls the fluid level inside the tank,
while the other takes care of the output water temperature. Both of these goals are
accomplished using conventional PID controllers. An MPC controller is also installed
on this machine to test advanced control strategies in the higher level class.

In our test, we were concerned only about the temperature loop. This is tradi-
tionally known as a single input single output (SISO) system. Furthermore, we used
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Figure B.2: Schematic diagram of CSTH process

only the cold water stream and the hot water valve was kept shut throughout the
experiment. It is desirable to have a model from the steam flow setpoint to the exit
water temperature of the tank.

In order to change the delay of the process, the output line was initially designed
as long section of a transport process and four thermocouples are placed at different
downstream locations. Therefore various transportation delays could be entertained
by selecting the appropriate sensor location.

This structure would be useful to investigate the robustness of tuning rules against
a process model (i.e., time delay uncertainty). Inside the process, there exists a
thermocouple selector which could be used to switch the active readings of the system
to any of the thermocouples. It is even possible to use the median or average of all
sensors.

Please notice that manipulating the inlet cold water flow rate can change the
transportation delay. Decreased flow rate corresponds to increased deadtime of the
system and vice versa.

This pilot scale has been interfaced to a DeltaV DCS from Emerson Process Man-
agement. This allowed realtime interaction between the process and the operator.
Almost all important process quantities are superimposed on the process flow dia-
gram.

PID controllers in the process can be set into three different working schemes:
the ”manual” setting is used by the operator to have the process in an open loop
condition, the ”auto” setting is the closed loop instruction format to control the
process around the operator’s specified setpoint, and in the ”cascade” when the slave
loop is closed but the setpoint is determined by the master control loop.

B.2 Process Variables

Real-life processes rarely behave linearly. For our analysis a linear model of the process
was required. To obtain a linear system, we linearized the non-linear system around
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(a) (b)

Figure B.3: Left panel: DeltaV human machine interface (HMI) for the CSTH pro-
cess, right panel: Process History View during identification

Table B.1: CSTH process deterministics
Process Variable Value
Water level inside the tank 20cm
Cold water flow 4.8 Kg/min
Nominal steam input 10 Kg/hr
Temperature measuring sensor Thermocouple #2
Manual valve position 50%
Ambient Temperature 21◦C

a chosen operating point. In this case, we assumed fixed values for the variables other
than the manipulating and controlled variables and we only excited the MV around
a narrow neighborhood of its steady-state value.

The level inside the tank was set to be 20cm. The manual output valve was
positioned at 50%. The steam setpoint was changed around the nominal value of
10(±2) kg/hr. The thermocouple #2 was used for sensing the exit measurements.
Finally the room temperature was about 21.2◦C during the test. Table 5.2 summarizes
this data.

B.2.1 Process Disturbances

There are a variety of disturbances: room temperature plus cold water and steam flow
rates fluctuations are some examples. A more important disturbance happens due
to the interaction of control loops with each other, common in the MIMO systems.
Even though our analysis was based on a single variable (constant level), changing
the temperature could cause a disturbance on water level because of the change in
liquid density. We can see that even in this simple case the decoupling principle does
not hold true 100%.
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B.3 Process Identification

To obtain a model for this process, system identification techniques will be used
throughout this section. The algorithms and peripheral considerations for process
identification are beyond the scope of this thesis. However, we attempt to present the
essence of a hands-on process identification with an eye for some practical aspects.

B.3.1 Abstract

The CSTH process in this special case is a SISO system. The manipulating variable
(MV) is selected to be the steam flow setpoint which can affect our controlled variable
(CV), the output water temperature.

B.3.2 Preliminary Step Tests

In order to find the initial operating points and to determine the approximate time
constant, the process is excited with some basic step tests.

B.3.3 Input Signal Design

There are a variety of input structures for system identification; white noise is the
best identifying signal; but the most impractical due to the large variance in control
action. Other options are RBS (random binary signal), PRBS (pseudo random binary
signal) and sine waves. RBS is the most commonly used excitation signal in industrial
identification and it is used here.

There are two important defining characteristics for every RBS. One is the two
bands of signal between which the process is going to oscillate. Here 8-12 kg/hr are
assumed for the steam flow setpoint and is chosen symmetrically around a nominal
value of 10 kg/hr. The other important quantity is the excitation frequency band;
the lower band is chosen as zero whereas the upper is chosen using the relation
ωmax = k·Ts

π·τ . For this identification k is selected as 2, the time constant is obtained
from section B.3.2.

For choice of the sampling time, there are a variety of criteria; here we used one
tenth (of the dominant time constant) rule of thumb, leading to 5 sec as Ts. With
the sample time and levels decided, the following command can be used to generate
our desired identification signal in the MATLAB:

u = idinput(N, type, band, levels) (B.1)

N is the number of generated signal data points which corresponds to an identifi-
cation time span. In our case, about three hours is deemed sufficient to fully excite
the system.

B.3.4 Application of the Identification Signal

In applying the RBS signal to the system, we needed to have the MATLAB connected
to the process. OPC standards can be used to establish a connection between the
process server and the host machine where MATLAB is running on it.

The OPC toolbox was used in the MATLAB to allow direct communication with
the process. Consequently, data could be read and written from/to the real-time
working process. We then wrote a code in which given an input matrix, the process
is excited at each sampling time using a timer and the output signal is measured and
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stored in the workspace at the end of the run. For more information on the OPC
toolbox the reader is referred to Appendix C.

B.3.5 Analysis of Output Data

The first preliminary step to obtain an output signal was to find whether there existed
any bad data during the process of identification. One method to find inconsistent
data is outlier detection, that is, the points outside the confidence limit around the
arithmetic mean. A one step ahead (horizon) prediction model of the system was
estimated and then subtracted from the original data, then the outlier test was applied
and inappropriate data is pinpointed. The confidence limit was set as five times of
standard deviation. The result is depicted in the following graph.
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Figure B.4: Outlier detection on CSTH data

As observed, there is an outlier at the sampling time around 7000 sec; the average
of neighborhood data points was used for correction. A more perfect treatment would
perform two replacements, first with average data and then by estimating a model for
the second substitution. In this way the effective trend of the data could be translated
more strongly into the original data.

Input and outputs of the CSTH process are shown Figure B.5. The upper graph
depicts CV variations while MV is plotted in the bottom graph.

A fair amount of sensor and process noise can be seen in the measurements. This
is a realistic fact about industrial processes and is considered an important issue to
be considered in the task of control.

The impulse response of data was calculated using the ”cra” function in MAT-
LAB. It showed the correlation between different data points at different time delays.
Process data is supposed to be uncorrelated at least before the process starts to show
reaction. Using this fact, the amount of time delay can be estimated. A time delay of
35-36 seconds is visually estimated while by using ”delayest” function a delay equal
to 38 seconds was obtained (compare this with Figure B.6).

In the next stage, an identification model was obtained using the ARX model
which is one of the simplest formats used for dynamic systems. An equation like
A(q−1) ∗ y(t) = B(q−1) ∗ u(t) + e(t) was used to fit the data. In this equation, A and
B are the the ARX model parameters which should be determined and e(t) represents
the white noise signal.
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Figure B.5: PV and MV trends in CSTH identification

To check for the ’goodness-of-fit’ of the model, two residual tests are normally
conducted. The auto-correlation test on the residual error validates the quality of the
model whereas the cross-correlation test between the input and the residuals gives an
indication of the dynamics that may have been missed.

After the convergence of identification parameters is ensured, it is desirable to test
the model against a real process. To do this, the identification data was divided into
two parts, one part, called the training data, is used to obtain the model while the
other part, the validation data, is used to check the suitability of model in real world
conditions. This is also called as an infinite (horizon) step prediction test. Figure B.8
shows that our model successfully passed the test.

To evaluate the quality of the calculated model, step and impulse responses of the
model were plotted. The responses represent the degree of stability of the identified
model.

Other traditional tools for analyzing data and obtaining a model are frequency
based methods used in signal processing. The Periodogram and power spectrum of
input and output data as well as the empirical estimate of transfer function from MV
to CV were used for that purpose.

Finally, the frequency response of the obtained model was plotted against the peri-
odogram and power spectrum responses in one single graph. This gives an indication
of the type of dynamics captured by the simplified model.

In Figure B.11 we see that the phase response of our model behaved well at low
frequencies which is more important in the context of process control (slow dynamics).
However, the amplitude response showed a little gain mismatch between our model
and the real process. This might be explained as being due to process nonlinearities
inherent inside the process. One way to modify the model to match the reality is to
multiply model gain with an appropriate correcting factor.

B.4 Process Model

The process model was identified twice. In the first RBS excitation a second order
model was obtained as:
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Figure B.6: Estimation of CSTH deadtime

P (s) = 1.77
(1.47s + 1)e−35s

632s2 + 56s + 1
(B.2)

This model has a natural time constant of approximately 25 seconds and a damp-
ing ratio of 1.11. Therefore the process could be well modeled using a first order
model. In the next step a lower order model was identified by means of a different
RBS signal with reduced bandwidth in order to neglect higher dynamics (refer to
section 2.3 for information on model order reduction). That is:

P (s) =
1.82 · e−38s

60s + 1
(B.3)

This is well known as a first order plus time delay (FOPTD) model, which is
suitable to predict the behavior of nonoscillatory processes. Relative deadtime is
(α = L/T = 0.63) and is therefore considered to be moderately difficult to control.
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Figure B.7: Auto-correlation and cross-correlation tests

B.5 Mathematical Derivation of First Principle Mod-

els for the CSTH Process

B.5.1 Overview

In this section, we use material and energy balances throughout the derivation of level
and temperature models. This can be briefly represented by:

Input - Output {+ Generation / - Consumption} = Accumulation (B.4)

In this pilot scale process, there are three manipulating variables (MVs): cold
water, hot water, and steam flow. These variables affect the water level and the
output temperature of water, the two controlled variables (CVs). The model for the
whole system is derived; however in real experiments, cold water and steam are used
as active variables and hot water flow can be considered as a source of disturbance
to the process. A schematic of the process is shown in Figure B.12:

B.5.2 Assumptions Used to Derive First Principle Models of
CSTH Process

• Process is assumed to be linear and therefore the superposition principle holds

• Output flow is linearly dependent (with constant R) on the water level

• The process tank is considered as a lumped heat-transfer object (the tank con-
tent is stirred by means of mounted baffles)

• Dynamics of valves and pipes have been neglected
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Figure B.8: Validation of the process model against real data
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Figure B.9: Step and impulse responses of identified model

B.5.3 Nomenclature

u : Water velocity Re : Reynolds number (pipe)

l : Characteristic length di : Inner piping diameter

ν : Kinematic viscosity µ : Static viscosity

ρ : Water density L : Water level

A : Tank cross section area V : Volume

le : Effective length f : Volumetric water flowrate

ṁ : Mass flowrate R : Valve constant

θ : Residence time T : Temperature

T∞ : Ambient temperature Cp : Heat capacity

hfs : Latent heat of condensation q : Heat flowrate

h : Convection heat transfer coefficient U : Overall heat transfer coefficient

p : Pitch of coil r : Radius of coil

(B.5)
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Figure B.10: Periodogram and Empirical estimate of data
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Figure B.11: Comparison of identified model, periodogram and empirical estimate

B.5.4 Theoretical Approximation of Time Delay for CSTH
Process

The time delay in CSTH process system was calculated theoretically using fluid me-
chanic principles and real measurement information (e.g. a tape measure was used).

Physical length measurements

The measurements of process and calculated parameters are summarized in Table [2].
The length of piping was measured from the bottom of the tank to the corresponding
temperature sensor.

Table B.2: Physical data for CSTH process
Transparent tank diameter 16 cm
Tank cross section area 201cm2

Pipe OD 2.9 cm
Outside perimeter 9cm
Nominal pipe size 3/4”
Pipe ID 2.74cm
Active fluid area 5.9cm2

Piping length until
Thermo#1 15cm
Thermo#2 500cm
Thermo#3 705cm
Thermo#4 1155cm
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Figure B.12: Schematic of flow streams to / out of CSTH

To calculate the active surface area, wall thickness was taken from the table in [9]
for nominal 3/4” copper piping and schedule of M.

Theory

The most famous dimensionless parameter in fluid mechanics is the Reynolds number
which is used to determine flow regimes of moving fluids (here water) in carrying
lines. By definition:

Reo =
u · l
ν

=
ρ · u · di

µ
(B.6)

where u is the fluid local or average velocity, l is the characteristic length (equal to
pipe diameter d). ν and ρ are kinematic and static viscosities of water, respectively.

A Reynolds number greater than the critical value (2300 for pipes) means that
the flow regime is turbulent and a plug velocity distribution is observed inside the
piping.

Consider a pipeline in which a fluid is flowing. The relation between velocity and
volumetric flowrate at any single moment can be expressed by:

f =
dV

dt
= ~u · A (B.7)

We can extend the formulation for a period of time by defining an average linear
velocity over a corresponding time interval and find the desired deadtime:

f̄ =
∆V

∆t
= ū · A ⇒ ∆t =

∆V

f̄
=

A · le
f̄

= Nominal time delay (B.8)

Results

By plugging numbers into the equation we obtained:
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u inside the tank = 0.4 cm/sec (B.9)

u inside the piping = 23.3 cm/sec

Calculated value for Reynolds number = 4870

⇒ flow regime is turbulent

The time constant inside the tank was 50.25 seconds; this is also known as the
residence time of a vessel and is used as an important factor in process design. Table
B.3 summarizes the lag and delays for this process.

Table B.3: Lag and Delays of CSTH
Residence time of tank 50.25 sec
Delay to Thermo#1 1 sec
Delay to Thermo#2 37.1 sec
Delay to Thermo#3 52.5 sec
Delay to Thermo#4 86.1 sec

During our analysis, thermocouple #2 was used as our base temperature reading.
Using the above calculated values we can estimate the time delay until 2nd thermo-
couple to be about 37.1 seconds. (compare this to 38 seconds obtained from process
identification). This confirmed our approximation of time delay and validated the
model (less than 1 second error).

Discussion

Several possible reasons for the discrepancy between the theoretical and experimental
values of the time delay are listed below:

• The reaction time of the temperature sensor and other carrying instruments is
not taken into account in the theoretical approach.

• The inside diameter of the piping may not be calculated accurately.

• There could be a calibration error in the cold water flow indicator

• There is no definite way to calculate the time delay inside the tank because the
steam coil is immersed in the water

B.5.5 Level Loop Model

The dynamics between input cold/hot water flow rates and the water level can be
described by the following differential equation:

fin − fout =
dV (t)

dt
= A

dL(t)

dt
MassBalance (B.10)

fout(t) =
L(t)

R
⇒ fin(t)− L(t)

R
= A

dL(t)

dt

104



Input and output volumetric flows, water level and, valve constant are denoted in
these equations as fin, fout, L and, R, respectively.

We know from fluid mechanics that the downstream flow is a function of the square
root of the level; nevertheless, a linear approximation is used here to obtain an LTI
model. And finally we can present the first order model in the Laplace domain:

Laplace Transform ⇒
〈

L(s)

fin(s)
=

R

τs + 1

〉
(B.11)

Kp = R and τ = A ·R

The residence time of the process is defined as the amount of time in which the
throughput is being treated under process conditions and it can be calculated as:

θ =
V

fout

=
A · L
L/R

= A ·R = τ (B.12)

The residence time inside the tank becomes equal to the model time constant. This
shows that some control data (e.g., from process identification) can be considered as
valuable information for process designers or operators.

B.5.6 Heat Flow Loop Model

Steam as MV

In the same fashion, the model from steam flowrate to output water temperature can
be analytically written as:

ṁshf,s + ρwfwCp,w(Tin − Tout) = ρwV Cp,w
dTout

dt
(B.13)

By rewriting the equation we get:

ṁs(t)
hf,s

ρwCp,w

+ fw(Tin − Tout) = V
dTout(t)

dt
(B.14)

Applying the Laplace operator yields the following first order LTI model:

〈
T (s)

ṁs

=
Kp

τs + 1

〉
(B.15)

Kp =
hf,s

ρwCp,wfw

and τ =
V

fw

= θ

Hot or cold water flow as MV

ρwfwCp,w(Tin − Tout) = ρwV Cp,w
dTout

dt
(B.16)

fw(Tin − Tout) = V
dTout

dt
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Clearly, this differential equation is nonlinear and needs to be linearized around
an arbitrary working point. A first order Taylor’s series expansion for a multivariable
function has been used.

f(x, y) = f(x0, y0) +
∂f

∂x
|x0,y0(x− x0) +

∂f

∂y
|x0,y0(y − y0) + O(h2) (B.17)

fwTin − fw0Tout − fwTout0 = V
dTout

dt
(B.18)

finally

〈
Tout(s)

fw(s)
=

Kp

τs + 1

〉
(B.19)

Kp =
Tin − Tout0

fw0

and τ =
V

fw0

= θ

It can be deduced from Equation B.20 that the tank temperature will behave as
an integrating process if no initial flow is present. In other words the temperature is
highly regulated by initial storage of CSTH enthalpy.

Hot or cold water temperature as MV

fw(Tin − Tout) = V
dTout

dt
(B.20)

〈
Tout(s)

Tin(s)
=

Kp

τs + 1

〉
(B.21)

Kp = 1 and τ =
V

fw

= θ

Multivariable formulation

The total effect of the variables for a linear system can be shown as a sum of the
effects created by each one independently. That is:

[
T
L

]
=

([
G11 G12 G13

G21 G22 G23

])
×




ṁs

fw

Tw


 (B.22)

G sub-matrices are defined as follows:
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Gij =
Kp,ij

τ · s + 1
and τ = θ =

V

fw

=
4.02L

4.8L/min
= 50.25sec (B.23)

Kp,11 =
hf,s

ρwCp,wfw

=
2260KJ/Kg

1Kg/L× 4.18KJ/Kg◦C × 4.8L/min× 60min/hr

= 1.88
◦C

Kg/hr(steam)

Kp,12 =
(Tin − Tout0)

fw0

=
(21− 30)

4.8L/min
= −1.8

◦C
L/min(water)

Kp,22 = R =
20cm

4.8L/min
= 4.17

cm

L/min(water)

Kp,13 = 1 , Kp,21 = 0, Kp,23 = 0

B.6 Characterization of steam flow valve

The steam flow controller [FIC-105] regulates the amount of inlet steam by manipu-
lating the corresponding air2open valve. By carrying out an open loop step test, the
dynamics from the steam setpoint to the actual valve position could be identified as
a FOPTD model with gain of 0.5, time constant of 0.8 and a deadtime of 2 seconds.

Flow loops are normally controlled by a PI controller without derivative action to
avoid the effect of high frequency noise. By using the IMC tuning rule, the controller
parameters could be set at 0.2(normalized) for Kc and 1 sec for τi.

Different values of steam flow could be read as a function of valve position. In
that way, the characteristic curve of valve was obtained as shown in Figure B.13. The
behavior is similar to a linear valve with a deadband.
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Figure B.13: Characteristic curve: steam valve
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B.7 Estimation of Overall Heat-Transfer Coeffi-

cient Using Experimental Data

Newton’s law describes the rate of convection heat transfer as:

q = hA(T − T∞) (B.24)

The transfer area in this case is the area of coils immersed in water. We first
calculate the helix surface area to use in the equations.

B.7.1 Approximation of helix surface area

Consider Figure B.14 1. To calculate the surface area, we assume only one complete
turn of the helix. It is possible to approximate the length of one turn as the diagonal
of a squared triangle which has following dimensions

Figure B.14: A helix curve (left) and approximated expansion of one full round(right)

Here p denotes the pitch which is the vertical distance between two rounds and r
denotes the radius of the helix. Therefore the length of one turn of the pitch is almost
equal to: (assuming p=2cm and helix diameter=10cm)

l =
√

p2 + 4(πr)2 =
√

22 + 4(5π)2 = 31.48cm

To find the total surface area, one can simply calculate the surface for one turn
and multiply it by the number of rounds. Taking n equal to 5.5 complete rounds and
the piping diameter as 1.5cm we can calculate the surface area:

A = nπdl = 5.5× π × 1.531.48 = 815.9cm2

Returning to our problem, we know the rate of heat-transfer is equal to the amount
of heat dissipated through the steam coils. i.e.,

q = UA(T − T∞) = ṁs × hf,s

⇒ U =
ṁs × hf,s

A(T − T∞)
(B.25)

Inserting the numerical data we obtain:

1courtesy of Advanced Tubular Technologies, Inc. (http://advancedtubular.com)
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U =
10KgSteam/hr × 2260× 103J/KgSteam

3600sec/hr × 815.9× 10−4 × (100− 30)
= 1099W/m2◦C (B.26)

By referring to the table in [http://www.engineeringtoolbox.com/overall-heat-
transfer-coefficients-d 284.html] we find that the overall heat transfer coefficient be-
tween steam and water when the transferring media is mild-steel has an approximate
value of 1050 W/m2 C. Indeed, the figure provides a good rule of thumb value for
that kind of condensation (less than 5% error).

B.8 Conclusions

• All CSTH process dynamics can be represented by first order plus time delay
(FOPTD) models.

• Interestingly, time constants for different models were the same and equal to
the residence time of the tank. This implies that level and temperature loops
undergo the same lag in their responses. However, due to higher deadtime
for the temperature loop (especially using downstream thermocouples), it is
rationally a harder control goal.

• The transfer functions and their corresponding gains have similar dimensions.
Dimensional analysis can be used to guess the final parameters and validate
obtained equations.

• Although it seems that steam flow does not affect the water level, but in reality
some changes are observed during experiments due to changes in water density.
This indicates control loops are interacting with each other; nevertheless, they
can be modeled fairly independently (i.e., decoupling holds).
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Appendix C

OPC Toolbox in MATLAB

In order to establish a connection to a DCS using a remote computer, it is required to
know the language which a specific DCS operating system uses. However, it is easier
to use a standard interface called OPC developed for this purpose. In this appendix
we discuss details of the OPC toolbox and some of the basic commands associated
with it and show examples of its application on the CSTH process.

C.1 What is OPC?

OPC (Object Linking and Embedding or OLE for Process Control) provides open
connectivity and standardization to the field of automation and process control. The
roles it plays is similar to that of drivers in Microsoft Windows. The problem of
interfacing between client and server machines and applications were resolved to a
great extent by using this technology.

As per the standards of the OPC foundation: ”OPC is a series of standards
specifications. The first standard (originally called simply the OPC Specification
and now called the Data Access Specification) resulted from the collaboration of a
number of leading worldwide automation suppliers working in cooperation with Mi-
crosoft. Originally based on Microsoft’s OLE COM (component object model) and
DCOM (distributed component object model) technologies, the specification defined
a standard set of objects, interfaces and methods for use in process control and man-
ufacturing automation applications to facilitate interoperability. The COM/DCOM
technologies provided the framework for software products to be developed.”

C.2 OPC in MATLAB

MATLAB has dedicated a separate toolbox to OPC technology. The collection of
functions and related blocks in Simulink provide the user enough capability to acquire
and store the information on the OPC server in a real time manner. This is made
feasible by using OPC Data Access Standards. The structure of OPC toolbox is
defined as a hierarchy and the concepts of object oriented programming have been
implemented.

At one side of the interface we have the server which is represented by a server-ID.
The server consists of various items organized by some branches based on their cate-
gory. Each item could represent a physical field measurement (such as temperature),
or a property of a device on the server (such as setpoint of a PID controller) or even
a property of the supervisory control and data acquisition (SCADA).
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On the other side of interface we have the client workstation which is represented
by a client data access point. Each item on the server has a unique identifier on
the client machine which is called an item tag. You can query some of the properties
associated with server items such as value, quality and the time stamp from MATLAB.

C.2.1 Basic Commands for Connecting and Communicating
to the OPC Server

This section demonstrates a simplified way of connecting to an OPC server. First of
all you must define an data access point to the server. For this you need to know the
name and the address of the host machine.

da = opcda(’localhost’, ’server.name’);

You may obtain the server.name by invoking the following command:

hostInfo = opcserverinfo(’localhost’)

By default the created data access point (da) is offline. Use connect(da); to ac-
tivate the communication. To retrieve the server item values, a data group should
be defined first and then each item can be placed inside the group by calling the
corresponding item tag.

grp1 = addgrp(da);
itm1 = additm(grp1, ’item.ID.1’);

If you do not know the exact tag name, you may browse the tree-like name space
on the server and find it by following the branches to the desired item leaf.

ns = getnamespace(da);

To obtain the value of a server item the ”read” function can be used. In normal
conditions, this function uses OPC cache for the requested information which takes
less time but may not be fully up to date. To get instantaneous item value add the
’device’ tag.

val1 = read(itm1, ’device’);

The reverse operation is made possible by:

write(itm1, value);

After you are done with the operation, the cleaning up functions can be used to clear
the memory footprint.

disconnect(da);
delete(da);
clear da grp1 itm1;

In the next sections we cover two example codes of using OPC for CSTH process.
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C.3 OPC in Use Example1 . CSTH Start-Up

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .CSTH Initialization.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

da=opcda(’localhost’,’OPC.DeltaV.1’); connect(da);
da %Shows the properties of the data access point
CSTH=addgroup(da);
steam setpoint=additem(CSTH,’P4 FIC 105/PID/SP.CV’);
level setpoint=additem(CSTH,’P4 LIC 101/PID/SP.CV’);
exitwater temp=additem(CSTH,’P4 TIC 102/PID/PV.CV’);
%Tank-Level Initialization
%We would like to maintain the level inside the tank to the
%nominal value of 20 cm. We use the controller to take care of
%it (closed-loop).
write(level setpoint,0.2); pause(60);
write(steam setpoint,10); pause(600);
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.4 OPC in Use Example2 . CSTH Identification

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CSTH OPC Callback.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

global i n; % i : current number of timer execution
ExitWater T(i)=read(exitwater temp,’device’);
write(steam setpoint,IDSignal(i)); clc;
disp(’*************************************************************’);
disp([’Process-Identification is in progress :
’,num2str(round(i/n*100)),’ % Completed’]);
disp([’MV is Steam Flow = ’,num2str(IDSignal(i)),’ Kg/hr’]);
disp([’CV is Exit Tank Water Temperature =
’,num2str(ExitWater T(i).Value),’ C’]);
disp(’*************************************************************’);
i=i+1;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CSTH Timer.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

global i n;
n=length(IDSignal); %Number of timer execution = length of input
identification signal matrix to CSTH
i=1; % i is current number of timer execution
sampling time=1; %second
t=timer(’TimerFcn’,’CSTH OPC Callback’,’Period’,sampling time,...
’ExecutionMode’,’FixedRate’,’TasksToExecute’,n,...
’BusyMode’,’error’,’ErrorFcn’,’CSTH ID errorlog.m’);
%TimerFunction represents the code which needs to be excuted in
%every timer call. Period is the time between two executive
%timer callbacks. TasksToExecute is the number of timer
%callbacks. ExecutionMode tunes the way that time is taken care
%between two callbacks
start(t);
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The preceding codes demonstrate a procedure to identify the temperature loop
(MV:steam) of the CSTH process while the level remains unchanged. A timer was
used to read and write the data at each identification sampling time.
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C.5 References

OPC foundation official website @ www.opcfoundation.org
OPC User’s Guide, Mathworks, www.mathworks.com
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Appendix D

TUNIX Simulation Package

The TUNIX simulation package 1 is a simple tuning toolbox developed under the
MATLAB environment in 2008/09. This graphical user interface (GUI) was
designed to facilitate the analysis of the different tuning rules for linear time
invariant (LTI) systems. TUNIX is a collection of various tools in the control
system toolbox which are organized in a systematic manner to conveniently carry
out simulations in an interactive fashion. The toolbox was developed during my
masters research work at the University of Alberta. In that time, the need for such
a standard and user friendly tool to design control systems based on PID controllers
was greatly felt by the author. Figure D.1 shows the main window of the program.

Figure D.1: TUNIX Main Frame

The toolbox can be used to easily compare the performance of new and existing
tuning rules with each other. Both qualitative and quantitative tools are included to
make the decision for picking a tuning rule easier.
Some of the feature of this toolbox are listed below:

• Support for conventional models

1To obtain a copy of this software, you may contact the author by sending an email to
amiri1@ualberta.ca
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It is possible to define a process in TUNIX using integrating plus time delay
(IPTD), first order plus time delay (FOPTD), and second order plus time
delay (SOPTD) models. Process gain Kp, time constant τ , deadtime θ, and
the damping ratio ξ may need to be specified for each of these models. The
dynamics of most of the processes can be well captured using above mentioned
models. For more related information on model order reduction refer to 2.3.

• Taking into account nominal / real process models

While the PID controllers in a system is designed based on the nominal model
(normally obtained from the process identification), the real process may not
behave in the same way. The phenomenon which is referred as model plant
mismatch (MPM) in the literature, can be useful in the robustness analysis of
a system.

The available options are no MPM, percentage of non-structural MPM (i.e.,
each parameter is biased to the worst case direction, positive shift for process
gain, deadtime and negative shift for time constant and damping ratio), and a
customized LTI model for the process in case of the structural mismatch.

• Tuning library of well known techniques

Some of the familiar tuning rules are collected in the software which can be
selected in the controller window. It is feasible to input user-defined PID
controller name and parameters. You can even import a tuning rule from a
m-code to the software. For some of tuning rules, a provision is set to specify
the desired closed loop time constant τc which is supported by TUNIX. The
derivative filter can also be defined using the derivative filter ratio

τf

τd
.

• Valve stiction and saturation considerations

Valve stiction is a situation in which the manipulating variable (MV) is not
changing in the same way as the controller output (OP). In other words, the
actuator is not able to follow the controller commands. This prevalent
condition is due to the sticky valves in the processes and claimed to be the
cause for more than 30% of the oscillations in industrial control loops [8].

The model which is used in this software is adopted by courtesy of Choudhury
et al. [17]. There are three parameters which should be defined to use the
model: upward stiction (SU), downward stiction (SD) and slip jump (J). For a
homogenous stiction set SD = SU . A rule of thumb by Choudhury suggests
setting SU = SD < 1 for small stiction, 1 < SU = SD < 5 for moderate, and
SU = SD > 5 for severe stiction scenarios. For all of the previous rules set
J = SU = SD. A more comprehensive discussion on the valve stiction topic
can be found in 2.4.1.

The valve saturation can also be modeled using TUNIX. The controller output
higher and lower limits need to be specified. Currently integral anti-windup
techniques are not supported by the software; however that is a possibility for
the future versions.

• Inclusion of measurement noise

Measurement noise is a prevalent condition in the control loops. It is possible
to add a Gaussian distributed random noise in TUNIX by defining the
variance and the initial seed of the signal. To ensure the repeatability of the
signal use same seed values (i.e., to preserve the same signal for the different
simulations in order for a fair comparison).
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D.1 How can I do simulations using TUNIX

Simulation Package?

The procedure is simple and straightforward. First select your model by pressing
the process model button icon, then select the set of the participating tuning rules
in the simulation in the controller section. You can add valve stiction, saturation
and sensor noise if applicable in the corresponding sections. Select your time or
frequency horizon and select an appropriate action from the variety of tools
provided by the software and finally start the simulation.

D.2 Analyzing Tools

You can easily test setpoint tracking and regulatory control using TUNIX. It was
also designed to have both of the tests (combined) in a single simulation run.
Additionally, there are a couple of interpretive tools included in the software. Bode
and Nyquist plots can be useful in the evaluation of the controllers and the degree
of their stability. You can also plot the sensitivity and complementary sensitivity
functions. Process variable (PV) versus controller output variable (OP) plot can be
a good tool in investigating the valve stiction.
In addition to the graphical tools, there are a variety of indices for performance and
robustness which can be used as quantitative tools for comparing different tuning
techniques. Gain margin, phase margin, sensitivity maxima, ITAE, total variation
of the controller are some examples. To enable this feature, select options and tick
”Show Performance/Robustness indices”.

D.3 Real Time Simulations

It is sometimes desirable to analyze the real time effect of changing an specific
parameter on the controller design. For example, it would be pleasant to observe
the effects of controller parameters on the Nyquist diagram. To accommodate this
need, TUNIX was designed in a way to carry-out interactive simulations. You may
change the controller parameters or the desired closed loop time constant
incrementally by using the designed sliders and watch the resulting effects
instantaneously. This can be a nice capability especially for the final fine tuning of
the controller and also may be used as an instructional tool in the academia to show
the students the effects of the control parameters in a sensible manner.

D.4 Simulation Options and Other Capabilities

You can specify other properties for the simulations. For instance, the time you
want the signals to enter the simulation environment or the limits of the axes of the
plots. The integration interval is also another user-defined property. To extend the
capabilities of the software it is also possible to export the figures in eps and png
formats which can be easily used in Latex and MS Office.
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