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There is no strife, no prejudice, no national conflict in outer space
as yet. Its hazards are hostile to us all. Its conquest deserves the
best of all mankind, and its opportunity for peaceful cooperation
may never come again. But why, some say, the moon? Why
choose this as our goal? And they may well ask why climb the
highest mountain? Why 35 years ago, fly the Atlantic? Why does
Rice play Texas?

We choose to go to the moon. We choose to go to the moon
in this decade and do the other things, not because they are
easy, but because they are hard, because that goal will serve to
organize and measure the best of our energies and skills, because
that challenge is one that we are willing to accept, one we are
unwilling to postpone, and one which we intend to win, and the

others too.

—John F. Kennedy — September 12, 1962



ABSTRACT

An inverse method for designing incompressible airfoil thickness
distributions has been developed. This technique is based on an
implicit LU approximate factorization that uses specified surface
velocities to calculate both the airfoil’s thickness distribution and

camber line.

Through the analysis of several groups of airfoils, a distinct rela-
tionship between thickness distribution, camber line and surface
velocities has been discovered. The analysis of various airfoils
proves that thickness distributions can be designed by specifying
a single pair of surface velocities while camber lines can be de-

signed by specifying a second, separate pair of surface velocities.

A surface velocity recreation technique has also been developed.
The technique allows the surface velocities from the analysis of an
entire group of airfoils to be recreated with a set of linear equa-
tions that are controlled by a single variable. The technique al-
lows the designer to define the interior design space encompassed
by a group of existing airfoil geometries. The designer can then
use the combined influence of the existing airfoils to calculate a

new airfoil geometry.
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CHAPTER 1

INTRODUCTION

In the study of aerodynamics, two general shapes exist. These two shapes are
the airfoil and the turbomachinery blade. Airfoils or wing sections are used
to generate lift. Turbomachinery blades are used to either extract energy
(turbine) from or add energy (compressor) to a fluid. A generic airfoil shape
can be seen in Figure 1.1. The two important characteristics of this aerody-
namic shape are the lift and the drag. Figure 1.2 shows a turbomachinery
blade. The enhanced curvature of the blade shape determines the amount
of turning, and therefore the amount of energy transferred. This turning, as
well as the drag induced by the blade, are the two important characteristics

of a turbomachinery blade.

e ——

Figure 1.1: Airfoil Shape



Originally, airfoil shapes were designed graphically, using aesthetics to
determine the final shape. The use of early wind tunnels allowed the de-
signers of basic airfoil forms such as the Géttingen [1], [2] and Clark-Y [1]
airfoils. These basic forms were modified by hand, and the different char-
acteristics that matched the modifications were recorded. This method of
design created a broad range of airfoils, but limited the ability to redesign.
If an aerodynamicist needed a specific lift, pressure distribution or velocity
profile then they would need to go through the recorded distributions or pro-
files until they found an airfoil that matched. Then, the airfoil that matched
the closest would need to be adjusted by hand and retested until the exact

criteria were met.

Figure 1.2: Turbomachinery Blade Shape

There are three widely used approaches towards aerodynamic design.
These three approaches are experimental analysis, computational analysis
and inverse design. The first approach involves the experimental analysis
on an aerodynamic shape. One example of this would be testing an air-

foil section in a wind tunnel [1]-[4]. This approach relies on the ability of



the designer to use past experience in the development of the final shape.
The design process can involve physical modification of the airfoil and ex-
perimental determination of the aerodynamic characteristics. The designer
needs to continue modifying the test section and running experiments until
the required conditions such as a specific lift or drag profile are met.

The second approach to aerodynamic design, computational analysis, is
similar to the first, in that it also involves analysis on an existing shape. This
approach differs from experimental analysis in that instead of experimentally
determining the aerodynamic characteristics, they are found computationally
[5]-[7]- The computer analysis can determine characteristics such as drag, lift,
and pressure distributions. This approach is less costly as it does not require
any large experimental apparatus, but it still requires a designer with the
knowledge and experience to modify the airfoil until the final design criteria
are met.

The third approach to aerodynamic design is the use of a computational
inverse design technique [8]-[17]. Inverse design is typically completed using
computational methods, but some analytical methods exist. Instead of a
designer analyzing the blade or airfoil and making changes to the geometry,
with inverse design the designer specifies some aerodynamic performance
criteria and then obtains the physical geometry needed to produce the specific
criteria. Inverse design techniques can use various controls, such as pressure,
velocity, lift, drag or turning profiles.

Perhaps the most difficult part of redesigning or optimizing an airfoil is
the adjustment process. Since the airfoil geometries are often based simply

on aesthetics it becomes difficult to control the aerodynamic performance.



Designers need a more precise concept to describe the aerodynamic shape in
order to modify airfoil geometry. Redesign requires a more precise description
of the airfoil in order to determine which geometric changes benefit or impair
aerodynamic performance. One such description involves the use of camber
and thickness distributions [1],[2].

Any basic aerodynamic shape is made up of two components. These two
components, the camber or “mean” line and the thickness distribution, define
the total shape. Figure 1.3 shows a basic airfoil shape, with the camber line
line, chord line and thickness indicated. The chord line is a straight line
that extends from the leading edge (front) to the trailing edge (back) of the
airfoil. The camber is defined as the vertical distance from the chord line
to the mean line. The thickness is the vertical distance from upper surface
to the lower surface of the aerodynamic shape. Thickness and camber are
generally specified as ratios dependent on the chord length. An airfoil with a
10% thickness ratio has a maximum thickness equal to one tenth of the overall
chord length. These two components are present in both the turbomachinery
blade and the airfoil.

The thickness and camber can be used to design aerodynamic shapes
for specific purposes. The camber is used to determine whether the shape
forms an airfoil (relatively low camber) or a turbomachinery blade (rela-
tively high camber). The camber line is associated with the amount of lift in
airfoils[2],[18]. The camber of an airfoil causes the air flowing past the airfoil
to accelerate different amounts. The flow on the outside of the curved camber
accelerates more than the flow on the inside, creating a velocity differential.

Using Bernoulli’s Theorem [19] it can be shown that the two different veloc-
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Figure 1.3: Airfoil Components

ities create two different pressures, a higher pressure on the bottom of the
airfoil, and a lower pressure on the top. This pressure difference results in
the lift of the airfoil. The camber also dictates the amount of turning in
turbomachinery blades [2],{18],[20]. The angle of the flow meeting the blade
matches the angle of the mean line at the leading edge, and the angle of the
flow leaving the blade matches the angle of the mean line at the trailing edge.
The higher the camber is, the larger the difference between these two angles,
and the greater the amount of turning. Designing for camber is important to
determine the performance of inviscid phenomena such as lift and turning.
Thickness is associated with the drag caused by the aerodynamic body
[1] as well as other viscous effects [2] such as boundary layer separation,
choking and shocking. An airfoil with a thickness that is too large can cause
high drag lessening the efficiency of the airfoil [1]. Strong curvature in the

geometry of the airfoil or blade can cause strong pressure gradients. If the



pressure gradient is adverse, the boundary layer attached to the airfoil or
blade will separate [2]. Separation drops both lift and flow turning. For a
turbomachinery blade the thickness prescribed may cause choking to occur
[23]. The choking can be caused by the thickness distribution alone being
too large for the passage, causing the flow to go sonic or the the combina-
tion of the thickness and the boundary layer may cause excessive blockage
and choked flow. Choking lowers the efficiency of the turbomachinery. The
thickness distribution can also cause shocks to form within the turbomachin-
ery. The passage can be small enough that the flow goes supersonic between
the blades, then once the blade is passed, the passage opens up, and the
flow must shock in order to slow down. The shrinking of the passage can be
cause by thickness distributions alone, or a combination of airfoil thickness
and boundary layer blockage. Shocks occurring inside turbomachinery create
strong energy losses [23]. Designing for thickness is important to determine
the performance of viscous phenomena such as drag, separation, choking and
shocking. Therefore both the camber and thickness distributions must be
given equal consideration in determining a final design.

One inverse design technique, devised by Selig and Maughmer [10], uses
velocity distributions to determine airfoil shapes based on conformal mapping
methods. However, the use of conformal mapping only allows for the solution
of surface characteristics along with the designed airfoil, not an entire flow
field. A flow field solution is required to later determine the viscous effects
and viscous performance of the airfoil or blade. The lack of a flow field also
occurs with Eppler’s [17] inverse design, which is also based on conformal

mapping. While both of these methods are direct-inverse methods, meaning



that the entire airfoil surface is determined from the inverse design, they
still lack a flow field solution, and therefore cannot be used as a precursor
to viscous analysis. Another type of design is the use of an inverse panel
method, such as the one described by Gopalarathnam and Selig [14]. This
method also uses velocity distributions to determine the designed shape, but
since it is a panel method, only the surface velocities are computed along with
the airfoil shape, not the entire flow field. Again, the flow field is required
to begin any sort of calculation of viscous performance, so methods without
flow fields are undesirable.

The technique devised by Obayashi et al. [13] allows for the solution of the
flow field and requires a pressure distribution around the airfoil as a control.
This method also optimizes the airfoil for a minimum drag coefficient as the
flow field is calculated but requires a specified thickness distribution to work.
Since the thickness is specified, the method only designs for camber, not the
entire airfoil shape. The limitation of this method is that the prescribed
thickness distribution may be ill-suited to the design scenario. The generic
thickness that is prescribed may be too thick, causing high drag, or it may
have strong geometric curvatures, causing boundary layer separation. The
thickness needs to be calculated as part of the design. Traditional examples
of designing the camber while neglecting or prescribing the thickness include
the use of lifting line theory [21] and thin airfoil theory [21]. Another example
of designing for camber only is the circulation method devised by Dang [15].
In this case, a pressure loading distribution is used to design infinitely thin
cascaded blades. This is an example of neglecting the effects of thickness,

thus limiting the practical application of the design as the thickness will de-



termine whether or not the flow of the designed blade will choke within the
passage or cause shocks to form. Another method developed by Dang [16]
uses pressure loading and the Euler Turbomachinery Equations [23] to design
turbomachinery blades. In this particular method, the thickness distribution
is specified along with the loading, allowing the technique to solve for camber
only. Again, a prescribed thickness may eliminate the application of a design.
For this case of designing turbomachinery, the prescribed thickness may be
too thick, causing the flow to approach sonic speeds and choke or possibly go
supersonic causing shock waves to form. The thickness distribution may also
cause thick boundary layers to form, creating the same choking or shocking
to occur, or it may have steep geometry gradients causing boundary layer
separation within the cascade. Methods using a prescribed thickness or ne-
glecting thickness are useless because the thickness determines the viscous
performance of the airfoil or blade, and therefore controls the validity of the
final design by eliminating many applications.

In order to correctly design an airfoil or turbomachinery blade the design
method needs the ability to design the thickness. An airfoil can be designed
by camber alone but the thickness is the deciding factor on whether or not
the design is practical. A camber distribution may match the given design
criteria, such as a specific turning or velocity distribution, but different thick-
ness distributions will eliminate possible applications by causing high drag,
boundary layer separation, choked flow or shock waves. The design method
must also calculate a converged flow field about the designed airfoil or blade.
The flow field is necessary to later determine the viscous performance of the

airfoil.



CHAPTER 2

CHARACTERISTIC VELOCITY DETERMINATION

The design problem now becomes one of determining the best way to re-
design the thickness of the airfoil or blade while simultaneously maintaining
a camber as close to the designed camber as possible. The problems related
to thickness such as separation, drag, choking and shocks are all viscous
phenomena [1], [2], [23]. Unlike the scalar quantities such as turning and
pressure differentials used to control the camber, more complex information
is needed to determine the thickness distribution. One solution is to use
specified velocities to design thickness. By specifying both the u and v com-
ponents of the velocity, information on both the magnitude and direction of
the flow field around the airfoil or blade can ensure the shape conforms to
the viscous criteria. However, once the redesign control changes from the
scalar pressure gradient to the non-scalar velocity field there is no guarantee
that the fixed camber will match with the camber described by the velocity
field and still satisfy conservation of mass. Therefore the camber line will
need to be allowed to change according to the specified velocities. However,

allowing both the camber and thickness to be influenced by the prescribed



velocity field creates an unconstrained problem. The local velocities that are
used as controls can be manipulated in ways that are enumerably different,
much like original geometries could be sculpted to fit certain design criteria.

The constraint applied to this technique is the requirement of maintain-
ing the originally designed camber during the redesign of the thickness. This
requires an investigation to determine if the velocities can be resolved to
describe specific cambers and also be recombined to describe specific thick-
nesses as well. For this investigation the focus is on the u and v velocities
along the upper and lower surfaces of an airfoil, or the u*, «~, v*, and v~
velocities where ‘4’ denotes the upper surface and ‘-’ denotes the lower

surface. The geometry of the surface of the airfoil can be described as

Y= Yo T Yin (2.1)

where y can be either the upper or lower surface, yy is the camber line
and y,, is the half-thickness. The half-thickness is defined as the vertical
distance from the camber line to the surface of the airfoil. Individually the

two surfaces can be described as
Y" =Ya + Y (2.2)
Y =Y — Yth (2.3)
2.1 NACA 4-Digit Airfoils

To study the relationship between the shape components of camber and thick-
ness and surface velocities, a method of creating, controlling and adjusting

airfoil shapes is needed. NACA airfoils satisfy this need. The NACA airfoil

10



family is a large series of wing sections created by the National Advisory
Committee for Aeronautics[1], [22]. The family has several groups which
encompass nearly every type or shape of airfoil. The first subset of NACA
airfoils chosen is the 4-digit series of wing sections. This group was chosen
because the airfoils can be generated mathematically, instead of requiring the
use of tabulated coordinates, such as Eppler airfoils [17], or conformal trans-
formations such as Joukowski airfoils [21]. Also the 4-digit series has a set of
simple controls (namely the maximum camber height, the maximum camber
location and the maximum thickness ratio) which can drastically modify the
airfoil shape. The entire family of 4-digit wing sections can be described with
only two equations, a thickness equation and a camber line equation(1],[22].

The thickness distribution equation[22] is given by

(e (@) (D a(@) ra(@) ru@) e

where (%)m is the thickness contribution to the airfoil, Z is the distance
along the chord, and ao,..., a4 are a series of constants. The a; constants
are determined by a set of boundary conditions imposed on the polynomial
for an airfoil that has a thickness ratio of 0.20 (i.e. the maximum thickness
is 20% of the chord length).

The boundary conditions[22] include

1. maximum thickness at 30% chord
2. slope of airfoil surface at location of maximum thickness
3. airfoil thickness at trailing edge

4. slope of airfoil surface at trailing edge
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5. nose shape

The five boundary conditions determine the coefficients as

ap = 0.2969
a; = —0.1260
as = —0.3516
az = 0.2843
as = 0.1015

The thickness distribution for an airfoil with a thickness-to-chord ratio
other than 0.20 can be determined by scaling the 20% thick ordinates by
the factor 0—_7;6 where T' is the new thickness ratio. This makes the general

thickness distribution equation

2
(Q) — L 10.2969./% — 0.1260 (f) — 0.3516 (5)
c/wm 020 c ¢ ¢

+0.2843 (3;-)3 +0.1015 (5;’-)4] (2.5)

The NACA 4-digit series also has the ability to control both the location
of maximum camber as well as the maximum camber height. The camber
line is described as two parabolic curves tangent at the position of maximum

camber [1]. The camber line equation[22] is written as
(g) - i [QM 8- (%)2] 2 (5) =M (2.6)
¢/ (T_%f[l—merzM(f) —(g)} () z2M

where M refers to the location of maximum camber and P refers to the value

of maximum camber. The quantities of thickness (7"), maximum camber (P)
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and maximum camber location (M) are determined from the NACA four

digit designation(22] as follows

NACA abcd

P = &
b
T=cd

100
A NACA 3410 airfoil has a maximum camber of 3% (P = 0.03) located
at 40% chord (M = 0.40) and a maximum thickness of 10% (T = 0.10). A
NACA 3410 airfoil can be seen in Figure 2.1.
The upper and lower surfaces of the airfoil are calculated using Equations

2.2 and 2.3 restated as a function of chord length as

(e = ()7 C).s @)
(= ()= 29)

The five 4-digit airfoils used are the NACA 3406, 3408, 3410, 3412 and
3414 airfoils. This selection represents the range (6% to 14% thick) of general
airfoils used. All five have the same camber line defined with a maximum
camber of 3% located at 40% of the chord length. The different thickness
distributions can be seen in Figure 2.2.

After completing a potential flow analysis on each of the five airfoils at
zero angle of attack, the four surface velocity components were compared
to determine if any trends relating to thickness or camber occurred. The
response of the upper u velocity (u*) to increasing thickness can be seen in

Figure 2.3.
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Figure 2.1: NACA 3410 Airfoil

The five velocities in Figure 2.3 all coincide at two points, at approxi-

mately 3% and 87% of the chord length. The occurrence of these character-

istic points may be used to determine a method for trending the velocities

according to thickness. The velocities also have a near-linear section that

lasts from approximately 30% chord to 80% chord. The slope of this near-

linear section increases with thickness. The common intersectizns of all five

of the velocities, along with the increasing slope of the middle portion of the

velocities is possibly the information necessary to trend the airfoil family,
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Figure 2.2: Thickness Distributions Of NACA 4-Digit Airfoils

but a more quantifiable comparison is needed. For each of the four velocity
components being tested, a base velocity is chosen. The u™* base velocity for
the NACA 4-digit airfoils corresponds to the 3406 or the 6% thick airfoil.
Each of the remaining four u* velocities is then compared to the base (6%)

ut velocity according to the equation

+ o+
ut = 97“6_‘7 x 100% (2.9)
o0

where u]; is the percent difference between the individual velocity (uf) and
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Figure 2.3: ut Velocities Of NACA 4-Digit Airfoils
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the base velocity (ugy) and Uy represents the free stream velocity. The four
u} velocities can be seen in Figure 2.4.

Neglecting leading edge effects, the largest deviation that the u* veloc-
ities have from the base velocity occurs at approximately 25% chord. The
range of difference at 25% chord is 4.3% to 18.5%. The 4.3% difference cor-
responds to the thinnest remaining airfoil, with a thickness ratio 2% greater
than the base airfoil. The 18.5% difference corresponds to the thickest airfoil,
with a thickness ratio 8% greater than the base airfoil. All of the velocities
have a common point of approximately zero difference at 87% chord. All of
the velocities also coincide at 3% chord length with a percent difference of
0.8%. The general trend from 3% chord to 87% chord is that the maximum
deviation of the u* velocity from the base velocity increases with increas-
ing thickness. From 87% chord to the trailing edge, the percent difference
decreases with increasing thickness.

The next velocity component is the lower u or u~ velocity. As with the u™
velocities, there are two points where all five of the velocities coincide. These
points occur at 2% chord and 93% chord. Again, a mathematical comparison
is needed, so one of the five velocities is chosen as a base velocity, and the
difference of the remaining four velocities is calculated.

A plot showing the deviation of the u~ velocities from the base u™ velocity
can be seen in Figure 2.6. The base u™ velocity is again chosen as the NACA
3406 airfoil. The percent difference of each of the four remaining u~ velocities
is calculated with a variation of Equation 2.9 written as

ug = %Z x 100% (2.10)

The largest deviation that the u™ velocities have from the base velocity
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occurs at approximately 15% chord. The range of difference at 15% chord
is 4.8% to 19.7%. The 4.8% difference corresponds to the thinnest airfoil,
with a thickness ratio 2% greater than the base airfoil. The 19.7% difference
corresponds to the thickest airfoil, with a thickness ratio 8% greater than the
base airfoil. All of the velocities have a common point of approximately zero
error at 92% chord. The four velocities also have a second common point
of approximately 3.4% percent difference at 2% chord length. The general
trend of the velocities from 2% chord to 92% chord is similar to the general
trend of the u™* velocities, the difference between each velocity and the base
velocity increases with increasing thickness. Also, as with the u* velocities,
from 93% chord to the trailing edge, the trend reverses, and the maximum
difference decreases with increasing thickness.

The third velocity component for comparison is the upper v or v velocity.
The five v* velocities, each corresponding to different thickness ratios, can
be seen in Figure 2.7. The five velocities only have a single common point,
as opposed to the two common points of the u™ and u~ velocities. The v*
common point occurs at approximately 29% of the chord.

The velocities of the third velocity component, v+, were compared in the
same way that the u* and u~ velocities were compared. The base velocity
corresponds to the 6% thick airfoil (NACA 3406), and the discrepancy be-
tween the base velocity and the remaining four velocities are calculated with

an equation similar to Equation 2.10 written as

+_ o+
% 9%« 100% (2.11)
U

The percent differences calculated for the v velocities can be seen in Figure

2.8.

+ _
Vg =
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All four of the vt percent differences have zero difference at 29% chord.
This single common point effectively splits the plot into two separate sections.
The first section, from 0% to 29% chord length has a maximum difference
occurring at 2% of the chord. The range at 2% chord is from 5.9% difference
to 21.1% difference. The 5.9% difference corresponds to the NACA 3408
airfoil, or an increase of 2% in the thickness ratio. The 21.1% difference
corresponds to the NACA 3414 airfoil, or an increase in thickness ratio of 8%.
The general trend in the first 29% of the chord is an increasing difference with
increasing thickness ratio. From 29% chord to 100% chord the general trend
is reversed. The greatest difference in this section occurs at 76% chord. The
range at 76% chord is from -8.4% difference to -2.1% difference. The -8.4%
difference is between the base velocity and the NACA 3414 airfoil reflecting
an increase in the thickness ratio of 8%. The -2.1% difference corresponds
to a thickness increase of 2%. The general trend from 29% chord length to
the trailing edge is that the percent difference in the v* velocities decreases
with increasing thickness.

The fourth and final velocity component is the lower v or v~ velocity. The
response of the v~ velocity to changing thickness ratios can be seen in Figure
2.9. There is only a single common point that all five of the v~ velocities
pass through. This point occurs at approximately 26% of the chord length.

The base velocity chosen for the v~ comparison is the v~ velocity of the
NACA 3406 airfoil. The percent difference between the v~ velocity of the
6% thick airfoil and the remaining four v~ velocities is calculated using

Yi —Yex = Ye% % 100% (2.12)

A plot showing the percent difference between the remaining velocities and

Vgi =
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the base velocity can be seen in Figure 2.10.

At 26% chord, all four differences of velocities have a percent difference of
zero. This zero-difference point separates the plot into two different sections.
The first section has maximum differences at 1% of the chord length. The
percent difference ranges from -38.6% to -14.5% at this 1% chord location.
The largest difference, -38.6%, corresponds to the thickest airfoil, the NACA
3414. The -14.5% difference corresponds to the NACA 3408 airfoil. The
general trend from the leading edge to 26% of the chord is that the percent
difference decreases with increasing thickness ratio. The maximum difference
between the 26% chord point of zero difference and the trailing edge occurs
at 98% chord. At 98% chord the largest airfoil, 8% thicker than the base
airfoil, has a maximum difference of 10.0%. The thinnest remaining airfoil,
2% thicker than the base airfoil, has a maximum difference of 2.6%. This
range of 2.6% to 10.0% shows a general trend of increasing percent difference
with increasing thickness ratio.

Looking at Figures 2.4, 2.6, 2.8 and 2.10 it becomes apparent that while
there are possible trends between the velocity components and the airfoil
thickness distributions, all four components are affected. Each of the plots of
percent difference have maximum difference ranges of 14.2%, 14.9%, 15.2%
and 24.2%. There is no visible split between velocities which describe thick-
ness only and camber only. All four of the velocity components vary too
greatly with thickness. Therefore, combinations of the four components are
compared. Instead of looking at the surface velocities separately, they are
combined to form %, Au, U, and Av. The four new velocity quantities are

defined as
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i = L (2.13)

Au = ut —u” (2.14)
+ —

7 = v__—;—_'u (2.15)

Av = vt —v" (2.16)

The use of the averages and differences of the velocities mimics the inviscid
phenomena of turning and pressure difference, but the use of all four velocity
components maintains the influence of the viscous phenomena.

The first velocity combination calculated and compared are the @ veloc-
ities. The @ velocity plot closely resembles the u™ velocity plot. There are
two locations where all five of the velocities appear to intersect, at 3% chord
length and at 90% chord length. The velocities all have a similar shape as
well. The five 7 velocities can be seen in Figure 2.11.

For comparison, the NACA 3406 or 6% thick airfoil is chosen as the base
airfoil. The remaining four velocities are used to calculate a percent difference

from the base velocity using the following equation

Tgs = “—;—“6—7 x 100% (2.17)

The percent difference between the base velocity and the four remaining
velocities can be seen in Figure 2.12.

There are two locations were the differences of the @ velocities intersect.
The first location is at 3% of the chord length with a difference of 1.7%. The
second intersection is at 90% chord with a percent difference of zero. The

two intersections divide the plot into three sections with difference ranges and
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general trends for each. The first section is only 3% of the chord long, and is
therefore neglected. The second section has maximum differences occurring
at 20% of chord length. At 20% chord, the difference ranges from 4.4% to
18.6%. The 4.4% difference corresponds to the NACA 3408 airfoil, and the
18.6% difference corresponds to the NACA 3414 airfoil. The general trend
between 3% chord and 90% is therefore increasing difference with increasing
thickness ratio. The third section is from 90% of the chord length to the
trailing edge. The greatest difference in this section occurs at the trailing
edge, or 100% chord. The range of differences at 100% chord is from -
12.2% to -3.1%. The -12.2% difference corresponds to the thickest airfoil, 8%
thicker than the base airfoil. The -3.1% difference corresponds to the thinnest
remaining airfoil, 2% thicker than the base airfoil. The general trend from
90% to 100% chord is decreasing percent difference with increasing thickness
ratio.

The second velocity component combination is the Au velocity. The Au
velocities plot, seen in Figure 2.13, shows a much smaller range than any other
velocity component so far. Upon closer inspection, it becomes apparent that
there are two locations where the five velocities intersect. These locations
are at 24% chord and 43% chord.

The base velocity for the Au difference calculation is the 6% thick airfoil.
The percent difference is calculated using

Aui - AU(;%
Uso

The percent difference in the Au velocity between the base velocity and the

Aug = x 100% (2.18)

four remaining velocities can be seen in Figure 2.14.

All of the remaining Au velocities have zero percent difference at both
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24% of the chord length and 43% of the chord length. Between the leading
edge and 24% chord, the greatest difference occurs at 4% chord. The range
of Au differences at 4% chord are from -9.8% to -3.3%. The -9.8% difference
corresponds to the NACA 3414 airfoil and the -3.3% difference corresponds
to the NACA 3408 airfoil. This range of differences creates a general trend
of decreasing percent difference with increasing thickness ratio between 0%
chord and 24% chord. Between 24% of the chord length and 43% of the
chord length, the general trend has reversed. The maximum difference in
this area occurs at 32% chord. The maximum difference ranges from 0.2% to
0.6%. The 0.2% difference corresponds to the 8% thick airfoil and the 0.6%
difference corresponds to the 14% thick airfoil. This creates a general trend
of increasing percent difference with increasing thickness ratio. Between 43%
of the chord length and 100% of the chord length, the maximum difference
occurs at 32% chord. The maximum difference ranges from -2.9% to -0.8%.
The -2.9% difference corresponds to the thickest airfoil and the -0.8% dif-
ference corresponds to the thinnest remaining airfoil. This creates a general
trend of decreasing percent difference with increasing thickness ratio from
42% of the chord length to the trailing edge. This small range of percent
difference, namely 0.4% and 2.1% in the last two sections of the plot, repre-
sents a strong change in how the velocity combination is effected by changing
airfoil thickness. Instead of difference ranges of 15% or even 24%, the range
of the Au velocity difference is less than a tenth of that.

The third velocity combination is the ¥ velocity. The v velocity behaves
in a similar way to the Awu velocity when the thickness ratio of the airfoil

is increased. The are three intersection points, at 8% chord, 35% chord and
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81% chord. The five velocities appear very similar to each other, and do not
cover a very large range of values. The ¥ velocities can be seen in Figure
2.15.

The base velocity for the @ difference calculation is the 6% thick airfoil.
The percent difference is calculated using

Ty = %”61 x 100% (2.19)

The percent difference in the ¥ velocities between the base velocity and the
four remaining velocities can be seen in Figure 2.16.

There are three locations where there is zero percent difference between
the remaining four ¥ velocities and the base velocity. These three locations
occur at 8% of the chord length, 35% of the chord length and 81% of the
chord length. In the first section of the percent difference plot, between
the leading edge and 8% chord the greatest difference occurs at 1% chord.
The range of differences at 1% chord is from -12.7% to -7.3%. The -12.7%
difference corresponds to the NACA 3414 airfoil, and the -7.3% difference
corresponds to the NACA 3408 airfoil. This range from -12.7% difference to
-7.3% difference shows a trend of decreasing percent difference with increasing
thickness ratio. In the next comparison section, from 8% chord to 35% chord,
the maximum difference occurs at 15% chord. The percent difference at
15% chord varies from 0.4% to 1.5%. The 0.4% difference corresponds to
the thinnest remaining airfoil, and the 1.5% difference corresponds to the
thickest airfoil. This creates a general trend of increasing percent different
with increasing thickness ration from 8% chord to 35% chord. The third
region of the comparison plot lasts from 35% of the chord to 81% of the chord.
The largest difference in this region occurs at 58% of the chord length. The
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range of percent differences at 58% of the chord is from -0.5% for the 14%
thick airfoil to -0.1% for the 8% thick airfoil. This range creates a general
trend of decreasing percent difference for increasing airfoil thickness. The
fourth and final region of the comparison plot lasts from 81% of the chord to
the trailing edge. The maximum difference in this fourth section occurs at
99% of the chord length. The maximum difference at 99% chord has a range
of 0.8% difference to 3.1% difference. The 0.8% difference corresponds to the
airfoil 2% thicker than the base airfoil, and the 3.1% difference corresponds
to the airfoil 8% thicker than the base airfoil. The range indicates a trend of
increasing percent difference with increasing thickness ratio. The response of
the 7 velocity to increasing thickness ratios is similar to the response of the
Awu velocity. The difference ranges are much smaller than for the @ velocity
There are also more points where the velocities intersect, indicating that the
velocities are very similar. In fact, neglecting the leading and trailing edge
velocity increases of the ¥ velocities, the maximum percent difference range is
only 1.1%. There is a definite change in the effect that the different thickness
distributions have on the velocity components when the combinations of Au
and 7 are calculated.

The fourth and final velocity component combination is Awv. There is
only one location where the Av velocities intersect, at 28% of the chord.
The velocities cover a large velocity range, indicating a strong dependence
on changing thickness. The five Av velocities can be seen in Figure 2.17.

The base velocity for the ¥ difference calculation is the NACA 3406 airfoil.

The percent difference is calculated using

A’Ui - A'UG%

7 x 100% (2.20)

A’Udi =
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The percent difference in the Av velocities between the base velocity and the
four remaining velocities can be seen in Figure 2.18.

With the single intersection point at 28% of the chord length, the Awv
velocity difference plot is split into two separate regions. The first section,
from leading edge to 28% of the chord has a maximum percent difference
occurring at 2% chord. The range of differences at 2% of the chord is from
18.4% difference for the NACA 3408 airfoil to 56.8% difference for the NACA
3414 airfoil. This represents a general trend of increasing percent difference
for increasing airfoil thickness. The second section of the Awv difference plot
has the opposite trend. The largest difference in the region from 28% chord
to the trailing edge occurs at 88% of the chord. The range of differences at
88% chord is from -16.8% to -4.2%. The -16.8% difference corresponds to
the 14% thick airfoil, and the -4.2% difference corresponds to the 8% thick
airfoil. The general trend from 88% chord to the trailing edge is decreasing

percent difference with increasing thickness ratio.
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For the previous group of NACA 4-digit airfoils the thickness distribution
changed while the camber line was held constant. The analysis velocity
combinations of @, Au, ©, and Av from the previous group show that only
the @ and Aw velocities change with the different thickness distributions
while the Au and 7 velocities remain relatively constant with the constant
camber line. These velocities suggest that the thickness distribution can be
designed by % and Av velocities alone, while the camber line is described
by Au and ¥ velocities. To determine the effect of changing camber lines, a
second series of NACA 4-digit airfoils is analyzed. The five airfoils used to
determine the relationship between surface velocities and camber line include
the 1410, 2410, 3410, 4410, and 5410 airfoils. All five of these airfoils have an
identical thickness distribution with a maximum thickness ratio of 10%. The
airfoils all have a maximum camber height location of 40% chord. The only
component that changes throughout the series of airfoils is the maximum
camber line height. The camber line height ranges from 1% chord to 5%
chord, respectively. The five camber lines can be seen in Figure 2.19.

From the analysis of this second group of NACA 4-digit airfoils the ve-
locities prove that there is a definite relationship between specific velocity
combinations and the thickness distribution and camber line of an airfoil.
The @, Au, 7, and Av velocities show that as the camber line height is
changed, only the Au and ¥ velocities are strongly affected. The @ and Av
velocities remain relatively constant for a constant thickness distribution.

The first velocity combination for camber line height comparison is the
velocity. As the camber height was increased, the % velocity remained nearly

constant. The five @ velocities corresponding to the five different camber
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lines appear identical from approximately 30% of the chord length to 70% of
the chord. The @ velocities can be seen in Figure 2.20.

To calculate the effect that the changing camber line height has on @
velocities, the NACA 1410 airfoil is chosen as the base airfoil. The percent

difference of the remaining four velocities is calculated using

g = %‘K x 100% (2.21)

where 1ig4; is the percent difference, 4; is one of the four remaining velocities,
U1 is the base velocity, and U, is the free stream velocity. The difference
in @ velocity can be seen in Figure 2.21.

There are two locations where the difference in @ is equal to zero for all
four of the remaining velocities. These two locations occur at 31% chord and
47% chord. From the leading edge to 1% of the chord length, the largest
percent difference occurs at 7% chord. The range of differences at 7% chord
is from -3.0% to -0.4%. The -3.0% difference corresponds to the NACA 5410
airfoil. The -0.4% difference corresponds to the NACA 2410 airfoil. The
general trend from 0% chord to 31% chord is decreasing percent difference
with increasing camber line height. Between 31% chord and 47% chord,
the maximum percent difference occurs at 35% chord. The difference at
35% chord ranges from 0.0% to 0.1%. The 0.0% difference corresponds to
the 2% high camber line. The 0.1% difference corresponds to the 5% high
camber line. The general trend from 31% chord to 47% chord is increasing
percent difference with increasing camber line height. From 47% chord to the
trailing edge, the largest percent difference occurs at 91% chord. The range
of differences at 91% chord is from -1.3% to -0.2%. The -1.3% difference
corresponds to the NACA 5410 airfoil. The -0.2% difference corresponds to
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the NACA 2410 airfoil. The general trend from 47% chord to 100% chord is
decreasing percent difference with increasing camber line height.

The second set of velocities compared are the Awu velocities. The five
Awu velocities share two common intersection points. The intersection points
occur at 13% and 76% of the chord length. The Au velocities can be seen in
Figure 2.22.

To calculate the effect that the changing camber line height has on Au
velocities, the NACA 1410 airfoil is again chosen as the base airfoil. The

percent difference of the remaining four velocities is calculated using

Aug; = —A“"—(—]A% x 100% (2.22)

where Auwug; is the percent difference, Au; is one of the four remaining ve-
locities, Au,q is the base velocity, and U, is the free stream velocity. The
difference in Au velocity can be seen in Figure 2.23.

The two intersection points of the Au velocities create three sections in
the plot. The first section, from leading edge to 13% chord has the largest
percent differences at 0% chord. The range of percent differences at 0%
chord is from -72.8% to -20.9%. The -72.8% difference corresponds to the
NACA 5410 airfoil. The -20.9% difference corresponds to the NACA 2410
airfoil. The general trend from 0% chord to 13% chord is decreasing percent
difference with increasing camber line height. The second region, from 13%
chord to 76% chord has an opposite trend. The maximum percent difference
in this section occurs at 33% of the length of the chord. The difference at
33% chord range from 4.4% to 17.5%. The 4.4% difference corresponds to
the 2% high camber line. The 17.5% difference corresponds to the 5% high

camber line. The general trend from 13% chord to 76% chord is increasing
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percent difference with increasing camber line height. The third and final
section is from 76% chord to the trailing edge. The largest percent difference
in this region occurs at 100% chord. The range of percent difference at
100% chord is from -98.0% to -31.7%. The -98.0% difference corresponds
to the NACA 5410 airfoil. The -31.7% difference corresponds to the NACA
2410 airfoil. The general trend from 76% chord to 100% chord is decreasing
percent difference with increasing camber line height.

The third set of velocities compared are the # velocities. The five U
velocities share a single intersection point at 37% chord. The ¥ velocities can
be seen in Figure 2.24.

To calculate the effect that the changing camber line height has on ©
velocities, the NACA 1410 airfoil is again chosen as the base airfoil. The
percent difference of the remaining four velocities is calculated using

Ui

Tai = —;—”1—7 x 100% (2.23)

where ¥y4; is the percent difference, 7; is one of the four remaining velocities,
U1, is the base velocity, and U, is the free stream velocity. The difference
in U velocity can be seen in Figure 2.25.

The single intersection point of the ¥ velocities creates two regions in the
comparison plot. The first section, from leading edge to 37% chord has the
largest percent differences at 8% chord. The range of percent differences at
8% chord is from 4.2% to 16.4%. The 4.2% difference corresponds to the
NACA 2410 airfoil. The 16.4% difference corresponds to the NACA 5410
airfoil. The general trend from 0% chord to 37% chord is increasing percent
difference with increasing camber line height. The second region exists from

37% chord to the trailing edge. The largest percent difference in this region
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occurs at 90% chord. The range of percent difference at 90% chord is from -
10.6% to -2.7%. The -10.6% difference corresponds to the NACA 5410 airfoil.
The -2.7% difference corresponds to the NACA 2410 airfoil. The general
trend from 37% chord to 100% chord is decreasing percent difference with
increasing camber line height.

The fourth and final set of velocities compared are the Av velocities. The
five Av velocities appear nearly identical from approximately 12% chord to
approximately 80% chord. The Av velocities can be seen in Figure 2.26.

To calculate the effect that the changing camber line height has on Av
velocities, the NACA 1410 airfoil is again chosen as the base airfoil. The
percent difference of the remaining four velocities is calculated using

Avg; = év’;—m’i’ﬂ x 100% (2.24)

where Awvy; is the percent difference, Av; is one of the four remaining ve-
locities, Avig is the base velocity, and Uy is the free stream velocity. The
difference in Av velocity can be seen in Figure 2.27.

There are three locations where all of the Av velocities coincide, creating
zero percent difference. These three locations are at 14% chord, 38% chord
and 74% chord. From the leading edge to 14% chord, the largest percent
difference occurs at 1% chord. The range of differences at 1% chord is from
-15.1% to -1.9%. The -15.1% difference corresponds to the NACA 5410 air-
foil. The -1.9% difference corresponds to the NACA 2410 airfoil. The general
trend from leading edge to 14% chord is decreasing percent difference with
increasing camber line height. Between 14% chord and 38% chord, the max-
imum percent difference occurs at 23% of the chord length. The difference

at 23% chord ranges from 0.2% to 1.5%. The 0.2% difference corresponds to
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the 1% high camber line. The 1.5% difference corresponds to the 5% high
camber line. The general trend from 14% chord to 38% chord is increasing
percent difference with increasing camber line height. From 38% chord to
74% chord, the largest percent difference occurs at 58% chord. The range
of differences at 58% chord is from -0.6% to -0.1%. The -0.6% difference
corresponds to the NACA 5410 airfoil. The -0.1% difference corresponds to
the NACA 2410 airfoil. The general trend from 38% chord to 74% chord is
decreasing percent difference with increasing camber line height. Between
74% chord and the trailing edge, the maximum percent difference occurs at
99% of the length of the chord. The difference at 99% chord ranges from
1.6% to 13.0%. The 1.6% difference corresponds to the 1% high camber line.
The 13.0% difference corresponds to the 5% high camber line. The general
trend from 74% chord to 100% chord is increasing percent difference with
increasing camber line height.

The analysis of the second group of NACA 4-digit airfoils proves that
there is a definite relationship between specific velocities and specific airfoil
characteristics. The analysis of five different thickness distributions show that
only the & and Aw velocities are largely influenced by changing thickness
distribution and that the Au and ¥ velocities remain relatively constant
for a constant camber line. Conversely, the analysis of ihe five different
camber lines show that only the Au and 7 velocities are largely influenced
by changing camber line height and that the & and Av velocities remain
relatively constant for a constant thickness distribution. These calculations
suggest that thickness distributions can be designed by % and Aw velocities

alone. These calculations also suggest that camber lines can be designed
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by Au and 7 velocities alone. Looking at the two groups of NACA 4-digit
airfoils, there is no doubt of the fact that thickness distributions are related
only to a single pair of surface velocity combinations, and camber lines are

related only to the second pair of surface velocity combinations.
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2.2 NACA 5-Digit 16-Series Airfoils

In comparing the average and difference combinations of the surface velocities
instead of the velocities on their own, a distinct pattern has formed. Only
two of the four quantities, namely % and Av are strongly effected by changing
thickness. The other two components, Au and v, are changed far less when
comparing airfoils with constant camber. These characteristic trends that
occur may be the constraint needed to maintain the original camber but still
design for thickness. There is, however, the possibility that this characteristic
trending is present in NACA 4-digit series airfoils only. This possibility may
be due to the fact that the distributions are generated with a single set
of equations, Equations 2.5 and 2.6. To test whether or not the averaged
and differenced velocity phenomena only applies to 4-digit airfoils, a second
family is tested. The second group of airfoils are the NACA. 5-digit 16-series
airfoils[1],[22]. This group of airfoils are also mathematically defined, but
the functions used to calculate the thickness and camber are different from
the 4-digit series. For a 5-digit 16-series airfoil, the maximum thickness is
located at mid-chord, and the thickness distribution{22] is described in two

parts as
3 z z z z
(g) _) e (E) ra(E)+a (Z)Qﬁ:a‘* (2) , (2) <03 (2.25)
/i | do+di(1-2)+da(1-2) +ds(2) ;5 (2) 205
where ag,---,as and dy,---,ds are coefficients determined from boundary

conditions such as surface height, slope, and curvature and can be shown to

become
do = 0.010T
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dy = 2.325T
dy = -—3.420T
ds = 1.460T
ap = 0.990T
a; = -—0.239T
a; = -—0.041T
ag = —0.559T

where T is the thickness to chord ratio. The camber line[22] of the 5-digit

16-series airfoil is expressed as

(9,-20-5n(-3)

where ¢;; is called the design lift coefficient{22] and is given by

30

2.27
. (2.27)

Cli

where M; is the camber index designated by the airfoil name. The thickness
to chord ratio (T") and camber index (M;) are determined from the NACA
5-digit 16-series designation[22] as follows

NACA 16 — abc
M= g
T -
A NACA 16-310 has a camber line with an index of 3 and a maximum
thickness of 10%. A NACA 16-310 can be seen in Figure 2.28.
The five 5-digit 16-series airfoils that were tested were the 16-306, 16-308,

16-310, 16-312, and 16-314 airfoils. Both the camber lines and the thickness
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Figure 2.28: NACA 16-310 Airfoil

distributions of the 5-digit 16-series airfoils are calculated differently from
the 4-digit airfoils. All five airfoils have identical camber lines and the range
of thicknesses used can be seen in Figure 2.29.

As with the previous analysis of the NACA 4-digit airfoils, the focus shifts
to determining the effect that changing thickness distributions have on the
velocity quantities of @, Au, ¥ and Av. From the analysis of the 4-digit
airfoils, it is obvious that there is a distinct separation between the % and Av

velocities being affected by increasing thickness and the Au and ¥ velocities
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Figure 2.29: Thickness Distributions Of NACA 5-Digit 16-Series Airfoils

remaining relatively constant for a constant camber line. The four #, Au,
7 and Awv velocity quantities are calculated with Equations 2.13, 2.14, 2.15
and 2.16 respectively.

The first velocity combination for thickness comparison is the @ velocity.
As the thickness is increased, there is a noticeable effect. The @ velocities
share two common intersection points. The first point occurs at approxi-
mately 2% chord and the second at 91% chord. The five @ velocities can be

seen in Figure 2.30.
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In order to calculate the effect that the increasing thickness ratio has
on the # velocities, the 6% thick, or NACA 16-306 airfoil velocity is chosen
as the base velocity. The percent difference of the remaining four velocities
is calculated using Equation 2.17. The resulting differences can be seen in
Figure 2.31.

On the @ velocity difference plot there are two locations where the per-
cent difference is equal to zero. These two locations occur at 2% chord and
at 91% chord. Between 2% of the chord length and 91% of the chord length,
the maximum percent difference occurs at 52% chord. The range of percent
difference at 52% chord is from 3.9% to 16.9%. The 3.9% difference cor-
responds to the thinnest remaining airfoil, the NACA 16-308. The 16.9%
difference corresponds to the thickest airfoil, the NACA 16-314. The general
trend from 2% of the chord to 91% chord is increasing percent difference
with increasing thickness distribution. From 91% chord to the trailing edge,
the general trend is reversed. The maximum percent difference between 91%
chord and 100% chord occurs at the trailing edge. The range of percent
difference at the trailing edge of the velocities is from -18.6% to -4.9%. The
-18.6% difference corresponds to the 14% thick airfoil, and the -4.9% differ-
ence corresponds to the 8% thick airfoil. This range of differences creates a
general trend of decreasing percent difference with increasing thickness ratio
from 91% chord to the trailing edge.

The second set of velocities compared are the Au velocities. As with the
NACA 4-digit airfoils, the Au velocities appear very similar for the entire
series of different thicknesses. As Figure 2.32 shows, the five separate Au

velocities appear identical.
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The base airfoil chosen for comparison of the Au velocities is again the
6% thick airfoil, the NACA 16-306. The percent difference of the other four
velocities is calculated using Equation 2.18. The velocity difference plot of
the Au velocities can be seen in Figure 2.33.

The entire range of Au velocity differences is quite narrow. The largest
separation between the highest and lowest difference for the entire group is
less than 2%. There are two locations where the four differences of velocity
coincide with a magnitude of zero. These two points are at 31% of the chord
length and at 52% of the chord length. These two zero-difference points
effectively divide the plot into three sections. The first section, from 0%
chord to 31% chord, displays the largest differences. The maximum percent
difference in this region occurs at 3% chord. The range of percent differences
at 3% chord is from 0.4% to 1.9%. The 0.4% difference corresponds to the
airfoil 2% thicker than the base airfoil. The 1.9% difference corresponds
to the airfoil 8% thicker than the base airfoil. The general trend from the
leading edge to 31% chord is increasing percent difference with increasing
thickness ratio. The second section exists from 31% chord to 52% chord and
all four differences of velocity are confined within a tenth of a percent of
zero. The largest percent difference in this region occurs at 41% of the chord
length. The range of percent difference is from -0.1% to 0.0%. The -0.1%
corresponds to the thickest airfoil, the NACA 16-314. The 0.0% difference
corresponds to the thinnest remaining airfoil, the NACA 16-308. The general
trend from 31% chord to 52% chord is decreasing percent difference with
increasing thickness ratio. The third and final section of the Awu velocity

difference plot lasts from 52% chord to the trailing edge. The maximum
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Figure 2.33: Difference In Au Velocities Of NACA 5-Digit 16-Series Airfoils
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percent difference in this region occurs at 82% chord. The percent difference
at 82% chord ranges from 0.2% to 0.8%. The 0.2% difference corresponds to
the 8% airfoil. The 0.8% difference corresponds to the 14% thick airfoil. The
general trend from 52% chord to 100% chord is increasing percent difference
with increasing airfoil thickness.

The third combination of surface velocity components that was analyzed
for a dependence on thickness ratio are the ¥ velocities. The 7 velocities
seem to be affected by thickness ratio as little as the Av velocities. As with
the Av velocities, all five 7 velocities appear to be equal. The five velocities
corresponding to the five different airfoil thicknesses can be seen in Figure
2.34.

For comparison, the NACA 16-306 airfoil is chosen as the base airfoil. The
remaining four velocities are used to calculated a percent difference from the
base ¥ velocity using Equation 2.19. The difference of the ¢ velocities can be
seen in Figure 2.35.

For the entire chord length, the largest difference between the base veloc-
ity and the remaining velocities is less than 2.5%. There are three locations
where the percent difference for all four remaining velocities is equal to zero.
These three locations occurs at 8% chord length, 38% chord length and 80%
chord length. The three intersection points of zero difference separate the
plot into four sections. In the first region, from the leading edge to 8%
of the chord length, the maximum difference in the velocities occurs at 0%
chord. The range of differences is from 0.1% to 2.4%. The 0.1% difference
corresponds to the thinnest remaining airfoil, the NACA 16-308. The 2.4%
difference corresponds to the thickest airfoil, the NACA 16-314. The general
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trend from 0% chord to 8% chord is increasing percent difference with in-
creasing thickness ratio. The second region is from 8% of the chord to 38%
of the chord. The largest difference of the velocities in this region occurs
at 21% of the chord. The range of differences at 21% chord length is from
-0.3% to -0.1%. The -0.3% difference corresponds to the 14% thick airfoil.
The -0.1% difference corresponds to the 8% thick airfoil. The general trend
from 8% chord to 38% chord is decreasing percent difference with increas-
ing thickness, although the maximum difference in the velocities only has a
range of 0.2%. The third section lasts from 38% chord to 80% chord. This
region also has a very small range of difference in velocity. The maximum
difference occurs at 63% of the chord length. The range of differences at 63%
chord is from 0.1% to 0.2%. The 0.1% difference corresponds to the airfoil
2% thicker than the base airfoil. The 0.2% difference corresponds to the
airfoil 8% thicker than the base airfoil. The general trend from 38% chord
length to 80% chord length is increasing percent difference with increasing
airfoil thickness. The fourth and final section exists from 80% of the chord
to the trailing edge. The greatest percent difference in this section occurs
at 99% of the chord. The range of percent difference at 99% chord length is
from -0.5% to -0.1%. The -0.5% difference corresponds to the NACA 16-314
airfoil. The -0.1% difference corresponds to the NACA 16-308 airfoil. The
general trend from 80% chord to 100% chord is decreasing percent difference
with increasing thickness.

The fourth and final velocity compared is the Av velocity. The Av veloc-
ities are similar only in shape. There is a large range of different velocities

for the different airfoils. All five of the velocities do share a common point,
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at 47% of the chord length. The five Av velocities can be seen in Figure 2.36.

The base velocity of the Av comparison corresponds to the NACA 16-306
airfoil. The percent difference of the remaining velocities is calculated with
Equation 2.20. The four differences of the Av velocities can be seen in Figure
2.35.

The common intersection of all four of the differences in velocity at 47%
chord creates two nearly equal sections with opposite trends. The first re-
gion, from 0% chord to 47% of the chord length has maximum differences
at the leading edge. The range of differences at 0% chord is from 14.8% to
51.7%. The 14.8% difference corresponds to the 8% thick airfoil. The 51.7%
difference corresponds to the 14% thick airfoil. The general trend from 0% of
the chord to 47% of the chord is increasing percent difference with increasing
thickness. The second portion of the differences in Awv velocities lasts from
47% to the trailing edge. The largest percent differences in this region occur
at 92% of the chord length. The range of differences at 92% chord is -29.7%
to -7.7%. The -29.7% difference corresponds to the NACA 16-314 airfoil.
The -7.7% difference corresponds to the NACA 16-308 airfoil. The general
trend from 47% chord to 100% chord is decreasing percent difference with

increasing airfoil thickness.
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Figure 2.36: Av Velocities Of NACA 5-Digit 16-Series Airfoils
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2.3 NACA 4-Digit-Modified Airfoils

The use of NACA 4-digit and 5-digit 16-series airfoils show how~ increasing the
thickness affects certain velocity quantities. For each of the t=wo groups the
thickness functions are distinct and merely scaled to create tlhe test airfoils.
There still exists the possibility that the characteristic surface velocity effect
is not independent of airfoil type. To test this theory, a third group of airfoils
were chosen where the thickness function was different for eacch airfoil. The
NACA 4-digit-modified series[1},[22] of airfoils has the abilitty to not only
create a series airfoils with increasing thickness, but the locatio-n of maximum
thickness can be changed for each airfoil as well. This series of airfoils can
describe a much larger range.

NACA 4-digit-modified airfoils have a thickness distributzion similar to
5-digit 16-series airfoils defined[22] as

(L) - { (2 +a (D) 4o (3 +a(5) () SMa gy
/| do+d (1-2)+da(1-2) "+ (2) 5 (2) 2Mu

where ag,---,as and dp,---,d; are coefficients determined farom boundary
conditions and M, is the location of maximum thickness. "The boundary
conditions used to solve for the thickness coefficients used in Equation 2.23
include maximum thickness, slope and curvature of airfoil surfface, and lead-

ing edge radius[22] as determined by

2 2
Rip =2 =1.1019 (26{) (2.29)

where Rrg is the leading edge radius, qo is the coefficient from Equation

2.28, T is the maximum thickness, and I is the leading edge radius index

75



number. If the leading edge radius index is equal to zero (0), a sharp leading
edge is present, while a six (6) refers to a leading edge radius matching that
of the 4-digit series airfoils. Typically 6 is the largest index number used.
For 4-digit-modified airfoils the slope of the airfoil surface at the trailing
edge of airfoil is controlled by the location of maximum thickness, according

to Table 2.1[22].

My, dy

0.2 | 0.200
0.3 |0.234
0.4 | 0.315
0.5 | 0.465
0.6 | 0.700

Table 2.1: NACA 4-Digit-Modified TE Slopes

The camber line of a 4-digit-modified airfoil is calculated and determined
in the same way as a 4-digit camber line. The exact function used to generate
the camber line can be seen in Equation 2.6. The quantities of thickness (T,
maximum camber (P), maximum camber location (M), maximum thickness
location (Mrg) and leading edge radius index ([) are determined from the

NACA four digit designation[22] as follows
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NACA abcd — ef

P = &
M = %
. cd
T = 5%
I = e
M, = L

A NACA 3410-44 airfoil has a maximum camber of 3% (P = 0.03) located
at 40% chord (M = 0.40), a maximum thickness of 10% (7 = 0.10) located
at 40% chord (M, = 0.40) and a leading edge radius index of 4 (I =4). A
NACA 3410-44 airfoil can be seen in Figure 2.38.
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Figure 2.38: NACA 3410-44 Airfoil

The series of 4-digit-modified airfoils analyzed were the 3406-42, 3408-43,
3410-44, 3412-45, and 3414-46 airfoils. The different thickness distributions
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created by changing both maximum thickness and maximum thickness loca-

tion can be seen in Figure 2.39.

10 T T T T T T T T Y

: ——  3406-42
gl L TP | —+—  3408-43 | -

: : : : —e—  3410-44
: : . : | —— 3412-45
8k . . . e . —_—a—— 3414_46 -

Percent Thickness

_ ! L ; : . :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Distance Along Chord (x/c)

1 1 J 1

Figure 2.39: Thickness Distributions Of NACA 4-Digit-Modified Airfoils

The @ velocity is the first velocity component that is used to compare
the effect of different airfoil thicknesses. The five @ velocities have a similar
leading edge section, and all five share a common intersection point at ap-
proximately 90% of the length of the chord. The five 4 velocities can be seen
in Figure 2.40.

The NACA 3406-42 airfoil is used as the base airfoil to calculate the
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Figure 2.40: @ Velocities Of NACA 4-Digit-Modified Airfoils
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percent difference for each of the remaining airfoils. The percent difference
is calculated using Equation 2.17. The difference in @ velocities can be seen
in Figure 2.41.

Although the leading edge portions of all four of the differences in velocity
appear similar, there is only one location where the four differences coincide.
The location of the zero difference intersection is at 93% chord. From the
leading edge to 93% chord, the maximum percent difference occurs at 73%
of the chord length. The range of differences at 93% chord is from 2.4% to
25.5%. The 2.4% difference corresponds to the 8% thick airfoil. The 25.5%
difference corresponds to the 14% thick airfoil. The general trend from 0%
chord to 93% chord is increasing percent difference with increasing thickness
ratio. From 93% chord to the trailing edge, the largest difference occurs
at 100% of the length of the chord. The range of percent differences in @
velocity at the trailing edge is from -38.2% to -3.8%. The -38.2% difference
corresponds to the thickest airfoil. The -3.8% difference corresponds to the
thinnest remaining airfoil. The general trend from 93% chord to 100% chord
is decreasing percent difference with increasing airfoil thickness.

The second velocity component compared is the Au velocity. As with
previous airfoil groups, the Au velocity changes comparatively little with
different thickness distributions. In Figure 2.42 the five Au velocities appear
to be nearly identical except for the last 25% of the chord. Figure 2.42 shows
the Au velocities corresponding to the five analysis airfoils.

For comparison, the NACA 3406-42 airfoil is chosen as the base airfoil.
The percent difference of the four remaining airfoils is calculated using Equa-

tion 2.18. The difference in the Au velocities can be seen in Figure 2.43.
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Figure 2.42: Awu Velocities Of NACA 4-Digit-Modified Airfoils
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Figure 2.43: Difference In Au Velocities Of NACA 4-Digit-Modified Airfoils
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Neglecting the leading edge and trailing edge velocity spikes, there is one
location where the four differences in velocity intersect with zero percent
difference. This intersection occurs at 35% chord. There is also an inflection
point for each of the four differences at approximately 70% of the chord,
but there is no second intersection point. The largest difference between
the leading edge and 35% of the chord length occurs at 11% of the chord.
The differences in Au velocity at 11% chord range from -4.5% to -2.1%.
The -4.5% difference corresponds to the airfoil 8% thicker than the base
airfoil. The -2.1% difference corresponds to the airfoil 2% thicker than the
base airfoil. The general trend from 0% chord to 35% chord is decreasing
percent difference with increasing airfoil thickness. Between 35% chord and
70% chord, the maximum difference occurs at 52% chord. The range of
percent difference at 52% of the chord length is from 0.0% to 0.5%. The 0.0%
difference corresponds to the thinnest remaining airfoil. The 0.5% difference
corresponds to the thickest airfoil. The general trend from 35% chord to
70% chord is increasing percent difference with increasing thickness ratio.
The last portion of the Au velocity plot lasts from 70% chord to the trailing
edge. The largest percent difference between 70% and 100% of the chord
occurs at 91% chord length. The range of percent differences at 91% chord is
from -8.4% to -1.2%. The -8.4% difference corresponds to the NACA 3414-46
airfoil. The -1.2% difference corresponds to the NACA 3408-43 airfoil. The
general trend from 70% chord to 100% chord is decreasing percent difference
with increasing thickness.

The third velocity combination is the 7 velocity. The ¥ velocities behave

similarly to the Awu velocities. The velocities appear nearly identical until
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the 80% chord location where the effect of the different thicknesses becomes
more noticeable. The 7 velocities can be seen in Figure 2.44.

The base velocity used for the calculation of differences in 7 velocities
corresponds to the NACA 3406-42 airfoil. The differences are calculated using
Equation 2.19. Figure 2.44 shows the calculated differences in ¥ velocity.

There are two locations where all four of the difference in 7 velocities
intersect with zero percent difference. The two locations occur at 48% of
the chord length, and at 86% of the chord length. The two common points
effectively divide the difference plot into three sections. The first region, from
the leading edge to 48% chord, has a maximum difference at 23% chord. The
range of differences at 23% of the length of the chord is from 0.5% to 1.0%.
The 0.5% difference corresponds to the NACA 3408-43 airfoil. The 1.0%
difference corresponds to the NACA 3414-46 airfoil. The general trend from
0% chord to 48% chord is increasing percent difference with increasing airfoil
thickness. The second region of the differences in 7 velocities is from 48% of
the chord to 86% of the chord. The largest percent difference in this region
occurs at 75% of the chord length. The differences at 75% chord range from
-1.5% to -0.2%. The -1.5% difference corresponds to the thickest airfoil. The
-0.2% difference corresponds to the thinnest remaining airfoil. The general
trend from 48% chord to 86% chord is decreasing percent difference with
increasing thickness. The third and final region extends from 86% chord
to the trailing edge. The maximum percent difference in this third section
occurs at 99% of the chord length. The range of percent differences at 99%
of the chord is from 1.1% to 10.6%. The 1.1% difference corresponds to the
airfoil 2% thicker than the base airfoil. The 10.6% difference corresponds
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to the airfoil 8% thicker than the base airfoil. The general trend from 86%
chord to 100% chord is increasing percent difference with increasing thickness
ratio.

The fourth and final velocity component compared for thickness effects
is the Av velocity. The Av velocities do not share any intersection points,
and all five of the velocities have slightly different shapes. This is to be
expected, as the five 4-digit-modified thickness distributions are not simply
scaled versions of the same distribution. The five thickness distributions
used for analysis in this group are airfoils have different maximum values, as
well as different curves. The effect of the different thickness distributions has
been seen to some extent in the previous comparison of other 4-digit-modified
velocities, but the largest effect seems to have appeared in the Av velocities.
The Av velocities corresponding to the 4-digit-modified airfoils can be seen
in Figure 2.46.

The base velocity chosen for the Av velocities is the 6% thick airfoil. The
percent differences between the base velocity and the remaining four veloc-
ities is calculated using Equation 2.20. The difference in the Av velocities
can be seen in Figure 2.47.

Since there are no points where all four of the differences in velocities
intersect, it is difficult to quantify the effect of the changing thickness ratios.
There are two locations where the range of differences in the Av velocity ap-
pear to be the largest. The first location is at 16% of the chord length. The
range of differences at 16% chord is from 12.3% to 25.6%. The 12.3% differ-
ence corresponds to the 8% thick airfoil. The 25.6% difference corresponds
to the 14% thick airfoil. The general trend at 16% of the chord is increasing
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percent difference with increasing thickness ratio. The second location where
the range of differences in Av velocities appears to be at a maximum is at
94% of the chord length. At 94% of the chord, the range of percent difference
is from -60.3% to -6.1%. The -60.3% difference corresponds to the NACA
3414-46 airfoil. The -6.1% difference corresponds to the NACA 3408-43 air-
foil. The general trend at 94% chord is decreasing percent difference with
increasing airfoil thickness.

The velocity comparisons of the NACA 4-digit-modified airfoils show
larger percent difference between the velocities. These larger differences oc-
cur because the thickness distributions of the 4-digit-modified group have
changing maximum thickness ratio as well as changing maximum thickness
location. The thickness distributions are more varied, so the corresponding
velocities are more varied as well. The large percent differences will not af-
fect the trending as each individual velocity is recreated with a group-specific
function before the series of recreated velocities are trended according to
thickness ratio. For each airfoil group, the specific formulation of the trend-
ing function depends upon how accurately the trended velocity represents the
analysis velocity. For more complex velocities, such as the NACA 4-digit-
modified velocities, the trending function is adjusted so that the analysis

velocities are accurately represented.
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2.4 (General Airfoils

The analysis of the three different groups of NACA airfoils show that the ve-
locity components of Z and Av change with different thickness distributions
but Au and ¥ remain constant. It has been shown that increasing maximum
thickness at a fixed location as well as increasing maximum thickness with
changing location both affect the two velocity quantities. By only investi-
gating the NACA airfoils it is impossible to determine if the thickness and
camber velocity dependence is linked to the mathematical descriptions of the
thickness and camber. To test the possibility that this phenomena is strictly
a NACA trait, a group of five general airfoils were chosen. The five different
airfoils chosen were the NACA 3406 airfoil, Eppler E64 Low Reynolds Num-
ber airfoil [17], Eppler E212 Low Reynolds Number airfoil{17], Drela DAE11
Low Reynolds Number airfoil [7] and the Strand High Lift airfoil [25]. For
test purposes, these five airfoils are referred to as GENO1 through GENOS,
respectively. Each of the five general airfoils have different thicknesses and
different camber lines. Since only the different thickness distributions are
required, the thickness distributions and camber lines are determined from
the airfoil coordinates, and only the thicknesses are taken. All five thickness
distributions are then added to the camber line of the NACA 3406 airfoil to
determine the test airfoils. The actual camber line does not matter, only the
fact that the camber is identical for each of the five general airfoils. The five
different thickness distributions can be seen in Figure 2.48.

The analysis results of the general airfoil group resembles those of the
NACA groups. The constant camber line creates constant Au and ¥ veloc-

ities and the different thicknesses cause the 4 and Awv velocities to change
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Figure 2.48: Thickness Distributions Of General Airfoils

for each airfoil. The strongly different shapes of the five general thickness
distributions cause the calculated velocities to have different shapes as well.
Because of the different velocity shapes, it is difficult to compare the sets
of velocities using the same technique as the NACA 4-digit, 5-digit and 4-
digit-modified groups. The general airfoil velocities do not have the same
intersection points that all of the velocities share at zero percent difference
that the other groups do. Therefore, the velocities are compared in regions

separated by points where the most erratic difference in velocity crosses the
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zero percent difference line.

The first velocity component is the # velocity. The only location where
the five velocities have similar values is at the leading edge. The % velocities
all have different curves and do not share a similar shape. The five @ velocities
can be seen in Figure 2.49.

The base velocity chosen for comparison corresponds to the GENO1 airfoil.
The GENO1 airfoil is the thinnest airfoil of the group. The percent difference

of the remaining four airfoils is calculated using

Tgs = % x 100% (2.30)

where g, refers to the # velocity of the base GENO1 airfoil, @; refers to the
4 velocities of the remaining airfoils, and 4y; refers to the percent different in
velocity calculated. The four differences in @ velocities can be seen in Figure
2.50.

The @ velocity that has the largest percent difference from the base airfoil
corresponds to the GENQS5 airfoil. The GENOS5 difference in velocity has
zero percent difference at three locations. These three locations are used to
divide the comparison into chordwise sections. The three locations where the
difference in @ velocity corresponding to the GENOQ5 airfoil occur at 4% chord,
53% chord, and 97% chord. Between 4% of the length of the chord and 53%,
the largest percent difference occurs at 28% chord. The range of differences
at 28% chord is from 5.3% to 30.0%. The 5.3% difference corresponds to the
thinnest remaining airfoil. The 30% difference corresponds to the thickest
airfoil. The general trend from 4% chord to 53% chord is increasing percent
difference with increasing airfoil thickness. The second region exists from 53%

chord to 97% chord. The largest percent difference between 53% of the chord
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and 97% of the chord occurs at 78% chord. The percent difference at 97%
chord ranges from -5.9% to -0.6%. The -5.9% difference corresponds to the
GENO5 airfoil. The -0.6% difference corresponds to the GENOQ2 airfoil. The
general trend from 53% chord to 97% chord is decreasing percent difference
with increasing thickness ratio.

The second velocity compared is the Av velocity. As with the three other
airfoil groups, the Av velocities are very similar for the five different airfoils,
even though the @ velocities have been shown to vary so greatly. The five
Au velocities can be seen in Figure 2.51.

The airfoil used as the base airfoil for the Au velocities is the GENO1 air-
foil. The percent difference between the base airfoil and each of the remaining
airfoils is calculated using the following equation

Au; — A
Aug = == = Ucor  100% (2.31)

where Aug; is the percent difference of the Au velocities, Au; is the velocity

of the four remaining airfoils, and Augg; is the velocity of the base airfoil.
The four differences in Au velocities can be seen in Figure 2.52.

As with the 4 velocity comparison the GENQS airfoil velocity difference
is used to categorize the trends in the comparison plot. The GENO5 velocity
difference has zero percent difference from the base velocity at five locations,
three occurring more than 5% from the leading and trailing edges. The three
interior locations of zero percent difference occur at 23% chord, 37% chord
and 85% chord. From leading edge to 23% chord, the largest percent differ-
ence occurs at 7% of the chord length. The range of differences at 7% chord
is from -10.1% to -3.0%. The -10.1% difference corresponds to the GENOS
airfoil. The -3.0% difference corresponds to the GENO2 airfoil. The general
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trend from 0% chord to 23% chord is decreasing percent difference with in-
creasing airfoil thickness. Between 23% chord and 37% chord, the maximum
percent difference occurs at 30% of the length of the chord. The percent
difference at 30% chord ranges from 0.1% to 2.0%. The 0.1% difference cor-
responds to the thinnest remaining airfoil. The 2.0% difference corresponds
to the thickest airfoil. The general trend from 23% chord to 37% chord is
increasing percent difference with increasing thickness ratio. The third sec-
tion lasts from 37% of the chord to 85% of the chord. The largest percent
difference in this region occurs at 58% of the chord. The range of percent
differences at 58% chord is from -1.4% to -0.3%. The -1.4% difference corre-
sponds to the GENOS5 airfoil. The -0.3% difference corresponds to the GEN02
airfoil. The general trend from 37% chord to 85% chord is decreasing per-
cent difference with increasing airfoil thickness. The fourth and final region
exists from 85% chord to the trailing edge. The maximum percent difference
in this region occurs at 96% of the chord. The range of difference at 96%
chord is from 0.7% to 1.6%. The 0.7% difference corresponds to the thinnest
remaining airfoil. The 1.6% difference corresponds to the thickest remain-
ing airfoil. The general trend from 85% chord to 100% chord is increasing
percent difference with increasing thickness ratio.

The third velocity component is the 7 velocity. All five of the 7 velocities
appear very similar even though they represent different thickness ratios,
keeping with trends seen in the other airfoil groups. The five ¥ velocities can
be seen in Figure 2.53.

The base velocity chosen for comparison corresponds to the GENO1 airfoil.

The percent difference of the four remaining airfoils is calculated using the
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following equation

U; — Ugo1
U

where ¥4 is the percent difference of the velocity, ; is the velocity of one

Ty = x 100% (2.32)

of the remaining four airfoils, and Tgo; is the 7 velocity of the base GENO1
airfoil. The four differences in ¥ velocities can be seen in Figure 2.54.
There are four interior locations where the GENO5 difference in ¥ velocity
is equal to zero. These five locations are at 9% chord, 30% chord, 63%
chord, and 92% chord. The maximum range in difference for the ¥ velocities
does not exceed 3% anywhere between leading edge and trailing edge. From
leading edge to 9% chord the largest percent difference occurs at 1% of the
chord. The range of differences at 1% chord is from -10.6% to -7.8%. The
-10.6% difference corresponds to the thickest airfoil. The -7.8% difference
corresponds to the thinnest remaining airfoil. The general trend from 0%
chord to 9% chord is decreasing percent difference with increasing thickness.
Between 9% chord and 30% chord, the maximum percent difference occurs
at 17% of the chord. The difference at 30% chord ranges from 0.4% to
2.0%. The 0.4% difference corresponds to the GENO02 airfoil. The 2.0%
difference corresponds to the GENO5 airfoil. The general trend from 9%
chord to 30% chord is increasing percent difference with increasing airfoil
thickness. The third section of the comparison of ¥ velocities is from 30%
chord to 63% chord. The largest percent difference in this region occurs at
35% chord. The range of differences at 35% chord is from -0.9% to 0.0%.
The -0.9% difference corresponds to the GENO5 airfoil. The 0.0% difference
corresponds to the GENO2 airfoil. The general trend from 30% chord to 63%

chord is decreasing percent difference with increasing airfoil thickness. The
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fourth region lasts from 63% chord to 92% chord. The maximum percent
difference in this section occurs at 81% chord. The difference at 81% chord
ranges from 0.0% to 0.4%. The 0.0% difference corresponds to the thinnest
remaining airfoil. The 0.4% difference corresponds to the thickest airfoil. The
general trend from 63% chord to 92% chord is increasing percent difference
with increasing thickness ratio. The fifth and final region exists from 92% of
the chord to the trailing edge. The largest difference in this section occurs
at 99% chord. The range of differences at 99% chord is from -1.7% to 0.1%.
The -1.7% difference corresponds to the GENO5 airfoil. The 0.1% difference
corresponds to the GENO2 airfoil. The general trend from 92% chord to
100% chord is decreasing percent difference with increasing airfoil thickness.

The fourth and final velocity compared is the Av velocity. The five differ-
ent Av velocities have different shapes and do not appear very similar. The
Av velocities can be seen in Figure 2.55.

The velocity chosen at the base velocity corresponds to the GENO1, or
thinnest airfoil of the group. The percent difference in the Av velocities is

calculated using

Av; —
Avg; = —”—# x 100% (2.33)

where Awvy; refers to the percent difference in Av velocity, Av; refers to a
Av velocity corresponding to one of the remaining airfoils and Awvgg; refers
to the Av velocity of the base, or GENOL, airfoil. The differences in Av
velocities can be seen in Figure 2.56.

There are only two points where the GENOS5 difference in Av velocity is
equal to zero. These two points occur at 24% chord and 83% chord. Between

the leading edge and 24% chord, the maximum percent difference occurs at
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6% chord. The range of difference at 6% chord is from 13.4% to 52.6%. The
13.4% difference corresponds to the GENO02 airfoil. The 52.6% difference
corresponds to the GENO5 airfoil. The general trend from 0% of the chord
to 24% of the chord is increasing percent difference with increasing airfoil
thickness. From 24% chord to 83% chord the largest difference range occurs
at 33% of the chord. The differences at 33% chord range from -40.9% to
-0.5%. The -40.9% difference corresponds to the thickest airfoil. The -0.5%
difference corresponds to the thinnest remaining airfoil. The general trend
from 24% chord to 83% chord is decreasing percent difference with increasing
thickness ratio. The last region is from 83% of the length of the chord to
the trailing edge. The maximum percent difference in this section occurs at
96% of the chord. The range of differences at 96% chord is from -2.8% to
13.4%. The -2.3% difference corresponds to the GEN02 airfoil. The 13.4%
difference corresponds to the GENO5 airfoil. The general trend from 83%
chord to 100% chord is increasing percent difference with increasing airfoil
thickness.

As with the NACA 4-digit-modified airfoils, the General group of airfoils
show velocities that have larger percent differences than either the NACA
4-digit or 5-digit 16-series airfoils. The large range of percent differences
between the velocities of the General group of airfoils are due to the highly
varied shapes of the thickness distributions. By looking at Figure 2.48 it
can be seen that each of the thickness distributions of the General airfoil
group have different maximum thickness ratios as well as different locations of
maximum thickness. The large percent differences of the General airfoil group

will not affect the trending of the velocities because the trending function will
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be altered so that the trending technique creates as little error as possible.
The specific shapes of the General group analysis velocities will be used to

determine the exact method of recreating the velocities.
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CHAPTER 3

(GOVERNING EQUATIONS

The velocity plots discussed in the previous chapter were calculated using a
finite volume approach to solving the potential flow in a cascade of airfoils.
The potential flow equation is formulated using the Law of Conservation of
Mass to determine the flow field in a single channel between two airfoils. The

single channel is represented as a control volume.

3.1 Continuity Equation

In a control volume, the Law of Conservation of Mass can be written in

integral form as

%///pdwr//pt?-dszo (3.1)
v S

where t represents time, p is the density of the fluid, V is the vector form
of the velocity field, V is the control volume and S denotes the control sur-

face. The surface integral can be changed into a volume integral using the
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divergence theorem, giving

%/V//”WJ’/V//V'(/’V)W:O (3.2)

For the problem being studied, the control volume is steady, so Equation 3.2

becomes

/V// [%(p) +V- (pV)} av =0 (3.3)

For any arbitrary control volume, the integral is equal to zero, so the inte-

grand must also be equal to zero giving

5+ (o7) =0 @4

In order to calculate the correct flow field for the problem, an equation of state
of the fluid is needed. This state equation can add convergence difficulty,
therefore it is preferable to express Equation 3.4 in a more expanded form.
The expanded form allows the density characteristics of the problem to be
considered. With this in mind, the differential operator in Equation 3.4 can

be expanded to give

% o (V)47 (V-p) =0 (3.5)

For this problem, p is constant for all time within the domain space. There-

fore
V-p=0 (3.6)
Op
5 = 0 (3.7)

With these two conditions, Equation 3.5 simplifies to
pV -V =0 (3.8)
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Removing the constant density p gives the continuity equation

v.v:o (3'9)

3.2 Lamellar Decomposition

The velocity field, 1% originally mentioned in Equation 3.1 is composed of two
flow variables. The two variables are the free stream velocity (Us) and an
irrotational potential (¢). These two variables comprise a complex-lamellar

decomposition of the flow field according to the following equation
V=Usx+Vo (3.10)

The continuity equation, Equation 3.9, can be expanded to become

vy, %

3% " 3 (3.11)

From the decomposition described in Equation 3.10 the two cartesian velocity

components, v and v are defined as

L 09
u="Ux+ 3z (3.12)
¢
Using the u and v definitions of Equations 3.12 and 3.13, Equation 3.11
becomes
- 0 d¢ 9 (0¢
V.-V = p (Uoo-l-%) +a—y (@) (3.14)
U, &% 0%
5 T oz o (3.15)
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This equation is used to model the continuity. The final form of the continuity

equation has the second degree partial derivatives combined, written as

o OUm | s
V-V =221V (3.16)

3.3 Dimensional Analysis

In order to express the continuity equation in a non-dimensional form, two
dimensional constants must be used, a characteristic length and velocity. The
characteristic length used is denoted as ¢ and represents the distance from
the leading edge to the trailing edge of the airfoil. The characteristic velocity
used is the freestream velocity U,. These two values are used to remove any
dimensional dependence that the solution of the problem may have because
of the flow variables used. The flow variables are distance (z,y) and velocity

(u,v). The non-dimensional quantities are as follows:

ot = % (3.17)
y =2 (3.18)
u = %m (3.19)
ot = %w (3.20)

The above equations can be rearranged for substitution into the continuity

equation giving
z=z"c (3.21)
y=vy"c (3.22)
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u=1u"Uy (3.23)
v=10"Uyx (3.24)

The continuity equation can be tested for dimensional dependence using the
above substitutions. The test is used to determine whether or not non-
dimensional constants must be inserted in order for the equation to be solved
and still be dimensionally consistent. Equation 3.11 can be written with the
dimensional constants as

5 _ O (uls)  O(WUx)

vV d (z*c) 3 (y*c)
- 5 ()5 () (3.9

The term QCE is present in both terms of Equation 3.25 and referring to
Equation 3.9 it is known that V - Vis equal to zero. Therefore the %& term

can be factored and the continuity equation becomes

-~ Uy (Ou* Ov*
V-V == (3x*+8y*> (3.26)

3.4 Generalized Coordinate System

In solving the continuity equation, the coordinate system must be trans-
formed from the physical domain to the computational domain. This involves
transforming the system from cartesian (z,y) coordinates to general curvi-
linear (&,7) coordinates. The effect of the transformation , as demonstrated
in Figure 3.1, creates a uniform coordinate system where the grid spacings

are both equal to unity, or
AE=An=1 (3.27)
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Figure 3.1: Grid Transformation

The transformation is completed through the use of a Jacobian transfor-

mation matrix. The Jacobian matrix is defined as

_ Oy _ | % 5
= 3G =15 5 (3.28)
57 n 5361 _a_%
The inverse of the Jacobian, denoted J~! is defined as follows
o o 1 [ & ==
J—l = 9z Oy — an on (329)
an 9n J)| | =8z o=
dr Oy 3 3

where ||J]| is the determinant of the Jacobian, given as

_(2z0y_osdy
= (S - 52 (3.30)

The two cartesian derivatives % and 5% can be expressed in terms of the

(€,7m) system as follows

0 _00¢ 090on
9z~ 0i0z | 950w (3.31)
o 809 8 on (332

dy ~ 9€dy " dndy
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using Equation 3.29, the following terms can be replaced using the listed

substitutes

@z_l_@z)
dy ~ 171 \a¢

so the derivatives become

o _ 118 (5_y)+_3_<_@)'
oz ||J|| {9& \On an \ 0€)]

o _ 1718 <_?£)+2<Q~"£>'
gy  ||JIl LOE \ Onm on \9¢/ |

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

The transformed derivatives are used to derive a transformed continuity equa-

tion which can be written as

1 [5IIJIIU+BHJ’|IV}
Wi o€ an

V.-V =

or rearranged into

ST ollJIv
o€ on

where U and V are the contravariant velocities defined as

v-v=

q

AL

115

(3.39)
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The two lamellar velocities © and v contain cartesian partial differentials,
as can be seen in Equations 3.12 and 3.13. These cartesian differentials are

transformed using Equations 3.37 and 3.38 to give

1[040y a¢< aJ”
=Vt 157 13600 T ar \ 26 3.42
¢ A [3§3n+3n B¢ (3.42)
_ 1 [0 ( oz), 860z
"I [65( 8n>+8n8§] (3.43)
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CHAPTER 4

NUMERICAL METHODS

The continuity equation, Equation 3.9, is used to solve for the potential field
or ¢ variable. With the potential an inviscid, irrotational velocity field is

constructed using
‘—/;'nviscid = Uoo + v¢ (41)

The potential is solved using a implicit approximate LU factorization algo-
rithm. The convergence of this algorithm is accelerated to a steady state
using a multigrid scheme. However, Equation 3.9 must be expressed in a
time dependent form for it to be solved using these methods. Since the solu-
tion being sought involves the potential function, ¢ is the variable that will
be changing from one iteration to the next as the scheme converges. This

gives the time dependent form of the continuity as

0o ~

T _vy. 4.2

5=V VY (4.2)
When the potential has converged to a steady state, or

d¢

= = 4.

3¢ =0 (4:3)

then the continuity condition will also be satisfied according to Equation 4.2.
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4.1 Approximate LU Factorization

The LU scheme being used has the ability to be fully explicit, fully implicit
or semi-implicit. The implicit nature of the scheme is controlled using an
implicit parameter, . The inclusion of x and use of the potential form of
continuity described in Equation 3.16 changes Equation 4.2 into

¢ U 29 021" [0Usw 8% 992"
F ((l—,u) [ oz + ox? + dy> tH Oz + Oz? + Oy? (4.4)

where N and N + 1 refer to the current and future time iterations, respec-
tively. The LU scheme is fully implicit when p = 1, and fully explicit when

© =0. The %% term can be approximated as a finite difference such as
ot wm “
where N and N + 1 refer to successive time iterations and At is the time
step. The Equation 4.5 approximation allows Equation 4.4 to be expanded
into
¢N+1 _ ¢N —

., 8% 1Y [oU, 8% 02"t
At ((l—u) [ Ep + 522 + 8y2J+“[ g + 352 + 5,2 (4.6)

Collecting terms with the implicit factor, and linearizing the implicit terms
about the last timestep gives

62¢ 82¢ N+1 62¢ 82¢ N
N —_ —_— —_ __ T —
AeT —uat [(3$2 * ayz) (82:2 * 3y2> =

., 8% 08¢*\V
At( e ayg) (4.7)
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where A¢" is the potential field correction for time N, and is defined as
A¢N — ¢N+1 _ ¢N (4.8)

The bracketed terms on the right hand side of Equation 4.7 are called the
residual and are specifically constructed to maintain numerical conservation
and accuracy. The use of Equation 4.8 allows the simplification of Equation
4.7, and the addition of a relaxation factor, w, gives

At N Aty

where I is the identity matrix and 6., d,, are the second order central dif-
ferencing terms written in delta form. The delta form terms are defined

as
02200 = Dpiy1 — 20¢; + Ay (4.10)
5yyA¢ = A¢j+1 - 2A¢_—, + Aqu_l (411)

The left hand side of Equation 4.9 is factored to create an approximation that
will allow for solution using an explicit sweep. The approximate factorized
equation is

At _ _ At + N At N ¢
(14 ns (6 + )| [T —wis (2 + 55 )| 0" = ws Res (4.12)

where 67,0, ,0}, and & are first order differencing terms written in delta

form. The four first order delta form terms are defined as
§TAD = Adi1 — A; (4.13)
5508 = Adi — Dy (4.14)
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6y A = Ddjp1 — Ad; (4.15)
6, Ad = A¢; — Agj (4.16)

This equation is solved in two steps. The first step uses the residual at
time N to solve for a temporary potential correction called A¢’. The second

step then uses the temporary correction to solve for the true potential field

correction.
(1) [I+ups (67 +5;)] A¢' = wh Res” (a1
@) [I—pls (6F +67)] 0V = A¢f '
In the transformed system, Equation 4.17 becomes
(1) [I+nls (Ai6; + A28;7)| Ad = whs (Res™)Y (18)
@) [I - phh (Adf + As67)] ApY = Ag!
where A; and A, are defined as
%)+ (%)
A= on 4.19
1 171 (4.19)
az\? ay\?
() +(-2)
Ay = 2% ) % (4.20
171 )

and the new residual, Res® is calculated using the transformed continuity
equation, Equation 3.40. The A terms and the new residual calculation are
derived using the transformation techniques discussed in Section 3.4.

Step (1) of Equation 4.18 can be solved with an explicit sweep because
the 6~ factorization creates a lower triangular matrix. Similarly, the %
factorization in step (2) creates an upper triangular matrix. The potential

correction is then used to update the potential field in the following manner
SV = N 1 AN (4.21)
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4.2 Residual Construction (Analysis)

Calculating a solution for the potential field requires the discretization of
the continuity equation. For this work, a finite volume method was used.
The benefit of a finite volume formulation is the ability to calculate all of
the terms of the residual as fluxes through the cell faces. The residual in

Equation 4.18 represents the continuity equation, restated as
Res* = ||J||V -V (4.22)

The residual can be written in a more generalized form as

._9f 99
Res* = 2 on (4.23)

where f and g are the tangential and normal fluxes, respectively. The fluxes
can be expressed in terms of velocities and geometric terms, and combining
Equations 4.22, 4.23 and Equation 3.40 gives

21U, AV
o€ an

where || J|| is the determinant of the Jacobian transformation matrix, defined

|V -V = (4.24)

in Equation 3.30, and U,V are the contravariant velocities. The fluxes can

be written in terms of U and V as
f=JIU (4.25)
g=[JIIV (4.26)

Using Equation 3.41 the f and g fluxes can be written as

{f } — [ “} (4.27)
g v
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where J~! is the inverse of the Jacobian transformation matrix and u,v are

cartesian velocities. The g flux can be expanded to become

_ 1 ( %, 0=
=11 [an( 9€ +a§”>] (4.28)

For airfoil analysis the normal flux along the surface of the airfoil is set equal
to zero to mimic the solid surface of the airfoil. The no-flux condition is
achieved by using the u and v velocities to set V' equal to zero at the surface
of the airfoil. The u and v velocities are used to only affect the V' or normal
contravariant velocity, and therefore the g or normal flux at the solid surface.
Everywhere else, and for the U contravariant velocity, the cartesian velocities
are constructed using the current potential field.

Approximating the flux partial derivatives as finite differences, Equation
4.23 becomes

._Af Ay
Res* = A T An (4.29)

where Af and Ag are fluxes through the entire cell. Figure 4.1 shows a
diagram of a single computational cell. The location of the Af and Ag
terms can be seen in Figure 4.1(i). From Equation 3.27 it is known that A§
and An are equal to one in the computational domain. The cell flux terms
in Equation 4.29 can be replaced with the flux through the cell face terms,

as
Af=fr—fL (4.30)
Ag=gr —gs (4.31)

where the R, L, T and B subscripts refer to the right, left, top and bottom
walls of the cell respectively. This can seen in Figure 4.1(ii). Using Equations
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Figure 4.1: Flux Calculation
3.27, 4.30 and 4.31, Equation 4.29 becomes
Res* = fr— fL +g9r — g8 (4.32)

The four fluxes listed above must all be calculated on the cell faces. The ¢
variable, as well as some geometric terms for a particular cell do not lie on
the corresponding cell faces for a particular flux calculation, however. This
means that the fluxes must be constructed such that they occur in the correct
location on the cell. Since the potential equation is elliptic, information is
passed in all directions. Therefore, linear interpolation of variables can be

used in the construction of the residual.
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4.3 Numerical Stability of the LU Scheme

In order for a numerical scheme to be considered stable, the error can not be

allowed to grow exponentially in time, that is

N+1

error < error™¥ (4.33)

where N and N + 1 describe successive time steps. For an initial value
problem, such as the one one being studied here, a scheme can be called

stable if the absolute value of the error remains bounded as
1. t — oo, for a fixed At
2. At — 0, for a fixed ¢t

The Lax Equivalence Theorem states that for a well-posed initial value prob-
lem with constant coefficients, if a numerical approximation is consistent then
stability is a sufficient condition for numerical convergence. The unsteady
implicit approximation, Equation 4.18, is not consistent with the artificial
unsteady equation modelled in Equation 4.2. However, when the numeri-
cal scheme converges to a steady state solution the steady state residual is
consistent with the continuity equation. To determine the stability of the
numerical approximation, a Von Neumann Stability analysis is completed.
The Von Neumann stability involves completing a Fourier decomposition in
space. This analysis applies specifically to problems with periodic bound-
aries and constant coefficients. The analysis assumes that the problem has a

separable solution of the form

W = ex"telh= (4.34)
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In Equation 4.34, W is the approximate function, 7 is an imaginary number,
a* is an exponential time constant and 3 is the wave number. For the /NV*

time step, the time ¢ is defined as NAt to give

< tezﬁzz: & IVAtezﬁJ:

— (ea‘At)NeiB:r (4.35)

for a constant a* and At, an new constant, G, can be defined as the growth

factor in the following way

G = e8¢ (4.36)
such that at time step /V,

GN = (ex2)” (4.37)
With the substitution of G, Equation 4.34 becomes

W; = GNe= (4.38)

Equation 4.38 can be used to describe W at any time (V) as well as at any
location (7). The error between two successive time steps can now be defined
in terms of the growth factor. For error not to grow exponentially in time,

Equation 4.33 can be written in terms of the growth factor as
1N < e (4.39)
which becomes the growth factor condition

Gl <1 (4.40)
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The continuity equation can be modelled for numerical stability analysis as

a one-dimensional diffusion equation. The model equation used is

oW W

Bt T ot (4.41)

Using the LU factorization scheme, the model equation can be written in

operator form as
LUAW; = RW; (4.42)

where L, U, and R refer to the lower diagonal matrix, the upper diagonal
matrix and the residual respectively. In delta form, the model equation is
written

At At
[I—i— ugd;} [I — yA—é“"] (I/VjN‘*'1 — W'JN) = wA 2(5sz (4.43)

where Az refers to the grid spacing and is assumed to be constant. The left
hand terms of Equation 4.43 expand so that the delta form model equation

can be written

At At At2
[I—uA—5++uK——5 —pu? N m] (WN“ WN) =

At

Using Equation 4.38 the delta form model equation becomes

At At iBAx —iB8Ax
[1—( F s 2+uA 4> (eﬁA + 7R ——2)](G—1)=

At 1BAx —1 x
wi—s (674 + e7#2= — 2) (4.45)
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The exponential terms in the previous equation can be replaced with trigono-

metric functions, using the substitution
ePA% = cos BAz + isin fAz (4.46)

Using the trigonometric identity

1 —cos 28

24
sin“ @ = 5

(4.47)
the growth factor of the model equation is defined in the following way
2
14 (42 (&%) + s — wih ) sin? 242

2
1+ (2 (£5) + ) sin® 252

(4.48)

A plot of different growth factors can be seen in Figure 4.2. The different

growth factors correspond to different combinations of u, w and ﬁg. The

cases are defined as follows

At
Case j2i w A2

1 1.0{ 10| 6.0

2 1.0 20| 6.0
3 05|10 6.0
4 051201 5.8

Table 4.1: Growth Factor Cases

Figure 4.2 shows that the numerical scheme is stable for each of the
cases, as the growth factor |G| is never greater than one. The growth factor
parameters can be used to accelerate the convergence of the calculation by

decreasing the area under the growth factor curve. It can be seen in Figure
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4.2 that the best growth factor is given by the parameters of Case 4. However,
these growth factors apply to the one-dimensional model equation only. The
growth factor used for calculations must be empirically chosen with numerical
test cases. For the calculations discussed here, the growth factor parameters
used are those of Case 1, namely ¢ = 1.0, w = 1.0 and %5 = 6.0. These

values were chosen by completing sample calculations.
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Figure 4.2: Growth Factor
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4.4 Multigrid Acceleration

The continuity equation, Equation 3.9 is an elliptic equation, which is con-
verged to a steady state. The solution of a steady state equation is controlled
by the boundary conditions imposed. Multigrid allows convergence accelera-
tion by increasing the speed at which the effects of the boundary conditions
are spread throughout the entire domain [27]. This acceleration is achieved
by coarsening the grid. A coarser grid has fewer cells to convect the infor-
mation across, allowing a converged solution to be calculated quicker. The
multigrid technique used for this problem involves geometric coarsening. A
simple three-stage coarsening can be seen in Figure 4.3. The A, h — 1 and
h — 2 variables refer to the grid level. The A level of the grid is the finest
grid, and each level lower is labelled as A — n where n represents the number

of times cells have been geometrically combined.

h h-—1 h—2
(16 cells) (4 cells) (1 cell)

Figure 4.3: Multigrid Grid Refinement

The first step in a multigrid cycle is the calculation of a solution correction

on the fine grid as well as the new solution. The LU scheme is used written
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in operator form as

LULAQY = AtResY (4.49)
Rt =on +Agy (4.50)

The new solution is passed down to the next coarsest grid using an area

weighted accumulation method or
Shoy =T} ¢ (4.51)

where ¢! _, represents the transferred ¢ solution on the coarser (h — 1) grid
and T represents the accumulation method. The residuals that were cal-
culated on the fine grid are then combined using direct summation to get
residuals corresponding to the cells of the coarser grid. This step is written

in operator form as
Rest_, = T ,Res; (4.52)

where T refers to the residual combination operator. The transferred solution

is used to calculate a coarse grid residual, denoted Resy_;.

Resi ; = Res (qf)ﬁl_l)h_l

= Res (T,f_lq')h)h_ (4.53)

1

A forcing function (F'F) is calculated as the difference between the trans-

ferred residual and the calculated residual. This is written as

FF,_, = Res_; —Res;_;

I

T Res, — Res (T,'Z_lqsh) (4.54)

h-1
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A new solution correction (Agy_1) is calculated on the coarse grid, using the
LU method and a right hand side term containing a new residual calculated

on the coarse grid and the forcing function.

LU 1App, = At (Resh_l + FFh_l)
- At (Res,h_1 + 7% Resy — Res (T,’f_lth)h_l) (4.55)

The new coarse grid solution (¢),_;) is calculated using the solution correc-

tion.

Gh1 = n1 + Adn_1 (4.56)

The steps outlined in Equations 4.51 through 4.56 are repeated until the
lowest grid level (coarsest grid) is reached. After calculating a solution on
the coarsest grid, the correction can begin to be passed to the finer meshes.

An interpolation scheme, denoted [ is used to pass the correction.
¢ =on+ I (ot — Thoidn) (4.57)

The interpolation is continued until the finest mesh is reached. The exact
sequence of transferring solutions down to coarser grids then passing correc-
tions back up to finer grids is best explained in a schematic diagram. The
specific multigrid scheme used in this work contains five grids and six trans-
fer/interpolate cycles and is called a ‘W’ cycle [27]. The ‘W’ refers to the
shape, as shown in Figure 4.4 of the path that the multigrid technique uses
to accelerate convergence.

It must be said that the interpolating and transferring methods used are

not inverse of each other, or
¢n # IFITR_ o (4.58)
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Figure 4.4: 5-Level 6-Cycle ‘W’ Multigrid Scheme

4.5 Boundary And Initial Conditions For Analysis Of
Airfoils

There are four separate boundary conditions that are used in finding the
solution for the potential field for the analysis of airfoils. The inflow, out-
flow, solid and periodic boundaries all have numerical treatments designed
to mimic the physical interfaces. The initial condition describes the flow
field variables used at the start of the first iteration when calculating the

converged solution.

4.5.1 Periodic Boundary

The periodic boundary condition is constructed to represent the ability of
fluid to pass between separate channels in a turbine cascade. Instead of cre-

ating an entire cascade filled with numerous passages, the flow in a single
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n=2 £ / lower bdy
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n=MYM-1

Figure 4.5a: Periodic Boundary Condition Of The Potential Field

channel is calculated. The true flow is simulated by having whatever flow
information that leaves through the top of the channel enter through the bot-
tom, and vice-versa. Computationally, the boundary cells of the lower edge
are filled with the information from the cells along the upper edge. Similarly,
the boundary cells of the upper edge are filled with the information from the
cells along the lower edge. The process used to simulate the ‘passage flow’
or periodic boundary condition can be seen in Figures 4.5a and 4.5b. Fig-
ure 4.5a shows the two boundaries separated and where flow field boundary
information is situated. Figure 4.5b shows what the periodic boundary is
supposed to represent with the simulated grid cell-overlap. Periodic bound-
ary conditions are present from the inlet to the leading edge of the airfoil,

and from the trailing edge of the airfoil to the outlet.

4.5.2 Solid Boundary

For the analysis of the airfoil, the physical surface of the airfoil is represented
in the computational domain with a solid boundary condition. The boundary

condition imposed ensures that the velocity component normal to the surface
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n=2MY periodic
n=MYM,1 boundary
=MYM -1

Figure 4.5b: Periodic Boundary Condition - Cont’d

of the airfoil must be equal to zero at the surface of the airfoil. This allows the
fluid to travel along the surface, but not through the surface. This condition

can be expressed mathematically as

V.-al =0 (4.59)

solid
where 7 represents the surface normal. Including the inviscid lamellar de-

composition, Equation 4.1, gives

Uo - 71 + 8_?5 =0 (4.60)
on solid
The normal direction differential of the potential field is written in terms of
£ and 77 as
. 0906 99 0n
Uy - = 4 7 4.61
"TBEon " onon (461)

The geometric g% and g_:al terms can be expressed in terms of an angle v [28].

The location of the v angle can be seen in Figure 4.6. Using v, the 7 terms

become
%3
- = .62
ER tany (4.62)
on 1
n  cosy (4.63)
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Substitution of Equations 4.62 and 4.63 change Equation 4.61 into

0 . 0
.a—i = <—-U°° -7 — —5? tan'y) Cos 7y (4.64)

so that the boundary potential normal to the surface is calculated using both

solid

the free stream velocity (U.) and the tangential velocity (g—?).

/ Interior Cell

Solid Boundary

Figure 4.6: Solid Boundary Condition

4.5.3 Inflow Boundary

The analysis inflow boundary condition is constructed to model a uniform
flow that would be present at the inlet. The uniform flow condition maintains

that the potential remains constant across the inlet or

i = U (465)

However, u is defined in Equation 3.12 as

- 94
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Therefore the boundary condition becomes

o¢

inlet

The inlet portion of the domain is a purely horizontal section where the =

and £ directions are parallel. The transformed inflow boundary condition

becomes
9o oo
-~ = - =0 4.68
31‘ inlet a§ inlet ( )

4.5.4 Outflow Boundary

The analysis outflow boundary condition is constructed to mimic the same
uniform flow as the inlet condition. The outflow condition forces the potential

to remain constant across the outlet, written as

outlet = Uoo (469)

Again, the cartesian velocity definition of Equation 3.12 gives the potential

boundary condition as

o¢

outlet

Transforming the above equation into general curvilinear coordinates gives

9 _ 99 0€ , 090n
8z O€ Bz + on oz (4.71)

Using the Jacobian substitutions from Section 3.4 and the above expansion,

the boundary condition becomes
d¢ ( 1 8y> 0¢ ( -1 8y>
5 \ T an) + an \[177 2 (472)
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Since the determinant of the transfer matrix, ||J||, is present in both terms,

it can be factored out. Rearranging gives

8¢ By ( 1 ) 8¢
o9 =Y [ 1 (4.73)
85 outlet aé- gry; 317

In order to calculate the g—ﬁ term, it is assumed that the v component of the

outlet velocity can be described as

U pter = —Usoo tan & (4.74)

where & is the turning angle of flow. Transforming the lamellar form of

Equation 4.74 to be similar to Equation 4.71 gives
O0¢p 0§  O¢on

= Tl = [, tand 4.75
3¢ Dy + 30 3y U tana ( )
Using the inverse Jacobian substitutions, the above equation becomes
8(15(—1 8:1:) a¢( 1 8x> -
— ===+ |75 ) = Ux tana (4.76)
o¢ \llJllon) = on \llJIl 9¢
The outflow boundary is always vertical, so the n-wise gridline is vertical, or
oz
— =0 4.77
5 (477
so that Equation 4.76 can be written
9¢ = (—_—lal%]—u) Uy tana (4.78)
The above equation can be used with Equation 4.73 to give
99 _9% (%) (_ﬂ;7”> U tan & (4.79)
9 outlet 23 an 3

Restating the definition of the Jacobian determinant, Equation 3.30 as

= (2% oz %
~ \0gon  Onog
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it can be seen that using Equation 4.77, ||J|| becomes

Oz Oy
= —= 4.80
1711 = S50 (480)
The above equation allows the simplification of Equation 4.79 to
o¢ Oy ~
= = —— Uy tana 4.81
ag outlet ag ( )

4.5.5 Initial Condition

The initial condition for the flow field is imposed on the potential only. The
starting potential is a field that is everywhere equal to zero. According
to the lamellar nature of the velocity field, this corresponds to a uniform
flow everywhere within the domain. Mathematically, the initial potential

condition can be expressed as

0 (4.82)

initial
4.6 Sequence of Solution (Analysis)

A solution for the analysis of a cascade of airfoils is calculated in the following

sequence

1. Initialize variables - such as the flux variables, the residuals and the

potential field

2. Obtain grid - either as input or created according to the NACA defini-

tions

3. Create coarse grids - according to the number required to perform the

multigrid analysis
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4. Calculate geometric terms - in order to determine the transformed ve-

locities and flux calculations

5. Set boundary conditions - in the following order; inflow boundary ,
outflow boundary, periodic boundary from inflow to leading edge, solid
boundary from leading edge to trailing edge, periodic boundary from
trailing edge to outflow, and finally outflow boundary

6. Calculate residuals - with the flux across the solid boundary equal to

ZEero
7. Solve LU factorization - to determine potential field correction

8. Update solution - to create new potential flow field .

Steps 5 to 8 are repeated within the multigrid cycle until the conver-
gence criteria is obtained. For this experiment, the criteria is nine orders of

magnitude of convergence for the maximum residual.

4.7 Domain of Problem

The physical domain of the problem consists of a fluid passage between two
airfoils, at zero angle of attack, within an infinite cascade. The distance
from the inlet to the leading edge of the airfoil is one chord length, and
the distance from the trailing edge of the airfoil to the outlet is two chord
lengths. The vertical distance between airfoils, or the spacing-to-chord ratio
is three-quarters (0.75) of a chord length. The numerical grid is a sheared-
H style mesh consisting of 144 by 32 cells with 64 cells covering the airfoil
from leading to trailing edge. There is grid clustering, both in the horizontal
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and vertical directions. The vertical clustering creates cell packing near the
surfaces of the airfoil, while the horizontal clustering creates cell packing
towards the leading and trailing edges of the airfoil. Figure 4.7 shows two
identical meshes, stacked one upon the other to show the airfoil used. The

airfoil used in Figure 4.7 is a NACA 3410 airfoil.
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Figure 4.7: Typical Solution Mesh
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CHAPTER 5

INVERSE DESIGN METHODS

The inverse design technique is formulated to take advantage of the knowl-
edge that by combining the four cartesian surface velocities of u*, v~, v* and
v~ into the components of %, Au, ¥, and Av the design of airfoil camber can
be separated from the design of airfoil thickness. The inverse technique is a
method of calculating geometry by specifying surface velocities. The actual
geometry is determined by calculation of a thickness distribution and camber
line by the specification of @, Au, 7, and Av velocities. The inverse method
differs from the analysis method by the addition of the velocity input, as well
as the geometry calculation method, a different set of boundary conditions
and a different residual flux formulation. The inverse technique also has a
different solution sequence that calculates a geometry from specified surface

velocities.

5.1 Input Velocity Specification

The design calculation of an airfoil geometry requires the specification of 4,

Au, U, and Av velocities from the leading edge to the trailing edge of an
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airfoil. After analyzing airfoils in each of the four different groups, it became
clear that only two velocity components are required to determine different
thickness distributions. The analysis showed that for a constant camber line,
the Au and 7 velocities remained relatively constant while the @ and Av
velocities changed with the changing thickness ratio. This means that an
entire group of airfoils with the same camber line can be redesigned with a
single Au and ¥ velocity specification. The different thickness distributions in
the group are created by only altering the & and Av velocities. Knowing that
only the different & and Av velocities determine the thickness of the group
of airfoils, a method of recreating the analysis velocities without needing
the catalogue of data, as well as similar curves that would describe similar
airfoils, is required. Also this method of creating the @ and Awv velocities
for the inverse design requires a simple control. The method of recreating
the analysis velocities focuses on determining smooth continuous functions
that describe how the @ and Awvw velocities changed with different thickness
ratios. The @ and Av velocities are trended according to the thickness ratio
of the airfoil that each velocity represents. The final result of the trending
is a system of equations that can recreate each of the five different @ and
Awv velocities determined in the analysis of the airfoil family, as well as other
airfoils with thickness distributions between the five analysis airfoils. The

entire system of equations is based on thickness.

5.1.1 Bezier Curves

When the % velocity and Awv velocities were first being analyzed, it became

apparent that basic functions such as polynomials and other general curves
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were unable to correctly define the data curves to the precision needed. The
focus on curve fitting then shifted to Bezier curves. Beziers are paramet-
ric curves that can create complex shapes while using only a few simple
controls[29]. The basis of the Bezier is a family of curves called Bernstein
polynomials[29]. These polynomials are contained within a control polygon,
where the vertices of the polygon are the control points of the Bezier. This
polygon defines the shape of the curve, as well as supplying the end points.
The Bezier function[29] is written as

CQ) =Y BislQ) i, (€ 0,1 5.1

=0

where C is the parametric curve, k is the degree of the curve, B is the Bezier
coefficient, ¢ is the parameter, and P; are the control points. When ¢ =0, C
gives the starting point of the curve, and when ¢ = 1, C gives the endpoint
of the curve. The ( parameter represents the distance along the curve. The

Bezier coefficient[29] is given by
kY i
Bix(Q) = (z) ¢a-9° (5.2)

where (’: ) is the binomial coefficient function[29]

k k!
() - &3

The number of vertices in the control polygon reflect the order of the curve,
(k + 1) vertices mean a k* order Bernstein polynomial and a k* order
Bezier[29].

Since a Bezier is a parametric curve, y is not a function of z. Instead,
both z and y are functions of {. Also, C(() represents the entire curve, but it

is actually made up of two parts, C.(¢) and C,((). For these two parts, the

144



control points (FP,..., P;) are split into (Prg,..., Prk) and (Pyo,- .-

The two functions C(¢) and C,({) are calculated as

k
C:(C) = ZBi,k(C) P:t,i

i=0

k
Cy(o = Z B; (¢) Py

=0

A fully expanded 3™ order (cubic) Bezier curve is written

CI(C) - (1 - C)3Px.0 + 3((1 - <)2Px,1 + 3C2(1 - C)Pr.2 + C3Px,3
Cy(¢) = (1—Q)Py0+3C(1—¢)?P1 +3C*(L=()P2+ Py

(5.4)

(5.5)

(5.6)
(5.7)

The function resembles a cubic polynomial and uses four control points,

(Po, - - ., P3) to determine the shape. A cubic Bezier curve can be seen in Fig-

ure 5.1. The Bezier equations (Equations 5.6 and 5.7) calculate two separate

5

—
a5 e P
__________ ’
________ 7
s e - - ’
‘ !
' [;
st ' ¢
' ’
1
3t S
\
— \
225t \
(&) 1
A}
2+ )
)
)
1.5k ' 1
1k
o5 ’ ————  Bezier Curve 3
-a- Control Polygon
o L L : : 2 2 1 1 T
o [¢2] 1 1.5 2 25 3 35 4 45 s
C.)

Figure 5.1: Cubic Bezier Curve

parametric curves making the velocity curves difficult to match. Therefore,
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the method is reformulated. Instead of both the C, and C, curves being
dependent on an arbitrary ¢, the method is derived so that C, is dependent
on C,, making y a function of z. This formulation is necessary to provide
the ability to recreate the velocity for insertion in the inverse design code.
The characteristics of ¢ have to be mirrored in the new Bezier parameter,
(. These characteristics include the need to be monotonically increasing or
G; > Gi—1- The ¢ must also be a real number, and be between zero and one,
or { € [0,1]. The new parameter is calculated from the C; curve, knowing
the P, control points and the x location of the data. The parameter is then
used to create the C, curve using the P, control points.

The assumption is made that for any point A on the cubic Bezier curve
C, there is a corresponding value of (. This relationship is given by the C;

equation
Ae=(1=Ca) Poo+3Ca (1 = Ca) Pen + 3% (1= ) Pra + C3Prs (5.8)
This equation can be rewritten as a polynomial in ( as
Az = (—Poo+3P;1 —3Peo+ Pr3) (5 + (3Pro — 6Py + 3P:2) (i
+ (—3Pr0 —3P.1)Ca+ Pro (5.9)
The above equation can be rearranged to form
0 = (—Psp+3Pp1 —3Ps2+ Pu3) (3 + (3P0 — 6Py +3P:0) (G
+ (=38P0 — 3P:1) Ca+ (Prp — Az) (5.10)

The roots of Equation 5.10 are found, and the value of ¢ that matches the
needed characteristics of the parameter is used. This new (4 value represents

the A, location on the C, curve. The value of A, is found using (4. This
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calculation means that A, is a function of Ca, and (4 is a function of A,, or
in general, y = f(z). This process is used to generate a y = f(z) curve for

any given z range. The y in this case being a % or Av velocity.

5.1.2 Velocity Recreation Technique

Each of the airfoil groups analyzed were tested with five different thickness
distributions. For every thickness there is a corresponding # and Av velocity
that can be used to calculate a separate set of control points that define a
control polygon. Using the control points for each thickness, a system for
trending the airfoil family is determined.

For the @ velocity plot four control points were calculated and used to
create a sixth order Bezier curve. The high order Bezier curve was needed
in order to create the correct curvature. The first control point (A) of the
% velocity is the leading edge point. The exact chordwise location and «

velocity magnitude are used to define this point, respectively, as
Paz =zLE (5.11)
Pa, =1ULE (5.12)

where LFE refers to the leading edge point of the (z, @) velocity data.

The second point (B) is the intersection of two tangential lines. The
first line extends from the leading edge velocity point and has the identical
slope of the leading edge section of the velocity curve. The second line is
tangential to the @ velocity curve at 50% chord. These two lines, the leading
edge tangential line and the 50% chord tangential line, are extended until

they intersect. This point of intersection is the second control point. The
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slope at the leading edge (mpg) is calculated with the first two data points

of the @ velocity data in the following way

mreg = M (513)

where LE and LE + 1 describe the first and second points of the (z, %) data,
respectively. A linear function of the form y = mz + b is used to describe
the lines tangent to the @ velocity for the calculation of both the intersection
control points. The intercept for the tangent line at the leading edge (brE)

is calculated using
bLe = ULE — MLE - TLE (5.14)

The slope at 50% of the chord (mse%) is calculated with the two data
points that bracket the 50% chord point, using an equation similar to Equa-
tion 5.13. The intercept of the line tangent to the u velocity curve at 50%
chord (bse%) is calculated with an equation similar to Equation 5.14. The

first intersection control point, Ppg, is calculated as

Py, = 5% e (5.15)
mLe — TMs50%
and
Pgy=mreg- Pz +bLe (5.16)

The third control point (C) of the @ velocity curve is also an intersection
point of two tangential lines. The first line is tangential to the @ velocity
curve at 50% chord. The second line extends from the trailing edge point of
the % velocity curve with a tangential slope. The intersection point of the

50% chord tangential line and the trailing edge tangential line is the third
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control point. The slope at the trailing edge (m7g) is calculated with the
final two points of the # data and an equation similar to Equation 5.13.
The intercept of the line tangent to the @ velocity curve at the trailing edge
(brg) is calculated with an equation similar to Equation 5.14. The second

intersection control point, P, is calculated as

brm —
Poy = E bs0% (5.17)
Msoy% — MTE
and
Pc'v =mrg- PC'_-,,- + bre (5.18)

The fourth and final control point (D) of the @ control polygon is the
trailing edge point of the @ velocity curve. As with the leading edge (first)
control point, both the chordwise location and @ velocity magnitude are used
to define each point. The chordwise position and velocity magnitude of this

point are defined as

Pp.=zrE (5.19)
Pp, = urE (5.20)

The @ velocity plots from NACA 3406, 3410, and 3414 airfoils can be seen
in Figures 5.2 through 5.4. The figures also show the control polygons calcu-
lated with the @ velocity curves. The four control points that are calculated

for each u velocity are labelled and shown with asterisks.

(text resumes on page 153)
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Figure 5.2: Bezier Control Polygon Of NACA 3406 @ Velocity
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The set of control points calculated from the @ velocities can be seen in
Tables 5.1 and 5.2. The control points from each @ velocity are listed with

their corresponding thickness ratios.

TH Control Point Location (z/c)
(%) Pa Pg Pc Pp
6 | 0.0010 | 0.0136 | 0.9263 | 0.9990
8 | 0.0010 | 0.0157 | 0.9385 | 0.9990
10 | 0.0010 | 0.0178 | 0.9437 | 0.9990
12 | 0.0010 | 0.0192 | 0.9466 | 0.9990
14 || 0.0010 | 0.0193 | 0.9486 | 0.9990

Table 5.1: Chordwise Location Of % Bezier Control Points

TH Control Point Location (&)
(%) P4 Pg FPe Pp
6 | 0.8542 | 1.1644 | 1.0168 | 0.9315
8 | 0.7570 | 1.2241 | 1.0185 | 0.9051
10 || 0.6522 | 1.2873 | 1.0193 | 0.8788
12 || 0.5907 | 1.3544 | 1.0187 | 0.8529
14 | 0.4551 | 1.4263 | 1.0165 | 0.8272

Table 5.2: Velocity Magnitude Of @ Bezier Control Points
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The thickness ratios are used to create polynomials that describe the

chordwise locations and velocity magnitudes of the control points as func-

tions of a specified thickness, 7. The polynomials that describe the control

points for the recreation of the entire series of NACA 4-digit @ velocities are

determined as follows

P4, =1.000 x 1073

P4, =—5.962 x 1074 7% — 3.630 x 10727 + 1.089

Pgr,=—-1412x107573+3.392 x 107472 — 1.614 x 107° 7

+1.414 x 1072

Pp, =3.270 x 10727+ 9.463 x 107!

Poy=—9.180 x 1076 7% +4.314 x 107™* 73 — 7.675 x 1073 7*

(5.21)

(5.23)

(5.24)

+6.257 x 10727 4 7.459 x 10! (5.25)

Pc, = —9.666 x 1078 7% +1.249 x107* 7% + 5.100 x 10™* 7 + 1.011 (5.26)
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Pp. =9.990 x 107! (5.27)

Pp, = —1.303 x 1072 7 + 1.009 (5.28)

The sixth order Bezier curve is created by increasing the weighting on
some of the four # control points. Generally, every control point has an
equal weighting of one, meaning that each control point is used only once,
and an n** order Bezier curve requires n + 1 control points, as explained in
the previous section. In order to correctly recreate the five different @ veloc-
ities the general Bezier form needed to be adjusted. To make the recreated
% velocity curves more closely resemble the original velocities, the first inter-
section point was given a triple weighting and the second intersection point
was given a double weighting creating a sixth order Bezier out of four control
points. The formulation of the Bezier control points can be seen in Table
5.3.

The sixth order Bezier curve used to recreate the u velocities is written

a= (1-0) R+6f(1-0) P+152(1-0)" P,
+208% (1-¢)° Py +15¢* (1= C)" P+ 6 (1-C) Bs

+C° Ps (5.29)
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P; | Control Polygon Point

P, | leading edge point (P,)

P, | first intersection point (Pg)
P, | first intersection point (Pg)
P; | first intersection point (Pg)
P, | second intersection point (Fc)

Ps | second intersection point (Pg)

Pg | trailing edge point (Pp)

Table 5.3: @ Velocity Bezier Control Points

The multiple weighting of some of the control points allows for Equation

5.29 to be restated as

a=(1-0)" Pa+{(1-0) (11 +3(—6) Ps

+30*(1-0) (5-30) Pc+*Pp  (5:30)

Figure 5.5 shows the NACA 3410 @ velocity curve recreated by the Bezier
function, along with the original velocity and the control polygon. While the
recreated velocity is not identical to the analysis velocity, the purpose of the
Bezier is to mimic the basic shape and more importantly the trend of the @
velocities as the thickness ratio is increased. The maximum error produced
in the trending of % velocities of NACA 4-Digit airfoils did not exceed 2%.
The trending of the @ velocities of the NACA 4-digit-modified group has a

maximum error between the true velocities and the trended velocities of 7%
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for all velocities except for the NACA 3414-46 airfoil. The error produced
in the trending of the NACA 3414-46 airfoil was 13%. The percent error
between the analysis % velocities of the General airfoil group and the trended
@ velocities is 5% or less, except for the GENO5 airfoil. There is 20% error
between the trended GENO5 % velocity and the analysis @ velocity. The large
error in the trending of the % velocities of the NACA 4-digit-modified and
General airfoil groups is produced by using the same Bezier control polygon
for velocities that have different shapes. By using the same function to
describe the velocities of the entire group, the Bezier curves best matched
velocities with similar shapes. The errors present in the trending of the @

velocities for all of the groups of airfoils are within acceptable limits.
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For the Av velocity plot five control points were calculated and used to
create an eighth order Bezier curve. The five control points were calculated
using four tangential lines. The first tangential line begins at the leading
edge of the Av velocity curve and has a slope matching that of the leading
edge section. The second line is tangential to the Av velocity plot at the
50% chord point. The third line is tangential to the Av velocity curve at
80% of the chord length. The fourth and final tangential line begins at the
trailing edge of the Aw velocity curve and has a slope identical to the Av
curve at 100% chord. The first control point (A) is the leading edge point
of the Av velocity. The chordwise location and Av velocity magnitude are

used to define this point as
Pir=zLE (5.31)
PA,v = A'ULE (532)

where LE refers to the leading edge point of the (z, Av) velocity data.

The second control point (B) is the intersection of the leading edge tan-
gent and the 50% chord tangential line. The slope of the line tangent to the
Awv velocity curve at the leading edge (m.g) is calculated with the first two

data points of the Av velocity in the following way

A —A
MLE = ULE+1 ULE (5.33)
ZLE+1 — TLE

where LE and LE + 1 describe the first and second points of the (z, Av)

data, respectively. A linear function of the form y = mx 4 b is also used to

describe the lines tangent to the Aw velocity for the calculation of all the
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intersection control points. The intercept for the tangent line at the leading

edge (brg) is calculated using
bLe = AvLg —mLE - TLE (5.34)

The slope at 50% of the chord (msoy%) is calculated with the two data
points that bracket the 50% chord point, using an equation similar to Equa-
tion 5.13. The intercept of the line tangent to the Av velocity curve at 50%
chord (bsqe) is calculated with an equation similar to Equation 5.14. The

first intersection control point, Pg is calculated as

Py, = 0% T OLE (5.35)
mre — Ms50%
and
Pgy=mrg-Ppz+bLE (5.36)

The third control point (C) is the intersection of the 50% chord tangent
line and the line tangent to the Av velocity curve at 80% of the chord. The
slope at 80% of the chord (msgey) is calculated with the two data points that
bracket the 80% chord point, using an equation similar to Equation 5.13.
The intercept of the line tangent to the Aw velocity curve at 80% chord
(bgow) is calculated with an equation similar to Equation 5.14. The second

intersection control point, P is calculated as

Po, = bgo% — bso% (5.37)
Ms50% — TM80%
and
Pc., = mgoy - Poz + bson (5.38)
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The fourth control (D) point is the intersection of the 80% chord tangent
line and the trailing edge tangent. The slope at the trailing edge (mrg) is
calculated with the final two points of the Av data, using an equation similar
to Equation 5.13. The intercept of the line tangent to the Awv velocity curve
at the trailing edge (brg) is calculated with an equation similar to Equation

5.14. The third intersection control point, Pp is calculated as

—-b
PD,:: = M (5.39)
mgo% — TE
and
Ppy,=mrg- Pp: +bre (5.40)

The fifth and final control point (£) is the trailing edge point. As with
the u velocity control points, both the chordwise location and the Av velocity

magnitude are needed to define this point as
PE,:: = TTE (5.41)
Pg, = Avrg (5.42)

Figures 5.6 through 5.8 show the Av velocity plots of NACA 3406, 3410,
and 3414 airfoils along with the control polygons calculated. The five control
points for each Aw velocity are indicated by asterisks and are labelled A

through E.

(text resumes on page 165)
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Figure 5.6: Bezier Control Polygon Of NACA 3406 Av Velocity
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The set of control points calculated from the Av velocities can be seen in
Tables 5.4 and 5.5. The control points from each Av velocity are listed with

their corresponding thickness ratios.

TH Control Point Location (z/c)

(%) Py Pg Pe Pp Pg
6 0.0010 | 0.0701 | 0.6367 | 0.9863 | 0.9990
8 0.0010 | 0.0744 | 0.6318 | 0.9882 | 0.9990
10 || 0.0010 | 0.0764 | 0.6290 | 0.9890 | 0.9990
12 || 0.0010 | 0.0925 | 0.6272 | 0.9894 | 0.9990
14 || 0.0010 | 0.1033 | 0.6260 | 0.9896 | 0.9990

Table 5.4: Chordwise Location Of Av Bezier Control Points

TH Control Point Location (Av)
(%) Py Pg Pc Pp Pg

6 0.5785 | 0.0189 | -0.1070 | -0.1279 | -0.0169
8 0.7731 | 0.0211 | -0.1432 | -0.1726 | -0.0311
10 || 0.9718 | 0.0225 | -0.1810 | -0.2169 | -0.0466
12 || 1.0876 | 0.0162 | -0.2206 | -0.2608 | -0.0576
14 || 1.2134 | 0.0087 | -0.2620 | -0.3040 | -0.0700

Table 5.5: Vertical Location Of Av Bezier Control Points
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The thickness ratios are used to create polynomials that describe the
chordwise locations and velocity magnitudes of the control points as func-
tions of a specified thickness, 7. The polynomials that describe the control
points for the recreation of the entire series of NACA 4-digit Av velocities

are determined as follows

P4, =1.000 x107° (5.43)

Py, =—3937 x107%7% +1.580 x 107! 7 — 2.295 x 107! (5.44)

P, = —9.310 x107% * +-3.692 x 1073 7* — 5.277 x 107272

+3.248 x107t 7 — 6.559 x10~!  (5.45)

Pg, =3.540 x 1075 7% — 1.418 x 1073 7* +2.020 x 1072 12

—1.213 x107' 7 +2.801 x 107! (5.46)

Pop = —1.464 x10757% +5.878 x 107 72 — 8.465 x107% 1
+6.694 x 107! (5.47)
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Pc, = —1.936 x1072 7 + 1.084 x 1072

Pp.=—1.212x10757% 4-5.782 x 107° 7* — 1.056 x 1072 12

+8.877 x1073 7 +9.601 x 107!

Pp,=—2202 x10727 +3.810 x 1073

Pg . =9.990 x107*

Pg, =3.321 x1077 7% +6.241 x10~572 — 7.984 x 1073

+2.865 x 1072
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The eighth order Bezier is also constructed by increasing the weighting of
several of the control points. The multiply defined control points are needed
to accurately recreate the Av velocities. The specific weighting of the control
points is a double weighting on both the first and third intersection points,
as well as a triple weighting on the second intersection point. The eighth

order Bezier points are listed in Table 5.6.

P; | Control Polygon Point
P, | leading edge point (Pa)

P, | first intersection point (Pg)
P, | first intersection point (Pg)
P; | second intersection point (Fc)
P, | second intersection point (F¢)
Ps | second intersection point (Pc)
Ps | third intersection point (Pp)
P; | third intersection point (Pp)
P | trailing edge point (PEg)

Table 5.6: Av Velocity Bezier Control Points

The eighth order Bezier curve used to recreate the Av velocities is written

= (1-0)° R+8(1-0) P +283(1-0) Py
+560% (1= ¢)° Py +708* (1—¢)" Py +560° (1 - J)’ Ay

+280° (1-)" P +80 (1) P+ Py (5.53)
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As with the # velocity recreation, the multiple weighting of some of the

control points allows some simplification. Equation 5.29 can be rewritten as

Av=(1-0)"Pat+4l(1-0) (s{+2) Ps
+148° (1-0)° (32 -3 - 4) Pc

+4¢° (1—=¢) (7—5() Po+®Ps (5.54)

Figure 5.9 shows the NACA 3410 Aw velocity curve recreated by the
Bezier function, along with the original velocity and the control polygon. The
maximum error produced in the trending of the NACA 4-digit Av velocities
is 5%. The error produced in the trending of the NACA 4-digit-modified
Awv velocities ranged from 3% to 11% for the five airfoils in the group. The
General group of airfoils had a larger maximum error for the GENO1 and
GENO05, with errors of 15% and 19%, respectively. The error created in
trending the Aw velocities of the three remaining airfoils has a maximum
error of 8%. The errors present in the trending of the Av velocities for all of
the groups of airfoils are within acceptable limits.

Since there are five values for each control point, the highest order poly-
nomial that can be constructed is quartic. The five difference values for each
control point correspond to the five different airfoils in the family. The data
set of five thicknesses and five values of the same control point is used in
a linear least-squares regression to determine the coefficients of the polyno-
mial that describes the relation between thickness and control point. For
each control point, the order of the polynomial is determined to assure 99%

accuracy of the relation between thickness ratio and control point value.
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The use of the control point polynomials and the Bezier functions has
two important benefits. The first benefit is that any one of the five & or
Av velocities can be recreated by specifying the thickness ratio. The second
benefit is that since the polynomials that describe the control point values
are smooth and continuous, any thickness ratio between the smallest and
largest airfoils used will create a @ or Av velocity.

The technique to recreate z and Awv velocities is used with all of the airfoil
families analyzed. For each family, the entire range of & and Av velocities is
trended and the system of polynomials created allows for both the recreation
of analysis velocities and the calculation of intermediate velocities that can
be used to design airfoils existing between the analysis airfoils. This process
allows the inverse design to be controlled using a single value, the thickness
ratio. By adjusting this single control, different velocity profiles are created,

and different geometries are calculated.
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5.2 Residual Calculation (Design)

The residual calculated during the design of airfoils is constructed the same
as the residual calculated during the analysis of airfoils everywhere except
at the surface of the airfoil. In analysis calculations the normal flux at the
surface of the airfoil is set equal to zero to mimic a solid surface. The normal-

direction flux equation, Equation 4.28, is restated as

o= 11 [y (58 52°).

where ||J|| is the determinant of the Jacobian transformation matrix, %%
and %‘g are geometric terms calculated in the transformation into generalized
coordinates, and u and v are cartesian velocities. In analysis of airfoils, the
u and v velocities are set equal to zero in the calculation of the fluxes at
the surface. In the design of airfoils, the u and v velocities are set equal to
the input surface velocities for the calculation of the fluxes at the surface
of the airfoil. The specification of the input velocities controls the inverse
design method. The specified surface velocities are added to the flux terms
so that while still controlling the inverse calculation the flow field is allowed
to slowly adapt and maintain continuity. If the specified velocities were
used anywhere else, there would be no guarantee that the conservation of
mass would be maintained, and the resulting airfoil that is calculated may

or may not be an appropriate solution. Without maintaining continuity, the

calculated geometry may not describe a true physical airfoil.
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5.3 Geometry Calculation

During a calculation, whether in inverse design or analysis mode, the conver-
gence of the residual is calculated every iteration after completing a single
multigrid W-cycle. In inverse design mode, if the convergence criteria has
not been met, the current potential field is used to calculate a new airfoil
geometry. More specifically, the potential field is used to calculate a set of
cartesian velocities along the surface of the existing airfoil. These surface
velocities are then used to calculate a new camber line and thickness distri-
bution. For this geometry calculation, a surface description similar to one
devised by Dang [16] is used. The solid surface of the airfoil is expressed as
a function o in terms of the thickness distribution and camber line, written

as
o* =y — (fa £ fun) (5.55)

where ot and o~ refer to the upper and lower surfaces of the airfoil respec-
tively. The fy term refers to the new camber line that is a function of z only.
The f,, term refers to the new thickness distribution that is also a function
of = only.

The solid surface of the airfoil is material surface. The material derivative
is used to describe the material surface such that

Da_

B =0 (5.56)

The material derivative can then be expanded to become

oo oo do
+u =

173



Substitution of the definition of o, Equation 5.55, turns Equation 5.57 into

do By 3fc1 afzh, 63/ afcl afth _
8t+u(8x 55:*:03,')'*”(33, oy T 3y)_0 (5:58)

Since f, and fi, are functions of x only, Equation 5.58 can be simplified and

rewritten in a time dependent form as

do Ofct _ Ofen _

This geometry calculation has no time dependence however, so the o surface

is considered to be a constant or

do

YTl 0 (5.60)
which allows Equation 5.59 to become
Ofa |, Ofen
e = .61
U5 + o = (5.61)

Equation 5.61 is now in the basic form used to calculate the new geome-
try. The upper and lower surfaces can be expressed in terms of the surface

velocities, respectively, as

Ofa O fen -

+ + — ot

U +u oz Y (5.62)
_Ofu _ _Ofm _ _ (5.6

“or % bz
where u*,v" refer to the upper surface velocities and u~, v~ refer to the
lower surface velocities. Equations 5.62 and 5.63 are combined in order to
create the velocity components that were used in the trending of the airfoil

velocities. The combined geometry equations are written as

_Ofa + Au 0 fih

%oz 2 Oz v (5-64)
Audfy _Ofw _ Av
2 Oz Tt or 2 (5.65)
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For solution, the surface velocity components are constructed out of the
updated potential field at the end of every iteration. The surface velocities
are calculated using Equations 3.42 and 3.43 restated as

1 {060y O¢ ( 8y>]
—_— U - | r s -
U= Ve T L% an " on \Toe

- o[22 (52, 2002)
Il [0 \ On an O

The fy and fin terms in Equations 5.64 and 5.65 can be expressed as finite

differences as

of _ fi=fin (5.66)

dr T — Ti_1
Using the finite difference expansion, the two surface equations, Equations

5.64 and 5.65, are solved simultaneously in the form
o S fai | | U(zi— zic1) +Cfas + &% foni-1 (5.67)
& @ ftni & (2 — Ti1) + S ferim1 + Tftnica

The surface equations can also be solved separately as

(@-5— 2%8%) (z; — z:4)

2

fei = fai-1+ o2 _ A (5.68)
4
zAv _ Aud (:Ei _ xi—l)
feni = feni—1 + ( : ﬂ;__)Auz (5.69)

4

The new surface is calculated by marching from the leading edge of the airfoil
to the trailing edge. In a single sweep, a new thickness and new camber line
are determined. The new thickness distribution and camber line describe
the airfoil that matches the current potential field. As the potential field

converges, the thickness and camber line adapt until the convergence criteria
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is met. Once the nine orders of residual convergence have been reached, the
final airfoil design is the geometry described by the specified input surface
velocities. The final converged potential field is the solution of the flow

around the final airfoil geometry.

5.4 Boundary And Initial Conditions For Design Of
Airfoils

The boundary and initial conditions prescribed for the design of airfoils are
nearly identical to the conditions prescribed for the analysis of airfoils. The
only condition that changes is the inlet boundary condition. The analysis
inlet condition was that the flow was to be uniform with a magnitude equal
to the free stream velocity U,,. The inverse inlet boundary condition is that
the potential field at the inlet is equal to zero, expressed mathematically as

¢ =0 (5.70)

inlet

The design outlet boundary condition remains the same as for analysis.

The outlet boundary condition states that the flow along the entire outlet
was to be uniform with speed U,,. This condition can be written

U = Uy (5.71)

outlet
The periodic boundary condition for inverse design is the same as for
airfoil analysis. The periodic boundary cells are used to mimic fluid flow
between passages of a cascade. The flow information that exits the channel
through the top of the passage enters through the bottom and vice-versa.

This boundary condition is prescribed on both the upper and lower edges
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of the passage from the inlet to the leading edge of the airfoil and from the
trailing edge to the outlet.

The solid boundary condition for the design of airfoils is again the condi-
tion that the velocity component normal to the surface of the airfoil is equal
to zero at the surface of the airfoil, or

V.-al =0 (5.72)

solid
The solid boundary condition is prescribed on both surfaces of the airfoil
from leading edge to trailing edge.

The initial condition specified for the design of airfoils is that the potential

field is everywhere equal to zero, or

¢ 0 (5.73)

initial

il

Since most of the design boundary conditions are identical to the con-
ditions prescribed in the analysis of airfoils, further details of the boundary

conditions can be seen in Section 4.5.

5.5 Sequence Of Solution (Design)

A solution for the design of an airfoil geometry through the specification of

surface velocities is calculated in the following sequence

1. Initialize variables - such as the flux variable, the residuals and the

potential field

2. Obtain specified surface velocities - in the @, Au, 7, and Av form and

calculate the ut, u™, v*, and v~ velocities
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10.

11.

12.

13.

14.

. Obtain grid - either as input or create according to the NACA defini-

tions
Create coarse grids - according to the multigrid specification

Calculate geometric terms - in order to determine the contravariant

velocities and solve the transformed equations

Set boundary conditions - in the following order; inflow boundary,
outflow boundary, periodic boundary from inlet to leading edge, solid
boundary from leading edge to trailing edge, and finally the periodic
boundary from trailing edge to outlet

Calculate residuals - with the specified input velocities in the flux terms
Solve LU factorization - to determine potential field correction
Update solution - to create new potential flow field

Calculate cartesian velocities - from updated potential field

Calculate new thickness distribution and camber line - from cartesian

velocities
Create new grid - from new thickness distribution and camber line

Calculate geometric terms - in order to determine the contravariant

velocities and solve the transformed equations

Create coarse grids - according to the multigrid specification

178



15.

16.

17.

18.

19.

20.

21.

Calculate geometric terms - in order to determine the contravariant

velocities and solve the transformed equations

Set boundary conditions - in the following order; inflow boundary,
outflow boundary, periodic boundary from inlet to leading edge, solid
boundary from leading edge to trailing edge, and finally the periodic
boundary from trailing edge to outlet

Calculate residuals - with the specified input velocities in the flux terms
Solve LU factorization - to determine potential field correction
Update solution - to create new potential flow field

Calculate cartesian velocities - from updated potential field

Calculate new thickness distribution and camber line - from cartesian

velocities

Steps 12 to 21 are repeated within the multigrid cycle until the con-

vergence criteria is obtained and a final geometry is calculated. For this

problem, the convergence criteria is a decrease of nine orders of magnitude

in the maximum residual.
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CHAPTER 6

RESULTS

6.1 NACA 4-Digit Airfoils

The first step in verifying the accuracy of this inverse method is to determine
whether the calculation of an airfoil geometry is possible using a set of con-
verged analysis surface velocities as input. The second step in verification is
to test the validity of the velocity trending.

From the analysis of the different groups of airfoils it has been shown that
the thickness distribution is directly related to the @ and Awv velocities, and
the camber line is directly related to the Au and ¥ velocities. Therefore a
set of airfoils with different thickness distributions and identical camber lines
can be designed with a set of specified surface velocities that have different @
and Av velocities, and identical Au and 7 velocities. For the entire series of
NACA 4-digit airfoil design tests, the Au and 7 velocities are held constant.
Every 4-digit design input file contains the Au and ? velocities calculated
during the analysis of the NACA 3410 airfoil. The % and Av velocities

change for every test case, but the Au and 7 velocities do not change.
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6.1.1 NACA 3410 Airfoil

The purpose of the first set of test cases is to recreate a NACA 3410 airfoil.
For the first calculation, the specified input velocities are taken directly from
the analysis of a NACA 3410 airfoil. The @, Av, ¥ and Av velocities are all
from a converged solution of the flow around a NACA 3410 airfoil. For the
second calculation, the specified input velocities have & and Av velocities
that are created using the trending system of equations pertaining to the
NACA 4-digit airfoils. The 4-digit equations were used to calculate the % and
Av velocities corresponding to a 10% thick airfoil. The Av and 7 velocities
are the analysis NACA 3410 velocities. The calculated thicknesses from the
two inverse calculation can be seen in Figure 6.1 along with the thickness

distribution of the original NACA 3410 airfoil.
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Figure 6.1: Original And Inversely Designed NACA 3410 Thickness Distri-

butions

The three thickness distributions appear very similar. The difference be-

tween the thickness inversely designed using the analysis % and Av velocities
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and the original thickness is calculated using
Yehd = y—tha:& x 100% (6.1)

where 1, 4 is the percent difference, ;s is the original thickness distribution,
Yth.a 1s the thickness inversely designed with the analysis % and Av velocities,
and c is the chord length. The maximum percent difference calculated is
0.6%, as seen in Figure 6.2a.

The difference between the thickness designed with the analysis # and Av
velocities and the thickness designed with the trended z and Av velocities is
calculated with

yth.,d = %t_:yﬂ X 100% (6.2)

where y:n 4 is the percent difference, y:nq is the thickness inversely designed
with the analysis % and Av velocities, y:s, is the thickness designed with
the trended # and Av velocities, and c¢ is the chord length. The maximum

percent difference calculated is 0.5%, as seen in Figure 6.2b.
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Figure 6.2b: Difference In Analysis And Trended Inversely Designed NACA
3410 Thickness Distributions
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The calculated camber lines from the two inverse calculations can be seen

in Figure 6.3 along with the camber line of the original NACA 3410 airfoil.
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Figure 6.3: Original And Inversely Designed NACA 3410 Camber Lines

The difference between the camber inversely designed using the analysis

7 and Av velocities and the original camber is calculated using

Yerd = &‘:—yf‘— x 100% (6.3)

where y.q4 is the percent difference, y., is the original camber line, y,, is
the camber inversely designed with the analysis & and Av velocities, and ¢

is the chord length. The maximum percent difference calculated is 0.3%, as

seen in Figure 6.4a.
The difference between the camber designed with the analysis @ and Av

velocities and the camber designed with the trended @ and Awv velocities is

calculated with

Yora = T EE2 5 100% (6.4)
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where yqq4 is the percent difference, y., is the camber inversely designed
with the analysis @ and Awv velocities, y. is the camber designed with the
trended % and Av velocities, and ¢ is the chord length. The maximum percent
difference calculated is less than 0.1%, as seen in Figure 6.4b.

From these tests it can be concluded that both analysis and trended
velocities can be used to accurately recreate both the thickness distribution

and the camber line of a NACA 3410 airfoil.
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Figure 6.4b: Difference In Analysis And Trended Inversely Designed NACA
3410 Camber Lines
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6.1.2 NACA 3406 Airfoil

After being able to inversely design a NACA 3410 airfoil specifying both
analysis and trended @ and Aw velocities, the ability of the inverse method
to design other airfoils in the group needs to be tested. The purpose of the
next set of test cases is to design a NACA 3406 airfoil, the thinnest airfoil
from the 4-digit group. The specified Au and 7 velocities for this set of
test cases are taken from the converged solution of the analysis of a NACA
3410 airfoil. The 3410 Au and ¥ velocities are used to test the theory that
since all airfoils in the 4-digit group have identical camber lines, they can
be designed with identical Au and ¥ velocities. For the first inverse design
calculation of a NACA 3406 airfoil, the # and Awv velocities are taken from the
analysis of a NACA 3406 airfoil. For the second inverse design calculation of
a NACA 3406 airfoil, the z and Av velocities are calculated with the system
of equations that describe the velocity trending. By specifying a thickness of
6%, the NACA 4-digit trending method calculates both a & and Av velocity.
The calculated thicknesses from the two inverse calculations can be seen in
Figure 6.5 along with the thickness distribution of the original NACA 3406
airfoil.

The difference between the thickness inversely designed using the analysis
7 and Awv velocities and the original thickness is calculated using Equation
6.1. The maximum percent difference calculated is 0.5%, as seen in Figure
6.6a.

The difference between the thickness designed with the analysis @ and Av
velocities and the thickness designed with the trended @ and Av velocities is

calculated with Equation 6.2. The maximum percent difference calculated is
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Figure 6.5: Original And Inversely Designed NACA 3406 Thickness Distri-

butions

1.3%, as seen in Figure 6.6b.
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The calculated camber lines from the two inverse calculations can be seen

in Figure 6.7 along with the camber line of the original NACA 3406 airfoil.
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Figure 6.7: Original And Inversely Designed NACA 3406 Camber Lines

The difference between the camber inversely designed using the analysis
% and Awv velocities and the original camber is calculated using Equation 6.3.
The maximum percent difference calculated is 0.3%, as seen in Figure 6.8a.

The difference between the camber designed with the analysis @ and Av
velocities and the camber designed with the trended @ and Awv velocities is
calculated with Equation 6.4. The maximum percent difference calculated is
less than 0.1%, as seen in Figure 6.8b. These results prove that the analysis
7 and Av velocities of a NACA 3406 airfoil can accurately reproduce the
thickness distribution and camber line. Also, the & and Av velocities created
from the trending of the group can be used to accurately recreate a NACA
3406 airfoil. These results also show that the NACA 3406 camber line can be
accurately redesigned using the Awu and 7 velocities from the analysis of the

NACA 3410 airfoil, with either the analysis or trended @ and Av velocities.
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Figure 6.8a: Difference Of Original And Inversely Designed NACA 3406
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Figure 6.8b: Difference Of Analysis And Trended Inversely Designed NACA
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6.1.3 NACA 3414 Airfoil

The purpose of the next set of test cases is to inversely calculate a NACA
3414 airfoil. For this set of test cases, the Au and ¥ velocities will still be
taken from the analysis of a NACA 3410 airfoil. The first calculation has «
and Av velocities that were taken from the analysis of a NACA 3414 airfoil.
The second calculation has @ and Av velocities that were created using the
trending equations with a specified thickness ratio of 14%. The calculated
thicknesses from the two inverse calculations can be seen in Figure 6.9 along

with the thickness distribution of the original NACA 3414 airfoil.
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Figure 6.9: Original And Inversely Designed NACA 3414 Thickness Distri-

butions

The difference between the thickness inversely designed using the analysis
4 and Awv velocities and the original thickness is calculated using Equation
6.1. The maximum percent difference calculated is 0.6%, as seen in Figure

6.10a.
The difference between the thickness designed with the analysis % and Av

192



velocities and the thickness designed with the trended @ and Av velocities is
calculated with Equation 6.2. The maximum percent difference calculated is

0.6%, as seen in Figure 6.10b.
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The calculated camber lines from the two inverse calculations can be seen

in Figure 6.11 along with the camber line of the original NACA 3414 airfoil.
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Figure 6.11: Original And Inversely Designed NACA 3414 Camber Lines

The difference between the camber inversely designed using the analysis
i and Awv velocities and the original camber is calculated using Equation 6.3.
The maximum percent difference calculated is 0.2%, as seen in Figure 6.12a.

The difference between the camber designed with the analysis @ and Av
velocities and the camber designed with the trended @ and Aw velocities is
calculated with Equation 6.4. The maximum percent difference calculated is
less than 0.1%, as seen in Figure 6.12b.

These six test cases show that both the inverse method and the trending of
the NACA 4-digit @ and Av velocities can be used to accurately recreate any
of the original NACA 4-digit analysis airfoils. The percent difference between
the analysis velocity designs and the original airfoils is small enough to be
considered negligible. The difference created by specifying trended velocities
is easily explained by the error present in the trending techniques. The
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assumption that the Au and v velocities would remain constant as long as the
camber line was constant is correct. The use of analysis % and Av velocities
for the inverse calculation proved that the full range of thicknesses in the
airfoil group could be accurately recreated with specification of identical Au
and 7 velocities. The difference in camber lines increased slightly when the
trended @ and Av velocities were used, but the percent differences remained
within acceptable limits. Thus it can be seen that @ and Av velocities can
be used to design thickness distributions alone, and Au and ¥ velocities
determine the camber line. Also, both analysis and trended velocities can be

used to accurately recreate the entire group of NACA 4-digit airfoils.
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Figure 6.12a: Difference In Original And Inversely Designed NACA 3414

Camber Lines
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Figure 6.12b: Difference In Analysis And Trended Inversely Designed NACA
3414 Camber Lines
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6.1.4 NACA 4-Digit Airfoil Design Space

The next step in verifying the accuracy of the inverse design method and
trending technique is to use the system of equations created by trending the
NACA 4-digit 2 and Awv velocities to design airfoils that were not included
in the trending. The trending used airfoils that were 6%, 8%, 10%, 12% and
14% thick. It has already been shown that the 6%, 10% and 14% thick airfoils
can be accurately recreated using the velocity trending, but the equations
used to create the trended input velocities are smooth so any thickness ratio,
or fraction of a thickness ratio, within the group can be specified. For this
set of calculations, the @ and Awv velocities all come from the 4-digit trending
but the trending is used to calculate @ and Awv velocities corresponding to
thickness ratios of 8%, 8.5% and 9%. Two of these thickness ratios are
not present in the analysis velocities used in the trending. The Awu and ¥
velocities for these calculations are taken from the analysis of a NACA 3410
airfoil. The inversely designed thickness distributions, as well as the thickness
distribution of the original NACA 3410 airfoil can be seen in Figure 6.13a.

The difference between each of the three designed thickness distributions
and the NACA 3410 airfoil is calculated with

Ythdi = ?ﬂLi;_?/ﬁM X 100% (6.5)

where i q4; is the percent difference, y.,; is each of the designed thickness
distributions, y:n, is the original NACA 3410 thickness distribution, and ¢
is the chord length. The calculated difference between each of the designed
thickness distributions and the NACA 3410 thickness distribution can be
seen in Figure 6.13b.
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Figure 6.13a: Inversely Designed NACA 4-Digit Thickness Distributions -

Decreasing Thickness Specification

TH Percent Difference

1 1 X 1 1 1 ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Distance Along Chord (x/c)
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The percent differences show that the trending specification of 9%, 8.5%,
and 8% created airfoils that decreased in thickness. The relationship between
specified thickness and designed thickness is not one-to-one. The thickness
designed by specifying 8% in the trending is not exactly 2% thinner than the
NACA 3410 airfoil, nor is it exactly 1% thinner than the thickness designed
by specifying 9%. However the ability to utilize recreated velocities to work
within the design space is still a very valuable tool. A decrease in specified
thickness ratio does in fact create a thinner airfoil.

The inversely designed camber lines corresponding to the specified thick-
ness ratios, as well as the camber line of the original NACA 3410 airfoil can
be seen in Figure 6.14a. The difference between each of the designed camber
lines and the NACA 3410 camber line is calculated using

Yeldi = yd—l:—&[—o x 100% (6.6)

where Y. 4; is the percent difference, y. ; is each of the designed camber lines,
Yero is the original NACA 3410 camber line, and c is the chord length. The
differences can be seen in Figure 6.14b. The maximum difference between
any of the designed camber lines and the original camber line is less than
0.4%. This provides further proof of the accuracy of the inverse method, and
the validity of the assumption that the camber line can be described by Au

and 7 velocities alone.
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The design space test was repeated for thickness ratios greater than 10%.
The three specified thickness ratios included 11%, 11.5% and 12%. As with
the previous design space test, the NACA 4-digit velocity trending equations
were used to create the @ and Awv velocities. The Au and 7 velocities for
all three calculations were taken from the analysis of a NACA 3410 airfoil.
The designed thickness distributions, as well as the thickness distribution
of the original NACA 3410 airfoil can be seen in Figure 6.15a. The differ-
ence between each of the designed thicknesses and the NACA 3410 thickness
was calculated using Equation 6.5. The difference of each of the designed
thickness distributions can be seen in Figure 6.15b.

As with the decreasing thickness design space test, the relationship be-
tween specified thickness for the trended velocities and the designed thickness
distribution is not one-to-one. However, the validity of the trending method
is verified by the fact that as the specified thickness was increased, the de-
signed thickness distribution increased as well. Thus these results show that
the specified thickness of the trending technique can be used to adjust the
designed thickness distribution so that any airfoil geometry can be calculated

that exists between the airfoils of the original group.
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Figure 6.15a: Inversely Designed NACA 4-Digit Thickness Distributions -

Increasing Thickness Specification

2 T T T 1 T T T 1 T
151 — =12 B
—e— =115
—— =11

o F _
e
Qo
3
=
Q
€
[}
o

& -05 | =
I
l_

-1 b -

15 F e

2 L 1 L uN 1 i ! 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance Along Chord (x/c)

Figure 6.15b: Difference Of Inversely Designed NACA 4-Digit Thickness

Distributions - Increasing Thickness Specification

203



The inversely designed camber lines corresponding to the specified thick-
ness ratios, as well as the camber line of the original NACA 3410 airfoil can
be seen in Figure 6.16a. The difference between each of the designed camber
lines and the NACA 3410 camber line is calculated using Equation 6.6. The
differences can be seen in Figure 6.16b. The maximum difference between
any of the designed camber lines and the original camber line is 0.3%. The
designed camber lines provide further proof of the accuracy of the inverse
method, and add to the validity of the assumption that the camber line can

be described by Au and ¥ velocities alone.
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Figure 6.16a: Inversely Designed NACA 4-Digit Camber Lines - Increasing

Thickness Specification
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6.2 NACA 4-Digit-Modified Airfoils

The next step in verifying the accuracy of the inverse method and the trend-
ing technique is to test the trending of a different group of airfoils. The
NACA 4-digit-modified airfoils have trended z and Aw velocities that have
different shapes than the NACA 4-digit group. The trending of the NACA
4-digit-modified group is less accurate than the trending of the NACA 4-digit
group because of the different shapes of the & and Awv velocities. The speci-
fication of the NACA 4-digit-modified velocities, both analysis and trended,
will also test to see if the shape of thickness distributions can be designed,
as well as the heights. For the NACA 4-digit group, all of the thickness dis-
tributions have the same shape, with different values of maximum thickness.
The NACA 4-digit-modified airfoils have different maximum thicknesses as
well as different locations of maximum thickness. By recreating the NACA 4-
digit-modified group of airfoils, the inverse method can be tested for accuracy
in creating entirely different thickness distributions.

For all of the NACA 4-digit-modified test cases, the Au and v velocities
are taken from the analysis of a NACA 3410-44 airfoil. As with the NACA
4-digit group, the @ and Awv velocities change for every test case, but the Au

and 7 velocities do not change.

6.2.1 NACA 3410-44 Airfoil

The purpose of the next set of test cases is to inversely design a NACA 3410-
44 airfoil. For this set of test cases, the Au and ¥ velocities will be taken
from the analysis of a NACA 3410-44 airfoil. The first calculation has @
and Aw velocities that were calculated from the analysis of a NACA 3410-44
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airfoil. The second calculation has @ and Av velocities that were created
using the 4-digit-modified trending equations with a specified thickness ratio
of 10%. The calculated thicknesses from the two inverse calculations can
be seen in Figure 6.17 along with the thickness distribution of the original
NACA 3410-44 airfoil.
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Figure 6.17: Original And Inversely Designed NACA 3410-44 Thickness Dis-

tributions

The difference between the thickness inversely designed using the analysis
7 and Av velocities and the original thickness is calculated using Equation
6.1. The maximum percent difference calculated is 0.3%, as seen in Figure
6.18a.

The difference between the thickness designed with the analysis % and Av
velocities and the thickness designed with the trended @ and Av velocities is

calculated with Equation 6.2. The maximum percent difference calculated is

0.8%, as seen in Figure 6.18b.
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The calculated camber lines from the two inverse calculations can be

seen in Figure 6.19 along with the camber line of the original NACA 3410-44

airfoil.
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Figure 6.19: Original And Inversely Designed NACA 3410-44 Camber Lines

The difference between the camber inversely designed using the analysis
4 and Awv velocities and the original camber is calculated using Equation 6.3.
The maximum percent difference calculated is 0.3%, as seen in Figure 6.20a.

The difference between the camber designed with the analysis % and Av
velocities and the camber designed with the trended @ and Awv velocities is
calculated with Equation 6.4. The maximum percent difference calculated
is less than 0.1%, as seen in Figure 6.20b. Thus it can be shown that anal-
ysis and trended velocities can be specified to accurately recreate both the

thickness distribution and the camber line of a NACA 3410-44 airfoil.

209



2 | ] 1 i 1] T T 1 T
8
< 1._. ....... -
o
@
=
a z K
2 OMH0006060 0 e SN NI e i .A..ai
8 had * (o] W p—E € ) CaEa I
@
Q.
a-1r -
o
2 i l 1 ! L 1 L ] !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance Along Chord (x/c)
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Figure 6.20b: Difference In Analysis And Trended Inversely Designed NACA
3410-44 Camber Lines
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6.2.2 NACA 3406-42 Airfoil

The purpose of the next set of test cases is to inversely design a NACA 3406-
42 airfoil. For this set of test cases, the Au and ¥ velocities will still be taken
from the analysis of a NACA 3410-44 airfoil. The first calculation has % and
Av velocities that were taken from the analysis of a NACA 3406-42 airfoil.
The second calculation has # and Av velocities that were created using the
4-digit-modified trending equations with a specified thickness ratio of 6%.
The calculated thicknesses from the two inverse calculations can be seen
in Figure 6.21 along with the thickness distribution of the original NACA
3406-42 airfoil.
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Figure 6.21: Original And Inversely Designed NACA 3406-42 Thickness Dis-

tributions

The difference between the thickness inversely designed using the analysis
@ and Awv velocities and the original thickness is calculated using Equation
6.1. The maximum percent difference calculated is 0.2%, as seen in Figure

6.22a.
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The difference between the thickness designed with the analysis % and Av
velocities and the thickness designed with the trended @ and Awv velocities is

calculated with Equation 6.2. The maximum percent difference calculated is

1.3%, as seen in Figure 6.22b.
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The calculated camber lines from the two inverse calculations can be

seen in Figure 6.23 along with the camber line of the original NACA 3406-42

airfoil.
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Figure 6.23: Original And Inversely Designed NACA 3406-42 Camber Lines

The difference between the camber inversely designed using the analysis
% and Awv velocities and the original camber is calculated using Equation 6.3.
The maximum percent difference calculated is 0.4%, as seen in Figure 6.24a.

The difference between the camber designed with the analysis 2 and Av
velocities and the camber designed with the trended % and Av velocities is
calculated with Equation 6.4. The maximum percent difference calculated is
less than 0.1%, as seen in Figure 6.28b. These results show that by changing
the @ and Awv velocities and keeping the same Au and ¥ velocities, the thick-
ness distribution changes, but the camber line remains the same. Thus it
has been shown that the inverse method is accurate at recreating the NACA
4-digit-modified airfoils as well as the NACA 4-digit airfoils. The results
prove that the trending method applies equally as well to the NACA 4-digit-
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modified group. The results also prove that the ability to design thickness
distributions using only the @ and Aw velocities occurs with airfoils other

than the NACA 4-digit airfoils.

215



2 ¥ T Y T T T T T T
g :
c 1F : : B
o
2 .
a o
E=ELY e TSIV, e T
= T SRS - ST |
8 .
a
—-1F . -1
© :

2 1 1 ] L I ] ] ) !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance Along Chord (x/c)
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Figure 6.24b: Difference In Analysis And Trended Inversely Designed NACA
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6.2.3 NACA 3414-46 Airfoil

The purpose of the next set of test cases is to inversely design a NACA
3414-46 airfoil. For this set of test cases, the Au and 7 velocities will still be
taken from the analysis of a NACA 3410-44 airfoil. The first calculation has
@ and Av velocities that were taken from the analysis of a NACA 3414-46
airfoil. The second calculation has @ and Awv velocities that were created
using the 4-digit-modified trending equations with a specified thickness ratio
of 14%. The calculated thicknesses from the two inverse calculations can
be seen in Figure 6.25 along with the thickness distribution of the original
NACA 3414-46 airfoil.
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Figure 6.25: Original And Inversely Designed NACA 3414-46 Thickness Dis-

tributions

The difference between the thickness inversely designed using the analysis
% and Aw velocities and the original thickness is calculated using Equation
6.1. The maximum percent difference calculated is 0.5%, as seen in Figure

6.26a.
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The difference between the thickness designed with the analysis @ and Av
velocities and the thickness designed with the trended @ and Awv velocities is
calculated with Equation 6.2. The maximum percent difference calculated is

0.5%, as seen in Figure 6.26b.
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The calculated camber lines from the two inverse calculations can be

seen in Figure 6.27 along with the camber line of the original NACA 3414-46

airfoil.
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Figure 6.27: Original And Inversely Designed NACA 3414-46 Camber Lines

The difference between the camber inversely designed using the analysis
@ and Av velocities and the original camber is calculated using Equation 6.3.
The maximum percent difference calculated is 0.3%, as seen in Figure 6.28a.

The difference between the camber designed with the analysis # and Av
velocities and the camber designed with the trended % and Aw velocities is
calculated with Equation 6.4. The maximum percent difference calculated is
less than 0.1%, as seen in Figure 6.28b.

These six test cases show that the NACA 4-digit-modified airfoils can be
recreated using the analysis @ and Awv velocities as well as the trended % and
Av velocities. The percent difference between the analysis velocity inverse
designs and the original airfoils, which is never larger than 0.5%, is small

enough to be considered negligible. The largest percent differences, namely
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1.3% and 0.8%, occurred when trended velocities were used to recreate the
NACA 3406-42 and NACA 3410-44 airfoils, respectively. This difference,
while still within acceptable limits, is likely due to the trending error which
was slightly higher for the 4-digit-modified airfoils than the 4-digit group.
These six test cases further prove that the constant camber line assumption
is correct. The camber line used in the NACA 4-digit-modified group had a
different shape, and therefore different Au and v velocities, but the camber
lines for each of the test cases had low percent difference, all below 0.5%.
This low difference proves that # and Aw velocities control the thickness
distribution only, and Awu and ¥ velocities control the camber line. The
test results also show that the inverse method can accurately recreate any
airfoil from both the NACA groups using either the analysis velocities or the

trended velocities.
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6.2.4 NACA 4-Digit-Modified Airfoil Design Space

The next step in verifying the accuracy of the inverse design method and
trending technique is to use the system of equations created by trending the
NACA 4-digit-modified @ and Av velocities to design airfoils that were not
included in the trending. While this test was already completed with the
NACA 4-digit airfoils, by repeating it with the 4-digit-modified airfoils the
validity of the assumptions and the accuracy of the techniques is further as-
sessed. The 4-digit-modified trending used airfoils that were 6%, 8%, 10%,
12% and 14% thick. It has already been shown that the 6%, 10% and 14%
thick airfoils can be accurately recreated. For this set of calculations, the @
and Av velocities all come from the 4-digit-modified trending but the trend-
ing is again used to calculate & and Av velocities corresponding to thickness
ratios of 8%, 8.5% and 9%. The Au and 7 velocities for all of the calcula-
tions are taken from the analysis of a NACA 3410-44 airfoil. The inversely
designed thickness distributions, as well as the thickness distribution of the
original NACA 3410-44 airfoil can be seen in Figure 6.29a.

The difference between each of the three designed thickness distributions
and the NACA 3410-44 airfoil is calculated with Equation 6.5. The calculated
difference between each of the designed thickness distributions and the NACA
3410-44 thickness distribution can be seen in Figure 6.29b.
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The percent differences show that the trending specification of 9%, 8.5%,
and 8% created airfoils that decrease in thickness. As previous design space
tests have shown, the relationship between specified thickness and designed
thickness is not one-to-one.

The inversely designed camber lines corresponding to the specified thick-
ness ratios, as well as the camber line of the original NACA 3410-44 airfoil
can be seen in Figure 6.30a. The difference between each of the designed cam-
ber lines and the NACA 3410-44 camber line is calculated using Equation
6.6. The differences can be seen in Figure 6.30b. The maximum difference
between any of the designed camber lines and the original camber line is
less than 0.4%. This provides further proof that the accuracy of the inverse
method and the camber line assumptions extend from the NACA 4-digit
group to the NACA 4-digit-modified group.
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The design space test was repeated for thickness ratios greater than 10%.
The three specified thickness ratios included 11%, 11.5% and 12%. As with
the previous design space test, the NACA 4-digit-modified velocity trending
equations were used to create the 7 and Awv velocities. The Au and ¥ veloci-
ties for all three calculations were taken from the analysis of a NACA 3410-44
airfoil. The designed thickness distributions, as well as the thickness distri-
bution of the original NACA 3410-44 airfoil can be seen in Figure 6.31a. The
difference between each of the designed thicknesses and the NACA 3410-44
thickness was calculated using Equation 6.5. The difference of each of the
designed thickness distributions can be seen in Figure 6.31b.

As with the decreasing thickness design space test, the relationship be-
tween specified thickness for the trended velocities and the designed thickness
distribution is not one-to-one. However, the validity of the trending method
is verified by the fact that as the specified thickness was increased, the de-

signed thickness distribution increased as well.
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The inversely designed camber lines corresponding to the specified thick-
ness ratios, as well as the camber line of the original NACA 3410-44 airfoil
can be seen in Figure 6.32a. The difference between each of the designed cam-
ber lines and the NACA 3410-44 camber line is calculated using Equation
6.6. The differences can be seen in Figure 6.32b. The maximum difference
between any of the designed camber lines and the original camber line is less
than 0.4%. The designed camber lines provides further proof of the accuracy
of the inverse method, and add to the validity of the assumption that the

camber line can be described by Au and 7 velocities alone.
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6.3 General Airfoils

The next step in verifying the accuracy of the inverse method and the trend-
ing technique is to test the trending of a different group of airfoils. The
General airfoils have @ and Av velocities that do not resemble each other, so
the trending does not represent the velocities of the General airfoil group as
accurately as with the NACA groups. The specification of the General airfoil
velocities, both analysis and trended, will test to see if any general shape of
thickness distribution can be designed.

For all of the General airfoil test cases, the Au and 7 velocities are taken
from the analysis of a GENO3 airfoil. As with the previous groups, the # and
Av velocities change for every test case, but the Au and 7 velocities do not

change.

6.3.1 GENOQ3 Airfoil

The purpose of the next set of test cases is to inversely design a GENO3
airfoil. For this set of test cases, the Au and ¥ velocities will be taken from
the analysis of a GENO3 airfoil. The first calculation has % and Av velocities
that were taken from the analysis of a GENO3 airfoil. The second calculation
has # and Av velocities that were created using the general airfoil trending
equations with a specified thickness ratio corresponding to the GENO3 airfoil.
The calculated thicknesses from the two inverse calculations can be seen
in Figure 6.33 along with the thickness distribution of the original GENQ3
airfoil.

The difference between the thickness inversely designed using the analysis

# and Av velocities and the original thickness is calculated using Equation
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Figure 6.33: Original And Inversely Designed GENO3 Thickness Distribu-

tions

6.1. The maximum percent difference calculated is 0.4%, as seen in Figure

6.34a.
The difference between the thickness designed with the analysis @ and Av

velocities and the thickness designed with the trended @ and Av velocities is

calculated with Equation 6.2. The maximum percent difference calculated is

0.5%, as seen in Figure 6.34b.
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The calculated camber lines from the two inverse calculations can be seen

in Figure 6.35 along with the camber line of the original GENO3 airfoil.
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Figure 6.35: Original And Inversely Designed GEN0O3 Camber Lines

The difference between the camber inversely designed using the analysis
@ and Av velocities and the original camber is calculated using Equation 6.3.
The maximum percent difference calculated is 0.3%, as seen in Figure 6.36a.

The difference between the camber designed with the analysis % and Av
velocities and the camber designed with the trended @ and Awv velocities is
calculated with Equation 6.4. The maximum percent difference calculated
is 0.1%, as seen in Figure 6.36b. These results show that the inverse design
method can accurately recreate a general airfoil, not only airfoils that belong
to certain groups. The accurate recreation of the thickness distribution and
camber line of the GENO3 airfoil using both analysis and trended velocities
proves that the trending technique and inverse design methodology can be

used for any shape airfoil.
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6.3.2 GENO1 Airfoil

The purpose of the next set of test cases is to inversely design a GENO1 airfoil.
For this set of test cases, the Au and 7 velocities will still be taken from the
analysis of a GENO3 airfoil. The first calculation has # and Av velocities
that were taken from the analysis of a GENO1 airfoil. The second calculation
has % and Av velocities that were created using the general airfoil trending
equations with a specified thickness ratio corresponding to the GENO1 airfoil.
The calculated thicknesses from the two inverse calculations can be seen

in Figure 6.37 along with the thickness distribution of the original GENOL

airfoil.
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Figure 6.37: Original And Inversely Designed GENO1 Thickness Distribu-

tions

The difference between the thickness inversely designed using the analysis
@ and Av velocities and the original thickness is calculated using Equation

6.1. The maximum percent difference calculated is 1.0%, as seen in Figure

6.38a.
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The difference between the thickness designed with the analysis % and Av
velocities and the thickness designed with the trended % and Av velocities is
calculated with Equation 6.2. The maximum percent difference calculated is
0.6%, as seen in Figure 6.38b.
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The calculated camber lines from the two inverse calculations can be seen

in Figure 6.39 along with the camber line of the original GENO1 airfoil.
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Figure 6.39: Original And Inversely Designed GEN01 Camber Lines

The difference between the camber inversely designed using the analysis
# and Av velocities and the original camber is calculated using Equation 6.3.
The maximum percent difference calculated is 0.3%, as seen in Figure 6.40a.

The difference between the camber designed with the analysis & and Av
velocities and the camber designed with the trended % and Av velocities is
calculated with Equation 6.4. The maximum percent difference calculated is
less than 0.1%, as seen in Figure 6.40b. These results show that the inverse
methods can accurately recreate the GENOL airfoil, using both the analysis
and trended velocities. The results also show that the camber line of the
GENO1 is described by the Au and @ velocities of the GENO03 airfoil, further

proving that Au and ¥ velocities control the camber line and # and Av

velocities control the thickness distribution.
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6.3.3 GENO5 Airfoil

The purpose of the next set of test cases is to inversely design a GENO05 airfoil.
For this set of test cases, the Au and ¥ velocities will still be taken from the
analysis of a GENO3 airfoil. The first calculation has # and Awv velocities
that were taken from the analysis of a GENOQ5 airfoil. The second calculation
has @ and Av velocities that were created using the General airfoil trending
equations with a specified thickness ratio corresponding to the GENOQ5 airfoil.
The calculated thicknesses from the two inverse calculations can be seen

in Figure 6.41 along with the thickness distribution of the original GENO05

airfoil.
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Figure 6.41: Original And Inversely Designed GENO5 Thickness Distribu-

tions

The difference between the thickness inversely designed using the analysis
% and Awv velocities and the original thickness is calculated using Equation
6.1. The maximum percent difference calculated is 0.6%, as seen in Figure

6.42a.
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The difference between the thickness designed with the analysis @ and Av
velocities and the thickness designed with the trended @ and Av velocities is
calculated with Equation 6.2. The maximum percent difference calculated is

1.4%, as seen in Figure 6.42b.
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The calculated camber lines from the two inverse calculations can be seen

in Figure 6.43 along with the camber line of the original GENQ5 airfoil.
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Figure 6.43: Original And Inversely Designed GEN05 Camber Lines

The difference between the camber inversely designed using the analysis
7 and Aw velocities and the original camber is calculated using Equation 6.3.
The maximum percent difference calculated is 0.3%, as seen in Figure 6.44a.

The difference between the camber designed with the analysis 2 and Av
velocities and the camber designed with the trended # and Awv velocities is
calculated with Equation 6.4. The maximum percent difference calculated is
0.1%, as seen in Figure 6.44b.

These six test cases show that the inverse method and trending technique
work for airfoils where the shapes of the thickness distributions are vastly dif-
ferent. This group has the largest percent difference in the inverse calculation
with analysis velocities at a maximum of 1.0%, still within acceptable limits.
This group also has the largest percent difference created by changing from

analysis & and Awv velocities to trended % and Awv velocities. The maximum
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difference occurs with the design of the GENO5 airfoil. The GENO5 airfoil
also had the largest error, 20%, produced in the trending of the % and Av
velocities. The 1.4% difference, while higher than other calculations, is still
within acceptable limits. These test results prove that the inverse design
methods and trending techniques apply to any shape airfoil, not just the
NACA groups. The results also show that the trending technique can be
used to describe the % and Av velocities of any group of airfoils, no matter

how dissimilar the individual airfoils are.
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6.3.4 General Airfoil Design Space

The next step in verifying the accuracy of the inverse design method and
trending technique is to use the system of equations created by trending the
General airfoil % and Av velocities to design airfoils that were not included
in the analysis group. While this test was already completed with both the
NACA groups, by repeating it with the General airfoils the validity of the
assumptions and the accuracy of the techniques are further assessed. The
General airfoil trending used velocities that corresponded to the GENOI,
GENO02, GEN03, GEN04 and GENO5 airfoils. For this set of calculations,
the @ and Awv velocities all come from the General airfoil trending but the
trending is again used to calculate & and Av velocities corresponding to air-
foils with thickness ratios between the GENO1 and GENO3 airfoils. The input
@ and Awv velocities are calculated from the trending equations with values of
thickness ratio of 1.5, 2 and 2.5. The ratios are set so that specifying 7 = 1
recreates the velocities corresponding to the GENO1 airfoil, 7 = 2 recreates
velocities corresponding to the GENO2 airfoil and so on. The intermediate
values of 1.5 and 2.5 are used to design airfoils that have thickness distribu-
tions that exist between the analysis airfoils. The Au and 7 velocities for all
of the calculations are taken from the analysis of a GENO3 airfoil. The in-
versely designed thickness distributions, as well as the thickness distribution
of the original GENO3 airfoil can be seen in Figure 6.45a.

The difference between each of the three designed thickness distributions
and the GENO3 airfoil is calculated with Equation 6.5. The calculated dif-
ference between each of the designed thickness distributions and the GEN03
thickness distribution can be seen in Figure 6.45b.
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The percent differences show that the trending specification of decreasing
ratios create airfoils that decrease in thickness distribution. As previous
design space tests have shown, the relationship between specified thickness
and designed thickness is not one-to-one.

The inversely designed camber lines corresponding to the specified thick-
ness ratios, as well as the camber line of the original GENO3 airfoil can be
seen in Figure 6.46a. The difference between each of the designed camber
lines and the GENQO3 camber line is calculated using Equation 6.6. The dif-
ferences can be seen in Figure 6.46b. The maximum difference between any
of the designed camber lines and the original camber line is less than 0.5%.
This provides further proof that the accuracy of the inverse method and the

camber line assumptions extend from the NACA groups to the General airfoil

group.
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The design space test was repeated for thickness distributions with ratios
larger than that of the GENO3 airfoil. The three specified thickness ratios
used had 7 set as 3.5, 4 and 4.5. As with the previous design space test,
the General airfoil velocity trending equations were used to create the # and
Av velocities. The Au and 7 velocities for all three calculations were taken
from the analysis of a GENOQ3 airfoil. The designed thickness distributions,
as well as the thickness distribution of the original GENO3 airfoil can be seen
in Figure 6.47a. The difference between each of the designed thicknesses and
the GENO3 thickness was calculated using Equation 6.5. The difference of
each of the designed thickness distribution can be seen in Figure 6.47b.

As with the decreasing thickness specification test, the relationship be-
tween specified thickness for the trended velocities and the designed thickness
distribution is not one-to-one. However, the validity of the trending method
is verified by the fact that as the specified thickness was increased, the de-

signed thickness distribution increased as well.
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The inversely designed camber lines corresponding to the specified thick-
ness ratios, as well as the camber line of the original GENO3 airfoil can be
seen in Figure 6.48a. The difference between each of the designed camber
lines and the GENO3 camber line is calculated using Equation 6.6. The dif-
ferences can be seen in Figure 6.48b. The maximum difference between any
of the designed camber lines and the original camber line is less than 0.4%.
The designed camber lines provides further proof of the accuracy of the in-
verse method, and add to the validity of the assumption that the camber line

can be described by Au and ¥ velocities alone.
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6.4 Direct Calculation Of Geometry

For this inverse design method, the specified velocities are used in the calcu-
lation of the residuals and the geometry is calculated with the flow field. The
specified velocities are used in the residual determination, not the geometry
calculation because the direct calculation of a geometry from the specified
velocities does not guarantee that the thickness distribution and camber line
will combine to form a true airfoil. When the input velocities are used to
control the potential field, the influence of the true initial geometry is felt
as well as the specified velocities. The two influences of the initial geometry
and the specified velocities combine to create a more realistic result. Also, by
using the specified velocities in the calculation of the residual, the converged
flow field guarantees that the continuity condition is met, and therefore the
conservation of mass is satisfied.

The purpose of the final test case is to determine the difference between
using the specified velocities in the flow field versus directly calculating the
geometry. For this test case, a GENO3 airfoil is recreated using the analysis
@, Au, U, and Av velocities. The first calculation is performed with the
flow field inverse calculation that has been used previously. The second
calculation is performed with the geometry equations described in Section
5.3. The thickness distributions calculated by both of these methods, along
with the original GENO3 thickness distribution can be seen in Figure 6.49a.

The difference between each of the designed thickness distributions and
the original GENO3 thickness is calculated using Equation 6.5. The differ-

ences can be seen in Figure 6.49b.
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The camber lines calculated by both of the design methods, along with
the original GENQO3 camber line can be seen in Figure 6.50a. The difference
between each of the designed camber lines and the original GENQO3 camber
line is calculated using Equation 6.6. The differences can be seen in Figure
6.50b.

By calculating the geometry directly, instead of with the flow field for-
mulations, the percent difference in the thickness distributions has increased
from 0.4% to 1.3%. The percent difference in the camber lines has increased
from 0.3% to 0.7%. The thickness distribution calculated directly from the
specified velocities also collapses to zero thickness at approximately 85%
chord. This test proves the necessity of using the specified velocities in the

calculation of the flow field residual, not the calculation of the geometry.
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CHAPTER 7

CONCLUSIONS

Within this work, a numerical scheme has been developed for both the invis-
cid, incompressible flow analysis of airfoils, and the design of airfoil thickness
distributions in inviscid, incompressible flow. An approximately factored LU
implicit scheme for the solution of the potential equation has been devised
for both the analysis and the design calculations. The algorithm employs a
complex-lamellar decomposition to calculate the flow field around an airfoil
within an infinite cascade.

After completing a potential flow analysis of a series of airfoils, it was
discovered that surface velocities constructed from the potential flow field
solution showed a characteristic dependence on changing thickness distribu-
tions and camber lines. Specific combinations of surface velocities, namely
4, Au, U, and Awv, show a relationship between thickness distribution and
camber line. By testing different groups of airfoils, it was discovered that the
7 and Awv velocities changed with changing thickness distribution only, while
the Au and 7 velocities remained relatively constant with a constant camber

line. Analysis of four different airfoil groups proved that the surface velocity

259



dependence occurred for any shape of thickness distribution. Therefore, the
design of an airfoils thickness distribution can be controlled by adjusting the
7 and Awv velocities while keeping the Au and 7 velocities constant.

Knowing that thickness distributions are designed by two specific surface
velocity combinations, a method of trending the # and Awv velocities for a
group of airfoils was developed. Through the use of Bezier curves, a method
to mathematically recreate the 47 and Awv velocities from a group of airfoils
with various thickness distributions was developed. Through a system of
linear equations a Bezier curve allows the recreation of all the analysis veloc-
ities through a single control, the thickness ratio of the corresponding airfoil.
Since the system of equations describing the Bezier velocities were smooth
and continuous, any thickness distribution ratio within the group of airfoils
could be specified, and a corresponding set of & and Awv velocities could be
calculated.

The inverse design method requires the specification of surface velocities
in order to calculate an airfoil geometry. The end result of an inverse calcula-
tion includes both a designed geometry corresponding to the input velocities
and a converged flow field around the designed airfoil. The design method
used the specified velocities in the calculation of the flow field residual, not
the determination of the geometry. The use of the specified velocities in
the residual formulation was to ensure that a realistic airfoil was designed.
With the input velocities controlling the potential flux, the influence of a true
geometry (the initial condition) was felt. The influences of both the true ge-
ometry of the initial condition and the specified surface velocities combine

to create an true airfoil.
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The accuracy of the inverse method was verified in three steps. First,
the surface velocities calculated from the analysis of airfoils were used as
input to determine if the inverse design method was able to recreate the
original airfoils. Second, the trended % and Aw velocities were used to test
the accuracy of the trending techniques along with the accuracy of the inverse
method. Finally the continuous trending equations were used to determine if
a small adjustment in the specified velocities created corresponding changes
in the designed airfoil geometries.

The first inverse design calculations used specified velocities from the
analysis of an airfoil as input. The designed thickness distribution and cam-
ber line was then compared to the thickness and camber of the original
airfoil. The design method displayed high accuracy in being able to recreate
the airfoil geometries using the analysis velocities. Two other airfoils from
the group were recreated using analysis % and Awv velocities, but the Au and
T velocities remained identical to the velocities used for the first calculation.
The accurate recreation of three different thickness distributions from the
same group of airfoils proved that # and Av velocities can be used to design
the thickness distribution of an airfoil, and that constant Au and 7 velocities
created nearly identical camber lines.

The second step of evaluating the accuracy of the inverse design method
included the use of the velocity trending. For this set of test cases, the # and
Av velocities were calculated using the trending equations, and the Au and
7 velocities were kept as the analysis velocities. The thickness distributions
and camber lines designed with the trended velocities were compared with

the geometries calculated using only analysis velocities. The tests proved the
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high accuracy of the trending technique, as the percent difference between
the trended velocity designs and the analysis velocity designs remained low.

The third step included the use of the trending equations to interpolate a
series of specified & and Awv velocities that corresponded to airfoils that were
not originally in the analysis group. With these tests it was proven that an
increase in the specified thickness ratio used to calculate the trended input
velocities corresponded to an increase in the thickness of the designed airfoil.
Conversely, a decrease in the thickness ratio used to calculate the trended
input velocities corresponded to a decrease in the thickness distribution of the
designed airfoil. This series of tests proved the validity of the trending to be
used as a design tool. When designing for viscous performance, the thickness
distribution of the airfoil limits the practical use of the airfoil. Therefore, the
trending technique can be used to gradually adjust the thickness profile of
the design while optimizing the viscous characteristics.

The final test case was used to evaluate the appropriateness of the flow
field method of specifying the input velocities. In this test, two geometries
were calculated using identical input velocities. The first design used the
velocities to calculate the potential field residuals, and the potential field to
calculate the thickness distribution and camber line. The second design used
the velocities directly to calculate a thickness distribution and camber line.
This test case proved that the direct geometry calculation does not guaran-
tee a realistic airfoil, while the flow field method displayed high accuracy in
recreating the airfoil corresponding to the input velocities. This is because
without the influence of a real geometry (the initial condition in the calcula-

tion with the flow field) there is not enough control in the specified velocities
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alone to ensure a realistic design.

Once the concept of the relationship between the surface velocity com-
ponents and the geometry components was proven on the 4-digit, 5-digit
16-series, 4-digit-modified and General group of airfoils, the velocity trend-
ing was used to prove that any of the analysis velocities could be recreated.
The initial test cases proved the accuracy of the inverse design and validity
of the trending. After using both analysis velocities and velocities calculated
through the trending to recreate the majority of the analysis airfoils, the
full capabilities of trending technique were tested. The continuous system of
equations from the velocity trending were used so that the geometry of any
airfoil within each group could be calculated. Not only could the trending
be used to recreate a 10% thick airfoil for instance, it could also be used to
calculate any thickness ratio within the specific group.

After completing the test cases with the General airfoil group, it became
obvious that the velocities of any set of arbitrarily chosen airfoils could be
trended and the geometry of any airfoil within that design space could be
calculated. The true advantage of this inverse method and trending technique
is that given a finite number of airfoils, a designer can use the trending to
define the interior design space encompassed by the entire group of airfoils.
Therefore, when trying to benefit from past designs, a designer does not
need to choose a single existing airfoil to adapt and redesign, instead the
designer can use the influence of a group of existing designs to create a new,
improved airfoil. The trending technique allows the designer to create a map
of existing useful designs and then determine a new airfoil geometry based

on past successes.
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