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Abstract

The dynamics of a fully nonlinear, tree-structured resonator and its response
to a broadband forcing of the branches is examined. It is shown that the
broadband forcing yields a transfer of energy between the parts of the spectrum
so that the spectrum becomes progressively more narrow-band for each level of
the tree-like structure in the direction of the stem. We show that this behavior
is in contrast to the response of a linear oscillator, which simply filters out the
harmonics away from the resonance. We term such behaviour “regularization”
and examine its significance for two- and three-dimensional motion using a
Lagrangian framework. Key to our analysis is to investigate the dependence
of the spectrum of motion, and its narrowing, on the parameters of the
tree-like structure, for instance the lengths of di↵erent branches. Model
predictions are obtained for idealized wind forcing characterized by an airflow
that is interrupted at random time intervals. Our numerically-derived results
are then compared against the data collected from select analogue laboratory
experiments, which confirm the robust nature of the vibration regularization.
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1. Introduction and literature review

The dynamics of connected non-linear resonators has played an impor-
tant role in both fundamental science and engineering [1]. On the application
side, the question of the response of such systems to strongly non-harmonic
or non-constant forcing has been one of the main inspirations driving the
development of the field. The case of energy absorption from incoherent,
random forces is known more generally as broadband harvesting [2]. Me-
chanical devices constructed for the purpose of utilizing broadband sources
are normally based on a set of moveable objects positioned on a flexible
piezoelectric element [3]; they convert the motion of the underlying sub-
strate (e.g. vibration) into the deformation of a piezo element and thereby
produce energy. The e�ciency and power output of these devices depends
to a large extent on the nature of motion of the power-generating element,
as well as other factors. Piezo-electric devices achieve the highest e�ciency
when they operate within an optimal frequency band, and the e�ciency drops
rapidly outside this band [4, 5, 6, 7, 8]. To focus the ambient forcing into
the motion of the resonator in the optimal frequency band, strong nonlin-
earity, bi-stability and chaotic responses remain topics of active investigation
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. For larger devices, electromagnetic
induction has been used to harvest narrow-band random excitation by ex-
ploiting highly nonlinear resonances [19, 20]. Recent work related to vibro-

wind energy generation explores the combined dynamics of a chain of such
harvesters due to fluid-structure interactions [21], the oscillations induced by
vortex shedding behind arrays of flexible structures [22] and increased energy
absorption from coupled Du�ng oscillators [23].

In this paper, we show that it is possible to narrow the spectrum of broad-
band forcing using the nonlinear dynamics associated with coupled resonators
arranged in a tree-like configurations. We focus on the dynamics of tree-like
structures as a response to broadband forcing leaving the precise application
of these ideas to energy harvesting to future works. We demonstrate that un-
der quite general conditions, a broadband forcing applied to the top branches
regularizes towards the stem, i.e., the stem shows substantially more regular
motion with a narrow bandwidth of the spectrum. In terms of spectral anal- Q1
ysis of the signal for each level of the tree-like structure, such an e↵ect would
move energy between harmonics, mostly from the higher harmonics to the lower
ones, making the spectrum more concentrated around a certain frequency. We
show that this phenomenon comes from nonlinear e↵ects, and is in contrast to
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a linear resonator, which acts as a filter centered around a certain frequency.
Intuitively, this can be formulated as follows. Suppose, for simplicity, that we
consider a completely white spectrum absorbed by the device. This is illustrated
in Figure 1 by the flat line and a sample of harmonics with given amplitude,
shown as arrows. For each frequency, a linear filter like a resonating linear os-
cillator will simply multiply the amplitude of the spectrum of the harmonics by
a certain function. On the other hand, re-arrangement of the modes, which is
a purely nonlinear e↵ect, will reposition the location of the harmonics, centering
the sampled arrows around a given frequency (or perhaps several frequencies),
thus making the spectral density higher at this point. These are fundamentally
di↵erent concepts, as can be seen from the Figure 1. In reality, both e↵ects will
be present in any realistic system. Regularization having nonlinear e↵ects as a
leading cause of band-narrowing will preserve much more of the high harmonic
content than a typical linear filter.

Formally, we define band-narrowing as the transformation of a signal
when more power in the spectrum is moved to lower bandwidths and con-
centrated about a single frequency. While this definition is somewhat inexact,
we note that a precise mathematical definition of this notion, applicable to
a broad range of physical cases, appears elusive. An important consequence
of our approach is that the band-narrowing, or regularization, is achieved
due to the structure of the system itself, without requiring external control
mechanisms.

Although the associated quantitative details will be shown to be non-
trivial, the conceptual foundation is simple. Consider, for instance, a tree
swaying in the wind. Whereas the movement of the trunk is typically quite
regular, the motion of the branches is much less so. Unfortunately, energy
extraction from real trees is di�cult: recent investigations [24, 25] of life-sized
trees yielded quite modest power generation, i.e. 44mW from the trunk and
several Watts for the motion of entire (several meter tall) tree including the
top branches. This rather disappointing result follows from the compara-
tively small deviations of the tree trunk from its equilibrium position, an
evolutionary adaption presumably meant to minimize the likelihood of trunk
fracture during violent wind storms. We therefore aim to construct artificial
tree-like structures with characteristics that are in some sense opposite to
real trees, providing potentially large amplitude displacements and an e�-
cient regularization of the forcing.

In this paper, we use the term “trees” in the generalized sense, both for
structures possessing a branched structure analogous to real trees and, alter-
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Figure 1: A schematic illustration of linear filtering vs regularization. A filter applied
to an initially broadband signal with a flat spectrum will multiply the amplitude of each
harmonic with the frequency response function. On the other hand, regularization re-
shu✏es the position on the harmonics making them more dense in some areas, thereby
increasing the spectral density amplitude in these same areas.
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natively, for coupled sequences of oscillators that exhibit a tree-like dynam-
ical diagram. The former type is more useful for large-scale, low-frequency
harvesting e.g. by wind or waves whereas the latter is more relevant for
miniaturized harvesting devices. Of course, a multi-level structure exhibit-
ing branching has many resonances and thus increased response to broadband
forcing. In fact, our design should be understood as the next step from de-
vices with internal resonating structures [26], such as sequentially connected
nonlinear oscillators which were recently suggested as an e↵ective tool for en-
ergy harvesting [27]. In our case, the regularization of the vibration at each
level relies on an interaction of nonlinearity and multiple coupled resonances
and cannot be explained solely by a linear analysis.

The rest of the paper is organized as follows. Section 2 discusses the me-
chanics of tree-like structures, from the theoretical foundation to laboratory
experiments. Section 3 outlines theoretical explanations of observed results
in terms of a broadening of the nonlinear amplitude response. Finally in Sec-
tion 4, we present conclusions and outline future directions for applications
using tree-like structures.

2. Flexible tree-like structures – theory and laboratory experiment

In this section, we shall study the flexible tree-like structure exhibited
schematically in Figure 2 a. Two scenarios are considered, namely deforma-
tions in the x � y plane shown in Figure 2 b, and deformations normal to
the x� y plane, shown in Figure 3 and considered in Sec. 2.2. Note that the
case of static bifurcation was examined in detail in [28], where each branch
was also considered as an elastic rod. We present the results of a static bi-
furcation analysis, being inevitably much simpler than the one undertaken
in [28], in Appendix A. For the sake of analytical tractability, we only consider Q5
the compliance at the joints connecting rigid branches. Hache et al. [29] present
further details of such models and the application of discrete-to-continuum ap-
proaches to the vibration and stability of beams. A more general scenario can
be examined by adapting the extended theory developed in [28]. This latter ap-
proach requires solving PDEs at each branch, and will be investigated in future
studies. In our simplification, limiting the dynamics to a bending of the joints
only, the branches’ deformation is modelled through the motion of rigid rods
connected by nonlinear springs at the joints. Our planar model described in
Sec. 2.1, as well as the planar mass-spring models considered in Appendix B,
are quite similar to the models of tree dynamics and their spring-mass equiv-
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alents derived in [30] from Newtonian mechanics. The three-dimensional
model developed in Sec. 2.2 is, as far as we know, novel. In addition we note
that our paper focuses on dynamics regularization, i.e. the increase of regu-
larity of the spectrum of the motion from the outer branches to the stem. In
what follows, we shall start with the case where the deformation of the tree
is limited to the plane of the tree itself. These dynamics are relevant e.g. to
the tilting of the base of a tree-like structure with a deformation that has a
broadband spectrum, such as a tree structure on a platform that is forced by
ocean waves. We shall defer the experimental study of such systems to the
future, and will instead use the analytical model of Sec. 2.1 to serve as a ped-
agogical introduction to the more complex system of 3D dynamics described
in Sec. 2.2. An understanding of these 3D dynamics is essential because of
the inherent di�culty of constraining real motions to a plane, particularly
for the irregular forcing that characterizes the energy-harvesting applications
relevant to the ideas presented in this work. In both Sec. 2.1 and Sec. 2.2, Q6
and so as to avoid problems of unwieldy complexity, we terminate the branching
after level 2. The general dynamics of n-branched systems has been derived in
other contexts, e.g. Gay-Balmaz et al. [31] examined the dynamics of branched
polymers and included in their analysis a description of Poisson brackets and
conservation laws. For a general n-level system, the description in terms of ab-
stract symmetry-reduced variables is possible, but the actual implementation as
a system of coupled ODEs is too cumbersome to provide any analytical insight.

2.1. Two dimensional planar oscillations: theory

a) b)

Figure 2: A schematic and definition of variables for a tree-like structure viewed from
the front. Panel a) - undisturbed configuration defining equilibrium angles. Panel b) -
deformed configuration in the plane defining notations for local angles.
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Our analysis begins with the computation of the corresponding Lagrangi-
an. We denote each level using index notation, with the lowest order or base
level (stem) having index 0, the next level having index i and the following
level having index ij. We use the notation ' for the relative angles of the
branches, and � for the absolute angles with respect to a fixed (vertical) axis.
This reflects the fact that the equilibrium position of a branch is in general
inclined with respect to the vertical axis; superscript E is used to denote
the equilibrium value of the angle in question. In this notation, the vector
c connecting the nearest pivot point of each branch towards the stem to the
branch centre of mass for a given configuration is
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are defined in Figure 2.
From equations (1–3), the coordinate of the centre of mass of each branch is
given by
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where rW
ij

denotes the position of a weight attached to the top of branch
B

ij

. The centre of mass of each branch moves with a velocity computed by
di↵erentiating (4), i.e. v• = ṙ•, where “•” stands for any one of “
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”
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”. Using the equation for the moment of inertia with respect to the
centre of mass of a beam (I = m`2/12 where m is the mass), the expression
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The corresponding results for the potential energy of deformation (P
b

) and
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gravity (P
g

) read
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respectively, where r•,y represents the vertical-component of the position vec-
tor r•, and g is gravitational acceleration assumed to point downwards in the
y-direction. The coe�cients ↵• and �• represent, correspondingly, the lin-
ear and nonlinear elasticity parameters. We have used a simple one degree
of freedom, nonlinear model of the beam deformation describing all the en-
ergy of the deformed beam in terms of a characteristic deformation angle '•.
Here, the 4th order nonlinearity in the angles models the nonlinear response of Q7
the joints, which we have chosen to be symmetric with respect to '• ! �'•.
This nonlinearity arises both as a model of nonlinear beam deflection and also
nonlinearity of the joint, see, e.g., [30]. This model, at least mathematically,
is equivalent to a nonlinear oscillator with a single degree of freedom. Using
the Lagrangian L = K �P

b

�P
g

�P
e

, including the potential of the applied
external force P

e

, as well as a Rayleigh dissipation function F incorporating
a viscous friction-like term, the final equations of motion for branch • are
given by the Euler-Lagrange equations

d

dt

@L
@'̇•

� @L
@'•

+
@F
@'̇•

= f• . (8)

Here, we have also introduced, for generality, a non-conservative generalized
forcing with the component f• acting on the branch with the index •. In our
modeling approach, the non-conservative contribution of the force is absent,
as the forcing of the wind in its simplest approximation is assumed to be
constant. However, more complex models of the wind motion may include
non-conservative forcing. We have chosen to compute the external force
coming from the external potential P

e

, for the sake of simplicity of compu-
tation of the generalized forces. Consideration of more complex forces, i.e.,
non-potential forces is possible, but we shall not consider them here as it
will render the computation of the generalized external force on each branch
cumbersome. To model the applied external force from e.g. wind or other
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sources, we introduce the time-varying forcing function F
ext

(t), acting in the
direction x and constant in space, common for all branches and correspond-
ing to a dimensionless force per unit area. Thus, assuming that at each point Q8
in time, the potential energy is constant in space, we define the potential energy
of the external force as [32]

P
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(9)

Here, A• denotes the area of the branch exposed to the external wind Fext

(t), with Q8
r•,x being the cosine of the direction of the wind and the normal to the branch,
assumed to be flat. The superscript W denotes the additional force on the
‘leaves’ of the tree. The generalized forces are then computed as derivatives
of P

e

with respect to the corresponding angles '•. We take damping to be
proportional to the time derivative of the position v• with a proportionality
factor �•. Therefore, the Rayleigh dissipation function can be written as
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We note that Raleigh’s dissipation function models the e↵ect of viscous-like Q18
friction of a particular type coming either from other the ambient media, or
internal friction inside the joints. More complex models for the friction can be
considered, which we will postpone for further studies. From (10), one then
needs to express the velocities in terms of the derivatives of angles, and to
di↵erentiate in (8). To avoid undue algebraic complexity, (8) is not presented
in expanded form.

2.2. Three dimensional normal oscillations: theory

We now turn our attention to the more experimentally and practically
relevant case presented in Figure 3, where the undisturbed tree position is
in the plane normal to the direction of the external force. Indeed, in the
experiments to be discussed below, the wind bends the tree in a direction
normal to the plane of the equilibrium position. Although the chaotic nature
of a real turbulent flow makes it impossible to make a precise quantitative
comparison between theory and experiment, it is nonetheless helpful to use a
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Figure 3: Tree-like structure oscillating normal to the x� y plane. Panel a): undisturbed
configuration, three-dimensional view. Panel b): undisturbed configuration, front view.
panel c): deformed configuration, side view.

model that is capable of describing physically precise 3D dynamics. In Fig-
ure 3, 'E

• represents the mounting angles of each branch, which are assumed
to be fixed. Each branch will rotate with angle ✓•. Using the notation •
introduced before for subscripts “

0

”, “
i

” or “
ij

”, it is convenient to define the
initial (‘ini’) position vectors of each branch having index • as

r•,ini =
1

2
`•Rz

(�E

• )ey, (11)

where e
y

is the unit vector (0, 1, 0)T and R
z

(✓) is a rotation matrix around
the z-axis with an angle ✓. The di↵erence from the two-dimensional planar
oscillations is that each branch now rotates around one fixed axis, which is
taken to be the x-axis describing the tilt. Here, for the sake of simplicity,
we assume that each branch only rotates about the fixed axis and is thus
characterized by one angle of rotation only. For general motions, the rotation
matrix will be characterized by three parameters, such as Euler angles, and
both the equations of motion and their analysis will be considerably more
complex – see Appendix C and [31]. In light of the above, the normal to
branch • is described as

n̂• = R
x

(�E

• )ex , (12)
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where e
x

= (1, 0, 0)T . Rotation matrices around the z-axis are given by

R
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The positions of each branch are thus obtained from (11) and (15) as
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The kinetic and potential energies associated with oscillations normal to the
x � y plane are derived by replacing '• by ✓• in (5-7), and by providing an
appropriate generalization of the potential for the external force P

e

. The
Euler-Lagrange equations utilize the Lagrangian L = K � P

b

� P
g

� P
e

, and
Rayleigh’s dissipation function F for damping, giving equations of motion

d

dt

@L
@✓̇•

� @L
@✓•

+
@F
@✓̇•

= f•. (20)

Here, similar to (8), we have introduced the generalized non-conservative
forcing f• acting on branch •. As in equation (8), this non-conservative
forcing term is absent in the subsequent theoretical discussion due to the
basic approximation about the wind forcing used, with the external forcing
entering the Lagrangian through an appropriately defined potential energy
term. Again, for reasons of algebraic complexity, these equations are not
presented in their expanded form – see Appendix C for more details.

2.3. Numerical simulations and analysis of dynamics

Whereas the spectral structure of a real turbulent flow is highly complex,
here we limit our attention to a broadband wind forcing defined by

F
ext

(t) = G ? f(t) , f(t) =

⇢
0, t

2k

< t < t
2k+1

N, t
2k+1

 t < t
2k+2

(21)
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i.e., we assume a convolution of a smoothing kernel G(t) with a step-like
function jumping from 0 to N at random intervals. More precisely, define a Q8
function f(t) in the following way. Take t

n

is the sequence of strictly increas-
ing positive numbers, such that on every interval starting with an even index
t
2k

< t < t
2k+1

, f(t) vanishes, and on every interval starting with an odd index
t
2k+1

< t < t
2k+2

, f(t) is equal to some fixed strength (amplitude) N . Then, the
forcing on the tree F

ext

(t) is equal to the convolution of a smoothing kernel with
the function f(t). The kernel G(t) is normalized so that

R
+1
�1 G(t)dt = 1.

The randomness of the forcing is enforced by requiring that the length of
the time intervals defining no forcing t

2k

< t < t
2k+1

and constant forcing
t
2k+1

 t < t
2k+2

take on random values with a prescribed distribution.
Although an exact comparison cannot be made between numerical simula-
tions and laboratory measurements, this type of forcing is chosen to broadly
mimic the experimental setup presented in Sec. 2.4 below, where a wind of
constant velocity is interrupted at random time intervals. In particular, the
convolution with a localized function G(t) acts as a filter smoothing the jump
transition in the forcing and taking into account the time necessary to open
and close the wind barrier in our experimental wind tunnel. Our studies
indicate that the exact nature of the smoothing function G(t) is not essential
for the low-frequency behavior of the branches. Experimentally, such type
of wind presents the simplest way of generating an external forcing rich in
high order harmonics on scales comparable to the temporal scales of the tree-
like structure. On the other hand, a function with a discontinuity at t = t

k

possesses a strongly broadband spectrum, with the n-th Fourier harmonic
decaying as 1/n in the limit n ! 1. The convolution with the function G(t)
in (21) enforces su�ciently rapid harmonic decay beyond a certain threshold.
We present our results for the choice of the convolution function

G(t) =
1

2�T

⇢
1, |t| < �T
0, |t| > �T

(22)

Other choices of the convolution kernel G(t), for example, a Gaussian kernel,
alter the details of the forcing function behavior in the higher harmonics, but
seemingly do not play a role in the low-frequency behavior of interest here.
Thus, we believe that the forcing described by (21) has both a mathematical
relevance insofar as possessing a broadband spectrum, and a physical signifi-
cance insofar as being a model for gusty winds. While studying the behavior
caused by broadband forces is of particular interest here, we also analyze the
nonlinear response of the theoretical model to a single harmonic forcing, or
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some combination of harmonics in Appendix B.2 and Sec. 3, respectively.
However, such harmonic-like forcing is di�cult to achieve in wind tunnel ex-
periments, and the discussion of such forcing will be limited to model analysis
only.

The external forces contained in (8) and (20) through the potential energy
term (9) and its corresponding generalization for the 3D case are assumed to
be applied to the centre of mass, coinciding with the geometric centre, of each
branch. This is a reasonable approximation for wind forcing on a uniform
plate positioned normal to the oncoming air flow. For more general configu-
rations, this assumption should be understood as a first approximation only;
however, we do not expect that the main results of this paper concerning
band narrowing will change substantially if more complicated models of ex-
ternal forcing are employed. The parameters of the single degree of freedom
nonlinear oscillators modelling the elastic beams are chosen to correspond to
experimental values from the experiment described below in Sec. 2.4.

Numerical simulations of (8) and (20) were performed usingMathematica.
The temporal variation for each successive level shows an increasing degree of
irregularity, which can be quantified by considering the spectrum of the devi-
ation from equilibrium. Results corresponding to the two-dimensional planar
and normal motions described, respectively, by (8) and (20) are shown in Fig-
ures 4 a,b. In both cases there is the progressive emergence of a dominant
spectral peak as the level index decreases or, equivalently, as the deviation
from equilibrium is measured closer to the stem. Despite the highly irregular
nature of the forcing, the motion of the stem is comparatively regular, as is
evident from the spectral peak observed at low frequency, and much lower
amplitudes of the higher harmonics at the stem compared to the branches.
We have repeated the numerical experiments varying the ratio of the natural
period (inverse of natural frequency) of individual branches to the time in-
terval, taken to be 0.2 s in Figure 4, and the results are similar. As expected,
the band-narrowing diminishes when the natural period of the individual
branches exceeds the typical time interval of the forcing. Thus, for e�cient
band-narrowing, one needs to optimize the parameters of the tree mechanics
to correspond to typical time scales of the forcing. Note that we use slightly Q15
di↵erent time scales in Figures 4 a,b in order to represent the most important fea-
tures of both systems. Note also that the band-narrowing is most pronounced in Q10
the right panel of Figure 4, where the outer, middle and top branches experience
oscillations with a frequency of about 4 Hz, connected to the resonant frequency
of the branches as described above. That part of the spectrum is substantially
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reduced in the stem, where most of the energy is shifted to the low frequencies.
One could define the band-narrowing e�ciency of the system depending on the
removal of these high-frequency spectral components in the oscillations of the
stem e.g. based on the areas under the curves for each branch level and for suf-
ficiently large frequency. We shall quantify this intuitive concept later in Sec 3.
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Figure 4: Normalized energy spectral density for di↵erent levels of tree branches for the
lateral (a) and normal (b) motion described by (8) and (20), respectively. Red: outer
branch; green: top branch, blue: middle branch; black: stem.

2.4. Laboratory experiments

The theory presented above is quite detailed insofar as its accounting of
the kinetic and potential energy associated with each tree branch, however,
for reasons of analytical tractability, it does not consider complexities of
ambient flow such as vortex shedding and the spatial and temporal non-
uniformity of the wind, etc. In order to assess whether the above theoretical
predictions are representative, a series of experiments were conducted using
a model tree-like structure that was constructed from 1.55mm thick sheets of
aluminum alloy 6061. As illustrated in Figure 5, the stem, which consisted
of two aluminum sheets a�xed together, measured 10.2 cm wide and was
screwed to the base of the 8.9 cm tall wooden base which maintained the
tree-like structure in an upright position. The stem extended unhindered
15.2 cm above the base. At its top, two branches each consisting of a single
aluminum sheet were attached. The branches measured 5.1 cm ⇥ 17.8 cm
and were positioned at an angle of 45� relative to the horizontal. This was
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a) b)
Top

Outer
Middle

Stem

Figure 5: The model tree-like structure used in laboratory experiments. (a) A sketch of the
tree-like structure in the erect orientation. The stem consisted of two sheets of aluminum
a�xed together whereas all the other branches were made from a single aluminum sheet.
The entire tree-like structure measured 56.5 cm tall ⇥ 71.1 cm wide. (b) A photograph of
the tree-like structure inside a small, open-loop wind tunnel, showing the attachment of
accelerometers which are located on the downwind side of the tree. The box fan is just
visible behind the honeycomb sheets. Accelerometers are attached to the branches and
stem on the right-hand side of the tree.

followed by a second bifurcation such that two 5.1 cm ⇥ 16.5 cm branches
were fastened to the tip of each primary branch. The secondary branches also
consisted of single sheets of aluminum and were also attached at angles of 45�.
Thus, the outer and top branches were respectively oriented in the horizontal
and vertical directions. Note also that near the tip of each secondary branch
was placed a 10.2 cm ⇥ 10.2 cm ‘leaf’ made from cardboard. Because of the
scale of these leaves, a substantially larger amount of forcing was applied to the Q12
tips of the top and outer branches as compared to the rest of these branches.

For purposes of collecting quantitative data, four OSSEP accelerometers
each having 13 bit resolution were attached to di↵erent branches of the tree- Q13
like structure as in Figure 5, b). Accelerometers were individually connected
to one of two OSEPP UNO R3 Plus boards so that acceleration information
from any two accelerometers could be recorded simultaneously. Data was
collected every 10ms, the shortest time interval allowed by the experimental
hardware. With reference to Figure 3, the accelerometers were oriented so
that an erect tree-like structure corresponded to the z axis of each accelerome-
ter being parallel to the ground. The accelerometers were capable of measuring Q13
accelerations in three coordinate directions. However, the most interesting mo-
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Figure 6: Acceleration measurements in the surface normal direction, Z. Naming of the
accelerometers in panels (a-d) follows the convention of Figure 5 b.

tion, both in amplitude and in terms of features observed, was in the Z direction
normal to the flat surface of both the accelerometer and the branches. (We label
the associated acceleration a

Z

.) Accordingly, acceleration measurements in-
cluded some component of gravitational acceleration except, of course, when
the tree-like structure was oriented in the erect position shown schematically
in Figure 5 for which z and Z were antiparallel.

In general, most professional wind tunnels, particularly large closed-loop
tunnels cannot provide quick (. 1 s) changes in the wind speed due to the
large mass of moving air. The fastest shuto↵ and subsequent wind speed
ramp-up using automatic control mechanisms is usually tens of seconds,
which is substantially larger than all time scales relevant for the motion of the
tree-like structure [33]. Thus, we constructed a smaller scale, open-loop wind
tunnel, tailored for this experiment. The interior dimensions of our tunnel
were 61 cm tall ⇥ 86 cm wide and the wind tunnel length was approximately
1.8m, with smooth walls to prevent any internal vortex shedding inside the
tunnel. These sizes were chosen so the tree-like structure occupied most of
the available inner space without being unduly influenced by boundary ef-
fects. Air flow was produced using a three-speed 53 cm ⇥ 53 cm box fan,
which was set to its highest speed. Just downstream of the fan was a 55 cm
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Figure 7: Normalized averaged frequency spectra for Levels 0, 1 and 2 as measured using
the tree-like structure shown in Figure 5. Each curve corresponds to the average spectrum
of nine independent experimental trials. Panel a): forcing intervals between 1 s and 4 s,
Panel b): forcing intervals between 1 s and 3 s, Panel c): forcing intervals are either 1 s or
2 s. Signal regularization of the stem is most apparent in the Panel b).
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long expansion zone and downstream of this were located two honeycomb
sheets for flow laminarization that spanned the cross-sectional area of the
wind tunnel. Each honeycomb sheet was 2.54 cm long and contained circular
cells 8mm in diameter. The tree-like structure was located approximately
57 cm downstream of the latter honeycomb sheet. At this position, we mea-
sured an air speed of 5.3 km/h ± 0.2 km/h using a Super Scientific vane probe
anemometer where the vane axis was located at an elevation of 32 cm from
the bottom boundary. Wind speed measurements were made with the tree-
like structure outside of the wind tunnel. The air flow quality was estimated
by observing the tree-like structure at the maximum wind speed, where very
little fluctuations of the structure were observed.

Immediately upstream of the box fan was a large sheet, which could be
set to either a ‘closed’ or ‘open’ configuration. In the former, the sheet
completely covered the upstream surface of the fan resulting in negligible
air flow down the length of the wind tunnel. Measurements of the wind
speed using a vane probe confirmed e↵ectively complete blockage of the flow.
Additionally, in the ‘closed’ configuration, no deformation of the tree-like
structure was observed from its equilibrium position, defined as the erect Q14
position with the fan turned o↵. In the ‘open’ configuration, by contrast, the
wooden sheet was lifted away from the fan and thus did not impede the
motion of the incoming air. Using this set-up, a switch from the ‘open’ to
‘closed’ configuration took a fraction of a second, resulting in a similarly
sharp change from zero to maximum air speed inside the tunnel.

Experiments were grouped according to the distribution of forcing time
intervals when the system was in either the closed or open configuration. In
the first group of experiments, the intervals consisted of a random sequence of
1 s and 2 s time intervals. For the second (resp., third) groups of experiments,
we chose time intervals of 1 s, 2 s and 3 s (resp., 1 s, 2 s, 3 s and 4 s), each
interval occurring with the probability of 1/3 (resp., 1/4). The length of
these intervals was chosen intentionally, as it takes approximately a second
or less for the flow to become established, and the motion of the tree-like
structure substantially decreases after 4 s.

Each of the three groups of experiments consisted of nine independent
trials. In total, therefore, we ran 54 experiments, each of which lasted 100 s.
Since the typical oscillation time for each level was ⇠ 0.1 s - 1 s, there were
approximately 5 · 103 � 104 oscillations recorded with a typical resolution of
10ms, or 10 � 100 data points per one cycle of oscillation. This number
of experimental runs and the commensurate volume of measured data was
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deemed to be su�cient to provide accurate statistics for the computations
of spectra of each level. Further to this point, and for each experimental
trial, we ran two 100 s-long experiments in order to collect a full data set
comprising acceleration information from Levels 0, 1 and 2.

Sample laboratory results from a particular experimental trial and span-
ning a 30 s time interval are shown in Figure 6. Motions between di↵erent
levels are mostly synchronized e.g. there is a sharp increase of acceleration
that is experienced at Levels 0, 1 and 2 at approximately 45 s. It is also
apparent, however, that the timeseries signal for Level 0 (Figure 6 d) is less
noisy than those for Level 2 (Figures 6 a,b). This suggests that the motion
of the stem is characterized by lesser high-frequency components, a hypoth-
esis that is confirmed by Figure 7. For each of the stem and the diagonal
(middle), outer and top branches, Figure 7 shows the associated frequency
spectra, derived from the average of the nine experimental trials that com-
prise each group of experiments. Our data confirm the regularization of
the motion produced by the tree-like structure. Comparing Figures 4 and
7 indicates that the regularization in both the model calculations and the
measured data is manifested by a reduction of the harmonic content of the
stem compared to the spectra of the other branches.

2.5. Asymmetric trees and parameter studies

Until now, all our studies have focused on tree-like structures that were
symmetric with respect to reflections about the vertical axis in the equi-
librium state. In order to broaden our scope and investigate the robust-
ness of the band-narrowing phenomenon for di↵erent tree configurations,
we have also studied the response of geometrically asymmetric trees to the
on-o↵ forcing considered above. There are many ways in which asymmetries Q11
can be introduced. For brevity, we limit ourselves to the case where the ra-
tios L

1

/L
0

= 0.5 . . . 1.5 and L
11

/L
0

= L
21

/L
0

= 0.5 . . . 1.5 are varied with
L
12

= L
22

= L
0

. All other material properties and forcing details are as de-
scribed in Sec. 2.1. Asymmetries could also be introduced by selectively changing
branch angles away from 45�, but we shall defer a detailed investigation of this
possibility to a future study. We observe that the details of the resulting spec-
tra for each branch do vary with the change of parameters. The results of
our studies are summarized in Figure 8. A total of 20 simulations per ratio,
i.e., 400 simulations total were performed. We found that it is not especially
informative to present all the resulting spectra in a single figure, so we choose
to represent the spectrum for each branch as a single number. While this
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is certainly a simplification, the above method allows one to visualize the
results of all numerical studies in a concise and apparent manner.

We define the spectral parameter as follows. For a normalized spectrum
with the main peak laying in the low frequencies like we have for the systems
considered here, let us take the cumulative sum of the normalized spectrum
S•(fi) defined as

C.S•,i =
iX

k=1

S•(fi) . (23)

The cumulative spectra for all branches tend to a constant value, denoted
here as C.S1

• , for large frequencies1. For a more narrow peaked spectrum,
there are fewer higher harmonics, so the limiting value C.S1

• is lower. On
the contrary, for a broader spectrum, the limiting value C.S1

• is higher. This
is, of course, not an exact measurement of the spectrum breadth as one can
identify examples that violate this rule. However, for the spectra we have
obtained in this problem, the limiting value of the cumulative spectra does
seem to provide some helpful information concerning regularity.

Figure 8 a presents the cumulative spectra corresponding to the normal
motion of the tree-like structure shown in Figure 4 b. Conversely, Figure 8 b
presents an example of the cumulative spectra for the experiments (left)
corresponding to the middle panel of Figure 7. We draw the associated curves Q15
over di↵erent frequency ranges for experiment vs. theory because much more
detailed information is available from the numerical simulations. In both panels,
however, it is evident that the curves reach a spectral plateau. Finally, panels
(c) and (d) of Figure 8 show the results of dynamics regularization, defined
as the ratio of the limiting values of the corresponding cumulative sums
C.S1

0

/C.S1
1

for (c) and C.S1
0

/C.S1
11

for (d). The results are obtained and
visualized for the 400 simulations for di↵erent ratios of the branches as a
single color plot. High levels on this plot correspond to a high degree of
dynamical regularization. While this simplified spectral representation does
have its limitations, we believe it is useful to represent such a study of the
system dependence on parameters in a concise form.

1Note that in (23), fi denotes the frequency, elsewhere, f• denotes forcing. We hope
the distinction is clear from the context.
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Figure 8: Panel (a): Cumulative spectra C.S0, C.S1, C.S11 and C.S12 for the normal
oscillation described by equation (20). Panel (b): analogous results for the data presented
in Figure 7 b. Panels (c) and (d): ratios of the limiting values of cumulative spectra
C.S1

0 /C.S1
1 for (c) and C.S1

0 /C.S1
11 for (d) as defined by (23). In panels (c) and (d), high

levels are yellow and low levels are blue.

3. On the nonlinear dynamical response of the tree-like structure

In order to further connect our work with the previous literature, it is
also of interest to compute the fully nonlinear response of the system to a
monochromatic (harmonic) forcing. While harmonic forcing is certainly quite
di↵erent than the large bandwidth forcing studied in the previous section,
in our opinion, it also gives an interesting insight into the fully nonlinear
dynamics of the problem. There has been substantial interest in strongly
nonlinear dynamics of a single resonator, one of the key e↵ects being the
presence of nonlinear resonances in an elastic beam [34]. Given a forcing
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f ⇠ cos!t, the nonlinear resonance leads to a broadening of the amplitude
response A(!). As a result, high frequencies are channelled to lower ones.

Following this methodology, we investigate the response of a 3D bending
of a tree-like structure to a harmonic forcing applied to the top branches,
i.e., we simulate equations (20) with forcing f• = A• cos!t. For this partic-
ular simulation, we suppose that the harmonic forcing only acts on the top
branches. In our opinion, this allows us to drastically reduce the number
of parameters and to streamline the presentation. The forcing amplitude,
A•, is taken to be su�ciently large to ensure that the system is in a fully
nonlinear regime. The physical parameters are identical to those used in
Sec. 2.2. The results of our simulations are shown in Figure 9. All branches
have nonlinear resonances at approximately the same values of !. However,
the nonlinear response of the stem is mostly in the low frequencies, whereas
the other branches respond in both the low and high frequency regimes. The Q17
small ’bumps’ in the amplitude response at ⇠ 25 and ⇠ 125 Hz correspond to
the secondary resonances of the interconnected system, which are unavoidably
smaller than the response at the main resonance frequencies. This nonlinear
behavior may additionally explain the band narrowing we have discussed in
this paper.

It is also worth noting the relationship between the linear and nonlinear
dynamics of the tree-like structures. In the purely linear framework, subse-
quent tree branches act as low-pass filters. The response of the stem to a
particular force can then be computed as an appropriate sequential appli-
cation of linear filters. Evidence for the incompleteness of this explanation
comes from Appendix B, where we discuss the simulation of a planar ana-
logue of a tree-like structure based on nonlinear springs. The simulation
results in Figure B.11 confirm that there is a discrepancy of several orders of
magnitude between the linear and nonlinear regimes for higher frequencies.
This discrepancy is essential for understanding the presence of a more regular
signal at the stem when truly broadband forcing is considered. This opens up
an interesting question as to the relevance of the synchronization of adjacent
branches as coupled nonlinear resonators [1] for the tree-like topology. While
there is a large amount of work on the synchronization of resonators cou-
pled in a line topology [35], synchronization in nontrivial tree-like topologies
as studied here has not been studied to our best knowledge and therefore
represents an interesting topic to consider in future.
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4. Conclusions and remarks on further studies

We have outlined a method of regularizing a broadband signal using tree-
like structures. This method of exploiting the topology of the resonator
in addition to nonlinearity is quite di↵erent from the methods presented in
the literature, and may lead to the design and development of more e�cient
energy-harvesting devices. Moreover, the regularization of oscillatory motion
observed in both theory and experiments opens the way to generating power
directly in AC form using electromagnetic induction. For example, and for a
macro-scale device, one can generate power by coupling the stem to a flywheel
and a generator. In such devices, phase regulation is important to avoid an
undesirable electromagnetic reaction. The mechanical impedances related
to AC power production should also be carefully treated. Such interesting
mechanical problems will, of course, go far beyond the simplistic models for
friction used herein and will necessitate a coupling of the tree-like structure
to the flywheel. We intend to study these topics in future, paying particular
attention to the question of system optimization. On the one hand, the
flywheel and generator should be powerful enough to operate with maximum
e�ciency. On the other hand, the e↵ect on the stem should be small enough
so as not to destroy its regular oscillation. Electric power conversion from
a small-scale AC generator to any commercial AC power is key to power
electronics [36]. One of the ways to model such energy conversion is to
add appropriate inertia-like terms in the mechanical models. Topics like
impedance matching or e�cient active rectifiers [37] also play a crucial role in
the development of such systems and their linkage to external power sources.
Here again, and motivated by the present analysis, we plan to investigate
these topics in forthcoming studies.

Another interesting direction, crucial for miniaturization, would be to
use elements exhibiting highly nonlinear elasticity due to their geometric
form, such as elastic spheres forming the basis of Hertz chains [38] or other
geometric structures exhibiting a highly nonlinear response to compression.
An alternative to using such elements would be to use excessively soft and
highly nonlinear materials, although it is unclear that materials having the
full range of requisite elastic properties are currently available. In any case,
more research into the miniaturization of these devices seems warranted as
being potentially able to provide inexpensive, robust harvesting solutions
for a variety of applications. Note finally that Du�ng oscillators have been Q21
studied in the context of topology optimization in contexts both more general
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and specific than what we have described above. See in particular [39, 40] for
an example of parameter and geometry optimization in the MEMS context.

Acknowledgments

Major funding for this project was generously provided by NSERC through
the Discovery Grant (MRF and VP) and USRA (RN) programs. Additional
funding was also provided by the University of Alberta (MKu, MKi). TH
and MKu acknowledge support from JSPS KAKENHI (Grant-in-Aid Chal-
lenging Exploratory Research) #26630176 , and MKi #25820164. MKu also
acknowledges support for foundations for improvement of prominent grad-
uate school. The technical assistance of Mr. Bernie Faulkner and Mr. Rick
Conrad from the University of Alberta Department of Mechanical Engineer-
ing is also gratefully acknowledged.

Appendix A. Bifurcation analysis of equilibria in two and three
dimensions

Physically, one expects that when the tree has su�cient mass and the
stem and branches have su�cient flexibility, the erect (or trivial) equilibrium
position loses its stability and another shape is adopted. In order to quantify
this result, we investigate the stability of this trivial equilibrium ('

0

= 0,
✓
0

= 0) in systems (8) and (20) by varying the length coe�cient k defined as

`
i

= k`
i,org

, `
ij

= k`
ij,org

, (A.1)

between 0.5 and 1.5. Assuming a uniform material density, the mass of
each beam is proportional to its length so that m

i

= km
i,org

, m
ij

= km
ijorg

.
Specific length-scales for the elements of Figures 2 and 3 are presented in table
A.1. Following experiments, we assume that the material of construction is
aluminum, with a density ⇢

Al

= 2.70⇥ 103 kg/m3 and a Young’s modulus of
E

Al

= 7.0⇥ 1010 Pa.
The natural frequency of each beam, if it were attached as a single can-

tilever, is given by Euler-Bernoulli beam theory as

f• =
1

2⇡

�
1

`•

s
E

Al

h2

•
12⇢

Al

, (A.2)

where �
1

= 1.87510 . . . is a constant for the frequency of the first-mode
oscillation. In this Appendix, f• denotes the frequency of the branch •,
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Table A.1: Branch size for each of the elements of Figures 2 and 3.

Length Width Thickness Mass
Layer 0 (0) `
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Table A.2: Coe�cient values corresponding to (5-10) and (20).
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not the force acting on it. The linear coe�cients in (6) are determined
from the size and natural frequency of the branches, whereas the nonlinear
coe�cients are assumed, for simplicity, to be one-tenth the magnitude of
the corresponding linear coe�cients. Table A.2 summarizes the parameters
used in the simulations. We set gravitational acceleration to be g = 9.8m/s2

and the damping coe�cient per unit area to be � = 0.1N·ms/m2. The
amplitude of forcing applied to the tree per unit area is set by the coe�cient
C = 1N·m/m2.

Figure A.10 shows the associated bifurcation diagrams for the two-dimen-
sional planar and normal oscillatory motions. For small values of the length
coe�cient k, the trivial equilibrium is stable. As k approaches 1.1 , however,
the equilibrium loses its stability and two stable “leaning” equilibria appear
in the system. Thus, depending on the parameters, the flexible tree-like
structure can be used in both the stable (small k) and bi-stable regimes,
with the latter being particularly useful for broadband energy harvesting
applications [13].

Appendix B. Planar structures and energy harvesting

Appendix B.1. Dynamics and band narrowing in planar tree-like structures

In this section, we consider alternative designs utilizing the tree-like topol-
ogy where the motion is confined to a single dimension. This section is moti-
vated by the recent work on the parallel arrangement of multiple resonators
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Figure A.10: Bifurcation diagram with respect to k, defined by (A.1). (a) Lateral (in-
plane) deformation. (b) Normal (out-of-plane) deformation.

and the corresponding broadening of the response function for a composite
harvesting device [41, 42, 43, 44]. Such mechanical devices are gaining popu-
larity as they can be applied at smaller scales, enclosed in relatively compact
and sealed containers and may thus be beneficial for industrial deployment.
Here we outline the design of a device with a tree-like topology and summa-
rize the corresponding increase in e�ciency compared with the arrangement
of parallel nonlinear oscillators.

Figure B.11 a exhibits a model planar energy harvester where each mass
on the nth level is connected via nonlinear springs to a given number of masses
on the next level, n + 1. Our schematic shows only three levels with two
masses each, however more levels and di↵erent configurations are, of course,
possible. The equations of motion for this system are easily derived using
the previous Lagrangian method. Let x• represent the displacement with
respect to a fixed frame of a particular spring from its equilibrium position.
Consistent with the previous discussion, • may denote any of “

0

”, “
i

” or
“
ij

”. In what follows, we shall assume that the time scale has been chosen
to correspond to the typical time scale of the system, and shall therefore
make reference to the appropriately normalized non-dimensional variables.
Corresponding planar velocities are denoted by ẋ•. If U•(x) is the (non-
dimensional) potential energy of each spring, and V

j

(x) accounts for the
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Figure B.11: (a) Schematic of a planar design for energy harvesting mimicking the tree
geometry. (b) Assembly of seven parallel oscillators with exactly the same properties as
the oscillators from the top panel. (c) Numerically-determined spectra for the 2D energy
harvester exhibited in (a). Data correspond to the average of ten simulations. Dotted
lines of the same colour show the results for the linear system subject to exactly the same
forcing as the nonlinear system. While overall regularity of motion is higher for the linear
system, there is no pronounced band-narrowing towards the stem in the linear case.

coupling between springs, the Lagrangian reads
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The equations of motion are written in their non-dimensional form as

ẍ• �
@L
@x•

+ ⌫•ẋ• + F•(t) = 0, (B.2)

with F• being the non-dimensional external force acting on the branch •. In
this notation, we use nonlinear springs having a Du�ng-like potential energy
given by U• = !2

•(x
2/2 + �x4/4). The linear coupling between oscillators is

given by V (x) = �x2/2. In what follows, we shall assume that all natural
linear frequencies are identical, i.e., !• = ! and choose the normalization of
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the time scale so that ! = 1. Equations (B.2) are derived from the Euler-
Lagrange equations, with additional dissipation terms that may represent
either mechanical friction or energy withdrawal due to harvesting. A justifi-
cation for this approach is provided below. For simplicity, gravity terms are
omitted, which is a reasonable approximation for small-scale devices. The in-
troduction of gravity terms, relevant for larger scale devices, does not change
the band-narrowing behaviour, as long as the structure remains stable to
gravitational forces.

Figure B.11 c shows the results of a numerical simulation of (B.2) with
non-dimensional values � = 1, � = 1 and ⌫ = 0.01, in order to demonstrate
the e↵ect of relatively large nonlinearity and coupling compared to friction
forces. The force F

i

(t), which is applied to the top four oscillators, jumps
between zero and a constant value at the pre-determined points t = t

k

with
t
k+1

� t
k

chosen at random before the start of each run. Figure B.11 c consid-
ers the average frequency spectra as computed from ten individual numerical
simulations. As in Figures 4 and 7, the averaged results are normalized so
that the maximum for each spectrum is exactly unity. The spectrum is reg-
ularized in going from Level 2 to Level 1 to the stem, Level 0. Note, in
particular, that while the peak remains the same, the harmonics higher than
about 0.3 apparently diminish in relative significance. For comparison, the
same panel includes simulations of a design of the same topology but consist-
ing of linear strings, i.e. imposing � = 0 with all other parameters and forcing
being unchanged from the nonlinear case. The results of the linear system
evolution, represented with the dotted curves, show no significant signal reg-
ularization towards the stem, as the tails of the spectrum almost overlap.
This is in agreement with the concept of band-narrowing outlined on Figure 1. Q20
When the high frequency modes get re-arranged by a nonlinear response, they
inevitably have noisier structure in the high frequencies. By contrast, the linear
oscillator acts as a linear filter, so the high frequency part of the spectrum is al-
most identical for di↵erent levels and much smoother compared to the nonlinear
counterpart. Thus, we believe that the observed signal regularization cannot
be described by a purely linear theory. One should note that the tails of the
spectrum for the linear case are substantially below those of the nonlinear
case, so the response of the linear system to a broadband force is inherently
more regular as compared to the nonlinear system. However, this regulariza-
tion for the linear system is uniform for all branches, since a linear filter would Q3
simply multiply the spectrum by an appropriate filter function. As we have noted
in the Introduction and illustrated in Figure 1, the persistence of high-frequency
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harmonics is indicative of signal regularization rather than application of a linear
filter.

Appendix B.2. Energy harvesting e�cacy of the tree-like design vs. parallel

oscillator arrangement

We now make a comparison between the energy-harvesting e�ciency of
the branched and parallel designs shown, respectively, in the panels a) and b)
of Figure B.11. This will allow us to clarify the advantages and disadvantages
of our design, as compared with the classical nonlinear oscillator designs
established in the literature. While power harvesting is not the focus of this
paper, we found this comparison to be interesting and useful to make.

The potential energy for each oscillator is given by U•(x) = !2

•(x
2/2 +

�x4/4); for this particular simulation we have taken the spring nonlinearity
� = 0.007 corresponding to the typical measured nonlinearity of available
small-scale springs for the planar design shown in Figure B.11 a. For sim-
plicity, all variables in this section are dimensionless, with the period being
non-dimensionalized by the smallest resonance frequency of the individual
oscillator, and the displacement, x, non-dimensionalized by a typical static
displacement value computed from the static force. The energy coupling
term is given by V•(x) = �x2/2 where the coupling coe�cient, �, has a value
of 0.01. The natural linear frequencies are chosen to be !

0

= 2⇡, !
i

= 4⇡ and
!
ij

= 6⇡ for i, j = 1, 2. The dissipation term (⌫
0

+ ⌫
h

)ẋ• consists of two con-
tributions, namely, a mechanical dissipation term proportional to ⌫

0

and an
energy harvesting term proportional to ⌫

h

. This dissipation term for energy
harvesting can be justified for an induction-based generator, as the voltage
W caused by induction is proportional to the velocity, i.e., W• = K•ẋ•, see
e.g., [45, 46]. Here, we have introduced the induction coe�cient K• which
depends on the oscillator. For the simplest possible load, a resistance R, the
power, PC•, consumed at branch • is

PC• =
W 2

•
R

=
1

R
K2

• ẋ
2

• := ⌫
h,•ẋ

2

• .

The model of harvesting used here, while certainly simplistic, has the ad-
vantage of employing only a few parameters which are essential for drawing
a proper comparison between a tree-like and parallel oscillator. We enforce
the normalization for the comparison as follows. First, we set the net force
applied to the two systems to be identical. Second, we set the dissipation
⌫• = ⌫ = 0.01 for all oscillators in the parallel and tree-like design, which is
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equivalent to the assumption that all resonators have a similar design and
are constructed from similar material. Third, in the case of the parallel
assembly, each of the seven oscillators is assigned the harvesting coe�cient
⌫
h,• = ⌫

h

= 0.03. For the tree-like assembly, we select ⌫
h,0

= 0.21 at the stem,
the location where the harvesting is applied, with ⌫

h,i

= ⌫
h,ij

= 0 elsewhere.
The total harvesting potential for the branched assembly is therefore equal
to the parallel assembly, and any discrepancy in harvesting outcomes must
be due to the e�cacy of the harvester itself.

In principle, if the load is more complex than a simple resistor, consisting,
for example, of an LRC circuit, computation of harvesting e�cacy is more
complicated and will need to include another ODE to be solved in conjunction
with the original system. This complex harvesting mechanism will introduce
additional parameters and therefore falls outside of the scope of the present
inquiry.

In light of the above, the energy harvested by the system is computed via

E =

Z
T

t0

X

•
⌫
h

ẋ2

• , (B.3)

where the sampling interval boundaries t
0

= 100 and T = 220 are su�ciently
large to remove all initial transient behaviours. Results from solving (B.2)
using (B.3) are presented in Figure B.12. The e�cacy of harvesting of the
branched design, shown in Figure B.11 a, compared to its parallel counter-
part, shown in panel (b), increases as the forcing becomes more and more
broadband. When the forcing is fully broadband, the branched structure
harvests more than 100 times as much energy as the parallel design. On the
other hand, when the forcing contains less than approximately 30 distinct
frequencies, the parallel assembly o↵ers superior performance.

Appendix C. General theory of dynamics for tree-like structures
in three dimensions

In this Appendix, we briefly touch upon the general theory of the dynam-
ics for tree-like structures. This derivation follows the general mathematical
theory outlined in [31] and an abstract mathematical approach describing
the dynamics of nested semidirect products, conservation laws and Poisson
brackets. For brevity, we shall only focus on two-level trees like the one pre-
sented in our paper. Trees with deeper structures can easily be considered,
but the formulas become cumbersome to write down.
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Figure B.12: Comparison of the energy produced by the branched design (Ebranched)
vs. the corresponding parallel assembly (Eparallel) illustrated in Figure B.11. (a) Energy
harvested for each design in di↵erent cases as a function of the irregularity of forcing. (b)
Ratio of the bar graph data from the left-hand side panel. In either case, the horizontal
axis specifies the number of harmonics present in the applied forcing, with random forcing
being shown as the rightmost column.

Consider a tree-like structure with branches 0, i, ij, corresponding, in our
notation, to the stem, first and second levels. The orientation of a branch is
given by the orientation matrix A• 2 SO(3), with A•A

T

• = Id
3⇥3

, where the
orientation can be taken either with respect to a fixed frame or, alternatively,
with respect to the orientation of the branch immediately preceding it on the
tree structure. We use • to denote the index of the corresponding branch.
If we choose a coordinate transformation with respect to the previous frame
on the branch, then the center of mass of each beam is represented as

r
0

= c
0

, r
i

= c
i

+2c
0

, r
ij

= c
ij

+2c
i

+2c
0

, rW
ij

= 2c
ij

+2c
i

+2c
0

, (C.1)

where c• is defined as

c
0

= A�1

0

c0
0

, c
i

= (A
0

A
i

)�1c0
i

, c
ij

= (A
0

A
i

A
ij

)�1c0
ij

. (C.2)

Here c0• = (0, `•/2, 0)T is a position vector of the center of mass in each
local coordinate system, i.e., the center of mass in the undisturbed position
is along the y-axis. We have assumed that the stem orientation (index ‘0’)
is computed with respect to a fixed frame. Moreover, we have followed the
definitions of Sec. 2.2, which gives the product of matrices in the order shown
by (C.2). Alternative definitions are possible, for example, taking matrices of
transformations to be the inverse of what is defined here, which will modify
(C.2) accordingly. The kinetic energy of translational motion is then obtained
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by taking time derivatives of the coordinates as
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The change in coordinates occurs due to the corresponding change in the
rotation matrices A•, and to finalize the equations of motion, one needs to
choose a parameterization of A• brought about by an appropriate choice of
coordinates on the rotation matrix group SO(3). There are many ways to
parameterize this group, such as the Euler angles, Tait-Bryan angles and
quaternions. As an example, we shall choose the Euler angles, defining a
coordinate transformation as

x0 = A(✓,', )x, (C.4)

where A(✓,', ) = B( )C(✓)D(') with the matrices B,C and D defined as

B( ) =

0

@
cos sin 0
� sin cos 0

0 0 1

1

A

C(✓) =

0

@
1 0 0
0 cos ✓ sin ✓
0 � sin ✓ cos ✓

1

A

D(') =

0

@
cos' sin' 0
� sin' cos' 0

0 0 1

1

A .

Figure C.13 illustrates this coordinate transformation. For a particular real-
ization of the coordinate transformation for modelling, we make a number of
assumptions. Each beam is initially mounted with the angle ', which is fixed
in time, namely, ' = 'E. The angle ✓ denotes the displacement angle of the
beam, and rotation around z0-axis is prohibited because the bottom edge is
fixed at the lower beam so  = 0. Therefore the matrix of the coordinate
transformation becomes A•(✓•,'E

• , 0) = C(✓•)D('E

• ).
If each coordinate system is allowed to rotate, we will need to compute the

angular velocity of each beam as represented by the corresponding coordinate
systems. In the local • coordinate system, the rotation of each beam is
described by !0

• = (✓̇•, 0, 0)T . Therefore, the resultant vector of rotation is
obtained as follows:

⌦0
0

= !
0

, ⌦0
i

= !0
i

+A
i

⌦0
0

, ⌦0
ij

= !0
ij

+A
ij

⌦0
i

. (C.5)
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Figure C.13: Definition of angles of rotation and coordinate systems. (a) A view of the
local coordinate system of branch •, denoted (x•, y•, z•), and the laboratory coordinate
system denoted (x, y, z). (b) Rotated coordinate frame for consideration of two dimen-
sional dynamics. (c) Definition of Euler angles for a rotated coordinate frame for 3D dy-
namics, with the coordinate frames (x0

, y

0
, z

0) and (x, y, z) corresponding to the branch’s
coordinate frame and the coordinate frame of the previous level, respectively. The angle
of rotation around the z

0-axis,  , is always zero in experiments because the bottom end
of each beam is fixed.

As shown in Figure C.13, each axis corresponds to the principal axis of inertia.
Therefore, the kinetic energy of rotation is simply
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where a · b denotes the scalar product between the 3D vectors a and b and
the inertia matrices are defined as

I• = diag(I•x, I•y, I•z)
T = diag

✓
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12
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◆
. (C.7)

The primes measure the angular velocities in the frame attached to the local
branch, which allows for the computation of the rotational kinetic energy.

The potential energy of deformation, P
b

, is taken as the lowest (quartic)
Taylor approximation satisfying symmetry properties whence
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(C.9)
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Meanwhile the gravity potential is given by
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Here r•,y represents the vertical-component of the position vector r•, and g
is gravitational acceleration. In general, the elastic potential energy depends
on the relative rotation matrix between the branches, causing interesting
mathematical consequences for the dynamics, see [31] for details. Next, the
external force caused by a wind can be introduced as a potential energy
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,
(C.11)

where A• is a coe�cient proportional to the area of beam, namely, A• / `•w•.
Note that the potential energy representation of the external force (C.11)
is used here for convenience; in principle, one can introduce the external
force directly into the Euler-Lagrange equations, which is useful for non-
conservative forces.

In the most general approach, energy dissipation can be computed using
the Rayleigh dissipation function. The dissipation is assumed to be pro-
portional to the component of the velocity of the beam that is parallel to
the normal vector n•. Let v0
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ṙ
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, v0
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be velocities described by the local coordinate system
which is fixed at each beam. The Rayleigh dissipation function can then be
taken as
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(C.12)

where �• = diag(�
x,•, �y,•, �z,•) is the dissipation coe�cient vector (matrix).

We use relative branch velocity for computing the dissipation as we assume
that most of the friction is coming from the relative motion of the branches.
One can also incorporate a similar dissipation function based on the absolute
branch velocities ṙ•, providing an appropriate generalization of (C.12). The
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dissipation in the z-direction in the local coordinate frame should be more sig-
nificant because of the shape of beam. Therefore, the dissipation coe�cient
vector can be approximated as �• ' diag(0, 0, �•), leading to the expression
(10) for the dissipation function. Finally, the Euler-Lagrange equations are
written as

d

dt

@L
@✓̇•

� @L
@✓•

+
@F
@✓̇•

= 0, (C.13)

where L = K
rot

+ K
vel

� P
g

� P
b

� P
e

. This approach can be generalized
further when a particular branch has more than one degree of freedom, i.e.,
when  • and/or '• depend on time. Of course, this situation will make the
equations of motion (C.13) substantially more complicated to write down
and analyze. We refer the reader to [31] for the full mathematical exposition
of the dynamical theory in this general case.
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