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Abstract

Identifying the peptide sequence from a mass spectrum is done either by

database search or De novo peptide sequencing. This thesis focuses on iden-

tification of peptides by using database search, which is a process where an

MS/MS spectrum is searched against an entire database of spectra represent-

ing peptides of known proteins, in order to identify an exact match or a match

with a spectrum of a homologous peptide. In a mass spectrometry experiment,

a database search has two notable challenges: the large size of the sequence

database (search space) and the volume of mass spectra generated during an

experiment (millions of spectra), each of which has to be searched against the

database. The output of a database search depends on the quality of the spec-

trum being searched and on whether the spectrum of the peptide sequence is

in the target database.

One of the ways to address this problem is to use clustering as a prepro-

cessing method. The past literature has shown that for a mass spectrometry

experiment clustering decreases the time taken to perform a database search

and increases the number of acceptable identifications for mass spectra. Clus-

tering reduces the number of spectra undergoing database search by replacing

a large amount of MS/MS spectra with a smaller number of cluster represen-

tatives. It boosts the signal-to-noise ratio (SNR), leading to the identification

of one strong spectrum rather than many unidentified weak spectra.

In this dissertation, we apply various clustering techniques to data ob-

tained from Tandem Mass Spectrometry and study how it affects the number
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of acceptable peptide identifications. To improve peptide identification over

previous work, we propose a new way to extract clusters from HDBSCAN*

hierarchies. We experimentally show that this approach outperforms previous

work in this area and performs comparably with other clustering techniques

from the data mining literature.

We also study well-known cluster validation techniques to identify good

parameter values for the different clustering algorithms and show that these

approaches, unfortunately, do not work well in the context of peptide identi-

fication.
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Chapter 1

Introduction

The past decade has seen many technological advances in almost all fields. The

data explosion is one of the by-products of these advances; thus leaving behind

an enormous amount of data available for analysis. Proteomics is one such

field benefited by data deluge. Proteomic methodologies developed in recent

times make it possible to identify, characterize, and comparatively quantify the

relative level of expressions of hundreds of proteins that are co-expressed in a

given cell type or tissue, or that are found in biological fluids such as serum.

This is a result of all the interdisciplinary research in the field of molecular

and cellular biology, protein/peptide chemistry, bio-informatics, analytical and

bio-analytical chemistry, including the use of various instruments and software

tools such as chromatographic separations and mass spectrometry.

Mass spectrometry instruments produce thousands of spectra representing

peptides in each run, and one experiment may consist of multiple runs, thus,

generating hundreds and thousands of spectra to be analyzed and identified.

One way to analyze and identify these mass spectra is to search each of the

spectra against an annotated database of spectra. Those spectra that do

not get any hit in the database, further undergo more advanced and time-

consuming investigation. More often the mass spectrometry data sets are

redundant in nature as they contain multiple spectra representing peptides

that have the same amino acid sequence. Many of these spectra, when searched

against an annotated database of spectra, do not receive a hit in the database,

as they have low signal-to-noise ratio. On the other hand, the size of the
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database is growing rapidly with the addition of new protein sequences. This

continuous expansion of the database leads to an increase in the search space.

Thus, making the database search more challenging in terms of time and space.

This dissertation addresses these issues by taking advantage of the redun-

dancy found in these large datasets. We cluster peptides (represented by spec-

tra) that have the same amino acid sequences and replace each cluster by its

cluster representative (consensus spectrum). These consensus spectra, when

searched against an annotated database of spectra, result in fewer spurious hits

to the database and increase the number of peptide identifications as compared

to regular non-clustered searches. This increase in peptide identification is be-

cause, the formation of consensus spectra boosts the signal-to-noise ratio (the

probability of two noise peaks appearing at the same point in multiple spectra

that have the same amino acid sequence is low). Clustering replaces the du-

plicate spectra with their representative spectrum, thus reducing the number

of points that undergo a database search. Thereby reducing the time taken to

perform a database search. The cluster consensus spectra which do not get a

hit in the database search, then undergo more advanced search with the aim

to identify novel or post-transitionally modified peptides. Also, the increase

in the number of the peptides identified improves the confidence of protein

identification.

1.1 Related Work

The goal of clustering is to form groups of data that are extremely similar to

one another. In the past, clustering was used on Tandem mass spectra for

various applications. This section discusses at length how various applications

are benefited by clustering mass spectra.

Bandeira et al., in the paper ”Shotgun Protein sequencing by Tandem Mass

Spectra Assembly” [6], defines a clustering method that follows a triangle con-

dition to detect partial and complete overlaps between uninterpreted MS/MS

spectra. In this context, the triangle rule means that, two spectra A and B,

whose similarity is defined as a match score which is above a chosen thresh-
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old, can be in the cluster, if there exists another spectrum C, such that the

similarity between spectrum A and spectrum C, and the similarity between

spectrum B and spectrum C is also above the same chosen threshold. These

discovered clusters of overlapping spectra, when assembled and aligned into

a graph, provide valuable information, which makes it possible to recover se-

quence information where virtually no MS/MS spectrum peaks are available.

Thus, by peptide reconstruction from several partially overlapping peptides,

this approach significantly improves the quality and extent of the de novo

sequencing of an entire protein.

Pep-Miner [7] is a clustering algorithm that demonstrates how clustering

improves analysis of Tandem mass spectra by reducing the runtime and gen-

erating additional peptide identifications. The clustering is performed in two

stages; in the first stage, a transitive closure of MS/MS spectra is computed,

where pairwise similarity is above 0.6 and parent masses differ by 2.5 Da. 1

In stage two the CAST clustering algorithm devised by Ben-Dor et al. [8] is

applied on the members of each of the groups produced in stage I. Pep-Miner

was developed by IBM, and unfortunately is not publicly available and little

information is available on its clustering performance. Pep-Miner also relies

on retention time prediction for clustering quality assurance, calibrating it can

be a challenge when multiple MS runs are being clustered.

In 2008, Frank et al., [18] attempted to cluster large MS/MS datasets

containing over 10 million spectra. They proposed MS-cluster, a new and

efficient clustering approach to cluster large datasets of tandem mass spec-

trometry data. This clustering approach is discussed and explained in detail

in Chapter 2. The method follows a greedy approach, by merging the first

pair of clusters/points that it encounters having the similarity above a chosen

threshold rather than merging first the clusters/points having the highest sim-

ilarity. Clustering replaces the large volume of MS/MS spectra with cluster

consensus spectra. These consensus spectra, when searched against an anno-

tated database of spectra, lead to identification of more spectra as compared

1In this context a transitive closure means if spectrum A is similar to spectrum B and
Spectrum B is similar to spectrum C, then spectrum C is similar to spectrum A.
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to the number of identifications made with a standard database search of non-

clustered data. Frank et al. show that MS-cluster can accelerate database

search by reducing the number of spectra submitted by 10 folds in some cases.

Pride cluster [19] uses a modified version of MS-Cluster, to cluster all the

MS/MS spectra that are submitted to the PRIDE archive [35] repository. It

aids the reliability of identifications in heterogeneous MS experiments. It uses

a modified version of the MS-Cluster, refined to increase the clustering quality.

In contrast to MS Cluster, Pride uses Spectra ST to assess the quality of a

spectrum. The clustering first joins clusters/points with the highest similar-

ity rather than the first pair of clusters/points with a similarity above a set

threshold. Additionally, it checks for non-fitting spectra in a cluster, i.e. if

the similarity between a spectrum in a cluster and the consensus of the cluster

is found to be less than a threshold, then the spectrum is removed from the

cluster. The results from the PRIDE clustering are used to correct inaccu-

rate annotations in the PRIDE database. Pride cluster also uses the cluster

consensus to aid the construction of reliable spectral libraries.

Another application of clustering is shown in the paper ”Sequencing-Grade

De novo Analysis of MS/MS Triplets (CID/HCD/ETD) From Overlapping

Peptides” [20]. This approach also uses a modified version of MS-Cluster to

cluster spectra acquired by various fragmentation methods (Collision-induced

dissociation (CID), Electron transfer dissociation (ETD), Higher-energy col-

lisional dissociation (HCD)) to boost the interpretation of long and highly

charged peptides.

The paper ’Comparison and Evaluation of Clustering Algorithms for Tan-

dem Mass Spectra’ [29] explores different clustering methods on Tandem Mass

Spectra. Peptide annotations by Mascot peptide to spectrum matches for the

non- clustered data are used to evaluate clustering algorithm as opposed to

using annotations for consensus spectrum. The performance of each clustering

algorithm is evaluated based on various evaluation metrics2. Adjusted Rand

2Adjusted Rand Index, purity, the proportion of Spectra remaining, retainment of iden-
tified spectra, the proportion of clustered spectra, the proportion of incorrectly clustered
spectra.
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Index (ARI) is used to compare different partitions of the same dataset. Purity

is another evaluation metric used on the clusters, to control the quality. They

discuss how the cluster analysis can be used in quality control of databases.

Along with it, a new clustering algorithm called N-Cluster is proposed.

To summarize, we see that clustering finds various applications when ap-

plied on tandem mass spectrometry data. First, it reduces the time taken

by a database search by replacing multiple spectra by a single representative.

Second, it increases the number of identified spectra as it boosts the Signal-

to-Noise Ratio (SNR) by combining many low-quality unidentifiable spectra

to generate one high-quality identifiable spectra. Third, it increases the confi-

dence with which de-novo interpretations are made and also helps to identify

novel peptides. Fourth, it can be used as a quality control tool to detect

wrongly annotated spectra in a large database. Fifth, the consensus spectrum

aids in the construction of spectral libraries.

The output of any clustering method depends highly on the selection of

good parameters. Each of the clustering algorithms mentioned requires a pa-

rameter value as an input to effectively carry out clustering. MS-Cluster needs

a similarity threshold and a number of rounds. CAST requires set affinity.

Unfortunately, the literature shows no way to select these parameters. In an

attempt to overcome this we experiment with known internal cluster validation

measures, to guide the parameter value selection.

1.2 Challenges:

All biological data has a certain amount of uncertainty associated with it.

Tandem mass spectra are no exception. These uncertainties can arise from

different sources such as limitation of mass spectrometers in terms of resolu-

tion accuracy, sensitivity, and mass range. Contamination of samples adds

background noise in the data, making it noisy in nature. Though all uncer-

tainties cannot be removed, continuous efforts are being taken to reduce the

sources of uncertainties. Additional challenges are the lack of publicly avail-

able annotated datasets, and the absence of a standard method to validate the
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database search output.

1.3 Contribution

In this dissertation, we apply various clustering techniques to data obtained

from Tandem Mass Spectrometry, and study how it affects the number of ac-

ceptable peptide identifications. The contributions of this thesis are as follows.

Firstly, we use a wide variety of clustering methods to cluster tandem mass

spectra to study its effect on the number of the peptide identified. We use the

clustering algorithms from proteomics literature, along with clustering algo-

rithms from data mining literature. To the best of our knowledge, there is

no such comprehensive comparison of different clustering algorithms on tan-

dem mass spectra in the context of peptide identification to be found in the

literature yet.

Secondly, we propose a new method to extract clusters from HDBSCAN*

hierarchies. The experimental results show that this approach outperforms the

previous work MS-cluster and N-Cluster, and is comparable to other clustering

techniques in the context of peptide identification.

Finally, we study two well-known cluster validation techniques namely Sil-

houette Width Criterion (SWC) and Density Based Cluster Validation (DBCV)

to identify good parameter values for different clustering algorithms with an

aim to increase peptide identification. We show that these approaches, unfor-

tunately, do not work well in this context.

1.4 Outline

This thesis is structured as follows. In chapter 2 we give a basic background of

Tandem mass spectra and the workflow of experiments required to understand

the intuition behind the methodology, described in Chapter 3. Along with it,

we discuss the clustering algorithms proposed in the proteomics literature, as

well as the clustering algorithms proposed in data mining literature, which

we apply on Tandem mass spectra. Chapter 3 explains a new methodology

to extract clusters from HDBSCAN* hierarchies. It also gives details on pre-
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processing spectra, similarity, and the post-processing techniques. Chapter 4

describes the details about the experimental setup. It also presents an exten-

sive experimental evaluation of different clustering techniques on tandem mass

spectra. Chapter 5 summarizes the dissertation and discusses future research

possibilities.
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Chapter 2

Background

2.1 Tandem Mass Spectrometry

Mass spectrometry (MS) is an analytical technique to detect, identify and

quantify known and unknown molecules in a sample. This is done by analyz-

ing the plot that measures the relative abundance of ions, which represents

the structure and chemical properties of the sample molecules. A Mass Spec-

trometer is an instrument that generates this plot. A mass spectrometer has

three components; namely 1) an ionization source 2) the mass analyzer 3) the

detector. The figure 2.1 illustrates the general principle of mass spectrometry.

A sample is ionized to produce gas phase ions. These ions are introduced into

the ionization source of the instrument, where these molecular ions undergo

fragmentation. The fragmented ions are extracted into the analyzer region of

the mass spectrometer, where the ions are sorted and separated according to

their mass (m) to charge (z) ratios (m/z). The separated ions are detected in

the ion detector region of the mass spectrometer. The relative abundance of

each of the resolved ionic species is recorded. This recorded signal is stored

in a data system as a graph of a mass-to-charge vs. intensity called mass

spectrum.

Tandem Mass spectrometry, also known as MS/MS, uses two mass spec-

trometers in tandem. As two spectrometers are used, ions are fragmented

multiple times. Figure (2.2) depicts the formation of tandem mass spectra

(MS/MS). A sample is injected into the first mass spectrometer (MS1), where

it is ionized, accelerated and analyzed, forming MS spectra. Then, ions of a
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a, b, c, x, y, z. Breakage of alkyl-carbonyl (CHR-CO) bond results in a and

x ions. Breakage of peptide amide bond (CO-NH) results in b and y ions.

The cleavage of amino alkyl bond results in c and z ions. If the charge is

retained on the N-terminal fragment, the ion is classified as either a, b or c.

If the charge is retained on the C-terminal, the ion type is either x, y or z. A

subscript indicates the number of residues in the fragment.

Figure 2.6b depicts formation of ions a2, b2, c2, x2, y2 and z2 when the

peptide in figure 2.6a cleaves. The two subscript shows that there are two

residues in each fragment; either R1, R2 or R3, R4. Each peptide can break

into two fragments at multiple sites. By the law of conservation of mass, the

sum of both fragments is equal to the sum of all residual mass. Mass of the

neutral peptide is equal to the sum of the mass of residues plus the nominal

charge on ’N’ terminal and the nominal charge on ’C’ terminal.

From the figure 2.6;

bn = [residue masses + 1]these come from the N-terminus (2.1)

yn = [residue masses +H2O + 1]− these come from the C-terminus (2.2)

Mass of b ions =
∑

(residue masses) + 1(H+) (2.3)

Mass of y ions =
∑

(residue masses) + 19(H2O +H+) (2.4)

Mass of peptide =
∑

(residue masses on fragment) + 1(H+) + 17(OH−)

(2.5)

Mass of b ion +Mass of y ion = Mass of peptide + 2H+ (2.6)

Mass of a ion = mass of b ion–28(CO) (2.7)
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The most commonly occurring fragment types are b-ions and y-ions and partly

a-ions. This is because the peptide amide bond (CO-NH) is the most vul-

nerable and the loss of CO from b-ions form a-ions. Many database search

programs like MS-Tag [22] and SEQUEST [36] only consider these kinds of

ions and in addition to some anions in their algorithms.

When a peptide is fragmented, not all the ions translates into the spectrum.

Only the ions having a minimum of charge one are detected and translated

onto the spectrum.

Figure (2.7) illustrates the fragmentation of a peptide having a sequence

NIDALSGMEGR and shows an example of how the fragments are translated

in the spectrum. This peptide can get fragmented at ten different sites, but

only a few of the fragments are observed in the spectrum. This is because

the fragments did not carry any charge after fragmentation, so they went

unobserved/undetected. When the fragmentation occurs between I and D,

both the fragmented ions b and y (b2 and y2) are recorded but in the case

of fragmentation that occurs between L and S only y-ions (y5) are recorded.

This is because (y5) had more than charge one on it. However, (b2) was not

recorded, as it did not carry any charge. In the same figure, there are peaks

which do not correspond to any fragments and which are considered as noise

peaks.

2.1.2 Database search

In a database search, a peptide sequence is identified with the help of a se-

quence database. Each MS/MS spectrum acquired from the experiment is

searched against a theoretical database. The database search returns possible

matches with a score for each spectrum. The method/algorithm of compar-

ison and the mathematical scoring between the acquired and the theoretical

spectrum vary widely between different database search engines. The score

generally represents the degree of match between the experimental spectrum

and the theoretical spectrum. There are different database search engines

which perform a database search. A few examples are Mascot [12], SEQUEST

[36], InsPect [34] and X!Tandem [13]. Many of them are propriety and licensed
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(a) All annotation sites of peptide

(b) Six backbone fragments.

Figure 2.6: Six main backbone fragments formed by fragmentation [14]
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Figure 2.8: A schematic showing the concept of MS/MS database searching

of the spectrum. As a significant number of spectra are not correctly identi-

fied (due to various reasons), the set of matches obtained contain many false

positive matches. Thus, one needs to filter the search results and asses the

reliability of selected identifications. For a group of identifications rather than

deciding which identifications are correct and which are incorrect, it is easier

to estimate the proportion of incorrect identifications. This is the problem

of False Discovery Rate (FDR). The target-decoy search strategy is a simple

and useful tool to estimate FDR. The target-decoy search strategy allows the

estimation of how many False Positives are associated with an entire dataset
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and helps to select the above-mentioned threshold. In this strategy, the spec-

tra in addition to being searched against the target database are also searched

against an equal-size decoy database. Any hit in the decoy database is a false

hit and helps to estimate the false positive rate. For an acceptable FDR value

V ,the cutoff for the matching score is selected such that the set of matches

above the cutoff value has at most an FDR of V ; all the matches below the

cutoff are filtered out.

A decoy database is constructed by shuffling, randomizing or reversing the

target database. There are two ways to search in a target-decoy database

(TD). Either a spectrum can be searched separately in a target and a decoy

database, or it can be searched against the concatenated database of target and

decoy database, each with different assumptions on target decoy competition

and false-positive estimation. Figure 2.9 taken from [4] illustrates the two

database search strategies.

When a spectrum is searched separately in target and decoy databases, it

yields one best match from target and decoy. Kall et al. [24] proposes a simple

method to calculate FDR given by the equation 2.8

FDRs =
D

T
(2.8)

where, D is number of hits in decoy above threshold and T is number of hits

in target database above threshold.

When a spectrum is searched against one unified target-decoy database,

it gets a match either from target or decoy but not both. Elias et al. [15]

provides a method to calculate FDR for target-decoy searches. This method

has an underlying assumption that for any number of decoys (D) passing a

given threshold, there are an equal number of false hits in target peptide

spectrum match (PSMs) (T) above that threshold. Adding up the false hits

in decoy and target, the number of false positives is, therefore, double of the

decoy count above the threshold. The equation 2.9 shows how to calculate

FDR in this case.

FDRc =
2XD

T +D
(2.9)

17



where, D is number of hits in decoy above threshold and T is number of hits

in target database above threshold.

Figure 2.9: A diagram showing two database search strategies.

2.2 Clustering

Cluster analysis is an analytical and an exploratory tool, which helps us to

study and analyze data. Cluster analysis divides data objects into groups

called clusters. These groups contain data objects that are similar to each

other and dissimilar to data objects in another group. Clusters are formed

based on the information contained in the data objects and the relationship

between them. Different clustering technique/algorithm divides the same set

of data in different ways. Figure 2.10 shows different partitions of the same

dataset. Thus, not all clustering technique would work well for all data.

Most common techniques such as K-Means [25] and spectral clustering
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Figure 2.10: Different Ways of clustering same set of data points

[27] require the number of clusters being sought in advance. Other clustering

techniques such as Brich [37] and Gaussian mixture models have parameters

that are difficult to estimate. And few clustering techniques like mean shift

algorithm [11] are not scalable. But, the nature of MS/MS dataset rules out

the use of these algorithms, as it is impossible to guess the number of clusters

in advance. Scalability of a clustering algorithm is important because of the

sheer volume of data. Clustering techniques can be divided into partitioning,

hierarchical and density-based methods. We explore our data on various hi-

erarchical clustering techniques and density-based clustering techniques. In

this section, we describe all the clustering techniques that we use from the

literature.

For explanation of all the algorithms below, we will assume a dataset con-

taining points D = {x1, x2, ..., xn} of n d-dimensional data objects. The pair-

wise distances can be represented by a
[

n ∗n
]

matrix, Xdist, with any element

of the matrix Xi,j = dist(xi, xj), 1 ≤ i, j ≤ n, where dist(xi, xj) is some distance

measure between data objects xi and xj.

2.2.1 DBSCAN

DBSCAN [17] is a clustering technique that views clusters as regions of high

density separated by regions of low density. The algorithm defines a cluster

as a maximal set of density-connected points. The algorithm DBSCAN is
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described below in detail as presented by Ester et al. in [17]. It takes two

global parameters ε and minpts, which define the local density of a point Xp

that belongs to dataset D.

• ε : maximum distance between two points to be considered in the same

neighborhood. The definition of ε neighborhood of a point is given by

definition 1.

• minpts : Minimum number of points to be considered in the ε neighbor-

hood.

Definition 1. ε neighborhood of a point : The ε neighborhood of a point

Xp, denoted by Nε(Xp), is defined by Nε(p)={q ∈ D|dist(Xp, Xq) ≤ ε}.

Every point Xp in the dataset D can be classified into 3 categories. The

area where a point has more number of data points than minpts in the ε

neighborhood is called dense.

1. Core point : A point is a core point if it has more than a specified

number of points, (minpts) within ε.

2. Border point : A border point has less number of points than minpts

within ε, but is in the neighborhood of a core point.

3. Noise : A point which is neither a border point nor a core point. Def-

inition 6 formally defines the noise which is also known as outliers in a

dataset.

Figure 2.11 illustrates an example of core , border and noise points for

minpts 4 and ε as one unit distance.

Definition 2. Directly density reachable: A point Xp is directly density

reachable from a point Xq w.r.t. ε, minpts if

1. Xp ∈ Nε(Xq) and

2. |Nε(Xq)| ≥ minpts(core point condition)
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Definition 4. Density-connected : A point Xp is density connected to a

point Xq w.r.t. ε and minpts if there is a point Xo such that both, Xp and Xq

are density-reachable from Xo’ w.r.t. ε and minpts.

Figure 2.13 shows the density connectivity of points Xp and Xq via Xo.

Figure 2.13: Point Xp and Xq are density-connected to each other by point
Xo.

Formally the density based clusters are defined as:

Definition 5. Cluster: For a dataset of points D, a cluster C w.r.t. to minpts

and ε is defined as a non-empty subset if D satisfying the following condition.

• Maximality Condition: ∀ Xp, Xq: if Xp ∈ C and Xq is density-reachable

from Xp w.r.t. ε and minpts, then Xq ∈ C.

• Connectivity condition: ∀ Xp, Xq ∈ C and Xq is density-connected to Xq

w.r.t. ε and minpts.

Definition 6. Noise: Let C1,C2,...,Ck be the clusters of the database D w.r.t.

parameters εi and minptsi, i = 1,2,...,k. Then the noise is defined as a set of

points in the database D that do not belong to any cluster Ci.

noise = {Xp ∈ D|∀i : Xp /∈ Ci}

Clustering starts with an arbitrary random point, which does not have a

label. All the points in the ε neighborhood of this point are retrieved, if the

number of points exceeds the minpts, a cluster is started. Otherwise, the point

is assigned a noise label. It is possible that a point which is initially labeled

as noise point may later be found in a sufficiently sized ε- neighborhood of a
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different point and is assigned a cluster label. If a data point Xp is found to

be in a dense part of a cluster C, then, all the ε neighborhood points of this

point Xp, by default becomes the part of the cluster C. This process continues

until the complete density-connected cluster is found. Then, a new unlabeled

data point is selected, and the entire process is repeated until all data points

are assigned a label. Algorithm 1 describes the pseudo code for DBSCAN.

Algorithm 1 Pseudo algorithm for DBSCAN

Input: DataSet D, ε,minpts

Output: Cluster Labels
1: procedure DBSCAN(cc)
2: Given data set D, compute the distance matrix, Xdist

3: for every point Xp in D, which is not assigned to cluster do
4: compute number of the point in the ε neighborhood
5: if number of points ≥ minpts then . if core point or not
6: Assign the point Xp and the . This will take
7: points that are directly density . into account for
8: reachable to the point . all border points
9: Xp a cluster label.
10: end if
11: end for
12: for points in D, which as no cluster label do
13: Assign them null label . Noise Label
14: end for
15: end procedure

2.2.2 Hierarchical Clustering

Hierarchical clustering [23] algorithms build a hierarchy of clusters, a structure

that is more informative than the unstructured set of clusters returned by flat

clustering. Hierarchy is a set of nested clusters represented as a tree. This tree

is formed when the data points iteratively change their cluster membership.

This hierarchy of cluster and its sub-clusters is represented in the form of a

tree and can be visualized with the help of a dendrogram. Figure 2.14 shows

a visual example of data points, a clustered result, and the corresponding

dendrogram [33].

Hierarchical clustering can be categorized as agglomerative (bottom-up)

and divisive (top-down) approaches. The divisive approach starts with all the
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threshold.

Linkage criteria determine the distance between the sets of observations

–i.e., the (dis)similarity between two clusters Ci and Cj. Three widely known

linkage criteria that we use in our experiment are given by :

• Maximum or complete-linkage.

max {dist(xi, xj) : xi ∈ Ci, xj ∈ xj} (2.10)

• Minimum or single-linkage.

min {d(xi, xj) : xi ∈ Ci, xj ∈ xj} (2.11)

• Mean or average linkage.

1

|Ci||Cj|

∑

xi∈Ci

∑

xj∈Ci

dist(xi, xj) (2.12)

where |.| represents the cardinality of the set.

An illustration of the same is given in figure 2.16.

2.2.3 Hierarchical DBSCAN*- HDBSCAN*

The HDBSCAN* [10] algorithm is a hierarchical version of DBSCAN* which

is a reformulation of DBSCAN [17]. DBSCAN* conceptually finds clusters

as connected components of a graph in which the objects of dataset D are

vertices, and every pair of vertices is adjacent only if the corresponding objects

are ε-reachable w.r.t. the parameters ε and minpts. It defines a density-based

cluster based on core objects alone. We describe the algorithm HDBSCAN*

in detail as presented in [10] .

Algorithm DBSCAN*

Definition 7. Core Object: An object Xp is called a core object w.r.t. ε

and minpts if its ε-neighborhood, Nε(.), contains at least minpts objects, i.e.,if

|N(Xp)| ≥ minpts, where N(Xp) = {X ∈ D|dist(X,Xp) ≤ ε} and |.| denotes

cardinality of the enclosed set. An object is called noise if the object is not a

core object.
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Figure 2.16: Linkage criteria for hierarchical clustering

Definition 8. ε-reachable: Two core objects Xp and Xq are -reachable w.r.t.

and minpts if Xp ∈ Nε(Xq) and Xq ∈ Nε(Xp).

Definition 9. Density-Connected: Two core objects Xp and Xq are density

connected w.r.t. ε and minpts if they are directly or transitively ε-reachable.

Definition 10. Cluster: A cluster C w.r.t. ε and minpts is a non-empty

maximal subset of D such that every pair of objects in C is density-connected.
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HDBSCAN*

HDBSCAN* [9] is based on the concept that a hierarchy can be built from

different levels of density. This density is based on different values of ε. HDB-

SCAN* can be explained based on the following definitions:

Definition 11. Core distance: The core distance, dcore(xp), of an object

xp ∈ ’D’ w.r.t. minpts is the minimum distance between xp to its minpts-

nearest neighbor including the point xp.

Definition 12. ε core object: An object xp ∈ ’D’ is called an ε-core object

for every value of ε that is greater than or equal to the core distance of xp w.r.t

to minpts.

Definition 13. Mutual reachability distance: The mutual reachability

distance between two objects xp and xq in the dataset ’D’ w.r.t. to minpts is

defined as dmreach (xp; xq) = max { dcore (xp), dcore (xq) ,dist(xp; xq)}

Definition 14. Mutual Reachability graph: It is a complete graph Gmpts
,

in which the objects of the data set D are vertices and the weight of each edge

is the mutual reachability distance (w.r.t. mpts between the respective pair of

objects.

From definitions 10, 12 and 14, it can be deduced that the clusters created

according to DBSCAN* w.r.t partitions for ε ∈ [0;1) can be produced in a

nested and hierarchical way by removing edges in decreasing order of weight

from the graph Gmreach. This is equivalent to applying Single Linkage on a

transformed space of mutual reachability distances and then making a hori-

zontal cut at ε. The set of connected components obtained are clusters while

the singleton objects are noise objects. All possible levels in a hierarchy can be

extracted by removing one edge at a time with decreasing values of ε starting

with the highest value ε of from the graph Gmreach.[33]

A density-based cluster hierarchy represents the fact that an object o is

noise below the level l that corresponds to o’s core distance. To express this in

a dendrogram, we can include an additional dendrogram node for o at level l
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Algorithm 2 HDBSCAN* Main Steps

Input: Dataset D, Parameter mpts

Output: HDBSCAN* hierarchy
1: procedure HDBSCAN(mpts)
2: Given data set D, compute the distance matrix, Xdist

3: From Xdist compute the core distances of all the data objects in D,
w.r.t. mmpts.

4: Compute a Minimum Spanning Tree of the Mutual Reachability Graph,
Gmreach

5: Extend the MST to obtain MSText, by adding a self loop edge” for
each vertex with weight equal to that of its core distance, dcore(xp).

6: Extract the HDBSCAN* hierarchy as a dendrogram from MSText.

(a) All the objects are assigned to the same label, thus forming the root
of the tree.

(b) Iteratively remove all edges from MSText in decreasing order of
weights.

(i) Edges with the same weight are removed simultaneously.

(ii) After removal of an edge, labels are assigned to the connected
components that contain one vertex of the removed edge. A new
cluster label is assigned if the component has at least one edge
in it, else the objects are assigned a null label, indicating it to be
a noise object.

7: Output:Hierarchy
8: end procedure
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• The component shrinks but remains connected, up to a density threshold,

at which either

• The component is divided into smaller ones, called a true split”, (or)

• The component disappears.

Based on the above conditions, the HDBSCAN* hierarchy is simplified into

a hierarchy consisting only those levels where there is a true split or the levels at

which an existing cluster disappears. The other levels of the hierarchy, where

the noise objects are removed from the cluster (where a particular component

has shrunk), are not explicitly maintained in a simplified hierarchy.

For a connected component to be considered a cluster, many applications

require that there be a minimum number of data objects in a group. HDB-

SCAN* hierarchy accommodates this by the use of a parameter minclSize. The

parameter minClSize specifies the smallest size of a connected component to

be considered as a cluster.

The step 6.(b).(ii) of Algorithm 2, can be generalized to accommodate the

parameter minclSize and is described in Algorithm 3.

Algorithm 3 HDBSCAN* with optional parameter minclsize ≥ 1

1: 4.2.2. After removal of each edge, process the cluster that contained the
removed edge (one at a time) as follows:

(a) Label spurious sub-components as noise by assigning them the null
label. If all the sub-components of a cluster are spurious, then the
cluster has disappeared. A sub-component is termed as spurious, if
the number of vertices’s in the sub-component are less than minclsize.

(b) If there is a single sub-component of a cluster that is not spurious,
then the original cluster label is maintained. This means that the
cluster has shrunk.

(c) If there are two or more sub-components of a cluster that are not
spurious, assign new labels to each of them. This means that the
parent cluster has not split into two clusters.
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Extraction of Prominent Clusters

To extract prominent cluster from the cluster tree by non-overlapping parti-

tioning, that is either a parent cluster or its child clusters can be selected for

the partition, but not both. Campello et al. [10] employ a Framework for

Optimal Selection of Clusters (FOSC). It uses a bottom-up approach to select

the clusters with the best total score from the cluster tree.

Cluster stability is the scoring method used to score each cluster in a cluster

tree. The intuition behind stability is that more prominent clusters tend to

survive for a longer duration after they appear. Stability of a cluster depends

on the lifetime of a cluster as well as the individual density profiles of all data

objects present in that cluster. This is because each data object belonging to

a cluster can become noise at a density different from the density at which the

cluster splits or disappears. The contribution of a data point Xo that belongs

to cluster ’Ci’ is equal to the difference between the density level at which

Xo becomes a member of Ci and the density level at which Xo is no longer a

member of Ci, and is defined as

λmax(Xo, Ci)− λmin(Ci) (2.13)

where, λmax(xp;Ci) is the maximum density at which the data object Xo

belonged to the cluster, i.e., the density at which the object Xo or cluster Ci

disappears or the density at which the cluster membership of the object is

changed; and, λmin(Ci) is the threshold at which the cluster Ci first appeared.

Using the definition 2.13 , the stability S(Ci) of a cluster Ci can be defined

as

S(Ci) =
∑

xj∈Ci

(

λmax(xp, Ci)− λmin(Ci)

)

=
∑

xj∈Ci

(

1

εmin(xj, Ci)
−

1

εmax(Ci)

)

(2.14)

Using this definition of cluster stability, we extract cluster from the cluster

tree, with maximized overall aggregate stabilities.

Process every node except the root, starting from the leaf clusters (bottom-

up), deciding at each node Ci whether Ci or the best-so-far selection of clusters

in Ci’s subtree should be selected. This is done by comparing the score of
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Algorithm 4 A pseudo algorithm for approximate hierarchical clustering

Input: DataSet D, τmin,r
Output: Cluster Labels
1: procedure MS-Cluster(cc)
2: Initialization
3: δ ← 1−τmin

r

4: Clusters ← {{X1}, {X2}, ..., {Xn}}
5: r’ ← 1
6: while r’≤ r do
7: for every cluster c in Clusters do
8: for every cluster c’ preceding c in Clusters do
9: if similarity (c,c’) >τ then
10: append c to c’
11: remove c from Clusters
12: end if
13: end for
14: end for
15: r’=r’+1
16: end while
17: Output:Clusters
18: end procedure

clusters preceding in the cluster list. If the similarity between C and C ′ is

above the set similarity threshold, then merge the two clusters, i.e., append

data points in C to data points in C ′ and remove the cluster C from the cluster

list. The similarity between two clusters is the similarity between their cluster

representative.

2.2.5 Neighbor clustering (N-cluster)

The idea behind the N-Cluster algorithm, proposed by [29] Rieder et al. is

that the center of a cluster should have many neighbors within some distance

threshold c. The method works as follows. For every point, compute the num-

ber of neighbors within the distance of c. Select the point with the highest

number of neighbors. Assign a new cluster label to all the points in the neigh-

borhood of this point along with the point itself. Mark the points with only

one neighbor (the point itself) as singletons. Remove all the points which are

assigned a label from the dataset, and repeat the procedure on the remaining
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dataset until all the points have a cluster label. The pseudo code for this

algorithm is described in algorithm 5.

Algorithm 5 A pseudo algorithm for Neighbor clustering N-cluster

Input: Data Set D, c
Output: Cluster Labels
1: procedure N-Cluster(cc)
2: for All points not labeled, calculate the number of neighbors in an c

distance. do
3: Elements with only one neighbor are singleton clusters; assign them

individual cluster label (singleton cluster).
4: Select the point with most neighbors and its neighbors and assign

them a new cluster label.
5: Remove the clustered points from the dataset D.
6: Repeat steps 2 - 4 until all points are assigned a label.
7: end for
8: Output:Clusters
9: end procedure

2.2.6 Cluster validation

Internal validation is one type of clustering evaluation, which evaluates the

goodness of clustering without any external information. The two internal

cluster validation measures that we use to evaluate clustering methods are:

• Silhouette Width Criterion (SWC)

• Density based Cluster validation (DBCV)

We choose SWC because it is one of the commonly employed measures to

validate clustering results. We also chose DBCV another cluster validation

technique, as it is shown to perform better for density-based clusters [26].

Silhouette Width Criterion (SWC)

The silhouette width criterion [31] measures how similar an object is to other

objects in the same cluster (cohesion) compared to other clusters (separation).

The silhouette width of a point Xi ∈ cluster Ck is defined as
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s(i) =
b(i)− a(i)

max((a(i), b(i)
(2.15)

where,

a(i) is defined as the mean distance of point the Xi to the other points in Ck.

b(i) is defined as the smallest average distance of Xi to all points in any other

cluster, of which Xi is not a member.

If d(Xi, Ci) represents average similarity of Xi to all points of Ci, where i 6= k

, then b(i) is denoted as min
Cii 6=k

(d(i,Ck))

Silhouette width of the point is a quantity between −1 and 1: a value near

1 indicates that the point Xi is assigned to the right cluster whereas a value

near −1 suggests that the point should be assigned to another cluster.

The mean of the silhouette widths for a given cluster Ck is called the cluster

mean silhouette and is denoted as sk:

sk =
1

nk

∑

i∈Ck

si (2.16)

Finally, the global silhouette index is the mean of the mean silhouettes through

all the clusters:

C =
1

K

K
∑

k=1

sk (2.17)

Adjusted Silhouette coefficient

Partitions generated with density-based algorithms like DBSCAN and HDB-

SCAN* may contain noise points. Silhouette width criterion when applied

directly to the partitions generated by density-based clustering, would give

a wrong measure, as it would consider all noise points as a cluster. Silhou-

ette coefficient is not equipped to handle noise. To make a fair comparison

with other clustering algorithms which do not produce noise, we need to find

a corrective measure. One common remedy is to assign each noise point to

a singleton cluster, but doing this will result in reduced overall separation,

degrading the results of the measure. We follow the approach suggested by

Moulavi et al. [26], where we remove all noise points, calculate the SWC and
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penalize the score for lack of coverage. This approach helps to deal with noise

appropriately. We first evaluate the silhouette measures only on cluster points

and multiply it with the correcting coefficient given by equation 2.18

correcting coefficient =
|O| − |N |

|O|
, (2.18)

where |O| is the number of objects in the dataset, |N| number of noise points.

Density based Cluster validation (DBCV)

Density-based cluster validation (DBCV) is developed by Moulvi et

al. [26] explicitly for density-based clustering methods. It takes into

account the properties of density and shape of clusters and also deals with

noise. DBCV is defined in terms of the lowest density region in each cluster

and the highest density region between pairs of clusters. We explain DBCV

in detail as presented in [26]

Definition 15. Core Distance of an Object : The all-points-core-distance

(inverse of the density) of an object o, belonging to cluster Ci w.r.t. all other

ni-1 objects in Ci is defined as:

aptscoredist(o) =

(

ni
∑

i=2

( 1
KNN(o,i)

)d

ni − 1

)− 1

d

(2.19)

Definition 16. Mutual Reachability Distance : The mutual reachability

distance between two objects oi and oj in O is defined as

dmreach(oi; oj) = max(aptscoredist(oi); aptscoredist(oj); d(oi; oj)) (2.20)

Definition 17. Mutual Reachability Distance Graph : The Mutual

Reachability Distance Graph is a complete graph with objects in O as vertices

and the mutual reachability distance between the respective pair of objects as

the weight of each edge.

Definition 18. Mutual Reachability Distance MST : Let O be a set

of objects and G be a mutual reachability distance graph. The minimum

spanning tree (MST) of G is called MSTMRD
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Definition 19. Density Sparseness of a Cluster : The Density Sparseness

of a Cluster (DSC) Ci is defined as the maximum edge weight of the internal

edges in MSTMRD of the cluster Ci, where MSTMRD is the minimum spanning

tree constructed using aptscoredist considering the objects in Ci.

Definition 20. Density Separation: The Density Separation of a Pair of

Clusters (DSPC) Ci and Cj , 1≤i; j≤ n; i 6= j, is defined as the minimum

reachability distance between the internal nodes of the MSTMRDs of clusters

Ci and Cj .

Definition 21. Validity Index of a Cluster: We define the validity of a

cluster Ci, 1≤ i ≤ n, as:

Vc(Ci) =
min

1≤j,j 6=i

(

DSPC(Ci, Cj

)

−DSC(Ci)

max

(

min
1≤j,j 6=i

(

DSPC(Ci, Cj)
)

, DSC(Ci)

) (2.21)

Definition 22. (Validity Index of a Clustering) The Validity Index of the

Clustering Solution C = Ci, 1≤ i ≤ n is defined as the weighted average of the

Validity Index of all clusters in C.

DBCV (C) =
i=n
∑

i=1

|Ci|

|O|
VC(Ci) (2.22)

DBCV index value lies in-between -1 and 1, and a higher value indicates

better density based clusterings. A positive validity index of a cluster means

that the cluster has better density compactness as compared to separation, on

the other hand, a negative validity of index of a cluster means that the density

inside a cluster is lower than the density that separates it from other clusters.
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Chapter 3

Methodology

In this section, we define a new methodology to extract clusters from HDB-

SCAN* hierarchies. Furthermore, we describe all pre-processing and post-

processing methods required to carry out experiments successfully.

3.1 Pre-Processing

The output of a mass spectrometry experiment is in the form of a raw file. The

raw file is filtered and processed before analyzing. The raw files are converted

to mzXML file format using msConvert [3]. We convert this mzXML file

to individual text files with extension .dta. Each dta file contains a peak

list representing a single mass spectrum (MS/MS). The first line of this file

contains the mass of a singly protonated peptide (MH+) and the peptide

charge state as a pair of space-separated values. Subsequent lines contain

space separated pairs of fragment ion m/z and intensity values (I). Figure 3.1

depicts the peak list in the .dta file.

The number of peaks in each spectrum can vary from a few hundred to

thousands. Most of these peaks are noise peaks. Thus, a method to remove

unwanted noise peaks is profitable. From the literature, we follow two ap-

proaches to prune the noise peaks.

3.1.1 Top k peaks:

Frank et al.[18] choose the k strongest peaks, where k depends on the mass of

the peptide also called as parent mass. They propose to select 15 peaks per
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Figure 3.1: Peak list in a ’.dta’ file.

1000 Da of the parent mass. Equation 3.1 shows how to calculate the number

of peaks k for each spectrum. Each spectrum is represented by the calculated

top k strongest peaks.

k =

⌊

j
Parent Mass (inDa)

1000
∗ 15

⌋

(3.1)

where, bXc denoted the integer part of X.

3.1.2 Top 20 peaks:

It is intuitive that two spectra that belong to the same peptide (have the same

amino acid sequence) would a have strong correspondence between their N

strongest peaks. N was found out to be 20 by Bandeira et al. [6] by analyzing

the peak annotation histogram of spectra, which exhibited an extremely low

percentage of b/y ion peaks outside top 20 intensity peaks.

3.1.3 Prefix Residue Mass Spectrum:

Given a spectrum S having peaks at masses {m1,m2,m3...,mn} with intensity

{I1, I1..., In}, and peptide mass equal to Mp, the inverse of S is defined as

S̄ having masses in {m̄1, m̄2, m̄3..., m̄n} with intensities {I1, I1..., In} where

m̄i = Mp −m, for1 ≤ i ≤ n.

The Prefix Residue Mass Spectrum (PRM) of a spectrum S is given by:

PRM(S) = S ∪ S̄ (3.2)
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This method cannot be applied to the experimental spectra since an exper-

imental spectrum contains m/z instead of mass for a peak. As we know, the

peptides with a precursor charge +2, predominately produce peaks of charge

+1, which makes m/z equals to m. Thus we calculate the PRM spectrum only

for those spectra that have a peptide charge of +2. Each peak in a spectrum

S with a peptide charge of +2, results in two peaks at, one at m and one at

mP −m with the same intensity as in spectrum S, in the PRM spectrum. This

PRM spectrum is symmetric around mp/2.

3.2 Similarity as a Distance measure

A distance measure is crucial for any clustering algorithm. All clustering al-

gorithms require some measure to determine (dis)similarity between the data

points in order to cluster them. The performance of the clustering technique

is heavily dependent on how good this measure is. We experiment with two

different kinds of similarity measures which we transformed into distance mea-

sures:

• Cosine similarity.

• Spearmans correlation.

3.2.1 Converting a spectrum into its intensity vector

To calculate the similarity between two spectra S, S ′ (where each spectrum is

a list of [m/z, I] values), we reduce each spectrum to an intensity vector. To

accomplish this, we first join the two sets of m/z values into a sequence M

and filter out duplicate elements. Then we sort the elements in M according

to their values to obtain the sequence M ′ = [m1,m2,m3, ...mn]. From the

smallest value of M ′, m1 to the largest value of M ′, m1, we create bins of size

0.5, starting at the bm1c to dmne .

Each bin represents one element (axis) of the vectors s and s
′

of the length

2 ∗ (dmne − bm1c). For each bin, we check if S has peaks in the m/z range of

the bin. If yes, then fill in the intensity value of the bin as the sum of all the
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intensities of the peaks found in the range of the bin, else if there is no peak

in the m/z range of the bin, we just set the value of the bin in vector s to 0.

Similarly we calculate the vector s′ for S ′.

Note that, we consider two peaks to be comparable if their m/z values lie

between 0.5 m/z units.

3.2.2 Cosine Similarity

The normalized dot product is used as a measure of similarity between two

MS/MS spectra. This measure has been found to work with several groups

approaching similar problems [7, 18, 28, 32]. The normalized dot product

between two spectra S and S ′, represented by intensity vectors si and s′i,

respectively, is given by:

Similarity(S, S ′) =

∑t

i=1 si.s’i
√

∑t

i=1(si)
2.
∑t

i=1(s’i)
2

(3.3)

This similarity between two spectra takes values that range from 0 (no

common peak or different spectra) to 1 (total similarity). Equation 3.4 gives

the dissimilarity between a pair of spectra and is used as a distance measure

to carry out clustering.

Distance(S, S ′) = Dissimilarity(S, S ′) = 1− Similarity(S, S ′) (3.4)

3.2.3 Spearman Correlations

Pearson correlation between two spectra S and S’ represented by intensity

vectors si and s’i, respectively, is the covariance of the two vectors divided by

the product of the standard deviations and is defined by

rSS′ = Corr(si, s
′
i) =

Cov(si, s
′
i)

√

V ar(si)
√

V ar(s′i)
(3.5)

Spearman correlation between S and S’, given by ρ(S, S ′) is a nonparamet-

ric version of the Pearson correlation and is defined as the Pearson correlation

coefficient between the ranks of two sequences of intensities. As Spearman

correlation does not assume that both datasets are normally distributed as
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compared to Pearson correlation, we choose Spearman correlation as another

method to calculate the similarity between two spectra. The value of the

Spearman correlation varies between -1 and +1 with 0 implying no correla-

tion. A correlation value of -1 or +1 implies an exact monotonic relationship.

Equation 3.6 gives the dissimilarity between a pair of spectra and is used

as a distance measure to carry out clustering.

Distance(S, S ′) = Dissimilarity(S, S ′) = 1− |ρ(S, S ′)| (3.6)

where, |X| denotes the absolute value of X.

3.3 Representative Consensus spectrum:

In this section, we describe two methods to generate a cluster representative

called consensus spectrum. This consensus spectrum is searched against a

spectral database to yield a match. A cluster representative (consensus spec-

trum) is generated by combining all the members of a cluster. We experiment

with two known methods from the literature to generate a cluster representa-

tive, described below:

3.3.1 Average Consensus method:

Beer et al.[7] proposed a method of calculating cluster representative by the

summing the intensity of peaks whose m/z is within the tolerance of 0.4 Da

units. The m/z value of these peaks in the consensus spectrum is simply the

average of m/z of the joined peaks.

3.3.2 Weighted Consensus method:

Another way to combine all the spectra, that belong to a cluster into a consen-

sus spectrum is given by Frank et al. [18]. This method consolidates the peaks

of all spectra in the cluster as a weighted average. Each consensus peak is as-

signed the m/z that equals the weighted average of the joined peaks’ masses

and intensity that equals the sum of the joined peaks’ intensity (Two peaks

are considered the same if the m/z is within 0.4 Da.).
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Figure 3.3: Pipeline of the entire experiment

3.5 Modification to HDBSCAN* cluster ex-

traction

HDBSCAN* and DBSCAN clustering techniques discover arbitrarily shaped

density-based clusters. By definition, all the points in a cluster discovered by

HDBSCAN* and DBSCAN are density connected. In some cases, at a specific

density, two points in the same cluster may not be similar enough to belong

to the same group for this application. For example, if we look at the figure

3.4, HDBSCAN* and DBSCAN would place the points Xp and Xq into the

same cluster. For this application, Xp and Xq represent two different spectra,

which are very distant and have low similarity to each other. This results in a

heterogeneous cluster of spectra (the cluster contains, spectra that belong to

different peptide sequences), which is undesirable.

To cope with this issue, we propose to limit the diameter of each cluster

to a selected maxdiameter. We do this by extracting clusters, whose diameter

is not more than the set maxdiameter, from the HDBSCAN* hierarchies. The

diameter of a cluster Ci is give by the definition 23.

Definition 23. Diameter of Cluster: Diameter of cluster Ci = {Xi} i≥ 1

and i ≤ n is defined as the maximum distance between all pairs of points in

the cluster Ci; and it is represented by the equation 3.7.

diameter(Ci) =

{

max(dist(Xi, Xj), where Xi, Xj ∈ Ci, if Ci is a non leaf node.

0, when Ci is a leaf node.]

(3.7)
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if there exists an edge between them in the MST. The distance between other

pairs of points in the cluster could be ≥ d. Thus, it is very much possible

that the diameter of a cluster can be greater than d. On the other hand, our

method guarantees that the diameter of each cluster can never be greater than

d.

Figure 3.5 shows a dendrogram and the MST for 9 points, namely a, b, c, e, f, g, h, i.

in a 2D space. A cut is at a distance d, forms two connected C1 and C2.

Amongst all pairwise distance in C2, the distance between the points e and i

is largest (because of the chain). Thus making the distance between the points

e and i as the diameter of the cluster C2.From the figure, it is evident that the

distance between the points i and e is ≥ d.
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Chapter 4

Experiments, Results and
Discussion

4.1 Experimental setup :

In this section, we describe all the details about the data and how experiments

were carried out.

We use the published data [30] containing 27 MS/MS runs sampled from

five sequenced organisms and four organisms without a sequenced genome. For

our experiments, we use two MS/MS datasets from this published data belong-

ing to two different organisms out of five, namely, (i) human (Homo sapiens,

H, HeLa cell line), (ii) roundworm (Caenorhabditis elegans, C). Along with

these, we use a smaller data set of 500 MS/MS spectra collected by Dr. Zukui

Li at the University of Alberta. These spectra belong to 89 different peptides.

We carry out pilot experiments on this smaller dataset. From the result of

the pilot experiments, we select the best similarity and consensus generating

method and parameters for clustering. The tests on the more massive datasets

are carried out based on these selections.

The techniques described in Chapter 3, give us four different ways to pre-

process the dataset. The first way is to transform each spectrum in a dataset to

its strongest 20 peaks (we refer to this pre-processing as ”top20”). The second

way is to transform each spectrum in a dataset to its strongest k peaks where

k depends on the mass of the precursor ion (we refer to this pre-processing as

”top k”). Additionally, each spectrum pre-processed using the ”top 20” and
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”top k” can further be pre-processed to their PRM spectra. This generates

two more pre-processed datasets, i.e., ”top 20 PRM” and ”top k PRM.”

To speed up the calculation of the distance matrix, we use a heuristic

where the similarity between the two spectra is only calculated if the precursor

peptide mass of two spectra is within 2.5 Da (this will allow isotopes of a

peptide to be in the same cluster); else the similarity is directly set to 0 for

Spearman’s correlation and 1 for cosine (most dissimilar).

The InsPect database search tool is used to perform peptide identification

using default search parameters (precursor mass in the tolerances of 2.5Da

and fragment ion tolerance of 0.5Da). The shuffle decoy database is created

and added to the sequence database by the InsPect tool. The concatenated

database (decoy and target) is used to perform peptide identification. The

InsPecT F-score threshold value for accepting identifications was selected to

ensure the true positive identification rate of 98%. That is 2% FDR.

Table 4.1 illustrates the sequence databases used for identification of pep-

tides. These sequence databases (in the form of FASTA file format) are down-

loaded from UniProt, the universal protein knowledgebase [5]. UniProt has

two sections, one that is manually reviewed and curator-evaluated and other

that is computationally analyzed. Swiss-Prot is the manually annotated and

reviewed section of the UniProt Knowledgebase. TrEMBL is the unreviewed

section. As the origin of the smaller dataset is unknown, it is searched against

all the entries in the swiss-port(Reviewed database). All the other data sets

are searched against a combined database of Reviewed (Swiss-Prot) and Un-

reviewed (TrEMBL) of their respective sequence.1

Different data sets are evaluated to compare the clustering solutions pro-

duced by different clustering algorithms. By default, and unless explicitly

stated otherwise, all experiments compare the quality of results regarding the

number of unique peptides identified.

Experiments with different clustering methods are initially carried out on

1Reviewed (Swiss-Prot) - Manually annotated Records with information extracted from
the literature and curator-evaluated computational analysis. Unreviewed (TrEMBL) - Com-
putationally analyzed records that await full manual annotation.
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Database Number of Target Sequences.
Swiss-Prot (Reviewed) 555100
Human (Reviewed (Swiss-Prot) +Unreviewed (TrEMBL) 163115
Worm ( Reviewed (Swiss-Prot) +Unreviewed (TrEMBL) 30847

Table 4.1: Protein databases used for database searches for different samples.

Clustering Method Parameters

MS-Cluster
Similarity Threshold : 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Number of Rounds: 3

N-cluster Distance Threshold : 0.05, 0.075, 0.095, 0.1, 0.15,
0.2, 0.3, 0.4, 0.5

DBSCAN
minpts : 2, 3, 4
ε : 0.1, 0.2, 0.3, 0.4, 0.5

HC- average Threshold : 0.1, 0.2, 0.3, 0.4, 0.5
HC- complete Threshold : 0.1, 0.2, 0.3, 0.4, 0.5
HC- single Threshold : 0.1, 0.2, 0.3, 0.4, 0.5

HDBSCAN
minpts : 2, 3, 4
minClsize : 2, 3, 4

HDBSCAN-diameter
minpts : 2, 3, 4
diameter : 0.075, 0.095, 0.1, 0.15, 0.2,

0.25, 0.3

Table 4.2: Parameter settings used for different clustering algorithms, when
applied on smaller dataset of 500 spectra.

the smaller dataset of 500 spectra using the parameters described in table

4.2. These experiments are carried out on all possible combinations of four

pre-processing methods, two similarity measures and two cluster consensus

methods described in Chapter 3.

We use SWC to evaluate the partitions produced by different clustering

techniques, on varied parameter settings. Additionally, we use DBCV to eval-

uate all density-based clustering algorithms.

We compare the results of different clustering algorithm on the more mas-

sive datasets based on the chosen similarity measure and cluster consensus

method chosen for the smaller dataset. Table 4.3, shows the parameter values

used by different clustering methods to cluster the data in the larger dataset.

For comparison on the smaller dataset, we use the clustering method AHC

of MS-Cluster with our preprocessing and similarity method. For the larger

datasets, MS-Cluster is implemented exactly as described in the paper.
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Clustering Method Parameters

MS-Cluster
Similarity Threshold : 0.7, 0.75, 0.8, 0.85, 0.9, 0.95
Number of Rounds: 3

N-cluster Distance Threshold : 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

DBSCAN
minpts : 2, 3
Epsilon : 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

HC- average Threshold : 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
HC- complete Threshold : 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
HC- single Threshold : 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

HDBSCAN
minpts : 2, 3
minClsize : 2, 3

HDBSCAN-diameter
minpts : 2, 3
diameter : 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

Table 4.3: Parameter settings used for different clustering algorithms, when
applied on bigger dataset of tandem mass spectra.

4.2 Results and discussion

Amongst all the experiments that were carried out on the smaller dataset of

500 spectra, we discuss the results of clustering methods using cosine distance

as similarity and the average consensus method to compute consensus spectra.

The results of all other experiments on this smaller dataset are in the appendix.

We show the results of each clustering method only for the parameter which

identifies the highest number of peptides, to show the potential of the method

to aid peptide identification.

Figure 4.1 shows the results of seven clustering methods, along with our

method to extract cluster representative from HDBSCAN* hierarchies when

applied on the smaller dataset of 500 spectra, with different pre-processing

methods. (Here, the cluster consensus is calculated by average consensus

method and the distance measure used is cosine distance.) For most of the

clustering methods, We observe an increase in the number of unique peptides

identified when the consensus spectra are searched against a database, as com-

pared to non-clustered data. We observe that our clustering method reduces

the number of spectra submitted for a database search, on an average of 50 %

on the smaller dataset. It is also evident that our method of extracting clusters

from the HDBSCAN* hierarchies performs better than the clustering methods
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defined in the proteomic literature and is comparable to other clustering meth-

ods from the data mining literature. Additionally, preprocessing a spectrum

into their PRM spectrum almost always benefits the peptide identification as

compared to not processing them.

Figure 4.2 and 4.3, shows the comparison between the number of unique

peptides identified when the partition with largest DBCV and SWC values are

selected, and the highest number of unique peptides identified using the same

clustering method (different partition).

Figure 4.4 shows the results of eight clustering methods when applied to

the dataset that has samples analyzed from humans. We see an increase in the

number of unique peptides identified over non-clustered data for most cases.

Our method of extracting clusters from HDBSCAN* hierarchies outperform all

the clustering methods. Figure 4.5, shows the results of eight clustering meth-

ods when applied to the dataset that has samples analyzed from roundworms.

We observe a slight decrease in the number of unique peptides identified when

clustered data is searched against a database as compared to non-clustered

data. This decrease in the number of identification could be because of many

reasons, which are discussed below in section 4.2.1. On this dataset, we see

that clustering fails to improve the unique number of peptides identified. Al-

though the clustering methods we use fail to increase the number of identified

peptides, our clustering approach leads to a higher number of peptide identi-

fications than MS-Cluster and N-cluster.

On the larger data set that has samples analyzed from humans and round-

worm, we observe between 6 % and 10 % decrease in the number of spectra

that are searched for peptide identification.

We also observe that HDBSCAN with stability as cluster extraction per-

forms poorly as compared to all other clustering methods, almost all the time.

It works better than hierarchical clustering with average linkage on the smaller

dataset but works well for larger datasets. This irregularity could be due to

the size of the dataset.
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4.2.1 How does clustering improve performance?

Often the spectra (peptides) from a mass spectrometry experiment show more

similarity to other experimental spectra (peptides) obtained in the same or dif-

ferent experiments than to the theoretical spectrum (peptides) in a database.

Spectra that are not identified when searched individually against a database

can, however, get a match through cluster membership when the consensus

spectrum get a match in the database. This identification through cluster

membership accounts for the increase in the unique number of peptides iden-

tified, when clustered data is searched.

We observe cases where many spectra, when searched individually, never

yield a match from the database, but when combined in the form of cluster

consensus spectra, yield a match from the database through cluster member-

ship.

We also observe a few unusual cases where some spectra were identified

when submitted individually but, were not identified when using a cluster-

ing approach. This happens when they are part of clusters whose consensus

spectra does not receive a match from the database.

There are three explanations for this; one reason could be the noise signals

in the unidentifiable spectra in a cluster are so high that it cancels the true sig-

nals of the identifiable spectra in the consensus spectra. A second reason could

be that the spectra which remained unidentified when searched individually

are Protein post-translational modifications(PTMs). When the unmodified

spectra are combined with these PTM spectra, the consensus spectrum can no

longer be identified in a traditional database search, as it contains modified

signals. A Third reason might be that the clustering results were not opti-

mal due to the wrong choice of parameter. Estimating the optimal parameter

values is a work in progress.

4.2.2 Why does internal cluster validation not work?

Parameter selection plays a crucial role in the output of any clustering algo-

rithm. In order to find good parameter values for optimal clustering (evaluated
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clusters selected by DBCV and SWC, are not indicative of a correct partition.

An illustration of the above observation can be seen from the figure 4.6.

Notice that SWC and DBCV would have the highest value for the partition

C5 and C6; but for the purpose of our problem, the ideal clusters would be C1,

C2, C3 and C4.

4.2.3 Why does HDBSCAN with stability as cluster ex-
traction yields poor results?

From the experimental results, we see that HDBSCAN with stability as cluster

extraction performs poorly as compared to all other clustering methods, almost

all the time. Cluster’s stability is a measure of how long a cluster ’survives’

within the hierarchy, as well as how many objects are part of the cluster.

For this application, clusters of peptides having the same amino acid se-

quence are very small and compact. They are generally at the lower levels of

a cluster hierarchy.

Figure 4.7, illustrates nine mass spectra belonging to two different peptide

sequences ,GYSFVTTAER and DFPLANGER, in a dendrogram. Cluster

stability selects C3 over C1, and C2, as it is more dense and stable for a longer

amount of time. For our application, C1 and C2 are considered to be good

clusters as C1 represents the group of peptides having sequence GYSFVT-

TAER and C2 represents DFPLANGER. From the figure, C1 and C2 joins

into cluster C3 at an epsilon value larger 0.3, where epsilon is the smallest

distance between C1 and C2. From the literature, we know that the prob-

ability of peptides belonging to the same sequence is low when the distance

between them is greater than 0.3. Thus, making the points belonging to C3

too dissimilar to belong to the same cluster. Hence, cluster stability ends up

selecting wrong clusters and making the cluster C3 a heterogeneous cluster.

Cluster consensus of a heterogeneous cluster is expected to have more noise

than signal, thus decreasing the number of peptide identification.
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of neighbors within a distance threshold ‘r’ which is Xo in this case. It can be

seen that xq is thus assigned to xo’s cluster, although xq is closer to the set of

striped points.

On the other hand, cluster extraction from a hierarchy with maxdiameter as

a parameter would assign two different labels to Xq and Xo, which is more

desirable.

All three algorithms require a thresholding parameter, either as a similarity

threshold, distance threshold, or maximum diameter. Besides, our method

also requires an additional parameter called minpts to create the hierarchy.

We also observed that minpts 3 work well in almost all cases. Thus, reducing

the parameter only to selecting maximum diameter which makes our approach

comparable to the other methods regarding the number of parameters.
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Chapter 5

Conclusion

Data obtained from an experiment of tandem mass spectrometry is voluminous

and redundant in nature. Clustering takes advantage of these redundancies

and replaces duplicate spectra by a single representative. This reduction in the

number of spectra accelerates database searches as performed by various search

engines like InsPect [34], Mascot [12], Sequest [36]. This single representative

spectrum has a boosted signal, which aids the confidence with which a peptide

is identified. It thus, increases the number of acceptable peptide identifications.

In this dissertation, we study the effects of applying various clustering tech-

niques on the number of acceptable peptide identifications from data obtained

from Tandem Mass Spectrometry. We experiment with a wide variety of clus-

tering methods to cluster tandem mass spectra. This includes the clustering

algorithms from proteomics research namely, MS-Cluster and N-cluster. Along

with the algorithms from data mining research namely, DBSCAN, HDBSCAN

and hierarchical clustering (single, average, and complete linkage).

We propose a new method to extract clusters from HDBSCAN hierar-

chies and compare them with seven clustering algorithms mentioned based on

the number of unique peptides identified. We experiment with two similarity

measures, four pre-processing methods and two methods to form consensus

spectra.

Key points that we observe from experiments are 1) Clustering generally

increases the number of unique peptides identified and decreases the number

of points (spectra) that undergo a database search. 2) Cosine similarity is
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a better measure of similarity as compared to Spearman’s’ correlation. 3)

Constructing consensus spectra by the consensus average method works better

than those done by the weighted consensus method. 4) Calculating PRM for

spectra almost always aids the identification process.

We also observed that the traditional data mining algorithms were com-

parable to the MS- cluster and N cluster and often outperform them. Our

method of extracting clusters from an HDBSCAN* hierarchy, by limiting the

diameter, outperformed the previously existing state of the art clustering al-

gorithms MS-Cluster and N-cluster in terms of the number of unique peptides

identified.

We also explored internal cluster validation methods to estimate good pa-

rameter values for different clustering techniques. We observed that it did not

work well in this application, and the reason was discussed in section 4.2.2. A

method to select parameter values for good clustering in the context of peptide

identification remains an open problem.

5.0.1 Future Research :

In the future, we plan to run more experiments on other available datasets of

single MS/MS runs as well as from multiple MS/MS runs. One area worth

exploring in the future is, how to select good parameter values for clustering

in the context of this application. One could also aim to develop a clustering

algorithm, which is parameter free for tandem mass spectra. Mass spectrom-

etry is a vast field, which is evolving continuously and there is a scope of

improvement for every step in the pipeline.
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Appendix A

Other experimental results

In this section we presents results of other experiments carried out on the

smaller dataset. along with it, there are graphs showing the average number of

unique peptides identified across all parameter by various clustering methods

on each dataset.
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