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ABSTRACT

Industrial organizations rely on the safe and efficient operation of their assets to
manufacture products and provide services with high quality. As a result of widespread
mechanization, maintenance costs have increased significantly over the years.
Maintenance is essential to keeping engineering systems (mechanical equipment, vehicles,
electrical devices, etc.) reliable at minimum costs. Due to limited resources, e.g. budget,
time, it may not be possible to do all desirable maintenance actions. In this context, the
maintenance manager has to decide which subsystems or components should be
maintained in order to meet the requirements on system’s performance. This problem is

called selective maintenance.

In traditional reliability theory, the system is considered to be in two possible states of
perfect functioning or failed. However, in practice, many systems can degrade and
operate in an intermediate working state. As the system deteriorates, its performance
may be in several states varying from perfect functioning to complete failure. Such a

system is called multi-state system. When the system and its components are multi-state,
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the decision making becomes more complicated since imperfect maintenance actions to
its intermediate levels are also possible. The maintenance manager has to decide which

components to be maintained and the state levels that they should be maintained to.

Existing selective maintenance models usually assume the components to work in a
stable condition without considering the inter-relationships between them when
maintenance activities are performed as well as when the system is running. However,
components interact with each other due to several reasons. For example, the failure of a
component may create fire and cause immediate failures of other components due to an
induced failure mode, or the performance of a component may dictate the degradation of

other components in a specific system design.

This PhD research aims to study selective maintenance modeling for complex systems,
specifically selective maintenance for systems with multiple working levels, while
considering dependent relationships in the system. This research tackles the maintenance
problem when resources are limited by providing maintenance strategies using both
systems performance requirements and maintenance resources as input information.

Several types of relationships of components in the systems are modelled as follows.

i. ~ When maintaining several components simultaneously, there are savings due to
the sharing of resources, e.g. materials, tool, manpower, etc.
ii. In a complex system structure, repairing a component requires actions on other

components.
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iii. ~ The current health state of a component may affect the performance and
degradation of other components.
iv.  The degradation rate of a component may change depending on the operating

conditions and its current health state.

This research proposes maintenance models for multi-state systems with dependence,
which is one of the most challenging topics in the field of reliability and maintainability.
It has significant contributions in terms of dependence modelling, reliability analysis, and
selective maintenance optimization of multi-state systems. The results can be applied in a
wide range of industries where physical mechanical systems exist and maintenance for
them is compulsory. The maintenance models not only provide decision makers with a
set of maintenance actions to ensure reliable and cost-effective operation of the systems,

but also help them wisely utilize their available resources.
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CHAPTER 1

INTRODUCTION

Today, engineering systems are sophisticated. The development of science and
technology has allowed us to manufacture complex systems with thousands of sub-units
and components. In addition, the systems usually involve complicated interactions of
elements, hardware, software, humans, and operating conditions. These interactions play
critical roles when the systems are analyzed. These complex systems bring challenges to
engineers and managers since efficient tools need to be developed for modelling, operating,

and maintaining them.

Failures of such systems have substantial impact on the society. The following example
demonstrates a complex engineering system’s failure with severe consequences, where the
relationship between components plays a critical role. The incident happened at
midnight in the town of Lac-mégantic, Quebec, Canada on July 06, 2013 [1]. The
Montreal, Maine and Atlantic Railway (MMA) train with 74 cars carrying crude oil was

parked in Nantes, Quebec with a lead locomotive engine running. The lead locomotive
1



engine drove the air compressor which supplied air to a system of air brakes. A number
of hand brakes were also applied to the train. Then, the fuel supply and the electricity
breakers were shut down since the locomotive engine was producing excessive smoke and
fire was reported due to a failure of “a non-standard repair” [2|. In this case, an automatic
penalty brake would have been applied to the entire train, but the electricity breakers
were in the off position, and the brake had no power to operate. With the shutdown of
the locomotive engine, the air compressor was also off. The air in the brake system
started leaking and the air brakes were gradually released. In a steep track from Nantes
(515 metres above the sea level) to Lac-mégantic (407 metres above the sea level), the
number of hand brakes applied were not sufficient to hold the train. The train started
moving downhill, reached 101 km/h, derailed, and exploded in the town of Lac-mégantic
in hot weather. The train derailment and explosion in Lac-mégantic is one of the worst
accidents in Canada’s transportation history. Sixty-three tank cars were damaged, and
about six million litres of crude oil was released. The fire and several explosions began
immediately, causing 47 deaths, leveling buildings; about 2000 people were forced from

their homes, and much of the downtown core was destroyed [1].

The Lac-mégantic disaster was due to several contributing factors. The failure of the
locomotive engine, insufficient awareness of the relationships between different operating
units, e.g. engine, air compressor, air brakes, and hand brakes, and the changes in
operating conditions, e.g. steep track, hot weather, and the special characteristics of the

carried good - crude oil, all contributed to the accident.
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Figure 1.1 The Lac-mégantic Train derailment and explosion [3]

One of the best ways to keep systems in service and to prevent failures is to perform
proper maintenance. Undoubtedly, the relationships within complex engineering systems
need to be considered when maintaining the systems. On the other hand, industrial
organizations often have limited resources for performing maintenance, which include
budget, time, and maintenance personnel, etc. Maintenance optimization plays a critical
role in the business objective of assuring safe operations and contributing to the total
profit. This thesis presents a study of maintenance optimization for complex systems
while considering the reliability, dependency, and economical factors in maintenance of

the systems.



1.1 Systems and components

In this dissertation, the system is considered to be a collection of smaller and less
complex sub-units (e.g. sub-systems, components) to perform a specific function.
Component is defined as a self-contained unit that is not further sub-divided. This does
not mean that a component cannot be made of smaller parts; instead, it is the smallest

unit considered in maintenance analysis of the system.

Since the system can be decomposed into a set of sub-systems and components, the
system configuration describes how the components are connected. In a complex system,
components can be connected in different types of configuration or arrangement such as
series, parallel, series-parallel, k-out-of-n, bridge, etc. [4]. When the system is in
operation, the system state can be determined by the states of its components. When the

system is to be maintained, all the components are considered simultaneously.

In traditional reliability theory [4], [5], the system and its components are considered to
be in two possible states of functioning — state 1 or failed — state 0. However, in practice,
many systems and components can degrade and operate in an intermediate working
state. The system may be in several states varying from perfect functioning to complete
failure (Figure 1.2). Such a system is called multi-state system (MSS) [6], [7]. Several
examples of multi-state systems in practice such as power generation systems [6], |7],

pipe-line systems |7], and coal transportation systems [§8], [9] have been introduced.
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Figure 1.2 Binary and multi-state systems

When the system and its component are multi-state, the decision making process
becomes more complicated since imperfect maintenance for a component to its
intermediate level is also possible. The maintenance manager has to decide which

components to maintain and the state level that it should be maintained to.

1.2 Reliability and maintenance

1.2.1 Reliability

Reliability is an important measure in engineering system design, analysis, and
maintenance. Reliability of an item is defined as “the probability that it will perform its
intended functions for a given period of time when used under specified operating
conditions” [4]. The item in this definition can be an individual component or a collection
of components, i.e. the system. When considering a system of n components, a structural

function, which defines the system state from its component states, can be used to
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describe the relationship of components and determine the system reliability.

In the binary state context, the reliability of an item can be defined as the probability
that it is in the functioning state - state 1 for a specified time duration and under
specified operating conditions, i.e. 7(t)= Pr(z(¢)= 1), where () is the state of the item at
time t. For a multistate item with K+1 levels of performance in an increasing order of
0,1,...,K, the reliability of the item is the probability that the item is in a state k, k €
{0,1,...,K} or above, r(t)= Pr(z(t)> k). This definition implies that all the states which

are greater than or equal to k are satisfactory states.

1.2.2 Maintenance

In the classical view, maintenance is simply reactive tasks to repair or replace broken
items. This old approach is known as corrective maintenance or breakdown maintenance.
With the introduction of new maintenance technologies, maintenance is now defined as
“all actions necessary for retaining an item in or restoring it to a physical state considered
satisfactory for its fulfillment of its production functions” [10]. This new concept widens
the range of maintenance tasks including, but not limited to, cleaning, lubrication,
adjustment, inspections, performance tracking, minor repair, major repair, overhauls, and

replacements.

According to Kececioglu [10], four to forty times of the purchase cost is needed for

maintenance to keep a system operating satisfactorily through its lifetime. For industrial



organizations, maintenance is not only to prevent failure but also to extend the life of
their assets. As stated in Jardine and Tsang [11], “maintenance excellence is concerned
with balancing performance, risks, and the input resources to achieve optimal solutions”.
Therefore, maintenance optimization deals with crucial decisions to be made on the
system such as what maintenance actions to perform, when to perform them, how much
resources to spent, and what the restored system performance level to be. Ultimately,
optimizing maintenance can contribute to profits by keeping an efficient and safe

operation and utilizing their resources in terms of manpower and materials effectively.

1.3 Dependence and maintenance

A definition of multi-component system maintenance models was given by Cho and
Parlar [12] as “multi-component maintenance models are concerned with optimal
maintenance policies for a system consisting of several units of machines or many pieces
of equipment, which may or may not depend on each other”. Since 1980s, the topic of
maintenance for multi-component systems has been attracting the attention of
researchers and it has been recognized that the interaction between components should
be taken into consideration in maintenance decision making [13]|. In this dissertation,
dependence in maintenance of multi-component systems is classified into four types, i.e.
economic, structural, stochastic, and operational dependence, as illustrated in Figure 1.3.
This classification is based on the relationships between components’ maintenance

actions, between components’ lifetimes, and between components’ lifetimes and operating



conditions.

(Types of dependence)
| Economlc Structural :
| Dependence Dependence |

~N—— — —

——————————— Relationship between
Relationship between components & operating
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Stochastic
Dependence

Gradual
degradation

Immediate
failure

Relationship between
components’ lifetimes

Figure 1.3 Types of dependence in maintenance of multi-component systems

Economic dependence implies that the cost of maintaining multiple components can be
lower in comparison with individually maintaining each component. Structural
dependence applies when the components form a group and the maintenance of a
component in the group requires an extra intervention of other components or at least
disassembling them. Stochastic dependence means that the state of a component may
affect the state of other components in the multi-component system. Operational
dependence depicts the effect of changes in operating conditions on the degradation of

components.

Economic dependence and structural dependence are related to implementation of



maintenance activities, and the component’s deterioration is not affected by these types
of dependence. The main difference between economic and structural dependence is that
economic dependence is related to the economies of scale where multiple maintenance
actions on multiple components together are cheaper than doing maintenances on these
components individually, while structural dependence is related to the inter-relationship
of connected components that requires extra actions to other components in order to

maintain a specific component.

Stochastic and operational dependence, on the other hand, relate to components’
deterioration. Stochastic dependence defines the relationship between components when
a component fails or changes its current state, e.g. a component’s failure induces failures
or causes shocks to other components. The state and the degradation of the affected
component can both be influenced by an influencing component and therefore the system
reliability is subjected to change when stochastic dependence exists. Operational
dependence reflects the effect of variable operating conditions on the degradation of the
components. Generally, a component degrades faster under more severe conditions such
as heavier workload or higher temperature. Since the system reliability depends on the
degradation of its components, the maintenance policy for the system needs to be
investigated depending on the component-component or component-operating condition

relationships.



1.4 Selective maintenance

In the maintenance literature, various models have been proposed [11|-[17]|. In these
reported studies, preventive replacement, imperfect maintenance, and inspection policies
for repairable systems were investigated. However, the majority of these maintenance
models ignore the limitation of resources to perform maintenance actions. Many systems
have to perform several missions with limited resources, such as time and budget, for
maintenance between successive missions. It is often impossible to do all desirable
maintenance actions within the available resources. Thus, the maintenance manager has
to decide which components to maintain and how to perform maintenance in order to
meet the requirements on system performance. This problem is called selective

maintenance [18].

Selective maintenance has been studied for several industrial applications [19]-[21]. A
production system may be in operation 24 hours a day during the weekdays and be
maintained at weekend; a computer system is utilized heavily during daytime and
maintained at night; airplanes and ships are maintained within a few hours to a few days
before the next journey. In another example, a power generation plant often has a
scheduled outage, i.e. maintenance break, every year for maintenance. During the
scheduled outage, ranging from one to three weeks, there are several subsystems and
components that need to be maintained. The plant manager wants to ensure reliable

operation of the plant and satisfy its power generating demand while time, budget, and

10



personnel for maintenance are limited. Selective maintenance can help determine which
components and what maintenance actions to perform to accommodate this need. The
decision is made based on the available resources for maintenance and the requirement of

the system performance in the next mission.

Industrial organizations today are required to manage their assets more effectively with
limited expenses to accommodate the advancements of technologies and global market
competitiveness. Selective maintenance is a powerful solution, which can help system

managers by providing optimal maintenance strategies within limited resources.

Selective maintenance was first introduced by Rice et al. [18] in 1998. Since then, it has
been studied many researchers. Reported studies on selective maintenance mainly focuses
on binary systems [18]-[36]. Some investigations of selective maintenance of multi-state
systems are also reported in [9], [37], [38]. A detailed literature review of selective
maintenance is to be presented in Chapter 2. The dependence relationships are mostly
ignored in these reported studies. This dissertation will focus on modeling dependency in
complex multi-state systems while looking for an optimal selective maintenance strategy

of the systems. The next section will provide the scope and objectives of this research.

1.5 Thesis scope and objectives

This PhD research aims to study selective maintenance modeling for complex systems

with multiple performance levels, while considering the dependence relationships in the

11



system. This research tackles the maintenance problem when resources are limited by
providing maintenance strategies using both system performance requirements and
maintenance resources as input information. The two main goals of this research are as

follows.

1. To model the dependence within multi-state systems, including the interactions
between components’ maintenance actions, component-component lifetimes, and
components’ lifetimes and the operating conditions.

2. To construct and solve the selective maintenance optimization models for
multi-state systems with dependence. Benefits of the model, consequences of
ignoring dependence, and the optimal selective maintenance strategy are discussed
and compared in several illustrative examples to emphasize the importance of

dependence.

The proposed research considering dependence is one of the most challenging topics in
the field of reliability and maintainability. The results can be used in a wide range of
applications where maintenance of physical systems is compulsory. The maintenance
models can provide the system managers with a set of maintenance actions to ensure
reliable and cost-effective operation of the systems, and also help them wisely utilize their

available resources.

Within this dissertation, the relationships within the systems to be addressed can be

described as follows.
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1. When maintaining several components simultaneously, there are savings due to
the share of resources, e.g. materials, tool, manpower, etc. The differences in
savings between maintaining identical and non-identical components are also
considered.

2. In a complex system structure, repairing a component requires intervention
actions to other components, thus extra cost may be needed for maintaining a
component. This is described by precedence relations in assembly and disassembly
of components in the systems.

3. When a component fails or changes its current state, it may affect the
performance and degradation of other components. This often occurs when the
components are inter-connected or functionally dependent.

4. The components operate in dynamic loading conditions, and when the load

condition changes, the degradations of components are affected.

When the dependence is related to the degradation of components, methods for the
system reliability evaluation of the system are to be developed. The selective
maintenance models will employ results of reliability evaluation methods to find the

satisfactory system reliability for the next operating mission.

1.6 Organization of the thesis

With the proposed scope and objectives in Section 1.5, this thesis contains 7 chapters

which are organized as follows. Chapter 1 presents the challenges in selective
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maintenance modelling of multi-state systems considering dependence, followed by the
scope, objectives, and structure of this thesis. Relevant concepts of system, component,
reliability, maintenance, and dependence are also included in Chapter 1. Chapter 2
introduces the fundamentals of selective maintenance including some general notations
and basic concepts, a detailed literature review, and a general selective maintenance

optimization model for multi-state systems with independent components.

Chapter 3 discusses the economic dependence between maintenance actions of dependent
components. An extended selective maintenance model based on Chen et al. [37] with
two mechanisms of time and cost savings when repairing non-identical and identical

components in multi-state series-parallel systems will be developed.

Chapter 4 examines the structural dependence of components in a multi-state series
system. We formulate the structural dependence relationships between components when
disassembling the system. The directed graph [39] is used to represent the precedence
relation in the disassembly of components. A back-ward search procedure for determining
the system disassembly path is developed. Both economic dependence and structural

dependence are considered in the selective maintenance model.

In Chapter 5, we will model two types of stochastic dependence for multi-state
components. The first type relates to the failure of a component induced by another
component. The second type reflects the degradation rate change of a component to the

degradation of another component. A reliability evaluation method based on stochastic
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process is proposed for analysis of the system. The output performance of the system is
considered and integrated in a cost-based selective maintenance model to maximize the

total system profit in the next mission.

Chapter 6 is devoted to modeling the dependence of components’ degradations on the
operating conditions. We propose a load-dependent degradation model for multi-state
components operating in dynamic loading conditions. The development of the model is
based on the component’s degradation in the k-out-of-n load-sharing systems [40]. The
system reliability is estimated by Monte-Carlo simulation method. Analysis of optimal

selective maintenance scenarios for different levels of budget limitation is provided.

The summary of contributions of this research is presented in Chapter 7. Possible future

research directions are also discussed in this chapter.
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CHAPTER 2

FUNDAMENTALS OF SELECTIVE MAINTENANCE

In this chapter, we introduce the fundamentals of the selective maintenance problem
including general notation, basic concepts, and a selective maintenance problem
statement. A detailed literature review of reported work on this topic in the last two

decades and a general selective maintenance model will also be presented.

General notation:

n: Number of components in the system
i J: Component indices
K: Maximum state

a, b, k, I: State indices

1: Operating mission duration

Y: Given state of component i at the end of the previous mission
16



State vector of all components in the system at the end of the previous

mission
State of component ¢ at the end of the maintenance period

State vector of all components in the system at the end of the maintenance

period
The system state function in the next operating mission, ¢ ~ ,1,..., K
Required time of a single repair of component i from state a to state b, b>a

A (K+ x K+ repair time matrix of component ¢ with an element in

row a, column b being t,(a,b) if b>a and being 0 if b<a

Total time needed of all selected maintenance activities

Duration of the maintenance break

Cost of a single repair of component 7 from state a to state b, b>a

A (K+ x K+ repair cost matrix of component i with an element in

row a, column b being ¢;(a,b) if b>a and being 0 if b <a
Total cost of all selective maintenance activities
Available budget for all selective maintenance activities

The probability of component ¢ being in state b at the end of an operating

mission given that it is in state a at the beginning of the mission.

A (K+ x K+ probability transition matrix of component 4 with an

element in row a, column b being p,(a,b)
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D: Demand of the system in the next mission
RJ(t,D): The reliability of the system at time ¢ for demand D

Ry Minimum reliability requirement of the system

2.1 Basic concepts

2.1.1 Mission and maintenance break

In selective maintenance, a mission is a task that the system has to perform. A mission is
associated with a time duration 7 and a specified operating condition. For example: an
aircraft has to perform a mission which can be a flight between two airports under
certain weather conditions; a truck needs to carry a certain load between two depots.
Between two missions, there is a time break for doing the maintenance called the
maintenance break, e.g. sojourn time at an airport or depot. The maintenance break is
also associated with a specified duration of T, The job of the maintenance decision

maker is to find the optimal maintenance plan to ensure the success of the next mission.

2.1.2 Mission reliability

Mission reliability is the probability that the system will successfully accomplish the next
mission. It implies system reliability in the time duration of the next mission, thus is
taken into consideration prior to the start of the mission. Mission reliability is an
important part of selective maintenance decision making. It represents the system

requirement for the next mission. For instance, the maintenance manager has to optimize
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the selective maintenance decisions so that the system reliability is greater than or equal

to a required threshold.

2.1.3 Maintenance resources

Maintenance resources refer to available supplies for system maintenance, e.g. time,
materials, staff, energy, etc. Since maintenance activities must be performed prior to the
next mission, maintenance time is a special limited resource in selective maintenance
problem. Other types of resources will be represented in a single type, namely, the
maintenance cost. Thus, in many cases, only two types of resources, i.e. time and cost,

are considered when modelling the selective maintenance problem.

In selective maintenance, the resources are limited. All the maintenance activities must
be performed within the maintenance break duration of 7, Similarly, total system

maintenance costs must be less than or equal to a maintenance budget, C;, scheduled for

the break.

2.1.4 States of components at the maintenance depot

Maintenance activities are performed at the maintenance depot. When the system arrives
at the maintenance depot, the health state of each component can be detected. Selective
maintenance often assumes that the state of each component is known right after the
system enters the maintenance depot. In an n component system, the set of states of all

the components at the time of entering the maintenance depot can be represented by a
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vector Y=Y, Y, ... Y|, where Y, i = 1,2,...;n is the state of component i.

When the system exits the maintenance depot, the vector of components’ states is X=
[X: Xs ... X, where X, i = 1,2,...,n, is the state of component i at the time of exiting the
maintenance depot, and X;, ¢ = 1,2,...,n, is also the state of component ¢ at the beginning
of the next mission. In selective maintenance, X; is a variable that needs to be

determined in order to obtain the best maintenance strategy.

2.1.5 Selective maintenance strategy

Selective maintenance optimization seeks an optimal maintenance strategy utilizing
available resources. Selective maintenance strategy includes a set of components in the
system and the corresponding maintenance actions to be performed on these components.
Since the health states of components are known at the time of entering the maintenance
depot, selective maintenance strategy can also be represented by a set of all component

states at the time of exiting the maintenance depot.

2.2 Selective maintenance problem statement

In this research, the selective maintenance problem can be defined as follows: given the
states of components at the time of entering the maintenance depot, the resources needed
for different levels of maintaining each component, and the total available resources, the
maintenance decision maker has to find a maintenance strategy including a set of

components to be maintained and the corresponding level of maintenance for each
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selected component to ensure the system’s reliable operation in the next mission.

2.3 Literature review on selective maintenance

2.3.1 Selective maintenance for binary systems

The first selective maintenance model was introduced in 1998 by Rice et al. [18]. A
binary integer optimization model for optimizing the reliability of series-parallel systems
was proposed. At the maintenance depot, there are only two available maintenance
options on a failed component: replace or do nothing. Afterwards, different selective
maintenance models based on Rice’s model were developed for binary systems in [19].
Cassady et al. [20] further extended the work of Rice et al. by considering components
whose lifetimes follow the Weibull distribution and different maintenance actions such as
replacement and minimal repair of failed components, and preventive replacement of
surviving components. Schneider and Cassady [24], [33]| extended the model by Rice et al.
by considering selective maintenance for a fleet comprised of multiple binary
series-parallel systems. Pandey et al. [21], [22]| studied selective maintenance with an
imperfect repair model, in which the health of a component may be not “as good as new”
and depends on the cost spending in the maintenance break. Pandey et al. [23| later
extended the model in |21] by considering components with two types of failure modes,
namely maintainable and non-maintainable failure modes. Ali et al. [27] assumed that
the cost of repairing or replacing a component are random variables following the Normal

distributions. Khatab and Aghezzaf [28] considered a selective maintenance model with

21



random quality of imperfect maintenance. The age-reduction factor in the imperfect
repair model was a random variable with a known probability density function. Zhu et
al. [29] studied the selective maintenance model considering different cost factors in a
manufacturing line, including maintenance cost and possible production loss due to

system unavailability.

Maaroufi et al. [31] first investigated the inter-relationship between components in
selective maintenance of binary systems. They considered a special case of stochastic
dependence where the failure of a component can cause other components to fail
immediately. A fixed “set-up” cost for dismantling and reassembling the system was
incurred only once when more than one component was replaced. A set of rules to reduce
the solution space was later proposed by the same authors in [32|. The selective
maintenance study in [31], [32] has not fully addressed the inter-relationships between
components when maintaining a complex system. First, other types of stochastic
dependence may be presented, e.g. when the failure of a component does not cause other
component to fail immediately but affects the degradation rates of other components.
Second, the impacts of economic dependence on the optimal maintenance strategy have
not been investigated. Investigation of the effects of economic dependence on selective
maintenance decision making would help the maintenance department in utilizing their
resource effectively. In addition, modeling other types of dependence such as structural
and operational dependence and their effects on maintenance decision also needs further

examination.
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Some researchers extended the traditional single-mission selective maintenance into the
multi-mission model, where the system has to perform multiple missions consecutively in
a finite or infinite planning horizon. Maillart et al. [35] studied selective maintenance for
a system with multiple identical missions in both finite and infinite planning horizons.
They claimed that the differences between the policies of a single mission and multiple
identical missions were minimal. Pandey et al. [36] extended the study of Maillart by
considering non-identical missions in a finite planning horizon. The model in [36] jointly
optimized the number of maintenance intervals and the selective maintenance schedule in

each interval for series-parallel systems.

2.3.2 Selective maintenance for multi-state systems

Not many researchers have studied selective maintenance when the system is multi-state.
Chen et al. [37] reported a preliminary work on selective maintenance for multi-state
systems. A selective maintenance model for a series-parallel system with the objective of
minimizing the total maintenance cost subject to reliability constraints was proposed.
Liu and Huang [38| presented a selective maintenance model for systems with multi-state
corresponding to cumulative performance of N binary components and considering the
imperfect maintenance that may restore the condition of the system to an intermediate
state. Pandey et al. |9] investigated selective maintenance for a system with multi-state
independent components, where multiple intermediate repair actions are available on a

component between do-nothing and replacement.
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Existing selective maintenance models for multi-state systems with multi-state
components rely on the independence assumption between components in the system.
This motivates the author to investigate and model different types of dependence and

explore their effects on the selective maintenance problem for multi-state systems.

2.3.3 Solution methodologies for selective maintenance optimization

In terms of solution methodology, Rice et al. [18] solved the selective maintenance
problem based on the enumeration method. Rajagopalan and Cassady |26] improved the
selective maintenance solution approach for series-parallel systems with identical
components in the same sub-system by assigning bounds to the possible number of
components to be repaired on the basis of available resources. Lust et al. [25] proposed a
heuristic based on the Tabu search approach and an exact method based on the branch
and bound procedure. They found that the time taken by the heuristic was less, but the
result was inferior compared to the exact method. In recent selective maintenance studies
9], [34], [36], |38], [41], evolutionary algorithms such as genetic algorithm and differential
evolution were used for solving the selective maintenance problem and they have proved

to be more efficient methods.

2.4 A general selective maintenance optimization model

In this section, a baseline model for selective maintenance optimization problems for

general multi-state systems of independent components is presented. Unless otherwise
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stated, the materials in this section are based on Rice et al. [18] and Dao et al. [42].

Selective maintenance looks for the best maintenance strategy for multi-component
systems with given input data such as the states of components at the time of entering
the maintenance depot and resources needed for various maintenance activities. It is
generally a non-linear integer optimization problem. Assume that the state vector of all
components at the time entering the maintenance depot is known as Y= [Y; Y, ... V)]
We need to determine the state vector of components at the time exiting the
maintenance depot X= [X; X; ... X,|. In the following selective maintenance model, we
need to find the maintenance activity associated with each component to be performed to
achieve the maintenance objective of increasing the system reliability under limitation of

time and cost.

P: Mazimize f = R(X) (2.1)
Subject to:  T(X) < Ty (2.2)

O(X) <y (2.3)

V<X <K, i=12,...,n (2.4)

X, is integer, i=1,2,...,n (2.5)

In this model P, the objective function (2.1) is to maximize the system reliability in the
next mission, i.e. the probability that the system will successfully complete the mission of

duration 7 and the demand level D. There are two constraints in (2.2) and (2.3) which
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restrict the total time and the total cost for all maintenance activities within available
time, Ty, and budget, C). If the repairs of components in the system are independent, the
total time and cost for maintaining the system can be calculated as in (2.6) and (2.7).
The decision variables, X, are integer variables between Y; and the maximum state K for

all 2 = 1,2, ..., n.

n

T(X)=_t(Y,X) (2.6)

i—1

Cc X cY X (2.7)

In Equations (2.6) and (2.7), #(Y,X,) and ¢(Y,, X)) are the required time and cost of
repairing of component i from state Y; to state X.. Equations (2.6) and (2.7) indicate that
the total system maintenance time (cost) can be obtained by taking the sum of all

components’ maintenance times (costs).

2.5 Concluding remarks

The topic of selective maintenance has been active for the last two decades, ever since it
was first introduced in 1998. The majority of reported studies on selective maintenance is
for binary systems. In addition, most of them rely on an assumption of independent
components in the system, though engineering systems are complicated and the

components within a system are inter-related and their dependence relationships cannot

26



be ignored. The advancement in computing technology enables us to find the solution for
complicated selective maintenance optimization problems. Thus, the focus of this PhD
research is on modeling dependence in complex multi-state systems aiming at the optimal
selective maintenance strategy of the systems. Four types of dependence presented in
Section 1.3 and their effects on the selective maintenance problem will be analyzed in the

remaining chapters of this thesis.
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CHAPTER 3

SELECTIVE MAINTENANCE FOR MULTI-STATE

SYSTEMS UNDER ECONOMIC DEPENDENCE

This chapter studies economic dependence in selective maintenance for multi-state
series-parallel systems. We propose two mechanisms of savings due to simultaneous
repair of identical and non-identical components in the series-parallel system. Both time
and cost savings can be achieved when several components are simultaneously repaired in
a selective maintenance strategy. Several optimization models are derived and genetic
algorithm is used to solve the models. Versions of this chapter have been published as a

book chapter [43] and a journal paper in Reliability Engineering and System Safety [42].

3.1 Introduction

A preliminary work on selective maintenance for multistate systems with multi-state

components was performed by Chen et al. [37]. A selective maintenance model for
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series-parallel system with the objective of minimizing the total maintenance cost subject
to reliability constraints was proposed. However, in maintenance management and
particularly in selective maintenance, the time allocated for maintenance activities is one
of the most critical constraints. This chapter extends the model by Chen et al. [37] to a
situation in which the maintenance crew has to consider the available time for total
maintenance activities, T, which is limited. The total maintenance time, cost or the
system reliability in the next mission can be either treated as objectives or constraints in

selective maintenance modelling.

Multiple maintenance actions are usually selected in a selective maintenance scenario. In
many industrial systems such as aircrafts, medical equipment, automotive machines, and
power plants, etc., repairing multiple components, especially identical components, is
always more economical due to the share of resources for maintenance. In this case, the
components in such systems are considered to be economically dependent. For example,
if a power plant has two turbine units, the joint maintenance of both turbines would be
more economical since their maintenance is very similar in terms of inspection, repairing
tool, labor and materials and thus, they tend to be scheduled for maintenance at the

same time considering this economic dependence.

The idea that performing a group of maintenance activities may require only one set-up
was employed in a series of papers on corrective and preventive maintenance [44]-[48]

and reviewed in [13]| and [49]. More recently, Laggoune et al. [50] investigated an
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N-component series system, where the failure of a component prevents the system from
operation and the system downtime can bring opportunistic replacement for non-failed
components. Besnard et al. [51] and Ding and Tian [52] studied opportunistic
maintenance for wind power systems, where the transportation cost to bring a
maintenance crew to a wind farm can be saved if preventive maintenance is performed
once failure occurs to a wind turbine. Nourelfath and Chatelet [53] investigated economic
dependence between components of a parallel system in the production and preventive
maintenance planning problem with the objective of minimizing the total production and
maintenance cost. In selective maintenance, Maaroufi et al. [32] considered maintenance
for binary systems with propagated failures and economic dependence where a fixed
“set-up cost” for dismantling and reassembling the system is incurred only once when
more than one component is replaced. In these papers, authors considered that the same
set-up cost is incurred each time a corrective, preventive or opportunistic replacement is
needed. The components are assumed to be “as good as new” after replacement, rather
than the possibility of repairing components to different intermediate states as in
multi-state systems. Moreover, these papers did not consider time savings when
performing maintenance on multiple components in the systems. In this study, the
system and its components may be in any state from a set of all possible states,

S = K where state K is perfect functioning, state 0 is complete failure, others are

intermediate states.
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In this chapter, we focus on modeling two types of economic dependence between
multi-state components based on the share of setting up and the advantage of repairing
multiple identical components in each subsystem of the multi-state series-parallel system.
Both time and cost savings can be realized when several components are selected to be
repaired in a selective maintenance strategy. The multi-state series-parallel systems are

assumed to have the following characteristics.

All the components are s-independent.

-  The maintenance activities do not make the condition of components or the
system worse, i.e. the states of the system and its components are not lower after
going out of the maintenance depot.

- The resource requirement for a single maintenance activity is deterministic and
known.

- The probability for a component at any pre-specified state b degrading to all

possible states a<b is known.

3.2 Problem formulation

3.2.1 The system descriptions

The series-parallel system consists of M s-independent subsystems connected in series
and in subsystem 4, ¢ = 1, 2, ..., M, there are N; identical components connected in

parallel as shown in Figure 3.1. Each component in the system may be in any state from
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perfect functioning, i.e. state K, to complete failure, i.e. state 0. The state of a subsystem
is the maximum state among its components and the system state is determined by the
minimum state among M subsystems. In the selective maintenance problem, the system
has to work consecutively identical missions with break interval of T} - time from the end
of previous mission to the beginning of the next mission. The maintenance crews have to
decide what and how to maintain each component in the system within available budget

C, and available time 7.

Subsystem 1 Subsystem 2 Subsystem M
1 1 1
2 2 2
—p L. ] L
N4 N, N

Figure 3.1 A series-parallel aystem

th

For each j" component in subsystem 4, Y~ <Y < K, represents its state at the time of
entering the maintenance depot and X is its state after the selective maintenance break.

Because the maintenance activities do not make the condition of components and the

system worse, it is clear that Y X K. In the selective maintenance problem, the

state vector of all components in the system at the time of entering the maintenance
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depot, Y=Y i =1,2, .., M, j=1,2, .., N, is known; we have to find its state
vector at the time of exiting the maintenance depot, X = X i = 1,2, .., M, j = 1,

2, ..., N.

3.2.2 The system reliability

A component degrades with use, and its state at the end of an operating mission is a
random variable. Xue and Yang [54] and Sheu and Zhang [55] investigated the measure
of evaluating components’ performance degradation in reliability analysis and optimal
replacement of multi-state systems. These may serve as a good reference for the state
transition analysis of multi-state components and systems. Here, we will not focus on the
component’s degradation process in the operating mission time z. In this chapter, we

assume that the probabilities for a component in subsystem i at any pre-specified state a
degrading to all possible state b (0 < b < a) after the operating mission, p (a,b), are
already known. When a = 0, 1, ..., K, these probabilities form a (K+1) x (K+1)

transition probability matrix of each component in subsystem i for completing a mission

as given in Equation (3.1).

1 0 0
n n ﬂ
P i M (3.1)
» K pK p KK
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In Equation (3.1), the state of components cannot rise after an operating mission, i.e.

p ab = if a<blfacomponent begins in state 0, it will remain in that state after the

next mission since it cannot degrade further, hence p;,(0,0) = 1. If a component is in state

a, 0<a< K its state after the next mission can be any value from the set of

{a a— 0 . Therefore,
K a
Zp aszp ab = fora= K (3.2)

In order to deal with the selective maintenance problem, we need to find the system
reliability at the end of the next mission at a specified level d, i.e. the required reliability

level, R d d . In series-parallel structures, a subsystem is in a state less than d,
¢ ~d, when all of its components are in states less than d. The event that the

subsystem ¢ is in state d or above at the end of the next mission, ¢, >d, is the

subi

complement event of ¢ , — d. Thus, the reliability of the system at level d,R d , can be

subi

computed by using Equation (3.3) [37].
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3.2.3 The system repair time and cost

When entering the maintenance depot, components may be in any state from the set of
state space, i.e. each elements of Yj can be any number from {0,1,..., K . Within the
maintenance break duration, 7, and the available budget, C,, the system and its
components are subjected to be maintained to “properly working” states so that the
system will meet the reliability requirement in the next operating mission. Here, the
required time and cost for single repair (individual repair) of an independent and
identically distributed (i.i.d.) component in subsystem i from state a to any state b
which is greater than a are known. The single repair time and cost of each component in
subsystem 4 from an arbitrary state a to state b are arranged in matrix form as in (3.4)

and (3.5) respectively.

0 t t K
0 0 t K 1
T i M (3.4)
0 t K K
0 0o
[0 ¢ c K
0 0 ¢ K .
C i M (3.5)
c K K
_ 0o

In (3.4) and (3.5), the time and cost of repairing a single component from state a to state
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b are non-zero values when a is less than b. In general, t ab t ab and

cab cab ifb b;tab and ¢ ab if a b. Without doubt to the

calculation of maintenance time and cost, an element in these matrices is set equal to

zero if a is greater than b, i.e. t a b cab if a b

In order to calculate the total repair time and cost of the entire system, it is necessary to
analyze the relationship of the repair time and cost between components. The time and
cost for improving the state of a component may not affect that of other components -
independent repair time for each component. However, the same setting up, maintenance
process, equipment, etc. may be utilized when multiple components are simultaneously
selected to be repaired in a maintenance strategy. In this case, time and cost savings will

be achieved by repairing multiple components in the selective maintenance modeling.

3.2.2.1 Independent repair time and cost

When the repair time for each component is independent, the total time required to do
the selective maintenance for the system is simply a summation of all the individual
repair time of its components in (3.4). If we know the components’ state vector at the

time of entering the maintenance depotY Y 4 M j N, the total

system maintenance time corresponding to a vector of component state at the time of
exiting the maintenance depot,X X , can be computed and represented as in
Equation (3.6).
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—_ITrx (3.6)

Similarly, the total system maintenance cost can be obtained by taking the sum of all

single components’ repair costs.

3.2.2.2 Dependent repair time and cost

In most realistic systems, time and cost savings are achieved when multiple components
are selected in a selective maintenance strategy, especially for identical components in
each subsystem of series-parallel systems. Maintaining multiple components requires
similar initial setting up, labor and equipment. Here, the concept of “set-up cost” [49] is
employed to both cases of time and cost. In addition, it is even more economical when
repairing multiple identical components in the same current state (condition) a to the
same properly working state b. This is because there are not only the share of setting up
but also the advantages of ordering materials (batch order) and using the same process of
performing maintenance on those identical components. Additional cost and time savings
for this type of repair should be addressed. Therefore, we consider two types of time and

cost savings of repairing multiple components in series-parallel systems as follows:

1. Time and cost savings due to the share of setting up.
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2. Additional reduction time and cost of repairing multiple identical components

in a subsystem from the same current state a to the same properly working state b.

In the section below we will focus on formulating the total actual repair cost for a
selective maintenance strategy based on the single repair cost matrix in (3.5) with the
consideration of two types of cost saving above. Once the total repair cost is determined,

the total maintenance time of the system can be calculated accordingly.

The savings due to the share of setting up are assumed to be fixed per component since it
is associated with the process of preparation for maintenance such as erecting,
dismantling and reassembling the system, etc. Thus, in the first type of dependency, a
fixed amount of “set-up cost”, Ac , is saved whenever an additional component is selected
in a selective maintenance strategy (Figure 3.2). The more components to be maintained,
the more money is saved due to the share of setting up. If N,components in the system
are maintained in a selective maintenance strategy, the total amount of money saved due

to the share of setting up will be (IV c.
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I I I

—— When repairs of components are independent

— —~ When repairs of components are dependent

Maintenance cost (time)

b=

I I
1 2 3 4

No. of repaired components

Figure 3.2 The maintenance cost (time) vs. number of repaired components

when there is the share of setting up

Now, let’s consider repairing m identical multi-state components in a subsystem ¢ with

¢ a b being the cost for individually repairing each component from state a to state b.
In multiple repairs of identical components, the same technology and equipment can be
utilized, and the maintenance is more efficient in repetitive tasks. Thus, in addition to
the cost saved by setting up sharing, we introduce a cost saving coefficient, f a b , to
represent the repairing cost dependency of multiple identical components in subsystem i.

Denote ¢ a b to be the adjusted repair cost for an additional component in subsystem 7

from state a to state b. The calculations of total maintenance cost and the saved amount
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due to each type of dependencies are illustrated in Figure 3.3. The adjusted repair cost
and the saved amount in addition to a fixed set-up cost for repairing a component from

state a to state b are calculated by (3.8) and (3.9) respectively.

cab fab cabd c (3.8)

cab cab ¢  fab cabd (3.9)

From (3.8), we can form an adjusted repair cost matrix for a component in each
subsystem i, C'; each element in this matrix is a function of f and Ac . The total

adjusted cost for repairing m identical components from state a to state b can be

computed as in (3.10).

C cab m cab
(3.10)
=cab m fab cab m c

When maintaining identical components simultaneously, we need a constraint that the

adjusted repair time, ¢', is greater than or equal to 0. This is equivalent to

f ab > AC*. Thus, f a b can take any value between

cab c a

and 1.
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No. of repaired components

Figure 3.3 The maintenance cost when repairing identical components

The total system maintenance cost is, then, the summation of total adjusted repair cost

of each component. It is a function of the decision variables X , the amount of saved

money due to the share of setting up - Ac, the cost saving coefficients - f and the

components’ state at the time of entering and exiting the maintenance depot.

CX _ _CXY c¢f (3.11)

In (3.11), C X Y ¢ f is the adjusted repair cost of component (4,7) which is

equivalent to ¢ a b in the explanation above. In the selective maintenance problem for
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the series-parallel system considering economic dependence, we need an assumption that
the components in the same subsystem have to be maintained in a group to gain the
benefits of time and cost savings. However, in the process of calculation, it is no doubt to
assume a subsystem is repaired before another sub-system since all the results on the
system reliabilities, cost and time are not affected. With this assumption, if there are
multiple components in different sub-systems subjected to be maintained in a selective
maintenance strategy, the value of the adjusted repairing for the first component is
always equal to the cost of the single repair for that component. For the next component,
¢ ab is calculated as in (3.12).

[+ ¢cab c ~e is identical repair

cab (3.12)

| ¢ ab c Otherwise

Similarly, the total system maintenance time for a selective maintenance strategy can be

obtained if the time saved due to the share of setting up - At , the time dependent

coefficients - f , and the state of component at the time of entering the maintenance

depot are known.

TX _ TXY ¢tf (3.13)

where T is the adjusted repair time for component j in subsystem 7 when the repairs of

components are dependent.
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In order to understand more about the proposed saving model, we also investigate other
saving mechanisms and their effects on the selective maintenance for the multi-state
series-parallel system. The saving patterns of performing multiple activities when task
repetitions take place will be investigated and compared to our saving model. The basic
saving model is known as “power model” or “Log-linear model” [56]. It has the following

mathematical representation:

Cm =Cxm”orlogCm = C -8 m, (3.14)

where C' is the cost (time) of the first unit, C(m) is the average cost (time) of m units,
and fis an exponent indicating the rate of productivity improvement, 0 1. =0

means that there is no advantage of performing multiple tasks and when £ is close to 1,

the benefit of multiple tasks execution is larger.

From the basic model in Equation (3.14), several models have been developed to measure
the average unit cost/time as a function of the number of units produced. These models
are summarized in [57|. Here, we will consider three typical saving patterns: the

Log-linear, Plateau and Exponential models.

Cm =C +Cm” (3.15)

Cm =Cm”e (3.16)

The Plateau model in (3.15) is often applied when there is a limit of the unit cost as z
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increases to a very big value. C, is a parameter representing the plateau limit of the
average unit cost. In (3.16), ¢ is another parameter, usually a constant that reflects the
upturn effect on the cost when the number of units increases to a considerably large

value.

From the average unit cost, we can find the total cost of repairing m identical
components, C' , in a sub-system of the series-parallel system. Table 3.1 summarizes C'
calculated from the proposed model and three saving models in the literature.

Table 3.1 Summary of different cost saving models

of repairing m identical components

Average cost of m Total cost of repairing m
Model . . . .
identical components identical components
Log-linear Cm?’ C Cm
Plateau C+Cm™” c OCm Cm
Exponential Cm™Pe C Cm e
Proposed model [C’ + m—- C ] m c C m C

In the calculation of average cost of x units for the proposed model in Table 3.1, we use
C as the adjusted repair cost, which can be computed in the same way as in (3.12). We
use three saving patterns in Table 3.1 for describing the dependent relationship between

the cost/time of multiple repairs and the number of components involved in each

sub-system. The results of selective maintenance for multi-state series-parallel systems
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and discussions will be provided in Section 3.4.

3.2.4 Selective maintenance optimization models

Cassady et al. [19] proposed mathematical programming models for optimizing selective
maintenance of binary systems. In this section, we extend those models to the multi-state
case. The selective maintenance problem for multi-state series parallel system is a
non-linear integer programming problem with known components’ characteristics such as
the state of components at the time of entering the maintenance depot, the time and cost
of single repair, time and cost savings of multiple repair, state probability distribution of

each component in the next mission.

In a very popular selective maintenance problem, the maintenance crews have to find
what maintenance activities associated with each component to be performed to achieve
the maintenance objective of increasing the system reliability under limitation of

resources such as time and cost. This type of problem can be formulated as follows:

M N d-

P3.1: Maximize f =R d :H( —HZp X b] (3.17)
i- = =

Subject to:  T(X) < T, (3.18)

C(X) < C (3.19)

V< X; <K (3.20)



Xj; is integer, i=1,2,....M, 5 = 1,2,...,N; (3.21)

In the model, the objective function (3.17) is to maximize the reliability of the system at
a specified working level d, which has been formulated in Section 3.2.2. There are two
types of constraints in (3.18) and (3.19) which restrict the total time and cost for all
maintenance activities within available time, Tj, and budget, C,. The component repair
time and cost may be or may be not independent. We can find the total time and cost for
maintaining the system to desired working level as explained in Section 3.2.3. The

decision variables, X, M j N are the states of components at the time

of exiting the maintenance depot. Since the maintenance activities do not worsen the

state of the components, X;; must be integer value between Y; and the maximum state

K for alls M4 N .

The decision makers can use the problem P3.1 when they have information about their
available time and budget and the system reliability is very critical. The solution of P3.1
gives us the most reliable system with on-hand resources. In practice, we may face many
other situations of the principal objective and resource availability. When the total
completion time is the most important issue it is treated as the objective of the selective
maintenance problem. Then, the system reliability and cost are two constraints, and we
have an alternative P3.2. Similarly, another derivation, P3.3, can be obtained as

follows:

P3.2: Minimize f X (3.22)
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Subject to:  Ry(X) 2 R, (3.23)

C(X) < Cy (3.19)

V<X, <K (3.20)

Xj; is integer, i=1,2,....M, 7 = 1,2,...,N; (3.21)

P3.3:  Minimize  f CX (3.24)
Subject to:  Ry(X) 2 Ry (3.23)

T(X)< T, (3.18)

Vi< X; <K (3.20)

Xj; is integer, i=1,2,...M, j = 1,2,...,N, (3.21)

In the problems P3.2 and P3.3, the constraint (3.23) requires the reliability of the
system to be greater than or equal to a specified level R,. Both R(X) and R, are vectors
with K-dimension; each dimension is the probability that the multi-state system is at the

corresponding state or above.

For an extremely urgent situation, we have to maintain the system to attain a certain
reliability level as soon as possible regardless of how costly it is. In this case, the

constraints on cost will be released and a special case of problem P3.2 can be derived:

P3.4: Minimize f X (3.22)
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Subject to:  Ry(X) 2 R, (3.25)
V<X, <K (3.20)
Xj; is integer, i=1,2,...M, j = 1,2,...,N, (3.21)

It is also noted that many other derivations of these models can be obtained. Depending
on the principal purpose of the maintenance and available information, the maintenance
decision makers can select the most appropriate models and thereby understand what

actions should be done based on his/her on-hand conditions.

The selective maintenance optimization problem is to find the optimal state combination
of all components in the MSS. Its complexity lies in the size of the solution space, i.e. the
number of possible state combinations. For each component i, we need to search for all

possible states between Y; and K inclusive. Thus, the total number of possible solutions
is H(K ~Y+ =0 K .For small size problems, e.g. n< K < it is possible to

enumerate all possible solutions and find the optimal one. However, for larger size
problems, it may take a long time to enumerate all possible solution. Heuristic or
evolutionary computational methods are recommended to find a relatively good solution

with less computational effort.

3.3 Solution approach

In view of the selective maintenance problem complexity, it is apparent that the
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enumeration approach can only be used for a small-sized selective maintenance problem
for MSS. However, when the size of the problem is large, it is not practical to enumerate
all the possible solutions and compare them. Heuristic or meta-heuristic methods should

be used in this case to find optimal or near optimal solutions.

In this thesis, Genetic Algorithm (GA) is used to solve the proposed selective
maintenance models. GA was also used in many previous maintenance optimization and
selective maintenance studies and it has proved to be efficient [6] [34] [38]. The reason for
using GA as the solution approach is that GA is relatively simple and easy to use for
many practitioners. In addition, the proposed selective maintenance model is a
combinatorial optimization problem and GA is very well suited for combinatorial
optimization with a high dimensional searching space [59]. Lastly, GA is also highly
adapted to problems with integer variables while the selective maintenance problem

belongs to a class of non-linear integer optimization model.

In this Section, we will provide a detailed solution representation for the selective
maintenance problem, a general procedure of GA, and parameters setting in GA program.
Further details on GA searching evolution and genetic operators’ mechanisms can be

found in [58] and [59].

3.3.1 Solution representation

Solution representation is one of the most important parts in the implementation of
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genetic algorithm. Let n be the total number of components in the system,
n N N N The detail of solution representation is illustrated in Figure 3.4.

Each chromosome consists of n genes; each gene is an integer number between 0 and K
which represents the state of the corresponding component at the end of the maintenance

break.

All elements in the vector of components’ state are ordered from subsystem 1 to

subsystem M and the decision variable, X = N j= M , can be

transformed to the state vector X = n. Bach state vector is considered as a

solution of the proposed selective maintenance problem. If the states of components at

the time of entering the maintenance depot are known and can be rewritten in vector
form, Y 1 n, we can use GA to find the best combination of the components’

outcome states after the maintenance break for the proposed optimal selective

maintenance problem.

1 2 N, 1 2 N, 1 Ny
X X X X X X
11 12 - 21 22
- O\ J
Y Y
State of components State of components State of components
in subsystem 1 in subsystem 2 in subsystem M

Figure 3.4 Solution representation
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3.3.2 General procedure and implementation of GA

GA starts by randomly initializing a population of N chromosomes in the first generation.
Each chromosome represents a possible solution to the selective maintenance problem.
Since each gene of a chromosome represents the state of the corresponding component,
we use a random generator to create each integer number in each gene within the range
from Y; to M. The fitness function, i.e. the objective function, is used to evaluate the
chromosomes, which allows a particular chromosome to be ranked against all the others.
After computing the fitness values of the individuals, existing solutions are recombined
using crossover, mutation, and reproduction procedures, to obtain new ones. The genetic
algorithm terminates when a pre-specified number of generations is attained or a given

time limit is over.

In the GA program, four important parameters need to be tuned, namely population size,
number of GA iterations, crossover probability, and mutation probability. The only
crossover type considered is one-point crossover. Uniform mutation and tournament
selection are used in the GA program. While testing a parameter, the other parameters
are fixed using the best known value. The crossover and mutation probabilities were
tuned with increment of 0.05 between 0.7 to 0.95 and 0.05 to 0.15 respectively. The best
probability with best performance was selected. The population size and the number of
GA iterations are selected in order to balance the efficiency and the accuracy of the

program rather than trying to find the optimal solution. After many trials, the
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reasonably good parameters setting is shown in Table 3.2.

Table 3.2 GA parameters setting

Value/
GA Parameters Type
Probability
Population size 50 -
Crossover 0.8 Single point
Mutation 0.1 Uniform
Selection - Tournament
Number of GA iterations 100 _
(Stopping criteria)

3.4 Illustrative examples, results and discussion

Example 3.1: Considering a multi-state series-parallel system (Figure 3.5) with K = 3,
M =3, N, =3, N, =2, N, = 4, the given states of components when entering the

maintenance depot are:

For each i.i.d. component in subsystem 4, =1, 2, 3, the transition probability matrices

and corresponding cost and time matrices for each individual maintenance activity are:
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The repairing time and cost for each component are independent. The required level of
the system at the end of the next operating mission is d = 3. We want to find the
maximum reliability of the system in the next mission with available time T, = 25 time

units, and total allowed budget C, = 45 cost units.

Subsystem 1 Subsystem 3
Subsystem 2
1 1
1
2
2 >
3
2
} 4

Figure 3.5 Series-parallel system in Example 3.1
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By running the GA program to solve problem P1 to find the optimal reliability of the

system at state d = 3, we obtain X 3 3 3 3 0 2 3 3, thatis, we select to

repair all components in subsystem 1 and 2 to state 3, do nothing to the first two
components in subsystem 3 and repair the last two components in subsystem 3 to state

3.

Table 3.3 The optimal maintenance actions for all components

when repairs of components are independent (Problem P3.1)

Component j
Subsystem 1
1 2 3 4
1 2-3 0—3 1-3 -
2 23 23 - -
3 0-0 2-2 23 1-3

The total cost for all maintenance activities is 44 cost units (< 45) and the total
maintenance time is 22 (< 25) time units. Recall that R,(d) is the probability of the
system state being in state d or above in the next operating mission, we obtained the
system optimal reliability at level 3, R(3) = 0.85995. The probabilities that the system

will be at least in state 1 and 2 in the next mission are 0.99725 and 0.98222 respectively.
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Table 3.4 The probability of the system being in state k or above in the

next operating mission (Problem P3.1)

d 1 2 3

RJ(d)=Pr(¢,> d) | 0.99725 | 0.98222 | 0.85995

To analyze the quality of the GA results, we have run the GA 10 times with the setting
in Table 3.2 for Example 3.1. In addition, the enumeration approach of all possible
solutions is also used to find the optimal solution in this example since the size of the

problem in this example is not too big. A summary of results is shown in the following

Table 3.5.
Table 3.5 Summary on the quality of GA results
Ave.
Best Worst ] ] Ave. CPU
. L. . .. . . difference in .
objective objective Optimality . . time
. . objective
function function . (seconds)
function
0.85995 0.8190 8/10 0.00818 2.67283

It is seen that GA can produce very good results in a reasonable short amount of time.

In Example 3.1, solving problem P3.1 helps us find the most reliable system within
available resources. Now, we want to investigate what maintenance actions should be
implemented when the total maintenance time is the most critical issue. This situation is
usually encountered in practice when a tight deadline is required in production or the
next mission needs to be started as soon as possible. Example 3.2 is devoted to the

illustration of this situation. With this example, the decision makers can find the best

)



maintenance actions when time is the most critical while the required system reliability

level is still close to the achieved results in Table 3.4.

Example 3.2: Consider the system in Example 3.1. Find the selective maintenance
strategy that we can finish as soon as possible without any requirement on budget, but
the system reliability at each level must be greater than R,(1) = 0.99, R,(2)= 0.96, Ry(3)

= 0.85.

Here, the cost constraint is released and we deal with problem P3.4 to minimize the
total completion time of all selective maintenance activities with the constraint of
achieving the required reliability. The solution of GA program results the optimal

completion time of 18 time units. The vector state of all components at the end of the

maintenance break is: X 1333033 3.

Table 3.6 The optimal maintenance actions for all components when

repairs of components are independent (Problem P3.4)

Subsystem Component j
@ 1 2 3 4
1 23 0—>1 1-3 -
2 23 23 - -
3 0-0 253 253 1-3

In comparison with Problem P3.1 in Example 3.1, there are two different maintenance

activities on component (1,2) and (3,2). Component (1,2) is repaired to state 1 and
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component (2,3) is repaired to the perfect working state 3; the other components in the
system receive similar maintenance actions as in the previous example. The total cost of
this strategy is 48 cost units, which indicates that we need more budget for all
maintenance actions in comparison with the solution in Problem P3.1. The reliability of
the system at level d = 3 is R (3)= 0.8757 which is, interestingly, greater than the
optimal reliability in Example 3.1. The achieved reliability at each level satisfying the

reliability constraints is provided in Table 3.7.

Table 3.7 The probability of the system being in state k or above when

repairs of components are independent (Problem P3.4)

d 1 2 3

R,(d)=Pr(¢,> d)| 0.99688 | 0.96446 | 0.8757

Example 3.3: Consider the problem in Example 3.1 again, but there are advantages of
repairing multiple components, i.e. the components are economically dependent. The
time and cost savings for each component due to the share of setting up of 0.4 time units
and 0.8 cost units; the cost saving coefficients of components in subsystem 1, 2, 3 are 0.7,
0.6, 0.45; and the time saving coefficients of components in subsystem 1, 2, 3 are 0.5, 0.4,

0.3 respectively.

Now, we have to deal with Problem P3.1 to find the most reliable system with the

available time and cost of 25 and 45 respectively. The GA program gives the state vector

of components at the time of exiting the maintenance depot as follows:
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Table 3.8 The optimal maintenance actions for all components when

repairs of components are dependent (Problem P3.1)

Subsystem Component j
i 1 2 3 4
1 23 0—3 153 -
2 23 23 - -
3 0—-1 23 23 1-3

In this strategy, we repair the first component in subsystem 3 to state 1 and all other
components to the best condition. In comparison with problem P3.1 in Example 3.1,
there are two more maintenance actions which can be taken on components (3,1) and

(3,2) within available resources.

Due to the time and cost savings of repairing multiple components, the achieved

reliability of the system at each level (see Table 3.9) is much higher than the results in

Example 3.1.

Table 3.9 The probability of the system being in state k or above when

repairs of components are dependent

d

1

2

3

R,(d)=Pr(¢,> d)

0.99734

0.98333

0.91949

Example 3.4: In this example, we use three different saving models in section 3.2.3.2 for
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modeling the economic dependence when repairing multiple identical components in a

sub-system. The input data from Example 3.3 is used.

We use the Matlab program to solve the selective maintenance problem to get the most
reliable system in the next mission within available time of 7T;,=25 units and budget of

i

Cy=45 units. In this example, the exponents for the cost and time savings, £, ,, are

set basedon f f ¢ ¢ sothat the adjusted repair cost/time of a component from the

proposed model is equivalent to the amount of cost/time for repairing an additional
identical component in a sub-system from Equation (3.14). The obtained results of vector

X from GA, the total time and cost used for maintenance and the system reliabilities

with corresponding parameters used in each model are shown in Table 3.10.

The first five elements in state vectors, X(1) to X(5), at the time of exiting the
maintenance depot are similar in all four models, i.e. the maintenance actions for these
components are exactly the same. In the maintenance strategy from the proposed model,
one additional maintenance action (corresponding to X(6)) can be performed in
comparison with Log-linear and Plateau models and two more maintenance actions
(corresponding to X(6) and X(9)) can be performed in comparison with the Exponential
model. The total maintenance cost and time spending in the proposed model is higher
than in the other models (43.75 cost unit and 20.7 time units), and this brings the system
to a state with higher system reliabilities of 0.99734, 0.98333, 0.91949 at levels 1, 2, and 3
respectively.
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Table 3.10 Results of different saving models

Model Vector X C(X)| T(X) | R(1) | R.(2) | R.(3)
Log-linear | [3 0 3 3 3 [41.15| 19.9 | 0.9973 | 0.98333 | 0.91949
Plateau
3 03 3 3
(C—0.1C) [ 14355 | 20.2 | 0.9973 |0.98333 | 0.91949
E’?;‘m(frllt)lal [3 3 3 33 0 3 3 2 |41.21 1869 |0.99725 | 0.98222 | 0.85995
Piﬁé’ngd [3 333 3 1 3 3 3 |4375 | 20.7 | 0.99734 | 0.98333 | 0.91949

To explain the differences in the results in Table 3.10, it is observed that the cost saving

of a component in sub-system i is characterized by two parameters, f and Ac, in the

proposed model. Meanwhile, the other saving models describe the economic dependence
relationship using a power function and parameter f. These models can only describe the
saving mechanism within a sub-system (when the components are identical), while the
proposed model also addresses the economic dependence when repairing components in
different sub-systems. This is close to the practical situation since the time and cost of
doing common preparation and maintenance activities on the serial-parallel system such
as erecting, cleaning, doing inspections, lubricating, etc. can be saved even with different

types of components.

To investigate the time and cost savings versus the number of components involved in a
maintenance strategy, we study the selective maintenance strategy resulting from
Example 3.3 for independent repair and dependent repair cases. Figures 3.6 and 3.7 show

how the maintenance time and cost for the series-parallel system are saved.
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25 I I I I I I I

—&— When repairs of components are independent
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Figure 3.6 Total maintenance time of repairing dependent components

vs. independent components
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Figure 3.7 Total maintenance cost of repairing dependent components
vs. independent components
Generally, we only need an assumption that the components in the same sub-system
have to be maintained in a group to gain the benefits of time and cost savings. In Figures
3.6 and 3.7, we also assume that the components are maintained in an order from the
first sub-system to the last sub-system. In this example, there are 9 components which
are subjected to be maintained in the maintenance scenario. When the repairs of
components are dependent, the maintenance time and cost are smaller than those in the
case of independent repairs. The different amounts of required resources between the two
cases are more considerable as the number of repaired components increases. To repair

all components in this maintenance strategy, the total required time and cost are just
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20.7 time units and 43.75 cost units when repairs of components are dependent in
comparison with 24 time units and 56 cost units in the case of independent repairs

between components.

3.5 Concluding remarks

This chapter documents the selective maintenance model for multi-state series-parallel
system with economic dependence. In the optimization models, total system maintenance
cost, completion time or system reliability can be treated either as objective or as
constraint; several alternative optimization models are derived. Both time and cost
savings can be realized when several components are maintained together in a selective
maintenance strategy. Economic dependence is analyzed in multi-state contexts based on
two types of time and cost savings: (i.) the share of setting up and (7.) the advantage of
repairing multiple identical components in series-parallel systems simultaneously. The
illustrative examples show that the maintenance schedulers may perform different
maintenance actions on the system depending on the main objective and the availability

of resources.

In selective maintenance of multi-component systems, the amount of resource savings is
system and component specific, i.e. it depends on the nature of the system, number of
components and type of components involved. By dividing the type of time and cost
savings into fixed (the share of the setting up) and variable (multiple identical repairs),

the proposed model can capture both the system features and the component specific
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features. Our main objective is to investigate the selective maintenance problem for
multi-state systems under the effect of this saving mechanism. In general, the selective
maintenance model in this chapter can help the maintenance manager determine the best

maintenance strategy to achieve a reliable system and allocate the resources effectively.
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CHAPTER 4

SELECTIVE MAINTENANCE FOR MULTI-STATE

SYSTEMS WITH STRUCTURAL DEPENDENCE

This chapter focuses on the selective maintenance problem for multi-state systems with
structural and economic dependence. In a multi-component system, components can
structurally form multiple hierarchical levels and dependence groups. We formulate the
structural dependence between components considering assembly precedence
relationships using a directed graph. A backward search algorithm is proposed to
determine an assembly sequence for a selective maintenance scenario. This chapter is

based on a submitted paper to Reliability Engineering and System Safety [60].

4.1 Introduction

In maintenance of multi-component systems, components may interact with each other

in different ways. Based on the effect on the lifetime distribution of components, the
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interaction or dependence can be classified into two main categories. In the first category,
dependence does not affect the degradation of components. This type of dependence
represents the relationships between components during the implementation of
maintenance activities and often occurs in maintenance models with economic or
structural dependence. As investigated in Chapter 3, economic dependence in
maintenance has been addressed in several maintenance models [13], [31], [42]-[48], [50]-
[52], [61]. Structural dependence exists when the components form a structural group and
the maintenance of a component implies the maintenance of other components or at least
dismantling them [15], [39], [62]-[66]. In the second category, dependence relates to the
degradation of components when they are in operation, and thus, the lifetime
distributions of components will be affected. The reason for this degradation dependence

may come from another component in the system or from variable operating conditions.

In this chapter, we will focus on the first case of dependence as described above. The
selective maintenance problem for multi-state systems with both structural and economic
dependence will be investigated. The degradations of components in an operating mission

are assumed to be independent.

The remainder of this chapter is organized as follows. Existing studies on maintenance of
systems with structural dependence are reviewed in Section 4.2. The system model and a

selective maintenance model are presented in Section 4.3. Illustrative examples,
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numerical results, and analysis are provided in Section 4.4 and a concluding remark of

this chapter is presented in the Section 4.5.

4.2 Literature review

Structural dependence means that components form a structural group, and repairing a
component requires intervention actions to other components. Early studies on structural
dependence focus on replacement policy [15], [62]. In these studies, it is suggested that
the system is built in a vertical structure of modules, and replacing a component at a
higher level requires replacing all the components at its lower levels. The problem is
whether to replace the whole system or replace a sub-assembly or just a single component
when that single component fails. Zhou et al [39] considered a more realistic system
model given the relationship of components in a hierarchical structure, where the
components can have relationships with others at both higher or lower levels and at the
same level. A preventive maintenance time for the system is optimized using the Monte
Carlo simulation method. Jia [63] divided a multi-component system into m modules and
assumed that replacing a component requires dismantling all components in the same
module, so structural dependence is the shared cost of dismantling and re-assembling
components. The shared cost of dismantling and re-assembling in [63] can also be
considered as the “set-up” cost in other economic maintenance models. Horenbeek and
Pintelon [64] added another cost element to the set-up cost to represent the structural

dependence. The limitation of [63] and [64]| is the simplification of the concept of
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structural dependence so that it can be treated using a single parameter. However, the
system becomes more and more complicated and it may be decomposed into sub-systems,
several sub-assemblies, parts and components. Thus, the idea of using a tree-like
structure to represent multiple hierarchy levels of set-up was presented in [67]. There also
exists a disassembly sequence between components in the system, so disassembling all
preceding components in a disassembly sequence is required before maintaining a
component. The disassembly sequence planning was also investigated and summarized in
[68]-[70]. However, these studies [67]-[70] focus on the grouping or the disassembly
sequencing problems given a pre-scheduled maintenance action rather than an optimal

maintenance model with difference maintenance activities on the system.

There have also been specific maintenance models with structural dependence. Yan et al.
[65] considered structural dependence in maintenance scheduling problems. When a
component fails, a number of related components need to be shut down for replacing the
failed component. This model is specifically applied to a system with the assumption that
the number of shutdown components proportionally increases the downtime cost of the
system. Dekker et al. [66] studied the road maintenance problems, where the road is
divided into carriage ways, lanes and small segments. Different failure mechanisms and
maintenance actions can be applied to a small segment, but some maintenance packages
are restricted to “large-scale” or “junction-to-junction” maintenance. Thus, once the
maintenance package is needed for a segment, the whole set of segments have to be

considered.
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In the literature, structural dependence is tied with specific applications or simplified
such that another form of set-up cost can be used. For those considering the replacement
policies, components are assumed to be “as good as new” after replacement and a single
preventive replacement time is optimized. None of the papers considered different
maintenance actions or different working levels a component may be at. In addition,
when the resources for maintenance are limited and there are multiple hierarchical levels
with a disassembly sequence in the system, the questions raised are which components or
group of components should be selected, and what maintenance actions should be
performed to optimize the system performance in the next mission. Thus, in this chapter,
we will explore the selective maintenance of multi-state series systems with structural
dependence. Selective maintenance policy applies when the whole system is maintained
at the maintenance depot and the joint maintenance of components naturally exists.
Thus, economic dependence is also considered. In summary, the main focus of this

Chapter is as follows.

e Both economic dependence and structural dependence are considered in the
system. Economic dependence simply means the share of the set-up, while
structural dependence relates to the sequence of disassembling components when
implementing maintenance activities on the system.

e The multi-level hierarchical relationship of disassembling components is to be

recognized in the maintenance model.
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e The optimal selective maintenance policy for multi-state components and

structural dependence is investigated.

4.3 Problem formulation

4.3.1 The system model

The multi-state system in this study has n multi-state components connected in series

(Figure 4.1). The system state is determined as the minimum state of its components.

Figure 4.1 A series system

Some components may be structural dependent so that they form multiple hierarchy
levels. Each level may contain several groups of components and there is disassembly
sequence of components/groups of components. The precedence relations govern the
order of disassembling components, which is represented by a directed graph [39] as in

Figure 4.2.
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Level 1

Level 2

Level 3

Level 4

@ Node 0 - the system

@ Node with letter- a sub-assembly

Level 5

@ Node with number- a component

Figure 4.2 A directed graph representing the precedence relations

The directed graph is a representation graph with nodes and edges modeling the system
and precedence relations between its components. There are three different types of
nodes, including root node or node “0” — which represents the system, intermediate nodes
or nodes with letters — which represent sub-assemblies, and leaf nodes or nodes with
numbers — which represent the components. The root and intermediate nodes can be
further broken down into their children nodes, but there is no further breakdown for leaf
nodes. The edges may be directed or undirected to represent the relationship between
nodes. A directed edge is used when there is a sequence of assembly relationship. It is a
“father-son” relationship between two nodes in different levels or a sequence order from

one node to another in the same level following the direction of the arrow. The
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undirected edge between two nodes at the same level means the two nodes are mutually

restricted and disassembling one means disassembling the other.

In the selective maintenance problem, the maintenance manager has to determine which
components to maintain and how to maintain each component in the system to ensure
the completion of the next mission within available budget Cj, and available time 7). In
order to formulate the selective maintenance problem, we need to determine the system
reliability as well as the maintenance resources, i.e. cost and time, associated with a
selective maintenance scenario. These are to be presented in Sections 4.3.2. and 4.3.3

respectively.

4.3.2 Component state distribution and the system reliability

The multi-state component degrades along with the time of use. Similar to Chapter 3, we
assume that the probability for component i at a pre-specified state a at the beginning of
the next mission degrading to a state b at the end of the next mission, p,(a,b), is given.
the transition probability matrix of component ¢ in the operating mission is as in

Equation (4.1).

We also have:
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K a
Zp aszp ab = fora= K (4.2)
b= b=

The system reliability at the end of the next mission meeting a specified demand level d,
R,(d), is the probability that the system will complete the next mission at the required
working level or state level d. In other words, the system reliability is the probability
that the state of the system at the end of the next mission, ¢,, is greater or equal to d.
With an assumption that the degradations of components are independent, it can be

computed using the following equation.

n

Rd= ¢=d=]] 82d=lj - s<d =ﬁ(‘d2pr](4-3)

i=

where s; is the state of component 7 at the end of the next mission.

4.3.3 Maintenance cost and time

3.3.2.1 Individual component maintenance time and cost

In the selective maintenance problem, the system and its components are maintained at
the maintenance depot within the available resources. The maintenance decision maker
has to select components and maintain them to states so that the system will meet the
reliability requirement in the next operating mission. If components are already
disassembled, the required time and cost for individually maintaining a component ¢ from
state a to state b, b > a, are known. Let t,(a,b) and ¢;,(a,b) be the individual maintenance

time and cost of component ¢ from state a to state b. Similar to Chapter 3, they are
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arranged in matrix form as in (4.4) and (4.5) respectively.

0 ¢t t K
0 0 t K
T | i n (4.4)
0 t K K
0 0o
[0 ¢ c K
0 0 c K
C | i n (4.5)
0 ¢ K K
0 0 |

The maintenance time and cost can be treated similarly. In the following sections, we will
formulate the total system maintenance time related to the selective maintenance
problem; the maintenance cost can be formulated in the same way if there is no further

explanation.

3.3.2.2 Disassembly time and cost

Different from Chapter 3, here we consider the disassembly and assembly time for each
component subjected to maintenance in a selective maintenance strategy. The
maintenance of a component includes a process of disassembling the component,
repairing/replacing the component, and putting it back to the system. Here, we use the
term “disassembly time” to represent the time related to both processes of disassembling

and re-assembling the component. Considering two nodes ¢ and j, which can be either
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letters or numbers, they are said to have a precedence relationship if there exists a
directed or undirected edge between them. In the directed graph, we define the

precedence relation between two nodes i and 7, 7(4,7), as follows.

0, if there is no edge between i j

o -1 if there is a directed edge from i  j (4.6)
rij = .
J 1, if there is a directed edge from ;7 ¢

2, if there is an undirected edge between i J

For each component i, the ¢ is the disassembly time for component i itself. A set of

nodes that needs to be disassembled from the root node to node i inclusive forms a
disassembly path for node i. it is noted that a leaf node, i.e. a component, always appears
in its own disassembly path. Two leaf nodes are structurally dependent if they both

appear in at least one assembly path among the two assembly paths.

To maintain a component i, we need to consider the cumulative disassembly time of all
nodes in its disassembly path. The method to find the disassembly path of a component
can be found in [39]. However, in selective maintenance, we need to calculate the total
disassembly time for the system with a given maintenance scenario. Thus, one needs to
find the disassembly path of all components in each possible selected maintenance
strategy, DP,. We propose a backward search algorithm to find the disassembly path for

the system to perform a maintenance strategy, DP,, as follows.

1. Starting from a leaf node 4 representing a component in the selective
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maintenance scenario, search for nodes j in the same and upper levels.

2. If iis not in DP,, add i to DP,

3. Check if 7(4,5) > 0, i.e. node j is in the assembly path of node . If 7(i,j) > 0
and j is not in DP,, then add j to a position before i in the system disassembly
path DP..

4. If 7 is in the disassembly path of node 4, the same search is performed from

node j for all its precedence nodes in the same and upper levels.

Ut

When the root node is reached, we move to the next leaf node in the selective
maintenance strategy in the next level and set the searching set of all nodes in
the directed graph excluding DP, and return to step 2.

6. The procedure stops when all nodes in the SM scenario are considered.

The key part of the algorithm is to use the precedence relation, 7(i,7), defined in
Equation (4.6), to search for nodes to be added in the system disassembly path, DP,. If
7(i,5) > 0, i.e. 7(i,y) € {1, 2}, node i must either be a child of node j or be mutually
restricted to j. Thus, j must be disassembled before i, i.e. j is in the disassembly path if 4
is maintained. On the other hand, if 7(i,j) < 0, ie. 7(iy) € {-1, 0}, there is no
requirement of disassembling j prior to disassembling i. For each component 7 in a
selective maintenance scenario, the closed loop from step 2 to step 5 is performed with
the stopping criteria that the root node is reached, i.e. a correct disassembly sequence of
component 7 is found. All the components in the selective maintenance scenario are

searched to complete the whole system disassembly path. The procedure is illustrated in
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Figure 4.3.

Initialization
i=1" component in MS

Add i to DP
|

Search for all j in the graph, |
J =nextj

Addj to DP

i = Next
component in MS Root node

1s found?

A

Figure 4.3 The Back-ward search algorithm

Once the disassembly path for a selective maintenance strategy is determined, the total

disassembly time of the system, then, can be calculated using Equation (4.7).

jop
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where ¢ is the disassembly time of node j itself. Once the disassembly time is

determined, the disassembly cost can be calculated accordingly based on the disassembly

cost per unit time c,.

C T (4.8)

3.3.2.8 The total system maintenance time and cost

In selective maintenance, there are often multiple components to be maintained at the
same time. Since the precedence relations exist in the system, the maintenance of
component ¢ requires disassembling all components in its precedence relations. This
directly affects the maintenance resources and the selective maintenance decision-making.
On the other hand, it may be a good idea for joint-maintenance of the components which
can save resources related to the maintenance process such as labor, materials, etc. Thus,
one needs to determine the total resources for maintaining the whole system including
the maintenance, disassembly as well as the savings related to maintaining multiple
components in the system. Specifically, the total system maintenance time, 7, is the total
maintenance time of each individual component, T}, plus the system disassembly time,
T,, and minus the time savings as an advantage of maintaining multiple components in

the system, AT , as in Equation (4.9).

T T T T (4.9)

In Equation (4.9), Ty is the summation of all individual maintenance times of all
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components in the system, which can be calculated using Equation (4.10). The

disassembly time is explained in Equation (4.7) and the total time savings, AT

represents the advantage of the shared utilization of the maintenance process, personnel,
and materials when repairing multiple components together. For simplicity, we assume
that the amount of time savings depends on the number of selected components in a

selective maintenance scenario and a fixed time savings per component At . We can

calculate AT using Equation (4.11).

n

T tyY X (4.10)

AT =(i5 Y X - jAt (4.11)

1t Y X >

where 6,'Y X =4 .
’ vift Y X =

Deltao'Y X is defined as being equal to 1 if ¢ ¥ X > | i.e. component 7 is selected

for maintenance, and being equal to 0 if £ ¥ X = | i.e. component i is not selected for

maintenance. With this definition, the summation 25,’ Y X is the total number of

selected components for maintenance. If there are more than one selected component,

and a fixed setup time,At , is saved per additional component, the total amount of

saving will be evaluated exactly using Equation (4.11).
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Equation (4.9) can be rewritten as:

TX =tYX +T Y X —(Zayx -~ jAt, (4.12)

where the T YV X = Z t

jeDP

Similarly, the total system maintenance cost includes the total maintenance cost of
individual components, C), plus the system disassembly cost, C,;, and minus the cost

savings due to maintaining multiple components together.

CX =C +C -AC =Yc¢Y X +¢T Y X —(zayx —JAC (4.13)
4.3.4 Selective maintenance optimization model

Assume that the state vector of all components at the time entering the maintenance
depot is known as Y= [V, Y, ... Y,|. We need to determine the state vector of
components at the time exiting the maintenance depot X= |X; X, ... X,|. The selective
maintenance model in this chapter is for finding the best set of components and
maintenance actions to maximize the system reliability in the next mission under
limitation of resources including time and cost. The selective maintenance model is

formulated as follows:

n d—
P: Mazimize R d =H( ->p X b} (4.14)

i= b=



Subject to: Zt Y X +T Y X —[Za Y X - jAt <T (4.15)

e Y X +e¢T YV X —(Zayx —jAcSC (4.16)
Vi< X <K (4.17)
X, is integer, i=1,2,...,n (4.18)

In the model, the objective function (4.14) is to maximize the system reliability at a
specified working level d, which has been formulated in Section 4.3.2. The two
constraints of (4.15) and (4.16) restrict the total maintenance time and cost for the
system within available time, T), and budget, C, respectively. The total maintenance
time and cost of the system are explained in Section 4.3.3. The states of components at
the time of exiting the maintenance depot, X, are decision variables. X; must be an

integer value and must be between Y; and the maximum state K for all ¢ = n as

stated in (4.17).

We use genetic algorithm (GA) [58], [71], a widely used meta-heuristic, to solve the
selective maintenance optimization model. In GA, we use a chromosome consisting of n
genes to represent a solution of the selective maintenance problem. Each element of the

state vector corresponds to each gene in GA solution representation. X is the targeted

state of the corresponding component ¢ in the maintenance period. If the states of

components at the time of entering the maintenance depot, Y , are known, the multistate
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system reliability, maintenance cost and time can be calculated for each vector X= |X;
X, ... X,). Thus, GA can be used to find the best combination of the components’
outcome states after the maintenance break for the proposed optimal selective

maintenance problem.

4.4 Examples, results and analysis

4.4.1 Example 4.1

This example is for illustration of the backward search algorithm to find the disassembly
path of the system for a maintenance scenario. Considering the multi-state system in
Figure 4.2 with 12 multi-state components connected in series, each component has 5
possible states, i.e. K=4; the state of each component at the time of entering the
maintenance depot and the maintenance scenario of interest are given in Table 4.1; we

have to find the disassembly path for the given maintenance scenario.

Table 4.1 Initial and end states of components at the maintenance depot

Compnent # i| 1 2 3 4 5 6 7 | 8 9 |10 | 11 | 12

State Entering
the depot Y
State exiting the
depot X

From Table 4.1, the set of selected components in the given selective maintenance

scenario is {1, 3,6,7,9,10,11 . The following results are obtained using the backward search

algorithm for each component in this set.
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e For =1, DP BAD
e For =3, DP BAD
e For =6, DP BAD 6

e Fori=7, DP BAD 6

e For =9, DP BAD C EF
e For =10, DP BAD C EF
e For =11, DP BAD C EF L
The final disassembly path is DP BAD C EF |, which means that we

disassemble the system following the order of the disassembly path from 0—-B—A—D
and 1-53—6 and 7—>C—4 and E—>F and 9—10—11 to perform all maintenance activities
in this maintenance scenario. If the disassembly time for each individual node is known,

the total disassembly time for the system can be calculated using Equation (4.7).

4.4.2 Example 4.2

This example is to analyze the selective maintenance problem for the same system in
Example 1 considering economic and structural dependence. The states of components at
the time of entering the maintenance depot are the same as in Table 4.1. Individual
components’ maintenance time, cost and state probability distribution are given in Table
4.2. The information on disassembly time, time and cost savings per component and
available resources for maintenance are presented in Tables 4.3 and 4.4. We need to find

the maintenance strategy, i.e. the states of all component at the time exiting the
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maintenance depot X;, Xs,..., X,, to maximize the system reliability in the next mission

within the given available resources.

The problem is coded in Matlab R2014a. The analysis is performed for two cases of the
system with assembly precedence relations and without assembly precedence relations. In
the first case, the disassembly times in Table 4.3 and backward search algorithm are used
to find the disassembly time for the system. For the second case, the summation of
disassembly times of all selected individual components in a maintenance strategy is used
as the disassembly time of the system. The results on maintenance strategies, resource
allocation, and the system reliability at different resource availability are to be discussed

in this section.

Table 4.5 presents the main results on the optimal maintenance strategies and the

corresponding system reliability at a required state level d =2. X is the optimal exiting

state vector when the disassembly of components is restricted by the precedence graph in

Figure 1, i.e. the actual assembly dependence is considered, and X is the optimal
exiting state vector for the system when the maintenance of a component requires

disassembling itself only.
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Table 4.2 Component characteristics

Component Time (time units) Cost (cost units) Probability
£ state | 0| 1 2 3 4 10| 1 2 3 4 0 1 2 3 4
0 0] 1 3 5) 8 |0 3 4 7 10 1 0 0 0 0
1 0 O 2 4 7 10| 0 1 4 7 0.2 0.8 0 0 0
=1 2 0] 0 0 2 5 |0] O 0 3 6 0.05 0.1 0.85 0 0
3 0] 0 0 0 3 10| 0 0 0 3 0.01 | 0.02 | 0.05 | 0.92 0
4 0] 0 0 0 010 0 0 0 0 |0.002| 0.01 |0.038| 0.12 0.83
0 0] 1 [25(45] 6 |0 | 2 4 6 8 1 0 0 0 0
1 0] 0 (1535 5 |0 O 2 4 6 0.1 0.9 0 0 0
=2 2 0] 0 0 2 135]0] 0 0 2 4 | 0.01 | 0.09 0.9 0 0
3 0] 0 0 O |15]0| O 0 0 2 10.005|0.015| 0.03 | 0.95 0
4 0] 0 0 0 010 0 0 0 0 | 0.001]0.005|0.024| 0.11 0.86
0 0 2 3 6 8 |0 3 4 7 9 1 0 0 0 0
1 0 O 1 4 6 0] O 1 4 6 0.15 | 0.85 0 0 0
=3 2 0] 0 0 3 5 0] O 0 3 5) 0.03 | 0.08 | 0.89 0 0
3 0] 0 0 0 2 10| 0 0 0 2 0.01 | 0.01 | 0.02 | 0.96 0
4 0] 0 0 0 010 O 0 0 0 | 0.005]|0.005| 0.04 | 0.15 0.8
0 0115 3 4 5 |0]35]| 6 9 11 1 0 0 0 0
1 0] 0 [15(25]35|0| 0 [25|55|75] 0.3 0.7 0 0 0
=4 2 0] 0 0 1 2 10| 0 0 3 5) 0.02 | 0.08 0.9 0 0
3 0] 0 0 0 1 10| O 0 0 2 10.005|0.012| 0.1 0.883 0
4 0] 0 0 0 010 0 0 0 0 | 0.003 ] 0.005 | 0.012 | 0.06 0.92
0 0115 4 6 8 [0 4 7 10 | 14 1 0 0 0 0
1 0] 0 [25(45]65]|0| 0 3 6 10 | 0.15 | 0.85 0 0 0
=9 2 0] 0 0 2 4 10| 0 0 3 7 1 0.02 | 0.03 | 0.95 0 0
3 0] 0 0 0 2 10| 0 0 0 4 | 0.01 |0.015|0.025| 0.95 0
4 0] 0 0 0 010 0 0 0 0 | 0.002 | 0.008 | 0.04 0.1 0.85
0 0115 2 |35 5 |0|25] 4 6 8 1 0 0 0 0
1 0] 0 (05 2 (35|10 0 |15|35|55] 0.25 | 0.75 0 0 0
1=06,7 2 0] 0 O 15 3 |0] O 0 2 4 | 0.04 | 0.06 0.9 0 0
3 0] 0 0 O [15]|0] O 0 0 2 0.01 | 0.02 | 0.09 | 0.88 0
4 0] 0 0 0 010 0 0 0 0 | 0.005|0.005| 0.03 | 0.06 0.9
0 O] 1 (25| 3 |45]|0|25] 4 6 7 1 0 0 0 0
1 0] 0 |15 2 [35|0| 0 |15|35 45| 0.1 0.9 0 0 0
-8 2 0] 0 0 |05 2 0] O 0 2 3 0.06 | 0.08 | 0.86 0 0
3 0] 0 0 O |15]0| O 0 0 1 10.005|0.015| 0.05 | 0.93 0
4 0 O 0 0 010 0 0 0 0 | 0.003]0.006 | 0.01 0.05 | 0.931




Time (time units) Cost (cost units) Probability
state |0 | 1 2 3 4 0] 1 2 3 4 0 1 2 3 4
0 0| 2 4 5 65|10 3 ) 7 |11 0 0 0 0
1 0 O 2 3 14510 0 | 2 4 8 0.1 0.9 0 0 0
i—9 2 0 O 0 1125701 0|0 2 6 | 0.03 | 0.06 | 0.91 0 0
3 0 O 0 0 |15/0| 0] O 0 4 10.005| 0.02 | 0.1 | 0.875 0
4 0 O 0 0 0010 0 0 |0.001]0.002| 0.05 | 0.12 | 0.827
0 0|15 4 b} 0] 2 ) 7 | 10 1 0 0 0 0
1 00 |25(35(45|0] 0 | 3 ) 8 0.2 0.8 0 0 0
1=10 2 0 O 0 1 2 10010 2 o | 0.02 | 0.05 | 0.93 0 0
3 0 O 0 0 1 101 0] 0 0 3 10.002]0.015| 0.12 | 0.863 0
4 0 O 0 0 0 |0l 0] O 0 0 |0.001]0.013]0.056| 0.08 | 0.85
0 015 3 4 5 | 0] 2 ) 7 9 1 0 0 0 0
1 00 |15(2535|0| 0 | 3 ) 7 1 0.15 | 0.85 0 0 0
=11 2 0 O 0 1 2 101010 2 4 1 0.03 | 0.05 | 0.92 0 0
3 (U 0 0 1101 0] 0 0 2 10.008 | 0.015 | 0.02 | 0.957 0
4 0 O 0 0 0 |0 0] O 0 0 |0.001]0.006|0.023 | 0.1 0.87
0 0 1 3 5 65|10 |25] 6 9 | 12 1 0 0 0 0
1 0 O 2 4 15510 0 |35]65(9.5] 025 | 0.75 0 0 0
=12 2 0 O 0 2 135|101 0] 0 3 6 | 0.02 | 0.12 | 0.86 0 0
3 0 O 0 01510 0] O 0 3 | 0.01 | 0.08 | 0.1 0.81 0
4 (U 0 0 0 |0 0] O 0 0 |0.005| 0.01 |{0.065| 0.11 | 0.81
Table 4.3 Disassembly time (time units)
Node| A| B|C|D|E|F|1|2|3|4|5|6| 7| 8| 9] |10|11|12
l‘l.d 2 1 1251216151224 2 |15 2 1 1 12515 1 |1.8]25
Table 4.4 Input data on cost, time, and required working level of the system
c
o T At Ac A " d
(Budgeted (Break (Time saving (Cost saving cgstssizlugit (Required
cost) duration) | per component) | per component) tfme) working level)
75 50 0.5 1 1.7 2
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Table 4.5 Selective maintenance results in Example 4.2

Componnet #i 112(3|4|5|6|7|8|9 (10|11 |12 R.(d)
Entering state ¥ 1200321232213/ "
Exiting state X 3|alalal2alal3]3]3]4a]4]08097

(Strategy 1)
Exiting state X 444344434 3]|4] 4087116
(Strategy 2)

From Table 4.5, it is seen that there are 10 components selected in both strategies. That

is, whether structural dependence is considered (X ) or not (X ), 10 out of 12

components of the system are selected for maintenance. However, the set of selected 10
components in X is a bit different from the set in X . The resulting component

statesin X and X are not the same either.

In strategy 1, components 2, 3, 4, 6, 7, 11, 12 should be maintained to their best state
(state 4); components 1, 9, 10 should be maintained to state 3 and nothing is suggested
for components 5 or 8. The projected system reliability at d =2 is 0.80997 for this

maintenance strategy.

Comparing X and X , there are 4 out of 10 maintenance actions, which are different
in the two strategies. Component 4 is selected in strategy 1 but not in strategy 2, and
component 5 is selected in strategy 2 but not strategy 1. Components 1 and 9 are both
maintained to state 3 in strategy 1, but they are suggested to be maintained to their

maximum state 4 in strategy 2.
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In general, maintenance strategy 2 recommends repairing components in the system to
higher states than strategy 1 does. This result is because of ignoring the precedence
relations between components. For example, strategy 2 recommends repairing component
5 but not component 4 while there is a directed edge from 4 to 5 in the precedence graph.

In strategy 2, the resources for disassembly and maintaining this component are

t ot 6 time units and ct ¢ 10.4 cost units. In fact, there is a

sequence of assembly and to maintain component 5, we need to disassemble following a
disassembly path {0, C, 4, 5}, i.e. sub-assembly C and component 4 need to be
disassembled  sequentially  before  component 5. It turns out to be

t t t t 10 time units and ¢ ¢ t t c 17.2 cost units to

maintain component 5 in actual condition. This omission results in more maintenance
activities allocated to repair components to higher states in strategy 2 within the same
available resources. Consequently, the estimated system reliability at the end of the next
mission in strategy 2 is 0.87116, which is 7.55% overestimated compared to strategy 1.
These results demonstrate that the maintenance planner may make an incorrect
maintenance selection and over-estimate the system reliability when not taking the

assembly sequence into consideration.

In terms of maintenance resources allocation, Table 4.6 and Figure 4.4 and Figure 4.5
show the time and cost elements for each strategy. The time and cost elements are

broken down using Equations (4.12) and (4.13).
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Table 4.6 Resource allocation results in Example 4.2

Maintenance | Assembly Saving Total
Strategy T Cu T, C, | AT, | AC, T C
Strategy 1 30 42,5 | 24.2 | 41.14 | 4.5 9 49.7 | 74.64
Strategy 2 37.5 54.5 | 16.4 | 27.88 | 4.5 9 49.4 | 73.38

60
Strategy 1 - with dependence
. B Strategy 2- ignore dependence
50 =
w 40
=
-
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Figure 4.4 Maintenance time in Example 4.2
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Figure 4.5 Maintenance cost in Example 4.2

From these figures, the total maintenance time and cost and the time and cost savings
are not significantly different for the two maintenance strategies. However, the repair
time and cost spending for strategy 1 is significantly less than that for strategy 2, which
implies that more improvement maintenance actions are suggested in strategy 2. This
also explains the reliability gap between the two strategies. Another result that can be
drawn from the figures is that the resources for disassembly contribute a considerable
amount when disassembly precedence relation is considered. This result implies that
ignoring structural dependence can lead to a mistake in resource allocation in the process

of maintenance implementation.
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The deviation of the system reliability between considering and ignoring structural
dependence is investigated when the maintenance budget varies. To do this, constraint
(4.15) is deleted and the optimization model is run repeatedly for different total
maintenance budget, (), varying from 30 to 100 cost units. The results on the system

reliability are shown in Figure 4.6.
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Figure 4.6 System reliability vs. total maintenance budget

An obvious result of Figure 4.6 is that the system reliability at the end of the next
mission is overestimated when ignoring structural dependence. This matches the above

explanations when examining maintenance strategies and resource allocation results. In
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addition, the gap of the system reliability estimation between the two cases of
considering structural dependence and not considering structural dependence is bigger
when there are tighter budgets. For instance, when ;= 100, the estimated system
reliability for case 2 is 0.892, while the actual system reliability (case 1) is 0.871, down by
2.4%; and when C,= 50, the estimated system reliability for case 2 is 0.698, while the
actual system reliability (case 1) is 0.508, down by 27.2%. This experiment indicates that
the tighter the resource limitation is, the more severe the mistake caused by ignoring

structural dependence.

4.5 Concluding remarks

A selective maintenance problem for multi-state systems with multi-state components
and precedence relations of component assembly sequence is investigated in this chapter.
We have formulated the relationships between components using a directed graph, and a
backward search algorithm is proposed to calculate the total disassembly time for a
maintenance scenario. The developed selective maintenance optimization model is to
maximize the system reliability in the next mission under both time and cost constraints.
The illustrative examples show that not considering structural dependence between
components results in an incorrect maintenance scenario and an over-estimated
reliability of the system in the next mission. This error is magnified when the resource

limitation is more strict.
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CHAPTER 5

SELECTIVE MAINTENANCE FOR MULTI-STATE

SYSTEMS WITH STOCHASTIC DEPENDENT

COMPONENTS

In this chapter, we investigate the stochastic dependence (s-dependence) between
multi-state components and its effects on the selective maintenance problem.
S-dependence implies that the current health state of a component affects the state and
degradation of other components. Since s-dependence relates to components’
degradations, the system reliability needs to be evaluated for selective maintenance
modelling. An approach based on stochastic process is proposed to evaluate the system
reliability. We develop a cost-based selective maintenance model to maximize the total
multi-state system profit, which includes the production gain and loss in the next mission

as well as possible maintenance costs for the system. Versions of this chapter have been
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published as a conference paper [72| and a journal paper in IEEE Transactions on

Reliability [73].

5.1 Introduction

In the literature of selective maintenance, the assumption of stochastic independence
between components is frequently made. However, in a specific system design, the current
health condition of a component may affect the performance of other components, and
stochastic dependence exists in most real and complex systems. As stated in [74], the
system reliability may be underestimated or overestimated when there is existence of
s-dependence, and thus maintenance optimization for those systems needs to be
thoroughly investigated. In the literature on selective maintenance, the selective
maintenance model for systems with s-dependent components was studied in [31], [32], in
which the components are binary and the failure of a component can cause other selected
components to fail immediately. In these papers, the discussion on the effects of
s-dependence on selective maintenance decision making was not investigated. In addition,
the dependence relationship discussed in this study is a special type of s-dependence

(type 1), which will be reviewed in the remaining part of this section.

In binary systems, s-dependence is often referred to as “failure dependence” or “failure
interaction”. In [75], failure interaction in multi-component systems is classified into two

types, i.e. when a component fails: (7). it may cause immediate failure to the other
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component (type 1), or (ii). it may cause damage by increasing the deterioration rate of

the affected component (type 2).

In type 1 s-dependence, a component may fail and cause the other component to fail with

probability p, or leave no effect on the other component with probability 1 —p Many

papers have provided maintenance analysis of systems with type 1 s-dependence,
including component replacement policy [76]-[78] and block replacement policy [79].
Regarding type 2 s-dependence, Barros et al. [80] studied a two-unit parallel system
where the failure of one component modifies the deterioration rate of the other
component. A preventive replacement model was given to find the time of maintenance,
T', that minimizes the failure and maintenance costs of the system. Lai and Chen [81]
studied a two-unit series system where the failure of unit 1 causes damage to unit 2 by
increasing the failure rate of unit 2 by a certain amount, while the failure of unit 2 will
cause immediate failure of the system. Sung et al. [82] extended the two-unit system in
[81] by introducing an external shock affecting both components. Albin and Chao [83]
studied an n-component system in series where the deterioration of the first component
changes the failure rate of all n-1 subsequent components. However, they did not discuss
in details how the failure rate is affected. Rasmekonen and Parlikad [84] considered a
system consisting of M parallel non-critical components feeding a critical component.
Parallel elements are independent but the performance of the critical components
decreases as a parallel component fails. Optimal preventive maintenance is determined to

maximize the performance of the critical component.
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Few efforts have been made on s-dependence existing in multi-state systems (MSS).
Researchers so far have only focused on the reliability analysis of MSS with s-dependence.
In [80] and [81], type 1 s-dependence is explored in MSS where the complete failure
originating from a multi-state component immediately causes complete failures of other
dependent components. In Levitin [87], the universal generating function approach is
shown to be efficient to evaluate the reliability of MSS when the conditional probability

distributions of the dependent components are explicitly known.

The discussion on s-dependence between multi-state components is still limited. Only
type 1 s-dependence has been discussed for multi-state systems. In addition, existing
maintenance models for binary systems with type 2 s-dependent components are
restricted to 2-component systems or systems with two stages of dependent components.
Therefore, the first objective of this chapter is to consider both types of s-dependence in
an n-component multi-state series system. An approach based on the stochastic process
will be used to evaluate the system reliability. Secondly, existing literature on selective
maintenance has not taken both the costs and the profit associated with MSS
performance rates into consideration. In this Chapter, both the production loss and gain
corresponding to multiple working levels of the system and the maintenance costs are
integrated into the selective maintenance cost model. To sum up, a cost-based selective
maintenance model will be developed for multi-state systems with two types of
s-dependence. The objective of the maintenance model is to maximize the total system

profit considering resources and reliability constraints. The proposed selective
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maintenance model is expected to help the maintenance decision maker find the most

economical maintenance strategy under reliability and resource constraints.

The remaining part of this chapter is organized as follows. Section 5.2 describes the MSS
with two types of dependence. A method of reliability analysis for the system with
s-dependent components is presented in Section 5.3. Selective maintenance policies and a
cost-based maintenance optimization model are developed in Section 5.4. Illustrative
examples, results and discussion will be presented in Section 5.5 and conclusion of this

chapter is provided in Section 5.6.

5.2 Multi-state systems with s-dependent components

The multi-state system in this chapter consists of n multi-state components connected in
series (Figure 5.1). Each multi-state component ¢ can be in a state in a set of K+1

possible discrete states, S = K  The state k is associated with a
corresponding working performance rate ¢ G g ¢ g . The sets of state S and

performance rates G are assumed in ascending order, ie. ¢ ¢ k [.

At time ¢, the state of component i, denoted by s t is a random variable,
st S K . The performance rate of component i is denoted by g ¢ and

the probability that component i is in state k at time ¢ is defined as in Equation (5.1).

The system performance rate, G(t), is defined as the minimum performance rate of its
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components as in Equation (5.2). The system’s state associated with performance rate

G(t) at time tis ¢(t).

p ot gt g (5.1)
Gt Mingt gt g t (5.2)
gt Min st st st (5.3)

The state of the system and its performance rate can be determined by the combination
of its components’ states from Equations (5.2) and (5.3). The state probability of the

system is:

Figure 5.1 A series system with n components

In the presented MSS, there might be two types of dependence when a multi-state

component changes its state as follows.

e Type 1 - Immediate failure dependence (IFD): when a component (influencing

component) fails, it may cause immediate failures of some other affected
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components. For example, a component fails and creates fire that causes some
nearby components to fail immediately; or an electrical component fails and
causes a voltage spike that triggers the failure of some other components in the
system that do not have protective device.

Type 2 - Gradual degradation dependence (GDD): as the multistate component
deteriorates with time and once it degrades to a lower working performance rate,
it does not cause affected components to fail immediately but increases or
decreases the degradation of the affected components. In our model, when a
component degrades to a lower state, i.e., its output performance rate decreases,
both the state and the degradation rate of the next component in the series
system are affected. This dependence mechanism occurs when the components
have direct connection to each other and the output of a component controls the
load on the affected component. In a steam turbine generation unit, a system
consisting of a water feed pump station and a steam turbine can serve as an
illustrative example. This is a two-component series system by considering the
water feed pump station as component 1 and the turbine as component 2. When
the pump station works at its maximum performance rate of z (ton/h), the
healthy turbine can generate its maximum power corresponding to z. When the
pump’s health condition deteriorates, the amount of water per unit time delivered
to the next component (the turbine) decreases. This will result in a decrease in the

degradation rate of the turbine due to the reduced load that the turbine needs to
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handle, and for the same reason, the output performance of the turbine decreases
too. Thus, we assume that both the performance state and the degradation rate

of a component may be affected by the degradation of the influencing component.

The two types of dependence in multi-state series systems are represented in Figure 5.2.

—————— » Type 1 s-dependence

—» Type 2 s-dependence

Figure 5.2 Two types of s-dependence in a multi-state series system

In MSS, it is seen that type 1 s-dependence can be defined in the same way as in binary
systems, i.e. the failure originating from a multi-state component can immediately cause
complete failures of the affected components. In Figure 5.2, the red-dash arrows represent
type 1 s-dependence relationship, e.g. the failure of component 1 can cause immediate
failures (IFs) to component 3 and component N only. As stated in [76], a component may
cause type 1 s-dependence failure with probability p, or leave no effect on the other

components with probability 1 —p It is assumed that the influencing component can

fail in two failure processes: one is its local degradation process that has no effect on
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other components, and the other failure process, called induced failure process, that

causes immediate failures of affected components.

On the other hand, type 2 s-dependence in multi-state context describes the “degradation
dependence” of a multi-state component on the degradation of other components in the
system. The transition rate between states of an affected component varies depending on
the instantaneous performance rate of the influencing component. In MSS, the
performance rate is often defined as productivity or capacity. In series systems, the input
of a component is the output performance rate of its predecessor and the output
performance rate of a component is the input of its subsequent component. Thus, type 2
s-dependence has a chain effect (green-solid arrows in Figure 5.2). Thus, a component i,
i=2, 3,...,n-1, can be both an influencing component to its subsequent components and

an affected component from its predecessors.

In summary, the MSS with s-dependent components has the following characteristics.

e The system consists of n components connected in series.

e Some components in the system can fail in a failure mode that causes immediate
failures of affected components (type 1 s-dependence). Once an affected
component fails, it cannot cause IF to any other component in the system.

e Components may degrade to a lower working performance rate and it affects the
degradation process of subsequent components by increasing or decreasing the

degradation rate of the subsequent components (type 2 s-dependence).
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e A component can cause both types of s-dependence and a component can be

subjected to both types of s-dependence.

5.3 Multi-state system reliability analysis
5.3.1 Multi-state systems with independent components

As explained in Section 5.2, all components in the system degrade due to a local
degradation process from the perfect functioning state to complete failure state. Without
considering s-dependence, the probabilities associated with different states of a

component ¢ at time ¢ due to its local degradation process can be represented by a set:

P ot ptpt p t (5.5)

Figure 5.3 shows the transition diagram that represents the degradation of a multi-state

component without considering s-dependence.

° /11‘;1( @ /11';[(71 Z’i;l

8k 8k g, =0
Figure 5.3 Transition diagram of a multi-state component without s-dependence
In Figure 5.3, component 7 has K + possible states from perfect functioning (state K)
to complete failure (state 0) with nominal transition rate from state k to state k — of

A, ... For simplicity, we assume that the sojourn time at each state of the component

102



follows the Exponential distribution, and the component degrades gradually, i.e. if the
component is currently in state k, it will degrade to state kK — before reaching a worse
state £k — . With these assumptions, the next transition of a component only depends
on its current state, and the stochastic process governing the local degradation process is
a Markov chain. The state probabilities can be determined by solving the

Chapman-Kolmogorov (C-K) system of differential equations as follows.

dp t
PTG
dp t
It =4, D ¢ p (5.6)
dp t ,
- = A p
dt
. D . dp 1 .
The last equation based on transition diagram is = =4 p t . However, it can be
K
replaced by Z p t since the sum of all state probabilities of a component is always
k

equal to 1. Further discussions on modeling the degradation of multi-state independent
components can be found in [55|. Regarding the method to solve the system of equations,
there are several methods including numerical and analytical methods. Here, we solve the

system of equations using a method described in [88] analytically.
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5.3.2 Modeling two types of s-dependence of components

o Type 1 s-dependence: In the system, we denote I as the set of components that

can fail and cause IFs of other components and A as the set of components affected by
the induced failure of component i i € I. When component i fails, it will either cause all
the affected components in A to fail with probability p, or leave no effect on these

components with probability 1-p. As a result, an influencing component ¢ may fail
following two failure processes: local failure and induced failure. The first failure process
is the local degradation process that does not affect any other components as described in
Section 5.3.1. The induced failure process causes the affected components to fail

immediately. In previous studies, the probability p is assumed to be a predetermined
value, but in this chapter, the probability of induced failure from component i, p ¢ , is

defined as a function of time:

p p t s ds (5.7)

Where A is the induced failure rate of component i. In this case, a state 0’ is added

into the set of states of the influencing component to represent the induced failure state

related to type 1 s-dependence. The performance rates of influencing and affected

components at state 0’ are g . The state probability vector of the influencing

component ¢ takes the following form:
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p I)I tp tpt p”t\ (5.8)

In Equation (5.8), p ¢ is the probability that the influencing component i fails and

causes IF. Thus, p ¢ p t and p ¢ k K is the state probability of

component ¢ in the case that it does not fail due to the induced failure process. We

assume that the local and induced failure processes are stochastically independent, then:

p t=p t {—j‘/l s ds} (5.9)

where p ¢ is the state probability obtained by its local degradation process which can

be obtained from solving the system of equations (5.6).

The state probability distribution of an affected component j € A depends on the state

of component i. We assume that an affected component j cannot cause immediate failure
to any other component in the system. This also means that a component in the set of

influencing components, I, cannot be affected by another component in the same set 1.

If the induced failure does not occur, the state probability vector of component j is
P oot p ot P t;, where p t k= K is the state probability of
component j obtained by solving (5.6). If the induced failure of component i occurs, the
state of component j is 0, i.e. p ‘ ..,0 . Thus, we have the conditional probability

distribution of component j as follows.
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(fn ¢ p p » if no IF occur (5.10)
11,0,...,0 , if IF from at least 1 influencing component occurs '

There is another way to explain Equations (5.9) and (5.10) in conditional probabilities by

defining a stochastic process {sr tt  with a state space of {0,1, ..., K} as the

7

stochastic process governing the local degradation process. Another stochastic process

{s t ot with a state space of {0’, 0,1,...,K is defined to represent type 1 s-dependence

of influencing component i as follows.

(o T
st b (5.11)
v i Tt

where T;is the time to IF of component i.

For 0 < k< K,
Prst=k T>t= st=kT>t= st=k=p t
) : ‘ : ‘ : (5.12)
Prst=FT<t =
Hence,
t
Prst=Fk= st=kkT>t T>t =p t {—J./l sds} (5.13)
0

The above equation (5.13) is the same as equation (5.9).

When k= ',

106



Pr s t T t T t T ¢t

: (5.14)
Pr s t T
Similarly, we can define a stochastic process {sd t t  with a state space {0,1,....K}
to represent the type 1 s-dependence for an affected component j as follows.
; e 1 st # el je A (5.15)
s = )
v, ifs t = 1el je A

The above Equation (5.15) is equivalent to Equation (5.10).

o Type 2 s-dependence: Type 2 s-dependence exists when components have direct
connection to each other and the output of the influencing components controls the

performance of the affected components. In series systems, a component i,
1= n— , can be both an influencing component to its subsequent component and

an affected component from its predecessor. We assume that the degradation of

component i, i > 1 depends on the output performance rate of its preceding component

t— . When its predecessor i — is at the perfect functioning state, i.e. g ¢t g ,
component ¢ degrades at its nominal transition rate, i.e. the transition rate of the local

degradation process 4;, . When component i— degrades and g_ t <g , type 2

s-dependence between component ¢ and its immediate predecessor is described as follows.
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e The performance rate dependence: The performance rate of component i is

automatically adjusted to the output of performance rate supply to it, i.e.
gt g t g
e The degradation rate dependence: The transition rate between states of the

affected component 4, 1'{ also depends on g ¢ . We use ¢,” “as a dependence

function to describe type 2 s-dependence of component 7 on its immediate

predecessor.

Ag ¢ gt k K (5.16)

In (5.16), ¢,” " is a function of the instantaneous performance rate of the component
i g t, and a dependent exponent, m,; characterizing the degree of dependence
between component i and its immediate predecessor. When m; > 0, the reduced
performance of the influencing component decreases the degradation process of the
affected component, ie. A - -, ; when m;, < 0, the reduced performance of the
influencing component increases the degradation process of the affected component, i.e.
A4 - .. When m, = 0, we have A9 -, i.e. the transition rate doesn’t change but

the performance of the affected component still depends on the performance of its

preceding component.

A power law with m; being an exponent is used to represent the degree of dependence of

component ¢ on its preceding component. In general, the transition rate of an affected
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component may also depend on state k. If this is the case, the component type and state
effect can be characterized by an exponent m;;, where m;, represents the dependence of
component i at state k on its preceding component. We assume that the performance
rate associated with each state of a component is uniformly distributed and the
dependence effects are equal for each state, i.e. m;; can be considered as m; for all k. In
addition, the same methods of reliability analysis and maintenance optimization in the

next sections can be applied for either case where m; or m,, is used.

5.3.3 The system reliability

In this section, we analyze the system reliability when both types of dependence exist. To
calculate the system reliability, the system state probabilities is first obtained using a
Markov analysis for the system with type 2 s-dependence. Then, type 1 s-dependence is
incorporated using the law of total probability based on the event that an immediate

failure occurs.

5.8.3.1 Markov analysis for MSS with type 2 s-dependence

In Type 2 s-dependence, we see that the degradation of a component i, i >1, depends not
only on its current state but also on the state of its immediate predecessor. If we consider
simultaneously the state of component 7 and the state of its immediate predecessor at the
same time, the degradation of the subsystem of components 7 - 1 and ¢ can be modeled

as a Markov chain.
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To illustrate the Type 2 s-dependence as a Markov chain, we take an example of 2

components connected in series, wherein each component’s state space is {O, 1,2,....K

Although the series system state can be represented as min s s K , we
denote the system state as a pair of (5 s . Since the state of component 2 is always less

than or equal to the state of component 1, the system state space is

(KK KK -,(1,0),(0,0) . With this notation, the system states denoted by (&,
k-1) and (k-1, k-1) are considered to be different although the output performance of the
system is identical. The first element in system state (s s determines the state and the
associated output performance rate of component 1. The second element in the pair
(s s depends on the value of the first element. However, the stochastic process
utilizing the pair notation is a Markov chain since the next state of the system in pair

notation (s sib only depends on its current state. The stochastic process with the local
degradation process is {(5 t st with transition rates (ﬂm lb . When type-2

dependence is introduced, the stochastic process is modified to {(s t st with

additional requirements of s ¢ s ¢ and the transition rates of (ﬂu; .

kl K |k to represent type 2 s-dependence between the two components as

described in Section 5.3.2. The state transition diagram for the group of two components

is shown in Figure 5.4.
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A8k

Complete failure

Figure 5.4 Transition diagram of two components with type 2 s-dependence

In Figure 5.4, type 2 s-dependence happens whenever the influencing component changes
its state, which may result in state dependence and transition rate dependence.
Transition rate dependence always happens when the influencing component changes its
state, but state dependence occurs only if the transition of the influencing component
causes its state to be less than the state of the affected component. For example, there

are two transition paths from state (K K to state (K — K-, which are (K K —
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(KK- —> (K- K- ,and (KK — (K- K- . In the first transition path,
we can understand that there is no dependence in the first transition (K K —

(K K- . In the system state (K K — , the second component has its nominal

transition rate /127 x - From this system state, when component 1 degrades from state K
to K — 1, i.e. the system state becomes (K — K-, the transition rate of component 2

is modified to /"izd x g since the performance rate of component 1 has changed.

Although state dependence does not take place, type 2 s-dependence still occurs in this
transition in terms of transition rate dependence. In the second path, there is no
transition from the state (K,K) to state (K-1, K), because when component 1 enters

state K — 1 the state of component 2 is instantly adjusted to K — 1 and its transition rate
is also adjusted to ﬂzd x 9 due to type 2 s-dependence. It is noted that state

dependence only happens in the second path. This is because state dependence happens if
the transition causes the state of the affected component to be greater than the state of

the influencing component.

When any component degrades to state “0”, the system is in complete failure state. In
Figure 5.4, we can combine all such states with at least one component in state “0” as the
“F” state or complete failure state. “F” is an absorbing state during the mission, i.e. no
transition can happen further when the system is failed. The C-K system of equations

for type 2 s-dependence is written as in (5.17).
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Pt \
—— =Mk v K Pt
dpP t
~ APt P t
il ! Pt P t P t
=A g
dt 1K
d—];tt =Pt g P t . ‘g Pt Pt

(5.17)

K k
In (5.17), the last equation can be replaced by ZZP t Pt since the sum of all
kool

system state probabilities is 1. Since the system will degrade gradually from a higher
state to a lower state in the next mission, the state (s, ) is lexicographically ordered in
decreasing numerical order. With this order of the system state, the system of C-K

equations can be rewritten in matrix form as [88]:

L P (5.18)
dt

In (5.17), there are a total of f equations; fis the number of state combinations of all

components in the system. Then, P is a row vector, 1x f , and A is the transition rate

matrix, f x f. For Equation (5.18), we can write matrix A as:
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(A 7 0 0 0 0"|
Ay ‘) 0 0 0

A= Ak Tk ‘ x dK g 0 Ol
I 0 0 0 Y )
(5.19)

It is noted that the sum of all elements in a column of matrix A is always equal to zero.
Given P as a row vector of the initial condition, we can solve the system of C-K

equations and determine the system state probabilities. The solutions to the system of

equations (5.18) take the following form [88|.

P P 1% (5.20)

where V is a matrix of eigenvectors of matrix A and D is a diagonal matrix with

diagonal elements being eigenvalues of A .

When the system has more than 2 components, the components’ states are grouped and
denoted in a similar way. Each system state has to be denoted by N-tuple for an
N-component series system. Markov properties and analysis for the system can be carried

out similarly. The degradation of component i can be explicitly determined when the

current states of the group of components {1, 2,...,1  are included in the system state.
The next state of the system denoted by {s S s only depends on its current state.

The state transition diagram and the system of C-K equations can be obtained similarly.
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The state space of the Markov model depends on the number of components and the

number of health states of each component. We will discuss the state space of the system

model and illustrate the complexity of the system model in this Section

Consider a system of n multi-state components with type 2 s-dependence. Each

component may be in K+1 possible states. We use f n K > to represent the number

of states of such a system with n components and K is the common maximum state of

each component.

When n = , i.e. the system has only one component, and we have: f K
When n = , the state dependence requirement dictates that s >s where s, is

the state of component 1 and s, is the state of component 2. Considering s; may

take integer values from 0 to K, inclusive and s, may take integer values from 0 to
s, inclusive, the number of states of the system in (s s is then equal to

2

When there are m components in the system, there is a cascading dependence

requirement such that K >s >s > >s > . Using similar reasoning, we can

find the number of states of the system in (5 s s as

r=yro-n()

]
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" K Van 24
We can see that f = H( —+ ) > ) and K + 1+ > 1. Thus, the number of system
i= 7 v n

) ) K )
states increases with the order of at least O[(—-F j j when n—e and n-—se. This
n

exponential increase in the number of system states limits the model for systems with
large n and K values. In the future, more efficient methods for solving the system model
need to be developed to handle the relationships between components in the proposed

model.
5.3.3.2 Combining two types of s-dependence in system reliability analysis

When both types of dependence are considered, the stochastic process governing the
degradation of each component cannot be defined individually since there is a chain
effect in type 2 s-dependence from the first component to the last component in a series
system. Thus, all components in the system are considered at the same time. The system
state probabilities can be first obtained using the Markov analysis for the system with
type 2 s-dependence as outlined in Section 5.3.3.1. Then, type 1 s-dependence is
incorporated in the event that the system is in a failure state, which is caused when at

least one immediate failure occurs.

A stochastic process for the system with n components considering both types of
s-dependence is defined as follows. For a system of n components, we use

S t=3s51ts t s t , which is an n-tuple, to represent the system state considering
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type 2 s-dependence. The superscript refers to type 2 s-dependence and the subscript is

the component in the system. Each n-tuple, § t = s t s t s t , exactly defines

the state of the system and {S t t  is the stochastic process representing the

7

system degradation due to type 2 s-dependence. Then, the stochastic process governing

both types of s-dependence of the system is {S ¢ ¢  , where:

st # Viel

<t
St = (5.21)
v, ifs t = 1el

In the system of equations (5.17), the state probabilities of the system are in the form of

Pt . Given the initial state of each component in the system, the system of C-K

equations can be solved using the method presented in [88] to obtain the state

probabilities P ¢ . Denote @ ¢ as the probability that the system is in state k at

time ¢ without considering IF. We can easily transfer the system state probabilities

P &t intoQ ¢ k K by applying Equation (5.22).

Qt= > P t (5.22)

min s =k

When IF from component i happens, both influencing and affected components are in
failed state, and the system is also in failed state. In addition, if a component is in state 0,
IF failure cannot happen to the system. Thus, the state probabilities of the system
considering type 1 s-dependence can be represented as follows.
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For k= 1,2,....K,

Pt=Qtx =Q t x[]r ¢, (5.23)

iel
and

Pt =@Q tx hereisnoIF +Pr at least one IF occurs

=Q t pr t +( —Hp t) (5:24)

iel iel
From (5.23) and (5.24), we can calculate the system state probabilities P ¢t , for all

k=0,1,2,...,K. The system reliability is the probability that the system can operate and

satisfy a required demand D. Once the state probabilities P ¢t are determined, the

system reliability can be obtained using a zero-one function, (G D .

RtD Gt D Pt gD, (5.25)

(n ifg D

where 6(g D o
L otherwise

5.4 Selective maintenance model

In our selective maintenance model, no repair action is allowed within a mission. During
the next mission, if an IF happens or when a component degrades to a state that cannot
satisfy the demand, the system is considered failed and the mission is failed. Thus, the

maintenance decision maker must take the probability of successfully completing the
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next mission, i.e. the system reliability, into consideration prior to the start of the
mission. The proposed maintenance model will optimize the maintenance decisions before
a mission starts so that the system reliability is greater than or equal to a required

threshold.

5.4.1 Maintenance actions on a multi-state component

In the selective maintenance problem, one needs to find the optimal combination of
maintenance actions on the components when they arrive at the maintenance depot
under the limited resources. Similar to Chapter 3, we denote Y and X as the states of
component i at the time of entering and exiting the maintenance depot, respectively. It is
assumed that the system is inspected at the time of entering the maintenance depot and
the components’ states are detected instantaneously, i.e. the state vector at the time of
entering the maintenance depot is explicitly known. The maintenance actions do not

worsen the condition of the component, i.e. ¥ < X . In general, multiple maintenance

options are available on a multi-state component when it is in the maintenance depot as

follows.

e Do-nothing (DN): the current health state of the component does not change at

the maintenance depot, i.e. X Y.

¢ Replacement: The component is renewed to the state “as good as new”, i.e. state

K.

119



Imperfect maintenance (IM): ¥V X K.

In a selective maintenance modeling for the system consisting of multiple s-dependent

components, it is necessary to consider the effect of s-dependence on the selection of

maintenance activities. We take s-dependence between components into account by

considering the following aspects when modeling the maintenance activities of

components.

At the maintenance depot, if the influencing component is in induced failure state,
the maintenance action of its affected components is valid only when the
influencing component is selected, i.e. when the affected component is selected in a
maintenance strategy, the influencing component in type 1 s-dependence is also
selected.

Among maintenance actions for type 2 s-dependence components, the repair of the
affected components cannot bring it to a state greater than the influencing
component’s state. Because of the state dependence between components, the
repair action to bring the affected component to a state greater than the state of
the influencing component requires more maintenance resources but does not
improve the system reliability and stochastic degradation in the next mission in
comparison with repairing the affected component to the state equal to the state

of the influencing component.
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5.4.2 MSS profit and cost evaluation

In this chapter, our aim is to build a cost-based selective maintenance model to identify
the most economical maintenance strategy when s-dependence exists. To do so, we
analyze the profit and costs for the system during the maintenance period and in the

next operating mission, including:

e The system production gain and loss associated with its performance rate in the

next mission.

e The maintenance cost in the maintenance depot.

5.4.2.1 The system production gain and loss

In MSS, the performance rate often represents productivity or capacity. Thus, the MSS
production gain and loss are evaluated using the multiple output performance rates it
can produce in the next mission. Let ¢, and ¢, be the average production gain and loss
per unit of performance. It is assumed that ¢, and ¢, are given. This is a reasonable
assumption since the values of ¢, and ¢; can be determined based on the sale price of a
unit, labor costs, material costs and penalty per shortage unit in customer contracts in
real operation context. The total expected system profit in the next mission is defined as

the production gain, Cpg, minus the production loss, Cp;.

Production Profit = Production gain Production loss = C  C (5.26)
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¢ ¢ g Ptdt (5.27)

C ¢ D ¢ P tdt (5.28)

where P t is the state probability of the system at time ¢ in the next mission, t is the

next mission duration, and D is the demand level of the system in the next mission.

In multi-state systems, each state k associates with a performance rate g,. In many
practical applications, g; is related to the output capacity of the system and we can say
that at state k, the system produces ¢, units of performance rate. For example, a
multi-state power generating unit can produce several performance rates of 100 MW, 50
MW, and 0 MW corresponding to state 2, 1, and 0 respectively. Then, one unit of

performance rate is 1 MW.

In Equation (5.27), the production gain, Cpg, is calculated for each unit of performance

rate that satisfies demand (g ¢ D). It is a product of the average production gain per

unit of performance rate, ¢, the output performance rate of the system at state £,

g g D, and the expected probability that the system is in state k in the next mission,

1
- P tdt. The production loss, Cp, is calculated in a similar way but it is only counted
T

0

per unit of unsupplied demand (D g g D .
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5.4.2.2 Maintenance cost and time in the maintenance break

For each component i, an amount of ¢ Y X is required to repair it from state Y to
state X in the maintenance break. If no maintenance action is performed on component
i, ie. X Y, cVYY When ¥ X K , the maintenance cost of maintenance
actions on component i: ¢ Y X ¢ Y K . The maintenance cost of a component i can

be arranged in matrix form as in Chapter 3.

c ¢c K
0 c K
C = i = n (5.29)
0 c K- K
10 0 . 0 |

The total system maintenance cost is the summation of maintenance costs of all

components.

¢ X=Ycv X (5.30)

Similarly, we define t ¥ X as the time of repairing component i from state Y to state

X .

[0 ¢ t K ]
0 .. t K
T = i= n (5.31)
0 t K- K
| 0




When the components in the system are repaired one by one, the total system

maintenance time can be obtained by taking the sum of all components’ repair times.

TX =YtV X (5.32)

In summary, the total system profit (cost) function is calculated from the start of the

maintenance break to the end of the next mission as presented in (5.33).

c ¢ ¢ ¢ (5.33)

5.4.3 Selective maintenance modeling and solution methodology

The objective of the selective maintenance problem is to find which components to be
maintained and how to maintain them during the maintenance break given their
conditions at the time of entering the maintenance depot. Thus, a solution of the

selective maintenance is a combination of the states of all components at the time of

exiting the maintenance depot. It is in vector form X = X X X

The selective maintenance problem can be formulated as a non-linear integer

programming problem as follows.

Mazximize c ¢ ¢ ¢ (5.34)

Subject to RX D R (5.35)
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C X ¢ (5.36)

TX T (5.37)
if X > then X > VjeA (5.38)
X X i N (5.39)
Y X K X isinteger Vi N (5.40)

The maintenance manager has to determine maintenance activities associated with each
component to achieve the maintenance objective of maximizing the total profit of the
system during the whole next mission under limitation of time and budget for
maintenance as well as maintaining the requirement of the system reliability in the next
operating mission. The objective function is to maximize the total multi-state system
profit, which is equal to the production gain in the next mission minus the production
loss and minus the maintenance cost. Each element in the cost function, C, is calculated

as in Section 5.4.2.

Constraint (5.35) indicates that the required system reliability in the next operating

mission at demand D must be greater than or equal to a specified value Ry. R X D is

calculated using the approach discussed in Section 5.3.3. Constraints (5.36) and (5.37)
are two resource constraints, which indicate that the resources for maintenance must be
within the available budget and time allotted within the break between the last mission

and the upcoming mission. Constraint (5.38) describes type 1 s-dependence in the system:
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an affected component j belongs to the set of components affected by component i, A

then component i cannot be in failure state if the state of component j > 0. Constraint
(5.39) describes type 2 s-dependence in the system: the state of a component is less than
or equal to the states of its predecessors. The decision variables, X, are components’
states at the beginning of the next mission. Since the maintenance activities do not
worsen the state of the components, X; must be an integer value between Y; and the

maximum state K for all i = 1,2,...,n.

Similar to Chapters 3 and 4, we use genetic algorithm (GA) to deal with the non-linear

selective maintenance optimization model.

5.5 Examples, results, and discussions

5.5.1 Example 5.1

This example is for illustrating the reliability analysis of MSS with type 2 s-dependent
components. Consider a MSS consisting of 3 multi-state components connected in series
with type 2 s-dependence as presented in Figure 5.5. Each component can be in one of
four possible states, i.e. 5={0,1,2,3} with corresponding performance rates in a set
G={0,1,2,3}. The nominal state transition rates are provided in Table 5.1 and dependent

exponents m m
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Figure 5.5 Multi-state system in Example 5.1

All components are as good as new at time ¢t = 0, find the probability that the system

can deliver at least at demand D = 2 in a mission time ¢ = 1 year.

Table 5.1 Components’ transition rates in Example 5.1

Component Transition rate (year™)
(i) k=3 | k=2 k=1
1 0.12 0.18 0.15
2 0.09 0.15 0.05
3 0.17 0.12 0.2

Denote the system’s state by a set of (S s s with s; being the state of component i, i =

1, 2, 3. The state diagram is constructed as in Figure 5.6.
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Figure 5.6 Transition diagram of a 3-component system with type 2 s-dependence

In Figure 5.6, state “F” or “Failed” indicates that at least one component in the system is
in state 0, i.e. complete failure state. Once a component is in state 0, no other
components can degrade further in the mission. The C-K system of equations can be

written as follows.
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dP 1 2 2\
/H = M3 "las !t Tas Pt
dP t
= t4P 1 Pt
dP 1
dt = 42.3P,__, t ,,,P,,,, t o o 9 P,,,,, t (5.41)
dP i
R g P (t g g Pt

In Example 5.1, the size of matrix A is 11 11. The C-K system of equations can be
solved with initial condition vector P = 0,0,0,0,0,0,0,0,0,0 using the method

presented in Section 5.3.3. With t=1, we get:

P 390.1192 0.0678 0.0940 0.0070 0.0029 0.0053 0.0039 0.0050 0.0090 0.0020
=P P 5839

p P P P 192 0.0678 0.0940 0.2810

P 70 0.0029 0.0053 0.0039 0.0050 0.0090 0.0331

P 20

Hence, the system reliability at D= 2 is:

K
=R D P ¢ D 839  0.2810  0.9649

k

5.5.2 Example 5.2

Consider a MSS consisting of 5 multi-state components in series with their dependence as

presented in Figure 5.7. Each component can be in one of 4 possible states S={0,1,2,3}
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with corresponding performance rates in a set G={0,1,2,3}. The nominal state transition

rates and dependence exponents are provided in Table 5.2.

— 1 2 3 4 5 (—

Figure 5.7 MSS in Example 5.2

Table 5.2 Components’ characteristics in Example 5.2

Component Transition rate (year”)
m;
(i) k=3 | k-2 k-1
1 0.08 0.15 0.1 -
2 0.06 0.11 0.05 1
3 0.14 0.09 0.2 0.5
4 0.18 0.1 0.15 0.5
b} 0.11 0.08 0.16 1
Components 1 and 2 may fail due to induced failure processes with At and
At t. In the set 7=, component 1 can cause components 3 and 4 to fail

immediately, and component 2 can cause component 4 to fail immediately, i.e.

A = A =
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Upon arriving at the maintenance depot, the vector of components’ states is

Y ,1L,O . The repair time (in days) and cost (in $1,000) matrices of each

=

component are given as follows.

[0 45 9 145 0 3 85 16 025 6 10
N N A 19 n n A 19 N N A R
C C C :
U U U Yo Uu v U 4.9 U U U 8.9
00 0 0 00 0 0 0 0 0 0
0 2.5 4.5 9| lo 35 6 10|
n n 9 AR n n 2 K5
C C '
u U v 4| Iu ] ZI
00 0 0 0 0 0 0
0 1 25 3.5| .0 1.5 2 5| .0 1 25 5|
n 1K1 9 n n 1R 2 n n 9 QR
T T T
J.‘OI I U | I |
I 0 0 0 0 ) 0
i 3 45| .0 1.5 2 3|
nn 15 2 n n 1 925
T T .
U v lbl Iu U v 1.5I
00 0 0 0 0

The maintenance manager has to find selective maintenance actions to be performed on

the system under the requirement and resource availabilities as given in Table 5.3.

The Markov analysis for the system is performed by denoting the state of the system by
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(s s s s s . We enumerate all states of the system including (3,3,3,3,3), (3,3,3,3,2),
(3,3,3,2,2), (3,3,2,2,2), (3,2,2,2,2), (2,2,2,2,2), (3,3,3,3,1), (3,3,3,2,1), (3,3,2,2,1),
(3,2,2,2,1), (2,2,2,2,1), (3,3,3,1,1), (3,3,2,1,1), (3,3,1,1,1), (3,2,2,1,1), (3,2,1,1,1),
(3,1,1,1,1), (2,2,2,1,1), (2,2,1,1,1), (2,1,1,1,1), (1,1,1,1,1), and state F denoting the
complete failure state of the system. The reliability analysis is done in the same way as in

Example 5.1.

Table 5.3 The system information and resource availabilities

Cy Ci T Cy T,
R() D
($10,000) | ($10,000) (years) | ($1,000) | (days)
20 o0 0.85 | 2 0.5 40 12

Using the given input data, we code and solve the selective maintenance problem for the
MSS in MatlabR2012a. Two selective maintenance scenarios for the system with

s-dependence components are compared to the scenario where s-dependence is ignored, as

presented in Table 5.4.

Table 5.4 Selective maintenance results in Example 5.2

Maintenance scenario for C X T X CX
‘ X XN X | XX R D
the system with ($1,000) | (days) ($1000)
S-dependent components | 3 3 2 2 2 38.5 12 0.85845 289.1
Independent components| 3 2 3 3 2 39 12 0.90474 317.8

In the first maintenance scenario, the system is subjected to both types of s-dependence.
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The best maintenance strategy is to repair component 1 and 2 to their perfect
functioning state and three other components to state 2. The expected profit for this
maintenance strategy in the next mission considering the average production gain, loss

and the cost of maintenance is $289.1K.

We also investigate the effect of dependence in the system by solving the selective
maintenance problem for the same system and assuming that the components degrade
independently. The system reliability and cost elements can be evaluated using the same
method but the induced failure rate and dependence exponents are all set to zero;
constraints (5.38) and (5.39) are removed from the optimization model. The obtained
result indicates that the best maintenance strategy is to repair components 1, 3, and 4 to
their perfect condition and components 2 and 5 to state 2. It can be seen that the
resources used in the maintenance break for this strategy are not much different from the
strategies for dependent systems. However, the system reliability when components are
independent is much higher, at 0.90474, i.e. 5% larger; and the total profit is also
approximately 10% larger, at $317.8K, in comparison with the independent case. Thus,
we can conclude that ignoring s-dependence leads to another selective maintenance

decision, and this may overestimate the system reliability and profit.

In order to investigate the differences between two maintenance scenarios in Table 5.4 in
terms of cost and profit results, we examine the elements in the cost function as in

Equation (5.30) for each optimal strategy. Figure 5.8 shows the profit and cost elements
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of interest.
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In the two selective maintenance strategies, the costs for maintenance in the break when
components are dependent and when they are independent are not much different.
However, when components are dependent, the production loss is much greater (~$20K)
and the production gain is smaller. Thus, the total system profit is significantly different
for the two cases. We can conclude that the two types of s-dependence have negative
effects on the reliability and performance of the system. It is reasonable since the system

reliability when components are independent is greater than that when components are

Figure 5.8 MSS profit and cost analysis
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s-dependent. When the probability of the system being in high states is bigger, it can
result in a larger total profit. This result implies that ignoring s-dependence may lead to

an optimistic estimation of the system profit.

5.6 Concluding remarks

This chapter studies the selective maintenance problem for multi-state systems with
multi-state s-dependent components. The two types of dependence relationships between
components are discussed in multi-state context. Firstly, the induced failure of a
multistate component can immediately cause complete failures of some other components.
Secondly, as components in the system deteriorate, the degradation of a component
reduces the capacity flowing to the subsequent components, thus affecting the
degradation of these components. Both the costs and the profit associated with the MSS
performance rates and maintenance actions of s-dependent components are taken into
consideration. A selective maintenance model is proposed to maximize the total profit of

the multistate system subjected to reliability and resources constraints.

The examples and results imply that s-dependence has a significant effect on the MSS
reliability. Also, ignoring s-dependence may lead to a wrong determination of selective
maintenance plans for the system and overestimation of the system performance. The
selective maintenance model can help maintenance managers make the right decisions to

maintain the system with available resources and under a system reliability requirement.
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CHAPTER 06

OPTIMAL SELECTIVE MAINTENANCE FOR

MULTI-STATE SYSTEMS IN DYNAMIC LOADING

CONDITIONS

This chapter studies the selective maintenance problem for multi-state systems working
in dynamic loading conditions. In the next mission, the load can vary with time and the
exact load on a component is not known with certainty. The degradation of a component
is affected by the instant load applied on it and similar to Chapter 5, the system
reliability evaluation is needed for selective maintenance modeling. We propose a
load-dependent degradation model for multi-state components operating in dynamic
loading conditions. This model is inspired by the load-sharing model where many
components share a common workload and the failure rate of a component depends on
the state of other components. A Monte-Carlo simulation method is used to model the

multi-state component’s degradation and to evaluate the system reliability. A selective
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maintenance model is provided to maximize the expected system reliability in the next
mission within available resources. Materials in this chapter have been published in a
conference paper [89] and submitted to Reliability Engineering and System Safety [90] for

possible publication.

6.1 Introduction

In traditional reliability and maintenance models, the assumption that a system and its
components operate under a normal and stable condition is usually made. In practice, the
system and its components operate in variable operating conditions, where the load and
environment conditions vary with time, i.e. time-varying load. For example, the load on a
power generation unit often varies depending on the time of the year and the time in a
day. It can be higher in a hot day compared to a cool day, and it can be very high in the
middle of the day and very low at midnight. The health of industrial devices degrades

faster under a heavier loading condition and in a more severe environment.

The condition-dependent failure rate was first presented by Cox [91] in analysis of
survival data in biostatistics. It was later brought to reliability and maintainability of a
component in [53], [92]-[96]. When considering the time-varying load and its effect on
component’s degradation, two classes of variable loading conditions can be encountered.
First, the load varies with time and the loading profile is explicitly known, i.e.
deterministic load. Second, the load is totally dynamic, i.e. it varies with time and the

loading profile is not explicitly known. The Weibull Cumulative Damage Model [92], the
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Proportional Hazard Model (PHM) [93], and the Accelerated Failure Time Model
(AFTM) [53]| has been used to model the load-dependent degradation of a binary-state
component. While deterministic load was implied in [92], [93], dynamic loading was
discussed in [94]-[96] to model the dynamic of operating conditions. In dynamic loading,
stochastic processes were used to model the change between different load levels.
Preventive maintenance was investigated in [94], [96], where two levels of operating
environment, i.e. normal and severe conditions, were considered. One state represents the
normal condition, and the other represents the severe condition. The hazard rate

function jumps when the environment switches from one state to the other.

Selective maintenance has been a significant subject of interest among many researchers
recently. However, the majority of the papers on selective maintenance ignore the effect
of loading conditions on the degradation of components. Chen et al [97] performed a
preliminary work on the deterministic load distribution and selective maintenance of
multi-component systems. They jointly optimized the load to distribute and selective
maintenance action to perform on each component in the system. The load on each
component can be controlled and the component is assigned a fixed load during the next
operating mission. In practice, load on a component may change during the mission due

to the change of operating demand instead of being controlled.

One of the weaknesses of the existing models on maintenance of systems in dynamic

operating conditions is that the condition is often divided into several discrete levels for
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easy modeling of the condition-dependent failure rate. Generally, the loading condition
changes several times in an operating mission. In addition, the deterministic load does
not accommodate the uncertainty of the loading conditions. For example, in many cases,
we know the general load trend but not the exact load in the next operating mission.
Another aspect is that the current modeling of load-dependent failure rate is limited to a
binary-state component. A load-dependent degradation model for multi-state
components in variable operating conditions with uncertainty is needed for MSS

reliability analysis and maintenance decision making.

In this chapter, we will study the selective maintenance problem for a multi-state series
system, which is expected to complete a mission of duration 7 in dynamic loading
conditions. The future loading conditions in the next mission are modelled by a known
baseload function and a random variation following the Normal distribution. In the
mission, the component’s degradation depends on its current state and the load applied
on it. A load-dependent degradation model is proposed for multi-state components
working in such conditions. The analysis of components’ degradations and the system
reliability estimation are discussed. The final objective is to determine the best selective
maintenance strategy to maximize the expected system reliability in the next mission

within available maintenance resources.

The remaining part of this chapter is organized as follows. Section 6.2 describes the

system model and the dynamic loading conditions. Section 6.3 proposes a load-dependent
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degradation model for multi-state components in such loading conditions. This model is
inspired by the degradation of components in k-out-of-n load-sharing systems. A
Monte-Carlo simulation-based method is presented in this section to model the
component degradation and to evaluate the system reliability. A selective maintenance
model to maximize the expected system reliability in the next mission is presented in
Section 6.4. Section 6.5 consists of an illustrative example and discussions. Concluding

remarks for this chapter are given in Section 6.6.

6.2 The system model and the dynamic loading conditions

6.2.1 Multi-state system model

The multi-state system in this chapter consists of n multi-state components connected in

series as in Figure 6.1. Each multi-state component ¢, i=1,2,...,n can work in K +
possible states of K K — 1,0, where K K — ,1 are operating states and 0 is a

failure state.

Figure 6.1 A series system

In this chapter, the multi-state components are assumed to degrade gradually, i.e. a

component, currently at state k, k = 2, will degrade to state k— before degrading
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further to state £ . In the next mission, the reliability of component i is defined as the
probability that the component successfully completes the next mission, i.e. its state at
the end of the mission is greater than or equal to a predefine minimum state level d;,
1<d <K The multi-state series system reliability is the probability that all of its
components successfully complete the next mission. Detailed explanations on the
multi-state component’s degradation and system reliability analysis will be presented in

Section 6.3.

6.2.2 Dynamic loading conditions

The multi-state series system is required to work in a mission of duration 7 in dynamic
loading conditions. In this chapter, we only know the general load trend but not the
exact loading profile. The load on the system, L(t), comprises of a base-load profile L(t)

and a random variation &, . The base-load profile is a continuous function of time, which

represents the expected load trend in the next mission. The random variation follows the

Normal distribution with mean of 0 and standard deviation of o, , i.e. & ~ , to

reflect the uncertainty associated with the future loading conditions.

Lt=L1t+¢ (6.1)

An example of the variable loading conditions is given in Figure 6.2.
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Figure 6.2 A loading condition example

Figure 6.3 shows an example of Ly(f) and ¢,, which generate the variable loading
conditions in Figure 6.2.
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Figure 6.3 Base-load profile (a) and random variation (b)
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In such load conditions, a component’s degradation rate at time ¢ depends on the load
applied on it. In addition, the multi-state component degrades in the next operating
mission and its degradation rate depends on the component’s current operating state.
The dynamic behavior of the varying loads on the component’s degradation and the state
degradation of the component itself bring great challenges in reliability and maintenance
modeling of such systems. We propose a load-dependent degradation rate model for a
multi-state element in the system. Details on the load-dependent degradation rate of a

multi-state component are presented in the next section.

6.3 System reliability analysis

6.3.1 Multi-state component degradation

Considering component i with K + possible states. The multi-state degradation model

for this component is shown in Figure 6.4.

"Failed"

Figure 6.4 Multi-state component degradation

In the component degradation model in Figure 6.4, the component degrades gradually

from state K, to state 0. As mentioned in Section 6.2.1, K K _ are all operating

states and 0 is the failure state. We denote 4, 't , s = K as the state transition
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rate or the degradation rate of component 7 at time ¢ from state s;to s — . The load and

state dependent degradation rate of component i, A, ‘¢t , is proposed as in Equation
(6.2).

1S 2

A 1t =sh t OLts =sh t (ﬂLtJ (6.2)
S

In Equation (6.2), L(t) is the load applied on the system at time ¢, 6; is a positive

exponent, and h t is the baseline hazard function of component i. The proposed

load-dependent degradation model implies that the degradation rate of a multi-state

component at time t from its current operating state s; to the next degraded state s —
s = K , depends on both its current state and the load applied on it. The rationale

of this model, inspired by a k-out-of-n load-sharing system, is to be presented in Section

6.3.2.

This model is an extension of the proportional hazard model (PHM) [98], which was used
to incorporate the effects of environmental covariates on the failure rate of a binary
component. The PHM represents the effects of the environmental covariates by an

exponential term as in Equation (6.3).

htZt =h t  0Zt (6.3)

where Z(t) is a vector of time dependent covariates, and 6 is an exponent vector
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representing the effect of the covariates. In our load-dependent degradation model, we
have considered the load as a single covariate. We also assume that the degradation of a
component in variable loads follows a model with the exponential based-line hazard

function. Equation (6.2) can be rewritten as:

/lis t =52 (0, L ja (6'4)
S

where 4, is a constant baseline hazard rate.

In order to develop a selective maintenance model for the system, we need to estimate
the system reliability in the next mission with time duration 7 and dynamic loading
conditions. The reliability of component i is defined as the probability that the
component successfully complete the next mission at a predefined minimum state level d,,

1<d <K or above. For series system, the system reliability is the probability that all

the components in the system successfully complete the next mission at level d; or above.
The reliability of component ¢ and the reliability of the system relates to the component’s

state probabilities as shown in Equations (6.5) and (6.6) respectively.

Rt=[[Rt=[] stzd =[[> st=k (6.6)

i= = =
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Here, we assume that the hazard rate of a component varies stochastically with the load
and its current health state. During the operation of the system, the state of component 3,

s t , varies stochastically with time. In a stable and certain loading condition, one can

develop a system of differential equations as in [6] to find the state probabilities for

component i, Pr s t =k . However, the future loading condition varies stochastically

with time and the exact loading condition on the system is not known with certainty.

The load-dependent degradation rate A, /¢ is a function of two random variables L(t)
and s t , and the method in [6] is not applicable to determine the state probabilities.

Thus, we use the Monte-Carlo simulation method to model the degradation of
multi-state components and evaluate the system reliability in variable loading conditions
with uncertainty. The description of the simulation method will be presented in Section

6.3.3.

6.3.2 Component degradation and failure of a k-out-of-n load-sharing

system

This section explains the rationale of the proposed load-dependent degradation model for
a single multi-state component in the targeted series system. The load-dependent
degradation model is inspired by a case where many binary components share a common
workload. The failure of a component results in an increased workload on the remaining
working components [40], [99]-[101]. This section provides the similarities of a

multi-state component degradation model in Equation (6.2) and the degradation of a
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k-out-of-n load-sharing system.

Consider a system with K identical components sharing a common workload. The system
is considered as functioning if there are at least d functioning components, (d-out-of-K
system). If each component in the system can be either in working or failure states, we
define the system’s state s(t) as an indicator of the number of surviving components. In
load-sharing systems, if a component fails, the other working components will carry the
system’s task with an increase in the shared load until all components have failed. There

will be K+ possible states of K K — ,1,O, and all states K K — d+ d are

functioning states. The d-out-of-K load-sharing system reliability can be written as in
Equation (6.7), which is very similar to the reliability of a multi-state component in

Equation (6.5)

Rt st d stk (6.7)

A variable load L(t) is applied on the system. When the load is equally distributed

among surviving components, the load applied on a surviving component j j = K

is a function of the system load, L(t), divided by the total number of surviving

components, s(1).

Lt= ot e K (6.8)

If the hazard function of a binary component j follows a PHM model with the component
147



based-line hazard rate h;, and exponent parameter 6, it can be written as in Equation

(6.9).

At =ht OL t =ht [QL;-] (6.9)
, vt s

Since there are s(t) surviving components, the d-out-of-K system is a multi-state element
with the degradation diagram similar to Figure 6.4. The degradation rate of the

load-sharing system from state s to state s is sx A ¢, which is equivalent to the

load-dependent degradation model for a multi-state component proposed in Equations

(6.2) and (6.4).
6.3.3 Monte-Carlo simulation method for system reliability estimation

Monte-Carlo Simulation (MCS) method is a powerful tool for analyzing many systems in
different areas. The MCS method is based on the generation of random numbers that is
repeated many times in a computer model. Afterwards, the occurrence number of a

specific condition of interest is counted [102], [103].

In this chapter, MCS is used to generate variable loading conditions which were
discussed in Section 6.2. We generate N, loading profiles. With each generated loading
profile, the system reliability is estimated by conducting a series of experiments for its

subsystems. We first define p At s as the probability that the transition of a subsystem

i from the current state s; to state s — does not occur in the next small operating time
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interval from t to t + At.

t +At
pAts = zt+At=s zt =5 = [—Iﬁ,t ] (6.10)
t

where z t is the state of component 7 at time t. In a very small interval (t t +At , the
load during the interval can be assumed to be L ¢ . Since the transition rates of
component 7 in that small interval At is determined by Equation (6.10), p At s can

be estimated as follows.

p Ats = {—sﬂ, (6’ i ]AfJ (6.11)

In Monte-Carlo simulation, the transition probability is modeled by a random number, 7;,

between 0 and 1. If r; is greater than p At s , the transition occurs in the small interval

At and vice versa. Whenever the transition is observed, the state of component i, s,
changes and the transition probability needs to be updated according to Equation (6.11).
The simulation runs for all components in the system consecutively. Starting from the
initial states of all components at time 0, a simulation run stops if the state of any

component reaches a state that is less that the minimum required state d i = n,

i.e. a failure occurs.

The simulation is a continuous procedure for each interval until the time index ¢ reaches

the mission duration time 7. We repeat the simulation N times and record the state of
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the system at time ¢ = z. A variable, count, is set to count the number of failures, and

the reliability of the system can be estimated as follows.

R = - (6.12)

The Monte-Carlo simulation procedure is presented in Figure 6.5. The key of the
simulation program is to generate random numbers following the Uniform distribution, 7;,
and compare this number to p At s to model the state transition of a multi-state
component in the system. Three loops are nested in the procedure to simulate the
dynamic loading conditions and estimate the system reliability in the next mission. The
most inner loop is created by dividing the mission into several small time intervals At
for the state transition simulation of each component. The middle loop is to simulate the
system degradation N times for the system reliability evaluation. The outer loop is to
accommodate the dynamic loading conditions by generating N loading profile as
described in Section 6.2.2. The output of the simulation program is a vector, sized 1x N

that stores all the expected system reliability values for N, generated loading profiles.
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Initialization: - Load L, ()
- Set load index n,=0

v
n =n+1

Generate L(t) =L,(t) + &,,&;, ~ ) [«
Set iter =0, count =0, t=0

v

iter = iter +1
Initialize state of each component s,
t=t+At

—p For each component i : - Calculate p,(At,s,)
- Generate 7; = rand()

State transition:

s, =s,—1

Failure check
s, <d,?

count = count +1

Max iteration?
iter=N,

Sim

Termination?
m=N,

count

R =1-

Sim

Figure 6.5 System reliability estimation procedure using Monte-Carlo simulation
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6.4 Selective maintenance model

The objective of the selective maintenance model in this chapter is to determine the best

maintenance scenario for the multi-state series systems working in a mission under the

dynamic loading conditions as described in Section 6.2.2. Let Y e K be the

state of component i, and Y Y Y be the state vector of all components in

the system at the time entering the maintenance depot. It is assumed that the states of
components at the end of the previous mission are detected and the vector of components
states at the time entering the maintenance depot, Y, is known. There is limited time
and budget in the scheduled maintenance break, and all components in the system may
not be maintained to their maximum state. We will present a selective maintenance
model to determine a set of components and the associated maintenance actions to be

performed in order to maximize the expected system reliability in the next mission.

The system reliability in the next mission and the maintenance resource utilization in the

maintenance break are important elements of the selective maintenance model. Let
X X X be the vector of components’ states at the end of the maintenance
break. Since we know the state vector of components at the time entering the
maintenance depot, the selective maintenance scenario is determined for each vector X.
With each vector X, the system reliability in the next mission can be estimated using the

Monte-Carlo simulation in Section 6.3.3. The maintenance resources are calculated for
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each vector X and this will be presented in Section 6.4.1. The selective maintenance

optimization model will be presented in Section 6.4.2.

6.4.1 Maintenance resources

In the maintenance break, there are two types of resources to maintain the system, which

are maintenance time and maintenance cost. Let ¢ a b and ¢ a b be the time and cost

for repairing component i from state a to state b>a. Similar to Chapter 3, the repair time
and cost of component 7 in the system from any state a to state b are arranged in matrix

form as in (6.13) and (6.14) respectively.

t t K
0 t K
T = i= n (6.13)
t K - K
- 0 -
[ c c K ]
0 c K
¢ = 1= n (6.14)
0 0 c K - K
00 0 |

We assume that the repairs of components are independent in this chapter. The total
maintenance time and cost of the system in the maintenance break can be calculated

using Equations (6.15) and (6.16) respectively.
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TX =YtV X (6.15)

CX =>cY X (6.16)
6.4.2 Selective maintenance optimization model

The objective of solving the selective maintenance problem is to find an optimal set of
maintenance actions to maximize the expected system reliability in the next mission.

This problem can be formulated as follows.

P: Mazimize f =R X (6.17)
Subject to T X <T (6.18)

CcX <C (6.19)

Y <X <K (6.20)

X is integer Vi = n (6.21)

In the model, the objective function (6.17) is to maximize the expected system reliability
in the next mission, i.e. the probability that the system successfully completes the
mission. Since the system operates in variable loading conditions in the next mission, the
output of the Monte-Carlo simulation is a vector sized 1x N for N simulated loading
profiles. The expected system reliability is calculated as the average of N wvalues in the
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output vector of the Monte-Carlo simulation as in Equation (6.22).

N
>R X

R X N (6.22)

where R X is the obtained system reliability corresponding to the loading profile
L

In addition to the mean system reliability, we can calculate the standard deviation of the

estimated reliability, o, as in Equation (6.23). In the next mission, the system reliability

is represented by a pair (R , where o, measures the variation of the system

reliability in the dynamic loading conditions.

oy y = >R X-R X (6.23)

In the optimization model, there are two constraints in (6.18) and (6.19) which restrict
the total time and cost for all maintenance activities within the break duration 7,, and

total maintenance budget (. The total maintenance time and cost of the system are
calculated as in Section 6.4.1. The decision variables, X 4= n , are the states of

components at the time of exiting the maintenance depot. X is an integer between Y

and the maximum state K, for all 7 = N
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6.5 Numerical example and results

In this Section, we consider a multi-state series system with n = 5 components as shown

in Figure 6.6. The number of states of each component is given in Table 6.1.

Figure 6.6 The multi-state series system with 5 components

In the next mission, the system operates in variable loading conditions Lt =L t +& in
a mission with 7 = 1000 hours. The baseload profile, shown in Figure 3a, is given in
Equation (6.24). The random load ¢, follows the Normal distribution with g =0 and

standard deviation o = 4.2063.

Lt = + o+ t— t+ —t (6.24)

The vector of components’ states at the time entering the maintenance depot is

Y -1 1 2 . Parameters of the load dependent degradation rates, minimum

state requirement, and maintenance resources for maintaining each component are given

in Tables 6.1 and 6.2 respectively.
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Table 6.1 Components’ states and parameters in load-dependent degradation model

Component i=1 i =2 i=3 i =4 i =5
Number of states 4 3 4 3 5
Minimum
1 1 2 1 1

required state, d;

A (/hours) 0.0001 | 0.00012 | 0.0001 | 0.00001 | 0.0004

0, 0.005 | 0.004 0.008 0.006 | 0.005

Table 6.2 Time and cost of repairing each component

Maintenance Cost Maintenance Time

(in $1000) (in hours)
Component | State | 0 1 2 3 4 0 1 2 3 4
0 0 | 55| 11 | 16.5 - 0 (12 ] 24 | 36 -
i1 1 0 0 5.5 | 11 - 0 0 |12 ] 24 -
2 0 0 0 5.5 - 0 0 0 | 12 -
3 0 0 0 0 - 0 0 0 0 -
0 0 5 10 - - 0 8 | 16 - -
=2 1 0 0 5 - - 0 0 8 - -
2 0 0 0 - - 0 0 0 - -
0 0 6 12 18 - 0 9 | 18 | 27 -
. 1 0 0 6 12 - 0 0 9 | 18 -
=3 2 (ool o6 -Jo[olo] o] -
3 0 0 0 0 - 0 0 0 0 -
0 0 | 65| 13 - - 0 [95]19 - -
=4 1 0 0 6.5 - - 0 0 195]| - -
2 0 0 - - 0 0 0 - -
0 0 | 62124186 (248 ]| 0 9 | 18| 27 | 36
1 0 0 6.2 | 124|186 | O 0 9 | 18 | 27
2 0 0 0 6.2 {124 ] 0 0 0 9 | 18
=5 3 0] 0| 0 0 [ 6200100109
4 0 0 0 0 0 0 0 0 0 0




6.5.1 Results on the system reliability estimation

In this section, the states of components at the beginning of the next mission is given as

X . 2 2 3. We built a Monte-Carlo simulation program in Matlab 2015b to

investigate the results on the system reliability estimation method presented in Section

6.3.3 and test for N = variable loading profiles. The simulation was run on a
computer with CPU Intel Core i7 processor, 3.60GHz, 16GB of RAM, and Windows 7

operating system. The results on the system reliability estimation for different number of

simulation runs, N , from 100 to 1,000,000 are presented in Table 6.3.

Table 6.3 Results on the system reliability evaluation

N b . .
umber Standard Slml.llatlon
of runs, R X deviation time
N (seconds)
100 0.60625 0.055916 2.496
1,000 0.60383 0.01351 25.695
10,000 0.60487 5.178e-3 253.2052
100,000 0.60453 2.158e-3 2.55e+03
1,000,000 0.60467 5.610e-4 2.50e+04

In Table 6.3, besides the mean value of R X , the standard deviation and the CPU time

are also reported. It is observed that the standard deviation decreases when the number
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of simulation runs increases, i.e. the mean of the system reliability converges. Figures
6.7a and 6.7b show variations in the system reliability and standard deviation against the

number of simulation runs N in log scale. The simulation time increases

proportionally with the number of runs N . The average system reliability with
N = 00,000is 0.60467, which is considered to be accurate with a standard
deviation of 5.61le-4. The simulation with/N'= = 1,000 can give the average system

reliability accurately with 3 decimal places.

0.6065 : ; ; 0.06
0.606 0.05
5
é\o‘6055 £ 0.04
= =
£ 0.605 a
5 0605 - 0037
P 5
g 2
=06045 8 0.02
n
0.604 0.01}
0.6035 . ‘3 '4 ' . 0 : ' '
5 5
10 10 10 10 10 102 10° 10* 10° 108
Nsim Nsim

(a) (b)

Figure 6.7 The mean system reliability (a) and standard deviation (b) versus

number of simulation runs
To examine the effect of random variation of the loading conditions, we define the

percentage of load variation as p = OI-/ x ..IN%  where o, is the standard deviation of
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the random variation and L is the mean load calculated from the baseload profile. Three

levels of p , 2%, 6%, and 10%, are tested for this example with the number of runs

N = 1,000. The results are shown in Figure 6.8.
%10
0.6056 6
0.6054
55
0.6052 | 5
= =
= =
E 0.605 é
2 o 5
& 0.6048 . 3
1] c
= )
3 (5]
0.6046 a5t
0.6044
0.6042 4 ' ' : :
2 6 10 2 3 4 5 6 7 8 9 10
Percentage of load variation (%) Percentage of load variation (%)

Figure 6.8 The mean system reliability and standard deviation at different levels
of load variation

It is seen that the mean system reliability does not change much, roughly 0.0005, when
the percentage of load variation varies. The system reliability variation agrees with the
analysis on Figure 6.7 that the mean system reliability remains accurate up to 3 decimal
places. On the other hand, the standard deviation of the system reliability increases
significantly, approximately 0.0015, when the load variation changes from 2% to 10%.
This implies that a large variation of the system reliability is predicted when the loading

conditions are more uncertain.
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6.5.2 Results on the selective maintenance optimization

In this section, the maintenance budget and time limitations are given as C' = 000
and T = hours. We need to find the optimal selective maintenance scenario for the
system within the available resources. From constraint (6.19) in the optimization model,
Y<X <K 1= n, and 'Y 11 2 and K= 2 3 2 4, there
are a total of 3x2x3x2x3 =108 possible solutions for the selective maintenance

optimization problem.

The system reliability is evaluated for each maintenance scenario. We built another
program in Matlab 2015b to find the maximum average system reliability B X . We
also ran experiments for different numbers of runs N and observed that the optimal
solution of X converges for this specific example with N = 1,000. The optimal

maintenance scenario is presented in Table 6.4.

Table 6.4 The optimal selective maintenance scenario with C' = 000,T7 = hours
Component 2 | 2 =1|t1=2| 2=3 |[¢1=4|1=25
Entering
state Y, 1 1 1 1 2
Exiting state 9 9 3 1 3
X
Maintenance
. 152 1-2 1-3 DN 2—-3
actions

*DN = Do nothing
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The maintenance scenario indicates that imperfect repairs are suggested for components
1 and 5 to their intermediate states 2 and 3 respectively; no maintenance action is
recommended on component 4; and both of the two components 2 and 3 should be

renewed to their maximum states K = and K = respectively. The vector of

components’ states at the time exiting the maintenance depot is X 2 3 1 3.

For this maintenance strategy, the average system reliability is 0.858 and the total
maintenance time and cost are 47 hours (<7, = 48 hours) and $28,700 (<, = $30,000).

The system reliability and maintenance resources consumption are shown in Table 6.5.

Table 6.5 The system reliability and maintenance resources consumption

Ave. Reliability Total Cost | Total Time
R X CX TX

0.858 $28,700 4Thrs

We also investigate the sensitivity of the maintenance budget to the system reliability
estimations. The time constraint in the optimization model is released, and the budget
limitation C is set to vary from $10,000 to $50,000 with an increment of $5,000. The
system reliability in the optimal selective maintenance strategy for each case is plotted

versus the maintenance budget as in Figure 6.9.

It is noted that the system state corresponding vector Y -1 1 2 is a failure

state since Y = <d = . At least one maintenance action on component 3 needs to be
performed to guarantee a functioning system at the beginning of the next mission.
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Figure 6.9 The system reliability versus maintenance budget

For each level of maintenance budget, three values of the system reliability are
presented, including R X , Rupper X X , and Rlower X
min B X . The range of the mean system reliability is from 0.4661 when C,= 10,000,

i.e. a single maintenance action to repair component 3 to state 2 is performed, to 0.9199

when C = 000, i.e. all components are repaired to their best state. The mean system

reliability increases as the budget increases, but the improvement on the mean system

163



reliability does not vary at the same rate as the budget increments. The mean system

reliability is significantly improved when the budget increases from $10,000
(R =  61) to $15,000 (R =  32), $20,000 (R =  199), $25,000 (R =  24),
and $30,000 (R = 84). When the budget is greater than $40,000, the system

reliability improves at a much more slowly rate. Interestingly, when the budget increases
from $35,000 to $40,000, there is no improvement on the system reliability, i.e. the same

optimal maintenance strategy is suggested. The range between R upper and R lower for

different levels of budget is reasonably stable and it tends to be a bit smaller when more
budget is allowed. The sensitivity analysis can help maintenance managers consider the
trade-off between the system reliability improvement and maintenance budget spending.
This chart is also useful in a situation where a plan is needed for maintenance resource

allocation while an expected system reliability in the next mission is required.

6.6 Concluding remarks

In summary, this chapter investigates the selective maintenance problem for multi-state
series systems working in dynamic loading conditions. The future loading profile is not
known with certainty. We present a load-dependent degradation model for multi-state
components operating in variable loading conditions. During the next mission, the
load-dependent degradation rate of a multi-state component varies depending on its
current state and the instant load applied on it. The model can capture the dynamic

behavior of components in a k-out-of-n load-sharing system, where many components
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share a common work-load and the failure rate of a component depends on the state of

other components.

The system reliability is estimated using the Monte-Carlo simulation method. A selective
maintenance optimization model to maximize the expected system reliability in the next
mission is presented. The sensitivity analysis of the optimized system reliability against
various levels of budget limitation indicates that the mean system reliability varies at a
different rate of the budget increments while the standard deviation of the system

reliability is quite stable at various budget levels.
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CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary

Engineering systems today are more and more complex and their failures are critical
since they often involve several complicated interactions between elements, hardware,
software, and operating conditions. Industrial organizations require their systems to be
managed effectively with limited expenses to accommodate the global market
competitiveness. Selective maintenance provides an optimal set of maintenance actions to
perform on selected components to fulfill the system requirements within available
resources. Selective maintenance is a powerful tool that can contribute to industrial

organizations by keeping their operation safely and utilizing their resources effectively.

This PhD dissertation investigates the selective maintenance problem for multi-state
systems considering dependence relationships when maintaining the systems. This

research has significant contributions in terms of dependence modelling, reliability
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analysis, and selective maintenance optimization of multi-state systems.

7.1.1 Dependence modelling

In this thesis, four types of dependence in the maintenance of multi-state systems are
modelled including economic, structural, stochastic, and operational dependence.
Economic and structural dependence represent the relationships between maintenance
actions; stochastic dependence demonstrates the relationships between components’
lifetimes; while operational dependence refers to the relationship between components’

degradation and operating environment.

Firstly, we modelled the dependence relationships between maintenance actions by
economic and structural dependence. Economic dependence reflects the savings due to
the share of resources when maintaining several components simultaneously, e.g.
materials, tool, manpower, etc. Two mechanisms of savings in maintaining several
identical and non-identical components were modelled and they applied to both types of
resources of maintenance cost and time. Structural dependence implies that extra cost is
required when maintaining the system since there is a sequence of assembling and
disassembling components. We used the directed graph to model the precedence relations
in the disassembly sequence of components and presented a backward search algorithm

to find the disassembly path for the system.
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Secondly, the relationship between components’ lifetimes was modelled. Two types of
stochastic dependence between components were discussed in multi-state context. First,
the failure of a component can immediately cause failures of some other components.
Second, as components in the system degrade, the degradation of a multi-state
component reduces the flow to the following components and thus affecting the
degradation of these components. We used the power law to represent the relationship
between the output performance rate of an influencing component and the degradation

rate of an affected component.

Thirdly, the relationship between multi-state components’ degradations and operating
conditions was modelled. The dynamic future load on the system was represented as a
known baseload function and a random variation following the Normal distribution. We
considered a case where the degradations of components varied stochastically depending
on its current state and the dynamic loading conditions. A load-dependent degradation
model was proposed to model the transition between states of multi-state components.
The model was based on the proportional hazard model and degradation of k-out-of-n
load-sharing systems where the failure of a component increases the degradation of other

surviving components in the system.

7.1.2 Reliability analysis of MSS considering dependence

When the dependence is related to the degradation of components, it is necessary to

evaluate the system reliability prior to selective maintenance modeling. The methods for
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system reliability analysis were elaborated in the cases that s-dependence and operational
dependence exist. In doing analysis of multi-state systems with s-dependence, we
considered the states of all n components in the system together and presented the state
of the system as an n-tuple including the states of n components. This practice allowed
us to use the stochastic process to model the system degradation and evaluate the system
reliability. In doing analysis of multi-state systems with load dependence, because the
load is uncertain, a Monte-Carlo simulation method was presented to model the
multi-state component’s degradation and to evaluate the system reliability. In the
Monte-Carlo simulation, we divided the operating mission into several small intervals
and the dynamic behavior of a multi-state component, including changes of component’s
state and uncertain loading conditions, was captured in the Monte-Carlo simulation

method.

7.1.3 Selective maintenance modeling

In Chapter 3, several selective maintenance optimization models for multi-state systems
were generated. In these models, the total system maintenance cost, maintenance time,
and the system reliability can be treated either as objective or as constraints. Depending
on the principal purpose of the maintenance and available information, the maintenance
decision maker can select the most appropriate models and thereby understand what

actions should be done based on his/her on-hand conditions.

When dependence relates to maintenance implementation, i.e. economic and structural
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dependence — Chapters 3 and 4, the relationships between components are reflected in
the resource calculations during selective maintenance modeling. Either the savings due
to joint maintenance of multi-components due to economic dependence or the precedence
relations due to structural dependence were modeled in the total system maintenance
time and cost calculations in the maintenance break. When dependence is related to
components’ degradations, i.e. stochastic and operational dependence — Chapters 5 and 6,
the relationships between components were integrated in the reliability evaluation, which

could be reflected in a constraint (Chapter 5) and in the objective function (Chapter 6).

In Chapter 5, we developed a cost-based selective maintenance model. This model
provided an alternative approach in accordance with the multi-state system performance
analysis. In the next mission, the system was assumed to produce a certain benefit or loss
proportionally with the state it may be in. The objective function in this model was to
maximize the total system profit, which considered both the maintenance cost in the
maintenance break and the possible profit or loss related to the expected performance of

the multi-state systems in the next mission.

7.2 Future work

From the work in this thesis, several research directions related to the complexity of the
systems, methods for reliability analysis, and selective maintenance modeling are

proposed for future studies. Details are as follows.
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7.2.1 Study more complex systems

In this thesis, we have focused on the multi-state series and series-parallel systems. It is
suggested that more complex structures such as bridge, k-out-of-n, network, etc. are
investigated in the future. The dependence modeling from this thesis can be used to
model the relationships between components in other system structures. However, it is
noted that the inter-connection between components in a specific structure affects the
system reliability, and the system structure function must be considered in evaluating

the system reliability.

In a real and complex system, several types of dependence may co-exist. Except in
Chapter 4, where economic and structural dependence were considered simultaneously,
different types of dependence in this dissertation are treated separately. In our
classification, the dependence can be related to maintenance implementation (economic
and structural dependence) or component’s degradations (stochastic and operational
dependence). The models in this thesis can be extended to the case where a type of
dependence related to maintenance implementation and a type of dependence related to
components’ degradations exist. However, other cases, such as where two types of
dependence related to components’ degradations or more than two types of dependence

exist, still require further elaboration.
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7.2.2 Study methods for reliability evaluation of multi-state systems

with s-dependence

In Chapter 5, we proposed a reliability evaluation method for multi-state systems with

s-dependence components. This method was based on the Markov process that had a

state space increasing with an order of O{(— + Ij ] This method has limitations since
n

the state space explosion occurs when the number of components n and number of states
K increase. Alternative methods for evaluating the system reliability with stochastic

dependence are recommended for future investigations.

One of the methods that can be used for evaluating the MSS performance in the next
mission is the Universal Generating Function (UGF) technique. UGF technique
evaluates the multi-state system reliability by representing the state probability as a

u-function and calculating the system’s u-function from its components’ u-functions

104].

The use of UGF technique can potentially reduce the computational effort to evaluate
system reliability since it does not require solving a large system of differential equations
as needed by the stochastic process approach. However, it is noted that the traditional
UGF technique based on the traditional composition operator is only suitable for systems
with independent components. To use this method for analysis of MSS with s-dependent

components, an extended version of UGF needs to be developed. The following
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suggestions are provided when adapting the UGF technique for the MSS considering two

types of s-dependence.

i. A new composition operator should be developed to represent the degradation
dependence relationship between components.

it.  An alternative representation of component’s u-function and/or a two-stage UGF
may be needed to accommodate both types of s-dependence in multi-state

systems.

7.2.3 Study selective maintenance in a finite planning horizon

This thesis focuses on the single-mission selective maintenance model. An underlying
assumption was that the maintenance decisions were for the next mission. Thus, the
current available resources for a single maintenance break and the system requirements
in a single subsequent mission are input information. In a finite planning horizon,
multiple missions are required to be scheduled and several breaks for maintenance can be
possible; therefore, the selective maintenance problem in a finite planning horizon should

be considered.
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