
University of Alberta

Faculty of Electrical and Computer Engineering

Master of Science in internetworking

Integrating OpenStack and ODL to provide VTN Automation
Service

Submitted by Bingzhu Xie

Supervisor: Mr.Gurpreet Nanda

 1

Abstract 3

Acknowledgement 4

1. ​Introduction 5
1.1 Problem Description 5
1.2 Proposed Solution 6

2. Scope and Preparation 7
2.1 Technology Description 7
2.2 Solution Description 18

3. Solution Infrastructure Setup 20
3.1 Hardware Preparation 20
3.2 Software Preparation 25

3.2.1 Virtual machines Setup 29
3.2.2 Operating systems Installation 30
3.2.3 Software Installation 30
3.2.4 Network Setup 30

4. Solution Setup 31
4.1 Lab Setup 31

4.1.1 Lab Network Topology 32
4.1.2 OpenDayLight features Setup 32
4.1.3 OpenStack nodes Setup 34

4.2 Integration of OpenDayLight and OpenStack 51
4.2.1 Network Topology Diagram 51
4.2.2 Configuration Process 52

4.2.2.1 Hardware Requirement 52
 ​4.2.2.2 Network configuration 53
 ​4.2.2.3 Configuration Process 54

4.3. A VTN Design Example 60
4.3.1. Architecture 60
4.3.2. Design of VTN 61

5​. Conclusion and Future work 63

Reference 64

Appendix 65

 2

Abstract
 With the wide application of IP networks, the modern digital society is in need of
a more flexible, fault-tolerant and manageable network. Software-Defined
Networking (SDN) is such a kind of network by separating the network’s control
logic from the routers and switches. This separation makes it easier to introduce
new abstractions in networking and simplifies network management. With proper
software, the concept of SDN can be implemented to devices.
 OpenDaylight and OpenStack can be integrated to support this idea, by
connecting the management plane, the control plane and the data plane with one
another, via OpenFlow API. In this case, a manager can monitor the network
from the manage plane and the operator can simply set parameters in a template
designed at the OpenStack side. Besides, the control plane would centralize the
intelligent part and leave the data plane with the forwarding part, which makes it
much flexible to keep the network up-to-date. In the data plane, we configure
protocols such as BGP, OSPF, RIP and so on.
 In this project, we will implement a VTN Automation solution using Openstack
and OpenDaylight SDN Controller. Specifically, the following will be
implemented:

● Implement OpenStack.
● Implement OpenDaylight SDN Controller
● Integrate OpenStack and ODL.

 Through this project, we will get to know about what SDN is and the leading
controller OpenDaylight as well as the OpenFlow specifications. Besides, a
thorough understanding and application of OpenStack are also expected from
the project. The project would demonstrate the process of OpenDaylight and
OpenStack integration as well as VTN automation as an example.

 3

Acknowledgement

 With the completion of my project, I’d like express my special thanks to Mr.
Gurpreet Nanda, who has been guiding me through the project. His patient and
skillful guidance has helped me so much and been significant to me.

 I also want to give my sincere gratitude towards Mr. Shahnawaz Mir, who has
offered me a lot of help during my lab setup. Besides, I sincerely appreciate the
help from Mr. Mike Macgregor and Ms. Sharon Gannon who have been helping
me through the MINT program.

 Last but not least, I’d like to thank my families who have been supporting me
through the program.

 4

1. Introduction

 1.1 Problem Description
 In conventional network structure, when it is carried out into the practical world, if a
 new request is raised, it could be considerably trivet to reconfigure or change the
 corresponding devices, such as routers, switches, firewalls and so on. With the
 dramatical change of the internetworking and mobile networking environment, the
 high stability and idealistic functionality are no longer satisfying, the flexibility and
 agility are far more critical instead. What SDN does is to separate the control function
 from forwarding devices, and leave the control function totally to the centralized
 controller. Therefore, the control plane is independent from the low layer devices,
 and becomes irrelevant to the variety of the switches, routers, firewalls and all other
 devices. On the other hand, the access to control is open, and hereby the users can
 define whatever routing protocols and transmission policies as they want, which
 makes the network much more flexible and intelligent. In a software defined network,
 there is no need to reconfigure each and every node in the network over and over
 again. Since the devices in the same network is connected to each other
 automatically, the user only needs to define policies when using it. If the protocols
 built in the routers are no longer desirable, they could be modified by programming,
 to achieve better data transmission. Another advantage of SDN is that it could easily
 adjust flow to widen the streaming media, which is to say, the bandwidth and flow is
 manageable in SDN.

 Traditionally, investment in network systems and operating expenses are huge
 because the network is configured as a silo for each department and system. And
 hereby, various network appliances must be installed for each tenant and cannot be
 shared with others. This leads to a heavy burden to design, implement and operate
 the entire network. However, VTN, the Virtual Tenant Network is an appliance, which
 can provide various virtual tenant networks on the SDN controller. The uniqueness of
 VTN is that it has a logical abstraction plane, which enables the complete separation
 of logical plane from physical plane. Users can design and deploy any desired
 network not necessarily knowing the physical network topology or bandwidth
 Restrictions.

 However, VTN is not easy to implement with traditional tools as it is basically
 virtualized and requires significant performance which can hereby simulate the real
 world. With the limitations of traditional networks and development tools, we, in this
 project, try to set out from SDN, using VTN tools, to practice a use case.

 5

1.2 Proposed Solution
 SDN, the Software Defined Network, is a novel network framework. It is a method of
 network virtualization. Its core technique is to achieve flexibility in flow control
 through separating the control plane from data plane, which leaves the data plane
 only forwarding functions and the control functions are centralized to the control
 plane. This feature makes the network dramatically intelligent as a tunnel.

 VTN can be created and managed by OpenDayLight, ODL has a whole system of
 modular, pluggable and flexible platform. The platform is on basis of Java
 development and can operate on any Java supported platforms theoretically. ODL
 controller uses OSGI framework and SGI framework to be a Java-oriented dynamic
 modeling system. Bundles don’t need redirection and can be installed, started,
 updated and uninstalled remotely. It can flexibly load codes and functions via
 bundles to achieve function separation and resolve the module extension issue, as
 well as collaborating the modules.

 ODL platform introduced SAL and its northbound modules. They provide low layer
 service in the form of plug-ins. The northbound plug-ins connect various protocols
 and ignore the differences among the various protocols, providing consistent
 services for upper functional modules. This could separate the upper modules with
 lower modules. SAL could adapt different devices automatically and hereby the
 developers can concentrate on developing the applications. Besides, the ODL
 controller uses Infinispan, which is a highly scalable, reliable and key-value storage
 distributed data structure network platform, in order to achieve data storage, look-up
 and monitoring, to further achieve the clustering of controllers. In a word,
 OpenDayLight as a controller, is designed on basis of the following principles.
 Runtime Modularity and Extensibility, Multiprotocol Southbound, Service Abstraction
 Layer, Open Extensible Northbound API, Support for Multitenancy/Slicing and
 consistent Clustering.

 Another significant application in SDN development is OpenStack. OpenStack is a
 community and a project. It’s also an open source software devoted to operating
 virtual computing or cloud storage of enterprises. OpenStack provides users with
 open source softwares and establishing public cloud as well as private cloud. Public
 cloud requires its enterprise trust its statistics with the cloud provider’s data centre,
 which may probably cause data loss with environmental or personnel factors. Many
 enterprises choose to establish private cloud within a firewall. This leaves more
 space to the enterprise in aspects of security, and data backup. Back to OpenStack,
 it provides services including computing, object storage, image, networking and so
 on. OpenStack make a platform available to users to manage cloud. It can initiate
 an instance for a user or a group of users. It can also configure a network where

 6

 there are more than one instance within each and every instance or project. The
 services provided by OpenStack can be installed independently corresponding to
 the user’s requirements.

 OpenStack’s core service modules are Nova (computing), Neutron (network),
 Cinder (block storage), Swift (object storage), Glance (image management),
 Horizon (the management page), Keystone (access), Heat (function), Ceilometer
 (monitor). These modules can create an IAAS cloud platform. Neutron in
 OpenStack itself is an SDN networking control system. It has the ability to have
 users build their networks and control the flow. It can also connect the server and
 devices to one or more networks. OpenStack also leaves APIs to integrate other
 controllers like OpenDayLight to achieve a software defined network.

 The concept of SDN can be used to resolve the problems in traditional networks
 and carried out to create more flexible networks. Tools like OpenDaylight and
 OpenStack can be applied to achieve such networks. In this project, we establish a
 network with the concept of SDN, and configure it with related tools mentioned
 above, to demonstrate a use case of SDN, and explore the application of
 OpenDaylight and OpenStack.

2. Scope and Preparation

2.1 Technology Description

 First of all, I studied the paper of a comprehensive survey.
 (​https://drive.google.com/drive/u/1/folders/0B4M8Xz4BRpradzFpaDduRzdLRXc​)

● ​The concept of SDN
 In traditional IP networks, the control and data planes are tightly coupled,
 embedded in the same networking devices, and the whole structure is highly
 decentralized. While in Software Defined Network, the control and data planes
 are decoupled. The separation of the control plane and the data plane can be

 realized by means of a well-defined programming interface between the
 switches and the SDN controller through API.

 SDN can be defined as a network architecture with four pillars:
 a. The control and data planes are decoupled.
 b. Forwarding decisions are flow-based, instead of destination-based.
 c. Control logic is moved to an external entity, the so-called SDN controller or
 Network Operating System (NOS).
 d. The network is programmable through software applications running on top

 7

https://drive.google.com/drive/u/1/folders/0B4M8Xz4BRpradzFpaDduRzdLRXc

 of the NOS that interacts with the underlying data plane devices.

 ​ An SDN can be defined by three fundamental abstractions:
a. Forwarding. Ideally, the forwarding abstraction should allow any for- warding

behavior desired by the network application (the control program) while hiding
details of the underlying hardware, always by Openflow.

b. Distribution. It should shield SDN applications from the vagaries of distributed
state, making the distributed control problem a logically centralized one, by a
common distribution layer.

 c. Specification, which means it allows a network application to express the
 desired network behavior without being responsible for implementing that
 behavior itself. By virtualization solutions and programming languages.

● SDN infrastructures

 An SDN network infrastructure (from abstract to detail)

Figure 1. Abstract infrastructure

(quoted from software-defined networking: a comprehensive survey)

 8

Figure 2. Detailed infrastructure (a)

(quoted from software-defined networking: a comprehensive survey)

Figure 3. Detailed infrastructure (b)
(quoted from software-defined networking: a comprehensive survey)

 9

Figure 4. Key building blocks of an SDN infrastructure using a bottom-up, layered approach

(quoted from software-defined networking: a comprehensive survey)

 layer 1—infrastructure: switches, routers and etc.
 layer 2—southbound interface: Openflow
 layer 3—network hypervisor: Hypervisors enable distinct virtual machines to
 share the same hardware resources.
 layer 4—network operating system (controller): OpenDaylight.
 layer 5—northbound interface: OpenDaylight defines its own API.
 layer 6—language-based virtualization.
 layer 7—programming language.
 layer 8—network applications: implement the control-logic that will be translated
 into commands to be installed in the data plane.

 ​Then let’s take a look at software defined network applications in the practical
 world.

 10

Figure 5. quoted from http://blog.sflow.com/2014/01/large-flow-marking-using-hybrid-openflow.html

 The diagram above shows a practical application of SDN using openflow controller.
 The control plane communicated with data plane through southbound APIs, and
 communicates with upper layer applications through northbound APIs. The hosts
 can be virtual machines within the network range.

Figure 6. quoted from ​https://www.sdxcentral.com/products/centec-load-balance/

 Sometimes, when there is a higher demand towards flow control or there are too

 11

https://www.sdxcentral.com/products/centec-load-balance/

 many devices in the same network, we can add a load balancer to the data plane as
 above. The load balancer can be configured to have access to the internet.

 We can conclude a software-defined network as the following picture.

Figure 7. quoted from

https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/

● ​Difference brought by SDN

 Let’s first take a look at the former networks we used.

Figure 8.

 The communication between devices is mainly through protocols, including
 switching, routing and security, such as OSPF, BGP, MPLS, MSTP, etc. It’s achieved by
 neighborhood establishment, sharing information and path selection. This is the logic
 foundation for many protocols. Besides, it is distributed structure that is used by the

 12

 majority of the networks. Devices transfer local message by overlaying. And then
 establish database and select the best path by path selection algorithms, the most
 typical one of which is SPF. During this, each device does its calculation separately
 and they each have a individual “brain” and forwarding hardwares. So the protocols
 is like the language for human being, which is the foundation of internetworking.
 What if a change occurs in the network? How could the devices in the network
 communicate with each other? When there is a turbulence in the network, the
 devices will overlay the message down to the next devices then delete the
 message of the compromised path. It is possible that there would be redundant
 notice during the convergence. The process is shown as follows.

Figure 9.

 The rising of cloud computing, big data and mobile internet has brought the doubling
 of flow, leading to the expansion of low layer networks with growing pressure. The
 convergence time of the network increases with the expanding of the network.
 Among all the typical networks, data center and mobile communication networks are
 under extreme pressure and consequently, a revolution is necessary. Besides, the
 bottleneck has been exposed in distributed structures.

 To find a solution, let’s first think about how to resolve the bandwidth assignment
 Issue. Flow control is achieved by Qos and etc, generally. Set the priority by
 classification and labeling. On basis of the various requirements, assign
 corresponding bandwidth to the service. The quality of flow control directly
 influence the bandwidth utilization and influence the customer’s investment benefit.
 Flow control can not only work on switches, routers and other products that support
 Qos and also on professional flow control products like load balancers. However, no
 matter how to control the flow, by hardware or software, the process is mostly static
 bandwidth management. Based on a specific service requirement, make a
 corresponding regulation on the specific path. The strategy was set in advance and is
 unable to achieve bandwidth assignment intelligently with response to current
 network condition. Another problem in flow control is that, the overall network flow
 control is not visible. In regular flow control products and management systems, only
 part of the bandwidth assignment of the links and link state monitoring are visible.
 However, the overall network flow control visibility is the basis intelligent bandwidth
 Assignment. Gradually, an idea was brought up----can we customize the forwarding

 13

 strategy?

 As we all know, the work mode of traditional network devices are fixed. For instance,
 switches forward messages according to MAC table and routers forward messages
 according to the routing table. Therefore, to make the strategies customized is to
 make the devices programmable. What can be possibly programmable? It’s obvious
 that the devices like routers and switches cannot be programmable with response to
 the requirements.

 Right here right now, a brand new idea of networking design rose, software defined
 Network. The very first infrastructure of SDN is as follows.

Figure 10.

 In the picture above, the switches don’t have their own brains. Instead, all that
 related to path calculations and security strategies are determined in the controller.
 The decisions are passed down to the switches through openflow, and the switches
 simply do the forwarding according to flow table. It achieved the separation between
 control and forwarding.

 A typical example of SDN application is the Google B4 network as the following
 picture shows.

 14

Figure 11.

 This network has fundamentally improved the utilization rate of the WAN links from
 the original thirty or forty percent to one hundred percent. Overall, it applies
 distributed controllers system and introduces openflow switches to this SDN
 network. Quagga is a routing protocol stack, which is used to operate BGP and ISIS
 routing protocols. RAP, as the proxy from switches to quagga, is Routing Application
 Proxy. For example, when the openflow switches send the link state message to the
 controller, controller would call RAP to send the message to the protocol stack.
 Paxos is an election machine. It is used to select the master and slave among the
 controller cluster. TE agent is used to collect link state and bandwidth information of
 data centre and then send it to the gateway from the top layer. The gateway
 summarizes the overall information and send it to TE server to make the path
 calculation. In return, when TE server completed calculating the paths and
 bandwidth assignment, it would send this back to gateway. And it is gateway which
 sends this to openflow switches. The route is like the picture below.

Figure 12.

 In conclusion, the major difference between traditional network and SDN is listed as
 follows.

 15

Figure 13.

 In the aspect of logic structure,

Figure 14.

 The change brought by SDN has led to a reform in the industry. And they in return, is
 pushing SDN moving forward.

 16

Figure 15.

● ​The concept of NFV

 Let’s go back and take a look at NFV. NFV, network function virtualization, is to
 centralize network hardware on a server or platform through virtualization
 technologies. On this standardized server or platform, switches, routers, firewalls,
 load balancers and security devices can normally function. To be frank, it is to
 centralize discret network devices to a large box, as the following picture shows, and
 to use each device as plugins.

Figure 16.

 17

 Even though NFV and SDN are from separate organizations, they share a common
 purpose, to make the hardware to be software and virtualized, which makes the
 entire network virtualized, cost-saving, movable, scalable and more manageable.

2.2 Solution Description

 SDN (Software Defined Network) is a network design concept. As long as the
 networking devices can be centralized, is programmable, with the separation
 between control plane and data plane (forwarding plane), the network is considered
 as a Software Defined Network. Therefore, SDN is not a specific technology or
 some protocol. On the other hand, it is an idea and a framework. To push it further,
 SDN is even involved with software defined security, software defined storage and
 so on. It’s fair to say that SDN is a trend that will stimulate the whole industry.

 VTN is another trend that can map physical network resources. It can save the
 MAC addresses and VLAN IDs corresponding to the ports of the switches from
 terminals. The message obtained from terminals will be maintained until the packet
 from the terminal flows in. If the terminal is not connected to VTN, the timer will be
 triggered and the message will be maintained until the time is out. The vBridge is
 able to check the MAC address table. If the destination MAC address is already
 learnt, the packet will be forwarded to the corresponding virtual port. If the MAC
 address is not learnt yet, flooding it to all ports. Another function of VTN is Flow
 Filter Function. Flow Filter can be applied to any port in Vnode with special
 matching conditions. One significant advantage of VTN is that it can achieve single
 policy virtual network. Users can easily add a SDN controller to the existing VTN
 and can cut a SDN controller from the VTN.

 For tools, OpenStack as well as OpenDayLight is open to integrate with each other.
 In OpenStack, a python daemon is the main process of the OpenStack networking
 that typically runs on the controller node. It exposes APIs, to enforce the network
 model, and passes the requests to the neutron plugin. So what is plugin? Plugins
 can be either core or service. Core plugins implement the “core” Neutron API — L2
 networking and IP address management. Service plugins provide “additional”
 services, such as the L3 router, load balancing, VPN, firewall and metering. These
 network services can also be provided by the core plugins by realizing the relevant
 API extensions. In short, plugins run on the controller node and implement the
 networking APIs, which interact with the Neutron server, database and agents.
 (quoted from openstack.org) There are also plugin agents which are specific to the
 Neutron plugin being used. They run on compute nodes and communicate with the
 Neutron plugin to manage virtual switches. These agents are optional in many
 deployments and perform local virtual switch configurations on each hypervisor.

 18

 ML2’s plugins are all core plugins. They are either type drivers or mechanism
 drivers. OVS, adrivers from ODL, Cisco, NEC and some others are mechanism
 drivers. They respond to actions such as update, establish and delete a network,
 subnet or port. Type drivers are flat, VLAN, GRE and VXLAN. They define the L2
 type.

 In short, the user input message to the networking API via the OpenStack horizon
 and then send to Neutron server. Neutron server receive the message and send it
 to plugin. Then Neutron server and plugin update their database. Plugin sends the
 message to the SDN controller via REST API. OpenDayLight could be the
 controller at this point. The controller receive the message and goes through the
 southbound plugins or protocols, such as OpenFlow, OVSDB or OF-Config.

 Another crucial concept in SDN is Open vSwitch (OVS). In a virtualized platform,
 OVS is able to provide layer 2 service for dynamic nodes, as well as controlling the
 policies, network segments and flow control in an NFV. OVS supports OpenFlow.
 So every controller which supports OpenFlow can use OVS. The following
 terminologies are significant in OVS. Bridge, it stands for a ethernet switch. A host
 can establish one or more bridges. Port, it’s similar to a port of a physical switch.
 Each port belongs to a bridge. Interface, it connects to the port. Usually, one port
 corresponds to one interface, monogally. One port can correspond to more than
 one interfaces only when the port is configured as the bond mode. Controller, one
 OVS can concurrently be managed by one or more controllers. Datapath, it’s
 responsible to exchange data, which is to say matching the packets received from
 the receive port in the flow table and performing as what’s matched. Flow table,
 each datapath is related to a flow table. When the datapath receive the data, OVS
 will look up the matching flow in flow table and perform the corresponding actions,
 forwarding data to another port for example.

 To sort out the relationship of OpenDayLight, OpenStack and Openflow, let’s stop
 here a little bit. As far as what we have introduced concerned, OpenStack is a
 Cloud Management System that provides a uniform API for provisioning Compute,
 Network, Storage in a DataCenter. There are different plugins for each of these
 areas that can be built into an OpenStack deployment and function underneath.
 OpenDayLight is a SDN controller that provisions the network policies as specified
 and sends the message to the Hypervisor. As a controller, it also performs the
 role of maintaining those policies in spite of the changes happening in the network,
 recomputing policies and loading to Hypervisors. OpenFlow is the protocol used to
 program the Hypervisor vSwitches. It’s mostly about which traffic to send where and
 so on. And it’s the protocol through which an SDN controller communicates with the
 Hypervisors. OpenvSwitch is the implementation of a virtual switch in the
 Hypervisor that exposes OpenFlow protocol for flow message and uses the
 message through this protocol and make packet forwarding decisions. For

 19

 virtualization, you need some service to handle bridging between your instances.
 OpenvSwitch can handle this. OpenFlow is a protocol standard for SDN which
 facilitates remote management of switches from a centralized control plane with a
 wide range of support. OpenDaylight is an SDN controller that lets the user to
 programmably manage OpenFlow capable switches. It is a huge project due to the
 scale of collaboration with a large set of features and compatible northbound
 applications. Alternatives to ODL include Floodlight, RYU SDN framework, NOX,
 POX and so on. OpenStack is a cloud orchestration platform that can work
 independently without any of these technologies. However, it can also use all the
 above mentioned to provide the user more programmatic control over the
 Infrastructure and hence improve the scope for automation. Services like AWS,
 Google cloud platform, Azure let you orchestrate cloud networks without using
 OpenStack. So, such services could be considered as alternatives to OpenStack.

 In this project, we use VTN to build a software defined network. The VMs would talk
 to each other via IP addressing. The controller will be configured on both
 OpenDaylight and OpenStack, which eventually would be integrated with each
 other. With application of SDN, the controller will distribute the network whenever
 there is a new VM is added or changed, and configure the protocols. This process
 will be achieved by launching instances in OpenStack.

3. Solution Infrastructure Setup

3.1 Hardware Preparation

● VPN

 This is to make it possible to connect the server in the lab remotely. The platform we
 use in this lab is Mac OS. To connect to the MINT lab network, we need to install the
 VPN plugin, CiscoIPSec on the laptop. And then create user account through it. The
 details are demonstrated as follows.

 20

Figure 17.

● Operating systems

 We need to configure a Windows virtual machine on the laptop which is most
 compatible to the platform for the remote server. And also, vSphere has no release
 by June, 2016 compatible on Mac OS. And the similar VMware has limit functions on
 Mac Os. To do this, a Windows 10 desktop is installed though Parallel Desktop as
 follows.

 21

Figure 18.

 As you see, to give the Windows 10 access to the MINT lab network as well as the
 internet, we configure the guest operating system to share the same network with
 the host Mac OS.

● Server

 The network function virtualization is done on a remote server, located on the MINT
 lab. The basic parameters and information are as follows.
 We use VMware vSphere client as the platform to manage and configure the remote
 server. We need to install the VMware vSphere client on Windows and then
configure
 the remote server.
 Log in to the server as the following shows. The IP address of the server is
 10.3.32.112.

 22

Figure 19.

 The related parameters are as follows.

 23

Figure 20.

 24

Figure 21.

Figure 22.

3.2 Software Preparation

● Local virtualization tools

 The tools we need to prepare and upload to the server are Ubuntu 16.04 server
 installation package, VM tools and related linux tools.

● Software installation tools

 25

 In this lab, we need to install OpenDaylight and OpenStack on several nodes.
 Therefore, installation packages are needed and installation tools as well as internet
 access are necessary.
 For OpenDayLight, we choose OpenDayLight Beryllium SR2 for Ubuntu 16.04 LTS, the
 most updated version by August, 2016.
 For OpenStack, we choose OpenStack Mitaka for Ubuntu 16.04 LTS, the most
 updated version by October, 2016.

 To set up the remote server, I followed the instructions and set the parameters as
 follows. It ‘s an ESXi 6 version server.

Type Linux

Operating systems Ubuntu (64 bits)

Sockets in total 8 cores

Virtual sockets for each at least 2 cores

Memory 4 GB

Network Interface Cards 6 (located in the back rack physically)

Disk size Above 20 GB

Table 1.

 Then we need to upload packages and files to the datastore in the server, which
 includes virtual drives such as floppy drives that can be inserted to or ejected from
 the VMs that we are going to configure.
 The overall information of the server is as follows.

 26

Figure 23.

 27

Figure 24.

Figure 25.

 We also need to install VM tools to improve operation towards the virtual machines.
 When the VM tools are successfully installed, there would be icon indicating the VM

 28

 tools are “running” or “not running”in green.

Figure 26.

3.2.1 Virtual machines Setup

 We need to add corresponding amount of virtual machines to the server, to the
 network diagram. For each Ubuntu server, the parameters are as follows. (disk size is
 recommended as 100 GB)

Figure 27.

 29

3.2.2 Operating systems Installation

 ​ We use Ubuntu server 16.04 LTS and Ubuntu server 14.04 LTS in this lab. The

 parameters we use in the process of installation is as follows.

● Create a usable image. I use a “.iso” file in this lab
● In BIOS, select English and enter
● Choose Ubuntu Server and enter
● Select English and Canada in the following pages
● Choose “no” to detection keyboard layout
● Select English in the following pages and enter
● Set hostname and configure network manually
● Set the username and password
● Choose “no” to encrypt the home directory
● Choose “yes” to the time zone correct inquiry
● Select “Guided-use entire disk and set up LVM”
● Choose “yes” to write changes to disk and configure LVM
● Select “no automatic updates”
● Choose “yes” to the GRUB boot loader
● Finish installation

3.2.3 Software Installation

 According to the requirements in this lab, we need to install OpenDaylight and
 OpenStack nodes on VMs separately. The configuration is as follows. This part of
 configuration will be demonstrated in the next chapter with a use case.

3.2.4 Network Setup

 Overall, we need two other networks apart from the existing one which is used to
 manage the virtual machines. The two networks are shown as follows.

 30

Figure 28.

4. Solution Setup

4.1 Lab Setup

 In this stage, we need to firstly decide on what network topology is going to be
 configured. Secondly, we need to design the controller’s networks and all the other
 nodes’ networks, including ones that they use to communicate with each other.
 Thirdly, we need to install all the features that the OpenDaylight controller requires,

 31

 which is necessary that we figure out all the features’ functionalities. Last but not
 least, we need to integrate the controller with all the other nodes

4.1.1 Lab Network Topology

Figure 29. Lab Network Diagram

4.1.2 OpenDayLight features Setup

 Before we install OpenDaylight on the Ubuntu server, several things need to be
 done.

 A few tools need to be installed first​: Maven, Git,OSGi, JAVA interfaces, and REST

 APIs.

 As for maven, OpenDaylight uses Apache Maven for building all projects. We need to

 install 3.3.1 or later versions. OpenDayLight maintains all its codes in Git repositories.

 A Java 7 or later releases is needed for OpenDayLight installation.

 In this project, we choose OpenDayLight Beryllium SR2 as the controller in the

 network. The hostname of this VM is ​ubuntuodlsdnadmin​ , username is ​sdnadmin​ ,

 password is ​sdnlabs#112

 The following features are necessary and needs to be installed in OpenDayLight.

 32

Features Karaf features name

L2SWITCH odl-l2switch-switch-ui

OF-CONFIG odl-of-config-rest

PCEP odl-bgpcep-pcep

OpenFLow Flow Programming odl-openflowplugin-flow-services-ui

OVSDB Southbound odl-ovsdb-southbound-impl-ui

OVSDB HWVTEP Southbound odl-ovsdb-hwvtepsouthbound-ui

OVSDB NetVirt SFC odl-ovsdb-sfc-ui

OpenFlow Table Type Patterns odl-ttp-all

DLUX odl-dlux-all

centinel odl-centinel-all

REST API odl-restconf

MD-SAL odl-mdsal-clustering

Table 2.

 The following shows the successful installation of OpenDayLight and karaf.

Figure 30.

 The following shows the installation of OpenDayLight features.

 33

Figure 31.

 Keep this OpenDayLight controller on and continue to configure OpenStack nodes.

4.1.3 OpenStack nodes Setup

 The OpenStack project is an open source cloud computing platform that supports
 all types of cloud environment. It provides an Infrastructure-as-a-Service (Iaas)
 solution through a variety of complemental services. An Iaas is a provisioning
 model in which an organization outsources physical components of a data centre,
 such as storage, hardware, servers, and networking components.

 Basically, a completed OpenStack network requires at least two nodes, one
 controller node for identifying service, image service, management portion of
 computing and SQL database and one compute node for hypervisor portion of
 computing. Besides, block node is an optional node. An example architecture is as
 follows.

 34

Figure 32. Example architecture

(quoted from ​http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html​)

 There is point that needs to be clear. OpenStack provides several services and
 some of the service has its nickname which sometimes the nodes in the network
 could also be called like. The following table shows the services and their
 nicknames.

Service Project name

Dashboard Horizon

Compute Nova

Networking Neutron

Object Storage Swift

Block Storage Cinder

Identity service Keystone

Image service Glance

Telemetry Ceilometer

 35

http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html

Orchestration Heat
Table 3.

 ​ We will start to configure network when we finished configuring these nodes.

● Controller node

 In order to demonstrate the configuration processes clearly, I create the following
 flow chart.

 36

 37

Figure 33.

 The following is the user identifications and passwords used in each of the service.
 The services and features need to be configured one by one. When it comes to
 systematically configuration, it requires going into the configuration file to correct or
 add each and every options and commands. The operation is on the linux
 operating system and all the commands should be in the console.

Service or database User ID and password

MariaDB root / sdnlabs#112

Message queue Openstack user / RABBIT_PASS

identify Database keystone / KEYSTONE_DBPASS

Temporary admin_token ca7eb37670a0352ad2a0

networking admin / sdnlabs#112

image GLANCE_DBPASS

glance sdnlabs#112
Table 4.

 Here are the issues I recorded during configuration. Since the OpenStack Mitaka
 version is the newest release, there are several issues in the documentation from
 the official website. The following issue records have also been provided by the
 author to the website.

issue reason solution

Cannot create service entity and
API endpoints (HTTP 500)

The keystone/keystone.conf
file has wrong typing

Correct the mistaken line and
comment those not in use

HTTP 404 Only restart the apache2
server as suggested in the

documentation is not enough

Reboot the operating system
to make it get the

configuration active

Command not found in
OpenStack

There are several commands
which only active in

OpenStack when activated

Type the command:apt-get
install python-openstackclient

Cannot verify operation as the
admin user (HTTP 5000)

Service not activated Service apache2 restart

There’s no “database” section in It’s normal but ignored by the Add this part manually to the

 38

/etc/nova/nova.conf.file website as of October file

Cannot connect to
http://controller​ horizon

The OS is a server version
and the browser opened is

the host’s

Open the browser in terminal
by the command: w3m

<http….>
Table 5.

 Services configured on controller node requires configuration in each file. For nova
 service (compute service), /etc/nova/nova.conf needs to be edited as follows. The
 configuration should includes the proxies, tokens the service use to communicate
 with other nodes, as well as other supporting services it may require.

Figure 34.

 39

http://controller/

Figure 35.

 For network configuration, the vxlan tunnel should not be enabled until an instance
 is brought up. This will be further talked about in the following section. Therefore,
 ml2 configuration should be like the following.

 40

Figure 36.

Figure 37.

 For dashboard service, python code needs to be edited in the following file.

 41

 When the features above are configured, the controller is proved to be successfully
 configured. The following screenshots verify that the services are successfully
 Configured.

Figure 38.

 Verification of identity service:

 42

Figure 39.

 Verification of image service:

Figure 40.

 43

Figure 41.

 Verification of horizon service:

Figure 42.

 Verification of network service:

 44

Figure 43.

 Other services can be verified by successful instances launch later.

● Compute nodes

 For compute nodes, there are services needing to be configured cooperating with
 the controller node. There are also services needing to be configured
 independently to fulfill the compute service.

 The following flowchart shows what configured on compute node.

 45

Figure 44.

 When the features above are configured, the compute node is proved to be
 successfully configured. The following screenshots verify that the services are
 successfully configured.

 Verification of compute node services:

Figure 45.

Figure 46.

 46

● Network node

 ​In this part, we need to be clear about networks in OpenStack first.

 A standard OpenStack Networking setup has up to four distinct physical data
 center networks:

 Management network
 Used for internal communication between OpenStack Components. The IP
 addresses on this network should be reachable only within the data center and is
 considered the Management Security Domain.
 Guest network
 Used for VM data communication within the cloud deployment. The IP addressing
 requirements of this network depend on the OpenStack Networking plug-in in use
 and the network configuration choices of the virtual networks made by the tenant.
 This network is considered the Guest Security Domain.
 External network
 Used to provide VMs with Internet access in some deployment scenarios. The IP
 addresses on this network should be reachable by anyone on the Internet. This
 network is considered to be in the Public Security Domain.
 API network
 Exposes all OpenStack APIs, including the OpenStack Networking API, to tenants.
 The IP addresses on this network should be reachable by anyone on the Internet.
 This may be the same network as the external network, as it is possible to create a
 subnet for the external network that uses IP allocation ranges to use only less than
 the full range of IP addresses in an IP block. This network is considered the Public
 Security Domain.

 Before going any further, we firstly need to configure the networks for nodes
 connection. This needs to be done after adding network adapters. The network
 configurations need to follow what’s required for linux operating systems. As the
 following screenshots show, the etc/network/interfaces file for each nodes needs to
 be configured as the way it shows.

 47

Figure 47.

 48

Figure 48.

 For OpenStack, in neutron configuration, I choose Vxlan for tunnel​ ​OvSwitch as
 back-end with Ml2 plug-in. So what is a back-end and plug-in? In OpenStack,
 plugin configuration is like “core-plugin = ml2”, which is managed by “service-plugin
 = router” with the agent configuration: “[agent] Tunnel_types = vxvlan”. As for
 drivers for it, the configurations are like,
 “type_drivers = flat,vlan,gre,vxlan
 Mechanism_drivers = openvswitch
 Firewall_driver = neutron,agent…..OVSHybrid…
 Interface_driver = neutron…..OVSInterfaceDriver”
 I’ll explain the reason why I choose these two.

 For Vxlan, firstly, we need to figure out what’s the difference within flat, local, vlan,
 gre and vxlan. A local network is a network that can only be realized on a single
 host. This is only used in proof-of-concept or development environments, because

 49

 just about any other OpenStack environment will have multiple compute hosts
 and/or a separate network host. A flat network is a network that does not provide
 any segmentation options. A traditional L2 ethernet network is a "flat" network. Any
 servers attached to this network are able to see the same broadcast traffic and can
 contact each other without requiring a router. flat networks are often used to attach
 Nova servers to an existing L2 network (this is called a "provider network"). A vlan
 network is one that uses VLANs for segmentation. When you create a new network
 in Neutron, it will be assigned a VLAN ID from the range you have configured in
 your Neutron configuration. Using vlan networks requires that any switches in your
 environment are configured to trunk the corresponding VLANs. gre and vxlan
 networks are very similar. They are both "overlay" networks that work by
 encapsulating network traffic. Like vlan networks, each network you create receives
 a unique tunnel id. Unlike vlan networks, an overlay network does not require that
 you synchronize your OpenStack configuration with your L2 switch configuration.
 Secondly, VXLAN is my a preferred solution, because it provides more entropie on
 the receiving NIC, which results in a higher performance, because multiple CPU
 cores are used to process ingress packets. (quoted from
 (​http://www.opencloudblog.com/?p=300​)​)

 For Open vSwitch, why would I use Open vSwitch instead of the Linux bridge?
 Open vSwitch is specially designed to make it easier to manage VM network
 configuration and monitor state spread across many physical hosts in dynamic
 virtualized environments. Open vSwitch is targeted at large multi-server
 virtualization environments, so it is focused on logical abstraction and management;
 the Linux bridge is fast and reliable, but lacks all fancy control features. Besides,
 ​Hypervisors need the ability to bridge traffic between VMs and with the outside
 world. On Linux-based hypervisors, this used to mean using the built-in L2 switch
 (the Linux bridge), which is fast and reliable. So, it is reasonable to ask why Open
 vSwitch is used.​ ​Open vSwitch is targeted at multi-server virtualization
 deployments, a landscape for which the previous stack is not well suited. These
 environments are often characterized by highly dynamic end-points, the
 maintenance of logical abstractions, and (sometimes) integration with or offloading
 to special purpose switching hardware. The following characteristics and design
 considerations help OpenvSwitch cope with the requirements above. The mobility of
 state: All network state associated with a network entity (say a virtual machine)
 should be easily identifiable and migratable between different hosts. This may
 include traditional "soft state" (such as an entry in an L2 learning table), L3
 forwarding state, policy routing state, ACLs, QoS policy, monitoring configuration.
 Further, Open vSwitch state is typed and backed by a real data-model allowing for
 the development of structured automation systems. Open vSwitch is also
 responding to network dynamics: Virtual environments are often characterized by
 high-rates of change. VMs coming and going, VMs moving backwards and
 forwards in time, changes to the logical network environments, and so forth.

 50

http://www.opencloudblog.com/?p=300

 Open vSwitch supports a number of features that allow a network control system to
 respond and adapt as the environment changes. This includes simple accounting
 and visibility support such as NetFlow, IPFIX, and sFlow. But perhaps more useful,
 Open vSwitch supports a network state database (OVSDB) that supports remote
 triggers. Open vSwitch also supports OpenFlow as a method of exporting remote
 access to control traffic. There are a number of uses for this including global
 network discovery through inspection of discovery or link-state traffic (e.g. LLDP,
 CDP, OSPF, etc.). In advance, Open vSwitch includes multiple methods for
 specifying and maintaining tagging rules, all of which are accessible to a remote
 process for orchestration. In a similar vein, Open vSwitch supports a GRE
 implementation that can handle thousands of simultaneous GRE tunnels and
 supports remote configuration for tunnel creation, configuration, and tear-down.
 This, for example, can be used to connect private VM networks in different data
 Centers. In the aspect of hardware integration: Open vSwitch's forwarding path
 (the in-kernel datapath) is designed to be amenable to "offloading" packet
 processing to hardware chipsets, whether housed in a classic hardware switch
 chassis or in an end-host NIC. This allows for the Open vSwitch control path to be
 able to both control a pure software implementation or a hardware switch. In many
 ways, Open vSwitch targets a different point in the design space than previous
 hypervisor networking stacks, focusing on the need for automated and dynamic
 network control in large-scale Linux-based virtualization environments. The goal
 with Open vSwitch is to keep the in-kernel code as small as possible (as is
 necessary for performance) and to re-use existing subsystems when applicable (for
 example Open vSwitch uses the existing QoS stack). As of Linux 3.3, Open
 vSwitch is included as a part of the kernel and packaging for the userspace utilities
 are available on most popular distributions. (referred from
 (​http://networkengineering.stackexchange.com/questions/28408/​)

4.2 Integration of OpenDayLight and OpenStack

 A use case is used to describe this section.

4.2.1 Network Topology Diagram

 51

http://networkengineering.stackexchange.com/questions/28408/difference-between-linux-bridge-and-open-vswitch

Figure 49.

 The diagram is the same one from the last section.

4.2.2 Configuration Process

4.2.2.1 Hardware Requirement
● Gateway:

 Memory: 512 MB
 CPU: 1
 NIC:
 adapter 1: bridged adapter
 adapter 2: internal network (management)

● Controller:
 Memory: 3072 MB
 CPU: 2
 NIC:
 adapter 1: internal network (management)

● Network:
 Memory: 1024 MB
 CPU: 2
 NIC:
 adapter 1: internal network (management)
 adapter 2: internal network (tunnel)
 adapter 3: internal network (vlan)
 adapter 4: internal network (management)

● Compute:

 52

 Memory: 2048MB
 CPU: 1
 NIC:
 adapter 1: internal network (management)
 adapter 2: internal network (tunnel)
 adapter 3: internal network (vlan)
 adapter 4: internal network (management)

● OpenDayLight Controller:
 Memory: 2048 MB
 CPU: 2
 NIC:
 adapter 1: internal network (m_management)

4.2.2.2 Network configuration

 Based on the given network topology, we need to configure network adapters and
 IP addresses on each node.

 As for IP addresses and network type configuration, the following screenshot shows
 how they are configured for a single bridged network adapter.

Figure 50.

 When the IPs are all configured well on each node, we can test connectivity from

 53

 each of the two nodes.

Figure 51.

 In this case, in order to give access to the internet, we configure another network
 adapter as the shared network with the host (virtual machines and the host). The
 network virtual machines use is through NAT to communicate with internet. As for
 the bridged network, it appears as an additional computer on the same physical
 network connection as the host laptop. When configure the bridged network, an
 error called “ERROR RTNETLINK: File exists” occurs. This is because the
 interface ”br1” cannot be brought up after configuration the file
 </etc/network/interfaces>, and can be solved by giving a lower priority to the
 bridged network like adding the metrics. Besides, “bridge-utils” needs to be
 installed by “sudo apt install” first.

4.2.2.3 Configuration Process

 Firstly, start the gateway node and open its console to configure ntp and check if it’s
 the most up-to-date version. Then start all nodes of openstack. Open web browser
 and connect to 10.0.0.11/horizon/ and log in to openstack (domain: default, user
 name: admin)

 54

Figure 52.

 In the OpenStack page, click project and select instances in the compute
 drop-down list. Then start the instances and click network and select network
 topology to see the diagram. click network and select networks to see if there are
 existing networks. Go back to the instances and check with the floating address
 assigned to the each node. Now open the terminal of the laptop and type the
 command : ssh cirros@10.0.0.X (IP of one of the instance’s one network). Answer
 yes and type “sdnlabs#112”, the password. Then ping 8.8.8.8 to test google
 Availability. Repeat this action until having tested all the existing networks. Then
 clear all the instances by deleting them all in OpenStack.

 Click access&security in compute drop-down list and choose floating IP. Select all
 the IP addresses and click release floating IPs. Click network and choose routers in
 the drop-down list. Select the router in the page and click clear gateway. Select
 router in the page again and click delete routers. Click network in the network list
 and select all the networks in the page. Click delete networks (the ext-net may be
 not deleted and an error warning would be popped out). When all deleted, it shows
 as the following screenshot.

 55

Figure 53.

 Then click admin and choose routers in the drop-down list and select the router in
 the page and click delete routers. Choose networks in the same drop-down list.
 Select networks in the page and click delete networks. Now turn to network
 drop-down list and choose network topology to check there’s no diagram.

Figure 54.

 Now open a new console of the openstack controller and connect to OpenDayLight
 by ssh. Start OpenDayLight and karaf. Apart from the features noted from the last
 section, also install the following features. odl-ovsdb-openstack, odl-dlux-core and
 Odl-dlux-all. Now we can go to the openstack controller node and check. Type the
 following commands: curl u admin:admin ​http://IP​ of OpenDayLight/. Because it’s a
 server version with GUI, we need to go to the browser on the console. The
 commands are as follows,
 Cd OPSInstaller
 Cd installer
 Cat OSODL-ovs-00-force-set-controller-time.sh
 ./OSODL-ovs-00-force-set-controller-time.sh
 Cat OSODL-ovs-01-force-redo-set-openstack-node.sh
 ./OSODL-ovs-01-force-redo-set-openstack-node.sh
 Ls OSODL*
 Cat OSODL-ovs-02-stop-neutron.sh
 Ssh openstack@controller cat ./OPSInstaller/controller/exe-
 stage39-SUDO-odl-stop-neutron
 Ls OSODL*
 ./OSODL-ovs-02-stop-neutron.sh

 56

http://ip/

 Ls OSODL*
 Cat OSODL-ovs-03-purge-neutron-agent.sh
 Ssh openstack@network cat ./OPSInstaller/network/exe-
 stage40-SUDO-odl-purge-neutron-ovs-plugin-network.sh
 ./OSODL-ovs-03-purge-neutron-agent.sh
 Ls OSODL*
 Cat OSODL-ovs-04-set-ovs-manager.sh
 Ssh openstack@network cat ./OPSInstaller/network/exe-
 stage43-SUDO-odl-set-ovs-management-network.sh
 ./OSODL-ovs-04-set-ovs-manager.sh

 Then go to the web browser and visit 10.0.0.X(IP of
 OpenDayLight):8181/index.html. Sign in to opendaylight (admin/admin)

Figure 55.

 In the opendaylight web page: click reload under the controls

 57

Figure 56.

 Now go back to the openstack controller node and configure the integration part.
 Type the following commands,
 cat OSODL-ovs-06-set-neutron.sh
 ssh openstack@controller cat
 ./OPSInstaller/controller/exe-stage52-USER-odl-neutron-database.sh
 ssh openstack@controller cat
 ./OPSInstaller/controller/exe-stage53-USER-SUDO-odl-neutron.sh
 ./OSODL-ovs-06-set-neutron.sh
 cat OSODL-ovs-07-pip-init-neutron.sh
 ssh openstack@controller cat
 ./OPSInstaller/controller/exe-stage54-USER-SUDO-odl-pip-install.sh
 ssh openstack@network
 ./OPSInstaller/network/exe-stage54p2-SUDO-odl-restart-network.sh
 ssh openstack@network cat
 ./OPSInstaller/network/exe-stage54p2-SUDO-odl-restart-network.sh
 ssh openstack@controller cat
 ./OPSInstaller/controller/exe-stage55-USER-odl-initial-network.sh
 ./OSODL-ovs-07-pip-init-network.sh

 After monitoring the flows, go to the opendaylight web page and click reload under
 the controls. Click nodes on the left side and check the nodes. Click node
 connection on the right side and check. Go to the 10.0.0.X (OpenStack
 controller)/horizon/auth/login. Log into the openstack (default&admin). Click project
 -- network -- network topology and check -- networks and check -- routers and
 check-- compute -- instances and check (shows items to display). Click “launch
 instance” at the up right corner. Click “details” and edit “instance name” and click
 “next” at the down left corner. Click “source” and “flavour” and edit, select the “+”
 button of “m1 tiny” and it gets disappeared. Click “network”, select the “+” button of
 “admin-net” and it gets disappeared. Click “Network ports” and “security groups” ,
 select the “+” button of “default” of “security groups”and it gets disappeared. Click
 “keypair” and “configuration” and check in the “configuration” page and click “launch
 instance”. Go to the main page and click “instance”, we can see the instance is

 58

 spawning under “task”. Click “Access&Security” and select “floating IPs”. Click
 “Allocate IP” and confirm in the pop-up page, when done, click “Associate” under
 “actions” of the allocated ip address. In the “associate” pop-up page, choose the
 instance port in the Drop-down list. Click “instances” on the left side and show the
 page. Open a new console of openstack controller and type the following
 commands: ssh-keygen -R 10.0.0.102, ssh-cirros@10.0.0.102 to open the
 opendaylight main page and click topology, check how many nodes are in it
 click nodes and click the number under node connection column where the number
 is consistent with the topology

Figure 57.

 Then go back to openstack main page and click Access&Security. Click “Security
 Groups” in the Access&Security page and click “manage rules” of the group in the
 page and click instances on the left.

Figure 58.

 During the integration, floating IPs are needed. Also, we need to set the
 router-delete namespace as true. Because ​the default configuration ​when installing
 from Ubuntu's packages was to not delete namespaces after their associated
 network or router was removed. If you didn't keep tabs on this, you'd soon end up
 with a lot of redundant namespaces on your network nodes. As a public cloud
 operator this is especially problematic when you've got public IPv4 address space

 59

https://bugs.launchpad.net/neutron/+bug/1052535

 to manage and you really don't want precious addresses being wasted on gateway
 interfaces for virtual routers that are no longer in use. (floating IP explanations are
 quoted from ​http://dischord.org/2016/01/05/cleaning-up-after-neutron/​).

 As far as the configuration concerned, the instance is ready to be configured. We
 can configure several various network requirements through OpenDayLight
 controller.

4.3. A VTN Design Example

4.3.1. Architecture

 The following figure shows how it should be integrated in a cloud application with
 SDN.

Figure 59.

 In this figure, the cloud infrastructure is provided by OpenStack OS, the SDN
 controller we used in this case is the OpenDaylight controller. The Computing and
 Storage services are respectively nova and block in OpenStack. Different layers
 communicate with each other by APIs. For example, like what we mentioned in the
 former sections, controller communicate with upper layer APIs through northbound
 APIs like REST API or java, python APIs. The controller communicates with lower
 layer switched and network devices via southbound APIs, which is openflow in this
 case.

 60

http://dischord.org/2016/01/05/cleaning-up-after-neutron/

4.3.2. Design of VTN

 In this example, we use the OpenDaylight controller integrated with the OpenStack
 control node and configure two compute nodes as well as a network node.
 Among these nodes, network configuration is necessary. For the controller node,
 it requires one network interface: management. For the network node, it should
 include four network interfaces: management, project tunnel networks, VLAN
 project networks, and external (typically the Internet). The Open vSwitch bridge
 br-vlan must contain a port on the VLAN interface and Open vSwitch bridge br-ex
 must contain a port on the external interface. For the compute nodes, they each
 must have ​three network interfaces: management, project tunnel networks, and VLAN
 project networks. The Open vSwitch bridge ​br-vlan​ must contain a port on the VLAN
 Interface. The network and compute nodes should contain a separate network interface
 for VLAN project networks. VLAN project networks can use any Open vSwitch bridge
 with access to a network interface. The VLAN network does not require an IP address
 range because it only handles layer-2 connectivity.
 For controller node, we need to configure SQL server, Identity service and message
 queue service with neutron database in the neutron.conf file. Also, OpenStack Compute
 controller/management service with appropriate configuration to use neutron in the
 nova.conf file. For network node, OpenStack Identity service, Open vSwitch service,
 Open vSwitch agent, L3 agent, DHCP agent, metadata agent, and any dependencies
 need to be configured in the neutron.conf file. For compute nodes, OpenStack Identity
 service, OpenStack Compute controller/management service and Open vSwitch service,
 Open vSwitch agent, and any dependencies need to be configured in the neutron.conf
 file and nova.conf file.

 The following are part of the configuration examples.

Figure 60.

Figure 61.

 61

Figure 62

.

Figure 63.

Figure 64.

 Here is the overview of the VTN design.

 62

Figure 65.

 ​In this way, virtual tenant networks are established and can hereby be managed
 through controller. Policies and protocols can also be added or modified through
 configuration files from controller with corresponding adjustments from each
 nodes.

5. Conclusion and Future work
 In this project, I studied the knowledge of networking basis and SDN as well as
 VTN and NFV. With the reviewing of OpenDaylight documentations, I implemented
 the OpenDaylight SDN controller. Studying the cut-edge version of OpenStack, I
 implemented different instances of OpenStack nodes. Combining the leading
 applications of SDN, I integrated OpenStack and ODL. At the end of the project, I
 implemented a VTN Automation solution using Openstack and OpenDaylight SDN
 controller. Through this project, I get to know about what SDN is and the leading
 controller OpenDaylight as well as the OpenFlow specifications. Besides, a
 thorough understanding and application of OpenStack are also obtained from the
 project.

 As far as this project concerned, the application of software defined network and
 its related development tools are limited due to time range, licence expense and
 compatibility between tools. In future, with development of this area, I believe there
 would be more use cases and explorations with relate to corresponding tools.
 More significant orchestration cases would be taken into consideration.

 63

Reference

http://docs.openstack.org/mitaka/install-guide-ubuntu/keystone-users.html
https://help.ubuntu.com/lts/serverguide/network-configuration.html
https://wiki.debian.org/NetworkConfiguration
http://sciencecloud-community.cs.tu.ac.th/?p=238
http://ualberta.onthehub.com/WebStore/Account/SdmAuthorize.aspx?o=612a6bd0-76cb-e511
-9414-b8ca3a5db7a1&ws=687574e5-7a59-e011-bd14-0030487d8897&uid=fe5fc175-76cb-e511
-9414-b8ca3a5db7a1&sdm=0
http://blog.csdn.net/midion9/article/details/50748523
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&ex
ternalId=2084505
https://communities.vmware.com/thread/492851?tstart=0
http://quake.iteye.com/blog/1263961
https://help.ubuntu.com/community/Installation/SystemRequirements
https://wiki.opendaylight.org/images/5/55/Integrating-opendaylight-with-openstack-published
.pdf
http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html#figure-hwreqs
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&ex
ternalId=1022525
http://www.linuxidc.com/Linux/2012-04/58485.htm
http://docs.openstack.org/mitaka/install-guide-ubuntu/common/conventions.html
https://www.youtube.com/watch?v=bsaoU254gAc
http://askubuntu.com/questions/293827/error-rtnetlink-answers-file-exists
https://pubs.vmware.com/workstation-9/index.jsp?topic=%2Fcom.vmware.ws.using.doc%2FG
UID-3B504F2F-7A0B-415F-AE01-62363A95D052.html
https://help.ubuntu.com/lts/serverguide/network-configuration.html
http://blogging.dragon.org.uk/setting-up-ntp-on-ubuntu-14-04/
https://ask.openstack.org/en/question/89131/creating-keystone-error-openstack-not-found-ht
tp-404-entity-liberty-debian/
http://askubuntu.com/questions/460022/using-terminal-as-a-web-browser
http://askubuntu.com/questions/460022/using-terminal-as-a-web-browser
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentat
ion/using-opendaylight-within-an-openstack-environment
https://mitakadesignsummit.sched.org/event/49yI/network-node-is-not-needed-anymore-com
pleted-distributed-virtual-router
http://docs.openstack.org/kilo/install-guide/install/apt/content/neutron-network-node.html
https://ask.openstack.org/en/question/51388/whats-the-difference-between-flat-gre-and-vlan
-neutron-network-types/

 64

http://docs.openstack.org/mitaka/install-guide-ubuntu/keystone-users.html
https://help.ubuntu.com/lts/serverguide/network-configuration.html
https://wiki.debian.org/NetworkConfiguration
http://sciencecloud-community.cs.tu.ac.th/?p=238
http://ualberta.onthehub.com/WebStore/Account/SdmAuthorize.aspx?o=612a6bd0-76cb-e511-9414-b8ca3a5db7a1&ws=687574e5-7a59-e011-bd14-0030487d8897&uid=fe5fc175-76cb-e511-9414-b8ca3a5db7a1&sdm=0
http://ualberta.onthehub.com/WebStore/Account/SdmAuthorize.aspx?o=612a6bd0-76cb-e511-9414-b8ca3a5db7a1&ws=687574e5-7a59-e011-bd14-0030487d8897&uid=fe5fc175-76cb-e511-9414-b8ca3a5db7a1&sdm=0
http://ualberta.onthehub.com/WebStore/Account/SdmAuthorize.aspx?o=612a6bd0-76cb-e511-9414-b8ca3a5db7a1&ws=687574e5-7a59-e011-bd14-0030487d8897&uid=fe5fc175-76cb-e511-9414-b8ca3a5db7a1&sdm=0
http://ualberta.onthehub.com/WebStore/Account/SdmAuthorize.aspx?o=612a6bd0-76cb-e511-9414-b8ca3a5db7a1&ws=687574e5-7a59-e011-bd14-0030487d8897&uid=fe5fc175-76cb-e511-9414-b8ca3a5db7a1&sdm=0
http://blog.csdn.net/midion9/article/details/50748523
http://blog.csdn.net/midion9/article/details/50748523
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2084505
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2084505
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2084505
https://communities.vmware.com/thread/492851?tstart=0
https://communities.vmware.com/thread/492851?tstart=0
http://quake.iteye.com/blog/1263961
http://quake.iteye.com/blog/1263961
https://help.ubuntu.com/community/Installation/SystemRequirements
https://help.ubuntu.com/community/Installation/SystemRequirements
https://wiki.opendaylight.org/images/5/55/Integrating-opendaylight-with-openstack-published.pdf
https://wiki.opendaylight.org/images/5/55/Integrating-opendaylight-with-openstack-published.pdf
https://wiki.opendaylight.org/images/5/55/Integrating-opendaylight-with-openstack-published.pdf
http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html#figure-hwreqs
http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html#figure-hwreqs
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
http://www.linuxidc.com/Linux/2012-04/58485.htm
http://docs.openstack.org/mitaka/install-guide-ubuntu/common/conventions.html
https://www.youtube.com/watch?v=bsaoU254gAc
http://askubuntu.com/questions/293827/error-rtnetlink-answers-file-exists
https://pubs.vmware.com/workstation-9/index.jsp?topic=%2Fcom.vmware.ws.using.doc%2FGUID-3B504F2F-7A0B-415F-AE01-62363A95D052.html
https://pubs.vmware.com/workstation-9/index.jsp?topic=%2Fcom.vmware.ws.using.doc%2FGUID-3B504F2F-7A0B-415F-AE01-62363A95D052.html
https://help.ubuntu.com/lts/serverguide/network-configuration.html
http://blogging.dragon.org.uk/setting-up-ntp-on-ubuntu-14-04/
https://ask.openstack.org/en/question/89131/creating-keystone-error-openstack-not-found-http-404-entity-liberty-debian/
https://ask.openstack.org/en/question/89131/creating-keystone-error-openstack-not-found-http-404-entity-liberty-debian/
http://askubuntu.com/questions/460022/using-terminal-as-a-web-browser
http://askubuntu.com/questions/460022/using-terminal-as-a-web-browser
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentation/using-opendaylight-within-an-openstack-environment
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentation/using-opendaylight-within-an-openstack-environment
https://mitakadesignsummit.sched.org/event/49yI/network-node-is-not-needed-anymore-completed-distributed-virtual-router
https://mitakadesignsummit.sched.org/event/49yI/network-node-is-not-needed-anymore-completed-distributed-virtual-router
http://docs.openstack.org/kilo/install-guide/install/apt/content/neutron-network-node.html
https://ask.openstack.org/en/question/51388/whats-the-difference-between-flat-gre-and-vlan-neutron-network-types/
https://ask.openstack.org/en/question/51388/whats-the-difference-between-flat-gre-and-vlan-neutron-network-types/

Appendix
A. The coding and configuration files are listed below. The nodes are edited within this

 report in the following order.

 /etc/neutron/neutron.conf
 /etc/nova/nova.conf
 /etc/keystone/keystone.conf
 /etc/apache/apache2.conf
 /etc/glance/glance-api.conf
 /etc/glance/glance-registry.conf
 /etc/openstack-dashboard/local_settings.py
 /etc/cinder/cinder.conf
 /etc/heat/heat.conf

 B. As the version of OpenStack we use in this project is the latest release by October,
 2016. The documentation of OpenStack Mitaka has unavoidably included some
 bugs or accidentally omitted some details. As one of the first users, I noticed some
 during this project and revised them. The following are the issues I reported to
 OpenStack website. From the latest check, these bugs have been revised.

issue reason solution

HTTP 404 Only restart the apache2
server as suggested in the

documentation is not enough

Reboot the operating system
to make it get the

configuration active

Command not found in
OpenStack

There are several commands
which only active in

OpenStack when activated

Type the command:apt-get
install python-openstackclient

Cannot verify operation as the
admin user (HTTP 5000)

Service not activated Service apache2 restart

There’s no “database” section in
/etc/nova/nova.conf.file

It’s normal but ignored by the
website as of October

Add this part manually to the
file

 65

