University of Alberta
Faculty of Electrical and Computer Engineering

Master of Science in internetworking

Integrating OpenStack and ODL to provide VTN Automation
Service

Submitted by Bingzhu Xie

Supervisor: Mr.Gurpreet Nanda

Abstract
Acknowledgement

1. Introduction
1.1 Problem Description
1.2 Proposed Solution

2. Scope and Preparation
2.1 Technology Description
2.2 Solution Description

3. Solution Infrastructure Setup
3.1 Hardware Preparation
3.2 Software Preparation
3.2.1 Virtual machines Setup
3.2.2 Operating systems Installation
3.2.3 Software Installation
3.2.4 Network Setup

4. Solution Setup
4.1 Lab Setup
4.1.1 Lab Network Topology
4.1.2 OpenDayLight features Setup
4.1.3 OpenStack nodes Setup
4.2 Integration of OpenDayLight and OpenStack
4.2.1 Network Topology Diagram
4.2.2 Configuration Process
4.2.2.1 Hardware Requirement
4.2.2.2 Network configuration
4.2.2.3 Configuration Process
4.3. AVTN Design Example
4.3.1. Architecture
4.3.2. Design of VTN

5. Conclusion and Future work
Reference

Appendix

o N N o ooa AW

—_—

W WwWw W NDNNDNDN
© O © o o © o

o OO oo o1 0o 01 o1 01 W W W W w
- OO P WONDN-2=2BDNN_A-

O O o
a W

Abstract

With the wide application of IP networks, the modern digital society is in need of
a more flexible, fault-tolerant and manageable network. Software-Defined
Networking (SDN) is such a kind of network by separating the network’s control
logic from the routers and switches. This separation makes it easier to introduce
new abstractions in networking and simplifies network management. With proper
software, the concept of SDN can be implemented to devices.

OpenDaylight and OpenStack can be integrated to support this idea, by
connecting the management plane, the control plane and the data plane with one
another, via OpenFlow API. In this case, a manager can monitor the network
from the manage plane and the operator can simply set parameters in a template
designed at the OpenStack side. Besides, the control plane would centralize the
intelligent part and leave the data plane with the forwarding part, which makes it
much flexible to keep the network up-to-date. In the data plane, we configure
protocols such as BGP, OSPF, RIP and so on.

In this project, we will implement a VTN Automation solution using Openstack
and OpenDaylight SDN Controller. Specifically, the following will be
implemented:

e Implement OpenStack.
e Implement OpenDaylight SDN Controller
e Integrate OpenStack and ODL.

Through this project, we will get to know about what SDN is and the leading
controller OpenDaylight as well as the OpenFlow specifications. Besides, a
thorough understanding and application of OpenStack are also expected from
the project. The project would demonstrate the process of OpenDaylight and
OpenStack integration as well as VTN automation as an example.

Acknowledgement

With the completion of my project, I'd like express my special thanks to Mr.
Gurpreet Nanda, who has been guiding me through the project. His patient and
skillful guidance has helped me so much and been significant to me.

| also want to give my sincere gratitude towards Mr. Shahnawaz Mir, who has
offered me a lot of help during my lab setup. Besides, | sincerely appreciate the
help from Mr. Mike Macgregor and Ms. Sharon Gannon who have been helping
me through the MINT program.

Last but not least, I'd like to thank my families who have been supporting me
through the program.

1. Introduction

1.1 Problem Description

In conventional network structure, when it is carried out into the practical world, if a
new request is raised, it could be considerably trivet to reconfigure or change the
corresponding devices, such as routers, switches, firewalls and so on. With the
dramatical change of the internetworking and mobile networking environment, the
high stability and idealistic functionality are no longer satisfying, the flexibility and
agility are far more critical instead. What SDN does is to separate the control function
from forwarding devices, and leave the control function totally to the centralized
controller. Therefore, the control plane is independent from the low layer devices,
and becomes irrelevant to the variety of the switches, routers, firewalls and all other
devices. On the other hand, the access to control is open, and hereby the users can
define whatever routing protocols and transmission policies as they want, which
makes the network much more flexible and intelligent. In a software defined network,
there is no need to reconfigure each and every node in the network over and over
again. Since the devices in the same network is connected to each other
automatically, the user only needs to define policies when using it. If the protocols
built in the routers are no longer desirable, they could be modified by programming,
to achieve better data transmission. Another advantage of SDN is that it could easily
adjust flow to widen the streaming media, which is to say, the bandwidth and flow is
manageable in SDN.

Traditionally, investment in network systems and operating expenses are huge
because the network is configured as a silo for each department and system. And
hereby, various network appliances must be installed for each tenant and cannot be
shared with others. This leads to a heavy burden to design, implement and operate
the entire network. However, VTN, the Virtual Tenant Network is an appliance, which
can provide various virtual tenant networks on the SDN controller. The uniqueness of
VTN is that it has a logical abstraction plane, which enables the complete separation
of logical plane from physical plane. Users can design and deploy any desired
network not necessarily knowing the physical network topology or bandwidth
Restrictions.

However, VTN is not easy to implement with traditional tools as it is basically
virtualized and requires significant performance which can hereby simulate the real
world. With the limitations of traditional networks and development tools, we, in this
project, try to set out from SDN, using VTN tools, to practice a use case.

1.2 Proposed Solution

SDN, the Software Defined Network, is a novel network framework. It is a method of
network virtualization. Its core technique is to achieve flexibility in flow control
through separating the control plane from data plane, which leaves the data plane
only forwarding functions and the control functions are centralized to the control
plane. This feature makes the network dramatically intelligent as a tunnel.

VTN can be created and managed by OpenDayLight, ODL has a whole system of
modular, pluggable and flexible platform. The platform is on basis of Java
development and can operate on any Java supported platforms theoretically. ODL
controller uses OSGI framework and SGI framework to be a Java-oriented dynamic
modeling system. Bundles don’t need redirection and can be installed, started,
updated and uninstalled remotely. It can flexibly load codes and functions via
bundles to achieve function separation and resolve the module extension issue, as
well as collaborating the modules.

ODL platform introduced SAL and its northbound modules. They provide low layer
service in the form of plug-ins. The northbound plug-ins connect various protocols
and ignore the differences among the various protocols, providing consistent
services for upper functional modules. This could separate the upper modules with
lower modules. SAL could adapt different devices automatically and hereby the
developers can concentrate on developing the applications. Besides, the ODL
controller uses Infinispan, which is a highly scalable, reliable and key-value storage
distributed data structure network platform, in order to achieve data storage, look-up
and monitoring, to further achieve the clustering of controllers. In a word,
OpenDayLight as a controller, is designed on basis of the following principles.
Runtime Modularity and Extensibility, Multiprotocol Southbound, Service Abstraction
Layer, Open Extensible Northbound API, Support for Multitenancy/Slicing and
consistent Clustering.

Another significant application in SDN development is OpenStack. OpenStack is a
community and a project. It's also an open source software devoted to operating
virtual computing or cloud storage of enterprises. OpenStack provides users with
open source softwares and establishing public cloud as well as private cloud. Public
cloud requires its enterprise trust its statistics with the cloud provider's data centre,
which may probably cause data loss with environmental or personnel factors. Many
enterprises choose to establish private cloud within a firewall. This leaves more
space to the enterprise in aspects of security, and data backup. Back to OpenStack,
it provides services including computing, object storage, image, networking and so
on. OpenStack make a platform available to users to manage cloud. It can initiate
an instance for a user or a group of users. It can also configure a network where

there are more than one instance within each and every instance or project. The
services provided by OpenStack can be installed independently corresponding to
the user’s requirements.

OpenStack’s core service modules are Nova (computing), Neutron (network),
Cinder (block storage), Swift (object storage), Glance (image management),
Horizon (the management page), Keystone (access), Heat (function), Ceilometer
(monitor). These modules can create an IAAS cloud platform. Neutron in
OpenStack itself is an SDN networking control system. It has the ability to have
users build their networks and control the flow. It can also connect the server and
devices to one or more networks. OpenStack also leaves APIs to integrate other
controllers like OpenDayLight to achieve a software defined network.

The concept of SDN can be used to resolve the problems in traditional networks
and carried out to create more flexible networks. Tools like OpenDaylight and
OpenStack can be applied to achieve such networks. In this project, we establish a
network with the concept of SDN, and configure it with related tools mentioned
above, to demonstrate a use case of SDN, and explore the application of
OpenDaylight and OpenStack.

2. Scope and Preparation

2.1 Technology Description

First of all, | studied the paper of a comprehensive survey.
(https://drive.google.com/drive/u/1/folders/0B4M8Xz4BRpradzFpaDduRzdL RXc)

° The concept of SDN

In traditional IP networks, the control and data planes are tightly coupled,
embedded in the same networking devices, and the whole structure is highly
decentralized. While in Software Defined Network, the control and data planes
are decoupled. The separation of the control plane and the data plane can be
realized by means of a well-defined programming interface between the
switches and the SDN controller through API.

SDN can be defined as a network architecture with four pillars:
a. The control and data planes are decoupled.
b. Forwarding decisions are flow-based, instead of destination-based.
c. Control logic is moved to an external entity, the so-called SDN controller or
Network Operating System (NOS).
d. The network is programmable through software applications running on top

https://drive.google.com/drive/u/1/folders/0B4M8Xz4BRpradzFpaDduRzdLRXc

of the NOS that interacts with the underlying data plane devices.

An SDN can be defined by three fundamental abstractions:

a. Forwarding. Ideally, the forwarding abstraction should allow any for- warding
behavior desired by the network application (the control program) while hiding
details of the underlying hardware, always by Openflow.

b. Distribution. It should shield SDN applications from the vagaries of distributed
state, making the distributed control problem a logically centralized one, by a
common distribution layer.

c. Specification, which means it allows a network application to express the
desired network behavior without being responsible for implementing that
behavior itself. By virtualization solutions and programming languages.

SDN infrastructures

An SDN network infrastructure (from abstract to detail)

Network Application(s)
Open northbound API
Contrgllgr .Platliorm_ |

@ Open siouthbnuréd API

Network Infrastructure

Figure 1. Abstract infrastructure
(quoted from software-defined networking: a comprehensive survey)

Net App 1 Net App 2 ve e Net App n

j:[_ Abstract network vlews ﬁ

Y

- "'@..............
|,]
= i? @ Open nurthbnundAPr

Network Abstractions (e.g., topology abstraction)
@ .(:)r‘“ Global network view
[Netwnrk Dperatlng System (SDN nuntrullers}

‘Open’ southbnund API

Data Plane Control plane

Natwur;c_ Infrastructure

Figure 2. Detailed infrastructure (a)
(quoted from software-defined networking: a comprehensive survey)

= Network Applications
£ MAC Routing g Load
E Learning Algorithms Dataction Balancer
= System
= =
3| SDN controller
“_E_ ¥ ¥ * ¥ ¥
@
E
]
/4]

Figure 3. Detailed infrastructure (b)
(quoted from software-defined networking: a comprehensive survey)

Management plane Network Applications Network Applications

%
Programming Languages E %‘ ees gg 3 %’
St App NeLAR. Language-based Virtualization 3 5 -
e B @
= y 4
. [Northbound Interface] 2 Network Operating
_ I '-lyu | Network Operating System | @ System (NOS) and
= . @ | NetworkHypewisors
|,. Network Hypervisor 5 B '
T s { SDUthh d Itrf] J 2 i b o s et &
ound Interface Py
< — Network Infrastructure | B STEEE - SR
(a) (b) (c)

Figure 4. Key building blocks of an SDN infrastructure using a bottom-up, layered approach
(quoted from software-defined networking: a comprehensive survey)

layer 1—infrastructure: switches, routers and etc.

layer 2—southbound interface: Openflow

layer 3—network hypervisor: Hypervisors enable distinct virtual machines to

share the same hardware resources.

layer 4—network operating system (controller): OpenDaylight.

layer 5—northbound interface: OpenDaylight defines its own API.

layer 6—language-based virtualization.

layer 7—programming language.

layer 8—network applications: implement the control-logic that will be translated
into commands to be installed in the data plane.

Then let’s take a look at software defined network applications in the practical
world.

10

REST Applications
_ - SDN Applications
— ¥ — 3
REST API @ REST API | = Open "Northbound” APls
I)| -
=
=)
2 S
| G| ContrlPans
z 'E
[= a
< |G 5
&)
sFlow € Opensicw -)
A T T / I * Open "“Southbound” APls
: /,EL\ ¢ Data Plane

| | E | ~ Hosts

Figure 5. quoted from http://blog.sflow.com/2014/01/large-flow-marking-using-hybrid-openflow.html

The diagram above shows a practical application of SDN using openflow controller.
The control plane communicated with data plane through southbound APIs, and
communicates with upper layer applications through northbound APlIs. The hosts
can be virtual machines within the network range.

Openflow 1.x

Applicati
PP Controller

nmanager

5

| A {
IDS/APSFW
1= i

Load Balancer

11§
IDSAPS/TFW

-
| N
Aggresate

el

Figure 6. quoted from https://www.sdxcentral.com/products/centec-load-balance/

ACOrss

Sometimes, when there is a higher demand towards flow control or there are too

11

https://www.sdxcentral.com/products/centec-load-balance/

many devices in the same network, we can add a load balancer to the data plane as
above. The load balancer can be configured to have access to the internet.

We can conclude a software-defined network as the following picture.

AFPPLICATION LAYER | |
Business Applications

CONTROL LAYER

MNetwork

Setvices MNetwork Servicas .

INFRASTRUCTURE
LAYER

Figure 7. quoted from
https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/

e Difference brought by SDN

Let’s first take a look at the former networks we used.

2 M\

Figure 8.
The communication between devices is mainly through protocols, including
switching, routing and security, such as OSPF, BGP, MPLS, MSTP, etc. It’s achieved by
neighborhood establishment, sharing information and path selection. This is the logic
foundation for many protocols. Besides, it is distributed structure that is used by the

12

majority of the networks. Devices transfer local message by overlaying. And then
establish database and select the best path by path selection algorithms, the most
typical one of which is SPF. During this, each device does its calculation separately
and they each have a individual “brain” and forwarding hardwares. So the protocols
is like the language for human being, which is the foundation of internetworking.
What if a change occurs in the network? How could the devices in the network
communicate with each other? When there is a turbulence in the network, the
devices will overlay the message down to the next devices then delete the

message of the compromised path. It is possible that there would be redundant
notice during the convergence. The process is shown as follows.

Figure 9.
The rising of cloud computing, big data and mobile internet has brought the doubling
of flow, leading to the expansion of low layer networks with growing pressure. The
convergence time of the network increases with the expanding of the network.
Among all the typical networks, data center and mobile communication networks are
under extreme pressure and consequently, a revolution is necessary. Besides, the
bottleneck has been exposed in distributed structures.

To find a solution, let’s first think about how to resolve the bandwidth assignment
Issue. Flow control is achieved by Qos and etc, generally. Set the priority by
classification and labeling. On basis of the various requirements, assign
corresponding bandwidth to the service. The quality of flow control directly
influence the bandwidth utilization and influence the customer’s investment benefit.
Flow control can not only work on switches, routers and other products that support
Qos and also on professional flow control products like load balancers. However, no
matter how to control the flow, by hardware or software, the process is mostly static
bandwidth management. Based on a specific service requirement, make a
corresponding regulation on the specific path. The strategy was set in advance and is
unable to achieve bandwidth assignment intelligently with response to current
network condition. Another problem in flow control is that, the overall network flow
control is not visible. In regular flow control products and management systems, only
part of the bandwidth assignment of the links and link state monitoring are visible.
However, the overall network flow control visibility is the basis intelligent bandwidth
Assignment. Gradually, an idea was brought up----can we customize the forwarding

13

strategy?

As we all know, the work mode of traditional network devices are fixed. For instance,
switches forward messages according to MAC table and routers forward messages
according to the routing table. Therefore, to make the strategies customized is to
make the devices programmable. What can be possibly programmable? It’s obvious
that the devices like routers and switches cannot be programmable with response to
the requirements.

Right here right now, a brand new idea of networking design rose, software defined
Network. The very first infrastructure of SDN is as follows.

controller
openflow
L 4
., .
Figure 10.

In the picture above, the switches don’t have their own brains. Instead, all that
related to path calculations and security strategies are determined in the controller.
The decisions are passed down to the switches through openflow, and the switches
simply do the forwarding according to flow table. It achieved the separation between
control and forwarding.

A typical example of SDN application is the Google B4 network as the following
picture shows.

14

Quagga
RAP
TE Agent
Paxos

Gateway / TE server

controller

Site A

controller

Figure 11.

Site B

openflow

controller

%

BGP,

N

Site C

This network has fundamentally improved the utilization rate of the WAN links from
the original thirty or forty percent to one hundred percent. Overall, it applies
distributed controllers system and introduces openflow switches to this SDN

network. Quagga is a routing protocol stack, which is used to operate BGP and ISIS

routing protocols. RAP, as the proxy from switches to quagga, is Routing Application
Proxy. For example, when the openflow switches send the link state message to the

controller, controller would call RAP to send the message to the protocol stack.
Paxos is an election machine. It is used to select the master and slave among the

controller cluster. TE agent is used to collect link state and bandwidth information of
data centre and then send it to the gateway from the top layer. The gateway
summarizes the overall information and send it to TE server to make the path
calculation. In return, when TE server completed calculating the paths and

bandwidth assignment, it would send this back to gateway. And it is gateway which
sends this to openflow switches. The route is like the picture below.

Server

Gateway

Controller

Switch

Figure 12.

In conclusion, the major difference between traditional network and SDN is listed as

follows.

15

Traditional

Network Vs SDN
separation Sonroling
between :
controlling and en;ﬁ:::;ﬁnmm
forwarding 9
centralization distribution
programmable unprogrammable
virtualization hardware
open APls not open
Figure 13.
In the aspect of logic structure,
Cli SNMP HTML Gidava/Python
Controller + Controller
- —

Figure 14.

The change brought by SDN has led to a reform in the industry. And they in return, is
pushing SDN moving forward.

16

@

Figure 15.
e The concept of NFV

Let’s go back and take a look at NFV. NFV, network function virtualization, is to
centralize network hardware on a server or platform through virtualization
technologies. On this standardized server or platform, switches, routers, firewalls,
load balancers and security devices can normally function. To be frank, it is to
centralize discret network devices to a large box, as the following picture shows, and
to use each device as plugins.

IR

Figure 16.

17

Even though NFV and SDN are from separate organizations, they share a common
purpose, to make the hardware to be software and virtualized, which makes the
entire network virtualized, cost-saving, movable, scalable and more manageable.

2.2 Solution Description

SDN (Software Defined Network) is a network design concept. As long as the
networking devices can be centralized, is programmable, with the separation
between control plane and data plane (forwarding plane), the network is considered
as a Software Defined Network. Therefore, SDN is not a specific technology or
some protocol. On the other hand, it is an idea and a framework. To push it further,
SDN is even involved with software defined security, software defined storage and
so on. It's fair to say that SDN is a trend that will stimulate the whole industry.

VTN is another trend that can map physical network resources. It can save the
MAC addresses and VLAN IDs corresponding to the ports of the switches from
terminals. The message obtained from terminals will be maintained until the packet
from the terminal flows in. If the terminal is not connected to VTN, the timer will be
triggered and the message will be maintained until the time is out. The vBridge is
able to check the MAC address table. If the destination MAC address is already
learnt, the packet will be forwarded to the corresponding virtual port. If the MAC
address is not learnt yet, flooding it to all ports. Another function of VTN is Flow
Filter Function. Flow Filter can be applied to any port in Vnode with special
matching conditions. One significant advantage of VTN is that it can achieve single
policy virtual network. Users can easily add a SDN controller to the existing VTN
and can cut a SDN controller from the VTN.

For tools, OpenStack as well as OpenDayLight is open to integrate with each other.
In OpenStack, a python daemon is the main process of the OpenStack networking
that typically runs on the controller node. It exposes APIs, to enforce the network
model, and passes the requests to the neutron plugin. So what is plugin? Plugins
can be either core or service. Core plugins implement the “core” Neutron APl — L2
networking and IP address management. Service plugins provide “additional”
services, such as the L3 router, load balancing, VPN, firewall and metering. These
network services can also be provided by the core plugins by realizing the relevant
API extensions. In short, plugins run on the controller node and implement the
networking APIs, which interact with the Neutron server, database and agents.
(quoted from openstack.org) There are also plugin agents which are specific to the
Neutron plugin being used. They run on compute nodes and communicate with the
Neutron plugin to manage virtual switches. These agents are optional in many
deployments and perform local virtual switch configurations on each hypervisor.

18

ML2’s plugins are all core plugins. They are either type drivers or mechanism
drivers. OVS, adrivers from ODL, Cisco, NEC and some others are mechanism
drivers. They respond to actions such as update, establish and delete a network,
subnet or port. Type drivers are flat, VLAN, GRE and VXLAN. They define the L2

type.

In short, the user input message to the networking API via the OpenStack horizon
and then send to Neutron server. Neutron server receive the message and send it
to plugin. Then Neutron server and plugin update their database. Plugin sends the
message to the SDN controller via REST API. OpenDayLight could be the
controller at this point. The controller receive the message and goes through the
southbound plugins or protocols, such as OpenFlow, OVSDB or OF-Config.

Another crucial concept in SDN is Open vSwitch (OVS). In a virtualized platform,
OVS is able to provide layer 2 service for dynamic nodes, as well as controlling the
policies, network segments and flow control in an NFV. OVS supports OpenFlow.
So every controller which supports OpenFlow can use OVS. The following
terminologies are significant in OVS. Bridge, it stands for a ethernet switch. A host
can establish one or more bridges. Port, it's similar to a port of a physical switch.
Each port belongs to a bridge. Interface, it connects to the port. Usually, one port
corresponds to one interface, monogally. One port can correspond to more than
one interfaces only when the port is configured as the bond mode. Controller, one
OVS can concurrently be managed by one or more controllers. Datapath, it's
responsible to exchange data, which is to say matching the packets received from
the receive port in the flow table and performing as what’'s matched. Flow table,
each datapath is related to a flow table. When the datapath receive the data, OVS
will look up the matching flow in flow table and perform the corresponding actions,
forwarding data to another port for example.

To sort out the relationship of OpenDayLight, OpenStack and Openflow, let’s stop
here a little bit. As far as what we have introduced concerned, OpenStack is a
Cloud Management System that provides a uniform API for provisioning Compute,
Network, Storage in a DataCenter. There are different plugins for each of these
areas that can be built into an OpenStack deployment and function underneath.
OpenDayLight is a SDN controller that provisions the network policies as specified
and sends the message to the Hypervisor. As a controller, it also performs the

role of maintaining those policies in spite of the changes happening in the network,
recomputing policies and loading to Hypervisors. OpenFlow is the protocol used to
program the Hypervisor vSwitches. It's mostly about which traffic to send where and
so on. And it's the protocol through which an SDN controller communicates with the
Hypervisors. OpenvSwitch is the implementation of a virtual switch in the
Hypervisor that exposes OpenFlow protocol for flow message and uses the
message through this protocol and make packet forwarding decisions. For

19

virtualization, you need some service to handle bridging between your instances.
OpenvSwitch can handle this. OpenFlow is a protocol standard for SDN which
facilitates remote management of switches from a centralized control plane with a
wide range of support. OpenDaylight is an SDN controller that lets the user to
programmably manage OpenFlow capable switches. It is a huge project due to the
scale of collaboration with a large set of features and compatible northbound
applications. Alternatives to ODL include Floodlight, RYU SDN framework, NOX,
POX and so on. OpenStack is a cloud orchestration platform that can work
independently without any of these technologies. However, it can also use all the
above mentioned to provide the user more programmatic control over the
Infrastructure and hence improve the scope for automation. Services like AWS,
Google cloud platform, Azure let you orchestrate cloud networks without using
OpenStack. So, such services could be considered as alternatives to OpenStack.

In this project, we use VTN to build a software defined network. The VMs would talk
to each other via IP addressing. The controller will be configured on both
OpenDaylight and OpenStack, which eventually would be integrated with each
other. With application of SDN, the controller will distribute the network whenever
there is a new VM is added or changed, and configure the protocols. This process
will be achieved by launching instances in OpenStack.

3. Solution Infrastructure Setup
3.1 Hardware Preparation

e VPN

This is to make it possible to connect the server in the lab remotely. The platform we
use in this lab is Mac OS. To connect to the MINT lab network, we need to install the
VPN plugin, CiscolPSec on the laptop. And then create user account through it. The
details are demonstrated as follows.

20

& £ HH Network Q

Location: Automatic

Wi-Fi —_—
o Connected - Status: Connected
VPN (C IPSec) Connect Time: 0:00:12
N (Ci...o ec .
s AN IP Address: 10.4.31.12
® ?J..Lf?-mﬁif'ﬁfh‘ g
@ Thunde...t Bridge Server Address: 129.128.116.162

Account Name: bingzhu

Password:

Authentication Settings...

Disconnect

Show VPN status in menu bar Advanced... 7

Assist Me...

Figure 17.
e QOperating systems

We need to configure a Windows virtual machine on the laptop which is most
compatible to the platform for the remote server. And also, vSphere has no release
by June, 2016 compatible on Mac OS. And the similar VMware has limit functions on
Mac Os. To do this, a Windows 10 desktop is installed though Parallel Desktop as
follows.

21

Control Center &=

Windows 10

O | &

Windows 10 - Hardware

L= S @

General Options Hardware Security Backup Dev Settings Business

Q. Search

E Graphics

@;i Mouse & Keyboard

f L‘!LJ Shared Printers

‘i‘ Sound
et
E_ia USB & Bluetooth

Hard Disk 1

L

+

As you see, to give the Windows 10 access to the MINT lab network as well as the
internet, we configure the guest operating system to share the same network with

the host Mac OS.

e Server

configure

To be able to change the settings on this page, resume the virtual machine and then shut it down.

Source: Shared Network +

Network Conditioner
Profile: Custom o~

Inbound Outbound
Bandwidth: unlimited Bandwidth: uniimited
Packet Loss: 0% Packet Loss: 0%
Delay: 0 ms Delay: O0ms

Configure...

Advanced Settings

Restore Defaults

Figure 18.

The network function virtualization is done on a remote server, located on the MINT
lab. The basic parameters and information are as follows.
We use VMware vSphere client as the platform to manage and configure the remote

server. We need to install the VMware vSphere client on Windows and then

the remote server.

Log in to the server as the following shows. The IP address of the server is

10.3.32.112.

22

é‘;' VMware vSphere Client >

vmware

VMware vSphere

Client

|_§_§| All vSphere features introduced in vSphere 5.5 and beyond are
available only through the vSphere Web Client. The traditional
wSphere Client will continue to operate, supparting the same
feature set as vSphere 5.0,

To directly manage a single host, enter the IP address or host name.
To manage multiple hosts, enter the IP address or name of a
vCenter Server.

IP address [Mame: |1D.3.32. 112 ﬂ

User name: Iroot

Password; I**********‘

[T Use Windows session credentials

Login

Figure 19.

The related parameters are as follows.

23

@ 10.3.32.112 - vSphere Client - O X

File Edit View Inventory Administration Plug-ins Help

|Ea Home | g5 Inventory b@ Inventary

& &
6.0.0, 3029758 | Evaluation (Expired)
ummary ' Virtual Machines ' Res ocation | Performan
close tab [X] %
What is a Host?
A host is a computer that uses virtualization software, such Virtual Machines A
as ESX or ESXI, to run virtual machines. Hosts provide the
CPU and memory resources that virtual machines use and
give virtual machines access to storage and network
connectivity.
You can add a virtual machine to a host by creating a new Host
one or by deploying a virtual appliance.
The easiest way to add a virtual machine is to deploy a
virtual appliance. A virtual appliance is a pre-built virtual
machine with an operating system and software already
installed. A new virtual machine will need an operating
system installed on it, such as Windows or Linux. 1
viphere Client
Basic Tasks
' Create a new virtual machine
Explore Further
=| Learn about vSphere
Manage multiple hosts, eliminate downtime, load
balance your datacenter with viMotion, and more
=| Evaluate vSphere v

Recent Tasks HWame, Target or Status contains: = I Clear X

Name Target Status Details | Tnitiated by | Requested Start Time | Start Time = | Completed Time i

Figure 20.

24

() 10.3.32.112 - vSphere Client = m} X

File Edit View Inventory Administration Plug-ins Help

E |E§ Home b g Inventory DEﬂ Inventary

+
g &
B 1w.332.112 VMHOST7 VMware ESXi, 6.0.0, 3029758 | Evaluation (Expired)
¢ achines | Resource

General Resources

Manufacturer: Dell Inc. CPU usage: 114 MHz Capadty

Model: PowerEdge R420 : 8x 2,399 GHz

CPU Cores: 8 CPUs x 2.399 GHz Memory usage: 2339.00 MB Capacity

Processor Type: Intel(R) Xeon(R) CPU ES-2407] 65490.48 MB

v2 @ 2.40GHz
License: Evaluation Mode - Storage v | Drive Type | Capacity |
8 datastorel Non-530 924.00 GB 41t

Processor Sockets: 2

Cores per Socket: 4 < %

Logical Processors: 8 Metwork i Type

Hyperthreading: Inactive 8 VMNetwork Standard port group

Humber of NICs: 8 ® DataPlaneNetwo... Standard port group

State: Connected % Management Plane.. Standard port group

Virtual Machines and Templates: 4 - =

vMotion Enabled: M/A

VMware EVC Mode: Disabled Fault Tolerance

vSphere HA State @ Nia Fault Tolerance version: 6.0.0-6.0.0-6.0.0

Host Configured for FT: MN/A

Refresh Virtual Machine Counts

Active Tasks: Total Primary VYMs: 1]

Host Profile: N/A Powered On Primary ¥Ms: a

Image Profile: ESXi-6.0.0-20150902001-st... Total Secondary VMs: 1]

Profie Compliance: @ nn Powered On Secondary VMs: 0

DirectPath 1jO: Supported L3

Host [}

Commands Manage this host through VMware vCenter.

ﬁi}' New Virtual Machine

@' New Resource Pool v
Recent Tasks Hame, Target er Status contains: - Clear
Mame | Target | Status | Details | Initiasted by | Requested Start Time | Start Time =~ | Completed Time |

Figure 21.

VHMHOST7 VMware ESXi, 6.0.0, 3029758 | Evaluation (Expired)

| G-e&i-rig';':“'-t'értéd 5m5uﬁ1m5r-y'r T e Resource Allocation Was it i a '"Cb'n-f'i'g'l-.ir-a"'c'l-bh “Users.| Events | Permissions

Py Memory
Total Capacity: 15864 MHz Total Capacity: 59858 MB
Reserved Capacity: 0 MHz Reserved Capacity: 0MB
Available Capacity: 15864 MHz Available Capacity: 59858 MB

View: |CPU Memarﬂ Storagﬂ

Figure 22.
3.2 Software Preparation

® Local virtualization tools

The tools we need to prepare and upload to the server are Ubuntu 16.04 server
installation package, VM tools and related linux tools.

e Software installation tools

25

In this lab, we need to install OpenDaylight and OpenStack on several nodes.

Therefore, installation packages are needed and installation tools as well as internet

aCCess are necessary.

For OpenDayLlight, we choose OpenDayLight Beryllium SR2 for Ubuntu 16.04 LTS, the

most updated version by August, 2016.
For OpenStack, we choose OpenStack Mitaka for Ubuntu 16.04 LTS, the most
updated version by October, 2016.

To set up the remote server, | followed the instructions and set the parameters as
follows. It ‘s an ESXi 6 version server.

Type Linux
Operating systems Ubuntu (64 bits)

Sockets in total 8 cores

Virtual sockets for each at least 2 cores
Memory 4 GB

Network Interface Cards 6 (located in the back rack physically)
Disk size Above 20 GB
Table 1.

Then we need to upload packages and files to the datastore in the server, which
includes virtual drives such as floppy drives that can be inserted to or ejected from
the VMs that we are going to configure.

The overall information of the server is as follows.

26

@ 10.3.32.112 roo

{:‘-‘W:r\- e wan':lrmm ,w.ﬁ-g-cumnFE‘}

reate a new virty ine
Name Status
& Mew Virtual Machine Powered Off
/& OpenStack_cpt Powered Off
& OpenStack_ctl Powered OFff
& OpenStack_neutron Powered OFff
State: Connected MEMORY & Datastore Free Space Capacity

datastorel 418.6 GB 824 GB

CPU: 18 MHz { 8 x 2.40 GHz
Memory: 2.3 GB [64.0 GB

Figure 23.

27

VMHOST7 VMware ESXi, 6.0.0, 3029758 | Evaluation (Expired)

| Getting Started

EMUTEN Virtual Machines | Resource Allocation | Performance | Configurstion | Users | Events | Permissions

General Resources
Manufacturer: Dell Inc. CPU usage: 54 MHz Capadty
Model: PowerEdge R420 8x 2,399 GHz
CPU Cores: 8 CPUs x 2,399 GHz Memory usage: 2362.00 MB Capacity
Processor Type: Intel(R) ¥eon{R) CPU E5-2407 [55490,43 MB
w2 @ 2.40GHz
License: Evaluation Mode - Storage - | Drive Type | Capadity |
ﬂ datastorel Non-55D 524,00 GB 41
Processor Sockets: 2
Cores per Socket: 4 < *
Logical Processors: 8 MNetwork | Type
Hyperthreading: Inactive B vMNetwork Standard port group
Mumber of NICs: 6 %8 DataFlaneNetwo.. Standard port group
State: Connected %8 Management Plane.. Standard port group
Virtual Machines and Templates: 4 " o
vMotion Enabled: MNJA
VMware EVC Mode: Disabled e T ol
v5phere HA State @ nja Fault Tolerance Version: 6.0.0-6.0.0-6.0.0
Host Configured for FT: A . ;
Refresh Virtual Machine Counts
TPl g Total Primary YMs: 0
Host Profie: NJA Powered On Primary YMs: o]
Image Profile: ESXi-6.0.0-2015090200 1-st... Total Secondary YMs: 0
Profile Compliance: @ NA Powered On Secondary YMs: 0
DirectPath I,/0: Supported 2
Host Management
| o ————— A I
Figure 24.
@ Datastore Browser - [datastorel] - O X
-~ i
B B8 8B X @
Folders |5eard'1 | [datastorel] /
m Name Size | Type | Path | Modit
ﬂ OpenStack_neutron ﬁ OpenStack_neutron Folder [datastorel] OpenStack_neutron
- wmx B wmx Faolder [datastore1] VX
ﬁ TestyM fﬂ Test™M Falder [datastore1] TestvM
i p— £ sddsf Folder [datastore1] sddsf
ﬁ OpenDaylight_Controller i .
ﬁ opendaylight ﬂ OpenDaylight_Controller Folder [datastorel] OpenDaylight_Controller
AE] New Virtual Machine] opendaylight Folder [datastore1] opendaylight
ﬁ OpenStack_cpt @ New Virtual Machine Folder [datastorel] New Virtual Machine
C] OpenStack_ct m OpenStack_opt Folder [datastorel] OpenStad oot
t] test ﬁ OpenStack_d Folder [datastorel] OpensStack o
ﬁ test Folder [datastored] test
< >
Figure 25.

We also need to install VM tools to improve operation towards the virtual machines.
When the VM tools are successfully installed, there would be icon indicating the VM

28

tools are “running” or “not running”in green.

Openstack_neutron

| Getting Started JEMULES | ! Resource Allocation | Perfarmance

General

Guest O5:

VM Version:

CPU:

Memory:

Memory Overhead:

ViMware Tools:
IF Addresses:

Ubuntu Linux {f4-bit)
13

2vCPU

8192 MB

& Mot running {Current)

3.2.1 Virtual machines Setup

We need to add corresponding amount of virtual machines to the server, to the

DMS Mame:

State: Powered Off

Host: VMHOSTT

Active Tasks:

vSphere HA Protection: (& Nja B
Figure 26.

network diagram. For each Ubuntu server, the parameters are as follows. (disk size is

recommended as 100 GB)

Hardware | Summary

il Memory 8192 MB

Il crus 2

Video card Video card

= WMCI device Deprecated

9 SCSI controller 0 LSI Logic Parallel
£y co/ovD drive 1 Client Device

= Hard disk1 Virtual Disk

g Flappy drive 1 Client Device

Ef WNetwork adapter1 Management Plane Me...
B Metwork adapter2 Data Plane Network

Figure 27.

29

3.2.2 Operating systems Installation

We use Ubuntu server 16.04 LTS and Ubuntu server 14.04 LTS in this lab. The
parameters we use in the process of installation is as follows.

Create a usable image. | use a “.iso” file in this lab
In BIOS, select English and enter

Choose Ubuntu Server and enter

Select English and Canada in the following pages
Choose “no” to detection keyboard layout

Select English in the following pages and enter
Set hostname and configure network manually
Set the username and password

Choose “no” to encrypt the home directory
Choose “yes” to the time zone correct inquiry
Select “Guided-use entire disk and set up LVM”
Choose “yes” to write changes to disk and configure LVM
Select “no automatic updates”

Choose “yes” to the GRUB boot loader

Finish installation

3.2.3 Software Installation

According to the requirements in this lab, we need to install OpenDaylight and
OpensStack nodes on VMs separately. The configuration is as follows. This part of
configuration will be demonstrated in the next chapter with a use case.

3.2.4 Network Setup

Overall, we need two other networks apart from the existing one which is used to
manage the virtual machines. The two networks are shown as follows.

30

View: |vSphere Standard Switch

Metworking Refresh Add Metworking... Properties...
Standard Switch: vSwitchi Remove... Properties...
Virbual Machine Port Group ey - Py sical Adapters
3 WM Network @ o BB vmnicd 1000 Full | &3

VMkernel Port

L3 Management Network g:u]
vmki : 10.3.32.112
fed0::b2a3:feff:fed3:98ad

Standard Switch: wSwitchl Remove... Properties...
‘irtual Machine Port Group — Phiyzical Adaptars
1 Data Plane Netwark g » EE vmnicl 1
B 4 virtual machine(s)
OpenStack_cpt Eh
OpenStack_ctl h
OpenStack_neutron &h
Mew Yirtual Machine Hh
Standard Switch: vSwitch2 Remove... Properties...
Virbuz| Machine Port Group - Phiysical Adzpters
[1 Management Plane Network i w B vmnic2 (o
El |4 virtual machine(s)
OpenStack_cpt i5h
OpenStack_ctl &h
OpenStack_neutron Eh
Mew Virtual Machine h
Figure 28.

4. Solution Setup

4.1 Lab Setup

In this stage, we need to firstly decide on what network topology is going to be
configured. Secondly, we need to design the controller’s networks and all the other
nodes’ networks, including ones that they use to communicate with each other.
Thirdly, we need to install all the features that the OpenDaylight controller requires,

31

which is necessary that we figure out all the features’ functionalities. Last but not
least, we need to integrate the controller with all the other nodes

4.1.1 Lab Network Topology

ethl
eth0 10.0.0.x
Management network:
10.0.0.0/24
gateway | OpenDayLight |
. _1 eth eth0 ethd eth(t
] 10.0.0.11 10.0.0.31 10.0.0.21 10.0.0.32
eth1
10.0.0.1 I |
controller compute neutron compute
external
Data tunnel network
nelvor ‘ 10.0.1.0124
eth1 eth1 eth1
10.0.1.31 10.0.1.21 10.0.1.32

4.1.2 OpenDayLight features Setup

Figure 29. Lab Network Diagram

Before we install OpenDaylight on the Ubuntu server, several things need to be

done.

A few tools need to be installed first: Maven, Git,0SGi, JAVA interfaces, and REST

APls.

As for maven, OpenDaylight uses Apache Maven for building all projects. We need to
install 3.3.1 or later versions. OpenDayLight maintains all its codes in Git repositories.
A Java 7 or later releases is needed for OpenDayLight installation.

In this project, we choose OpenDayLight Beryllium SR2 as the controller in the
network. The hostname of this VM is ubuntuod/sdnadmin, username is sdnadmin,

password is sdnlabs#112

The following features are necessary and needs to be installed in OpenDayLight.

32

Features Karaf features name
L2SWITCH odl-I2switch-switch-ui
OF-CONFIG odl-of-config-rest
PCEP odl-bgpcep-pcep
OpenFLow Flow Programming odl-openflowplugin-flow-services-ui
OVSDB Southbound odl-ovsdb-southbound-impl-ui
OVSDB HWVTEP Southbound odl-ovsdb-hwvtepsouthbound-ui
OVSDB NetVirt SFC odl-ovsdb-sfc-ui
OpenFlow Table Type Patterns odlI-ttp-all
DLUX odl-dlux-all
centinel odl-centinel-all
REST API odl-restconf
MD-SAL odl-mdsal-clustering

Table 2.

The following shows the successful installation of OpenDayLight and karaf.

root@ubuntu:shomessdnadminf cd distribution—karaf-0.4.2-Beryllium—-5R2
root@ubuntu: shomesdnadminsdistribution—karaf-0.4.2-Beryllium—SR2H#

rootBubuntu : shomessdnadminsdistribution—karaf-0.4.2-Beryllium-5SR2# .- bin- karaf
fkaraf : JAVA_HOME not set: resulis may vary

{tab*' for a list of available commands
nd "[emd]l —help’ for help on a specific command.
it '"<ctrl-d>' or type 'system:shutdown’ or 'logout’ to shutdown Openbaylight.

ser@ >

Figure 30.

The following shows the installation of OpenDayLight features.

33

<tab>" for a list of available commands
nd '[cmd]l —help' for help on a specific command.
it "<ctrl-d>’' or type 'system:shutdown' or 'logout’ to shutdown OpenDaylight.

@ >

iC] »feature:install odl-1Z2suitch-switch-ui odl-of —config-rest odl-bgpcep-pcep odl
openf louplugin-f low-service-ui odl-mdsal-clustering odl-restconf odl-centinel-all odl-dlux-all odl-
tp-all odl-ovsdb-sfc-ui odl-ovsdb-hwytepsouthbound-ui odl-ovsdb-southbound-impl-ui

Figure 31.

Keep this OpenDayLight controller on and continue to configure OpenStack nodes.

4.1.3 OpenStack nodes Setup

The OpenStack project is an open source cloud computing platform that supports
all types of cloud environment. It provides an Infrastructure-as-a-Service (laas)
solution through a variety of complemental services. An laas is a provisioning
model in which an organization outsources physical components of a data centre,
such as storage, hardware, servers, and networking components.

Basically, a completed OpenStack network requires at least two nodes, one
controller node for identifying service, image service, management portion of
computing and SQL database and one compute node for hypervisor portion of
computing. Besides, block node is an optional node. An example architecture is as
follows.

34

Hardware Requirements

' Y
Controller Node

'd ™

Compute Node 1

) ()

2-4+ 8+ GB
CPU RAM

100 GB 2
Storage NIC
. S

100+ GB 2
Storage NIC
. J

fdevisdb

T o mm mm mm mm m mm ——

o ——

Object Storage Node 1 : ' Object Storage Node 2 |
12 seE)} | 12 4GB |,

CPU RAM : : CPU RAM :
100+ GB 1 | [100+GB 1 :

[Storage [NIC] Rl [Storage [NIC J :
15 :

Figure 32. Example architecture

oy

Block Storage Node 1

1-2 4GB
CPU RAM
1
NIC

fdev/sdb
fdevisdc

e ——

100+ GB
Storage

(quoted from http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html)

There is point that needs to be clear. OpenStack provides several services and
some of the service has its nickname which sometimes the nodes in the network
could also be called like. The following table shows the services and their

nicknames.
Service Project name
Dashboard Horizon
Compute Nova
Networking Neutron
Object Storage Swift
Block Storage Cinder
Identity service Keystone
Image service Glance
Telemetry Ceilometer

35

http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html

Orchestration Heat

Table 3.

We will start to configure network when we finished configuring these nodes.

° Controller node

In order to demonstrate the configuration processes clearly, | create the following

flow chart.
il b
r ~ install
create database components i
L i N y 1.'.
L]
'L'l.
create A [configure Apache) '
administration hitp server
token
L L ’
------------------------------------ identity service
authentication
' i b
E token J create service
entity and API
r % -
endpoint URL \ endpoints /
b y ”~ - - !
create domain, E
- - \ project, users, A
|der|E|t§,f API i roles JNE.
1 version .
{ create database] =
install l . :
|
components | image service
I

create service
credentials

create database

create service
credentials

install
components

create service
APl endpoints

create database

{ ~SENE-NENE SO LR S PO PSR B

create service
credentials

configure
metadata agent

network option 2

configure
compute

 FUSLUE BN R SHETNCT PADE: LAEREE

install
components

create database

create service
credentials

install
components

create service
API endpoints

configure
compute

S0 PSSR RIEETC SEENROR (rSRERGLER

create service
credentials

create service
APl endpoints

install
components

| SCEELFCFCU G N

compute service

networking
service

dashboard

block storage
service

object storage
service

37

Figure 33.

The following is the user identifications and passwords used in each of the service.
The services and features need to be configured one by one. When it comes to
systematically configuration, it requires going into the configuration file to correct or
add each and every options and commands. The operation is on the linux
operating system and all the commands should be in the console.

Service or database User ID and password
MariaDB root / sdnlabs#112
Message queue Openstack user / RABBIT_PASS
identify Database keystone / KEYSTONE_DBPASS
Temporary admin_token ca7eb37670a0352ad2a0

networking admin / sdnlabs#112
image GLANCE_DBPASS
glance sdnlabs#112

Table 4.

Here are the issues | recorded during configuration. Since the OpenStack Mitaka
version is the newest release, there are several issues in the documentation from
the official website. The following issue records have also been provided by the
author to the website.

issue reason solution

Cannot create service entity and | The keystone/keystone.conf | Correct the mistaken line and

API endpoints (HTTP 500) file has wrong typing comment those not in use
HTTP 404 Only restart the apache2 Reboot the operating system
server as suggested in the to make it get the
documentation is not enough configuration active
Command not found in There are several commands | Type the command:apt-get
OpenStack which only active in install python-openstackclient

OpenStack when activated

Cannot verify operation as the Service not activated Service apache? restart
admin user (HTTP 5000)

There’s no “database” section in | It's normal but ignored by the | Add this part manually to the

38

/etc/nova/nova.conf.file website as of October file

Cannot connect to The OS is a server version Open the browser in terminal
http://controller horizon and the browser opened is by the command: w3m
the host’s <http....>
Table 5.

Services configured on controller node requires configuration in each file. For nova
service (compute service), /etc/nova/nova.conf needs to be edited as follows. The
configuration should includes the proxies, tokens the service use to communicate
with other nodes, as well as other supporting services it may require.

GNU nano 2.2.6 File: retc/novarsnova.conf

[databasel
onnection = mysql+pymysql .~ nova:NOUf_DBPASSE@control ler/nova

[ozlo_messaging_rabbitl
rabhit_host = controller
rabbit_userid = openstack
rabbit_password = RABBIT_PASS

[keystone_authtokenl

uth_uri = http:~ - controller:5000
uth_url http: . scontroller:35357
emcached_serwvers = controller:11211
uth_type = password

ro ject_domain_name = default
1=er_domain_name = default

pro ject_name = service

ISEFTIAME = NOUA

password = sdnlabs#llZ

[uncl]
wncserver_listen = Smy_ip
wncserver_proxyclient_address = Smy_ip

[glancel
gapi_servers = http:-/controller:9292

[oslo_concurrencyl
lock_path = rvar~libsnovartmp

[neutronl

irl = http://controller:9696
auth_url = http:- - controller:35357

[Read 76 lines 1
5 Get Help il Uritelut il Read File 4| Prev Page] Cut Text i¥ Cur Pos
R Exit il Justify Where I=s ! Next Page UnCut Text iy To Spell

Figure 34.

39

http://controller/

GNU nano 2.2.6

irl = http:rrcontroller:9696
uth_url = http:s-controller:35357
uth_type = password
pro ject_domain_name = default
1ser_domain_name = default
reqion_name = RegionOne
[pro ject_mame = service
= neutron
password sdnlabs#112

service_metadata_proxy = True

etadata_proxy_shared_secret = sdnlabs#l112

[cinder]
os_region_name = RegionOne

File: retcrnova-nova.conf

[Read 76 lines 1
[Get Help il UriteDut i Read File ¥(Prev Page
] Exit fi] Justify Where Is !l Next Page

Figure 35.

E

Cut Text
UnCut Text

"C
T

Cur Pos
To Spell

For network configuration, the vxlan tunnel should not be enabled until an instance
is brought up. This will be further talked about in the following section. Therefore,
ml2 configuration should be like the following.

40

GNU nano 2.2.6 File: setcsneutronsplugins/mlZ/mlZ_comf .ini

[mlZ_type_wxlanl

From neutron.mlZ

Comma-separated list of <uni_min>:<uni_max> tuples enumerating ranges of
UXLAN UNI IDs that are available for tenant network allocation (list value)

Huni_ranges =
uni_ranges = 1:1000

t Multicast group for UXLAN. When configured, will enable sending all broadcast
tt traffic to this multicast group. When left wnconf igured, will disable

multicast UXLAN mode. (string value)

#uxlan_group = <None>

[securitygroupl

H
From neutron.ml2
b

Driver for security groups firewall in the LZ agent (string value)
Hf irewall_driver = <{Nome>

Controls whether the neutron security group API is emabled in the server. It
tt should be false when using wo security groups or using the nova security

it group API. (boolean value)

tenable_security_group = true

§ Get Help #Y Uritedut #i] Read File] Prev Page] Cut Text ¥ Cur Pos
il Justify Where Is (¥ Next Page UnCut Text iy To Spell
Figure 36.

it Driver for security groups firewall in the LZ agent (string value)
f irewall_driver = <None>

t Controls whether the neutron security group API is enabled in the server. It
it should be false when using no security groups or using the nova security

group API. (boolean value)

#enable security group = true

Use ipset to speed-up the iptables based security groups. Enabling ipset
#t support requires that ipset is installed on LZ agent node. (boolean value)

#enable_ipset = true
enable_ipset = True

enable_security_group = True
f irewall_driver = neutron.agent.linux.iptables_firewall.0OUSHybridIptablesFirewallDriver

-

8 Get Help UriteOut E Read File E Preu Page E Cut Text Cur Pos
| T

bl Exit Justify Where I=s Next Page UnCut Text To Spell

Figure 37.

For dashboard service, python code needs to be edited in the following file.

41

When the features above are configured, the controller is proved to be successfully
configured. The following screenshots verify that the services are successfully
Configured.

GNU nano 2.Z2.6 File: rsetc/openstack-dashboard-local_settings.py

ry:

from uwbuntu_theme import =
except ImportError:

pass

EBRODT=" /hor izon.’

ALLOWED_HOSTS ='='

OMPRESS_OFFLINE = True

-

§ Get Help WriteDut E Read File E Prev Page E Cut Text Cur Pos
J T|

bl Exit Justify Where Is Next Page UnCut Text To Spell

Figure 38.

Verification of identity service:

oot@ubuntusdnadmin: ~home/sdnadm init

ootPubuntusdnadmin: vhonessdnadmin#t service apacheZ restart
= Restarting web server apacheZ

oot@ubuntusdnadmin: shomessdnadmint uns

nset unshare

ootEubuntusdnadmin: ~honessdnadmin# unset 05_TOKEN 0S_URL
oot@ubuntusdnadmin: ~homesdnadm init

ootRubuntusdnadmin: shone/sdnadmning

ootBubuntusdnadmin: hone/sdnadminf openstack --os-auth-url http:-/scontroller:35357-v3 ——os-project
domain-name default ——os-user-domain-—name default ——os-project-name admin ——os-username admin token

i 2016-10-10T11:23:56.3481822

1
i gAAARABX—2uIb_7TmeoxMxsVaf P 1z jys jH4qlc1HAwe luV00vtoPe_dUKsk-KB-sswBRFRoZfF [prUhlec I-NP|

i 5Z2cB830a9bB84d4260983aaa8f f 07a%e85

i 4d040b2d0238439%dabet Scf 2f 4861 307

irootPubuntusdnadmin: ~honessdnadming
root@ubuntusdnadmin: ~homessdnadming

Figure 39.

Verification of image service:

‘ootEubuntusdnadm in: ~honessdnadm ing
ootFubuntusdnadmin: ~horessdnadmnint su —s <binssh —¢ "glance-manage db_sync” glance
Traceback (most recent call last):
File “susr-binsglance-manage”, line 10, in <module>
sys.exitimain())
File "susrslibspythomg.?-dist-packages/glancescndsmanage.py’ ', line 333, in main
conf iy .parse_args(default_config files=cfg files)
File "susr/libspythong.?/dist-packages-glance common conf ig.pu”, line 186, in parse_args
default_config_files=default_config files)
File "susrslibspythonZ.?-dist-packagessoslo_conf igscfg.py”, line 2162, in _ call
glse sys.argull:])
File “susr-lib-spythonZ.?-dist-packages-oslo_config-cfg.py”. line 2754, in _parse_cli_opts
return self . _parse_config_files()
File "susr-libspythonZ.?/dist-packagessoslo_conf ig/scfg.py”, line 2769, in _parse config files
Cont igParser._parse_file(config_file, namespace)
File "susrslibs/python2.?-dist-packages-oslo_configscfg.py', line 1636, in _parse_file
raise Conf igFileParseError(pe.filename, stripel)

+

1= lo_conf ig.cfyg.Conf igFileParseError: Failed to parse setcrsglancesglance-api.conf: at ~etcrglancesgl

[_n

ance-api.conf:511, Ho ":" or "=" found in assigmment:
nteger value)’

ootRubuntusdnadmin: ~hone-ssdnadming
ootPFubuntusdnadmnin: ~honessdnadmini
ootRPubuntusdnadmin: -honessdnadmnin® service glance-registry restart
iy lance-registry stop-uwaiting
ijlance-registry startsrumming, process 7994

-ootRubuntusdnadmin: ~honessdnadmin

ootBubuntusdnadmin: -honessdnadm ing

ootPubuntusdnadnin: ~honessdnadmint

ootBubuntusdnadmin: -honessdnadmintt service glance-api restart
lance-api stopswaiting
g lance—api startsrumming, process B039

ootRubuntusdnadmnin: ~hone-ssdnadming

[

Figure 40.

vl timeout exception when timeout expired. (i

sdnadnin: honessdnadmintt openstack image list
¥

Mane Status

—Bcd [fhef

+
i
1
b
'
i
L3

]
L

cir i active
+

rontEFubuntusdnadmin: -~ hum_. i
o0t by sdnadm iy 0 e nadming
rontFubuntusdnadmin: <ho iadmint

Figure 41.
Verification of horizon service:

rootRubuntusdnadmnin: ~honessdnadming

rootPubuntusdnadmin: ~homessdnadmint service apacheZ restart
» Restarting web seruver apacheZ

rootPubuntusdnadmin: shone/sdnadmingt uns

unset unshare

rootPubuntusdnadmin: ~home/sdnadmint unset 03_TOKEN 03_URL

rootPubuntusdnadmin: ~home sdnadmingt

rootRubuntusdnadmin: ~hone/sdnadming

rootRubuntusdnadmin: shomessdnadmint openstack —-os-auth-url http:-srscontroller:35357-u3 ——os—pro ject
domain—name default ——os-user-domain-name default ——os-project-name admin ——os-username admin token
issue

frootPubuntusdnadni home-sdnadming
irootBubuntusdnadnin: ~homessdnadmingt

Figure 42.

Verification of network service:

default-=subnetpools Default Subnetpools
network-ip-availability Network IP fAvailability
network_availability zone Network fAvailability Zone
auto-allocated-topology fiuto Allocated Topology Services
ext—gu-mode Neutron L3 Conf igurable external gateway mode
binding Port Binding
agent agent
subnet_allocation Subnet Allocation
13_agent_scheduler L3 Agent Scheduler
tag Tag support
external-net Neutron external network
net-ntu Network MTU
availability_zone fAvailability Zone
quotas Quota management support
13-ha Hf Router extension
provider Provider NHetwork
multi-provider Multi Provider Metwork
address—-scope fAddress scope
extraroute Neutron Extra Route
timestamp_core Time Stamp Fields addition for core resources
router Neutron L3 Router
extra_dhcp_opt Neutron Extra DHCP opts
dns—integration DNS Integration
secur ity-group security—group
dhcp_agent_scheduler DHCP Agent Scheduler
router_availability_zone Router Availability Zone
rbac-policies RBAC Policies
standard-attr-description | standard-attr-description
port-security Port Security
allowed-address—pairs fillowed fiddress Pairs

i dur Distributed Virtual Router

s

Figure 43.

Other services can be verified by successful instances launch later.

° Compute nodes
For compute nodes, there are services needing to be configured cooperating with
the controller node. There are also services needing to be configured

independently to fulfill the compute service.

The following flowchart shows what configured on compute node.

45

%
AT L i by
LG | 5 g , g
N, o k
ctal |
1=l 1
I
- ™ L 1
i | :
(=] o a 1 = L y : o{-.:.l
oy - I r
9 = > y s) I =
" 1 L}
i 1N
1 1
r :) !
] -. v I'I I--‘I | '
Il f’
Il e o s
N, v, 4
%
Ty
~
LY
I~i o %
; | |
151 | : e
r I -
. 1 - k
I
|
. -
-
-

L

a

Figure 44.

When the features above are configured, the compute node is proved to be
successfully configured. The following screenshots verify that the services are
successfully configured.

Verification of compute node services:

rootPubuntusdnadmin: ~homessdnadm int
rootPubuntusdnadmin: ~homessdnadm ing
rootBubuntusdnadmin: homessdnadmintt egrep —c " (umxisum)’ proc/cpuinfo

rootEubuntusdnadmin: shomessdnadm intt

Figure 45.

wadm ind
dnadmingt . admin-openrc
dnadmint

Binary

nova- nabled
ubuntusdnadnin

nova-co ;
ubuntuzdnadmin nabled

nova-compute

i
]
: i i
Nnova Ller i ubuntusdnadmin i { nabled
1
1
"
I
1]

ootBubuntusdnadmin: ~hone. nadmin

Figure 46.

46

Network node

In this part, we need to be clear about networks in OpenStack first.

A standard OpenStack Networking setup has up to four distinct physical data
center networks:

Management network

Used for internal communication between OpenStack Components. The IP
addresses on this network should be reachable only within the data center and is
considered the Management Security Domain.

Guest network

Used for VM data communication within the cloud deployment. The IP addressing
requirements of this network depend on the OpenStack Networking plug-in in use
and the network configuration choices of the virtual networks made by the tenant.
This network is considered the Guest Security Domain.

External network

Used to provide VMs with Internet access in some deployment scenarios. The IP
addresses on this network should be reachable by anyone on the Internet. This
network is considered to be in the Public Security Domain.

API network

Exposes all OpenStack APIs, including the OpenStack Networking API, to tenants.
The IP addresses on this network should be reachable by anyone on the Internet.
This may be the same network as the external network, as it is possible to create a
subnet for the external network that uses IP allocation ranges to use only less than
the full range of IP addresses in an IP block. This network is considered the Public
Security Domain.

Before going any further, we firstly need to configure the networks for nodes
connection. This needs to be done after adding network adapters. The network
configurations need to follow what’s required for linux operating systems. As the
following screenshots show, the etc/network/interfaces file for each nodes needs to
be configured as the way it shows.

47

g openstack_network

@

n E A & e & B < [0

GMU nano 2.2.6 File: retc/networksinterfaces

This file describes the network interface

and how to activate them. For nore

The loc k network interface
uto lo

iface eth0 inet dhcp

auto brl
iface

Get Help B UriteDut @l Read File i
i Justif | Where Is Mext

xit

Figure 47.

E

Cur Pos
To Spell

48

[& 8| openstack_network

n = A e e e [€ [0 4
GHU nano 2.2.6 File: setcsnetuworksinterfaces

JE_maxage
bridge_stp off
metric 100

i |
bridge_ports ethd
bri 'd 9
hello 2

il i}

t Help i elut Bl Read File] Prev Page B Cut Tex
Justi | Uhere Is Mext Fage UnCut Text

Figure 48.

For OpenStack, in neutron configuration, | choose Vxlan for tunnel OvSwitch as
back-end with MI2 plug-in. So what is a back-end and plug-in? In OpenStack,
plugin configuration is like “core-plugin = mi2”, which is managed by “service-plugin
= router” with the agent configuration: “[agent] Tunnel_types = vxvlan”. As for
drivers for it, the configurations are like,

“type_drivers = flat,vlan,gre,vxlan

Mechanism_drivers = openvswitch

Firewall_driver = neutron,agent.....OVSHybrid...

Interface_driver = neutron.....OVSinterfaceDriver’
I'll explain the reason why | choose these two.

For Vxlan, firstly, we need to figure out what's the difference within flat, local, vlan,
gre and vxlan. A local network is a network that can only be realized on a single
host. This is only used in proof-of-concept or development environments, because

49

just about any other OpenStack environment will have multiple compute hosts
and/or a separate network host. A flat network is a network that does not provide
any segmentation options. A traditional L2 ethernet network is a "flat" network. Any
servers attached to this network are able to see the same broadcast traffic and can
contact each other without requiring a router. flat networks are often used to attach
Nova servers to an existing L2 network (this is called a "provider network"). A vlan
network is one that uses VLANs for segmentation. When you create a new network
in Neutron, it will be assigned a VLAN ID from the range you have configured in
your Neutron configuration. Using vlan networks requires that any switches in your
environment are configured to trunk the corresponding VLANS. gre and vxlan
networks are very similar. They are both "overlay" networks that work by
encapsulating network traffic. Like vlan networks, each network you create receives
a unique tunnel id. Unlike vlan networks, an overlay network does not require that
you synchronize your OpenStack configuration with your L2 switch configuration.
Secondly, VXLAN is my a preferred solution, because it provides more entropie on
the receiving NIC, which results in a higher performance, because multiple CPU
cores are used to process ingress packets. (quoted from
(http://www.opencloudblog.com/?p=300))

For Open vSwitch, why would | use Open vSwitch instead of the Linux bridge?
Open vSwitch is specially designed to make it easier to manage VM network
configuration and monitor state spread across many physical hosts in dynamic
virtualized environments. Open vSwitch is targeted at large multi-server
virtualization environments, so it is focused on logical abstraction and management;
the Linux bridge is fast and reliable, but lacks all fancy control features. Besides,
Hypervisors need the ability to bridge traffic between VMs and with the outside
world. On Linux-based hypervisors, this used to mean using the built-in L2 switch
(the Linux bridge), which is fast and reliable. So, it is reasonable to ask why Open
vSwitch is used. Open vSwitch is targeted at multi-server virtualization
deployments, a landscape for which the previous stack is not well suited. These
environments are often characterized by highly dynamic end-points, the
maintenance of logical abstractions, and (sometimes) integration with or offloading
to special purpose switching hardware. The following characteristics and design
considerations help OpenvSwitch cope with the requirements above. The mobility of
state: All network state associated with a network entity (say a virtual machine)
should be easily identifiable and migratable between different hosts. This may
include traditional "soft state" (such as an entry in an L2 learning table), L3
forwarding state, policy routing state, ACLs, QoS policy, monitoring configuration.
Further, Open vSwitch state is typed and backed by a real data-model allowing for
the development of structured automation systems. Open vSwitch is also
responding to network dynamics: Virtual environments are often characterized by
high-rates of change. VMs coming and going, VMs moving backwards and
forwards in time, changes to the logical network environments, and so forth.

50

http://www.opencloudblog.com/?p=300

Open vSwitch supports a number of features that allow a network control system to
respond and adapt as the environment changes. This includes simple accounting
and visibility support such as NetFlow, IPFIX, and sFlow. But perhaps more useful,
Open vSwitch supports a network state database (OVSDB) that supports remote
triggers. Open vSwitch also supports OpenFlow as a method of exporting remote
access to control traffic. There are a number of uses for this including global
network discovery through inspection of discovery or link-state traffic (e.g. LLDP,
CDP, OSPF, etc.). In advance, Open vSwitch includes multiple methods for
specifying and maintaining tagging rules, all of which are accessible to a remote
process for orchestration. In a similar vein, Open vSwitch supports a GRE
implementation that can handle thousands of simultaneous GRE tunnels and
supports remote configuration for tunnel creation, configuration, and tear-down.
This, for example, can be used to connect private VM networks in different data
Centers. In the aspect of hardware integration: Open vSwitch's forwarding path
(the in-kernel datapath) is designed to be amenable to "offloading" packet
processing to hardware chipsets, whether housed in a classic hardware switch
chassis or in an end-host NIC. This allows for the Open vSwitch control path to be
able to both control a pure software implementation or a hardware switch. In many
ways, Open vSwitch targets a different point in the design space than previous
hypervisor networking stacks, focusing on the need for automated and dynamic
network control in large-scale Linux-based virtualization environments. The goal
with Open vSwitch is to keep the in-kernel code as small as possible (as is
necessary for performance) and to re-use existing subsystems when applicable (for
example Open vSwitch uses the existing QoS stack). As of Linux 3.3, Open
vSwitch is included as a part of the kernel and packaging for the userspace utilities
are available on most popular distributions. (referred from
(http://networkengineering.stackexchange.com/questions/28408/)

4.2 Integration of OpenDayLight and OpenStack

A use case is used to describe this section.

4.2.1 Network Topology Diagram

51

http://networkengineering.stackexchange.com/questions/28408/difference-between-linux-bridge-and-open-vswitch

ethl

eth0 10.0.0.x
Management network:
10.0.0.0/24
gateway OpenDayLight
etho ethd etho eth0
10.0.0.11 10.0.0.31 10.0.0.21 10.0.0.32
eth
10.0.0.1 | | |
controller compute neutron compute
external
Data tunnel network
L 10.0.1.0/24
eth1 ethi ethi
10.0.1.31 10.0.1.21 10.0.1.32
Figure 49.

The diagram is the same one from the last section.

4.2.2 Configuration Process

4.2.2.1 Hardware Requirement

Gateway:
Memory: 512 MB
CPU: 1
NIC:
adapter 1: bridged adapter
adapter 2: internal network (management)
Controller:
Memory: 3072 MB
CPU: 2
NIC:
adapter 1: internal network (management)
Network:
Memory: 1024 MB
CPU: 2
NIC:
adapter 1: internal network (management)
adapter 2: internal network (tunnel)
adapter 3: internal network (vlan)

adapter 4: internal network (management)
Compute:

52

Memory: 2048MB

CPU: 1

NIC:
adapter 1: internal network (management)
adapter 2: internal network (tunnel)
adapter 3: internal network (vlan)
adapter 4: internal network (management)

° OpenDayLight Controller:

Memory: 2048 MB

CPU: 2

NIC:
adapter 1: internal network (m_management)

4.2.2.2 Network configuration

Based on the given network topology, we need to configure network adapters and
IP addresses on each node.

As for IP addresses and network type configuration, the following screenshot shows
how they are configured for a single bridged network adapter.

t Thiz file describes the network interfaces available on your system
tt and how to activate them. For more information, see interfaces(5).

t The loopback network interface
uto lo
iface lo inet loopback

it The primary network interface
uto ethd
iface eth0 inet dhcp

uto brl

iface brl inet static
address 10.0.0.11
netuwork 10.0.0.0
netmask 255.255.255.0
broadcast 10.0.0.255
gateway 10.0.0.1
bridge_ports ethl
bridge_fd 9
bridge_hello 2
bridge_maxage 12
bridge_stp off
metric 100

Figure 50.

When the IPs are all configured well on each node, we can test connectivity from

53

each of the two nodes.

ootfubuntusdnadmin:: shomessdnadmintt ping —c 4 openstack.org

PING openstack.org (162.242.140.107) 56(84) bytez of data.

1 bytes from 162.242.140.107: icmp_seqg=1 tt1=128 time=100 m=

1 bytes from 162 .242.140.107: icmp_seq=2 tt1=128 time=98.6 m=
1 bytes from 162 .242.140.107: icmp_seq=3 tt1=128 time=98.4 m=
¥64 bytes from 162.242.140.107: icmp_seq=4 tt1=128 time=98.1 ms

—— openstack.org ping statistics —

1 packets transmitted, 4 received, 0+ packet loss, time 3039m=

tt mincavgsmaxsmdev = 98.113-98 .873-100.350-0.925 m=
ootfubuntusdnadmin : shome-ssdnadm int

ootfubuntusdnadmin : shome-ssdnadm int

ootfubuntusdnadmin: shomessdnadmin ping computel

PING computel (10.0.0.31) 56(84) bytes of data.

41 bytes from computel (10.0.0.31): icmp_seq=1 ttl1=61 time=0.625 mns
1 bytes from computel (10.0.0.31): icmp_seq=2 ttl=61 time=0.895 mns
1 bytes from computel (10.0.0.31): icmp_seq=3 ttl=61 time=0.428 ms
C

—— computel ping statistics —

3 packets transmitted, 3 received., 0+ packet loss, time Z2025ms

tt mincavgsmaxsmdev = 0.428-0.649-.0.895-0.192 m=
ootPubuntusdnadmin : home-sdnadm ini

Figure 51.

In this case, in order to give access to the internet, we configure another network
adapter as the shared network with the host (virtual machines and the host). The
network virtual machines use is through NAT to communicate with internet. As for
the bridged network, it appears as an additional computer on the same physical
network connection as the host laptop. When configure the bridged network, an
error called “ERROR RTNETLINK: File exists” occurs. This is because the
interface "br1” cannot be brought up after configuration the file
</etc/network/interfaces>, and can be solved by giving a lower priority to the
bridged network like adding the metrics. Besides, “bridge-utils” needs to be
installed by “sudo apt install” first.

4.2.2.3 Configuration Process

Firstly, start the gateway node and open its console to configure ntp and check if it's
the most up-to-date version. Then start all nodes of openstack. Open web browser
and connect to 10.0.0.11/horizon/ and log in to openstack (domain: default, user
name: admin)

54

openstack

Log in

ser Name

admin].

C]

TEEEREEENEEES

Figure 52.

In the OpenStack page, click project and select instances in the compute
drop-down list. Then start the instances and click network and select network
topology to see the diagram. click network and select networks to see if there are
existing networks. Go back to the instances and check with the floating address
assigned to the each node. Now open the terminal of the laptop and type the
command : ssh cirros@10.0.0.X (IP of one of the instance’s one network). Answer
yes and type “sdnlabs#112”, the password. Then ping 8.8.8.8 to test google
Availability. Repeat this action until having tested all the existing networks. Then
clear all the instances by deleting them all in OpenStack.

Click access&security in compute drop-down list and choose floating IP. Select all
the IP addresses and click release floating IPs. Click network and choose routers in
the drop-down list. Select the router in the page and click clear gateway. Select
router in the page again and click delete routers. Click network in the network list
and select all the networks in the page. Click delete networks (the ext-net may be
not deleted and an error warning would be popped out). When all deleted, it shows
as the following screenshot.

55

Access & Security

IP Address Mapped Fixed IP Address Pool Status

No items to display

Figure 53.

Then click admin and choose routers in the drop-down list and select the router in
the page and click delete routers. Choose networks in the same drop-down list.
Select networks in the page and click delete networks. Now turn to network
drop-down list and choose network topology to check there’s no diagram.

mouse/trackpad on the topology. Pan a

Network Topology

Figure 54.

Now open a new console of the openstack controller and connect to OpenDayLight

by ssh. Start OpenDayLight and karaf. Apart from the features noted from the last

section, also install the following features. odl-ovsdb-openstack, odl-dlux-core and

OdI-dlux-all. Now we can go to the openstack controller node and check. Type the

following commands: curl u admin:admin http://IP of OpenDayLight/. Because it's a

server version with GUI, we need to go to the browser on the console. The

commands are as follows,

Cd OPSilnstaller

Cd installer

Cat OSODL-ovs-00-force-set-controller-time.sh

./OSODL-ovs-00-force-set-controller-time.sh

Cat OSODL-ovs-01-force-redo-set-openstack-node.sh

./OSODL-ovs-01-force-redo-set-openstack-node.sh

Ls OSODL*

Cat OSODL-ovs-02-stop-neutron.sh

Ssh openstack@controller cat ./OPSlInstaller/controller/exe-
stage39-SUDO-odI-stop-neutron

Ls OSODL*

./OSODL-ovs-02-stop-neutron.sh

56

http://ip/

Ls OSODL*
Cat OSODL-ovs-03-purge-neutron-agent.sh
Ssh openstack@network cat ./OPSInstaller/network/exe-

stage40-SUDO-odI-purge-neutron-ovs-plugin-network.sh

./OSODL-ovs-03-purge-neutron-agent.sh

Ls OSODL*
Cat OSODL-ovs-04-set-ovs-manager.sh
Ssh openstack@network cat ./OPSInstaller/network/exe-

stage43-SUDO-odI-set-ovs-management-network.sh
./OSODL-ovs-04-set-ovs-manager.sh

Then go to the web browser and visit 10.0.0.X(IP of
OpenDayLight):8181/index.html. Sign in to opendaylight (admin/admin)

Please Sign In

; . OPEN

[] Remember Me
Login
Figure 55.

In the opendaylight web page: click reload under the controls

57

Controls

openflow:99637769766721

openflow:121050991432006

Figure 56.

Now go back to the openstack controller node and configure the integration part.

Type the following commands,

cat OSODL-ovs-06-set-neutron.sh

ssh openstack@controller cat
./OPSiInstaller/controller/exe-stage52-USER-odl-neutron-database.sh

ssh openstack@controller cat
./OPSiInstaller/controller/exe-stage53-USER-SUDO-odl-neutron.sh
./OSODL-ovs-06-set-neutron.sh

cat OSODL-ovs-07-pip-init-neutron.sh

ssh openstack@controller cat
./OPSiInstaller/controller/exe-stage54-USER-SUDO-odl-pip-install.sh

ssh openstack@network
./OPSiInstaller/network/exe-stage54p2-SUDO-odI-restart-network.sh

ssh openstack@network cat
./OPSiInstaller/network/exe-stage54p2-SUDO-odI-restart-network.sh

ssh openstack@controller cat
./OPSiInstaller/controller/exe-stage55-USER-odl-initial-network.sh
./OSODL-ovs-07-pip-init-network.sh

After monitoring the flows, go to the opendaylight web page and click reload under
the controls. Click nodes on the left side and check the nodes. Click node
connection on the right side and check. Go to the 10.0.0.X (OpenStack
controller)/horizon/auth/login. Log into the openstack (default&admin). Click project
-- network -- network topology and check -- networks and check -- routers and
check-- compute -- instances and check (shows items to display). Click “launch
instance” at the up right corner. Click “details” and edit “instance name” and click
“next” at the down left corner. Click “source” and “flavour” and edit, select the “+”
button of “m1 tiny” and it gets disappeared. Click “network”, select the “+” button of
“admin-net” and it gets disappeared. Click “Network ports” and “security groups” ,
select the “+” button of “default” of “security groups”and it gets disappeared. Click
“keypair” and “configuration” and check in the “configuration” page and click “launch
instance”. Go to the main page and click “instance”, we can see the instance is

58

spawning under “task”. Click “Access&Security” and select “floating IPs”. Click
“Allocate IP” and confirm in the pop-up page, when done, click “Associate” under
“actions” of the allocated ip address. In the “associate” pop-up page, choose the
instance port in the Drop-down list. Click “instances” on the left side and show the
page. Open a new console of openstack controller and type the following
commands: ssh-keygen -R 10.0.0.102, ssh-cirros@10.0.0.102 to open the
opendaylight main page and click topology, check how many nodes are in it

click nodes and click the number under node connection column where the number
is consistent with the topology

Rx Rx
Rx Tx Rx Tx Rx = Rx Tx Frame OverRun
Node Connector Id Pkts Pkts Bytes Bytes Drops Drops Errs Errs Errs Errs

121050991432006:5 8 10 648 864 0 0 0 0 0 0

Figure 57.

Then go back to openstack main page and click Access&Security. Click “Security
Groups” in the Access&Security page and click “manage rules” of the group in the
page and click instances on the left.

Instances

Instance

Name Image Name

Figure 58.

During the integration, floating IPs are needed. Also, we need to set the
router-delete namespace as true. Because the default configuration when installing
from Ubuntu's packages was to not delete namespaces after their associated
network or router was removed. If you didn't keep tabs on this, you'd soon end up
with a lot of redundant namespaces on your network nodes. As a public cloud
operator this is especially problematic when you've got public IPv4 address space

59

https://bugs.launchpad.net/neutron/+bug/1052535

to manage and you really don't want precious addresses being wasted on gateway
interfaces for virtual routers that are no longer in use. (floating IP explanations are
quoted from http://dischord.org/2016/01/05/cleaning-up-after-neutron/).

As far as the configuration concerned, the instance is ready to be configured. We

can configure several various network requirements through OpenDayLight
controller.

4.3. A VTN Design Example

4.3.1. Architecture

The following figure shows how it should be integrated in a cloud application with

SDN.
—_ SDN/Cloud Integrated SDMN Applications
Cloud Application Application pp
Application layer
Cloud SDN
ControlfOrchestration Controller l
Control layer
Computing/Storage Non-SDN Metwork
Servers Devices SDN Network
Devices
i SDN infrastructure layer
clou
infrastructure infrastructure
Figure 59.

In this figure, the cloud infrastructure is provided by OpenStack OS, the SDN
controller we used in this case is the OpenDaylight controller. The Computing and
Storage services are respectively nova and block in OpenStack. Different layers
communicate with each other by APls. For example, like what we mentioned in the
former sections, controller communicate with upper layer APls through northbound
APIs like REST API or java, python APIs. The controller communicates with lower
layer switched and network devices via southbound APls, which is openflow in this
case.

60

http://dischord.org/2016/01/05/cleaning-up-after-neutron/

4.3.2. Design of VTN

In this example, we use the OpenDaylight controller integrated with the OpenStack
control node and configure two compute nodes as well as a network node.

Among these nodes, network configuration is necessary. For the controller node,

it requires one network interface: management. For the network node, it should
include four network interfaces: management, project tunnel networks, VLAN
project networks, and external (typically the Internet). The Open vSwitch bridge
br-vlan must contain a port on the VLAN interface and Open vSwitch bridge br-ex
must contain a port on the external interface. For the compute nodes, they each
must have three network interfaces: management, project tunnel networks, and VLAN
project networks. The Open vSwitch bridge br-vlan must contain a port on the VLAN
Interface. The network and compute nodes should contain a separate network interface
for VLAN project networks. VLAN project networks can use any Open vSwitch bridge
with access to a network interface. The VLAN network does not require an IP address
range because it only handles layer-2 connectivity.

For controller node, we need to configure SQL server, Identity service and message
qgueue service with neutron database in the neutron.conf file. Also, OpenStack Compute
controller/management service with appropriate configuration to use neutron in the
nova.conf file. For network node, OpenStack Identity service, Open vSwitch service,
Open vSwitch agent, L3 agent, DHCP agent, metadata agent, and any dependencies
need to be configured in the neutron.conf file. For compute nodes, OpenStack Identity
service, OpenStack Compute controller/management service and Open vSwitch service,
Open vSwitch agent, and any dependencies need to be configured in the neutron.conf
file and nova.conf file.

The following are part of the configuration examples.

it The type of authentication to use (string value)

tauth_strategqy = keystone
uth_strategy = keystone

Figure 60.

The core plugin Neutron will wse (string value)
ore_plugin = ml2

The =zervice plugins Neutron will u=se (list value)

fizservice_plugins =
=zervice_plugins = router

Figure 61.

61

GNU nano Z2.2.6 File: retc/neutronsneutron.conf

inot ify_nova_on_port_data_changes = true

notify_nova_on_port_data_changes = True

Figure 62

itrpc_backend = rabbit
rpc_backend = rabbit

Figure 63.

t From meutron

Name of nova region to use. Useful if keystone manages more than one region.
(string value)

ftregion_name = <None>
egqion_name = RegionOne

Type of the nova endpoint to wuse. This endpoint will be looked up in the
keystone catalog and should be one of public, internal or admin. (string
value)l
fillowed values: public, admin, internal

ftendpoint_type = public

Figure 64.

Here is the overview of the VTN design.

62

Cpen
vawitch

N
Open

instance vawitch
Agent

ilntegratiun

Bridge
Tunnel
GRE Bridge

VLAN

Figure 65.

In this way, virtual tenant networks are established and can hereby be managed
through controller. Policies and protocols can also be added or modified through

configuration files from controller with corresponding adjustments from each
nodes.

5. Conclusion and Future work

In this project, | studied the knowledge of networking basis and SDN as well as
VTN and NFV. With the reviewing of OpenDaylight documentations, | implemented
the OpenDaylight SDN controller. Studying the cut-edge version of OpenStack, |
implemented different instances of OpenStack nodes. Combining the leading
applications of SDN, | integrated OpenStack and ODL. At the end of the project, |
implemented a VTN Automation solution using Openstack and OpenDaylight SDN
controller. Through this project, | get to know about what SDN is and the leading
controller OpenDaylight as well as the OpenFlow specifications. Besides, a
thorough understanding and application of OpenStack are also obtained from the
project.

As far as this project concerned, the application of software defined network and
its related development tools are limited due to time range, licence expense and
compatibility between tools. In future, with development of this area, | believe there
would be more use cases and explorations with relate to corresponding tools.
More significant orchestration cases would be taken into consideration.

63

Reference

http://docs.openstack.org/mitaka/install-guide-ubuntu/keystone-users.html
https://help.ubuntu.com/Its/serverguide/network-configuration.html
https://wiki.debian.org/NetworkConfiguration
http://sciencecloud-community.cs.tu.ac.th/?p=238
http://ualberta.onthehub.com/WebStore/Account/SdmAuthorize.aspx?0=612a6bd0-76cb-e511
-9414-b8ca3a5db7al&ws=687574e5-7a59-e011-bd14-0030487d8897&uid=fe5fc175-76cb-e511
-9414-b8ca3a5db7al&sdm=0

http://blog.csdn.net/midion9/article/details/50748523
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&ex
ternalld=2084505

https://communities.vmware.com/thread/492851 ?tstart=0
http://quake.iteye.com/blog/1263961
https://help.ubuntu.com/community/Installation/SystemRequirements
https://wiki.opendaylight.org/images/5/55/Integrating-opendaylight-with-openstack-published
.odf

http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html#figure-hwregs
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&ex
ternalld=1022525

http://www.linuxidc.com/Linux/2012-04/58485.htm
http://docs.openstack.org/mitaka/install-guide-ubuntu/common/conventions.html
https://www.youtube.com/watch?v=bsaoU254gAc
http://askubuntu.com/questions/293827/error-rtnetlink-answers-file-exists
https://pubs.vmware.com/workstation-9/index.jsp?topic=%2Fcom.vmware.ws.using.doc%2FG
UID-3B504F2F-7A0B-415F-AE01-62363A95D052.html
https://help.ubuntu.com/Its/serverguide/network-configuration.html
http://blogging.dragon.org.uk/setting-up-ntp-on-ubuntu-14-04/
https://ask.openstack.org/en/question/89131/creating-keystone-error-openstack-not-found-ht
tp-404-entity-liberty-debian/
http://askubuntu.com/questions/460022/using-terminal-as-a-web-browser
http://askubuntu.com/questions/460022/using-terminal-as-a-web-browser
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentat
ion/using-opendaylight-within-an-openstack-environment
https://mitakadesignsummit.sched.org/event/49yl/network-node-is-not-needed-anymore-com
pleted-distributed-virtual-router
http://docs.openstack.org/kilo/install-guide/install/apt/content/neutron-network-node.html
https://ask.openstack.org/en/question/51388/whats-the-difference-between-flat-gre-and-vlan
-neutron-network-types/

64

http://docs.openstack.org/mitaka/install-guide-ubuntu/keystone-users.html
https://help.ubuntu.com/lts/serverguide/network-configuration.html
https://wiki.debian.org/NetworkConfiguration
http://sciencecloud-community.cs.tu.ac.th/?p=238
http://ualberta.onthehub.com/WebStore/Account/SdmAuthorize.aspx?o=612a6bd0-76cb-e511-9414-b8ca3a5db7a1&ws=687574e5-7a59-e011-bd14-0030487d8897&uid=fe5fc175-76cb-e511-9414-b8ca3a5db7a1&sdm=0
http://ualberta.onthehub.com/WebStore/Account/SdmAuthorize.aspx?o=612a6bd0-76cb-e511-9414-b8ca3a5db7a1&ws=687574e5-7a59-e011-bd14-0030487d8897&uid=fe5fc175-76cb-e511-9414-b8ca3a5db7a1&sdm=0
http://ualberta.onthehub.com/WebStore/Account/SdmAuthorize.aspx?o=612a6bd0-76cb-e511-9414-b8ca3a5db7a1&ws=687574e5-7a59-e011-bd14-0030487d8897&uid=fe5fc175-76cb-e511-9414-b8ca3a5db7a1&sdm=0
http://ualberta.onthehub.com/WebStore/Account/SdmAuthorize.aspx?o=612a6bd0-76cb-e511-9414-b8ca3a5db7a1&ws=687574e5-7a59-e011-bd14-0030487d8897&uid=fe5fc175-76cb-e511-9414-b8ca3a5db7a1&sdm=0
http://blog.csdn.net/midion9/article/details/50748523
http://blog.csdn.net/midion9/article/details/50748523
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2084505
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2084505
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2084505
https://communities.vmware.com/thread/492851?tstart=0
https://communities.vmware.com/thread/492851?tstart=0
http://quake.iteye.com/blog/1263961
http://quake.iteye.com/blog/1263961
https://help.ubuntu.com/community/Installation/SystemRequirements
https://help.ubuntu.com/community/Installation/SystemRequirements
https://wiki.opendaylight.org/images/5/55/Integrating-opendaylight-with-openstack-published.pdf
https://wiki.opendaylight.org/images/5/55/Integrating-opendaylight-with-openstack-published.pdf
https://wiki.opendaylight.org/images/5/55/Integrating-opendaylight-with-openstack-published.pdf
http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html#figure-hwreqs
http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html#figure-hwreqs
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
http://www.linuxidc.com/Linux/2012-04/58485.htm
http://docs.openstack.org/mitaka/install-guide-ubuntu/common/conventions.html
https://www.youtube.com/watch?v=bsaoU254gAc
http://askubuntu.com/questions/293827/error-rtnetlink-answers-file-exists
https://pubs.vmware.com/workstation-9/index.jsp?topic=%2Fcom.vmware.ws.using.doc%2FGUID-3B504F2F-7A0B-415F-AE01-62363A95D052.html
https://pubs.vmware.com/workstation-9/index.jsp?topic=%2Fcom.vmware.ws.using.doc%2FGUID-3B504F2F-7A0B-415F-AE01-62363A95D052.html
https://help.ubuntu.com/lts/serverguide/network-configuration.html
http://blogging.dragon.org.uk/setting-up-ntp-on-ubuntu-14-04/
https://ask.openstack.org/en/question/89131/creating-keystone-error-openstack-not-found-http-404-entity-liberty-debian/
https://ask.openstack.org/en/question/89131/creating-keystone-error-openstack-not-found-http-404-entity-liberty-debian/
http://askubuntu.com/questions/460022/using-terminal-as-a-web-browser
http://askubuntu.com/questions/460022/using-terminal-as-a-web-browser
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentation/using-opendaylight-within-an-openstack-environment
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentation/using-opendaylight-within-an-openstack-environment
https://mitakadesignsummit.sched.org/event/49yI/network-node-is-not-needed-anymore-completed-distributed-virtual-router
https://mitakadesignsummit.sched.org/event/49yI/network-node-is-not-needed-anymore-completed-distributed-virtual-router
http://docs.openstack.org/kilo/install-guide/install/apt/content/neutron-network-node.html
https://ask.openstack.org/en/question/51388/whats-the-difference-between-flat-gre-and-vlan-neutron-network-types/
https://ask.openstack.org/en/question/51388/whats-the-difference-between-flat-gre-and-vlan-neutron-network-types/

Appendix

A. The coding and configuration files are listed below. The nodes are edited within this

report in the following order.

/etc/neutron/neutron.conf
/etc/nova/nova.conf
/etc/keystone/keystone.conf
/etc/apache/apache2.conf
/etc/glance/glance-api.conf
/etc/glance/glance-registry.conf
letc/openstack-dashboard/local_settings.py
/etc/cinder/cinder.conf

/etc/heat/heat.conf

B. As the version of OpenStack we use in this project is the latest release by October,
2016. The documentation of OpenStack Mitaka has unavoidably included some

bugs or accidentally omitted some details. As one of the first users, | noticed some

during this project and revised them. The following are the issues | reported to
OpenStack website. From the latest check, these bugs have been revised.

issue reason

solution

HTTP 404 Only restart the apache2
server as suggested in the
documentation is not enough

Reboot the operating system

to make it get the
configuration active

Command not found in There are several commands
OpenStack which only active in
OpenStack when activated

Type the command:apt-get
install python-openstackclient

Cannot verify operation as the Service not activated
admin user (HTTP 5000)

Service apache?2 restart

There’s no “database” section in | It's normal but ignored by the
/etc/nova/nova.conf.file website as of October

Add this part manually to the

file

65

