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Abstract

A theory for the diffraction contrast of twin boundaries which is applicable to
pseudo-merohedral and pseudo-reticular merohedral twins, which have nearly common
reflections, has been developed. This theory has been applied to the determination of the
rigid body translation vector of such twins. It has been found that the rigid body translation
vector of a twin boundary can be completely determined by comparing three experimental

images of the boundary with simulated images which make use of the above theory.

It has also been found that the orientation of the twinned crystals must be determined
correctly in order for the procedure to give correct results. Therefore, a method has been
found for correctly identifying the matrix and twin zone axes, partly through the use of
computer simulations of twin boundary diffraction patterns. Work has also been done to aid
in finding the exact orientation, as given by the tie point projection, as accurately as

possible.

In order to create simulated images of a twin boundary, the elastic and inelastic scat-
tering factors of the constituent atoms or ions in the cr-stal must be known. Up to the
present, there has been no source of inelastic scattering factors for ions. Since many
crystals which exhibit pseudo-merohedral and pseudo-reticular merohedral twins are
ceramics which are bonded ionically, a method for calculating the inelastic scattering
factors for ions was developed. In the process, a new method for calculating the inelastic
scattering factors for neutral atoms, which is more accurate and easier to use than existing

methods, was also developed.
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1. Introduction

The use of the electron microscope is an important component in the study of the
structure of materials. It is particularly useful in the characterization of crystal defects. Oie
such defect which is commonly studied in the electron microscope is the twin boundary. A
twin boundary is the boundary between two crystals which are orientated relative toeach
other according to some twin law. It is the purpose of this thesis to develop a gemeral theory
of electron diffraction contrast of twin boundaries, and to illustrate one practical applica-
tion of the theory. This is the determination of the rigid body translation vector, which is a
vector describing the position of one of the crystals with respect to the other. The knowl-
edge of this translation vector is important in that it gives information regarding the
structure of the twin boundary. This boundary structure, in turn, gives insight into the
mechanism for the formation of the twins, and the effects of the twin boundaries on the

mechanical and electrical properties of the material.

There have been several previous theories of twin boundary diffraction contrast. The
earliest attempts to explain the contrast observed in the electron microscope were based on
the assumption that only two beams were excited in each of the two crystals, the trans-
mitted one, and one diffracted beam. Gevers, et. al.! derived a two beam theory which
became the basis of a set of predictions, by Amelinckx and Van Landuytz, of the form of
the twin boundary image obtained under certain specific diffraction conditions. This form
of the theory allowed for the possibility that two beams, one from each crystal, which are
travelling in slightly different directions, might pass through the objective aperture, and go
on to form the image. However, it neglected many of the effects brought about by the

difference in the directions of the two beams, and therefore can lead to inaccurate results.

The first theory in which many different beams could be taken into account in the
calculation of image contrast was given by Sheinin and Corbett3. This version of the theory
suffered from the fact that it did not account for common reflections. Common reflections
are reflections which originate from different sides of the twin boundary, but from lattice
planes which are common to both crystals. Therefore, the two diffracted beams are travel-

ling in exactly the same direction. Because of the nature of the twin laws which determine



the orientations of the two crystals with respect to each other, these common reflections
occur frequently and can have a significant effect on the image. Sutton and Pond* then
developed a version of the theory which takes common reflections into account. The
approach used by Sutton and Pond had a number of problems, howevér. As a result, their
theory could give inaccurate results unless a large number of reflections were taken into
account. Their version of the theory also required the diagonalization of a large number of
matrices, making it somewhat inefficient. Sheinin and Perez’, therefore developed a new
version of the theory which addressed all of the problems of the version by Sutton and
Pond, and gave correct, many beam, results for the diffraction contrast of twin boundaries

for twins which have common reflections.

Even this theory could not be applied in many cases, however. This is because. in
many crystals, especially those with a complex structure, the twins contain not only
common reflections, but also nearly common reflections, which correspond to beams orig-
inating on different sides of the twin boundary which are travelling in almost, but not
exactly, the same direction. The effect of these reflections is that, if the objective aperture
of the microscope is centered around a particular reflection, there will usually be other
beams, which are not travelling in the same direction, but which also pass through the aper-
ture and contribute to the image. Therefore, a new version of the theory has been developed
in this thesis to give the diffraction contrast of twin boundaries for twins which have these

nearly common reflections.

In this thesis, a brief summary of the Bloch wave form of the dynamical theory of
electron diffraction, and some of the approximations which are usually made in the theory,
is given in Chapter 2. Chapter 3 deals with the application of this theory to the study of twin
boundaries. Section 3.1 gives an introduction to twinned crystals and their geometry. An
explanation of the approaches taken in the early, many beam, versions of the theory of twin
boundary contrast is given in section 3.2. In order to develop the theory for twins which
contain either common, or nearly common, reflections, the theory given by Sheinin and
Perez for twins with common reflections had to be reformulated. This is done in section 3.3.
Once this is done, the extension to twins which may also contain nearly common reflections

can be obtained in a reasonably straightforward manner. This is done in section 3.4.



In order to do theoretical simulations of twin boundary contrast, there is a number of
practical considerations which must be addressed. These are dealt with in Chapters 4 and 5.
One of the most important is the determination of the orientations of the two crystals. In the
case of twinned crystals which have nearly common reflections, this determination is made
much more difficult than usual because of the nearly symmetric properties of the two crys-
tals and their orientations. This problem is the subject of section 4.2. Another important
consideration in these calculations is that it is crucial to know which crystal is the one that
the electrons enter first, and which is the one from which the electrons emerge. A new

method for making this determination is given in section 4.2.2.

Another important requirement for the theoretical calculations is that the elastic and
inelastic scattering factors of the atoms which make up the crystal must be known. In many
cases, particularly in the complex crystal structures which tend to produce twins having
nearly common reflections, the crystal is actually made up of ions. It is therefore important
to have the correct scattering factors for the ions involved. Up to the present, there has been
no source of inelastic scattering factors for ions. Therefore, a new method for calculating
these inelastic scattering factors for ions has been developed, and is given in Chapter 5. In
the process, a new method for calculating the scattering factors for neutral atoms has also

been developed, which is simpler, and more accurate, than existing methods.

In Chapter 6, a method for finding the rigid body translation vector of a twinned
crystal is demonstrated. It is based on comparing experimental images of twin boundaries
with theoretical simulations which employ the theory developed in section 3.2.3. The
method allows the rigid body translation vector to be completely defined through the use of
twin boundary images for three different crystal orientations.



2. Bloch Wave Form of the
Dynamical Theory of Electron
Diffraction

2.1. Solution of the Schrodinger Wave
Equation

In this form of the theory of electron diffraction, which was originally developed by
Bethe?, the Schrodinger equation is solved for an electron in a crystal potential. For non-
relativistic electrons, the steady-state wave function,'¥ (f), is given by Schrodinger’s

equation:

8n’me

%)
For the vacuum outside of a crystal,V () = 0, and the solution of this equation is given
by:

V2 (1) + [E+V(H]IYE) =0 2.1)

¥ () = expmii- D) 2.2)
where the magnitude of ¥ is given by:
by

T = eE (2.3)

and E is the voltage through which the incident electron has been accelerated.

In order to find the wavefunction inside the crystal, the Schrodinger equatior. must be
solved for a potential made up of a superposition of all of the atomic potentials. Since this

potential has the same periodicity as the lattice, it can be expanded as a Fourier series:

V(i) = Y Vexpnig- i)
8

h? . s

= —2 U_exp(2xig - 1)
g

2me 2 24)



where each term in the summation corresponds to a reciprocal lattice vector, g. For a peri-
odic potential such as this, the solution must have the same periodicity. Such a solution is

called a Bloch wave and has the following form:
¥ (@) = bk,b = Y,C (Kexp [2mi (k+§) -] @.5)
]

If this solution is substituted into the Schridinger equation, the following equation is
obtained:

4“[Z[x2+Uo— (k+D)|c Mexpl2ni (k+) -1l
g

+ Y Zuhcg,(i)exp [2mi (k + 8" +h) - }]] =0
h#0g

In the second term on the left hand side of this equation, g’ is summed over all reciprocal

lattice vectors. Therefore, the summation can be done over a different reciprocal lattice

vector, §, which is related to g’ by:
=g +h=g = g-h
and the second term becomes:

Y YU, C,_yKexp (27 (k+§) - ]
h20 g

The summation over h is also over all reciprocal lattice vectors, so h can be replaced by a

different reciprocal lattice vector, h’, which is given by:

h"=g-h=>h=g-h’
When the prime on the h is dropped, the result is the following:

- a 2 - - . - > .
2[[x2+Uo- k+2) |c, M+ ZUg_hCh(k)]cprZM(k+g) # =0
f 4 hzg (2.6)
Since this equation must hold for all vectors, F, the coefficients of the term,

exp [2xi (k+ g) - 1], must all be equal to zero. Therefore, the following set of equations



must be satisfied:
IO BN R
[K2- (k+1) ]Cg(k)-l-hggUg_hCh(k) =0 @
where
K? = ¥ +U, 2.8)

If N reciprocal lattice vectors, g, are taken into account, there are N equations in the set.

This set of equations can be put into matrix form:

T T
K> - (k+) U, Uy oo C, ()
2 2 2 a
Up K-(rg) Uy M0 9
2 Exl 2 -
US; US:‘S: K*- (k+gl) ng(k)r

A solution to this set of equations will exist only if the determinant of the matrix is equal

to zero.
PR ]
K- (k+8)) U, Uy, oo o
U K- (k+8,) U
- &2 -
DET 5 . oot =0  (210)
US: UB:'S: K*- (k+g1)

Before this equation can be solved, the boundary conditions which must be met by
the wavefunction, ¥ (1), and, hence, the wave vector, E, must be determined. This will be
done in the next section, and the conditions which result will be used along with eq. 2.10

to find the wave vectors which can satisfy eq. 2.9.



2.1.1. Boundary Conditions

The boundary condition which is imposed is that the wavefunction, ¥ (f) , must be
continuous at the crystal surface. The wavefunction of the incident beam is given by

eq. 2.2:

¥ . (D) = exp(2mi - ) 2.2
where the subscript, out, refers to the fact that this is the wavefunction outside of the crystal
on the entrance side. When eq. 2.10 is solved, the result will be N different solutions for k.
each of which corresponds to a different Bloch wave solution to Schrodinger’s equation.
The wavefunction inside the crystal is given by a linear combination of these N Bloch wave
solutions:

v, @) = TxPP«p

D () M a (i)
= $XVCO& yexp[2mi (k +) -]
g (2.11)
where the X (Vs are referred to as the Bloch wave excitation coefficients since they deter-
mine the extent to which each Bloch wave is excited in the crystal. These two wavefunc-

tions must be equal for any vector, ., which defines a position on the entrance surface of

the crystal. Therefore, the following relation must hold:

a2 i i . ‘(') PR
exp2miY - T.p) = ZX(') Cé') exp[2m(k +£) -rc,,] (2.12)
1,8
It is now useful to resolve the vectors in eq. 2.12 iato components parallel to the

crystal surface, labelled by the subscript, I, and componris»is normal to the surface, labelled
by the subscript, L. i.e.

la L4
]
Cnicy

en = Feup fenl
X = ig 1
IO N O N ()



and therefore, eq. 2.12 can be rewritten as:

exp(2riy Ten D
. . . . . _‘(i) R N .
= ZX(') Cé') exp [2xi (kJ(_') +g,)1,,, ]exp [Zm (ky +8,-%p) - re,,“]
L, g
where both sides of the equation have been divided by exp(21ci52" -l"en“). This equation

must hold at all points on the entrance surface. But T, is different at all of these points.

n
Therefore, there are N2 terms on the right hand side of thlls equation, each of which changes
as the position on the entrance surface changes. The only way to solve this problem is to
make most of these terms add up to zero. However, at least one term must be excluded from
this sum and set to be equal to exp (2mi)r.,,,) . Thus, atleast one term must be constant,
regardless of position on the entrance surface. This is accomplished by letting
I'EI: ) +8+ )'Z“ = 0 for some reciprocal lattice vector, g, and some Bloch wave, i. Physi-
cally, it makes the most sense to choose the § = 0 terms, and let it be true for all i.

Therefore:

ky =%, =0 2.13)

for all i. When this is assumed, the following equation results:

exp2miyr.,,) = Y X Cfexp2nik 1., )
1

+ 3 TXOCO exp2mi (k) + g,) 00,1 exp (2R - Fony)
g#0 i

The second set of terms on the right hand side still involve exp (27 - Tep,) . Therefore
each of these terms is still different at all points of the entrance surface. The only way to
make these terms add up to zero is to make each term in the summation over g equal to

zero. Therefore:

> XV CVexp(2mi (k) +8,)1en ] €xp (27idy Feny) =0 g0
1



Each equation can be divided by exp (2xig - f,,) to get the following set of relations:
o = 5% e expnik
exp(2Rix, r,,,) Z o exp(2rik;’r, )
1

0= YxPclexpnik{’r, ) g=0
i 2.14)

These boundary conditions will be used later, in section 2.1.5, to calculate the Bloch wave
excitation coefficients, XD In the mean time, a set of restrictions on the wave vectors,
k l , has been found and is expressed in eq. 2.13. They state that the tangential components
of all wave vectors on either side entrance surface must be equal. Thus, all that remains to

be found in eq. 2.10 is the component of k which is normal to the crystal entrarice surface.

2.1.2. Calculation of Wave Vectors and Bloch Wave
Amplitudes

In section 2.1.1, the magnitude of K was defined by eq. 2.8. The vector, K, can now
be completely defined to be a vector with this amplitude and a direction defined by the
restriction that its component parallel to the entrance surface of the crystal is equal to the
tangential component of %. Since the Bloch wave vectors, l?m , have the same tangential
component as ¥, they can be expressed as follows:

i = K+yPa (2.15)
where i is a unit vector which is normal to the crystal entrance surface, and 'y(i) isa

number which must be determined.

The condition of tangential equality of wave vectors on either side of the entrance
surface can now be represented graphically. This is shown in Figure 2.1. In order to ensure
that all wave vectors have the same component parallel to the entrance surface, a line which
is normal to the entrance surface of the crystal is drawn through the tail of the vacuum wave
vector, . If all other wave vectors, K, E(:) , also start somewhere on this line and extend to
the origin, their tangential components must be equal to that of %. The Ewald sphere is
centered at the starting point of K and has a radius of K. The deviation parameter, s, is
defined as the distance from the reciprocal lattice point, g, to the Ewald sphere along a

direction normal to the entrance surface. It is defined to be positive when the reciprocal
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Brillouin Zone Boundary ——— pfl
/“—_—h\ o T——
(M ]
'Y( )
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Y
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Fig. 2.1. Dispersion surface calculated using two beams -- 0 and g. D) and D are
called the excitation points and they are the starting points of K and ﬁ(z) respectively.
il is the normal to the entrance surface. Sg is the distance, in the direction, fi, from g to the
Ewald sphere. DD and D@ fie on the line normal to the entrance surface which goes
through the starting point of K.
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lattice point is inside the Ewald sphere, as shown, and negative when outside the Ewald
sphere. When the wave vectors, I-E(l) , have been determined for all possible crystal orienta-
tions, their starting points define the dispersion surface. This surface, which is similar to the
Fermi surface for low energy electrons, defines all of the possible wave vectors for elec-
trons of a given energy. A small portion of two branches of the dispersion surface are

shown in Fig. 2.1.

2.1.3. High Energy Approximation

The diagonal terms in the matrix in eq. 2.9 can now be evaluated. Referring to Fig,

2.1, and using the law of cosines, it can be shown that:

R S R (i)
(k +8) =K'+(y —sg) +2K (Y —s,) cosf)g (2.16)
where 98 is the angle between K + g and the crystal surface normal, fi. Therefore, the
diagonal term in eq. 2.9 becomes:

22,5 (i) M) _ 2
K'=(k +8) =2K(s8-y )coseg—('y —sg)

@
_ () LA
= 2K (s, ~ Y )[COS%‘( 2K )] 2.17)

The first approximation which must be used is the high energy approximation. The
main idea of this approximation is that, because of the high energy of the electrons, it can
be assumed that K » Sy y(i) . Therefore:

S, = Y(i)
2K
It can also be assumed that 0 g the angle between K+ g and A, is almost equal to 6, the

0

mn

angle between K and . This results in the following:

a(.) 2 1
K- (K +2) =2K(s,-1")cos8, (2.18)

2.1.4. Symmetrical Laue Conditions

Another approximation which is usually made is the assumption of symmetrical
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Laue conditions. These conditions are satisfied when the entrance surface of the crystal is
parallel to the zero order Laue zone, which is defined as the plane in reciprocal space which
is most nearly perpendicular to the incident electron wave vector and which has low

indices. In this case, the deviation parameters, s, are the distances from the reciprocal

g’
lattice points to the Ewald sphere in a direction parallel to the Brillouin Zone boundary,
which will be assumed to be the £ direction (see Fig. 2.2). The angle, 0 g is now the angle

between K + g and z. The high energy approximation, then, leads to:

~ - _Z
c0508= cose0 =%

Therefore, eq. 2.19 becomes:

KP- (R + g)2 =2K, (s,~7") (2.19)

In order to examine the validity of the assumption of symmetrical Laue conditions,

the differences which result from the use of eq. 2.19, rather than eq. 2.18, in calculating the
'y(i) ’s should be examined. In the symmetrical Laue case, eq. 2.9 can be rewritten in the

form of an eigenvalue equation:

ACH = 0cH (2.20)
where the s subscripts signify that symmetrical Laue conditions are being assumed. A is

a matrix with diagonal elements of (A = (sg) o and non-diagonal elements given by

(i)

)
887 s
(A gh) = Ug _n/2K, where g #h. C(') is the column vector shown in eq. 2.9, and ¥y
is any of the eigenvalues of the A_ matrix. With the knowledge of these eigenvalues, the
(i
calculation of the wave vectors, k , can now be completed using eq. 2.15. In the symmet-

rical Laue case, this equation becomes:

EY (.) -2 1
ko= K+yPz
(i) _ (i)
or kW =K,+y 221)
In the non-symmetrical Laue case, eq. 2.9 is rewritten in the slightly different form:

ACY = O c® 2.22)

‘where the diagonal elements of A are now given by A, = s,cos 0, and the non-diagonal

-12-
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Brillouin Zone Boundary —
/‘-’_—_———- _\
0y
Tie Point
@) K—
a(1)
k

2(2)
k

N

tie point projection-\
3
Ewald Sphere —— "K

Fig. 2.2. Two beam dispersion surface illustrating the symmetrical Laue approximation.
The normal to the entrance surface is now parallel with the Z direction and perpendicular
to the reciprocal lattice vectors of the zero order Laue zone. The starting points of all of the
k8 s now lie on a line drawn parallel to the z direction which passes through the starting
point of K.
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elements are almost the same as in the symmetrical Laue case, (Agh) ¢ = Ug -1/ 2K.The
eigenvalues of the equation, A® , are related to the 'y(i) ’s of eq. 2.16 by:

A0 = ¢y cose, (2.23)

The differences between the two cases in terms of their effects on the A matrix will

now be examined. Since the energy of the electrons is very high, the Ewald sphere is actu-
ally very flat on this scale. The curvature of the Ewald sphere shown in Figs. 2.1 and 2.2 is
greatly exaggerated. By comparing the two figures, and taking into account the difference
in the definitions of the deviation parameter, s, in the two cases, it can be seen that the
diagonal elements of the A matrix in eq. 2.22, A, = 5008 8, are actually quite close to

the diagonal elements of A ineq. 2.20, (A = §. This is especially true for small 6,,.

)
88’ s
Since the A matrices are very similar, it would be expected that the eigenvalues would be

quite siniilar in either case.

ie ys(i) =2 ® = 4O cosf,
Therefore the 'y( Y in the non-symmetrical Laue case can be-quite different from the 'ys(i) in
the symmetrical Laue case, as would be expected from a comparison of Figs. 2.1 and 2.2.
At this point, it would seem that the two cases would lead to very different results.
However, it will be shown later that what is important in terms of image contrast is the
factor E(‘) + (Fex — ten) » Where I, defines the point on the entrance surface where the
electrons enter the crystal, and t,, is the point on the exit sutface where the electrons
emerge from the crystal. Therefore, I, — T, is a vector in the direction of K, which is the
direction of propagation of electrons in the crystal after refraction by the mean inner poten-

tial of the crystal, U,.

= Po—fal @ g, 404.5)

-14-
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The important term involving y(i) is, therefore:

> >

Tex ~ Ten
K]

in the non-symmetrical Laue case, or:

(Y(l) fi- K) = ﬁlex - i.enlly(‘) COSGO

> >

Tex ™ Ten|
IK!

in the symmetrical Laue case.

N K, . . . . . .
('Y(‘) z-K) = fl'rex—renlys(‘) = lrcx "rcnlys(l)

Since these terms are usually quite similar, the symmetrical Laue approximation
usually gives good results. Saldin, et. al.’, using a different formulation of the dynamical
theory, have shown that when only two beams are taken into account, the symmetrical Laue
approximation leads to only small errors for angles of incidence of upto ~ 70°. There are
cases, however, where this assumption can give poor results. One possible cause of such
problems is the fact that the Ewald sphere is not completely flat. Thus, for large values of
0, there can be significant differences in the diagonal elements of the A matrices in the
two cases. Another problem is that although the Ewald sphere is quite flat on this scale, it
is not always perpendicular to the Brillouin zone boundary. Therefore, in regions of recip-
rocal space where the angle between the Ewald sphere and the zero order Laue zone is
reasonably large, the assumption that (sg) SEsgcos 6, breaks down. Sheinin and Jap8 have
shown that the assumption of symmetrical Laue conditions can lead to poor results in these
cases, and Kim, Perez and Sheinin® have demonstrated this experimentally. However, as
long as the component of K which is parallel to the zero order Laue zone is reasonably
small, this will generally be a problem only for weak beams which have large deviation
parameters. Since these reflections generally have a small effect of the calculations which
will be done in this thesis, symmetrical Laue conditions will be assumed for the remainder
of this thesis and the subscript, s, denoting the use of this approximation, will be dropped.
The use of this assumption will result in greatly simplified equations in the following
chapters.

2.1.5. Calculation of Bloch Wave Excitation Coefficients

If a total of N beams are taken into account in the eigenvalue equation, 2.20 or 2.22,

-15-
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then N different eigenvalues will be found, and hence, N different solutions for the wave
vector, k, which are labelled, E(l) . There will also be N different eigenvectors, each of
which corresponds to a different wave vector, l?(l) . Therefore, there are N different Bloch
wave solutions to the Schrodinger equation which have been completely defined. The total
wavefunction of the high energy electrons in the crystal will, therefore, be a linear combi-

nation of these Bloch wave solutions as given by eq. 2.11.

In section 2.1.2, it was shown how, by applying the boundary conditions at the
entrance surface, a set of equations involving the excitation coefficients could be derived.

These equations, which are given in eq. 2.14, can be written in matrix form:
CEX =E, (2.249)

where C is the matrix whose columns consist of the eigenvectors derived from eq. 2.19 or
eq. 2.20.

-~ —

(N~
C81 Cgl .........

(1) ~(2)
C= Cs; Cs:

exp@nik r, ) 0 0 o]
E - 0 expnikPr, ) 0 0
0 0 expnikPr_) 0
] 0 0 0 |
x) exp (27, Ton)]
x? 0
X=|y®| Eo= 0

If eq. 2.24 is multiplied from the left by E"'C”, the following expression for X is
obtained:

X = E'C'E, (2.25)

-16-
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If the origin is chosen such that V (f) = V (-T), it can be said that the crystal is centro-
symmetric and U, = U_,. In addition, if only elastic scattering is taken into account, the
crystal potential is real, V (f) = V* (), and so:

U, = U, = U,
Therefore, the A matrix in eq. 2.20 or eq. 2.22 is real and symmetric. In this case the matrix

C of normalized eigenvectors is orthogonal and so:

cl'=c" (2.26)
where CT is the transpose of C. The inverse of E is also given simply by:

exp(-2mik'r_ ) 0 0 o]

. 0 exp-2mik P ) 0 0
0 0 exp(-2mik . ) 0

] 0 0 0 |

Therefore, when the matrix multiplication in eq. 2.25 is done, the following set of expres-

sions for X(i) results:
x® = C((,i) exp [21ti (X, - kf)) Ten 1] (2.27)

or, in the symmetrical Laue approximation:

X0 = cWexplamiG-k) -fur] (2.28)
2.1.6. Diffracted Beam Intensities

Now that the excitation coefficients have been evaluated, they can be substituted back

into eq. 2.11 to get the following:

S )
¥ = TCOCHexp(2nif - to)exp[2mik - (F-top) |exp2mig B (229)
oy

The different terms can now be separated according to the directions that the different

waveés are travelling:

¥® = To,0 (230)
g
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where

o3 » - » i i . > (i) > »
0,) = exp (2mif - Fop) exp (2ig - H YO CPexp|2nik - (-] 23D
i
The intensity of a particular beam at the exit surface of the crystal is then given by:

L) = 0,0

NG L (0) 2
= lZcé" c exp[21tik Gox =) |
1

(2.32)
since the first two phase factors are eliminated when multiplied by their complex conju-

gates.
The last factor can be further simplified. Since the vector, T, - f.,, is in a direction
very close to the Z direction, it can be assumed that:
oy —Ten = t2 (2.33)

where t is the thickness of the crystal. Therefore:

RO I

k - (rex‘ren) = K (}ex_i’en) +‘Y(l)i

Thus, eq. 2.33 can be written as follows:

N Y . . . . G 2
1) = |exp[2miK - (rex-r,_n)]Zcé‘)cé‘)exp(zmy(n)t)l
l 3

Since the phase factor exp [2miK - (f; —Top) ] can be eliminated, the final result is the

following:

. . . 2
L) = |zc(§" cPexp (2miy® t)| (2.34)
1
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2.2. Inelastic Scattering

2.2.1. Inelastic Scattering Processes

So far, it has been assumed that the electrons travelling through the crystal undergo
elastic scattering only. However, there are inelastic scattering processes which an electron
can undergo before emerging from the crystal. These processes involve exciting the crystal
into some higher energy state and, as a result, the incident electron is decreased in energy
by some small amount. One result of the excitations is that the process can scatter the elec-
tron out of the Bragg reflection and into the background of the diffraction pattern. If an
electron is scattered by a large enough angle that it no longer passes through the objective
aperture, it can no longer contribute to the intensity of the image formed by that reflection.

As a result, this process is commonly thought of as absorption.

The most important of these excitation processes are phonon excitation, plasmon
excitation, and single electron excitation. Plasmons are long wavelength density oscilla-
tions in the electron gas of the crystal. In travelling through a crystal, an electron can excite
a plasmon and, in the process, be scattered through a small angle. The mean free path for
this type of process is in the rar.ge of 1000 - 5000 A, and so it can be expected, in some
cases, that almost all electrons travelling through a crystal will be scattered in this way.
However, because of the long wavelengths of the plasmons, this process only scatters the
electrons through a very small angle. Thus, most of the scattered electrons will still pass
through the objective aperture of the microscope and contribute to the image, although they
may not lead to the same contrast as electrons which have not been scattered by this

process.

Single electron excitation is the process in which the high energy electron excites one
of the core electrons of the crystal into a higher energy level. This process will generally

scatter electrons through larger angles than plasmon excitation.

The third, and most important, excitation process is phonon excitation. This is the
excitation of displacement waves of crystal atoms or ions from their equilibrium positions.
This process causes a negligible decrease in the energy of the scattered electron, but the

angle of scattering can be relatively large. Therefore, the scattered electrons will usually

-19.
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not pass through the objective aperture of the microscope, and car: »= considered to be
absorbed. Since this scattering depends on the thermal motion of thic utoms &f the crystal,

it becomes more important as the temperatuie increases.

2.2.2. Inclusion of Inelastic Scattering in ¢ = Stantaxd
Theory

The phenomenon of inelastic scatterifig was first taken into account by Staier and
Molizre!!, who proposed the concept of a complex lattice potential in a purely phenc:ae-
nological way. The crystal potential is made zomplex by adding an imaginary part to the
Ug'sof eq. 2.4:

U, - U, +il,
Thus, the A matrix of eq. 2.20 or eq. 2.22 becomes complex, and the resulting eigenvalues,
y(i) , also become complex. Therefore:
7(i) N Y(i) + iq(i)

The effect of this change in the eigenvalues is that each Bloch wave is attenuated by the
term, cxp(—21tq(i) t), and so the image intensity is decreased with increasing thickness.
This will be shown in sec. 2.2.3.

This addition of an imaginary component to the potential was explained theoretically
by Yoshioka!2. Instead of solving the Schrédinger equation using a static potential, V (f),
as Bethe had done, Yoshioka used a potential which included the possibility that the crystal
itself could be excited into higher energy states and, therefore, the potential which the high
energy electron experienced would no longer be static. The result was a set of equations
very similar to eq. 2.6 but in which Uy, was replaced by Uy, + Dy, where Dy, was a complex
number. He then went on to calculate the contribution to Dy, from single electron excita-
tions for MgO.

Since Yoshioka’s work, it has been found that the real part of Dy, is quite small
compared to Uy, and it is usually ignored. Several authors have since calculated the contri-
butions of the various excitation processes to the imaginary part of the potential,
Im (Dg) = Ug'. Humphreys and Hirsch!3 calculated the contributions to Ug' from single
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electron excitations and phonon scattering for several crystals and found that phonon scat-
tering was the most important process by far, except for very small values of g, and, in
particular, for the g=0 term, U,". Radi™ calculated the contributions of all three major
excitation process on Us' for many different crystals. He also found that phonon scattering
is dominant for all g+ 0. The U, term is not important for the diffraction contrast of an
image since it uniformly attenuates all of the Bloch waves and does not affect the form of
an image. For this reason, the contributions from single electron excitation and plasmon

excitation are now commionly ignored.

In order to accurately calculate the phonon contribution to Us" one must use calcu-
lations based on the phonon spectrum of the entire crystal. It is not possible, therefore, to
calculate it as a sum of the contributions due to all of the atoms in the crystal. However,
using the Einstein model, which assumes that all of the crysial ions vibrate independently
of one another, Bird and Kingls and Weickenmeier and Kohl'® have made available
program subroutines which can calculate approximate values of the phonon contribution to
the inelastic scattering factors. These factors permit the calculation of the phonon contribu-
tion to Ug' for any arbitrary crystal, rather than just the relatively few crystals for which
U, had been calculated in the past.

There is another effect of thermal diffuse scattering which does not involve the exci-
tation of phonons by the incident electrons. Rather, this effect is due to the thermal
vibrations of the crystal ions which are present even without the influence of the high
energy incident electrons. Thus, the atoms or ions at any particular time are not located at
their equilibrium positions, and so the Fourier expansion of the crystal potential given in
eq. 2.4 cannot be used without modification. The Fourier expansion used in eq. 2.4 can be
expressed in the following way:

Veq(i‘) = ;Veq'exp(Zuié %))

Since the positions of the atoms or ions are not constant, it is necessary to find an expres-

sion for the statistical average of the crystal potential, which does have the periodicity of
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the ideal lattice:
(V) = Y (V)expnig - ) (2.35)
g

where (V)8 = Veq'cxp(-%BI glz) (2.36)

and exp(-Blgl’/4) is the Debye-Waller factor, B = 8n*(u%) and (u?) is the average
squared displacement in a given direction of the crystal ions from their equilibrium posi-
tions. Therefore, the Fourier components are generally multiplied by the Debye-Waller
factor or, in the case of polyatomic crystals, are calculated using the Debye- Waller factors
of each atom in the crystal. This leads to a general decrease in the intensity of each Bragg

reflection and an increase in the background of the diffraction pattern.

2.2.3. Calculation of Intensi*v¥ Including Inelastic
Scattering

When inelastic scattering processes are included, the Fourier components of the
crystal potential become complex. As was indicated in the previous section, one effect of
this is that the A matrix in eq. 2.20 or eq. 2.22 now becomes complex. Thus, the assumption
made in section 2.1.6 of a real A matrix is no longer valid. The result is that C is a complex
matrix and it can no longer be said that C! = CT as was done in eq. 2.26. Therefore, the
matrix, C'1, in eq. 2.25 must now be calculated numerically by computer. When this is

done, the following expression for the excitation coefficient, X®, is obtained:

i - AR O BN
XD = Clexp|2mi G-k ) -t 237)
where Ci'll is the efement in the i™ row and 1%t column of C"1.

Therefore, the intensity at the exit surface of the g‘h Bragg reflection is given by:

. . . 2
L(tey) = lzc;,‘ c{exp (-2mq 1) exp (2miy® t)| (2.38)
1

where C; and Céi) are now complex numbers.
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2.3. Relativistic Corrections to Theory

The preceding theory is based on the non-relativistic Schridinger wave equation.
However, even electrons which have been accelerated through a potential of only 100 kV
have a velocity greater than half the velocity of light. As a result, the relativistic effects on
diffraction contrast can be expected to be quite significant. The dynamical theory of rela-
tivistic electron diffraction was first developed by Fujiwara!’, who applied Dirac’s
relativistic wave equation to the case of electron diffraction. His results were later
confirmed by Howie!8. Their results showed that the relativistic effect on diffraction
contrast can be taken into account by making two changes to the non-relativistic theory.

First, the non-relativistic electron wavelength must be replaced by a relativistically correct

one.

5 = gV - (2.39)

-12 [ 2
hyl-
A = A1+ -5 b
2myc
where 7‘0 = h/ (,IZmOcE) is the non-relativistic wavelength, 1ng is the rest mass of the
electron, v is the velocity of the electron, c is the velocity of light, and B = v/c.

The second correction which must be made is that the relativistic mass of the electron
must be used instead of the rest mass. However, since the electron mass appears in the
equations of the dynamical theory only as part of the Fourier coefficients of the crystal

potential, this correction can be incorporated into the calculation of U, as follows:

y = me =E.'2‘f Ve
BT 7 e hzm

Thus, the non-relativistic Fourier coefficient must be multiplied by the term (1 - Bz)

@2 1™

~l/c

The variation of U with electron speed given by eq. 2.42 has been verified experi-
mentally by Hashimoto, et. al.1%, Hashimoto?® and many others.
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3. Application of Theory to
Twinned Crystals

3.1. Twinned Crystals

3.1.1. Definition and Classification

A twinned crystal can be defined as any crystal which is made up of two or more
parts, each of which has the same structure and is oriented relative to the other parts
according to some symmetry rule. It is common to refer to one part of the crystal as the
parent crystal or matrix, and an adjacent part as the twin. The plane of contact between the
two parts is called the composition plane.

There are two basic symmetry rules or twin laws which can relate the orientation of
a twin to that of its parent crystal. The first and most common twin law states that the orien-
tation of the twin can be obtained by a reflection of the parent crystal about some plane,
called the twin plane, which has low, rational indices. A twin which is oriented according

to this law is called a reflection twin. Figure 3.1 shows a typical reflection twin.

The second twin law requires that the twin orientation be obtainable by rotating the
parent crystal by 180°, 120°, 90°, or 60° about some axis, with low, rational indices,
which is called the twin axis. A twin of this kind is called a rotation twin.

In cenitrosymmetric crystals, it can be shown that the operation of reflection across a
plane produces identical results to the operation of rotation through 180° about a twin axis
which is normal to the plane of reflection. Thus, crystals with this symmetry can loosely be
considered either reflection or rotation twins, although the twin axis may not have rational
indices. There is a slightly different classification which has come into use for the descrip-
tion of deformation twinning. Reflection twins, in which the plane of reflection has low
indices, are called type 1 twins. Since this operation can also be described as a rotation of
180° about an axis normal to the twin plane, these are also sometimes called normal twins.
In deformation twinning, one can define a direction of shear which is the direction the

atoms must move in the twinning process. Twins with a low index axis of rotation parallel
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\\— twin and composition plane

Fig. 3.1. Ret._ction twin

to the shear direction are called type 2 or parallel twins. Many twins, including all those
found in cubic crystals, can be described by both a reflection across a twin plane and a rota-

tion about a twin axis which is parallel to the twin plane. These are called compound twins.

When the twin plane (in the case of reflection twins) is also the composition plane,
the twin is called a contact twin and is said to be coherent. This same term is also loosely

applied to rotation twins which have a twin axis parallel to the composition plane.

3.1.2. Origin of Twinned Crystals

Twinned crystals can also be classified according to their origin. There are three
major causes of twin formation -- growth twins, transformation twins, and deformation

twins.

Growth twins are formed as a crystal grows either from the liquid phase or from
vapour deposition. Annealing twins, in which twins form during the growth of one grain at

the expense of another, can also be considered growth twins. A theory for the formation of
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growth twins has been put forward by BuergerZI. When an atom lands on a crystal surface,
its energy is the sum of the energies of the atom due to the potential fields of the other
atoms in the crystal. The lowest energy locations are those which lead to the continuation
of the regular crystal structure. A location corresponding to a twinned orientation has a
higher energy, but only moderately higher since its energy due to its nearest neighbours is
the same as it would be in the ideal location. Therefore, if an atom were to land in a twin
position, it would be in a small energy well, but it would likely soon lose its place due to
thermal agitation and atomic bombardment, unless it was immediately followed by other
atoms which also landed in the neighbouring twin positions. Thus, a high rate of addition
of atoms to the surface would increase the probability of twin formation by this method.
The chances of survival would also be increased if a cluster of atoms were to land in the
twin position, especially if it were quickly followed by other atoms or clusters arriving in
the twin positions. It would be expected that the energy barrier to the removal of a cluster
of atoms in the twin position would be greater if some of the atoms in the cluster were also
in, or very near to, their locations of lowest energy with respect to the rest of the crystal.
Thus, the more atoms in the twin which are in the same location as they would be if the
lattice had continued to grow ideally, the more likely it should be that twin continues to
grow. This condition is borne out in reality as sill be seen in the next section. Growth twin-

ning is common in FCC metals.

Transformation twins are formed when a crystal undergoes a transition from a high
symmetry phase to a low symmetry phase. In general, crystals which have high and low
temperature phases have a higher symmetry in the high temperature phase. i.e. the low
temperature phase is lacking some of the symmetry operations of the high temperature
phase. Therefore, when such a crystal is cooled through the transition temperature, there is
more than one orientation which a nucleus of the low temperature phase can have. The
nuclei will usually be located at the grain boundaries, and the transformation will spread
from these centers until the nuclei make contact with eagh other. If the nuclei which meet

each other are in different orientations, they are twins.

Deformation twinning is the process in which an external shear force causes the

atoms on one side of the composition plane to move to new positions. These positions
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correspond to an identical structure as the one on the other side of the interface, but in a
twinned orientation. Thus, each atom on the twin side of the interface moves parallel to the
shear direction through a distance proportional to the distance of the atom from the inter-

face. Figure 3.2 shows the atom movements necessary for deformation twinning. The open

o. '. ° 30.‘0.2
o. '... Ié (:o
° .'.. ‘glé‘ o ®
0. ® .. 3 ;2
o. * .. I(') I
° .' o S 0' o ®
° ¢ ? I' °

4 shear direction
twin plane

Fig. 3.2. Deformation twinning. The open circles indicate the positions of the atoms in the
untwinned crystal, and the closed circles indicate the atom positions after twinning.

circles indicate the positions of the atoms in the untwinned crystal, and the closed circles
indicate the atom positions after twinning. The arrows show the directions and distances
each atom moves in the process. As a mode of plastic deformation, twinning must compete
with slip, in which the orientation is the same on either side of the interface. Whether a
crystal deforms by twinning or by slip depends on the energy barriers which the atoms
must overcome to travel in the slip direction as opposed to the shear direction for twins.
Since slip requires only a small amount of energy in FCC metals, deformation twins are not

generally seen in these metals.
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3.1.3. Crystal Structures Likely to Exhibit Twinning

For any given twin law, it is possible to determine whether or not this will be a
frequent form of twinning by considering two properties of the twin structure -- the index
and the obliquity. In the previous section, it was suggested that twinning might be more
common if some atoms in the twin have the same positions as they would have in an
untwinned crystal. The index of the twin is the ratio of the total number of lattice points in
the twin to the number of lattice points which occupy lattice positions for the parent crystal.
Figure 3.3 shows a crystal in which some of the atoms in the twin have the same positions

as they would have in an untwinned crystal. The lattice points which are common to both
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Fig. 3.3. Twinned crystal with a coincidence site
lattice. The index of the twin is 3.

the twin and the parent crystal make up what is called the coincidence lattice. The obliquity

of a twin is the angle between the true normal to the twin plane and the lattice row (in which
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the lattice points are closely spaced) which is nearest to being normal to the twin plane. If
the obliquity is not zero, then the coincidence lattice 1§ slightly deviated at the twin
boundary. A survey of the known twinning modes suggests that the smaller the index and
the obliquity of a twinning mode, the more frequently the twin occursZ2, Thus, the more
atoms which are in or near their lowest energy positions, particularly near the twin
boundary, the more likely the twin is to form.

This concept has led to yet another system of classification cf twins due to Friedel?3.
The first category is twinning by merohedry. A merohedral crystal has a symmetry which
is a subgroup of the symmetry of the lattice. For example, Figure 3.4 shows a lattice which

is cubic even though the structure itself does not have 4-fold symmetry. Thus, after under-

® o + ® o

o o * o ®

Fig. 3.4. A merohedral twin. The lattice has cubic symmetry, but the struc-
ture does not. The open and filled dots represent different kinds of atoms.

going a twinning operation, the crystal has a new orientation but the lattice is completely
unchanged. Therefore, the index of the twin is 1 and the obliquity is 0. In such a crystal, the

reciprocal lattice of the twin would be identical to the reciprocal lattice of the parent crystal

-29.
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or matrix, and the coincidence lattice.

The second type is twinning by reticular or latiice merohedry. This is the case in
which the coincidence lattice exists, but is not identical with the crystal lattice of the
untwinned structure. In other words, the index is greater than 1 and the obliquity is 0. Thus,
the reciprocal lattices of the matrix and the twin will have some common points but most
points will be uniquely due to one crystal or the other. This is a common form of twinning

in cubic crystals.

The third type is twinning by pseado-merohedry. This is very similar to twinning by
merohedry except that the lack of a certain symmetry element in the crystal structure has
resulted in a lattice which also lacks the symmetry element. However, the lattice is still
nearly symmetric with respect to this symmetry element. This lack of perfect symmetry
leads to a non-zero obliquity. As a result, the reciprocal lattice of the matrix will only have
one plane in common with the reciprocal lattice of the twin, but the rest of its points, at least
t.:ose with low indices, will be almost common with one point in the twin reciprocal lattice.
The common plane is perpendicular to the twin plane. This type of twinning is common

among minerals and artificial compounds23.

The last type is twinning by reticular pseudo-merohedry. This form is similar to retic-
ular merohedry in the same way that pseudo-merohedry is similar to merohedry. The index
of this kind of twin is greater than 1 and the obliquity is greater than 0. The reciprocal
lattice of the matrix will again have one plane in common with the twin reciprocal lattice,
but in this case, the reciprocal lattices will have many points which are neither common nor
almost common. There are good review articles on twinned crystals by Cahn?* and by
Clark and Craig?.

3.1.4. Examples of Twinned Crystals

It is now useful to give two examples of twinned crystals, the second of which will
be referred to often throughout the remainder of this thesis. The first example is the face
centered cubic system (e.g. copper), which has compound twins with a twin plane of the
type {111). These are growth twins and twinning is by reticular merohedry. Twinning on
the {111} plane in FCC structures means that the normal stacking sequence, ABCABC
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(see Fig. 3.5) is reversed at some point, for example ABCBACBA where the C layer is the

Fig. 3.5. Stacking sequence for FCC crystals
looking down the [111] direction.

composition plane. Since the twinning is by reticular merohedry, the reciprocal lattices of
the matrix and twin will have some points in common, but most matrix points will not coin-

cide with twin points and vice versa.

The second example will be the high temperature superconductor, Y;BayCu307.5,
where & will generally be between 0 and 0.5. This compound undergoes a transformation
from a high symmetry phase to a low symmetry phase at ~700° C. The high symmetry, high
temperature phase has a tetragonal structure with lattice parameters of a=3.85A and
¢=11.70A. At ~700° C, it transforms into an orthogonal structure with a=3.824, b=3.89A,
and ¢=11.68A2, This slight change in the symmetry results in the formation of transfor-
mation twins. The twins are of the compound type with twinning planes of the type {110}.
Twinning is by pseudo-merohedry. As a result, the reciprocal lattices of the matrix and twin
have one plane in common, and most reciprocal lattice planes in the matrix have one row
of points in common with the twin reciprocal lattice. In addition, every matrix point with

reasonably low indices is almost coincident with a twin point. Figure 3.6 shows the [001]
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planes of the matrix and twin reciprocal lattices superimposed in the correct orientation for
a twin plane of (110). This is very similar to the diffraction pattern one would observe when

O S T - B

+  matrix reflection
X  twin reflection
® common reflection

Fig. 3.6. Superimposed [001] planes of the reciprocal lattices of two
Y BayCu307._g crystals which are in a twin orientation to each other with
a twin plane of (110).

looking at such a twin from the [001] direction in the matrix crystal. As a result of the near
coincidence of the points, any diffraction contrast image formed by selecting one of the

beam directions will actually have contributions from more than one beam having different
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directions. Therefore, there will be interference effects between these different waves
which will be very important in image contrast. They will be discussed in more detail in
sections 3.4, 4.2.2, and in Chapter 6.
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3.2. Diffraction Contrast From Twinned
Crystals

3.2.1. Early Dynamical Theories of Twin Boundary
Contrast.

When an electron beam passes through a twin boundary, each reflection which is
excited in the upper portion of the crystal can in turn be reflected into a different direction
in the lower crystal. For simplicity, the upper crystal will be referred to as the matrix and
the lower crystal as the twin, as shown in Figure 3.7. As a result, the diffraction pattern

——— Path of incident electrons

Matrix twin boundary

/ Twin
v

Fig. 3.7. Positions of matrix and
twin crystals.

obtained from a twin boundary will be more than a superposition of the diffraction patterns
which one would obtain from either crystal alone. Any combination of matrix and twin
reflections can appear as one of the reflections in such a diffraction pattern. Fig. 3.8 shows
the diffraction pattern of a (111) twin boundary in copper. The zone axis of the matrix is
(123) compared to (321) for the twin. The reflections originating from the matrix alone are
labelled g;, while those from the twin alone are labelled h;. Reflections common to the
matrix and twin are labelled ;. The reflections which can arise only as a combination of

matrix and twin reflections are labelled f;.

The problem of calculating the diffraction contrast obtained from a twin boundary
has been studied by several authors. The earliest attempts were based on the assumption

that only two beams were excited in the two crystals and that the excited reflections were
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Fig. 3.8. Diffraction pattern from a twin boundary in copper. The zone axis
of the matrix is [123] and the twin plane is (111).

the same in the twin as in the matrix!2728, In general, however, this condition will not be
satisfied and so a theory is needed which can take into account many beams in both the
matrix and the twin. The first such many-beam theory was developed by Sheinin and
Corbett> and confirmed experimentally by Corbett and Sheinin?. In this version of the
theory, the wavefunction of the electrons in the matrix was calculated at the twin boundary.
This wavefunction would be a superposition of Bloch waves travelling in directions

a () a 2. . . . .
k +g, where g is a reciprocal lattice vector in the matrix. Each of these waves was then

-35.



36

considered to be the incident wave on the twin crystal. After equating the two wavefunc-
tions at the twin boundary, the intensity of a particular reflection at the bottom surface of
the twin was found in the usual way. Thus, in order to calculate the intensity due to the
reflection f; in Fig 3.8, the matrix reflection, g5, was allowed to be diffracted by the twin
reflection, hy, into the direction, f} = g5 + h;. However, a problem can arise in this kind of
treatment when there are common reflections present, as in merohedral and reticular mero-
hedral twins. The problem is that g5 + h; may not be the only combination of matrix and
twin reflections which will result in f;. Since the common reflections are both matrix and
twin reflections, g5 +q, is still a matrix reflection, and h; - q5 is still a twin reflection. If the
matrix reflection, g + q is further diffracted in the twin by the reflection, h; - qo, the
resulting direction is g5 +q + h; - q3 = g5 + hy =f;. Thus, the image intensity due to the
reflection, f}, will have contributions from more than one matrix reflection. Even if there
are no common reflections, but only pseudo-common reflections as in pseudo-merohedral
or pseudo-reticular merohedral twins, the same problem will arise. By referring to Figure
3.9, it can be seen that the reflections g; and hg are almost common. This means that for
any given reflection, for example f; = g3 + hy, there will be another reflection which is
almost common with it, in this case f =gy + g + h; -hg=g3 + h; +(g; - hg) =gz +hy = 1.
Thus, if the objective aperture is centered around the reflection, f;, the image intensity will
also have contributions from f;. This does not mean that this form of the theory cannot be
used. If the aperture is centered around a reflection which originates from the matrix reflec-
tion, g3, the theory of Sheinin and Corbett can be used without modification as long as no
reflections of the form g3 + q;, where q; is a common or pseudo-common reflection not

equal to 0, are excited in the matrix crystal.

There are times, however, when such matrix reflections will be excited, and so a
theory was required to account for this possibility. Sutton and Pond solved the problem by
simply taking a linear superposition of all of the different possible contributions to the
diffracted beam amplitude (which result from common, but not pseudo-common, reflec-
tions). In other words, if ¢83 +h, is the diffracted beam amplitude as calculated by Sheinin
and Corbett, which results from the matrix reflection g3 being further diffracted in the twin
by the reflection h;, then the total diffracted beam amplitude for the reflection f; in Fig. 3.8
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Fig. 3.9. Diffraction pattern from the (110) twin boundary of Aragonite, which is the
orthorhombic form of calcium carbonate, CaCO3. The twins in this crystal are
pseudo-reticular merohedral twins. The matrix zone axis is {001].

is given by:

¢f1 - ;¢(83+‘Ix) +(h,-q)) @.D

where the summation is over all common reflections, g;, such that the matrix reflection, g3

+ q;, is sufficiently excited to be taken into account.

This approach also has a number of shortcomings. The first one, which was pointed

out by Gomez, et. al.30, is that in this method, one A mz7rix must be diagonalized for each
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term in eq. 3.1. They also criticized that the matrix equation used by Sutton and Pond,
which is similar to eq. 2.20, was not strictly correct for the following reason. The equation

which leads up to Sutton and Pond’s matrix equation is the following:

> Y 2 - -
2[[1(2- k+g+h) JC 0t 3 Uh,Ch_h.]exp[’lzti(k+§+h) =0 (2
h h"20

However, the exponential terms are no longer all different, since g; + h; can be the same as

g + hy for certain reciprocal lattice vectors, g;, 8, h;, and hy. Thus, it no longer follows that

- 2 - 2
[K2- (k+8+8) ]Cppp+ 3 UpCyop = 0 33)
h'=0

However, it will be shown later that the A matrices used by Sutton and Pond can give
correct results, provided that the correct twin reflections (or enough twin reflections) are
included in the formation of the A matrices. Gomez et. al. therefore suggested changes to

the theory which are similar to those which will be demonstrated in the next section.

Another criticism to the approach of Sutton and Pond was put forward by Gratias and
Portier!. They argued that some of the dynamical couplings of beams can be ignored in
this method. In fact, this problem would only arise if the number of twin reflections
included is quite small and the same twin reflections are used in combination with each
matrix reflection. For example, if the matrix reflections g, g3, and g + q = g4 in Fig. 3.8
were included along with the twin reflections hy and h,, the reflections f; and f5 should be
dynamically coupled with f3 and f7, but the method of Sutton and Pond would not take this
into account. They have, therefore, derived their own theory which is based on a different
formulation of the dynamical theory of diffraction contrast. It can be shown, however, that
this version of the theory gives the same results as the theory which will be presented in the

next section”.
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3.3. Twinned Crystals Having Common
Reflections

The present version of the theory of diffraction contrast from twin boundaries was
derived by Sheinin and Perez’. They incorporated the idea of the dynamically coupled set
into the Bloch wave approach to the dynamical theory of electron diffraction. Figure 3.10
illustrates the concept of the dynamically coupled set. Uniike Fig. 3.8, any arbitrary reflec-
tion in the twin is now referred to by the symbol, ‘. Ali of the reflections which are
connected by lines in the figure are dynamically coupled to each other. This is because they
are all related to each other by a twin reciprocal lattice vector. Thus, all of these reflections
can be considered to be in the same dynamically coupled set. Clearly, in this diffraction
pattern, there are only three dynamically coupled sets, one containing g, one with g4, and
one with gs. The set of reflections labelled by gp, will be defined to consist of only these
three matrix reciprocal lattice vectors. In the general case, the gp's will span the set of
dynamically coupled sets. The set of qp,’s will be the entire set of common reflections.
Thus, the set of reflections defined by gp + gy, consists of all possible matrix reflections.
The set of hy’s will be defined to consist of all twin reflections. Therefore, any reflection

can be expressed as a sum of reflections in the following way:

f, = g+ qn+ h,
for axample:

fg = g3+qy+h,
swd
However, these expressions are not unique. For example, fg can also be expressed as
follows:
fg = g3+ (g9 +qy) + (hy - q))
= g3+qy+hy
Thus, there are as muny different ways to describe each reflection as there are common

reflections. This corresponds with the fact that each reflection car originate from this same
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Fig. 3.10. Diffraction pattern from a twin boundary in copper. The zone axis of the
matrix is [123] and the twin plane is (111). The lines indicate those reflections
which are in one dynamically coupled set.

number of different matrix reflections.

A Bloch wave which describes electrons in a particular dynamically coupled set can
be defined as follows:

Gy _ @ (i) T N
b = expl2mi(k +8,) -r]ggcgw neXP (2T @ th) 1] (G4

-40-



41

where the sum over m is over all reciprocal lattice vectors in the coincidence lattice and the
sum over n is over all reciprocal lattice vectors in the twin. Since each gy, is also a recip-
rocal lattice vector in the twin, this function has the periodicity of the twin crystal and is,
therefore, an acceptable Bloch wave. For simplicity, it will be assumed at first that only
elastic scattering processes are important. The correction for the inclusion of inelastic scat-

tering processes will be made at the end of the calculations.

The dispersion surface diagram for the twin is shown in Figure 3.11 for the case
where the two matrix wave vectors, lAc,(nla) +gand fc,(:,) + g, are being further diffracted by
the twin crystal. The origins cf these two vectors no longer lie on the dispersion surface
since the dispersion surface has now been rotated (just as the twin is rotated compared to
the matrix) and it is a different portion of the surface which is shown in the diagram. The
boundary condition at the twin boundary requires that the wave vectors in the twin must
have the same component tangential to the twin boundary as the matrix wave vectors from
which they originate. Thus, a line normal to the twin boundary, is drawn through the
starting point of each wave vector in the matrix, l?,f,l: + g, and the points where it crosses
the different branches of this new region of the dispersion surface are the starting points of
the twin wave vectors, l?t(‘:, » , where j runs from 1 to the number of branches of the disper-
sion surface. In general, the number of branches which are taken into account is the same
as the number of reflections that are used in the calculations. Thus, if Ny is the number of
matrix reflections in a particular dynamically coupled set to be taken into account, and N,
is the number of twin reflections, there will be Ny x N; Bloch waves for each dynamically
coupled set in the twin, each of which involves N, different wave vectors, I?,(‘:,'J) + §p + ﬁ,,,
where n=1,2,...N,. This obviously leads to a very complicated set of equations. This situa-

tion can be simplified considerably by the use of the column approximation.

3.3.1. Column Approximation

The column approximation is based on the idea that all of the contributions to the
wavefunction of the high energy electrons at a point on the exit surface come from 2 very
thin column of the crystal as shown in Figure 3.12. The justification for this comes from the
very small Bragg angle, 6, for electrons, which is of the order of 102 radians. Figure

3.13, which is due to Takagi32, illustrates the relation between the Bragg :igle and the
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Fig. 3.11. Dispersion surface diagram for the twin crystal in the two beam approximation.
it is the normal te the crystal entrance surface and iy, is the normal to the twin boundary.
A line parallel 1o ii,, is drawn through the starting point of each matrix wave vector. The
wave vectors in the twin which originate from this matrix wave vector have their starting
points on this line. There should also be vectors of the type, I'E,(\:; L g, which end at the
origin, but these have been omitted for simplicity.
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Fig. 3.12. Diagram illustrating the column approximation.
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Fig. 3.13. Tlustration of the relation between the validity of the column approximation
and the small Bragg angles, 6g, for high energy electrons.
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column approximation. The figure is based on the two-beam approximation, but the idea
still applies in the case of many beams. It can be seen from the diagram that all of the
contributions to the wavefunction at B actually come from a very slender triangle, rather

than a column.

The effect of this approximation is that the position of a crystal defect, in the present
case the twin boundary, can be assumed to be at a constant depth throughout the column.
Thus, the twin boundary can be assumed to be parallel to the entrance surface of the crystal,

as shown in Figure 3.14. The wavefunction at the bottom of a different column can be

Origin
/ entrance
! surface
matrix tm t| /T

twin
/ boundary

twin t

exit
surface

Fig. 3.14. Assumed twin boundary orientation under the
column approximation.

calculated by simply using the new values for t;, and t,. This simplifies the calculations
considerably since now all of the wave vectors still have their origins on a line drawn in the

z-direction through the origin of %, as shown in Figure 2.2.

Therefore, there will be only one Bloch wave, bp(i), for each branch of the dispersion
surface, to describe high energy electrons in a particular dynamically coupled set. As a

result, the total wavefunction of high energy electrons in the twin crystal is given by:

¥ = ;gx‘” be (3.5)
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3.3.2. Solution of the Schrédinger Wave Equation

Once again, the Schridinger equation, given in eq. 2.1, must be solved. However, this
time the wavefunction given in eq. 3.5 and the twin potential are used. The potential in the

twin is giv by:

h B
V() = Zn—eJZUhjexp (2mih; - ) (3.6)

It is possible that the twin crystal is shifted, relative to the matrix, by a rigid body

translation vector, T, as shown in Figure 3.15. The Fourier coefficients, U, , in eq. 3.6, are
}

matrix twin

o ® O
® ® O OO
° " O O
® O
° G\go OO
° ¢ O
o ® O 0O
° ® o 0
° ¢ O O

Fig. 3.15. Nllustration of the rigid body translation vector, T.

calculated assuming that the twin crystal is positioned in a certain way, relative to the
matrix. If it is assumed to be positioned as shown in Fig. 3.1, but it is actually positioned as
shown in Fig. 3.15, the resulting solution will not be valid. This is taken into account by

writing the actual potential, V’ (1), in terms of the potential for no translation vector,
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V (t) , which is given in eq. 3.6. This is done i the following way:

V' (i+T) = V()
Therefore,

sy » o2 h2 D s Y
V() = V(E-T) = 3 —Y U, exp2nib;- (-T)] €X))
J

Similarly, the new Bloch function must be written as:

i . a (i) 2 A i JEPIEY > [
b'® = exp[2mi(k +p) - (-T) ]nac;;’qw wexp (21 (G +5a) - (=T 3:9)
When the potential and the total wavefunction are substituted into the Schrodinger
equation, the following equation results:

. 2 .
"(l) 2 2 > (¢ i . al 2 > > 2 =]
Y [KZ- (k  +8p+8m+hy) ]ngwhnx(')exp[Zm(k +Bp+ 8 +hy) - -1 ]
i,p,m,n

(i) (i) coal e ay e A
+§J.',Uh,Cg:,q,,.h,X Dexp[2mi (k + 8, + 8+ ha+hy) - G-T)] = 0

In both summations, there are many terms which have the same exponential term. Any
reflection, fy, can be expressed as gp+hy. Such a reflection will now be labelled as f, 5. Any
other combination of matrix and twin reflections which results in a reflection travelling in
the same direction can be described as f;, ;=(gy+qm)+(hy-qm) for any common reflection,
Q- Although g,+hy and (gp+qm)+(hy-qyy) represent beams travelling in the same direc-
é:,) (3n+qn?)» (hy=ay)?
However, all of the terms which have the same exponential term can be collected together

tion, the Bloch wave amplitudes, Cé.?qm.h. and C are not the same.

in the following way:

. 2 i
2 o) () @)
)y ([K - &7+, 4h0 |[ZCha <h..-q.,.>]+j;)u,,j[§c8rqw (hn_qm_hj,])

i,pn

- R N
xXDexp[2mi(k  +g,+hy) - G-T) ]| = 0

Once again, this equation must hold for all vectors, T, and so the coefficients of the
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exponential terms must all be zero.

NG N ct
[K2_(k +gp+hn)][§c Qe (B, - q_)J+2Uh[ gwqm,(,,-_q;hj)]=q3,9)

j»0
It is now helpful to make the following definition:

@ (i)
Cp.n ZCS,» Qe (e~ qg)

and

@ _ve
Con-j = %Cs,.qm.(h.-h,--q.o

Using this new definition, eq. 3.9 can be rewritten as follows:

NI
[Kz- & +g,+hy) ]c“’ +2Uhc;",, ;=0 (3.10)

Since the second term is summed over all twin rccnprocal lattice vectors, the summation

can be done over a different reciprocal lattic= vector, h_’, which is related to h; by:

hn' = hn"'hj = hj = hn_hn'
Equation 3.10 then becomes:

NN
[Kz- (k +g,+hy) ]c“’ + Z Uy G =0 (3.11)

The second term in this equation is what couples one equation to all of the others.
However, it can be seen that the summation in this term actually only covers other reflec-
tions in the same dynamically coupled set. This reflects the fact that there is no dynamical
coupling between reflections which are in different dynamically coupled sets. The effect of
this is that there is one set of equations for each dynamically coupled set and each set is
independent of all of the rest. Each set of equations can be expressed as a matrix equation,

just as was done in sec. 2.1. For example, the matrix equation for the 2nd dynamically
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coupled set would be the following:

- . ) -
NQ) N -
2 a
K - (k +g2+hl) Uhl—'hz Uhl—hS ......... Cé:)l
G2 a2 )
Uy, _n, K= (k+Ey+by) Up, -1, Caa| _ 0
. > s 2 i)
AR L C
Uh;_h!‘ Uhj"hz & (k - g2+h3) 2,3
These matrix equations can be put into the more familiar form involving the A matrix:
(i) _ D0
AC = Y C (3.12)
where:
Sgp+ hl Uhl ‘hz Uhl - h3 .........
Up, -, Sg,+h, Up, —n,
Ap = |Uy _n, Up, -, Sg,+h, 3.13)
and

Each A matrix has different values on its diagonal and, therefore, each matrix egquation
represented by eq. 3.12 will have a different set of eigenvalues and eigenvectors. It is
important to realize that the eigenvectors of one A matrix are in no way related to those of
a different A matrix. In other words, C;i) will not be the same as C:i) for any given value
of i, nor will it in general have the same number of components. Therefore, any summation
over i, i.e. over Bloch waves for a particular dynamically coupled set, should properly be

over i, since each dynamically coupled set has a different set of eigenvalues and
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eigenvectors.

Total electron wavefunction, using this new convention, can be rewritten as follows:
_ (i) #(i)
¥ = ;}l:x b,
|4

= 2 ZX("’)C("’) h“(:xp|:2m(k ")+gp+qm+hn) (r— T)]
pmn i,

1 a(.) ES =Y
- 3 XO[EA, o o lan 6 480 0]
P, m

If this wavefunction is separated in terms of its component waves which are travelling in

different directions, the following is obtained:

! 2¢fp,n (3.14)
pn

where

f = ¢p . zx(lp)c( )exp[ZEl (k +En) . (l‘-_"f‘):] (3]5)

P8

and where from this point forward, the symbol, ¢. , will be replaced by the symbol, ¢_ ,
rP-" pn

for simplicity.

This wavefunction must now be equated to the wavefunction in the matrix at the twin
boundary. When this is done, the excitation coefficients, x e , can be determined. The
method involved in this calculation can be found in Appendix A. In the end, the following

expression for the twin wavefunction amplitudes is achieved:

LY

0, = exp (2ni} - Fop) exp [27iK - (F—1fop) Jexp [2mi (B, +hy) - 1]

X Z ‘l’gp,rquI(,"’,szé Jexp [2%i (G, - hy) - T]exp [21:17( s c(F=Typ) )
e (3.16)
where C;(,'P,zm is the Bloch wave amplitude (in the p® dynamically coupled set) for the twin

reflection, g, +h, ,and hy =q,. Also,

®, 1o ZD‘”DQ’LQ exp (2miy)e,) (3.17)

where 7‘5": is the eigenvalue of the J“‘ Bloch wave in the matrix and the D ;j) ’s are the wave
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vector components in the matrix. This expression for @ 2 is the same as the one given
P

Gy
in eq. 2.34 for the amplitude which was used to calculate Igp rqy"
Thus, the intensity which results from allowing this set of refiections, which are all

travelling in the same direction, to pass through the aperture is given by:

» 2
Ip,n = |¢p.n (rex)l
where ., is a vector which ends at the point of exit of the electrons on the exit surface.

Therefore:

g . . g2
Yo, ¥ clPexp 2 (4n~ha) - Tlexp 2mivPr)|  (3.18)

+qy Py
lp, m

lon =
where t, = (T, — 1) - Z is the thickness of the twin crystal in the z-direction.

When inelastic scattering is taken into account, this equation must be altered to give

the correct intensity. The intensity, including inelastic scattering, is given by:

_ -1 G a2 (i) () [
Lo = 2¢g,+q Ci y Co % exp [27i (§, — hy) - Tlexp (=2nq * t,) exp 2miy »'t,)
ip.m "

i,pm>pn
(3.19)

where C;lp' m is the element in the ip‘h row and the (N, x (p—1) +n,) th column of C!

and (Dg is given by:
P m

+q

gp+qm ma™m m

By o, = YD;/DY, . exp(-2rqPt,) exp (2miyihe,) (3.20)
3

where t, is the thickness of the matrix crystal in the z-direction, and y,g: + iq(j) is the

ma

eigenvalue of the j"‘ Bloch wave in the matrix crystal.
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3.4. Twinned Crystals Having Almost
Common Refiections.

In section 3.1.3, it was stated that pseudo-merohedral twins and pseudo-reticular
merohedral twins will contain aimost common, or pseudo-common reflections. in the
former case, all of the matrix reflections will be common or pseudo-common with a twin
reflection. As a result, any image formed by allowing a particular reflection to pass through
the objective aperture of the microscope will generally also have contributions from other
reflections which also pass through the aperture but which are not exactly common with the
first. In the case of pseudo-reticular m=rohedral twins, there will be some reflections which
are neither common nor pseudo-common. This is the situation shown in Fig. 3.9. However,
in general, if the aperture is centered around the reflection, g+h, and there exists a pseudo-
common matrix reflection, g’, such that the matrix reflection, g + g’, is excited strongly
enough to be included in the calculations, there will be at least one other, non-common.
reflection which contributes to the image. If the twin reflection which is almost common
with g’ is written, h’ = g’ + 9, then the reflection, f = g+h+g'—h’ = g+h -39, will
be close enough to g+h to pass through the objective aperture.

The wavefunction of all electrons which pass through the aperture will, therefore, be
a linear superposition of the wavefunctions of the diffracted beams which pass through.

These wavefunctions are given by eq. 3.16.

¢’p' n - 2¢pl' n’ (3-21)
pl
where the summation is over all scflections which pass through the aperture.

The summation is aver p’ only, since only reflections which are in different dynam-
ically coupled sets can be almost common with each other. As an example of this, Figure
3.16 shows the diffraction pattern of YBayCu307._s. The zone axis of the matrix crystal is
[001]. It can be seen that there is one row of common r- dections in the diffraction pattern,
and this row is perpendicular to the twin plane. Therefore, there are as many dynamically
coupled sets as there are rows of matrix reflections parallel to the common row. The matrix

reflections in one dynamically coupled set are indicated by the dashed line. If the objective
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Fig. 3.16. Diffraction pattern from a (110) twir boundary in Y;Ba;Cu304.5. The matrix
zone axis is [001) while the twin zone axis is [00T]. A typical dynamically coupled set is
indicated by the dashed line.
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aperture is positioned around a set of reflections as shown by the circle in the figure, each
plus sign in the circle represents a reflection which gives a contribution to the summation
in eq. 3.21. In general, if the aperture is placed around the reflection, fp.ns the summation
will have contributions from any dynamically coupled set which has at least one reflection

which is pseudo-common with a reflection in the set defined by &

Equation 3.21 can be expanded to give:

¥ n = €XP (21X - Fer) exp (21K - 1) Yexp [27i (8 + i) - i1
P

x22¢gp+qm o7 Cyraexp [21i (3~ B) - Thexpl2miv™ (1,-1,)]

where t, is the depth of T in the crystal as shown in Figure 3.14, and h_. is the twin reflec-
tion given by ﬁnr5§p+ﬁn—§p’. The term exp [2i (8, + hy) - ] cannot be dropped
now, since it is different for each term in the summation over p’. Therefore, the intensity
which results from this set of reflections passing through the aperture is given by:

—

2G|’

};exp[21n(gp by - bl (Zztbgp +a.Cr rnmC‘S i

a -2 1) 2
X exp[2mi (d, - hy) - TIexp (2miy'*'1))
(3.22)
where d)g e is given by eq. 3.17. When inelastic scattering is taken into account, this
p m
equation becomes:

= ZCXP [2mi (ép"*‘ l-;n') ) i'ex] (zz¢gp'+qmci—,:. P, "mclg'l." 2'
P lpo m

> Y 1. i 2
x  exp[2mi (3, - bu) - T1exp (-2nq"* 1) exp 2miy 1))
(3.23)

where @ 8+ is given by eq. 3.20.

Equations 3.22 and 3.23 both have one term, exp [2rxi (ép.+5,,r) +To,}, which

seems to depend on the choice of the origin. However, this is not the case as long as the
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choice of origin is used consistently throughout the calculations. The Fourier coefficients,

Uy, which are used to calculate ] , are calculated assuming a certain origin. This

gp' + qn'
origin usually coincides with the location of a certain atom in the unit cell. For example, in
the superconductor YBayCu307_s, the origin is chosen to be one of the copper atoms, as
shown in Figure 3.17. Therefore, the origin must be chosen to be at one of the lattice sites

which correspond with this atom.

The origin dependent term can be split up into a product of two terms:

exp (2Migy - T,) exp (2mihy - I,y

The first term has the periodicity of the matrix crystal. i.e.

exp [2migy - (Fop +ud+vb+wé)] = exp(2midy - k)
where 4, b, and ¢& are the primitive lattice vectors of the matrix. Therefore, any point in
space, which differs from the position of one of the corner copper atoms by a matrix lattice
vector, can be chosen as the origin and will give the same result for the term,

exp (2migy - Tox) -

Likewise, the twin Fourier coefficients, Uy, are calculated assuming that the origin
coincides with the same corner copper atom. Any point which is on the lattice defined by
these copper atoms can be chosen as the origin, and will give the same result for the term,
exp (2niﬁn' - T,,) - The problem is that the lattice of corner copper atoms in the matrix
does not coincide with this lattice in the twin. The only place where they do coincide is on
the twin boundary, as shown in Figure 3.18. Thus, one of these copper sites on the twin

boundary must be chosen as the origin.

It is important to note that this does not mean that the rigid body translation vector is
being assumed to be zero, as implied by Fig. 3.18. It simply means that Fourier coefficients
are calculated assuming this configuration, and the possibility that the twin crystal is trans-
lated by some amount is accounted for by the use of the vector, T,in eq. 3.22 and eq. 3.23.
Therefore, this vector, T, refers to the translation of the twin crystal from the position it has
in Fig. 3.18.

Thus, it has been shown that ‘one of the copper sites on the twin boundary must be
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Origin

Fig. 3.17. Unit cell of the high temperature superconductor,
Y1BayCuz01.s.

-55-

55



@ Yttrium or Barium
® Copper

O Oxygen

56

\ twin boundary

Fig. 3.18. Twin boundary for the superconductor Y;BayCu307_5 assuming a body transla-
tion vector of . Only the basal plane is shown along with the positions of the Yttrium and
Barium ions. The difference between the a and b lattice parameters has been exaggerated.

chosen as the origin. But it is impossible to know exactly where the copper atoms are

located. It might seem that this would lead to inaccuracies in the predicted intensity on a

very small scale. This does not happen, however. This is because, for pseudo-merohedral
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twins and pseudo-reticular merohedral twins, the difference between two almost coincident
reciprocal lattice vectors, g — h= Ag, is normal to the twin plane33. In the case of parallel
rotation twins, Ag is perpendicular to the twin axis. One effect of this is that all of the
almost common reflections differ from each other by a vector which is normal to the twin
boundary, in the case of reflection and compound twins. Therefore, the term, §p. + Enl, can

be rewritten as follows:

=

+

Ep’ +hy pT In + Agp’. n

]
oar

il
trav
=

p+ n+£pr. “lnlb
The exponential term then becomes:

exp [2mi (B + hw) - Fox] = expl2mi (B +hy) - Foxl exp2mie , Ay - Fox]
The first of these terms. however, can be taken out of the summation in eq. 3.22 and eq.

3.23. And the second term will give the same result regardless of where on the twin

boundary the origin is chosen to be. The second term, therefore, becomes:

exp (21ti€p.' n,d,b)

where dyj, is the perpendicular distance from the twin boundary of the point of exit of the

electrons.

3.4.1. Two Beam Approximation

It is sometimes desirable, in order to gain insight into the form of the diffraction
contrast images, to have an analytical expression for the intensity which does not involve
unknown terms such as y(i"') and Cf(.:Pn) , which can only be found through the diagonaliza-
tion of a matrix. The only case in whiéh such a solution is possible is when only two beams
are strongly excited. In the case of twin boundary contrast, this means there are have two
matrix reflections, 0 and g, each of which leads to two twin reflections, 0 and h, and g and
g-h respectively. Therefore, if the objective aperture is centered around the transmitted
beam, there are actually two beams contributing, 0 and g-h. This is shown in Figure 3.19.
Similarly, two beams, g and h, contribute if the aperture is centered around the one major
diffracted beam.
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g-h
%o

+ matrix reflection
. twin reflection

Fig. 3.19. Tlustration of the reflections which must be taken into
account in the two beam approximation.

The first thing which must be done is the eigenvalue equations for the matrix and
twin crystals must be solved. The following results are for the case where inelastic scat-

tering is taken into account. In the matrix, eq. 2.20 can be written as:

iUy -y U8+1Ug D,

0 'ma 2K =0 (3.24)
U8+iU8' o, D
ok S0 | 8

Therefore, the determinant of the matrix must be equal to zero.

o o, (U, +iU,)?
(iU =Ype) (55 +iUg =Ypp) ~————F— =0

4K*
1 2 (U +iUNYY
Yma = E ssi sg+ —K2 +,U0
The rest of the calculations can now be simplified by introducing the dimensionless param-
eter, w, defined by:
s, K
w,o= —2 (3.25)

8" (0, +10,)
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The eigenvalues can be rewritten in terms of this parameter:

U +1U8
y a = [w ~ (-1)} 1+w +iU,’ (3.26)

If these eigenvalues are substituted back into eq. 3.24, the normalized the eignenvectors,

Dy and Dy, can be found to be given by the following expressions:

(1) 1 Wg e 1 W,
p{V = -(1-——-—) p® = -(1+-—)
JZ Jl+w§ 2 Jl+w§

(1)_J1( Ve ) 2 _ jl( Vg )
DIV = 1+ == DY =~ |2[1- ==
g 2 2 g 2 2
,Jl +W, ,Jl +w, 3.27)

These expressions can be substituted back into eq. 3.17 to find the following expressions

for the matrix beam amplitudes:

® (=210 )' (nUt Trw?) - iw, (nUgtm l 2)
o = exp(=2nU 't )| cos +w, sin (—Z— 1 +w,
| K Jl+w: K

@, = exp(-2nU,"t, ) R (nUgt"‘ 1+w?)
g = CXP ot ﬁ+ =sin (—p Wy
LTV (3.28)
where the phase factor, exp (uisgtm) , has been dropped from both amplitudes, since it will
not affect the image intensity. It is easy to see from these equations that the imaginary part
of the Fourier coefficient for g=0, Uo', does not affect the image contrast, but rather it

reduces the intensity of the entire image uniformly.

In the twin, there are two dynamically coupled sets involved, each of which has a
different matrix equation. The first dynamically coupled set, which is defined by g=0, has

the following matrix equation:

U U, +iUy
1 0.—7’ 2K 0,0 -0 (329)
.lﬂ s +iUn" - Co h
2K h 0 '

The resulting eigenvalues and eigenvectors are completely analogous to the matrix crystal
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. U, +iU;’
Y = 22 h[wh (=1)’,[1+ 2] +iU, (3.30)

(19 1( Wh ) (29 ( Wh )
Cod = [5[1-——= Coe = [5|1++——=
jZ q/1+w§ 2 Jl+w§

cll = Jl (1 P ) Cop = —Jl (1 - )
oh = |3 , 2 2 I ) / 2
1+ Wh 1+ Wh (3.31)
The second dynamically coupled set is defined by g, = g. The matrix equation is,

therefore, given by:

sy % e,

. :] 2K =0 (3.32)
nt1Y, r

K sg_ﬁHUO - Cs.—h

The e;grr:values are as follows:

. "ne
U, +1U
——————( th ) )+iUo’

Here, the normal definition for wy cannot be used. However, the equations can be simpli-

. 1 i
-Y(‘l) = i(ss'}'sg_h— (—1)1'J(Sg—sg_h)2+

fied by the definition of new dimensionless parameters:

s K q Sg-nK
Ve = (Uh'HUh) n Ve-hh = (Up+iUy) (3.33)
The eigenvalues and eigenvectors can, thus, be written as follows:
: U, +iU,’ ;
(1,) h h i 2 ey r 2
70 = ot [y ot W= (D (W =Wy, )2+ 1] +iUg (334)



6!

W, =W W, =W
Cé-l'jg(l— g-hh™ Vgh 2) Cg(,z(‘)):‘/%(l*. g=hh™ “gh 2)
«/1+(wg—h.h_wg.h) ‘jl"'(wg-h.h"wg.h)
W, . —W W, pp—W
c= J.;. (14T _) c;f:’,,=_J% (1 et )
(3.35)
irst, the case where g and h are common reflections will be examined. Referring to

. 3.22, it can be seen that the summation over p’ now contains only one term, gp=0,
since only one dynamically coupled set is involved. This summation can, therefore, be
ignored and references to g, can be replaced by g, = 0. For the case of the transmitted
beam, references to h . are replaced by hy, = 0. The summation over m contains two terms,
q; =0, and q3 = g = h. Eq. 3.28, thus, becomes:

oo = | 3, @, Coo €39 exp (2nidy - ) exp (2miy ™1, r

m, i,

I
2 2 H 1 H 2
+ @ exp (2nih- T) ZC((,:‘(’,) C((,:‘,’,) exp (2miy ™) l
. (3.36)

When the expressions for @, C, and v, are substituted into this expression, the following

. 2 .
= @53, (C33) exp (2miyt)
lo

equation is obtained:
I (—2rUy") (2 ) Mg (2 )
0,0 = exp (=2nU,'t (cos no t ) — ———==sin (210 t )
’ A/1+w§ ’

sin (21, 1) )

iw,
X | cos (2o, t) -
( ,/1 +w:
. 4 sin(2ro_t )sin (2n0,t)
—exp (2xih - T) g "; _ ht
J1+wd) (1+wd)

2

(3.37)
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where
: r ’ 2
U, +iU U, +U
_ 8 B , 2 _ [ g 2
68 = —2—1'(—- 1+ g = J( K ) +Sg (3.38)
and
s ? ’ 2
U, +iU, > J U+, 2
O'h = —ZK— 1+Wh = (T) +Sh (3.39)

Note that 65 and 6, are different, not only in the subscripts of U and s, but also in the thick-

ness involved.

The intensity of the common diffracted beam can now be evaluated. It is possible to
either let g =0 and h, = h, or let gy = g and hy = 0, and the result will be the same. In
keeping with the practice in previous sections, the dynamically coupled set will be defined

by gp = 0 and, therefore, hy, =h. Therefore:

Iy = |expl2nih 1] T @ c“°’ ) exp (27i (G - 1) - T) exp (2miy ™t l)

m, iy

= |®, [exp (-2mih- )] 3 D e exp (2miy™,)
t

2
+ d>82 (c“°’) exp (2miy™1)

(3.40)
When the expressions for the matrix amplitudes and the eigenvalues and eigenvectors are

inserted into this equation, the following is obtained:

(cos (21t0'gtm) - sin (2150'gtm) )

[ 5]

iw,
,Jl +w

+exp (2xih - T) (

[

b

. 3\
sin (21t08tm)

X . sin (2no, t ))
(Jl +w;‘: " ./
X (cos(21tc t) + Wy sin (2ro, t,)
hh --——J_—=—5 1n hht )

1+wh

l+wg

(341)
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The case where g and h are not common, but are almost common, will now be solved.
In the first case it will be assumed that the aperture is centered around the transmitted beam
and the reflecticn, g-h. The summation over p” now has two terms, one for the g; = 0
dynamically coupled set, and one for the g, = g set. The corresponding h,’s are h; =0, and
hy = -h. Each dynainically coupled set contains only one reflection, so the summation over

m contains only one term, q; =0.

Ipo =

2
Z(cxp[Zni(gp'-l-ﬁnv)-i'ex]z<bg'C 7 CoFvexp (~2mihy T)exp(2my(")t))‘
P iy T

02 (C('°)) exp (27iy™t)

>

+ @ exp [2mi (& —h) - Fo,] exp (2mili - T)ZC(')C('_hexp(Zmy( W t)|
(3.42)
If it is assumed that §—h is normal to the twin boundary, the term,

exp [2mi (g - ﬁ) - T.,] , can be written as:

exp [2mi (3-h) - Apdy,) = expl2rie, d,,|

Finally, the following expression is achieved:

iw,
— SN (21t08tm) )

1+w8

Io, 0 = exp (-2nUy't) [exp (wisyt,) (cos(21t0gtm) -

iwy
2
Jl +w,

—exp [7i (s, +s,_y) ] (exp(2nie, ) exp (2mih - T))

X (cos (2no,t) - sin (2no, t,) )

2

( sin (210,,t,,) sin (2no, 1) )

J(1+w)(l+(w8 nh= W)
(3.43)
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where

- ’ : ’ 2
U, +iU, - J U, +iU, \
Oy = —pm 1+ Wy =Wy )P = (o) + (5pp=5p” (B44)

If the aperture is centered around the strong diffracted beam: the only change is that

the h_.’s are now h; = h, and hy = 0. Therefore:

I

1o

2
+ @ exp (2mig 1) Y. (cgg,’)zexp 2niy™ t‘)l

. (3.45)
If the phase factor, exp (Zuiﬁ + toy) €XP (—21tif1 . "f‘) , is removed from the expression and
the matrix amplitudes, eigenvalues and eigenvectors, are inserted into eq. 3.45, the

following solution is obtained:

Lo= exp (=2rU,’t)

iw
2 exp (wis,t,) (cos (21togtm) - —=L _sin (21tcgtm) )

1+wg

x ( ‘ sin(21t0'ht‘))
1+wy

. ) s i
+exp[mi (sg+sg_h) tlexp (21mas _pdwp) exp (2xih - T) (J__sm (2ro.t ))
9 2 8 m
l+w
g

2

[ 5]

(W _pn=Wgn)

Jl + (Wg_h’h—w&h)

X (cos (Zm& gt — 2sin (21cog, ht[))

(3.46)
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4. Practical Aspects of
Calculations

4.1. Calcrlation of Elements of the A Matrix
4.1.1. Diagonal Elements of A Matrix

The methods of calculating the elements of the A matrix will now be examined. In
order to do these calculations, it is necessary to know the orientation of the matrix and twin
crystals. In this section, it will be assumed that the crystal orientations are known. The

problem of determining these orientations will be dealt with in section 4.2.

The usual method of expressing the precise orientation is to first define the zero order
Laue zone. This is the low order reciprocal lattice plane which contains the origin of the
reciprocal lattice and which is closest to being perpendicular to the beam direction. The
orientation is then defined by specifying the component, fiu , of the wavevector K (defined
in sec. 2.1.2), which is parallel to this reciprocal lattice plane. This is expressed in terms of
the tie point, which is the starting point of the wavevector, K (referto Fig. 2.1). The point
of intersection of a line drawn through the tie point, in the direction of the zone axis, and
the zero order Laue zone, is called the tie point projection. Therefore, KII is the vector
which starts at the tie point projection, and ends at the origin of the reciprocal lattice. Once
the tie point projection is known, the intersection of the Ewald sphere with the zero order
Laue zone can easily be plotted. Figure 4.1 shows the (111) reciprocal lattice plane of
Y} BayCu307._5. The tie point projection is indicated by the diamond symbol and the inter-
section of the Ewald sphere with the zero order Laue zone is shown by the circle which is
centered at the tie point projection and which passes through the origin of the reciprocal

lattice. The coordinates of the tie point projection in this case are (0.8, 1.2, -2).

In sec. 2.1.4, it was shown that in the symmetrical Laue approximation, the diagonal
elements of the A matrix are given by:
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+33-6 +32-5 +31-4 +30-3 +3-1-2 I 3-2-1

+23-5 +20-2 +2-1-1 +2-20

+13-1 /I +10-1 +1-10 _|_1-21
+01-1 000 +0-11 —I_O-ZZ
+-13-2 +-12-1 +-110 +-101 +-1-12 +-1-23

—l—-ZJ-l +-220 +-211 +-202 +-2-13 —|_-2-24

—|— reciprocal lattice point
® tie point projection
Fig. 4.1. Plot of the (111) reciprocal lattice plane of Y{Ba;Cu307_s. The tie point

projection is (0.8, 1.2, -2) and is indicated by the diamond symbol. The intersection
of the Ewald sphere with the zero order Laue zone is indicated by the circle.

or, in the non-symmetrical Laue case:

Ass = sgcosf)0

The value, sg, is defined as the distance from the reciprocal lattice point, g, to the
Ewald sphere in a direction parallel to the normal to the entrance surface of the crystal
(refer to Fig. 2.1). It is obvious from this definition that any zero order Laue zone reciprocal

lattice point in Figure 4.1, which lies near the circle will have a low value of Sg and will
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therefore be close to its Bragg condition.

A method for the calculation of sy for both the symmetrical and non-symmetrical

Laue cases will now be shown. The equation of the Ewald sphere is given by:

2 2 2 _ 2
(x+K,)"+ (y+Ky) +(z+K)" =K 4.1
The coordinates of the point of intersection of the Ewald sphere and a lime which goes

through g and runs in a direction parallel to the entrance surface normal, fi, are given by:
X = gy +5, (),
y = gy +s, (i),

z=g,+ Sg(ﬁ)z 4.2)

When these coordinates are substituted into eq. 4.1, the resulting equation can be solved for

Sg, giving:

n * o, o 2 - 2 _ 2
(8 +sy (M) +KY 7~ (R), +K )"+ (g, +5, () ,+K,) =K
This can be simplified to give:
g2+s§+2R'-§+2sg(f('+§)-ﬁ=0 (4.3)

When this equation is solved for s, the result is the following:

sy = = (K+§) At [(R+B) a1 - QR+D) -8
This equation gives two values of sg, one for the intersection of the line with the bottom
portion of the Ewald sphere, and one for the intersection at the top of the sphere. s, should
take on both positive and negative values, depending on whether or not the point, g, lies
inside of the sphere. The. :fore, since the first term of this equation will always be negative,

the positive root must be chosen or else s; must always be negative. Therefore, the equation

for Sg is:

3 - ~ = > ~ 2 2 - 3
sg=—(K+g)-n+f[(K+g)-n] - (2K+g) -8 (4.4)
In the symmetrical Laue case, i is simply replaced by -2, (refer to Fig. 2.2) to get
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the following expression:

=2 - ~ 5 > ~ 2 = - -
= (K+§g) 'Z+J[ (K+g) -2] -(2K+g) -8
This can be simplified to give the following:

ES ~ - ~ 2 = - -
58=K2+g-z+JK:+(g-z) -2(K+8) -8 (4.5)
where K, is a negative quantity because of the definition of Z.

In order to evaluate eqs. 4.4 or 4.5, expressions for K and K, are needed. K, is given

by the following equation:

K, = ~JK2-K> (4.6)

where the formula for K is given in eq. 2.7, and Kﬁ is given by:

2
hKu kKu lKn

—_— 4 —
b2 c2

Kj =

where hK , kK , and IK are the components of the vector, K", in the reciprocal lattice
coordmate system, and a, b, and c are the crystal lattice parameters. The vector, K, is the
sum of the vectors, Kz and K“. KZ is the vector with length, |K,|, and which is anti-

parallel to the direction of the zone axis, {uvw]. Therefore, the expression for K is;

- K, ) ) )
K= (ualk+vb’y + we’s) +hy R+kg §+1c 2 (47)
J(Ua)z'l' (Vb)2+ (wc)2 1 I 0

where X, 9, and Z are the unit vectors of the reciprocal lattice coordinate system. Note that

the first term describes a vector which is anti-parallel to [uvw] because K, is negative.

4.1.2. Non-Diagonal Elements of th: A matrix

The expressions for the non-diagonal elements of the A matrix, in terms of the Ug'’s
were given in sec. 2.1.4. In this section, it will be shown how to the calculate the U,’s and

the Fourier coefficients, Vg. In sec. 2.1, the crystal potential was expanded as a
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Fourier series:

V (f)

zvgexp (2mig- 1)
g
2

h s »
= m;Ugcxp(ng-r)

The Fourier coefficients are given by the following relation:

1 N hia sy 3
Vg = Vc“I[V(r)e,xp( 2nig-r) dr (4.8)

where the integral is over the unit cell of the crystal, V. is the volume of the unit cell and §
is a reciprocal lattice vector of the crystal. In evaluating the integral, it is usually assumed
that the potential is made up of a superposition of all of the atomic or ionic potentials.

Therefore, the potential of the unit cell is usually expressed as follows:

Vi () = Yo, (F-%) 4.9)
k

where the summation over k is over all of the atoms or ions in the unit cell, and f, and
Oy (t) are the position in the unit cell and the potential of the k™ atom or ion respectively.
Since the potential being used is that of the unit cell, rather than the entire crystal, the limits

of integration can be extended to infinity. Therefore, the Fourier coefficient can be written

as follows:

[ X0, (-t exp (-2nig- 1) d’r
—o K

[ )
<| =
©

2 I 0, (- 1) exp (-2mig - F) d’r
k —o0

<|-

[+

If the variable of integration is changed from I to ' = I -1y, then d’r = d°r’ and the
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result is the following:

1 rr . a 3 ’
Vv, = V;;Iq)k(r)exp [-2mig- (F'+1)]1dT

1 Y B Y ea 3y 33
V;Ek:exp (-2rig-1p) I(bk (r)exp(-2xig-1)dr

At this point another assumption is usually made to facilitate this calculation. It is assumed
that each of the atomic potentials is spherically symmetric. When this is done, and the inte-
gral, which is just the Fourier transform of the atomic potential, is put into spherical coor-

dinates, the expression for the Fourier coefficients becomes the following:

sin (27g1) 24 ] (4.10)

1 N
= V—c;exp (-2wig - fy) [4W£¢k( r) amar
In the Born approximation, the electron scattering factors have been expressed by
Doyle and Turner™ as:

fa(s) =

2
8n’me ; I sin (47sr) @11)

CO() s (41csr)

where s = sin@/A = g/2. Therefore, the Fourie: coefficients can be expressed in terms

of the electron scattering factor as follows:

2
h g .
Vv, = TEmeV. Zexp( 2mig - T £y (3) (4.12)
The Ug's are then given by:
2meV R
Ug = . V. Zexp(—ng I f el, (2 ) (4.13)

From this expression, it is easy to see why the A matrix is real and symmetric for
centrosymmetric crystals. In such crystals, if the origin is the center of symmeiry, for every
atom located at ik, there is an identical atom at —,. Thus, there is also an identical atom,

. . > PO B S . .
in the same unit cell, located at f,» = &+ b+ ¢ — 1. Therefore, the summation in eq. 4.13
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can be written as:

1 r Y 19 - 1

== 3 [exp(-2nig - b £, (g) +expl-2mig- (3+b+8) Texp mif by (%)]

Cexp (2mig - 1) +exp (—2mig - §y)

— g
- %L 2 f“k(i)]

where the factor, 1/2, is due to the fact that every atom is now being included twice in the

summation. Therefore:

_ 1 2 s g
U, = W:;cos(an-rk) fo, (5) (4.14)

Thus, the Ug's are all real for centrosymmetric crystals. In addition, the A matrix is

symmetric because:

_ 1 N g

U, = vczk:cos (=2mg - Ty ) fo (—2-)
1

LA

a

]

¥ cos 2nE - B fy, (3) = Uy
k

4.1.3. Elastic Scattering Factors

The atomic scattering factors for electrons, foy(s), have been calculated using many
different approximations. The most accurate available scattering factors have been tabu-
lated by Doyle and Cowlcy36 in the International Tables for X-Ray Crystallography,
volume IV, for intervals of s of between 0.01 and 0.1 A1, However, it is often desirable,
especially for computing purposes, to have an analytical approximation for fy(s). Doyle

and Turner> have fitted their data to an expression of the form:

4
f(s) = ¥ aexp(-bs’) (4.15)

i=1
They have listed their parameters for the fit, a;, b;, for a large number of atoms and ions.
These parameters are based on the most accurate available data for those atoms and ions

since they are included in the data which are given by Doyle and Cowley. However, for
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those atoms and ions not listed by Doyle and Turner, it is possible to calculate the electron

scattering factors from the x-ray scattering factors, f,(s), using the Mott formula3’:

me2 Z—fx(s)
f,(s) = ;h_z[_—sT—:' (4.16)

where Z is the atomic number of the atom or ion. The x-ray scattering factors have also
been fitted to an expression similar to eq. 4.15. The most accurate parameters for the fit to
the x-ray scattering factors have been given by Cromer and Waber8 in the International
Tables for X-Ray Crystallography, volume IV. The parameters are not given for the ion O
2 Thision is quite common in ionic crystals and is one of the constituent ions in the super-
conductor, Y;BayCu307_s, which will be used as example in the rest of the thesis. For that
ion, Sanger39 has given parameters for the analytical approximation of f,(el). The Mott
forniula becomes less accurate as s approaches zero, especially in the case of ions, where
the electron scattering factor tends to plus or minus infinity. Therefore, it is best to use the
vaiue of f;(0) given by Doyle and Cowley, rather than using the analytical approximation

to the x-ray scattering factor and the Mott formula.

4.1.4. Debye Waller Factor and Relativistic Correction

In sec. 2.2.2, it was shown how the thermal vibrations of the crystal ions cause the
Fourier coefficients, as calculated above, to be slightly inaccurate. These vibrations can be
accounted for in an approximate way by multiplying the Fourier coefficients, and hence the

Uyg’s, by the Debye Waller factor as follows:

1 s
Ug = v, %P (-2miE- B, (3 exp[-2n2 ((ufy g} + Cui)eh + (uig)ed) 1 (4.1T)

where (uii) is the average squared displacement, in the i-direction, of the k™ atom or ion
from its equilibrium position. In most cases, the average displacement is not given in aniso-

tropic form, and so eq. 4.17 reduces to:

l .o » 1) )
Ug = nvc;ew (=2mig - Bty (s) exp (—Bys”) (4.18)

where s = g/2 and B, = 8n> (uis) is called the Debye parameter for the k™ atom or ion

in the unit cell. (uﬁg) is the average squared displacement of the k™ atom or ion in the
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g-direction. In the isotropic case, (uig) = (1/3) (u,z‘), where (uf) is the average total
squared displacement of the k™ atom or ion, and therefore B, = 8’ (u:)/ 3. The Debye
parameter generally depends not only on the type of atom involved, but also the crystal
structure surrounding the atom. Therefore, it is not possible to use a given Debye parameter
for a certain type of atom without regard to the other atoms in the crystal. The Debye
parameters used should be those which are measured experimentally for the structure being
studied. In the International Tables for X-Ray Crystallography, vol. 111, Ibers, et. al.% have
listed the Debye parameters for many different monatomic crystals and for some other
~rvstals with relatively simple structures. For crystals which are not listed, it is best to find
. «eference which gives the parameters for that particular structure. For example, the Debye
parameters for the superconductor, Y;BayCu307.5, are given in many different refer-
ences?1™8, These references also give precise data on the structure of the crystal which is
necessary for the structure factos calculation. fi no such references are available, an
approximate value of the Debye parameter car: k. {ound by using the values given by Ibers,
et. al. for a monatomic crystal with a similar atomic number. Since the Debye Waller factor
is a measure of thermal vibration, the Debye parameter will increase with increasing

temperature, so care must he taken to use the parameters for the correct temperature.

Another correction which must be made is the relativistic correction given in sec. 2.3.

The resulting formula for Uy is:

U

2
g = 1tV BZexp (-2mig - ) f, (s)exp(—Bks) (4.19)

4.1.5. Imaginary Part of Fourier Coefficients

The imaginary part of the matrix elements, U g', which is due to inelastic scattering,
will now be evaluated. As was mentioned in sec. 2.2.2, the most important part of this term
is due to phonon excitation. Plasmon and single electron excitation also contribute to U 8',
but their contribution is small except for very small values of g. Since the U,)" term is not
important for diffraction contrast, the contributions from these two processes will be
neglected except to say that Radi!# has calculated them for many different crystals,
However, Ritchie and Howie 49 have reported that Radi’s values for the plasmon contribu-

tion are too high.
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The phonon contribution to U g’ is very difficult to calculate accurately. It is not
possible to calculate it as a sum of contributions from the different atoms in the crystal
unless the Einstein model, in which all atoms vibrate independently of one another, is used.
Even in this case, the calculation is difficult, since the contribution of each atom depends
not only on the scattering parameter, s, as it did in the elastic scattering case, but also on the
Debye Waller factor, and hence the crystal structure around the atom. The imaginary poten-
tial due to thermal diffuse scattering was given originally by Hall and Hirsch? for the case
of a monatomic crystal. Bird and Kin,g15 have given this potcntial in the form necessary for
a crystal with more than one kind of atom:

2
, h 2h va ’ 2 ay
Ve’ = Simev, B 0P (2R 1 [fo, (46, (35D

; s ap2 sy
X (exp (-Bksz) —exp (-B,s 2) exp [-B, (§-¥§') l)dzs (4.20)

This equation can be converted to a form more like eq. 4.19, making it possible to calculate

\' g' for any given crystal:

' _ 1 Y ’ 2
u,’ = ;t.vc.zk"exp (-2mig - 1) £, (s, By) exp (—B,s") 4.21)

In Chapter 5, the different sources which are available for the inelastic scattering
factors, fk’ (s, B,) will be reviewed. Also, a new method for calculating fk' (s,B,) will
be proposed. This method will be applicable to both neutral atoms and ions. This is neces-

sary, since there is a lack of useful sources of inelastic scattering factors for ions.
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4.2. Determination of Matrix and Twin
Zone Axes

4.2.1. Initial Method

All of the preceding calculations depend on a knowledge of the matrix and twin
crystal orientations. Therefore, it is critical to correctly interpret the experimental diffrac-
tion pattern in order to determine these oriertations. One method of doing this would be to
first obtain diffraction patterns from either side of the boundary in order to obtain the zone
axes of both crystals. This is a relatively straightforward procedure for cubic crystals which
is described in detail in other placesS 152 This step is not so straightforward, however, in
the case of non-cubic crystals. The procedure is particularly difficult in crystals which lack
a certzin symmetry element, but which almost have this symmetry element. In other words,
these crystals have an element of pseudo-symmetry. Unfortunately, these are the very crys-

tals which are most likely to exhibit twinning by pseudo-merohedry or pseudo-reticular

merohedry.

In order to aid in the process of interpreting diffraction patterns obtained from non-
cubic crystals, a computer program has been written by the author which calculates certain
parameters which are characteristic of the geometry of any given reciprocal lattice plane.
The parameters calculated are the lengths of the two shortest, non-colinear reciprocal
lattice vectors in the plane, the ratio of these lengths, the angle between these vectors, and
the area of the parallelogram which has these two vectors as its sides. The different recip-
rocal lattice planes can be listed in ascending order of area or of any other parameter. If the
camera length of the electron microscope is known, the area of the smallest parallelogram
which has reflections at its comers can be calculated and the list of possible zone axes can
be easily shortened to a very small number. If the camera length is not accurately known,
one must rely solely on the ratios of reciprocal lattice vector lengths and the angles between

the vectors, since these do not depend ori the camera length.

In either case, this method will soon lead to a short list of possible zone axes for both
crystals. For cubic crystals, this procedure would generally lead to a determination which

is unique for the purposes of this thesis, but for crystals with an element of pscudo-
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symmetry, there will usually be more than one reciprocal lattice plane which has parame-
ters very nearly matching those of the diffraction pattern. In order to determine the zone

axis, therefore, a more in depth analysis of the diffraction patterns must be done.

4.2.2. Crystals With an Element of Pseudo-Symmetry

The previous procedure for narrowing down the possible matrix and twin zone axis
possibilities is most easily done with separate diffraction patterns for the matrix and the
twin, although it is possible with a single diffraction pattern of the twin boundary region.
However, in order to reduce the number of possible zone axes to one, reference must be
made to a diffraction paitern of the twin boundarv. This is because only such a diffraction
pattern can show how the diffraction spots which originate in the two different crystals are
positioned with respect to each other. In crystals with an element of pseudo-symmetry,
there will generally be spots which are so close to each other that they resemble a single
spot which is either elongated in one direction, or which has been split into more than one
spot. A knowledge of which spots appear to be split or streaked. along with the direction of

this splitting or streaking, can give information about the o+ic:::utions of the two crystals.
Diffraction Patterns

As was discussed before, a diffraction pattern of the twin boundary region is actually
made up of matrix, twin, and combination reflections, which are matrix reflections which
have been diffracted again by the twin. An example of this is shown in Fig. 3.10. However,
for crystals with an element of pseudo-symmetry, the combination reflections tend to be
clumped together in small groups, as shown in Fig. 3.16. These small groups will generally
lic along a straight line and, hence, can give the impression of streaked diffraction spots. In
the case of pseudo-merohedral twins, each small group of reflections will contain a matrix
reflection and a twin reflection (i.e. a twin reflection which is derived from the transmitted
beam, not one of the matrix reflections). Since the matrix and twin reflections will usually
be more intense than the combination reflections around them, and since the direction of
splitting of the matrix and twin reflections is the same as the direction of streaking which
would be caused by the coinbination reflections, the combination reflections will be

ignored in simulations of twin boundary diffraction patterns in the future. It is important to
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note, however, that this cannot be done in the case of pseudo-reticular merohedral twins (or
reticular merohedral twins), since in this case, there are many small groups of combination

reflections which do not include either a matrix or a twin reflection (refer to Fig. 3.9).

A computer program which can generate theoretical twin boundary diffrac:n
patterns, either including or ignoring combination reflections, has been written by the
author. The detailed principles used in the program in order to generate these diffraction
patterns are given in Appendix B. Using this program, all that has to be determined is the
matrix zone axis. Once this is done, and a certain twin boundary is assumed, the twin direc-
tion which is parallel to the matrix zone axis is calculated by the program. In many cases,
this twin direction will not be rational, and a rational, iow index, twin direction must be
found which is ciose to being parallel to the irrational one, and, therefore, to the matrix
zone axis. If such a low index twin direction can be found, it represents the twin zone axis,
which is close to, but not exactly, parallel to the matrix zone axis. In pseudo-reticular mero-
hedral twins (and reticular merohedral twins), however, there will be many cases where a
low index twin zone axis cannot be found by this method. In these cases, the twin zone axis
has to be found separately, using a diffraction pattern from the twin crystal alone. It must
then be checked to make sure that it is close to being parallel to the irrational twin direction

which is parallel to the matrix zone axis.

In pseudo-merohedral and pseudo-reticular merohedral twins, the only cases where
the matrix and twin zone axes are parallel are when they are both parallel to the twin plane.
In such cases, the beam direction is nearly parallel to the twin plane and, hence, the twin
plane appears in the microscope only as a thin line. The theory presented in Chapter 3 is
not applicable in such cases. In all other cases, the two zone axes, and, hence, the two recip-
rocal lattice planes which are normal to these zone axes, are not parallel. One effect of this
is that the Ewald sphere does not intersect the two reciprocal lattice planes in the same
place. Therefore, the fact that a certain matrix reflection is close to its Bragg condition does
not mean that a twin reflection which appears to be close to the matrix reflection in the
diffraction pattern will be close to its Bragg condition. These effects will be investigated
further in sec. 4.3, The degree to which the two zero order Laue zones are not parailel

depends directly on the obliquity of the twin.
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Once a set of matrix and twin zone axes have been obtained, the simulated diffraciion
pattern for these orientations must be compared with the experimental twin boundary
diffraction pattern. Very often, the two diffraction patterns will not match. For example, the
split or streaked reflections in the experimental pattern may not be split in the simulated
pattern, or the direction of the splitting or streaking may be different. In this case, the
matrix zone axis which was initially assumed must be incorrect. It may be, however, that a
different matrix zone axis which is a member of the same family of directions (i.e. which
has the sign of one or more of its indices reversed) will lead to a simulated diffraction
pattern which matches the experimental pattern. In general, most of the possible matrix
zone axes which were not eliminated by the method described in sec. 4.2.1 will be elimi-

nated in this way.

Example of Determination of Zone Axes

The simplest way to describe the procedure for determining the matrix and twin zone
axes, and to illustrate some of the problems which may arise, is to use an example. The
example which will be used is that of the (110) twins in the high temperature supercon-
ductor, Y{BayCu307_5. As was mentioned previously, these twins are pseudo-merohedral
twins. Therefore, for any matrix zone axis which is not parallel to the twin plane, the matrix
and twin reciprocal lattice planes will be almost, but not quite, parallel. For this example,
it will be assumed that the actual matrix zone axis is [131]. The twin direction which is
parallel to the [131] matrix direction is [3.068 0.932 -1] (in twin coordinates). Obviously,
then, the (311) twin reciprocal lattice blane will be very close to the (131) matrix recip-
rocal lattice plane, and the reflections of both planes will be visible in the diffraction
pattern. Therefore, the twin zone axis is [311]. Figure 4.2 shows the (131) matrix recip-
rocal lattice plane along with the projection of the (311) twin reciprocal lattice plane on
the matrix plane in the correct orientation. This is very similar to the diffraction pattern that

one would see in the electron microscope for this crystal orientation.

Suppose that the zone axes for a pair of twinned crystals which are oriented as
described above must now be determined. The first step is to measure the lengths of the two
shortest reciprocal lattice vectors and the angle between them in a diffraction pattern from

one side of the twin boundary (or even a diffraction pattern from the twin boundary itself,
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Fig. 4.2. Simulated diffraction pattern from a (110) twin boundary of
Y;BayCu307.5. The matrix zone axis is [131] and the twin zone axis is
[311]. The Miller indices of some of the reflections are indicated in their
own coordinate systems.
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since it can be seen from Fig. 4.2 that the measurements would not change significantly).
By comparing these parameters with those calculated by the computer program described
in sec. 4.2.1, the number of possible families of zone axes could quickly be reduced to two.
Table 4.1 shows the calculated parameters for the two possible candidates for matrix zone

axis family, for a camera length of 160 cm. The similarity of these two zone axes is a conse-

Length of Length of Angle Area of
Zone Shortest 2nd Shortest . Between Two
. . . Ratio of Smallest
Axis Reciprocal | Reciprocal Shortest .
. . . Lengths . Possible
Family Lattice Lattice Reciprocal
Parallelogram

Vector Vector Lattice Vectors
(131) " 1.6304cm | 2.0548cm | 0.7567 77.309 deg | 3.4276 cin®

(311) || 1.6078cm | 2.1717cm | 07403 | 77.229deg | 3.4052cm?

Table 4.1. Geometrical diffraction pattern parameters for two zone axis families.

quence of the fact that the a and b lattice parameters for Y{BayCu307_g are nearly equal.
Because of this similarity, it is impossible to choose between the two possibilities. This is
also apparent from the diffraction pattern shown in Fig. 4.2 which displays two patterns

(matrix and twin) which have the two sets of parameters listed in Table 4.1.

In fact, for pseudo-merohedral twins, the situation will generally be like this. There
will be two families of zone axes which have parameters nearly matching those of the
experimentat diffraction pattern taken from either side of the twin boundary. One of these
families will correspond to the matrix crystal and one will correspond to the twin crystal.
Therefore, there are three more steps which must be carried out in order to accurately deter-
mine the orientations of the two crystals. In one of these steps, it must be determined which
crystal corresponds with which zone axis family. Another step involves selecting the
correct member of each zone axis family for the orientation of each crystal. The final step
is the determination of which crystal is the matrix crystal in the sense referred to in Fig. 3.7
(i.e. which crystal is the one which the electrons enter first). This is the most difficult step
in the process, and a method for correctly identifying the matrix crystal will be presented

in the next section.

It will usually be easiest to do the second step, involving the determination of the
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correct member of each zone axis family, before the first step. Thus, for this step, it is not
important to know which crystal belongs to the {131) family, and which belongs to the
(311) family of zone axes. Any zone axis from either of these families can be chosen as
the matrix zone axis. The computer program described above will then determine the twin
zone axis and will generate a simulated diffraction pattemn corresponding to these two
orientations. The simulated diffraction pattern is then compared with an experimental
pattern of the twin boundary region in order to verify that the two patterns match. For
example, if it is assumed that the matrix zone axis is [ 311], the twin zone axis would have
to be [131] and the diffraction pattern would look exactly the same as Fig. 4.2. Similarly, a
matrix zone axis of [131] wosld have a twin zone axis of [311] and the diffraction
pattern would look identical and would result in identical twin boundary images using the

theory of Chapter 3.

There are, however, some members of the two zone axis families which would not
lead to correct results. For example, Figure 4.3 shows a simulated diffraction pattern for a
matrix zone axis of [131] and a twin zone axis of [311] It can be seen that in Fig. 4.2,
the (114) matrix reflection is coincident with the (114) twin reflection. Also, all of the
other matrix and twin pairs in the same row are common, but those on other rows are not
common and appear to be split. However, in Fig. 4.3, the row of common points consists of
reflections of the type {112}, rather than {114}, as in Fig. 4.2. Since these reflections have
different Fourier coefficients, this is an important difference. In an experimental diffraction
pattern, it would be apparent that one row of reflections consisted of unsplit points, and by
comparison of the experimental pattem with Figs. 4.2 and 4.3, one could see that the
unsplit row of reflections were of the type {114}, asin Fig. 4.2. Thus, it would be clear that

the matrix zone axis could be [131], but could not be [131].

There is one more detail to be considered in conjunction with this step. A decision
must also be made as to whether the twin boundary is actually the (110) plane, or the
(110) plane, since both planes can be twinning planes in these crystals. However, this is
not, in fact, a problem. If the (110) plane were chosen as the twin plane, it would still be
possible to find an orientation for which the simulated diffraction pattern would match the

observed diffraction pattern. But in this case, the matrix zone axis could be [131] or
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Fig. 4.3. Simulated diffraction pattern from a (110) twin boundary of
Y;Ba;Cu307.5. The matrix zone axis is [131] and the twin zone axis is
[311]. The Miller indices are indicated for some of the reflections in their
own coordinate systeras.
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[131], or alternately [311]or [311], but not [131] as before. Thus, the twin plane can
be chosen arbitrarily, but then a matrix zone axis must be selected which results in a diffrac-

tion pattern which agrees with the experimental pattern.

‘Thus, so far, it has been found that one crystal has the [131] zone axis and the other
has the [311] zone axis. The next step is to determine which crystal (on which side of the
boundary) has the [131] zore axis, and which has the [311] zone axis. This is done by
taking diffraction patterns from both crystals, on either side of the boundary, and
comparing them with each other, and with the simulated pattern shown in Fig. 4.2. For sets
of points in the diffraction pattern of the twin boundary region where the splitting is notice-
able, it could be determined from which side of the boundary each member of the pair orig-
inates. This would be done by compaﬁng the positions and intensities of each member of
the pair with those of the corresponding points on the diffraction patterns which have been
taken from either side of the boundary. In this way, it could be determined which crystal (on
which side of the twin boundary in the experimental image of the boundary) has the [131]

zone axis, and which crystal has a zone axis of [311].

4.2.3. Distinguishing Between the Matrix and Twin Crystals

In order to compare an experimental image with a theoretical image obtained by the
methods presented in this thesis, it must be determined which crystal is the upper one,
which the electrons enter first, and which is the lower one. These two crystals are referred
to as the matrix and the twin in Fig. 3.7. Corbett and Sheinin?? have given a method for this
determination, but it depends on the ability to differentiate between the different combina-
tion reflections, which result from a matrix reflection being furiher diffracted by the twin,
and also distinguish these reflections from the matrix and twin reflections. In the case of
pseudo-merohedral twins, that is not possible since the matrix, twin and combination
reflections are so close together. This is illustrated in Figure 4.4, which is the same as Fig.
4.2, except that combination reflections are included. Since it is very difficult to distinguish
a twin boundary diffraction pattern in which the top crystal zone axis is [131] from one in
which the top crystal has a [311] zone axis, this information can only be obtained by

looking at an actual image of the twin boundary.
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Fig. 44. Simulated diffraction patten from a (110} twin voundary of
Y;BayCu307_5, including combination reflections. The matrix zone axis is [131]
and the twin zone axisis [311].
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The method which will be demonstrated for obtaining this information depends on
the fact that a reflection in the matrix crystal can be further diffracted in the twin, whereas
if the same reflection occurred in the twin, it would be essentially unaffected by the pres-
ence of the matrix. In order to isolate the effects of one such reflection, an orientation must
be found for which only one member of a matrix/twin pair of reflections is strongly excited,
and all other reflections in the diffraction pattern are relatively weakly excited. An example
of such an orientation is shown in Figure 4.5. The matrix zone axis is [131], and the twin
zone axis is [311]. The intersection of the Ewald sphere with the matrix reciprocal lattice
plane is indicated by the solid line, while the dashed line shows the intersection with the
twin reciprocal lattice plane. It can be seen that the (013) matrix reciprocal lattice vector
is in the Bragg condition. The twin reflection which is closest to its Bragg condition is
(103), but it is not nearly as strongly excited as the (01 3) matrix refiection. it is, however,
just as pozsible that the matrix zone axis is [311], and the twin zone axis is [131]. In this

case, the most strongly excited reflection, (013), would be a twin reflection.

Figure 4.6 shows a pair of simulated bright field twin boundary images for these two
possibilities. In both images, the crystal with the [131] zone axis is assumed to be to the
right of the twin boundary, and the crystal with the [311] zone axis is to the left. In the
image on the left, the right hand crystal with the [131] zone axis is assumed to be the
matrix. Therefore, the strongly excited reflection, (013), is a matrix reflection. In the
image on the right, the left hand crystal is assumed to be the matrix, and (013) is a twin
reflection. The first thing to notice is that the thickness fringes on one side of the boundary
are faint and narrow, while on the other side, the thickness fringes are wide and intense.
This confirms, and is a consequence of, the fact that only one member of the

(013) / (103) pair of reflections is strongly excited, and all other reflections in the
diffraction pattern are relatively weakly excited. This is the desired set of diffraction condi-
tions. The next thing which will be noticed is that the two situations for the two images lead

to very similar bright field images. This is not, however, the case in dark field images.

Figure 4.7 shows the simulated dark field images for the same sets of diffraction
conditions. The objective aperture is assumed to be centered around the (013) and (103)

pair of reflections. The difference between the two images is very noticeable. In particular,

-85-



86

X K X K X ox %X X N

X X 2-11—}(’2" 1-12-}(”'2 01 N N

—}( 20-2-}4022 101K >¢

25 4
X s K® wal

* ok %k ok

+ hkl  matrix reflection

X hkl  twin reflection

@ matrix tie point projection

Fig. 4.5. Simulated diffraction pattern from a (110) twin boundary of
YBa,Cu307.5. The matrix zone axis is [131] and the twin zone axis is |31 1]. The
Miller indices are indicated for some of the reflections in their own coordinate
systems. The intersection of the Ewald sphere with the matrix zero order Laue zone
is indicated by the solid line while the intersection with the twin zero order Laue
zone is shown as a dashed line. The matrix tie point projection is (-5.0, 1.33, 1.0).
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Simulated Image for Matrix Simulated Image for Matrix
Crystal to the right of the boundary Crystal to the left of the boundiry

Fig. 4.6. Simulated bright field images of a (110) twin boundary in
YBayCu307.5. The crystal to the right of the boundary has a zone axis of *
[131], and a tie point projection of (-5.0, 1.33, 1.0). The crystal to the left
has a zone axis of [311] and a tie point projection of (2.38, -6.87, 0.29).
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Simulated Image for Matrix Simulated Image for Matrix
Crystal to the right of the boundary Crystal to the left of the boundary

Fig. 4.7- Simulated dark field images of a (110) twin boundary in
Y;BayCi 4075 The crystal to the right of the boundary has a zone axis of
[131], and a tie point projection of (-5.0, 1.33, 1.0). The crystal to the left
has a zone axis of [311] and a tie point projection of (2.38, -6.87, 0.29).
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the image on the left, in which the strongly excited reflection, (013), is a matrix reflection,
shows a complicated set of fringes in the twin boundary and is generally less intense in the
twin boundary than the image on the right. In the image on the right, the twin boundary
contrast is dominated by a set of contours of equal twin thickness, t;, since the twin crystal
is to the right of the boundary. Thus, in this image, the matrix crystal which is to the left of
the boundary appears to have had little effect on the contrast of the twin boundary. This is
to be expected since there are no strongly excited reflections in the matrix crystal. The
difference in the image on the left is that there are two strong beams in the matrix crystal,
the transmitted beam and the (013) diffracted beam. The diffracted beam can be further
diffracted in the twin by the reflection, (103), since the resulting reflection will be very

close to the origin of the diffraction pattern, and, hence, close to its Bragg condition.

-

Simulated images have been examined for different rigid body translation vectors, T,
and for several different orientations for which only one member of the matrix/twin pair of
reflections is strongly excited. In all cases, the twin boundary contrast had the same general
characteristics as in the example shown above. Thus, if the crystal which has the strongly
excited reflection is the matrix crystal, the twin boundary will generally show a compli-
cated set of fringes. If, however, the twin crystal has the strongly excited reflection, the twin
boundary’s most noticeable feature is a set of fringes of equal twin thickness which are

parallel to the intersection of the twin boundary and the exit surface.

-89.-



4.3. Determination of Tie Point Projection

4.3.1. Intersection of Ewald Sphere With Laue Zones

Once the zone axis has been determined, all that remains to be done in order to
completely specify the crystal orientation is to find the tie point projection. This is usually
accomplished in one of several ways. One method involves the use of Kikuchi lines which
are often visible on the diffraction pattern and which move as the crystal is rotated. The
details of the use of these lines in the determination of the crystal orientation has been given
elsewhere®19334, and will not be repeated here. Another method depends on the intersec-
tion of the Ewald sphere with the reciprocal lattice. Reflections which fall close to this
intersection have small deviation parameters, s, and are, therefore, close to the Bragg
condition. These reflections can often be identified since they will appear more intense
than other reflections in the same area of the diffraction pattern. If there are two or more
non-colinear reflections in the pattern which are very close to their Bragg conditions, they

will define a circle, the center of which is close to the tie point projection.

This approach is complicated in the case of twin boundary diffraction patterns,
because the twin zone axis will often not be parallel to the matrix zone axis. Thus, the two
zero order Laue zones will not be parallel and hence, the Ewald sphere will not intersect
them in the same place. Although the difference in the orientation of the two reciprocal
lattices will generally be very small, this difference has a large effect on where the Ewald
sphere intersects them, as is illustrated in Figure 4.8, which shows a view of the two recip-
rocal lattice planes and the Ewald sphere. Therefore, if there are two reflections in a diffrac-
tion pattern of a twin boundary which are close to or in their Bragg conditions, they may be
on or near the intersections of the Ewald sphere with two different reciprocal lattice planes.
If it was assumed that they define the tie point projection, a serious error in the detemiina-
tion of the orientation might result. Therefore, the best method is to determine the tie point
projection for the two crystals separately. When this is done, it must be verified that these
two orientations, as defined by their tie point projections, are compatible. Therefore, it is
necessary to have an expression for the tie point projection on the twin zero order Laue

zone for a given matrix tie point projection.
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Twin zero order Laue zone

Ewald sphere

}
k Matrix zero order Laue zone

Fig. 4.8. Illustration of the different points of intersection of the Ewald
sphere with the matrix and twin zero order Laue zones. The difference in
orientation of the two reciprocal lattice planes has been exaggerated, as has
the curvature of the Ewald sphere.

It has been mentioned before, in the case of the matrix, that the coordinates of tie
point projection are the negatives of the coordinates of the tip of I_i". This is also the case
for the twin tie point projection. Its coordinates are the negatives of the component of K
which is parallel to the twin zero order Laue zone, I_('-m. l_{'m is given by the following

expression:

K= K-Kry | (4.22)
where K is the coniponent of K which is perpendicular to the twin zero order Laue zone.
If [upvywy] is the direction, in matrix coordinates, of the normal to the twin zero order
Laue zone, then KT 1 can be expressed as follows:

= 2A 2A 2A
- (K- [up, v, W] ) (urd“X + v b“y + W “2)
_ ™V Wt T O Y TWr 423)

TL =
,,/ (u% + v%. + w-f-) (u.,.a2 + v-,.b2 + chz)

where X, ¥, and Z are the unit vectors of the matrix reciprocal lattice coordinate system,

and the expression for K is given in eq. 4.7. The twin zone axis can be found using the
methods described in Appendix B. Once this is done, the components of this direction in
matrix coordinates, uy, vy, and wp, can also be found using the methods found in

Appendix B. Therefore, eq. 4.22, along with egs. 4.7 and 4.23, gives the component of K
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which is parallel to the twin zero order Laue zone.

Thus, the intersection of the Ewald sphere and the twin zero order Laue zone is a
circle centered at the coordinates of the tip of the vector, —Kn , which has a radius, ry, corre-

sponding to the length of 1-5“ , and which can be given as:

, 2 2

= §K' =Ky,

The intersection of the Ewald sphere with other Laue zones can also easily be found. It is
also a circle centered at the appropriate tie point projection, but with a different radius. By

referring to Figure 4.9, it can be seen that the appropriate equation for the radius of the

circle for the N-th order Laue zone, ry, is the following:

ty = K3~ (Kp, —hy)? (4.24)
where hy is the distance between the N-th order Laue zone and the zero order Laue zone

and is given by:
N
22

(4.25)
Ju a+v2b? + wic

hy =
where [uvw] is the matrix or twin zone axis in its own coordinate system.

An example will now be considered in order to illustrate the differences which can
be present in the intersections of the Ewald sphere and the matrix and twin Laue zones.
Figure 4.10 shows the intersections of the Ewald sphere with the matrix and twit, ::r0 order
Laue zones for a crystal which has a matrix tie point projection of (1.0 0.333 -2.0). The
twin tie point projection, as calculated by eq. 4.22, is (-0.75 1.47 -3.52). It can be seen that
there is a substantial difference in the intersections of the Ewald sphere and the two zero
order Laue zones. The next example illustrates the way in which the Ewald sphere can
intersect a higher order Laue zone. Figure 4.11 shows the situation for a crystal which has
a matrix tie point projection of (-6.0 1.13 2.62). The twin tie point projection is (-7.72

2.35 1.36). In this example, the intersections of the Ewald sphere and the 1st order Laue
zones are shown as well as those of the zero order Laue zones. The reflections of the 1st
order Laue zones of the two crystals are also shown. It can be seen from this figure that

some higher order Laue zone reflections are close to their Bragg conditions and may be
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N-th order Laue zone

Tie point projection-/ zero order Laue zone

Fig. 4.9. Illustration of the calculation of the radius of the intersection of the
Ewald sphere with the N-th order Laue zone.

important to the image contrast for orientations which have large tie point projections. This
is particularly true for more complex structures, since a larger unit cell in the crystal with
correspondingly smaller reciprocal lattice vectors can result in reciprocal lattice planes
which are relatively close together. The closer together that the different Laue zones are,

the more likely that higher order (or lower order) Laue zone reflections will become impor-
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Fig. 4.10. Simulated diffraction pattern from a (110) twin boundary of
YBayCu307.5. The matrix zone axis is [131] and the twin zone axis is [311].
The Miller indices are indicated for some of the reflections in their own coordinate
systems. The intersection of the Ewald sphere with the matrix zero order Laue
zone is indicated by the solid line while the intersection with the twin zero order
Laue zone is shown as a dashed line. The matrix tie point projection is
(1.0 0.333 -2.0) and the twin tie point projection is (-0.75 1.47 -3.52).
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Fig. 4.11. Simulated diffraction pattern from a (110) twin boundary of
Y Ba;Cu307.5. The matrix zone axis is [131] and the twin zone axis is
[311] . The intersections of the Ewald sphere with the matrix Laue zones are
indicated by the solid lines while the intersections with the twin Laue zones
are shown as dashed lines. The matrix tie point projection is (-6.0 1.13 2.62)
and the twin tie point projection is (-0.75 1.47 -3.52).
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tant. Another reason is that complex crystal structures do not have as many reflections
which have a structure factor of zero as more symmetric crystal structures. Thus, while a
face centered cubic structure will have entire planes of zero structure factor reflections in
its reciprocal lattice (because of the symmetry of the structure), a more complex structure
will never have this situation, and hence, all of its reciprocal lattice planes will contain

reflections which can contribute to the image.

The fact that the Ewald sphere intersects with the two zero order Laue zones in
different ways makes it difficult to be sure that a suspected tie point projection is, in fact,
the correct tie point projection. This situation is complicated even more by the fact that
higher order Laue zone reflections are more likely to be important in complex structures
than they are in simpler cubic structures. Therefore, it would be desirable to have a way of
calculating the intensities of the reflections on the diffraction pattern for a given selection
of tie point projection. These intensities could then be compared with the experimental
diffraction pattern to determine if the tie point projection used is correct. In the following
section, a method will be derived for calculating the intensities of the different reflections

contained in a diffraction pattern for a given tie point projection.

4.3.2. Calculation of Diffraction Pattern Intensities

The problem of calculating diffracted beam intensities in a diffraction pattern is quite
different from the intensity in a diffraction contrast image. In an image, the calculation of
diffracted beam intensity is done separately for every different crystal thickness. However,
the intensity of a reflection in a diffraction pattern is generally from an area of the crystal
over which the thickness is not constant. Thus, in a sense, the intensity of a diffraction
pattern reflection represents an average of the intensities of the image formed from this

reflection over the range of thicknesses allowed by the selected area aperture.

In this calcwiation, the intensity of a reflection which has been diffracted by a perfect
crystal only will be considered. The expressions derived in this section will, therefore, only

be applicable to diffraction patterns which do not include the twin boundary.

The first thing which will be evaluated will be the intensity of a reflection considering

elastic scattering only. Later, the extension to include inelastic scattering will be given. The
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intensity of the image formed by the reflection, g, at a crystal thickness of t was given in eq.
235 as:

R o2
Lty = ’zcé” cPexp 2miy®1)
1
This equation can be rewritten in the following way:
L = Y cPed cPexpr2mi (v -y (4.26)
ij

In order to obtain the intensity of this reflection, g, in the diffraction pattern, I; must be
integrated over t, from t=0 to t =T, where T is the maximum thickness of the crystal
through which electrons passing through the selected area aperture have passed. Thus, it is
being assumed that the minimum thickness of crystal which is exposed by the selected area
aperture is zero. This will not always be the case, but it will be shown that if the range of
thicknesses is large enough, neither the lower limit of t, nor the upper limit has much effect
on the final result. Another assumption is that the selected area aperture is rectangular.
Although this is not the correct shape, the effect of this will be relatively small, and will not
be serious as long as the results obtained are only used as a guide to show the relative inten-
sities of the different reflections. The integration must also be done in a direction perpen-
dicular to the direction of increasing t, which will be called the x-direction. Therefore, the

intensity of the reflection, g, in the diffraction pattern, 1, is given by the following:

[T
1 =
g X:'!‘) Ig dtdx

= (x-xp) Y0 e e f;xp [27i (v —y@) 1 dt

) 0 4.27)
The factors, x; and xy, are arbitrary as long as they are kept consistent for all of the
different reflections whose intensities are being calculated. In these calculations, x; and x,
will be chosen in such a way as to ensure that the total area of the selected area aperture

remains constant as the maximum thickness, T, is being varied. Thus, x;-x5 will be taken
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to be:

X| =X = 5
Since the length of the selected area aperture in the direction of increasing t is directly
related to T, this condition ensures that the total area of the crystal exposed by the aperture
is constant, regardless of T. Therefore, eq. 4.27 can be evaluated to give the fallowang:

o g (i _ 0
= Yo cdcP ol ((Y) —r )T
o 2 (Y 1 (J )T

(i _,0
+12C“’c"’c‘”c‘” (1-cos{2r(y” -y™)T])
2n ( (') (J) )T
Y (4.28)
The summations over i and j are over the same set of Bloch waves. Therefore, for each
term, for which i=i; and j=j;, and 'y(i) -y(j) = y(i‘) -y(j') , there is another term for
which i=iy and j=jp and YV —y@ = ¢ —4 = _ (40 40y Tnys, eq. 4.28 can

be rewritten in the following way:

. :Z(C(i)c(j))z(sinm(v“’-Y(i’)T]+i(1—cos[21t(1“’ v“’)'rn)
g . 0 ™g 21 (y(l) - Y(.) )T 21 (.Y(|) (')) T

i 12m (v —v YT sin (22 (v® =4 T
+2C<§')C(J)Cmcm (sm[ u(g) g) : ]+sm[ Mg) g) ) ])
2n(y ' -y )T 2n(y ' -y )T

i<j

((1 cos2n(y? -y T _ (1-cos2 (" -4P) 1) )
2 (.Y(l) .Y(J) ) T 2% (.Y(‘) () )T

In the second summation term, account has been taken of the fact that sin(-0) = -sin(8) and
cos(-0) = cos(@). Thus, clearly the imaginary part of the second summation is equal to zero.
In the first summation term both the real and imaginary parts are of the form of zero divided
by zero. However, in the limit as ‘y(i) - 'y(i) tends to zero, the real term becomes one while

the imaginary term becomes zero. Therefore, the intensity can be written as follows:

, , sin [2xT (v -y

4.29)
{< 21T (,Y(l) (J) )
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The second term on the right hand side of this equation will vary from positive to negative
values, but will tend to zero as T is increased. Since the actual value of T is not known, the
exact value of this term cannot be known exactly, but to a good approximation, it can be

assumed to be zero. This leaves the following approximate expression for 1:
=% (o) Dy 4
1x=;(co C.) (4.30)

When inelastic scattering is taken into account, the equations become much more
complex, but the same general procedure can be used to find the following expression
for iy

5 2
-1 (i)
(GG ) @
1. = Y —————[1-exp(—4nTq )]
8 zn: ang'T

~1 (i) -1 ()
. C; cg‘ C cgJ

, : ) : 2
i<j KT[(q(I) +q(J)) + (.Y(l) _.Y(J)) ]
X[(q“’ +q9) +exp[-2nT (@ +q)]

X{(v“’ ~y9ysin (22T (P =¥y - @ +99) cos (22T (v* —v"")]}]

The value of this expression tends to decrease as T is increased. This is because the
inelastic scattering causes the contributions from the thicker part of the crystal to be atten-
uated to the point where they are negligible. This is reflected by the fact that the exponen-
tial terms become negligible as T becomes large. The rate at which these exponential%i'%xlxg
decrease depends on the q(i)’s which represent the fact that some electrons have been scat-

tered out of the diffracted beams and into the background of the diffraction pattern.

Figure 4.12 shows the intensities of the transmitted beam and the most intense
diffracted heam for the diffraction conditions shown in Fig. 4.11. The dashed lines repre-
sent the intensities calculated by eq. 4.29, which does not include inelastic scattering. The
dotted lines represent the approximation to the intensities not including inelastic scattering,

calculated using eq. 4.30. The solid lines represent intensities including inelastic scattering
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Fig. 4.12. Plot of beam intensity divided by maximum crystal thickness through
which contributing electrons have passed as a function of maximum thickness.
The crystal is Y,BayCu304.5, the zone axis is [131] and the tie point projection
is (-6 1.13 2.62). The upper lines represent the transmitted beam intensities and
the lower lines represent the (013) diffracted beam intensities.

100

calculated using eq. 4.31. It can be seen from this figure that the values of intensity given

by eq. 4.30 are a good approximation to the elastic scattering only values, given by

eq. 4.29, for maximum thicknesses greater than around 700 A or a couple of extinction

distances. The most obvious difference between these values and the intensities which

include inelastic scattering, is that the latter values decline rapidly as maximum thickness

is increased, as expected. One other thing that can be noticed is that the wobbles in inten-

sity tend to be damped out much earlier when inelastic scattering is included.
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The problem with the intensity including inelastic scattering is that it drops
continuously, and never reaches a constant value. Therefore, it is impossible to find an
approximation to eq. 4.31 which is independent of T (for sufficiently large values of T) as
was done in the elastic case. Also, a graph of intensity as a function of T (calculated using
eg. 4.31) does not clearly show how the intensity of a given reflection relative to the other
reflections varies as T is increased. This problem can be solved by normalizing the values
given by eq. 4.31 so that the intensities of all of the beams add up to one for any given value
of T. The fact that this procedure results in higher diffracted beam intensities than given by
eq. 4.31 is of no importance, since only the relative intensities of the different reflections
are of interest. Incidentally, the condition that all of the intensities add up to one is automat-
ically satisfied by the values given in egs. 4.29 and 4.30. This fact will make it easy to see
what happens to the relative intensity of a particular reflection as a result of inelastic scat-
tering. Figure 4.13 shows the normalized intensities including inelastic scattering
compared with those which do not include inelastic scattering. It can be seen that there are
significant differences between the values calculated including inelastic scattering and
those calculated assuming elastic scattering only. In this case, the relative intensity of the
transmitted beam tends to decrease as maximum thickness is increased, while the relative
intensity of the diffracted beam tends to increase. This is not always the case, and just as
often the transmitted beam will tend to become more intense relative to the other beams or

stay constant.

The diffraction conditions assumed in the calculation of intensities are the same as
those for Fig. 4.12. In this figure, however, the dotted line represents an approximate value
of intensity including inelastic scattering. These values were calculated by using the

expression given in eq. 4.31, but dropping the second summation term completely:

ey ie)
874 4an"

It can be seen from the figure that this gives a good approximation to the more accurate

[1-exp(—=4nTq™)] 4.32)

values calculated using eq. 4.31, as shown by the solid lines. It can also be seen that the
intensities calculated including inelastic scattering do not become constant, as T increases,

until T is very large, around 3000 A or nine extinction distances. The actual maximum
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Fig. 4.13. Plot of normalized beam intensity as a function of maximum thick-
ness. The crystal is Y;BayCu3047.g, the zone axis is [131] and the tie point pro-
jection is (-6 1.13 2.62). The upper lines represent the transmitted bcam
intensities and the lower lines represent the (013) diffracted beam intensities.

thickness would very often be smaller than this, so the values that the intensities tend
towards as T becomes very large are not necessarily good approximations to the intensities
of the reflections in an experimental diffraction pattern. However, it can be seen that the
experimental intensity would generally be between these values and the values for zero T

shown by the dotted lines.

This approximate zero T intensity can be evaluated as follows. Each term in eq. 3.32

involves the term, (1 —-exp (-4nTq))/ (4nTq""), which tends to one as T tends
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towards zero. Therefore, for T equals zero, the following expression remains:

5 2
=Y (G c) (433)

This is very similar the eq. 4.29, since Ci_l1 , calculated including inelastic scattering, is very
close to Céi) , calculated without inelastic scattering. As T becomes very large, the expo-
nential term in eq. 4.32 becomes very small, and the expression in eq. 4.32 becomes the

following:

-1
sz G C:}: 3 434
Therefore, the values given in egs. 4.33 and 4.34 can be thought of as limiting values for
the intensity including inelastic scattering. Of course, if a more accurate value is desired,
and the maximum thickness can be estimated, eq. 4.32 can be used. However, it is impos-
sible to ever achieve truly accurate values, since the exact maximum thickness can never be
known, nor is it even precisely defined, since all of the preceding calculations were done

assuming a rectangular field limiting aperture.

Table 4.2 gives a comparison of the intensities of the eight brightest ber:ms using
three different approximations. The first row uses eq. 4.29, which assumes elastic scat-
tering only. However, only two beams are used in the calculation, the transmitted beam and
the beam whose intensity is being calculated. These values were then normalized to unity
to facilitate comparison with the next two approximations. The two beam approximation is
reasonably accurate for the brightest beams which are close to the Bragg condition.
However, the two beam approximation seriously underestimates the intensities of those

beams which derive a lot of their intensity from other, nearby, beams.
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m
Reflection || 000 013 | o013 127 026 | T38 | 036 | Ti4

Mt il B I M B B N L

Two-beam. || 0.5127 | 0.2948 | 0.1648 | 0.0095 | 0.0085 | 0.0012 | 0.0051 | 0.0002
Elastic
scattering
only {

Many-beam || 0.5301 | 0.2825 | 0.1140 | 0.0484 | 0.0116 | 0.0052 | 0.0051 | 0.0006
Elastic rl
scattering
only |

Many-beam || 0.4067 | 0.3955 | 0.1297 | 0.0423 | 0.0124 | 0.0056 | 0.0051 | 0.0008
Inelastic
scattering

included

Table 4.2. Diffraction pattern intensities in three different approximations.

The second row was calculated using the same equation as the first row, but with
many beams included in the calculations. Inelastic scattering was not, therefore, included
in these calculations. These values are also very close to the values which would be calcu-
lated by eq. 4.33. Thus, they can be considered to be limiting values (for low T) for the

intensities when inelastic scattering is included.

The third row was calculated using eq. 4.34, which is the large T approximation for
the intensities including inelastic scattering. Therefore, the experimental beam intensities
which one would actually observe in the microscope probabiy lies somewhere in between
the values given in the second and third rows. Therefore, it can be seen that the error intro-
duced by using the many beam, elastic scattering only, ftmula, eq. 4.29, can be as high as
~ 40% in the case of the (013) reflection, althouzh that estimate of the error is the
maximum possible error for that reflection. For Iack. of a better approximation, this relation,
eq. 4.29, is probably the best equation 1o sz, Swin s simpler than eq. 4.32 or eq. 4.34, and
probably just as accurate. In any case, it car: & seen that the intensities calculated in this
way will give an accurate ranking of the reflections in terms of their intensities, but will not

be accurate enough to be used as absolute intensities.
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5. Inelastic Scattering Factors

5.1. Introduction

The imaginary part of the Fourier coefficients, Ug' result from different processes
which excite the crystal into some higher energy state. The most important of these proc-
esses are phonon excitation, plasmon excitation and single electron excitation. Plasmon
excitation and single electron excitation result in contributions to Ug’ which are relatively
insignificant, except for very small values of g. In general, only the g=0 term will be signif-
icantly affected. However, the U’ term does not affect diffraction contrast, but rather
attenuates all of the Bloch waves uniformly. Therefore, it does not affect the form of the
image, and as a result, plasmon and single electron excitations are commonly ignored in

diffraction contrast calculations.

As was mentioned in sec. 4.1.5, the phonon contribution to Us' can be expressed as

follows:

,_ 1 Yy 2
U,/ = nvcfk:exp (-2mig - £,) f,” (s, B,) exp (-B,s°) (5.1)

where the subscript, k, is over all of the atoms in the unit cell. f,’ (s, B,) is the inelastic
scattering factor of the k™ atom due to phonon excitation, and has been given by Bird and

Kingls as follows:

) (1-exp[-2B, (s?-§-8)1)  (52)

. 2h ne  (Iaar
(B0 = g [£a, (1 £y (3-8

Using egs. 5.1 and 5.2, the phonon contribution to Ug’ can be calculated for any arbitrary
crystal as long as the Debye parameter, By, is known for each atom in the cryssal. This is
made possible by the use of the Einstein model, in which each atom in the crystal is
assumed to vibrate independently of the others. If this model is not used, the calculation of
Us' requires knowledge of the phonon spectrum of the entire crystal. Since this is not
generally known, the Einstein model provides the best results which can normally be
obtained.

The inelastic scattering factor due to phonon excitation, f,’ (s, B,), depends not
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only on the scattering vector, s, but also on the Debye parameter of the atom, which in turn
depends on the chemical environment around the atom in the crystal, and is therefore not
the same for a given atom from one crystal to another. For this reason, it has not, up to the
present, been parametrized as a function of scattering vector, s, in the same way that the

elastic scattering factors have.

Instead of parametrizing the inelastic scattering factors, Bird and King have calcu-
lated values of fk' (s, B,) , using eq. 5.2, and tabulated them as a function of s and By for
all neutral atoms with atomic numbers between 1 and 98. These tables contain values of
fk' (s, B,) for six different Debye parameters, and ten different scattering vectors for each
Debye parameter, for a total of 60 values for each atom. They have given these values in the
form of a computer subroutine which calculates f,* (s, B,) exp (-Bksz) by interpolation
from the tabulated values. This approach suffers from several disadvantages. One small
problem is that the subroutine requires a relatively large amount of computer memory and
time to do the calculations. This problem is becoming relatively insignificant, however,
with modern high speed computers which have a lot of memory and are very fast. Another
more significant problem is that Bird and King’s tables of values only include Debye
parameters between 0.05 and 2.0. Debye parameters greater than 2.0 are fairly common
and for atoms which have such a Debye parameter, Bird and King’s subroutine cannot be
used at all. The last disadvantage is that, although the interpolation routine included in Bird
and King'’s subroutine generally gives accurate values of f,” (s, B,) exp (—Bksz) for large
scattering vectors and Debye parameters, it can give quite inaccurate results for atoms
which have very small Debye parameters. This problem is most serious for small scattering

vectors and for large atoms.

Weickenmeier and Kohl!6 have taken a different approach to the calculation of
inelastic scattering factors. They derived a formula for the calculation of f,” (s, B,) which
depends on their own parametrization of the elastic scattering factors found in the /nterna-
tional Tables for X-Ray Crystallography, volume 1v36, This formula is very long and
complicated, so they have also made available a computer subroutine which does the calcu-
lation. Their subroutine, although it is only about one third of the size of Bird and King’s

subroutine, takes much longer to calculate the inelastic scattering factors. The results
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generated by the subroutine are also subject to inaccuracies, although they may not be
significant in light of the fact that the Einstein model is not particularly accurate in the first
place. Weickenmeier and Kohl’s method does have one potentially serious problem,

however, in that it does not cover the full range of atoms covered by Bird and King.

The purpose of this chapter is to propose yet another method for the calculation of
the inelastic scattering factors. This method involves a parametrization of the values tabu-
lated by Bird and King. This parametrization method does not suffer from any of the disad-
vantages of the previous two methods, since it requires only a small number of parameters
and a simaple formula which can be evaluated quickly. Also, this method is very uccurate

and is valid for all atoms with atomic numbers between 1 and 98 and all Debye parameters.

Although the parametrization method has several advantages over previous methods
for calculating the inelastic scattering factors for neutral atoms, these advantages were not
the primary motivation for this work. The primary motivation is to find a way of calculating
inelastic scattering factors for ions. At present, there is no source of inelastic scattering
factors for ions which can be used for any given Debye parameter. Radi!* has calculated
the imaginary part of the Fourier coefficients for a small number of ionic crystals which
have the rock salt structure. These coefficients can only be used for these crystals, however,
and they do not provide a method for calculating the imaginary part of the Fourier coeffi-
cients for a crystal with a different structure or different Debye parameters. However, it is
possible to extract the inelastic scattering factors for the constituent atoms from the coeffi-
cients given by Radi. By a comparison of these inelastic scattering factors and those of the
corresponding neutral atoms, as calculated by the parametrization method discussed above,
a method will be presented to calculate the inelastic scattering factors for the ions. This will
involve modifying the parameters of the corresponding neutral atom, and using the same
parametrization formula used for neutral atoms. This will allow the inelastic scattering
factors to be calculated for any arbitrary ion, even those not dealt with by Radi, and for any
Debye parameter. This could not be done without a parametrization of the inelastic scat-
tering factors for neutral atoms. This situation made the above described parametrization

work for neutral atoms necessary.
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3.2. Neutral Atom Scattering Factors
5.2.1. Bird and King’s Interpolation Method

The first thing to do is examine the form of the function, f,” (s, B, ) exp (—Bksz) , as
given by Bird and King’s subroutine, as it varies with scattering vector, s. In the following
discussion, the subscript, k, on By, will be dropped with the understanding that B is the
Debye parameter of the atom in question and may be different for different atoms in the
same crystal. Figure 5.1 shows f,’ (s, B) exp (-Bs.z) as a function of s for a Debye param-

eter of 0.7 for a set of atoms with atomic numbers ranging from 30 to 70. The dots show
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Scattering Vector, s, (A1)

Fig. 5.1. Variation of f,” (s, B)exp (-Bsz) as a function of s for atoms having
atomic numbers ranging from 30 to 70 for a Debye parameter of (.7 as given by
Bird and King. The dots represent values actually calculated by Bird and King.
The lines show values given by Bird and King’s interpolation subroutine.

the values which were actually calculated by Bird and King. The values given by the lines
have been interpolated from the calculated values by the subroutine given by Bird and
King. There are some small irregularities in the interpolated values which can be seen for

small values of s, especially for the atoms with larger atomic numbers. These irregularities

-108 -



109

are insignificant for reasonably large values of the Debye parameter, E, but they do
become more of a problem for small B values. Figure 5.2 shows the variation in

f,” (s, B)exp (-—Bsz) with s for the same atoms but for a Debye parameter of 0.05. It can

0.20

(Z="10)

o
v
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o
'l

0. \\
[ ey e —
(Z =30)

0 ' — '
0 0.5 1.0 1.5 2.0

£ (s, B)exp (-Bs?) , (A)

Scattering Vector, s, A

Fig. 5.2. Variation of f,’ (s, B) exp (—Bsz) as a function of s for atoms having
atomic numbers ranging from 30 to 70 for a Debye parameter of 0.05 as given by
Bird and King. The dots represent values actually calculated by Bird and King.
The lines show values given by Bird and King'’s interpolation subroutine.

be seen that the irregularities in the interpolated values are much more significant in this

case and can lead to inaccurate values of f,’ (s, B) exp (=B sz) for smali values of s.

5.2.2. New Parametrization of Inelastic Scattering Factors

In this section, a method will be presented by which Bird and King’s calculated
values for any particular atom and any Debye parameter can be approximated by a rela-
tively simple formula. It was found that the formula which provides the best approximation

to Bird and King’s values has the following form:

£’ (s, B)exp(-Bs?) = A (B)exp[b(B)s"P] (5.3)
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where A(B), b(B), and n(B) are the parameters which must be determined for every atom
and for every value of B. Although it is common to parametrize elastic scattering factors
with a series of exponential terms, as was done by Doyle and Turner’?, it was decided that
the parametrization of inelastic scattering factors should be kept as simple as possible
by using a single exponential. This is because, as has been mentioned before,
f.’ (s, B)exp (-Bsz) depends on the Debye parameter, B, as well as s. Therefore, each
parameter used in eq. 5.3 also depends on B, and so must itself be parametrized as a func-
tion of B. It was found that the variation of these three parameters, A, b, and n, as a function

of B could be given as follows:
A(B) = A [(B+by)™-1]1+C,

b(B) = A,B*+C,
n(B) = Aexp(b,JB) +C, (5.4)
There is, therefore, a total of 10 parameters (Aa, ba, na, Ca, Ap, N, Cp, Ap, bys Cp)
required to give each atom’s variation in f, (s, B) exp (-B sz) with s and B. These param-

eters are list in Tables 5.1 and 5.2.

In order to assess the accuracy of the parametrization, it is necessary to compare the
values of f,” (s, B) exp (—Bsz) obtained by the parametrization method with the values
calculated by Bird and King for a number of different atoms and different Debye parame-
ters. Figure 5.3 shows the agreement achieved between the values given by eq. 5.3 and eq.
5.4, with the parameters given in Tables 5.1 and 5.2, and the values calculated by Bird and
King for the same set of atoms as in Fig. 5.1, and for a Debye parameter of ().7. Bird and
King’s values are shown by the dots while the lines indicate the values calculated by egs.
5.3 and 5.4. Figure 5.4 shows the agreement between the two sets of values for the atom,
Zr, (Z = 40), with Debye parameters of (.05, 0.3, and 1.3. It can be seen from the two
figures that the calculated values show excellent agreement with the values calculated by
Bird and King. There are two areas, however, where the agreement is not as good. One is
for the point, s=0. It was found that Bird and King’s value for this point was consistently

lower than that given by eqgs. 5.3 and 5.4. This is not an important difference, however,
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Fig. 5.3. Variation of f,” (s, B) exp (-Bsz) as a function of s for atoms hav-
ing atomic numbers ranging from 30 to 70 for a Debye parameter of 0.7. The
dots represent values actually calculated by Bird and King. The lines show val-
ues given by eqgs. 5.3 and 5.4 using the appropriate parameters.

since the s=0 point contributes only to the V" term of the lattice potential, and this term
does not affect image contrast. The other area where the agreement is not as good as it
might be is for high values of s. These high values are not as important as lower values of
s, however, since reflections with large scattering vectors are usually too weak to contribute
much to the final image. Bird and King’s values of f,” (s, B) exp (—Bsz) actually become
negative at high values of s. This is in contrast to the values given by eqs. 5.3 and 5.4, which
are always positive. However, in both cases, f,’ (s, B) exp (—Bsz) is very close to zero,
and could easily be neglected without bringing about noticeable differences in the final

image.

The parameters needed for the use of eq. 5.4 are given for each atom covered by Bird
and King, (Z=1 to Z=98), in Tables 5.1 and 5.2. Table 5.1 contains the parameters neces-
sary for the calculation of A(B) and Table 5.2 contains the parameters needed to calculate
b(B) and n(B).
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Fig. 5.4. Variation of f,” (s, B,) exp (—Bksz) as a function of s for Zr,
(Z = 40), for Debye parameters of 0.05, 0.3, and 1.3. The dots repre-
sent values actually calculated by Bird and King. The lines show val-
ues given by egs. 5.3 and 5.4 using the apprcpriate parameters.
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Table 5.1. Parameters for the calculation of A(B).

-113-

YA Ap ba np Ca

2 0.008683 0.214749 0.141464 1.78832¢-03
3 0.006172 0.057556 0.454130 4.50675¢-03
4 0.011434 0.070895 0.468686 8.25517e-03
5 0.020568 0.118518 0.409288 1.23608e-02
6 0.030758 0.131513 0.372853 1.69252¢-02
7 0.050057 0.178447 0.295446 2.09500e-02
8 0.071180 0.183704 0.246661 2.55869¢e-02
9 0.114317 0.202808 0.177857 2.98699¢-02
10 0.187312 0.206696 0.120684 3.44013e-02
11 0.159246 0.175575 0.162867 4.14113e-02
12 0.123839 0.127493 0.237462 4,98839¢-02
13 0.120279 0.099438 0.281421 5.91559e-02
14 0.117879 0.076867 0.330948 6.91122e-02
15 0.133254 0.075038 0.335002 7.88934¢-02
16 0.166212 0.093772 0.306956 8.83690e-02
17 0.180825 0.090519 0.313283 9.85143e-02
18 0.229388 0.112740 0.276317 1.07902e-01
19 0.261973 0.117574 0.272746 1.20303e-01
20 0.262244 0.108960 0.303605 1.33610e-01
21 0.310066 0.120277 0.280789 1.45130e-01
22 0.336384 0.116860 0.276967 1.57079¢e-01
23 0.378453 0.123935 0.263563 1.67892e-01
24 0.525379 0.151493 0.201649 1.75270e-01
25 0.495723 0.132344 0.224186 1.89990e-01
26 0.581505 0.143063 0.201958 1.99307e-01
27 0.726939 0.151140 0.168897 2.09779e-01
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V4 Ap ba np Ca

28 | 0869765 0.156354 0.146658 | 2.19702¢.01 |
29 111621 0.157634 0.116198 2.28575¢-01
30 1.30930 0.158927 0.103569 2.40540¢-01
31 1.11581 0.142370 0.125493 2.55666¢-01
32 1.15067 0.137190 0.127289 2.70817¢-01
33 1.00547 0.125131 0.151915 2.86376¢-01
34 || 0942374 0.112574 0.168430 3.03224¢-01
35 | 0985109 0.111585 0.169101 3.18723¢-01
36 || 0984789 0.105355 0.176337 3.35805¢-01
37 || 0978933 0.103019 0.188147 3.54478¢-01
38 | 0948222 0.099542 0.205917 3.73739c-01
39 | 0905302 0.088125 0.224655 3.94832¢-01
20 || 0896629 0.082337 0.237454 4.14609¢-01
a1 || 0989284 0.086814 0.223393 4.30986¢-01
42 1.15610 0.101518 0.202072 4.46843¢-01
13 1.14001 0.094782 0.213845 4.69037¢-01
44 1.24558 0.099141 0.202384 4.85124c-01
45 1.26311 0.099447 0.207587 5.03415¢-01
46 1.48930 0.110483 0.182215 5.17413¢-01
a7 1.53514 0.108435 0.183107 5.38126¢-01
48 1.67881 0.113363 0.174515 5.57702¢-01
49 172028 0.112474 0.176863 5.79713¢-01
50 1.81859 0.114192 0.174017 6.01562¢-01
51 175887 0.110786 0.186564 6.23322¢-01
52 1.90980 0.114532 0.179091 6.47091¢-01
53 1.90562 0.112334 0.186094 6.70552¢-01
54 1.91656 0.107196 0.190601 6.96948¢-01

Table 5.1. (Continued) Parameters for the calculation of A(B).
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Z Ap ba np Ca

55 1.98522 0111667 0.193142 7.21245¢-01
56 1.68101 0.088314 0233314 7.577232-01
57 1.81995 0.094904 0.225330 7.83547¢-01
58 1.89750 0.092751 0219608 8.05482¢-01
9 || 227030 0.104120 0.185809 8.16017¢-01
6 | 230161 0.104628 0.187725 8.35216¢.01
61 2.64130 0.111869 0.166868 8.51857¢-01
62 | 291707 0.115060 0.154253 8.713760-01
63 3.15960 0.118500 0.145149 8.87423¢-01
64 3.08729 0.109689 0.150204 9.15670¢-01
65 3.70308 0.117559 0.126649 9.27050¢-01
66 | 411014 0.121264 0.115837 9.42956¢-01
61 | 446374 0.121333 0.108955 9.66760¢-01
68 | 475050 0.118829 0.102140 9.808560-01
69 5.50722 0.123746 0.089542 9.95198¢-01
70 | 7.76783 0.130858 0.064427 1.00097
7 5.15365 0.113126 0.097424 1.03959
7 5.97465 0.118445 0.086007 1.05888
73 5.63481 0.113124 0.092491 1.08476
78 | 5.50470 0.111443 0.096527 1.10832
75 5.55355 0.111316 0.0975% 1.13226
76 | 5.38000 0.106605 0.102162 1.15912
77 5.20558 0.103544 0.107335 1.18366
78 5.45920 0.104745 0.104186 1.20591
79 | 6.02054 0.107634 0.096545 1.23052
80 | 596048 0.105908 0.099255 1.25784
1 6.03820 0.103902 0.099989 1.28682

Table 5.1. (Continued) Parameters for the calculation of A(B).
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Z Ap ba np Ca

82 5.53847 0.102379 0.111836 1.31807
83 5.51319 0.100962 0.114881 1.34446
84 5.10572 0.098001 0.126943 1.37485
85 5.92212 0.104577 0.112584 1.40206
86 5.17671 0.095883 0.130508 1.43699
87 4.99958 0.092399 0.138597 147535
88 4.96510 0.090660 0.142821 1.50988
89 4.37197 0.084342 0.166702 1.54689
90 4.81951 0.087953 0.154649 1.58008
91 4.92415 0.089331 0.153743 1.60421
92 5.32423 0.092503 0.145341 1.63352
93 5.20504 0.091415 0.151162 1.66153
94 575319 | 0.092351 0.137615 1.68782
o5 | 599594 {  0.097166 0.135344 1.71259
% 621861 0.095058 0.132079 1.74590
97 | 7.03940 0.102488 0.119172 1.76829
98 6.56648 0.096858 0.129077 1.80077

Table 5.1. (Continued) Parameters for the calculation of A(B).
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Gy
-0.642503

A, |

Iy A m—

11413040

2.158958

1 [ -1.986665 » 103805
2 || -1.724686 | 0.881042 | -0.430397 | -1.461397 { .. 408083 | 1023975
3 |[-1.871647 | 0708538 | 0.283205 | -047616 | 293342 | 1563754
4 || -1.933530 | 0.839714 | -0.411109 | -3.763690 | -1.109301 | 4.832222
5 || -1.983416 | 0.909836 | -0.478359 | -2.432531 | 0.278312 | +389488
6 || -1.992366 | 0914272 | -0.468743 | -1.511784 | 0.738773 | 27622
7 || -1.950901 | 0.895840 | -0.453316 | -1.363268 | -1.308167 | 2.119058
8 || -1.872678 | 0.885387 | -0.432:01 | -1.406819 | -1.800575 | 2.154518
9 || -1.799814 | 0.867691 | -0.4002:1 | 1453083 | -2.253954 | 2023345 |
10 || -1.726648 | 0.862393 | -0.369201 | -1.504521 | -2.622043 | 2018062
11 || -1.691385 | 0.823747 | -0.336461 | -1.390789 | -3.111982 | 1.904290
12 || -1.681261 | 0811611 | -0.316692 | -1.153041 | -3.058700 | 1.833728
13 || -1.707785 | 0.804566 | -0.298029 | -0.879853 | -2.292827 | 1.807980
14 || -1.716355 | 0.822608 | -0.302784 | -0.803086 | -2.019052 | 1.800270
15 || -1.753406 | 0.840628 | -0.296633 | -0.779632 | -1.296612 | 1.897678
16 || -1.773774 | 0867532 | -0.307328 | -0.939730 | -0.889186 | 2.076222
17 || -1.780523 | 0.892905 | -0.325808 | -1.031383 | -0.931547 | 2.126174
18 || -1.794440 | 0.899186 | -0.324719 | -1.124091 | -0.878763 | 2205923
19 || -1.801243 | 0.875460 | -0.322345 | -1.105916 | -0.873751 | 2.173448
20 || -1.802090 | 0.863886 | -0.322174 | -1.001004 | -1.181383 | 2017111
21 || 1799773 | 0.860544 | 0321573 | -1.025474 | -1.276102 | 2.011338
22 |[ -1.797811 | 0.855655 | -0.312343 | -1.024081 | -1.449865 | 1.988050
23 || -1.772666 | 0.858334 | 0319515 | -1.086281 | -1.770228 | 1.961475
24 |[ -1.760371 | 0.859360 | -0.308236 | -1.126907 | -1.860222 | 1.993262
25 || -1.729919 | 0.860008 | -0.315921 | -1.137347 | -1.980853 | 1.969387
26 || -1.718279 | 0.855285 | -0.302021 | -1.186952 | -2.347792 | 1954224
27 || -1.699315 | 0.845683 | -0.290731 | -1.176977 | -2.385505 | 1.955004

Table 5.2. Parameters for the calculation of b(B) and n(B).
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Y Ay ny Gy A, b Ca

28 || -1.665664 | 0.857467 | -0.298174 | -1.236677 | -2.525040 | 1.966418
29 || -1.639050 | 0.859221 | -0.288425 | -1.259771 | -2.615712 | 1.985478
30 j| -1.632103 | 0.850586 | -0.275043 | -1.219546 | -2.687121 | 1.971445
31 || -1.610075 | 0.855285 | -0.279548 | -1.208218 ] -2.750101 | 1.955348
32 || -1.608431 | 0.852362 | -0.270102 | -1.100160 | -2.524680 | 1.947478
33 || -1.598020 | 0.854957 | -0.270679 | -1.119686 | -2.766798 | 1.923801
34 |l -1.605819 | 0.856656 | -0.264067 | -1.013298 | -2.425520 | 1.931028
35 || -1.615431 | 0.856670 | -0.254598 | -0.965929 | -2.308991 | 1.933821
36 || -1.625603 | 0.862676 | -0.247498 | -0.893642 | -1.922210 | 1.962374
37 || -1.625963 | 0.849400 | -0.244808 | -0.855144 | -2.037827 | 1.916469
38 || -1.626665 | 0.846200 | -0.243765 | -0.838738 | -2.113711 | 1.891640
39 || -1.630199 | 0.857039 | -0.249680 | -0.821962 | -1.850837 | 1.912655
40 || -1.640270 | 0.856330 | -0.246625 | -0.817521 | -1.836173 | 1.913389
41 || -1.651186 | 0.873413 | -0.247770 | -0.854381 | -1.540920 | 1.984742
42 || -1.649695 | 0.876300 | -0.253144 | -0.877371 | -1.503855 | 1.995304
43 || -1.662578 | 0.874023 | -0.245699 | -0.857033 | -1.393382 | 2.010240
44 || -1.661315 | 0.881260 | -0.248966 | -0.903249 | -1.469941 | 2.024716
45 || -1.652438 | 0.885376 | -0.257134 | -0.944298 | -1.714029 | 1.999234
46 || -1.652384 | 0.887102 | -0.255833 | -0.978188 | -1.742854 | 2.018930
47 || -1.657086 | 0.876578 | -0.246610 | -0.951874 | -1.692441 | 2.015820
48 || -1.655954 | 0.879735 | -0.248015 | -0.957061 | -1.659757 | 2.023546
49 11 -1.652898 | 0.868700 | -0.245794 | -0.951619 | -1.796670 | 1.992847
50 | -1.654099 | 0.869394 | -0.244940 | -0.945472 | -1.752125 | 1.997237
51 || -1.653246 0;86865; -0.246694 | -0.992560 | -1.976016 | 1.976098
52 || -1.650690 | 0.863461 | -0.245375 | -0.946068 | -1.876495 | 1.971046
53 || -1.654832 | 0.864195 | -0.243592 | -0.941810 | -1.914700 | 1.964732
54 || -1.661738 | 0.865199 | -0.238697 | -0.909872 | -1.667091 | 1.991103

Table 5.2. (Continued) Parameters for the calculation of b(B) and n(B).
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b b b n n n
55 || -1.657391 | 0.858270 | -0.242309 | -0.910703 | -1.854390 | 1.950284
56 || -1.655672 | 0.849444 | -0.240356 | -0.886463 | -1.952557 | 1.916487
57 || -1.659332 | 0.847254 | -0.237539 | -0.859314 | -1.876102 | 1.914003
58 |f -1.653071 | 0.852009 | -0.239667 | -0.876255 | -1.822777 | 1.933517
59 " -1.643020 | 0.860787 | -0.240646 | -0.907159 | -1.746547 | 1.972517
60 " -1.631147 | 0.854950 | -0.236954 | -0.933783 | -2.111735 | 1.937363
61 || -1.623098 | 0.862526 | -0.240964 | -0.952531 | -2.033513 | 1.959220
62 || -1.621774 | 0.850902 | -0.228969 | -0.926692 | -2.118826 | 1.944848
63 || -1.616163 | 0.851845 | -0.225430 | -0.951036 | -2.283776 | 1.943621
64 || -1.612344 | 0.861249 | -0.230670 | -0.924578 | -1.991886 | 1.970209
65 || -1.597413 | 0.856374 | -0.225794 | -0.957210 | -2.243035 | 1.960481
66 || -1.579944 | 0.859895 | -0.229998 | -0.988109 | -2.360619 | 1.958290
67 || -1.587462 | 0.856377 | -0.220566 | -0.919997 | -2.125830 | 1.967931
68 || -1.564611 | 0.861032 | -0.224175 | -0.957012 | -2.266854 | 1.969484
69 || -1.555885 | 0.859016 | -0.221139 | -1.007868 | -2.610657 | 1.955081
70 |i -1.566862 | 0.849777 | -0.202618 | -0.948141 | -2.455979 | 1.964546
71 || -1.544702 | 0.860236 | -0.215859 | -0.970936 | -2.570164 | 1.955588
72 || -1.543978 | 0.862358 | -0.213676 | -0.961784 | -2.562161 | 1.957285
73 || -1.544020 | 0.864496 | -0.212798 | -0.939239 | -2.456653 | 1.961720
74 || -1.547950 | 0.866707 | -0.207156 | -0.903382 | -2.368461 | 1.967208
75 || -1.535765 | 0.870064 | -0.216321 | -0.944200 | -2.444025 | 1.962179
76 || -1.534443 | 0.870070 | -0.214299 | -0.909917 | -2.327395 | 1.964720
77 || -1.542489 | 0.873679 | -0.209039 | -0.903272 | -2.305750 | 1.974319
78 || -1.536233 | 0.877843 | -0.214107 | -0.936735 | -2.365699 | 1.976997
79 || -1.536529 | 0.874948 | -0.2109:9 | -0.918784 | -2.323019 | 1.975788
80 || -1.537397 | 0.877450 | -0.210191 | -0.909345 | -2.272919 | 1.979094
81 || -1.547653 | 0.876079 | -0.204106 | -0.852836 | -2.009983 | 1.992805

Table 5.2. (Continued) Parameters for the calculation of b(B) and n(B).
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82 | -1.533539 | 0.878307 | -0.211083 | -0.911676 | -2.318238 | 1.964894
83 || -1.545397 | 0.867540 | -0.201825 | -0.870254 | -2.353759 | 1.953557
84 || -1.540020 | 0.872088 | -0.206445 | -0.889392 | -2.464191 | 1.943878
85 || -1.554040 | 0.867150 | -0.197564 | -0.807687 | -2.070266 | 1.959567
86 [ -1.548214 | 0.880996 | -0.208349 | -0.842724 | -1.993683 | 1.977315
87 || -1.550769 | 0.868860 | -0.202828 | -0.788686 | -1.952663 | 1.952171
88 || -1.560198 | 0.868403 | -0.199066 | -0.756494 | -1.709677 | 1.968540
89 [ -1.557996 | 0.859053 | -0.197050 | -0.768892 | -2.188917 | 1.912209
90 || -1.569007 | 0.864094 | -0.195343 | -0.728476 | -1.600641 | 1.964328
91 || -1.559897 | 0.869525 | -0.204145 | -0.791256 | -1.883349 | 1.952736
92 || -1.571793 | 0.861946 | -0.192703 | -0.744449 | -1.744257 | 1.957278
93 || -1.564316 | 0.870557 | -0.201181 | -0.804320 | -2.012999 | 1.949633
94 || -1.567844 | 0.878892 | -0.202487 | -0.810608 | -1.646172 | 2.004970
95 || -1.560300 | 0.871174 | -0.201647 | -0.830104 | -2.031987 | 1.960396
96 || -1.569565 | 0.874194 | -0.198139 | -0.802902 | -1.683549 | 1.998831
97 || -1.566217 | 0.872064 | <0.199439 | -0.833288 | -1.865513 | 1.987068
98 || -1.563563 | 0.870842 | -0.198410 | -0.841724 | -1.997957 | 1975332

Table 5.2. (Continued) Paramieters for the calculation of b(B) and n(B )
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3.3. Iomic Inelastic Scattering Factors

5.3.1. Existing Form of Scattering Factors

The problem of inelastic scattering factors for atoms which are ionically bound in the
crystal will now be considered. Radi? has calculated the total imaginary part of the Fourier
coefficient, Vg', for a series of ionic crystals which have the rock salt structure. In order to
analyse the inelastic scattering factors used by Radi in his calculations, the first thing which
must be done is that the inelastic scattering factors must be extracted from the imaginary
Fourier coefficients which were given by Radi. Each Vg' value involves the inelastic scat-
tering factors of two different ions. However, the formula for Vg' is different when g has
all even indices from when g has all odd indices. These two different sets of Vg’ values can
be fitted to two different formulae and the relation between the two will gi- e the different

scattering factors for the two ions.

For crystals which have the rock salt structure, the formula for Vs’ givenin eq. 5.1

reduces to:
‘= ﬂz—[f ’(s, B,) exp (-B,s%) +£,’ (s, B,) exp (-B,s) | (5.52)
8 = wmev, 1 S0 1 2 (5, By 2 .
for h,k,1 all even, and
oo 2 [£f,’ (s, B,) exp (-B,s?) —£,’ (s, B,) exp (~B.s?) ] (5.5b)
g = wmev. h (8D 15 ) 1215, By) €Xp (=B, '

c
for h,k,] ali odd, where f,’ (s, B) and f,’ (s, B) are the inelastic scattering factors used for
the two ions. In Radi’s calculations, the two constituent ions were assumed to have the
same Debye parameter. Thus, in this case, Bj=B,=B. Therefore, if a function, g, (s, B),
can be found which gives all of the Vs's for which h,k,1 are all even, and another function,
g, (s, B) ,which describes those Vs's for which hk] are all odd, the
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f,'(s,B)exp(-B s2) values can be found in the following manner:

, 2 tmeV,_
f,"(s, B)exp(-Bs‘) = . [g,(s,B) +g,(s,B)]

, 2 tmeV,
f," (s,B)exp (-Bs") = " [g, (s, B) —g,(s,B)]

(5.6
It was found that a formula of the form given by eq. 5.3 was a reasonable first guess

at g(s,B). Therefore, all of the V g' for Radi’s ionic crystals which have even Miller indices
were fitted to this formula and the same was done for those with odd indices. Equation 5.6
was then used to calculate a set of points for the two functions, f,” (s, B) exp (—Bsz) .
These points were then fitted to a formula with the form given by eq. 5.3 to derive a first
guess at f,’ (s, B) exp (—-Bsz) for each of the constituent ions. Different procedures were
then tried to improve on these initial guesses, each of which involved assuming that the
guess for one of the ions was correct and going back to the Radi’s original V g’ values to
improve on the other guess. The set of f,’ (s, B) exp (—Bsz) ’s which gave 7ue best agree-
ment with the Vg’ values given by Radi when inserted back into eq. 5.6 were then assumed
to be correct. Obviously, this procedure cannot give as accurate values as were obtained for
the neutral atom scattering factors using Bird and King’s data. For one thing, each ion’s
scattering factor is somewhat obscured by the contribution of the other ion’s factor in each
value of Vg’. In some cases, this problem makes it impossible to determine accurate
parameters for one of the ions involved because the other ion’s coniribution to Vg' is S0
much larger. Therefore, for examp:e, it was impossible to accurately parametrize
f, (s, B)exp (—Bsz) for Li*!, for any of the compounds in which it was involved, since
its contribution to Vg' was always swamped by the other ion’s contribution. Another
problem which affected the accuracy was the fact that Radi did not calculate the V z' values
to sufficient precision, with some values having as few as one or even zero significant digits
(e.g. the Vg' value was listed as 0.000 for anything below a certain threshold value,
presumably 0.0005). However, despite these problems, accurate parametrizations were
obtained for most of the ions considered by Radi.
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5.3.2. New Form of Ionic Inelastic Scattering Factors

The above procedure resulted in a set of parameters, A(Bg), b(Bg), n(Bg) for eq. 5.3,
for each constituent ion, where By is the Debye parameter for the crystal involved. Because
of the inaccuracies in these parameters, and the lack of enough parameters for different
values of B, for a given ion, it was impossible to find accurate values of the parameters such
as Ay, bp, etc., which are needed for eq. 5.4, for each ion. An alternative approach was,
therefore, required. It was decided to try to develop some simple rules for finding the
f,' (s,B)exp (—Bsz) values for a given ion using the parameters given in Table 5.1 and
Table 5.2 for the corresponding neutral atom. This would then allow one to calculate
fk' (s,B)exp(-B sz) for all ions, even those not considered by Radi. The initial attempts
to find such a set of rules was largely unsuccessful. It is believed that this is due to an error
in integration which Radi made in his calculations and which was reported by Bird and
Kingls. The result of this error is that even values of Vg' which were calculated by Radi
for crystals made up of neutral atoms were different than those which resulted from the use
of Bird and King’s data. Because Radi’s data is the only available data for ionic crystals, it
was decided that an attempt should be made to find the effect that this error has on values
of A(Byp), b(B), and n(Bg),which are derived by fitting eq. 5.3 to Radi’s data. It might then
be possible to correct for this error in the ionic parameters before comparing them with the

corresponding neutral atom parameters from Bird and King’s data.

Radi also calculated Vg’ for a number of monatomic crystals which consist of
neutral atoms. From these Vg’ values, the inelastic scattering factors could be derived and
a set of parameters, AR(Bg), br(Bg), and ng(Bg) were obtained (in the following discus-
sion, those A, b, and n parameters which were derived from Radi’s neutral atom crystal
data will have the subscript, R. The parameters derived from Bird and King’s neutral atom
data will have the subscript, B, and parameters derived from Radi’s ionic crystal data will
have the subscript, I). These parameters were then compared to the corresponding param-
eters (i.e. for the same atom and the same Deby parameter, By), Ag(Bg), bp(Bg), and
ng(Bg), for neutral atoms which were derived frcva Bird and King’s data. In each case, it
was found that the difference between the two corresponding parameters, (e.g. between

nr(Bp) and ng(Bp)), followed a consistent paitern, and could be expressed in analytical
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form. The average difference between ng(B) and ng(B) will be referred to as d,(B). Thus,
since ng(B)-ng(B) is approximately equal to d,(B), a rough correctior for Radi’s error in

calculations could be made by simply adding d,(B) to Radi’s n parameters, ng(B).

Next, it was assumed that this same correction could be used to correct Radi’s error
for ionic crystals. Therefore, a correct n parameter for a particular ion, (which will be
labelled, nyc(B) -- the C stands for corrected), could be obtained by adding d,(B) to the n
parameter derived for that ion from Radi’s ionic crystal data, nj(B). This corrected value,
nic(B), could then be compared with the n parameter for the corresponding neutral atom,
ng(B), as derived from Bird and King’s data. In this way, the difference in parameters for
neutral atoms and ions could be found, leading to the possibility that a method for deriving

the ionic parameters from the corresponding neutral atom parameters could be obtained..

5.3.3. Ionic n Parameters

It was found that the n values from Radi’s neutral atom data, ng(B), were consistently
larger than those resulting from Bird and King’s data, ng(B). It was calculated that on
average, np(B) was 8.7% larger than ng(B) for the same Debye parameter, B. Although
there were random variations from the average, there was no discernable trend in this

difference as a function of B. Therefore:

ng (B) =ng (B) +d, (B)

where

d (B) = 0.087ng (B)

It will now be assumed that the same difference, d,(B), would characterize the rela-
tionship between Radi’s ionic n parameters, ni(B), and Bird and King’s neutral atom n
parameters, ng(B). Therefore, 0.087ng(B) is subtracted from the vaiuc, ny(B), which was
derived from Radi’s data for ionic crystals, and then this new value, njc(B)=n;(B)-d,(B) is
compared with ng(B), making sure that the same Debye parameter is used throughout for
a given data point. Figure 5.5 shows a plot of njc(B)-ng(B) as a function of B for all of the
ions for which good parameters were available. The squares represent data for positive ions

while the circles represent negative ions.

First of all, it can be seen that all of the points are clustered around zero. This
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Fig. 5.5. Plot of the difference between the corrected n value for a given
ion, njc(B), and the neutral atom value for the same atom as derived from
Bird and King’s data, ng(B), as a function of Debye parameter. The circles
represent negative ions while the squares represent positive ions.

indicates that the ionic n parameters, ny(B), are also generally 8.7% larger than the n
parameters for the same atoms derived from Bird and King’s data, ng(B). Thus since all of
the n parameters derived from Radi’s data, whether for neutral atoms or ions, tend to differ
from Bird and King’s n parameters by the same amount, it is reasonable to assume that the
same correction, (namely, the subtraction of d,(B)) can be made for ions as for neutral
atoms. Secondly, it is clear that the negative ions tend to have a lower n parameter than their
neutral atom counterparts (which would generally fall around zero on this plot) and the
positive ion n parameters are higher than the neutral atom values. This behaviour is reason-
able for any parameter which characterizes atoms and ions. Based on this fact, a simple
relation between the corrected ionic n parameter, nyc(B), and the neutral atom n parameter,
ng(B), can be found which can be calculated using eq. 5.4 and Tables 5.1 and 5.2.

If AZ is taken to be the extra charge on the ion in question (e.g. Na*! has AZ=1) then
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the new values, nj«(B) can be expressed as follows:

ne (B) =ng (B) +m AZ (5.7)
where m,, is a factor which depends on the ion, but for atoms which were not treated by

Radi, an average value, my,,, can be used.

m .. = 006 (5.8)
The set of m,, values for those atoms covered by Radi for which accurate values of ny(B)

could be obtained is giver in Table 5.3

Aom | z AZ my,
0 8 2 0.045
F 9 1 0.058
Na || 11 +1 0.091
Mg 12 +2 0.172
cl 17 -1 0.098
K 19 +1 0.051
Se 34 2 0.105
Br 35 -1 0.044
Rb 37 +1 0.052
Ag 47 +1 0.063
T || 52 2 0.083
I 53 -1 0.006
Cs 55 +1 0042
Pb 82 +2 0.046

Table §.3. m, parameters for common ions.

5.3.4. Ionic b Parameters

Now, an attempt will be made to find a relationship between the corrected ionic b
values, bjc(B), and the neutral atom b values obtained from eq. 5.4 and Tables 5.1 and 5.2,
bg(B). Once again, the first thing to do is to compare the b values obtained from Radi’s
neutral atom data, bp(B), with the corresponding values from Bird and King’s data, bg(B).
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Figure 5.6 shows the difference between these two values as a function of B for all of the

bee and fec neutral atom crystals considered by Radi. The difference between the two

0.5

0 1 2 3

Debye parameter, B, (A2)

Fig. 5.6. Plot of the difference between the neutral atom b values using
Radi’s data, br(B), and using Bird and King’s data, bg(B), as a function
of Debye parameter. The line indicates the average difference, dy,(B).

values, dy(B), was found to be given approximately by:

bg (B) — by (B) =d (B) = 0.059366 +0.186865B — 0.130802B"*12
Figure 5.7 shows the difference between the ionic data b values, by(B), and the bg(B)
values for the same neutral atom with the same Debye parameter as a function of B. As in
Fig. 5.6, the function, dy(B) is indicated by the line. The positive ions are represented by
the squares and the circles represent the negative ions. Again, it can be seen that the ionic
b parameters, by(B), tend to differ from the corresponding Bird and King neutral atom b
parameters, bg(B) by the same amount as Radi’s neutral atom b parameters do. It can also
be seen that the positive ion b values tend to be larger than the average neutral atom values

obtained from Radi’s data, whereas the negative ion values tend to be lower, as was the case
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Fig. 5.7. Plot of the difference between the ionic b values using Radi’s data, by(B), and
the neutral atom values, bg(B), as a function of Debye parameter. The line represents
dy(B), the average difference between Radi’s neutral atoin values, br(B), and bg(B).
The circles represent the negative ions while the squares represent the positive ions.

for the n parameters.

Again, a simple relationship between the corrected parameters derived from Radi’s
ionic crystal data, byc(B)=by(B)-d,(B), and the neutral atom parameters which are based on

Bird and King’s data, bg(B), could be found. This relationship is given by the following
formula:

bye (B) = by (B) +m,AZ (5.9)

where my, depends on Z and AZ, but an average value, my,,, can be used for atoms which

were not treated by Radi.

my,, = 0.075 (5.10u)

for positive ions, and:

My, = 0.045 (5.10b)

for negative ions. For those atoms for which Radi’s data gave useable results, Table 5.4
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gives the best value of my;:
Atom VA AZ my,
0 8 -2 0.050
F 9 -1 0.041
Na 11 +1 0.148
Mg 12 +2 0.082
Cl 17 -1 0.069
K i 19 +1 0.097
Se 34 2 0.027
Br 35 -1 0.033
Rb 37 +1 0.045
Ag 47 +1 0.015
Te 52 -2 0.017

I 53 -1 0.034
Cs 55 +1 0.044
Pb 82 +2 0.024

Table 5.4. m;, parameters for common ions.

5.3.5. Ionic A Parameters

Finally, it is necessary to look for a formula for Ajc(B), the corrected ionic A value,
in terms of the neutral atom A values, Ag(B), obtained from eq. 5.4 and the parameters in
Tables 5.1 and 5.2. First, Ag(B) is compared with Radi’s neutral atom A values, Ag(B).
This comparison is made more difficult by the fact that the difference between these two
values depends on Z as well as B. In spite of this difficulty, the following relationship was

found:

AR (B) = Ag(B) +d, (Z,B)

where

d, (Z,B) = Ag(B) (1.3Bexp (-11B) ~0.01086B + 0.00124Z ~ 0.01)
The corrected ionic A values, Ajc(B) = Aj(B)-ds(Z,B), are now compared with Bird and
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King’s neutral atom A values, Ag(B). Figure 5.8 shows a plot of

(Ajc (B) —Ag (B))/Ag (B) as a function of B. Again, the circles represent the nega-
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Fig. 5.8. Plotof (A;c(B) —Ag(B))/Ag(B) asa function of Debye parame-
ter. Those points which represent the same atom are connected by lines. The cir-
cles represent the negative ions while the squares represent the positive ions.

tive ions, while the positive ions are represented by squares. The lines connect those points
which represent the same atom, but at different Debye parameters. It can be seen that
(A;c (B) —Ag (B)) /Ag (B) is relatively constant for a given atom as B is varied. It is
also clear that positive ions tend to have Ajc(B) lower than the Ag(B) value for the corre-
sponding neutral atom, while for negative ions, Ajc(B) is larger. Figure 5.9 shows a plot of
the average value of (A;c(B)—-Ay(B))/Ag(B) for each atom,
((A;c(B) —Ag(B))/Ag (B)), divided by -AZ. It has been found that the relationship
between these values and Z is given approximately by the following function:

(Ajc (B) —Ag (B))/Ag (B)/ (-AZ) = 10—7.,36
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Fig. 5.9. Plotof ((A;c (B) —Ag (B))/Ag (B))/ (-AZ) as a function of atomic

number. The line indicates a best fit to these values, given by 1.73/ 707,

‘Therefore, the following expression for Ajc(B) can be obtained:

muAZ
A;c(B) =Ag(B) (l ——?36—) (5.11)

where my, is a factor which depends on Z and AZ, but for ions which have not been dealt

with by Radi, the following average value, my,,, can be used:

m,,, = 1.73 (5.12)

For those ions which were covered by Radi and for which accurate A{(B) values could be

obtained, the best values of my can be found in Table 5.5.
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Atom Z AZ mp
o | s | =2 | 1s |

F 9 -1 1.68
Na 11 +1 1.69
Mg . 12 +2 1.39
Cl 17 -1 2.06
K || 19 +1 1.77
Se 34 2 1.82
Br 35 -1 1.71
Rb 37 +1 1.82
Ag 47 +1 , 1.84
Te 52 -2 1.72

I 53 -1 1.37
Cs 55 +1 1.84
Pb 82 +2 1.60

TableS.5. m, parameters for common ions.

5.3.6. Agreement With Existing Calculated Values

It is now important to check to see if the preceding procedure for calculating
f,’ (s,B)exp (—Bsz) for atoms which are ionically bonded in the crystal yields accurate
results. Therefore, 2 comparison of the Radi’s values of Vs’ with those obtained using the
inelastic scattering factors calculated by the method developed in the previous sections

should be made for a number of ionic crystals. This will be done in this section.

Because the corrections which were made for Radi’s error in integration involve
changes to the parameters used in eq. 5.3, n(Bg), b(Bg), and A(By), it is not possible to
directly correct the Vg’ values calculated by Radi, in order to compare them with those
generated using the new inelastic scattering factors and eq. 5.5. Instead, those corrections

in the calculations of n(Bg), b(Bg), and A(Bg) must be undone in order to make the
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resulting inelastic scattering factors comparable to those used by Radi.

Figure 5.10 shows a plot of Vs' as a function of scattering vector, s, for the ionic
crystal, NaF. The dots indicate Radi’s data for the ionic crystal. The dashed line shows the

0.15

0.10 1
3
~ 0.05 -
>un

0
'0.05 L] v
0 04 0.8 1.2

Scattering Vector, s, (A1)

Fig. 5.10. Plot of V_’ as a function of scattering vector, s, for the ionic crystal NaF, The
dots indicate Radi’s data which assumes ionic bonding. The circles represent scattering
vectors for which h,k,! are all even, while the squares are for those which are all odd. The
dashed line represents the values obtained usiiig egs. 5.3 and 5.4 and Tables 5.1 and 5.2
and adjusting for the difference between Radi’s and Bird and King’s neutral atom results.
The solid line indicates the result of accounting for the ionic bonding as outlined above.

result of using egs. 5.4 and Tables 5.1 and 5.2 to obtain Ag(B), bg(B), and ng(B). These
parameters were then altered to account for the difference between Radi’s and Bird and
King’s neutral atom data. i.c. the appropriate d(B) value was added to each parameter
(whereas, earlier, the appropriate d(B) value was subtracted from the parameters obtained
from Radi’s ionic crystal data, A{(B), by(B), and ny(B)). These new parameters were then
inserted into eq. 5.3 to find the result of using neutral atom data to calculate Vs' {includizxg
a reverse correction). The solid line shows the values of f,” (s, B)exp (-Bsz) obtained
using the same approach as for the dashed line, but in addition, eqs. 5.7, 5.9, and 5.11, and
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the m values in Tables 5.3, 5.4, and 5.5 were used to further alter n(B), b(B), and A(B)

respectively before using eq. 5.3 to calculate f," (s, B) exp (—-B 52) . For both the solid
lines and the dashed lines, the upper line corresponds to cases where h, k, and 1 are all even,
while the lower line is for h,k,! all odd.

It is important to note that the above procedure does not imply that the d“B) values
should be added to the A(B), b(B), and n(B) in practice. This is done here only to compen-
sate for the error made in Radi’s calculations of V s" In practice, the only alterations which
need to be done to the parameters generated by eq. 5.4 is that egs. 5.7, 5.9, and 5.11 need
to be applied with the appropriate m values. The effect of these alterations is represented
be the difference between the solid lines and the dashed lines.

It can be seen from Figure 5.10, that the calculated values which have been altered
by using egs. 5.7, 5.0, and 5.11 on the neutral atom parameters (solid lines) are much more
accurate than those derived from the neutral atom parameters alone (dashed lines). Figure
5.10 also illustrates an interesting property of the transformation of the A parameter which
is brought about by eq. 5.11. For two atoms of similar atomic number, the increase brought
about by eq. 5.11 on the A parameter of a negative ion is approximately the same as the
resulting decrease in the A parameter of the positive ion. This is especially true for two ions
which fall on either side of a noble gas in the periodic table, such as Na and F. The effect
of this for crystals which have the rock salt structure is that for reflections which have all
even indices, the two effects essentially cancel each other. This can be seen by the simi-
larity of the two upper lines in Fig. 5.10. However, for reflections which have all odd
indices, the two effects are additive and the result is that the ionic Vg’ is approximately the
opposite of that for neutral atoms. In effect, it is as if the two atoms have switched identi-
ties. However, this simple situation is not the case for more complex crystal structures.
Also, when the two atoms are less similar in size, the effect of ionic bonding is significant
for both kinds of reflections.

Figure 5.11 shows a plot of V' as a function of s for the ionic crystal, RbF. Once
again, the values which result from the procedure developed in the previous sections (solid
lines) are much more accurate than those which are derived from the neutral atom param-

eters alone (dashed lines). In this case, it can be seen that the decrease in the A parameter
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Fig. 5.11. Plotof V_’ as a function of scattering vector, s, for the ionic crystal RbF. The
dots indicate Radi’s data which assumes ionic bonding. The circles represent scattering
vectors for which h,k,] are all even, while the squares are for those which are all odd. The
dashed line represents the values obtained using egs. 5.3 and 5.4 and Tables 5.1 and 5.2
and adjusting for the difference between Radi’s and Bird and King’s neutral atom results.
The solid line indicates the result of accounting for the ionic bonding as outlined above.

of Rb as a result of eq. 5.11 is much larger than the increase in the A parameter of E. There-
fore, the Vs' values, for both even and odd indiced reflections, of the ionic crystal are
smaller than those which result from the assumption of neutral atoms. Another difference
between this plot and Fig. 5.10 is that the m values used in the calculation of the solid line
values are the average values given by egs. 5.8, 5.10, and 5.12, rather than those given in
the tables. The agreement is still very good, and it has been found that, in general, the use
of the average m values results in very accurate values of Vg', although not quite as good
as those resulting from the m values given in Tables 5.3, 5.4, and 5.5.

One final point is worth noting. For positive ions, ths A parameter is always
decreased from that of the same neutral atom. However, the b parameter of the positive ion

is larger than that of the corresponding neutral atom. For negative ions, the situation is
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reversed in both cases. The effect of an increase in the b parameter is that the
f,'(s,B)exp (—Bsz) values decrease more slowly as s increases. In other words, the
larger b value raises the value of f, " (s, B) exp (—Bsz) » especially for large values of s.
This reduces the effect of the smaller A parameter for positive ions as s increases. The
change in n parameters reduces the effect even further for values of s which are less than
1.0. Therefore, for both positive and negative ions, the difference between ionic and neutral
atom values tends to decrease as the scattering vectcr, s, is increased. However, the most
important f,’ (s, B) exp (—Bsz) values are thos: with small s values, and those are the

values for which the difference between the ionic and neutral atom values is the greatest.

Therefore, it can be scen that the method described in the preceding sections
produces much more accurate values of Vg’ than those which can be achieved using
neutral atom inelastic scattering factors. Also, the necessary transformation from the
neutral atom parameters to the ionic parameters is accomplished through the use of a

simple formula for each parameter. In the next section, a summary of the procedure will be

given for both neutral atoms and ions.
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S.4. Summary

It has been found that the inelastic scattering factors for both neutral atoms and ions
can be calculated through the use of a simple parametrization. In the case of neutral atoms,
the inelastic scattering factor is calculated by first inserting the correct parameters from
Tables 5.1 and 5.2 and the correct Debye parameter into eq. 5.4. The A(B), b(B), and n(B)
parameters which result from this step are then inserted into eq. 5.3, along with the desired
scattering vector, s, to find f,” (s, B) exp (-Bsz) .

For ions the procedure is the same, except for one additional step. As in the case of
neutral atoms, the first step is to insert the correct parameters from Tables 5.1 and 5.2 and
the correct Debye parameter into eq. 5.4 to calculate Ag(B), bg(B), and ng(B). These
parameters are then modified through the use of egs. 5.7, 5.9, and 5.11 in the following
way. It is necessary to find the correct m parameter for a given ion for use in these equa-
tions. If the ion in question is listed in Tables 5.3, 5.4, and 5.5, the appropriate m parame-
ters should be taken from these tables. Otherwise, a good approximation to the correct m
parameters can be found in egs. 5.8, 5.10, and 5.12. Once the best m parameters have been
found, they are used, along with ng(B), bg(B), and Ag(B), in egs. 5.7, 5.9, and 5.11, to find
nic(B), bic(B), and Ajc(B), respectively. These new parameters, nic(B), byc(B), and
Ajc(B), are then inserted, along v.1th the desired scattering vector, s, into eq. 5.3. The result

of this step is the correct f,” (s, B) exp (-B sz) value for the ion in question.
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6. Results and Conclusions

6.1. Determination of Rigid Body
Translation Vector

6.1.1. Basic Method of Determination

In this section, the basic method for the determination of the rigid body translation
vector of a twin boundary will be demonstrated. In the next section, the effect of slight
inaccuracies in the tie point projection which is assumed to describe the crystal orientation
will be examined. This section will give an idea of the typical error involved in the deter-

mination of the rigid body translation vector by this method.

In order to demonstrate the method for determining the rigid body translation vector,
which will be referred to as T, it is necessary to assume a particular translation vector for
the hypothetical twin boundary. Since the twin boundary is hypothetical, the choice of
which translation vector will be assumed is completely arbitrary. In this case, it will be
assumed that the rigid body translation vector of the twin boundary is equal to [0.5, 0.5, 0].
Also, the calculations will be based on the assumption that the twin boundary lies on the
(110) plane of the superconductor, Y{BayCu307.5. Therefore, if the theory presented in
Chapter 3 gives accurate results, an experimental image of such a twin boundary in this
material would resemble the simulated images which are calculated using these

assumptions.

[131] Matrix Zone Axis

The basic method in determining the translation vector is to obtain simulated images
for various translation vectors (using eq. 3.23) in an attempt to find images which match the
experimental image. For the purposes of demonstrating the method it will be assumed that
the experimental image closely resembles a standard image, which is calculated using
T =[0.5, 0.5, 0. Figures 6.2, 6.3, and 6.4 show a number of simulated bright field images
of the twin boundary, each assuming different values of T. The diffraction conditions are

shown in Fig. 6.1. The matrix zone axis is [131] and the matrix tiz vint projection is
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Fig. 6.1. Simulated diffraction pattern from a (110) twin boundary of Y;Ba;Cu301.5.
The matrix zone axis is [131] and the twin zone axis is [311] . The Miller indices are
indicated for some of the reflections in their own coordinate systems. The intersections of
the Ewald sphere with the matrix and twin zero order Laue zones are indicated by the
solid and dashed lines respectively. The matrix tie point projection is (-6.0 1.13 2.62).
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T=105001 [E T = [05,0.25,0)

T = [05,05,0] | | ' [0.5,0.75, 0]

Fig. 6.2. Simulated bright field twin boundary images for a rigid body translation vector
ranging from T =[0.5, 0, 0] to T = [0.5, 0.75, 0. The matrix zone axis is [131] and the
matrix tie point projection is (-6.0 1.13 2.62).
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T = [0,0.25,0]

= [0,0.75, 0]

Fig. 6.3. Simulated bright field twin boundary images for a rigid body translation vector
ranging from T= [0, 0,0] to T= [0, 0.75, 0]. The matrix zone axis is [131] and the

matrix tie point projection is (-6 1.13 2.62).
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T = [05,0.5,0.167] T = [0.5,0.5,0.333)

= [05,0.5,0.5] KNS T = [0.5,0.5,0.667]

Fig. 6.4. Simulated bright field twin boundary images for a rigid body translation vector
ranging from T= [0.5, 0.5, 0.167] to T = [0.5, 0.5, 0.667]. The matrix zone axis is [131]
and the matrix tie point projection is (-6 1.13 2.62).
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(-6 1.13 2.62). The major diffracted beams are the matrix reflection, (013), and the twin
reflection, (103). Fig. 6.2 shows the variation in the simulated image as T is varied
from [0.5, 0, 0] to [0.5, 0.75, 0]. The lower left image is the standard image with
T= [0.5, 0.5, 0]. It can be seen that the images change noticeably with each change in T.
Assuming that the experimental image looked like the lower left image in Fig. 6.2, it would
be possible, with a good quality experimental irnage, to reject the other three rigid body
translations vectors by comparison with the experimental image. Fig. 6.3 shows the varia-
tion in the simulated image contrast for T ranging from [0, 0, 0] to [0, 0.75, 0]. Thus, the
only difference between the images in this figure and those in Fig. 6.2 is that the first
component of T has been changed from 0.5 to 0. It can be seen by comparison of Fig. 6.2
and Fig. 6.3 that this change has made almost no difference in the images. In this case, the
lower left image, with T= [0, 0.5, 0], resembles the standard image. Therefore, [0, 0.5, 0]
could be considered as a candidate for the rigid body translation vector of the hypothetical
twin boundary. Figures. 6.2 and 6.3 have shown that changing the first component of the
rigid body translation vector from 0.5 to 0 has almost no effect on the simulated images. In

fact, it has been found that this is true for any value of the firs: component of T.

Figure 6.4 shows a series of simulated images of the twin boundary in which the
third component of T is being varied. In this case, T ranges from [0.5, 0.5, 0.167] to
[0.5, 0.5, 0.667]. By comparing Fig. 6.4 with the standard image in the lower left corner of
Fig. 6.1, it can be seen that a good resemblance is found for T= [0.5, 0.5, 0.333] and for
T= [0.5, 0.5, 0.667]. This is indicative of a fact that was found from the examination of
218 simulated images covering the entire range of possible rigid body translation vectors.
It was found that a given simulated image resembles the standard image for any T value

which satisfies the following relation:

T-(013) =05+n (6.1;
where n is any integer. The reason for this can be understood by referring to the two beam
equations given in sec. 3.4. Although the diffraction conditions in this case are not suitable
for a two beam approximation to be used, the two beam equations can give insight into the
reason why eq. 6.1 is obeyed. For a bright field image in which the major diffracted beams

are not common, the relevant equation is eq. 3.42, which will be rewritten here for
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simplicity:
. 2 .
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¥ (3.42)
In this equation, § = (013) (in matrix coordinates), and h = (103) (in twin coordi-
nates). However, all of the calculations must be done in the same coordinate system. In this
case, matrix coordinates are used throughout, and hence, the final rici< body translation
vector will be given in matrix coordinates. Therefore, in matrix coordinates,
h =(0.017 1.017 3). It can be seen from eq. 3.42, that the factor determining contrast
due to the rigid body translation vector is exp (Zniﬁ -T). Thus, it can be seen that
in the two beam situation, any rigid body translation vector that satisfies
T-h = (05,05,0) -h+n = 0.517+n, where n is any integer, will give the same

diffraction contrast.

This argument can be extended to include all of the reflections in the systematic row
(the row of matrix reflections which contains the major diffracted beam, (01 3), and the
transmitted beam) in the following way. In the many-beam equivalent to eq.3.42,
(eq. 3.22), each matrix reflection gives rise to another term which is similar to the second
term in eq. 3.42 and which can affect the image contrast in a way which depends on T.On
the other hand, strong twin reflections do not give rise to more terms. They do affect the
first term in eq. 3.42, however, but this term does not depend on T.In every new term,
the twin reciprocal lattice vector, ﬁ, is almost common with the matrix reflection
which gives rise to the term. In the case of terms which result from systematic row
reflections, these different twin reciprocal lattice vectors will all be multiples of the one,
h= (0.017 1.017 3), for the two beam case described above. This is because the system-
atic row reflections are all multiples of the major diffracted beam (as long as the major

diffracted beam is the lowest order reflection in the row).

Thus, for example, the next most important intense reflection for this orientation,

g = (013), will give rise to a term which depends on cxp(ZniE, *T), where
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h, =(0.017 1.017 3)is the twin reflection which is almost common with §, = (013).

This term will be the same for any rigid body translation vector that satisfies the following:

T-hy = -T-h = (05,05,0) -hy +n=- (0.5,05,0) - h+n
where n is any intege: . 8y comparing the second and fourth terms in this equation, it can
be seen that the condition is :dentical to the ~ne for the twu seam case. As another example,
the matrix reflection, § = (026) will give rise - ;. 22=m which is always the same 2= it is
for T = (0.5, 0.5, 6) when the following condition is miet:

126 = 2(T-B) = (05,05,0) -2 +m=2[ (05,05,0) i+ 3]

where m is an integer. Again, by comparing the second and fourth terms in this equation, it
can be seen that this condition will be met whenever T- h = (0.5,0.5,0) - h+ n, since
the two cases are the same when m is an even integer. Thus, the term caused by this matrix
reflection will always give the same value when the cond:tion for the two beam case is met.
It can also be seen that there will also be other rigid body translations which give the same
value for this term, but for these values of T, the terms in the equation which are due to the
two most important matrix reflections, which were discussed above, will be completely
different from the case where T = (0.5, 0.5,0).

Therefore, as long as the most important matrix reflections all lie in the same system-
atic row, one experimental image can give the component of T which lies in the direction
of the systematic row. One way of estimating the importance of a particular reflection is by
the intensity of that reflection in the diffraction pattern. The intensities of the eight most
intense matrix reflections for the crystal orientation assumed here are shown in Table 4.2.
It can be seen that for this orientation, there are significant non-systematic reflections, but
the majority of the most intense reflections are in the systematic row. As a result, this orien-

tation has given the component of T which lies in the direction of (013).

In the case of Y BayCu304., it has been found that for most zone axes, there is
always one row of reflections which has much higher structure factors than most other
reflections. Therefore, it is usually possible to find an orientation where the reflections of
this row are much more important than any other reflections. Conversely, it is usually diffi-

cult to find an orientation for which the reflections of a different row are much more intense
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than those which are not in that row without going to a new zone axis. Thus, ideally, images
should be taken from three different orientations, with thrce different zone axes, and thre:
non-coplanar systematic rows of important reflections, in order to completely determine

the translation vector.

It should be noted that although the explanation above made use of the two beam
equation of intensity, this does not imply that a two beam calculation would be sufficient to
accurately simulate the twin boundary image for use in comparison with an experimental
image. Figure 6.5 shows two simula.ed images for the same diffraction conditions as the
previons three figures, but taking different numbers of reflections into account. In Figs. 6.2,
6.3, and 6.4, the 17 most intense reflections were taken into account in the calculations. The
image on the left of Fig. 6.5 was calculated using only two beams, the transmitted beam,
and the most intense diffracted matrix reflection, § = (013). Along with these went the
twin and combination reflections, h = (103)and g — h, respectively. The image on the right
was calculated taking into account the six most intense systematic row reflections. In both
cases the assumed translction vector was T = {0.5,0.5,0], as in the standard image
shown in the bottom left hand corner of Fig. 6.2. It can be seen that the two beam image is
quite different from the standard image. On the other hand, the image calculated using the
six most intense systematic row reflections is fairly similar to the standard image and

demonstrates how dominant the systematic row of reflections is for this orientation.

The effects of using dark field images rather than bright field images will now be
examined. Figure 6.6 shows a series of dark field images for the diffraction conditions
shown in Fig. 6.1, with the objective aperture centered around the (013) matrix reflection.
The rigid body translation vector varies from [0.5, 0, 0] to [0.5, 0.75, 0}. It can be seen from
these images that there is a slight variation in the images as Tis changed. However, the
variation is not nearly as great, and the uncertainty in T would be far greater if dark field
images were used instead of bright field. Still, the condition, expressed by eq. 6.1, for a
given bright field image to resemble the image for which T = (0.5, 0.5, 0], also holds for
dark field images. Thus, in principle, this dark field image can also give the component of
T in the direction of (013) . The principles behind this are the same as in the bright field

case described above.
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2 Beam Calculation 6 Beam Systematic Row Calculation

Fig. 6.5. Simulated bright field twin boundary images for a rigid body translation vector
of T= [0.5, 0.5, 0). The matrix zone axis is [131] and the matrix tie point projection is
(-6 1.13 2,62). The image on the left is a result of a two bea:s calculation, while the
image on the right takes into account the six most intense reflections in the systematic row.

[101] Matrix Zone Axis

It is now necessary to investigaic another orientation in order to determine the
component of the rigid body translation vector in the direction of a different systematic row
of reflections. Figure 6.7 shows the diffraction conditions which will be assumed for the
following simulations. In this case the matrix zone axis is [101] and the twin zone axis is

[011] . The matrix tie point projection is (-2.2 0.8 2.2). The most intense matrix reflec-
tion in this diffraction pattern is (010), which is in its Bragg condition. The next two most
intense reflections (as calculated by eq. 4.32 or eq. 4.33) are (020) and (010) . Thus, again,

the most intense reflections belong to the systematic row, and hence, it would be expected
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T = [0.5,0,0] | . T = [0.5,0.25,0]

T = [05,05,0] | ) T = {0.5,0.75,0]

Fig. 6.6. Simulated dark field twin boundary images for a rigid body translation vector
ranging from T= [0.5, 0, 0] to T= [0.5, 0.75, 0]. The matrix zone axis is {131] and the
matrix tie point projection is (-6.0 1.13 2.62).
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Fig. 6.7. Simulated diffraction pattern from a (110) twin boundary of Y;BayCu30+.5.
The matrix zone axis is [101] and the twin zone axis is [011]. The Miller indices are
indicated for some of the reflections in their own coordinate systems. The intersections of
the Ewald sphere with the matrix and twin zero order Laue zones are indicated by the
solid and dashed lines respectively. The matrix tie point projection is (-2.2 0.5 2.2).
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that this orientation would give the component of T in the direction of (010).

Figure 6.8 shows a series of simulated images for these diffraction conditions, for a
range of rigid body translations from [0.5, 0, 0] to [0.5, 0.75, O]. It was found that changing
the first and third components in T had no effect on the image contrast, as expected. It.can
be seen that there is a definite variation in the twin boundary contrast as the second compo-
nent of T is varied. However, these images do not exhibit the regular set of fringes which
usually characterize a twin boundary image, and, as a result, they can be confusing to look
at in order to find differences between the images. This leads to an alternate way of
comparing images. Instead of comparing two dimensional images which contain informa-
tion for a large range of different thicknesses, it is possible to compare one dimensional
plots of intensity for a given crystal thickness. The experimental plot can be obtained by
running a microdensitometer across a twin boundary image for a constant thickness. Thus,
for example, a microdensitometer could be run along the a line in the experimental image
which corresponds with the white line shown in the simulated standard image in
Figure 6.9 (b). This line corresponds to a total crystal thickness of 600 A. The plot gener-
ated in this way could be compared with simulated plots for the same thickness and for a

range of rigid body translation vectors.

Figure 6.9 (a) shows three such plots for translation vectors, ’I", ranging from
[0.5, 0.25, 0] to [0.5, 0.75, 0]. It can be seen from this figure that the variation in intensity
profile as a function of T can be unmistakeable in such a one dimensional plot. Care must
be taken, however, to insure that the microdensitometer trace comes from a line with the

correct thickness.

The situation for the dark field images is more straightforward to analyse. Figure
6.10 shows a series of dark field images for T ranging from [0.5, 0, 0] to [0.5, (.75, O]. The
diffraction conditions are the same as are shown in Fig. 6.7, and the objective aperture is
centered around the (010) matrix reflection. This set of images shows that the variation in
image contrast as a function of T is quite large in this case. Therefore, from these images,

and others that were also analysed, it can be determined that T must satisfy the following
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[0.5,0.25, 0]

[0.5,0.5,0] : T = [0.5,0.75, 0]

Fig. 6.8. Simulated bright field twin boundary images for a rigid body translation vector
ranging from T= [0.5,0,0] to T= {0.5, 0.75, 0]. The matrix zone axis is [131] and the
matrix tie point projection is (-2.2 0.5 2.2).
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Bright Field Intensity (Arbitrary Units)

Position Along Exit Surface of Crystal =0

--------------- T = (0.5,0.25,0)
T = (0.5,05,0)
............... ;I‘. = (05’ 075’ 0)

t=600A-\>

Fig. 6.9. (a) One dimensional plot of bright field intensity as a function of distance
along the exit surface of the crystal for a constant total crystal thickness, t, of 600 A.
The rigid body translation vector ranges from T =[0.5, 0.25, 0] to T = [0.5, 0.75, 0].
The matrix zone axis is [131] and the matrix tie point projection is (-2.2 0.5 2.2).

(b) Two dimensional simulated bright field image for the same orientation as in (a) and
a rigid body translation vector of T ={0.5, 0.5, 0]. The white line indicates a total
crystal thickness of 600 A.
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condition:

T-(010) =T, = 0.5+n
However, it is natural impose the further condition that no component of T can be larger

than one or less than zero, and therefore, T, = 0.5.
[211] Matrix Zone Axis

The last orientation which will be used demonstrates that it is important to select a
systematic row of reflections which has large structure factors. The matrix zone axis for
this orientation is [211]. The diffraction pattern for this orientation is shown in Figure 6.11.
The matrix tie point projection is (0.9 2.67 -0.87). It can be seen from the figure, that the

(102) reflection is in its Bragg condition. Thus, it might be assumed that the important

systematic row is the one which contains this reflection. This is not the case, however.

Figures 6.12 and 6.13 show a series of simulated twin boundary images for the orien-
tation given in Fig. 6.11. In Fig. 6.12, the rigid body translation vector is varied from
[0.5, 0,0] to [0.5, 0.75, 0], while in Fig. 6.13, T ranges from [0.3, 0.7, 0] t0 [0.3, 0.7, 0.5}.
The standard image is shown in the bottom left hand corner of Fig. 6.12. These figures
illustrate a fact which has been confirmed through the examination of many more simulated
images for this orientation. That is that the images which closely resemble the standard

image all have rigid body translation vectors given by:

T-(113) = n

Thus, it would seem that the dominant systematic row in this case is the (1 1-3) row.
Although it is not necessary to know this before doing the comparison of theoretical and
experimental images, it is helpful in indicating what to look for. Also, if the dominant row
is known beforehand, an orientation can be chosen for which it is as dominant as possible.
This makes the later interpretation of results clearer. Thus, it would be useful to know why
the (113) row is dominant in this case. The first thing to note is that the (113) row of
reflections have larger structure factors than the (102) row of reflections. Nevertheless,
(102) is still the most intense reflection in the diffraction pattern. There is another
element, however, which contributes to the relative importance of a given reflection. Up

until now, only the intensity of the matrix reflections, g, have been considered. However,
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Fig. 6.11. Simulated diffraction pattern from a (110) twin boundary of Y;Ba;Cu307.5.
The matrix zone axis is [211] and the twin zone axis is [121]. The Miller indices are
indicated for some of the reflections in their own coordinate systems. The intersections of
the Ewald sphere with the matrix and twin zero order Laue zones are indicated by the
solid and dashed lines respectively. The matrix tie point projection is (-0.9 2.67 -0.87).
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T = [05,0.25,0)

T=[05050 [ T = [05,0.75,0]

Fig. 6.12. Simulated bright field twin boundary images for a rigid body translation vector
ranging from T =[0.5, 0, 0] to T = [0.5, 0.75 ,0]. The matrix zone axis is [211] and the
matrix tie point projection is (-0.9 2.67 -0.87).
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T =[03,07,0] T = [03,0.7,0.167]

M7 = [03,07,0333]

Fig. 6.13. Simulated bright field twin boundary images for a rigid body translation vector
ranging from T =[0.3,0.7, 0} to T =[0.3, 0.7, 0.5]. The matrix zone axis is [211] and the
matrix tie point projection is (-0.9 2.67 -0.87).
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what is really important is the intensity of the combination reflections, g+ h, which are
derived from the matrix reflections. One component in this intensity is the-intensity of the
originating matrix reflection and this is what has been used for previous orientations.
However, there are other factors, one of which depends on the deviation parameter of g + h
as compared to the deviation parameters of the other reflections which pass through the
aperture. Because the (113) row of reflections is common, the combination reflections
g+ h, which are closest to the origin, and which will pass through the objective aperture to
contribute to a bright field image, are, in fact, common with the transmitted beam. There-
fore, their deviation parameters are exactly zero, and they will tend to be more intense than
the other combination reflections, such as the one originating from the (102) reflection,
which pass through the objective aperture. Therefore, there is a tendency of the row of
common reflections to be the dominant row of reflections for bright field images, although
this is not always the case, as was seen in the previous two orientations. Another compo-
nent to the intensity of g + h is the structure factor of h. For the matrix reflection, (113),
h = (113), whereas for the matrix reflection, (102), h = (012) . Of these two reflec-
tions, h = (113) has the larger structure factor. As a result of these two factors, the

(113) systematic row is dominant for this orientation.

Thus, it can be seen from the images that despite the fact that there is a very intense
non-systematic row reflection, the images still look very similar for any translation vector

which has the same component in the direction of the systematic row.

In the dark field images, the situation is much the same. Figure 6.14 shows a series
of dark field images for the diffraction conditions shown in Fig. 6.11, with the objective
aperture centered around the (113) matrix reflection. The rigid body translation vectors
vary between [0.5, 0, 0] and [0.5, 0.75, 0]. Again, it can be seen that there is a definite
dependence of the image on the rigid body translation vector, and again, the dependence is
the same for the dark field case as it was for the bright field case. It can be seen that for
T = [0.5, 0.5, 0] , the image of the twin boundary almost disappears. This is because the
systematic row of reflections is cor:mon, and therefore, there is no interference between
the waves travelling in the directions of the matrix and twin reflections since these direc-

tions are the same. Also, the term involving T, exp(21tif1-"f‘), is the same for
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T = [0.5,0.5,0] asitis for no translation vector at all since h is a multiple of (113) for
all terms which are derived from matrix reflections in the systematic row. Thus, it is as if
there were no translation vector at the boundary, and no orientation difference (since the
matrix and twin refiections are travelling in the same directions), and hence, no boundary
at all. The bound:ry is still slightly visible, however, because of the presence of non-

systematic reflections.
Summary

The components of T in the directions of three non-colinear systematic rows of
reflections have now been investigated. Thus, it might be thought that the rigid body trans-
lations vector has been completely defined. This is not the case because for each orienta-
tion, the equation defining which values of T give the correct image contrast involves an
unknown integer, n. Therefore, from the preceding work, the following set of equations has
been obtained:

T,~ 3T, = n; +0.5
T, = 0.5

where Ty, T, and T3 are the components of T in matrix coordinates. By subtracting the
first equation from the third, it can be found that T;=0.5. However, by substituting these
values into the first and third equations, it can only be determined that T; = n/3, where n
can be any integer. Thus, T3 could be 0 or 1/3 or 2/3, and another orientation must be inves-
tigated. For this case, an orientation should be chosen such that if the (hk/) systematic row
is dominant, / =1 or 2. This will not be demonstrated here, but the procedure would be iden-
tical to what has been done in the previous three orientations. One more point is worth
noting here. That is that the lower the indices, h, k, and [, of the lowest order reflection in
the systematic row, the less ambiguity there will be in the results. In the case which was
studied here, there were three possibilities for T3 because [ was three in both the first and
the third orientations. The fourth orientation would not have been necessary if either [ had
been different for the first and third orientations, or if / had been one in both cases.

-160 -



161

6.1.2. Effects of Inaccurate Tie Point Projections

In this section, the effects of slight inaccuracies in the assumed tie point projections
will be investigated. This will be done by redoing the work of the previous section, but
assuming a different tie point projection. For the first zone axis, * 131], an orientation will
be chosen such that the deviation parameters of the systematic row of reflections are
approximately correct, but that those of the non-sy “*2matic reflect i»ns are inaccurate. This
will give some insight as to the importance of non-systematic refi ions. For the next two
zone axes, orientations will be chosen for which the deviation parameters of the systematic

row reflections are inaccurate as well.

[131] Matrix Zone Axis

Figure 6.15 shows the diffraction pattern for the orientation chosen for the first zone
axis, (113). It can be seen by comparing this diffraction pattern with the one shown in
Fig. 6.1, that the (013) matrix reflection and the (103) twin reflection are again close to
their Bragg conditions, and the (013) matrix reflection is still the most intense matrix
reflection. The tie point projection has changed considerably, however. In this case, it is
(-4 0.79 1.63), whereas in Fig. 6.1, itis (-6 1.13 2.62). Figure 6.16 shows the simulated
images which result from the assumption of this tie point projection for T ranging from
[0.5, 0, 0] to [0.5, 0.75, 0]. It can be seen from a comparison of Fig. 6.16, and 6.2, that the
changes in the images brought about by the different tie point projections is detectable, but
not significant. If the tie point projection was assumed to be (-4 0.79 1.63), while the
actual tie point projection was (-6.0 1.13 2.62), this would not result in an inaccurate
determination of the component of T in the direction of the (013) matrix reflection. This
shows that as long as all of the relatively intense matrix reflections in the experimental
diffraction pattern have approximately correct theoretical intensities for the assumed tie

point projection, the simulated image will be quite accurate.

The effects of the inaccurate tie point projection are similar in the case of dark field
images as they are for bright field images. Figure 6.17 shows simulated dark field images
for the orientation just studied in the bright field case. These images should be compared

directly to those in Fig. 6.6, which are the dark field simulated images for the same
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Fig. 6.15. Simulated diffraction pattern from a (110) twin boundary of Y;Ba,Cu;0.5.
The matrix zone axis is [131] and the twin zone axis is [311]. The Miller indices are
indicated for some of the reflections in their own coordinate systems. The intersections of
the Ewald sphere with the matrix and twin zero order Laue zones are indicated by the
solid and dashed lines respectively. The matrix tie point projection is (-4.0 0.79 1.63).
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T = [05,0,0] ’ T = [05,0.25, 0]

T = [05,0.5, 0] T = [0.5,0.75, 0]

Fig. 6.16. Simulated bright field twin boundary images for a rigid body translation vector

ranging from T= [0.5, 0, 0] to T= [0.5, 0.75, 0]. The matrix zone axis is [131] and the
matrix tie point projection is (-4.0 0.79 1.63).
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T = [05,0,0] | T = [05,0.25,0]

Fig. 6.17. Simulated dark field twin boundary images for a rigid body translation vector
ranging from T =[0.5, 0, 0] to T =[0.5, 0.75, 0]. The matrix zone axis is [131] and the
matrix tie point projection is (-4.0 0.79 1.63).
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translation vectors, but a tie point projection of (-6.0 1.13 2.62). Once again, it can be seen
that the substantial change in tie point projection has relatively little effect on the images

because no new reflections are excited.

[101] Matrix Zone Axis

For the second zone axis, an orientation has been chosen which is very close to the
original orientation. Figures 6.18 shows the diffraction pattern for the assumed tie point
projection of (-2.2 0.75 2.2). The most important difference between this orientation and
the one shown in Fig. 6.7 is that the (020) matrix reflection is now more strongly excited,
and the (010) reflection is no longer in the Bragg condition. Also, since the (020) reflection
has a much larger structure factor than the (010) reflection, the (020) reflection is now the
most intense reflection in the diffraction patterr.. Figure 6.19 shows a series of simulated
images calculated assuming this tie point projection. The rigid body translation vectors
range from [0.5, 0, 0] to {0.5, 0.75, 0]. It can be seen by comparing Fig. 6.19 with Fig. 6.8,
that the change in orientation has had a noticeable effect on the image contrast. However,
the image for which T = 0.5, 0.5, 0] still bears the greatest resemblance to the standard

image in Fig. 6.8. This is particularly true for relatively thin regions of the crystal.

Nevertheless, it might be thought that by looking at more images, one might be found
which resembles the standard image better than the image for which T = [0.5,0.5, 0]
does. Since the first and ‘iid components of T have very little effect on image contrast for
this orientation (just as in the original orientation for this zone axis), images for which only
the second component of T is varied will be examined. Figure. 6.20 shows a series of simu-
lated bright field images which assume rigid body translation vectors ranging from [0.5,
0.4, 0] to [0.5, 0.55, 0]. It can be seen that the image obtained for T = [0.5, 0.5, 0] is still
the best match te the standard image for small c.ystal thicknesses, although for larger
thicknesses, the best march is probably for T = {05,045, 0] . Thus, although the inaccu-
rate tie point projection makes it more difficult to find 2 match to the experimental image
(which presumably resembles the standard image in Fig. 6.8), it would probably still result
in a reasonably accurate determination of the component of T in the direction of the
systematic row. There is one more thing to be noticed, however. A comparison of the thick-

ness fringes on either side of the twin boundary in Fig. 6.8 with those in Fig. 6.19 or 6.20
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Fig. 6.18. Simulated diffraction pattern from a {110) twin boundary of Y;Ba,Cuy07.5.
The matrix zone axis is [101] and the twin zone axis is [011]. The Miller indices are
indicated for some of the reflections in their own coordinate systems. The intersections of
the Ewald sphere with the matrix and twin zero order Laue zones are indicated by the
solid and dashed lines respectively. The matrix tie point projection is (-2.2 0.75 2.2).
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‘T = [05,025,0]

Fig. 6.19. Simulated bright field twin boundary images for a rigid body translation vector
ranging from T =[0.5, 0, 0] to T =10.5, 0.75, 0]. The matrix zone axis is {101] and the
matrix tie point projection is (-2.2 0.75 2.2).
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T = [05,04,0] T = [0.5,0.45,0]

= [05,0.55,0]

Fig. 6.20. Simulated bright field twin boundary images for a rigid body translation vector
ranging from T= [0.5, 0.4, 0] to T= [0.5, 0.55, 0]. The matrix zone axis is | 101] and the
matrix tie point projection is (-2.2 0.75 2.2).
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reveals that there are large differences between the two sets of fringes. Therefore, this fact

would make is clear that the matrix zone axis which was assumed was not correct.

The dark field situation is very similar to the bright field situation for this orientation.
Figure. 6.21 shows a series of dark field simulated images for the same orientation and
translation vectors used for Fig. 6.19. The objective aperture is assumed to be centered
around the (010) reflection. By comparing these images with those found in Fig. 6.10, it
can be seen that once again, no translation vector provides a perfect match to the standard
image, but the best match is found for T = [0.5,0.5,0].

[211] Matrix Zone Axis

Finally, a new set of images for the (211) zone axis wiil be examined. In the new,
inaccurate, orientation, the (113) reflection is in its Bragg condition, and the (102)
reflection, which was in its Bragg condition, is not any longer. The diffraction pattern for
this orientation is shown in Figure 6.21. A series of simulated images for T ranging from
£0.5, 0, 0] to [0.5, 0.75, 0] is shown in Figure 6.22. A comparison of Fig. 6.22 with Fig.
6.12 shows that this error leads to simulated twin boundary images which bear no resem-
blance at al! to those which assume the correct orientation. In this case, it would be impos-
sible to match the simulated iinages to experimental ones, and this fact should alert the

microscopist to the fact that the orientation must be wrong.

Figure 6.23 shows the simulated dark field images for the same orientation assuming
the objective aperture is centered around the (113) reflection. These images should be
compared to those found in Fig. 6.14. This comparison reveals the fact that the images bear
no resemblance except for the special case where (113) - = n. For this translation
vector, the twin boundary is effectively invisible for the same reasons as were described in
the description of the original (211) zone axis orientation. This illustrates the fact that if an
orientation can be found for which the twin boundary is invisible in a dark field image
formed with the objective aperture centered around a common reflection, the translation

vector must satisfy the following condition:

g-T=n

where § is the common refiection used to form the image.
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T=10500] [ T = [05,025,0]

Fig. 6.21. Simulated dark field twin boundary images for a rigid body translation vector
ranging from T =[0.5, 0, 0] to T =[0.5, 0.75, 0]. The matrix zone axis is [101] and the
matrix tie point projection is {-2.2 0.75 2.2).
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Fig. 6.22. Simulated diffraction pattern from a (110) twin boundary of Y{BayCu307..
The matrix zone axis is [211] and the twin zone axis is [121]. The Miller indices are
indicated for some of the reflections in their own coordinate systems. The intersections of
the Ewald sphere with the matrix and twin zero order Laue zones are indicated by the
solid and dashed lines respectively. The matrix tie point projection is (-1.9 3.56 0.24).
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T = [05,0,0] T = [05,0.25,0]

Fig. 6.23. Simulated bright field twin boundary images for a rigid body translation vector
ranging from T =[0.5, 0 ,0] to T =[0.5, 0.75 ,0]. The matrix zone axis is [211] and the
matrix tie point projection is (-1.9 3.56 0.24).
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T = [05,0,0] | T = [05,025,0]

T = (05050 [N § © = [05,075,0]

Fig. 6.24. Simulated dark field twin boundary images for a rigid body translation vector
ranging from T =[0.5, 0 ,0] to T =[0.5, 0.75 ,0]. The matrix zone axis is [211] and the
matrix tie point projection is (-1.9 3.56 0.24).
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Summary

The previous examples serve to illustrate the following principles. If the deviation
parameters of all of the intense reflections in the diffraction pattern are reasonably accurate,
the resulting images will generally be accurate also. This is true even if the actual tie point
projection is very inaccurate. This was shown by the example for the [131] zone axis. [his
is because large changes in tie point projection will have very smaii effects on the deviation

parameters of the systematic row reflections as long as the deviation parameter of the major

diffracted beam remains accurate.

The second example demonstrated that even a small change in the tie point projection
can have noticeable effects on the simulated images if it results in significantly different
deviation parameters for the systematic row reflections, This example, along with the third
example, also demonstrated that an inaccurate tie point projection may make it difficult, or
even impossible, to find a simulated twin boundary image which matches the experimental
image, but will usually not lead to inaccurate determinations of the rigid body translation
vector. This is because, as was seen in the example for the [101] zone axis, if it is possible
to find a match at all (even though it may not be perfect), it will probably give the correct
result. However, if the determination of the tie point projection is so inaccurate that it is
impossible to find a match at all, as in the example for the [211] zone axis, this will simply

serve to demonstrate that the tie point projection is incorrect.
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6.2. Conclusions and Recommendations

In this thesis the groundwork has been laid for an experimental determination of the
rigid body translation vector of a twin boundary. The twins which are the primary concern
of this thesis are called pseudo-merohedral and pseudo-reticular merohedral twins. These
types of twins are fairly common among complex crystals such as ceramics. From an elec-
tron microscopy point of view, the most significant feature of these twins is that the crystals
on either side of the twin boundary will have reflections which are nearly, but not exactly
common with reflections on the other side. Therefore, an experimental image of such a
twin boundary which results from placing the objective aperture around a particular reflec-
tion will sometimes also have contributions from other beams which are not travelling in
the same direction. Previous theories of diffraction contrast of twin boundaries have either
been limited to a maximum of two excited reflections in the crystals or have not been appli-
cable to twin boundaries which can have nearly common reflections. Therefore, the most
important part of the work done in this thesis is the development of a theory which can give

the diffraction contrast of such a twin boundary. This has been done in section 3.4.

It has also been found that crystals which exhibit pseudo-merohedral or pseudo-
reticular-merohedral twins generally have an element of pseudo-symmetry. As a result of
this fact, special care must be taken in determining the orientation of the crystal based on
an experimental diffraction pattern. In section 4.2.1 a method was presented by which the
zone axes of the two crystals can be reliably determined. Aside from that, it is crucial to
know the inclination of the twin boundary which determines which crystal the electrons
enter first. This is important because reflections which are excited in this top crystal can be
further diffracted in the second crystal. Therefore, a method had to be developed to make

this determination. This method is presented in section 4.2.2.

The pseudo-symmetry of these crystals also means that in most cases, the zone axes
of the two crystals will not be exactly parallel. This has the effect that reflections from
different sides of the twin boundary which may lie very close to each other in a diffraction
pattern of the twin boundary will not necessarily be excited for the same orientations. Thus,

it may be that one member of a pair of nearly common reflections is strongly excited and
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the other member is only weakly excited. This can cause problems in the determination of
the orientation of the crystals unless the difference in the two zone axes is properly taken
into account. A method for showing where the Ewald sphere intersects the two different

zero order Laue zones is given in section 4.3.1.

-Besides knowing the correct orientation of the two crystals, another requirement for
the calculation of theoretical images of twin boundaries is the correct electron scattering
factors for the atoms involved in the crystal. Since the crystals which exhibit these forms of
twinning are often ceramics, the atoms in the crystal are frequently bonded ionically. Thus,
the electron scattering factors for the correct ions must be used in the calculations. Up to
the present, there has been no source of inelastic scattering factors for ions, and, as a result,
it has been impossible to correctly account for inelastic scattering in the crystal. Therefore,
1 new procedure has been developed for calculating these inelastic scattering factors. This
process also lead to a new method for calculating the scattering factors for neutral atoms,
which is simpler, and more accurate, than existing methods. These new methods were
presented in Chapter S. It was found that the method given for calculating inelastic scat-
tering factors gives much more accurate scattering factors for those ions than simply using

the factors for the corresponding neutral atoms.

In Chapter 6, a relatively straightforward method for finding the rigid body transla-
tion vector of a twin boundary through the use of simulated images was demonstrated. It
was found that these simulated images depended quite sensizively on the translation vector
for some crystal orientations. The method requires that at least three experimental images
be obtained for which the systematic rows of reflections are non-coplanar. Each image then
gives the component of the rigid body translation vector in the direction of the systematic
row of reflections for that image. This is similar to techniques which are used to find the
Burgers vectors of dislocations and the rigid body translation vector of twin boundaries
from twins with many common reflections. These methods are based on finding an orien-
tation for which the defect of interest becomes invisible. The difference between these
methods and the present technique is that the procedure presented here does not require
special orientations for which the twin boundary is invisible. Instead, it can make use of

any experimental image from any given orientation. This is not only convenient, but also
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necessary for the following reason. The crystals which exhibit pseudo-merohedral and
pseudo-reticular merohedral twins do not generally have common reflections in three non-
coplanar directions. Since the previous techniques which require the finding of invisibility
conditions also require that only common reflections be used, they cannot usually

completely define the rigid body translation vector.

The next step which should logically be undertaken is to use the theory and the prac-
tical groundwork which has been given in this thesis to make an experimental
determination of the rigid body translation vector of a given twin boundary. Another
possible line for the continuation of this work is the derivation of a theory for pseudo-
merohedral and pseudo-reticular merohedral twin boundary contrast which does not make
use of the assumption of symmetrical Laue conditions or the column approximation.
Although these approximations are widely used in calculations of diffraction contrast for a
variety of situations, it remains to be seen whether they lead to accurate results for the kind

of twin boundaries studied in this thesis.
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Appendix A: Calculation of
Excitation Coefficients

The twin wavefunction is given as follows:

¥=30,, (A.1)
psn

where

i i .s(i ) > =Y
0, = TXP Clexp[2mi(k ~ + g+ ha) - @-1 ] (A2)
1
P

This wavefunction must be equal at the twin boundary to the wavefunction in the

matrix at the twin boundary. The matrix wavefunction is given by eq. 2.12.

, s RO RN
¥, G = Sy DPexpi2mi (7 +8) -1yl
Y

i i . -l(j) > E »
= z \I’(J)Déi)+qm°"?[2“‘(“ +Ep+0m) Tl
]’p’m

where the symbols for the electron wavevectors, the excitation coefficients, and the Bloch
wave amplitudes have been changed to indicate that they are not the same in the matrix as

in the twin. Therefore:
\Fma (i'lb) = \le (flb)

D) G el s sy
Z \y(’) Dé’)+ 4. EXP [2mi (K™ +gp+dm) - Fup)
jpm '
M 1 . .;(l ) N > N . .\(l ) > IS N
= 2 X(IP)C;:‘;zexp[—Zm(k ’ +8,+hy) -T]exp[Zm (k * + gpthy) -r_]
Lk (A.3)
The subscripts, L and ||, will now refer to the components of a vector perpendicular and
parallel to the twin boundary, respectively. The component oi' T, which is parallel to the
twin boundary, l"lb“, is different at different points on the boundary. With the twin Bloch
functions defined as they are here, this equation has no solution in the general case. Only

with the use of the column approximation does a solution become possible. Under the
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column approximation, the twin boundary is considered to be parallel to the entrance
surface of the crystal. The rcsult of this is that the components of the matrix wavevectors,

parallel to the twin boundary,k " arc all equal. Therefore, k|l W rlb“ = I'EI?) fb as long

a (i)
ask, = xm for all ip and j. If both sides of eq. A. 3 are divided by exp (21nk" T:b“)

the following is obtained:

Z (E\V(J) Déj)_,_q exp [21[1 (K(J) + gp_L+ qu_) rlb..L] ) €Xp [an (gp“ + am“) * i'Lt,“]
m
— (i ) (l ) [ . -t(ip) N S _s]
=) EX C,» exp[2mi (k +ng_+ h, )rg lexp|—2mi(k = +g,+hy) - T

x exp[27i ((§p + hay) * i) ad)
On the left hand side of this equation, the summation over p and m consists of all of the
matrix reflections, while the summation over p and n on the right hand side includes all of
the reflections of any kind in the twin. Thus, each term, exp [27i ( gp“ + c‘;m") . i‘lb"] ,on
the left has an equal term on the right. That is to say that the set of s is a subset of the set

of h’s. Therefore, the coefficients of these similar exponential terms must be made equal:

ZW(J’ Déj)+ o_exp [27i (D + o1+ Amy) Tipu]
J

1 1 . 3 . (ip) a 2 pry
= T X exp[2mi (k1) +g,, +hy_ ) rpy Jexp [2mi(k " +2,+ha) 1]
1
where h, =q,,. This can be divided by exp [27i (g, + 9,y DTpy] toget

2 (i) > >
ZX(')C(') exp (2mik} tbl)exP[—zni(k T Bt 'T]

i

= X‘V(J)Déj)w exp (21mc(’) Typy)

(A.5a)
The coefficients of the exponential terms, exp [2xi (Ep" + ﬁn“) . ftb"] , on the right hand

side of eq. A.4 must also be set equal to zero for h_ #q,, for any m.

LG . oA
Y x®eexprami k) +g,+hy) ] exp| —2ni (k ’ g +hy) -T] = 0
i

(A.5b)

P

for h #q,, for any m.
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The set of equations given in eq. A.5 can be written in matrix form:

where

Eth =

Ek'l‘p =

exp[-2mi (8, + 1) - T]

= E,

EyirpCoExroEpXp = Eop

0

-183 -

(A.6)

0

0 exp [~2mi (g, +hy) - T]
0
0
] 0 0 expl-2mi(g,+hy) - T
(1) (2) (N)
C Cpp wovvee oo Co
(1) (2) (N)
B C,2 G, Co2
C, =
(1 (2) (N)
LCP,N CP-N CoN,
[ L) 1
exp(-2rik -T) 0 0...... 0
RO
0 exp (-2nik - T)
0
0
LN)
L 0 .0 0 exp(-2mik -T)
) 1
exp (2rik; ‘1)) 0 0.... 0
0 exp (2mik P ry )
= 0
0
] 0 .00 c:xp(2mkl rtbl)
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= [~
x| 9, 1]
x® Pp.2
x M _(P » N,

where
. = ZV(J)D(J+}| exp (21!“((]) [b_]_)
i
when h,, is a common reciprocal lattice vector, and

Ppn=0

when hy, is not a common reciprocal lattice vector.

Equation A.6 can be solved for X% a5 follows:

X, = E;'E1,C; EntoEqp AT
The inverses of Ep, Eyp, and Ejyp are all simply obtained by multiplying the argument of
the exponentials on the diagonals by -1. If inelastic sc=ttering processes are ignored for the
time being, C! = CT. Therefore:

-,
(p P 1
’
(p P 2
EthEOP “een

’

_(P PNy

where

¢, = expl2ni(g,+hy) - Tlo, |
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Therefore:

a ]
ZC L
(%)
Tp-1 ZC P
(N ) ,
ZCP. nw (p pn
| n i
However, since most of the (p’p , are equal to zero, this becomes:
) . |
EC oo,
ZC (2 ) I
C EthEOp =

EC(N'P) ’

where

9,0, = €xp[27i B+ ) - T] PN A Dé’)+ o.exp 2ris P ry )
J

The rest of the matrix multiplication is straightforward and the following expression

is finally obtained:

X(i') = Zq’l’: nmc(l CXP[27U (k v + §p+am) ’ T‘]CXP (—Znikiip) Tibi)
m

2 (ip) o i)
= ZZ\V(’)D;:L%exp[Mi(k v +E,+0dp) -T]exp[Zui(K -—k ) ,b]
m j (A.8)

0 sl
D_g™) 1, inthe

) L= (%

)

where use has been made of the fact that K(J fp— ki ? e

symmetrical Laue approximation.
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This expression for X"%® can now be substituted into eq. A.2 to get the following:
= ) ) ol N () RS UL
¢p’n = Z;};w ! Dg'+anp’;nCp,;)exp[2m(K -k ) rlb]
P

X exp[Zn:i (k g +g,+hy) - f]exp [2xi (G, —hy) - T}
If the expression given in eq. 2.29 for y (in eq. 2.29 the symbol for y is X) is now substi-
tuted into this equation, the following equation is found:
DG O ¢ ) I Y €) I
®pon = 2 E (Déj)Dé:),,qmexp [2mi ((F-%") - E.,) ] exp [2mi (R ! ‘T 1)
el
i 1 .s(. ) a (i EN > 2
x C;:';,)EC;:';,)exp [-21ti " -1y ]cxp [2mi k™ + 8,+ha) - tlexp [27i (4 + ) - T)

Som ierms can be removed from thie summations to get the following:

» Y

0y n = €XP (27} - Eep) €XP [27iK - (1) ] (exp [2mi (F,+hy) - 1])

xY 0, qmc;‘;fmc;j;’ exp (27 (3, - by) - T1exp [2riyP2- (F-1y)]
ipym (A9)

where

Dran = Ej)Dé” Déiiq.,exp (2mitt,) (A.10)

where 'y'(n’z is the eigenvalue of the jlh Bloch wave in the matrix.
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Appendix B: Principles of Twin
Boundary Diffraction Patterns

A computer program has been developed to generate simulated twin boundary
diffraction patterns. It works only for crystals whose primitive lattice vectors are all at right
angles to each other, i.e. cubic, tetragonal, and orthorhwiizhic crystals. The program is based

on the followiag principles, given by Hirsch, et. al.47, for 180 degree rotation twins.

The first thing which must be determined is which twin zone axis is parallel to the
electron beam. If it is assumed that the [uvw] matrix zone axis is parallel to the beam, the
matrix direction must be found which, through the process of twinning, becomes parallel
to the [uvw] direction (i.e. after the process of twinning, this direction becomes the twin
direction which is parallel to the beam). As a result of twinning, each crystal direction in
the matrix is rotated through 180 degrees about the twin axis, which will be denoted [pqr].
If the [uvw] direction undergoes this operation, it will then have a new direction, with new
Miller irdices. If this new vector, which has Miller indices of [u’v’w’] in the matrix coor-
dinates, is again rotated through 180 degrees about the twin axis, it will again be parallel to
the [uvw] direction. Therefore, these are the indices, in twin coordinates, of the direction

which is parallel to the [uvw] direction in matrix coordinates.

Referring to Figure B.1, and noting that the vectors {uvw] and [u’v’w’] are equal in

length, the following can be written:

[uvw] + [u’v’'w’] = n[pqr] (B.1)

where n is some factor which depends in [uvw] and [pqr].

u+u ' =np
vV g (B.2)
w+w =nr '

The equality in the lengths of the two vectors results in:
u2a? + v2b? + wic? = u2a® + v2b? + wlc?
= (np- u)2a2+ (nq- v)2 (b)2 + (nr- w)zc2
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Alpar]

[u'v'w’]

[u'v'w [uvw]

Origin

Fig. B.1. The rotation of a matrix direction, [uvw], through 180 degrees
about the twin axis, [pqr].

If this equation is solved for n, the following expression is obtained:

_ 2 (pua2 + qvb2 + rwcz)

p2 a2 +q2b2 + r2c2

This can now be substituted into eq. B.2 to give the following expression for [u’v'w’]:

14

_p (pua2 + 2qvb2 + 2rwc2) -u (qzb2 + rzcz)
pz 2+ qzbz + 125

’

_q (2pua2 + qvb2 + 2rwc2) -V (pza2 + rzcz)

p2 a2 + q2b2 + r2 c2

’

_r (2pua2 + 2qvb2 + rwcz) -W (pza2 + qzbz)

22, 22, 22
pa“+q°b"+r°c (B3)
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These are the Miller indices, in twin coordinates, of the twin zone axis. It will
frequently happen, especially with crystals which have an element of pseudo-symmetry,
that these indices are not rational. This means that there is no reciprocal lattice plane in the
twin which is normal to the matrix zone axis. However, the twin zone axis Miller indices
will very often be nearly rational. In this case, it can generally be assumed that the twin
zone axis has the nearest rational indices to the irrational ones given by eq. B.3. If this is
done, however, it is important to remember that the matrix reciprocal lattice plane and the

twin reciprocal lattice plane are not parallel.

Once the twin zone axis is known, it is an easy matter to determine the twin reflec-
tions which should appear on the diffraction pattern. However, the indices of these reflec-
tions will be in twin coordinates. Since the entire diffraction pattern, including the matrix
reflections, is in matrix coordinates, the indices of these twin reflections in matrix coordi-
nates must be found. The procedure for finding these coordinates is very similar to the

method used to find the twin zone axis.

The twin reciprocal lattice point can be considered to be a matrix reciprocal lattice
point which has undergone a rotation through 180 degrees about the twin axis. The pre-
rotation indices of the point in matrix coordinates, are the same as the post-rotation indices
in twin coordinates. Let the original indices in matrix coordinates be (hkl), and its new
indices, after the rotation, be (h’k‘l’) , also in matrix coordinates. The direction in recip-
rocal space which is parallel to the twin axis will be referred to as (p’q’r"* . For normal
twins, these will be the indices of the twin plane. Again, the argument that the two recip-
rocal lattice vectors, (hkl) and (h’k’l’) , have the same length can be used and as a result,

the following equation can be written:

(hk1) + (hW'k’l") +n(p’q’r’) (B.4)
where n is some factor which depends on (hkl) and (p’q’r") . The rest of the derivation is

identical to the previous one for the twin zone axis except that the equality in lengths of the
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two reciprocal lattice vectors is now expressed as:

|
-+
|
I
"

a2 b2 c2 a2 b2 c2

This results in the following expressions for (h’k’l’)

p’h 2q'k 2r'l q’2 1

(z 32 2) —h "'2'
b’ = b b?
- ,2 ,2 2
( ) +( ) +( )

2ph gk 2r] p’2 2

9 (—- o tt ) k(g

K = b c? al ¢
- ,2 ,2 2
( ) +( ) +( )

(2p’h 2q'k r'l 1y l(p q )

o ) b2 2 2 b
- 02 I2 12
( ) +( ) +( )

(B.5)
These are the indices in matrix coordinates of the twin reflection, (hkl). These equations
can also be expressed in terms of [pqr], the indices of the twin axis, rather than (p’q’t’),
the indices of the direction in reciprocal space which is parallel to the twin axis. These two

sets of indices are related to each other in the following way:

c2

B

a2= g,bz =
q

e

Therefore:

(B.6)
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When these expressions are substituted into eq. B.S, the following relations are obtained for

the indices, in matrix coordinates, of the twinreflection, (hkl), in terms of the twin axis, [ pgr}:

_ pa’ (ph+2qk +211) - h (g’ +r’c?)

hl
o222 + qb2 +
, qb2 (2ph+gk+2rl) -k (pza2 + r2c2)
k™= 2.2, 2.2 22 B.7
pa +qb +rc
ve rc? (2ph +2qk +1l) — 1(p%a +¢*b%)

p2a2 + q2b2 + 1'202

These reflections along with the matrix reflections, are then plotted by finding their
components in the x and y-directions. These directions are arbitrary as long as they are
perpendicular to the beam direction and to each other. In carrying out these plots, it can be
determined whether or not the fact that the twin reciprocal lattice plane may not be parallel
to the matrix reciprocal lattice plane has any noticeable effect on the positions of the twin
reflections. This is because this procedure prints the projections, along the beam direction,
which is usually taken to be the matrix zone axis, of the twin reflections on the zero order
Laue zone of the matrix. Figure R.Z shows a twin boundary diffraction pattern of
Y ;BayCu304.g for a matrix zone axis of [101]. The coordinates of the matrix and twin
reciprocal lattice points, in matrix coordinates, are printed to the right and left of the points,
respectively. The twin direction, in twin cc.rdinates, which is parallel to the matrix zone
axis is [0.017 0.983 -1], but the twin diffraction pattern for a [017] zone axis is printed.
This reciprocal lattice plane is not parallel to the matrix reciprocal lattice plane [101}, but
there is no noticeable effect on the placement of the points. The line where the two planes
intersect is shown by the dashed line. This line runs along the row of unsplit reflections. It
can be confirmed that these unsplit reflections are, indeed, common by comparing the coor-
dinates of the twin reciprocal lattice refiection with those of the matrix reflection. Since
both sets of coordinates are in the same coordinate system, and the coordinates are iden-
tical, it is apparent that the reflections must be coincidental, and this must mean that the two
reciprocal lattice planes intersect here. If the angle between the two planes was large
enough to produce a noticeable effect on the apparent location of the twin points, the effect

would be that the twin reflections would be closer to the dashed line than the nearest matrix
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Fig. B.2. Diffraction pattern of Y,BayCu30-.5 for a matrix zone axis of [101] and
a twin zone axis of {01T]. The Miller indices, in matrix coordinates, of the twin
reciprocal lattice points are to the left of the points, while those of the matrix
points are to the right. The line of intersection of the swo reciprocal lattice planes is
indicated by the dashed line.
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reciprocal lattice reflections. This is effect is not noticeable, and so the fact that the two
reciprocal lattice planes are not parallel can generally be ignored, as far as the location of

the reciprocal lattice points goes.

The previous derivation was for the case of rotation twins. However, as was stated
earlier, for all centrosymmetric crystals, reflection twins can be considered to be normal
rotation twins since a reflection across a plane has the same effect on such a crystal as a
rotation through 180 degrees about an axis which is normal to the plane. However, for non-
centrosymmetric crystals, these two operations do not have the same effect and this differ-
ence may have an effect on the diffraction pattern. In order to determine what effect, if any,
there is on the diffraction pattern, expressions similar to those given above will be derived,
but for the case of reflection twins. The new coordinates, [u’v’w’] of a matrix lattice
vector, [uvw}], which has just undergone a reflection across the twin plane, (p’q’r’") must
be found. Referring to Figure B.3, and noting the equality in length of the vectors, [uvw]

and [u’v’w’], it can be written:

{uvw] = [u'v'W’] = n{pqr] (B.8)
where [pqr] is the crystal direction which is normal to the plane (p’q’r’) . The rest of the
derivation would be very similar to the derivation of eq. B.3. The fact that the vector
[u’v'w’] is now subfracted in eq B.6, rather than added eventually leads to the fact that
the equations for [u’v’w’] are now the negative of the expressions given in eq. B.3. Since
the twin reciprocal lattice planes, [u’v’w’] and [-u’- v’ —w’], each contain the exact
same reciprocal lattice points, this change is not significant. However, it is interesting to
note that it is this change which causes non-centrosymmetric crystals to have 2 different
orientation after reflection across a twin boundary from rotation through 180 degrees about
an axis whika is normal to the twin boundary. This is because if [uvw] are the coordinates
of a certain atom, rather than a lattice vector, then [u’v’w’] and [—u’-v'—w’], the
coordinases of that atom after the two different operations, are the same only for centro-

symmetric crystals.

Using the relations given in eq. B.3 and eq. B.6, the expressions for the Miller indices

of the twin zone axis after reflection across the twin boundary, (p’q’r’), can be written
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twin plane
(p’qlrl)

fu'v'w’ [uvw]

[—u'—v'-w’]

-
[par]

Fig. B.3. The reflection of a matrix vector, [uvw], across a twin plane to give the
new vector, [u’v'w’].
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’ ’ 2 ’ 2
-2 (pu+2qv+2rw) +u[(q ) +() ]
a c

) b
u =
,r 2 s 2 , 2
p q r
G+ + Q)
’ r 2 , 2
-1 @putqvearw) +v[(?-) + &) ]
, b a C
v =
v 2 ' 2 r 2
p q r
(—a') + (-5) + (E)
r’ p' 2 ql
- (2p'u+2q'v+rw) +w| (=) + ()
, c a b
w =

¢ 2 v 2 v 2
P q r
(';) + (—b') + ('E) B9

-194 -



195

The equations for (h’k’l’) in terms of the twin reciprocal lattice coordinates (hkl)

are also the negative of eq. B.5, where (p’q’r’) are the Miller indices of the twin plane.

This change from positive to negative is more important than in the case of the zone axis.

This is because, for non-centrosymmetric crystals, U, #U_,. Therefore, the intensity of

the reflections will be different from what they would be in the case of rotation twins.

However, in the case of centrosymmetric crystals, the two situations can still be.considered

to be the same. In either case, the correct equations for the new indices, (h’k"l") , in matrix

coordinates, of the reflection, (hkl), as a result of reflection across the twin plane, (p’q’r’),

are the following:
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