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Abstract

Tidal interactions can modify the orbital evolution of a binary sys-
tem of neutron stars. The equation of motion for the amplitudes of
the oscillations is easily obtained for non-rotating stars. For rotat-
ing stars, there is a complication in the obtention of this equation.
Previous authors have used a configuration space expansion of the
modes, but the amplitudes are then coupled together. In this work,
I use a phase space expansion to get the equation describing the evo-
lution of the amplitudes, and the amplitudes are no longer coupled.
I show that the use of the configuration space expansion introduces
non-negligible errors in the orbital evolution of a binary system of

neutron stars.
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Chapter 1

Introduction

The possibility to detect gravitational waves in the near future with a new gen-
eration of detectors, like the interferometer LIGO, opens up a whole new branch
of research in astrophysics. Since the signal-to-noise ratio for these detectors is
weak, it is very important to have the best knowledge possible of the waveform
emitted by the sources we want to study in order to be able to extract the signal
from the noise. The needed accuracy on the phase of the theoretical template
is < 0.01% [31]. We have to pay particular attention to the phase of the waves
while constructing the templates.

The design of LIGO, which is presently scheduled to take its first runs of
data late in 2002, is optimized to detect the gravitational waves emitted by
an inspiraling binary system of neutron stars. It has its peak sensitivity for
frequencies between 10Hz and 1000Hz {32], a frequency range that is swept by
binary neutron stars during the final stages of their coalescence. We then have
to consider all of what could possibly alter the evolution of this type of system.

One of the effects that could modify the orbital evolution of a binary system
of neutron stars is the internal structure of the stars. The gravitational waves

emitted by the internal structure itself are negligible ([6],[21], [22], and [33]).
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However, the tidal interactions between the stars can produce a detectable phase
difference between the waveform from a binary model of stars with an internal
structure and the one from a binary system of point masses [17].

Many authors have worked on the oscillations excited inside non-rotating
neutron stars. Kochanek gives in [17] a complete review of the behavior of coa-
lescing neutron stars just before merger. He studies the internal structure of the
neutron stars, the impact of viscosity and the effect on the emitted gravitational
waves. Excitation of modes in a non-rotating neutron star during its inspiral
have been studied in [27]. Resonant tidal effects in coalescing binaries have been
studied for non-rotating stars by many authors (see {30], [2], and [18]).

However, the stars are not always non-rotating. Pulsars are believed to be
rotating neutron stars. The study of tidal interaction is more complicated be-
cause a particular attention has to be paid to the modes decomposition. Witte
and Savonije [36] have studied the tides in a rotating main sequence star. For
rotating neutron stars, I have to mention the work of Lai and Ho, [19] and [15].
In these articles, they study the excitation of oscillations inside rotating neutron
stars and their resonances and look at their impact on the orbital evolution of
the system. However, they use an approximation in their formalism that would
be valid only for slowly rotating stars.

What I propose here is to use a formalism proposed by Schenk et al. [28]
to study the impact of tidal interactions on the orbital motion of a coalescing
binary system of neutron stars and compare the results to those obtained with
the formalism used by Ho and Lai.

I model the neutron star as a fluid with no viscosity and constant density
throughout the star. Even though this is not a realistic model, it makes the
calculations easier and allows us to compare the results obtained with the two

formalisms. I consider a binary system on a circular orbit since the emission of
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gravitational waves circularizes the orbit [29].

The presentation of the material is as follows.

In chapter 2, I present the description of non-radial oscillations inside a rotat-
ing star, starting with the basic fluid equations. The oscillations are introduced
as perturbations of the equilibrium solution. Then, the equations describing
the evolution of their amplitudes is given for the two formalisms, as well as the
eigenvectors.

Chapter 3 gives all the background material necessary to describe the orbital
motion of the binary system. This includes the tidal potential, the Lagrangian
equations of motion, the loss of energy by the emission of gravitational radiation,
and the possibility to have resonances.

The numerical methods are presented in chapter 4, along with the descrip-
tion of the assumptions made and the parameters used. It is followed by the
presentation of the results.

Finally, in chapter 5, a summary of the work is given.



Chapter 2

Non-Radial Oscillations

In this chapter, I introduce the equation of motion for the oscillations inside
an incompressible star. I first present the basic equations describing the fluid
motion. Then, I give a summary of the properties of Lagrangian perturbations
and use them to derive the equation of motion for driven and free oscillations.
Following this, I present the expansion on the eigenmodes that should be used
in‘ the case of non-rotating stars, and the one appropriate for rotating stars.

I assume that the star can be described by Newtonian mechanics, is incom-
pressible and is made of a one component fluid. The equations I present are valid

in the inertial frame.

2.1 General Equations

2.1.1 Basic Fluid Equations

I summarize here the basic fluid equations needed later in this chapter.

The continuity equation expresses the conservation of mass locally [14]

%te—i—v-(pﬁ):() (2.1)
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where p is the mass density and v is the fluid velocity while the Navier-Stokes
equation, describing the motion of a Newtonian fluid, is, if we neglect the vis-

cosity, the electrostatic force, and the magnetic force [14]

a1
&= VPV (2.2)

In this case, it is called Euler’s equation. Here, P is the fluid pressure, ® is
the gravitational potential, and ad; is the total time derivative following a fluid
element [29]

d 0

E=—5t'+’v-v. (2.3)

In Euler’s equation (2.2), if we put %3;’-' = (), we get the hydrostatic equilibrium
equation

%pV (7 #) = —VP — pVa, (2.4)

The gravitational potential ® is given by the well known Poisson equation :
V2@ = 4nGp (2.5)

where G is the gravitational constant.

2.1.2 Solution for a Non-Rotating Constant Density Spher-

ical Star

We can easily find a solution to equations (2.4) and (2.5) for a non-rotating
constant density spherical star. In this case, we have v = 0, P = P(r), and
® = ®(r). This leads to

_AxrpG

Vo 3

(2.6)

and

dnrp*G

VP =—pVd=——

2.7)
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Since the star is spherical and has a constant density, we can define the interior
mass, M,, as the mass contained inside a sphere of radius r, with r smaller than

the radius of the star (R),

4nrp

M, = 3 (2.8)
Using M., we have the following equation
dP GM,p
e (2.9)

The surface of the star is defined as the area where the gas pressure becomes

zero. The boundary condition for this problem is then

r—R

P—0. (2.10)
Using the boundary condition (2.10), equation(2.9) has the solution

P(r)= 54-7r—§ﬁ (R —r?). (2.11)

2.1.3 Lagrangian and Eulerian Perturbations

To derive the equation of motion for the oscillations inside a star that I am using,
one needs to use the linear perturbation theory. This means that the considered
perturbations are small enough to neglect the terms in which they appear at the
second order or at a higher order. There are two types of perturbations that
are generally used in the linear theory. The Lagrangian perturbations and the
Eulerian perturbations. The material I present in the section can be found in
(10} and in [29].

The Eulerian perturbations represent a macroscopic point of view. It consists
of looking at one point of the flow in the unperturbed solution, and then looking
at the same point in the perturbed solution. If we consider the physical quantity

Q, its Eulerian perturbation is then

0Q = Q(7,t) — Qo (Z,1) (2.12)
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where the 0 subscript indicates the unperturbed solution.

On the other hand, the Lagrangian perturbations represent a more micro-
scopic point of view. Instead of always looking at the same point, we look at
the same fluid element in the unperturbed and perturbed solutions. To do so,
we need to know the new position of this element. We define the Lagrangian
displacement which gives the difference in the position of the element between

the two solutions as

ml

(7,8) = Z(t) — Fo (). (2.13)

The Lagrangian perturbation of Q is then given by

AQ=0Q [f+ g"(f,t),t] —Qo(E,1). (2.14)
By comparing equations (2.12) and (2.14), we can see the following first order

relation between the two types of perturbations
A=0§+¢-V. (2.15)

Also note that the Lagrangian perturbation of the fluid velocity is a simple
function of &
dg
A = —. 2.16
7 (2.16)
There are different commutation relations between the two types of pertur-
bations. Two of them are necessary for the derivations presented later in this

chapter. They are
0 g /3

Aé?:cZ OZE’A 8xzv” (2.17)
and
d d
= — AL 2.18
Adt th (2.18)

Considering the perturbation of the integral giving the mass in an arbitrary

volume of fluid, and knowing that this mass is conserved, it is possible to derive
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the following equations for the Lagrangian and Eulerian perturbations of the
mass density p :

Ap=—pV-£ (2.19)

@:—v(@) (2.20)

I am going to consider only adiabatic perturbations. This means that AP

and Ap are related through the equation

AP Ap
- =D~ (2.21)

where I'; is called the adiabatic exponent

olnpP
= (220 om

which is evaluated at constant entropy.
Using the previous equations, it is possible to derive a relation describing the
fluid inside an incompressible star. Since it is incompressible, it should have a

constant density. Then from equation (2.19),

-+

Ap=0 = V.£=0 (2.23)

inside the star. Substituting equation (2.19) in equation (2.21), and considering

that AP = 0 at the surface of the star, we get that
V-£=0 (2.24)

everywhere inside and outside the star.

2.1.4 Perturbation About Equilibrium

We are now ready to derive the equation of motion for the oscillations inside the
star. It is done by considering the perturbation of the star about its equilibrium

configuration. I am considering a star of constant density that is rotating about
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the z-axis. For this part, I mainly follow what is done in [29]. We begin with the

perturbation of Euler’s equation (2.2), which is

dvt 1
A (71? FoViP vi<1>> ~0. (2.25)

Using the previous commutation relations (2.17) and (2.18), the hydrostatic equi-
librium equation (2.4) and (2.16), we get

d2¢t
Po a2

A .
0

Then, using (2.3), (2.4), (2.15), (2.19), and (2.21) we get

82&' aél k J J —
Po ot? +2po (Vo - V) Bt + povg Vi (Uovj‘fi) — L& =0 (227)

where

Lijgj =V, (Flpovjfj) - (ijj) VP + (Vifj) V;FPy — Pofjvjvi‘bo — pp V0P
(2.28)

with
Vid® = —4nGpot'. (2.29)

We can also write the last equation in the following form using operators

¢ o¢ -
—6‘{2—'{']3‘-5;4—0'5—0 (2.30)
if we make the identifications
B=2(0-V) (2.31)
4 . Loo£
(C - g) = (Tp- V)& — s’ (2.32)
i Po

It is possible to prove that B is an anti-hermitian operator while C is hermi-

tian with respect to the following inner product between two eigenvectors [28]

(&) = / Pop (@) E (7) - (T). (2.33)
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Equation (2.30) describes the motion of free oscillations inside the star and
has many different solutions, called the different eigenmodes of oscillation, iden-
tified by the subscript a. In fact, it represents a set of indices, a = {njk} where
n gives the number of nodes in the r-direction, j the number of nodes in the 6-
direction and k is the azimuthal index. We can separate the time part of f—;(ﬁ t)

in the following way
o (T1) = &, (&) €t o eiattikd, (2.34)
The equation of motion describing the eigenmodes then becomes
w2y 4 2wy (Ty - V) €y + C - €, = 0. (2.35)

Oscillations inside the star can also be driven by an external force. We now

have a general displacement vector { The equation of motion for E(F, t) is then

P o 0 L r_
—a—zé"f‘B"gZ'{—C'&“aext (236)

with d.y: being the acceleration caused by the external force. This acceleration

can be given by a potential U as

Foer = —VU. (2.37)

2.2 Non-Rotating Stars

The equations of motion for the mode amplitudes are different for rotating and
non-rotating stars, because the orthogonality condition for the eigenvectors is
not the same in both cases. In this section, I present the case of non-rotating
stars. The equations for rotating stars are studied in the next section.

When the star is not rotating, the fluid is not moving in the unperturbed

configuration. This means vy = 0. Equation (2.36) becomes simpler since B is
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then zero. This means that, when there is no external acceleration,
C-& = wf (2.38)

Since C is a hermitian operator, two eigenmodes corresponding to two differ-

ent eigenvalues are orthogonal [7]:

{EarEp) = Abag (2.39)

where A is a constant. It is also always possible to form a basis with the eigenvec-
tors of a hermitian operator. We can then express a general displacement vector

as a linear superposition of eigenmodes, a configuration space expansion
@) =) aa(t)&a(®). (2.40)
[e 3

I chose the proportionality constant A in the orthogonality relation to be A =
MR?, with M the mass of the star and R its radius, so that the eigenmodes have
dimension of length and the mode amplitudes a, are dimensionless. With this
normalization constant, a, = 1 corresponds to a displacement of the order of the
size of the star. The equation of motion for the mode amplitudes can be found
by substituting the expansion (2.40) into (2.36) and taking the inner product
with an eigenvector g’}, The final result is a second order differential equation

for the amplitude, [28]

o (£) + wlaa (8) = (Eu, Beae (1)) (2.41)

2.3 Rotating Stars

The case of rotating stars is not as simple as the previous one. When the star is
rotating, it is incorrect to assume that the eigenvectors satisfy a simple orthog-

onality condition like (2.39). In this section, I am going to derive the equations
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using the correct orthogonality condition and show the difference with what is
generally done.
Here, I am going to suppose that the frequencies are real (the system is stable)

and that the modes are not degenerate.

2.3.1 Slow Rotation Approximation

Since the star is rotating, vy # 0. We now have an equation of the form
H-£,=0 (2.42)

with

H=—w?+iw,B+C. (2.43)
Even though H is hermitian, two eigenvectors 5—,; with different eigenvalues w,
are eigenvectors of different operators since H depends on w,. This means that
eigenvectors do not need to be orthogonal {28]. It would still be possible to find
a set of eigenvectors forming a basis [28], but another problem arises if we try to
expand a general displacement vector E as in (2.40), what we call an expansion
in the configuration space. If we tried to do so, the modes would generally be
coupled to each other in the following way:

3 ((aa + w2aa) (s, &) — i (e — iwatla) (€5, iB - &)) = (Cy a). (2.44)

To circumvent this obstacle, previous authors (see for example [15] and [19])
have generally assumed that the previous orthogonality condition (2.39) holds

(which would be a good approximation for a slowly rotating star) and that
(66, BEa) = (€, 1BEa)bag (2.45)
so that they get the following equation of motion (using A = M R?):

(dia + w2a0) MR? — i (0 — iwata) (€ iBEL) = (Eny Gent)- (2.46)
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Now, defining
To=i f Brpls - (T - V)&, (2.47)

we can write this equation as

GaMR? — 2iTnan + (WAMR? — 2Towy) Ao = (€ny emt)- (2.48)

Remember that this equation is a good approximation only for slowly rotating
stars, which means Q2 <« %1—;’1—, even though previous authors have used it for
general rotating stars. Here, () is the spin frequency of the star, M is its total

mass, and R its radius.

2.3.2 General Solution

A more rigorous solution to this problem is to do an expansion in the phase space
and to use the correct orthogonality condition for this case.

A phase space expansion is of the form
C(F, t e (F
5(4 NS em] )d (2.49)
£(Z, 1) A iwaéa (T)
where I use the subscript A instead of o because the vector space is twice as big

as the previous one. The orthogonality condition that these eigenvectors obey is

derived in the following way. First define
- - - 1 — - 1 - o
W (EA, SB) ={a, EB+ §B &) — (fa+ é‘B -€a, &B)- (2.50)
If £4 and £ are solutions of (2.30), we have [11]

ow (EA> gB)

5 = 0. (2.51)

In our case, this leads to the following orthogonality condition {12],

(€4, iB - €p) — (wa +wB) (€, €B) = Zaban (2.52)
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which gives us an equation for Z4 when A = B, using (2.47), and using the same

normalization as in the previous case ({&,,&,) = MR?)
2Ta — 2waMR? = Z,4. (2.53)

We can invert equations (2.49) and (2.52). Using the expansion in equation

(2.49), we can identify

ig= —-ZCAU)AgA, (254)
A
iB-£=iY caB-{y, (2.55)
A
——a)Bg'—‘ -WBZCAgA- (256)
A

Adding these and using the orthogonality condition (2.52), we find [28]
| - -
ca(t) = Z<§A’ i€ +iB - £ —wab). (2.57)
Using the previous results, the equation of motion for the coefficients c4 is

. . 1 .,-
Ca — WACy = -Z—A(SA,zam}. (2.58)

With this equation, the modes are naturally uncoupled from each other and
no approximation has been used. Moreover, this equation is simpler than (2.48)
and is only a first order differential equation rather than a second order one.

So far, the equations presented were valid for a general é, which could be
complex. If we consider that 5’ has to be real, like in any physical case, we can
reduce the number of eigenvectors needed in the expansion by 2, getting the
same number as in the non-rotating star case [28].

First, by looking at equation (2.35), we can see that, if (5 A,wa) is a solution
of the eigenvalue equation, then (5}‘1,—wA)has to be another solution. All the

modes come in pairs. We can use this to rewrite the summation over A as a
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summation over a. Equation (2.49) becomes

§@ 1) => | calt) S + ¢, (t) & . (2.59)

-

£(Z, t) o iwala ~iwalt
To have £ element of R, we need ¢, (t) = ¢, (t). We can get the equation of

motion in the same way we got the one for a general displacement vector. It is
. . 1,2
Co — Ul = Z_<§a’ ae,,t). (260)
&

This equation uses the same eigenvectors as does equation (2.48) for the slow
rotation approximation since we need the same number of basis vectors. It makes

it possible to compare their results.

2.4 Eigenvectors

In this section, I am going to present the expressions for the eigenvectors for
non-rotating stars as well as for rotating stars. We will need the one for rotating

stars in the next chapter.

2.4.1 Non-Rotating Star

For a non-rotating star, the unperturbed fluid is not moving, vy = 0. Equation

(2.27) is

d%¢; 4
PO'CEE“ = Ly;¢’ (2.61)
Using equations (2.4), (2.15), and (2.19), it is possible to rewrite L;;&7 as
_ . P dp 0P
e [ . D Al T v R il _ ]
Lijt (v g) V.P (1 T ap) oV, ( ; +5<1>> (2.62)

Now, if we consider that the star is made of an ideal gas of noninteracting
neutrons at a temperature of 0K, it is described by a polytropic equation of
state [29] of the form

P=Kp (2.63)
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where K is only a proportionality constant and v is called the polytropic index.
For example, when the neutrons are nonrelativistic, v = 5/3, and v = 4/3 for
extremely relativistic neutrons. Using this equation of state, we now have
L&l = — (v : 5) V,P (1 - El) — Vi (Q{'ﬁ + 5@) (2.64)
%t p
Putting equation (2.63) into the definition of I'; (2.21), we find I'y = . If we
define

w~%+w (2.65)

equation (2.61) reduces to
25 = vy, (2.66)

Taking the divergence of equation (2.66), we get

-5 (v 5) V280, (2.67)

Since I am considering an incompressible star, V -5 = 0 from equation (2.24), so

that we have Laplace’s equation,
V235 = 0. (2.68)

It is known that the solution of Laplace’s equation is of the form
o0 J
=35 [Aur + Bur 0] Yie (6,9) (2.69)
=0 k=—j
where Aj, and By, are constants. Since ¢ has to be finite inside the star, we

have to impose Bj; = 0. This then reduces 4% to
S = Aur'Yic (6,9). (2.70)
jk

On the other hand, it is possible to work on d1 to get a more convenient
expression. Using equations (2.2), (2.15), and (2.21), and remembering that we

neglect terms of second order or higher in the perturbations, we get

GM ,
—5P = =, (2.71)
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with & the r-component of é’ But since

1 )
;5p o< > AprTYi (6,4), (2.72)
jk
we have
E=xY Apr’ Y (0,9) (2.73)
ik

with x a proportionality constant.
It is also possible to get a similar expression for §®. First, the general ex-
pression is
§8(z) = -G / LAGEATAN (2.74)

—»,'

Using equations (2.19) and (2.24), we obtain
6p=—£-Vp. (2.75)

We could be tempted to say that Vp = 0 because the star is incompressible, but

we have to consider the surface of the star. Instead, we have

p=pO(R—r) (2.76)
with
__3M
P= 1 (2.77)

and © (R —r) is the the Heaviside step function. We then have

8p=pEs(R—r) (2.78)
=pY &,.(r)Yi(0,4)5(R~T). (2.79)
Gk

It is possible to expand {—5:137‘ in the spherical harmonics as follows [1]

7 = 47rZ Z 23 i YJk (61, ¢1) Yy (62, ¢2), (2.80)

J=0 k=—j
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where the < and > mean the smallest and the biggest of r; and r5. Using the

previous expansion and the orthogonality condition between spherical harmonics

[1] ?

/¢ / e (0, 8) Yoy (6, 8) 10 (6) A = b, 1By b
=0

the fact that r < R, and
¢ (R) = xR,

we get
3GM

0P = —

Jk2 +1 Jk(g ?).

We can now join the two parts of 61p,
1
oY = —4P + 6d
p
2
Z 2= r9%,,.0,9).
In the case of eigenvectors, there is no driving force and

P
dt?

= —wgga)

so that
dt2 - Z wafa-

With o = {j, k},

ZwﬂewGM ZAsz(J D5y (6,9)

and this leads us to
o GM2j(—1)
@ R 2541
and

o= X;k (rY5x (6, 9))

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)
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where
Xik = XAjk- (2.91)
These modes are called the f-modes, for fundamental modes, because there

is no node in the r-direction. So, from now on, I am going to consider a = {jk}.

Recall that these equations are valid for non-rotating stars only.

2.4.2 Rotating Star

The derivation for the eigenvectors of a rotating star is somewhat similar to the
one for non-rotating stars.

We begin with Euler’s equation in the inertial frame (2.2). Since we are going
to work in the co-rotating frame, we need the expression for the Coriolis force to

make the transformation. It is given by [13]

(%) = (fgi) +2 (ﬁ X 17}-) + € % (Qs X 'F’) : (2.92)

where the subscript i refers to the inertial frame, the subscript r refers to the co-
rotating frame, and 1,is the spin frequency of the star as seen from the inertial
frame. Applying equation (2.92) to equation (2.2), we get the Euler equation in

the co-rotating frame,

((Zr)r +2 (52 x 17) + G, x (Qs x ﬁ) - ~%VP ~ V. (2.93)

In the co-rotating frame, the equilibrium velocity is zero. So, @, = 6%,. In

—

the first order in the perturbations, 67, = A, = %.

Again to first order in the perturbations, and remembering that -g—§ = iwaf:

equation (2.93) becomes

—w2 & + 2w, oY (~Er, yE + &, 2F) = VT, (2.94)
where
1 1
U= ;P +®— -2—Q§ (= +9°). (2.95)
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Combining this with the equation for an incompressible fluid, equation (2.24),

40, \ 6*V
. ) —— =0. (2.96)

we find

52 Tt

A specific set of solutions for this equation is given by (8]

v U -
022

U = Ap(z +iy)F, (2.97)

where Ay is a constant. Substituting equation (2.97) into (2.94), we find

kA (
wa, T (wa, r QQS)

Eulz,y, 2) = z+iy) (@ + ). (2.98)

This is the form in the cartesian coordinates. In cylindrical coordinates, it

becomes

g — kA k—1_ike
ba(re,¢,2) = Y o R (r +z¢) (2.99)

and in spherical coordinates

£n (r,0,¢) = ” (kak__ 5% 1 (sin 0)F1 ¢ (sin OF + cos 6 + 743) .
o (2.100)
Since \
Vi (6, 0) = =Y (Qk + 1) (sin )" &2, (2.101)

2k k!
the eigenvectors in spherical coordinates can also be given by, neglecting the
factor (—1)%,

kA 2k k!
We, r (W, » — 292s) /(2k + 1) /4n

19, 1 8
k-1 1 » U
< ( k:809+k sinfd 9¢ )Ykk(ﬁ,rﬁ). (2.102)

£ (r,0,6) =

By comparing (2.102) with (2.90), you can see that equation (2.98) represents
the solutions for the modes with j = k. An expression for j # k is very difficult

to derive. In fact, it has been derived [3], but it is given in spheroidal coordinates.
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Recall that these equations have been derived in the co-rotating frame. How-
ever, equation (2.98) can be changed to be valid in the inertial frame by using

the following relation,

¢ = ¢ + Qgt. (2.103)

This relation can be used to derive a similar equation for w,. Since,

Wt 4+ k¢t = Wt + k(¢ — Qut) (2.104)
= (W) — k) t + ko, (2.105)

we have {15]
we = wh — kg, (2.106)

where the superscript (r) means that the quantity is taken in the co-rotating

frame, and (g is the rotation angular frequency of the star. r and € are unaffected

by the change of frame. Wi is given in (4.8) for the case j=k.
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Chapter 3
Binary System

In this chapter, I discuss further aspects of stellar oscillations for binary stellar
systems. I first introduce the tidal interactions between the stars. After that,
I present the equations describing the orbital motion, including the driving of
fluid oscillations by the orbital motion, the emission of gravitational radiation,

and the possibility of resonances.

3.1 Tidal Potential

I consider two stars in a binary system. These two stars have a gravitational
influence on each other, provoking displacements of the fluid they are made of.
Even though it is only an approximation, I treat one of the two as a point mass
and I look at the oscillations it triggers in its companion and the effects these
oscillations are going to have on the orbital motion of the stars.

First of all, the point star of mass M’ induces oscillations inside its companion
of mass M by the gravitational interaction with the fluid elements through the
potential

U(rit) = —l o (3.1)

F—ﬁ(t)l
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where the coordinate system used is centered on the star M, with the z-axis
pointing along the spin-axis of the star. ¥ = (r,0, ¢) is the position vector of a
fluid element of the star M and ﬁ(t) is the position vector of the point mass
star M’. In spherical coordinates, with respect to the z-axis, D(¢) is given by
(D(t), %, ®(t)). This potential can be expanded on the spherical harmonics as ,
supposing that the spin axis of the star M is aligned with the orbital spin axis,
[26]

U(F1) = —GM'Y o -im2vy, (9, ) (32

with Wy, being defined as

1
Am 2 l4+m [—m\1™"
_(_ (I4m)/2 o 171 _ ] 1 i
= ] o () ()
(3.3)
The symbol (—1)" # 0 only if n € Z. This gives us the restriction
l+m e 27. (3.4)

We can now use this potential to calculate the external acceleration in the

equations of motion for the mode amplitudes in the previous chapter. If we say

g = —VU, (3.5)
we get
- GM' .
(fa, Eezt) = '_-'_'‘/Vlmcza,lmewzm(I> (36)
; 6]

where Qg im is the overlap integral and is given by

Qa,lm = /d3xp€; -V (lelm (97 ¢)) = /d3wép; (lrlYim (9’ ¢)) : (37)
For Q4 im to be nonzero, we need

m = k. (3.8)
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Recall o = {j, k}
If we put this in the equations for rotating stars, we get, for the slow rotation

approximation

MR —2iTpan + (W2MR® — 2Towa) G = [ M WinQaime ™2 (3.9)

= D (t)]l+1

and in the general case

GM' —im
Gy — MWpCy = — 7 Z DOrT WinQame ™ ™. (3.10)

3.2 Orbital Motion

It is now time to describe the motion of two stars around each other. The
problem of two stars in motion around their centre of mass can be reduced to a
one body problem. An initial problem consisting of a star of mass m; orbiting
at a distance r{ from the centre of mass and a star of mass my at a distance ry
is equivalent to the problem of a star of mass p

mimsy
mi + Mo

M

7 (3.11)

on an orbit of radius D = |} — 3]

3.2.1 Gravitational Potential

The stars are under the influence of their mutual gravitational attraction. The

gravitational potential is given by

gmv = / d3

where the integration is made on the volume of the star M, 5(t) = (D(t),7/2,®(t))

(3.12)

is the vector distance between the centres of the two stars and 7 is the position
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of a fluid element inside the studied star measured from the star’s centre. Re-

member that p = py + 6p. The integral then becomes

Upra = — / B Lo —GM’ / N (3.13)
D

= Up + Uige- (3.14)

Let’s first look at Up. It represents the gravitational potential of a ball of
constant density at a point outside of its surface. It is proven in many textbooks,
in {20] for example, that this potential is equal to the one caused by a point-like

ob ject of the same mass at the centre of the star,

GMM'
Up = ———— (3.15)

Utige can be expanded using the fact that dp = -V - (pg) and
Wi

, = —imey (6, 3.16
R
Z DW?;"CH MY (8, ¢) (3.17)

where W), is given in equation (3.3). The two expressions are equal because m
runs from —[ to [. This makes the left-hand side real.
The final result depends on the expansion of the displacement vector used.

Let’s first lock at the slow rotation approximation. In this case, remember that
£=Y a ()@, (3.18)
(¢}

This gives
op = Z ao (t) 8pa (3.19)

with 8p = —V - (p€,). Putting these results in the equation (3.13) for Uz, we
get [19]

Wm alm im
Usize = —GM' S l;(tQ WinQoim , 1) gimato (3.20)

alm
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considering that, since Qq m is real, it is equal to its complex conjugate,

Qa,lm = /dgm(spa [rl l:n (0,4))] . (321)

For the general solution, we proceed the same way but we use equation (2.49)

for the expansion of the displacement vector. dp is expanded as
§p ="y (ca(t) 6pa+c (t) 5p3) (3:22)

so that we have for Uy

Wm a,lm im * -~im
Utige = ~GM Z 5(?41 ca (t) ™20 ¢ (1) e~ mP W) (3.23)

alm

3.2.2 Lagrange’s Equations of Motion

Once we have an expression for the potential, we can find Lagrange’s equations

of motion for the orbit. First, the Lagrangian is given by

L=T-U (3.24)

2,1 ]D] (3.25)

where T is the kinetic energy and U the potential energy associated to a conser-

vative force. Lagrange’s equations are
— el = (), (3.26)

g; represents the generalized coordinates and ¢; the generalized velocities. In our
case, we have
2 . .
|D] = D? + D¢, (3.27)
So,
1 . .
L=3p (D2 + 02@2) — Upran- (3.28)
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Since Ugrqy is independent of the velocities, the two equations of motion are

. .. 89U
D— 92 grav .
7 uD®* + 3D 0 (3.29)
and
d{pD?®
( ) 1+ Wores _ (3.30)

dt oo

Now, let’s look at what these equations are in the two expansions used for

rotating stars. For the slow rotation approximation, equations (3.29) and (3.30)

lead to
Dbt S G (e, s oy
and o
b = —zgq) + % imvg'if“*’m sl (3.32)
alm

For the general solution expansion, we get instead

. o 4 ! - o
D= D<I>2 _ ij)]g _ GZM Z (l -+ I)DY:T;QQ,lm (caezm'i’ + Cze—zmd)) (333)
alm
and
. 2D(I) GMI 'LmVVlmQa,lm et —zm
o= Z D (Cad™ = ™). (3:34)

ﬂD2

3.3 Gravitational Radiation

When there is a non-spherically symmetric movement of masses, gravitational
radiation is emitted, carrying energy away. This is the case for a binary system,
and the loss of energy affects the orbital motion. In this section, I want to

introduce the basic equation describing this phenomenon.
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3.3.1 Metric And Gravitational Field

Once the waves are away from their source, we can use the weak field approxi-
mation because they are generally in an area where the gravitation is weak. In

this approximation, the metric is given by [23]

Guv = N + h;u/ (335)

with
thuw| < 1. (3.36)

In our solar system, h,, would include the quasistatic contributions of the sun,
the planets, etc., and gravitational waves from astrophysical sources. Here, we
are going to ignore the quasistatic contributions.

The gravitational field h,, is related to the metric in the following way [23]
- 1
huu = hfp,u e 'Q'hn;w (337)

where

h=h~ (3.38)
The equations satisfied by that field are
R =0 (3.39)
and the Einstein field equations
Ohy, = 0. (3.40)
The simplest solution is the plane-wave solution [23], of the form
R [Auel#==] (3.41)
where A, are the amplitudes and k, the wave vectors. They satisfy

kak® =0 (3.42)
A k®=0. (3.43)
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By imposing the following constraints, where the spatial indices are summed

even if they are both down,

hyo =0 (3.44)
hkj,j = 0 (345)
hik = 0 (3.46)

we choose a gauge. The new gauge is called the transverse-traceless gauge (trans-
verse because it is transverse to its direction of propagation and traceless because
hie = 0) and is identified by the superscript TT. Note that in this gauge, since
h= h”“ = hy, = 0, there is no distinction between h,,, and I_”L,w.

In the TT gauge, the only non-vanishing components of hf;f are

T T

hyy = —hil (3.47)
TT __ p,TT

hiy = hy, (3.48)

for the two possible polarizations.

3.3.2 Stress-Energy Tensor

Gravitational waves can exert forces and do work, so they must carry energy. We
cannot define the the stress-energy tensor in a point because the gravitational
force can be transformed to take any value, e.g. zero, at a point. The stress-

energy tensor is given by [23]

Tg,W = (hIT hf,}jy) (3.49)

k.

where ( ) means an average over many wavelengths and GW stands for gravi-

tational wave.
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3.3.3 Quadrupole Nature Of Gravitational Radiation

To get an order-of-magnitude estimate of the energy carried away from a source
by gravitational radiation, we can use the electromagnetic radiation formulas,
substituting €? by —m? [23]. This doesn’t give the exact numerical factors, but
can be used to find the leading order of radiation.

In electromagnetism, the radiation is dominated by the electric dipole. The

electric dipole moment is given by [16]
dy = Zeifi (3.50)

where the summation is over all the particles involved. e; is the charge of the i*

particle and &; its position. The gravitational analog is
dew =Y _ mud;. (3.51)
i
The power output L o< d. But day represents the momentum of the system,
dow = 3 midi = Pt (3.52)

Since the momentum is conserved, the is no gravitational radiation similar to
the electric dipole radiation.
In electromagnetism, the next leading-order radiation is the magnetic dipole.

The magnetic dipole moment is given by [16]
flor =Y & % (eil);) (3.53)
- ,

where #; is the velocity of the i** particle. The gravitational analog is equal to

the angular momentum,

-

fow =Y & x (mifi) = J. (3.54)
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Here again, since the angular momentum is a conserved quantity, there is no
gravitational analog to the magnetic dipole radiation.

We have to look at the next component, the electric quadrupole, to find
the first term to emit gravitational radiation. In electromagnetism, the electric

quadrupole moment is given by [16]

Qi = Ze,; (:cij:cik — %5]‘]‘; (mz)2> ) (3.55)
For gravitational radiation, this becomes
L, = }:m (azja:k ~ %51.,9 (xi)2) : (3.56)
The power is, with the proper numerical factor, [23]
Low = 5‘% (3.57)
= 55 (T T (3.59)

3.3.4 Binary System

For a binary system of stars of masses m; and m, on a circular orbit with d; and

dy as the respective distances from the center of mass,
m1d1 == m2d2 = MD, (359)

it is easy to prove that the power is [25]
_RG M2

=2 3.
Lew PR (3.60)
with
M, =my + mas. (361)
Recall Kepler’s third law,
02, = GMy (3.62)

D3
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Qurp is the orbital frequency and is related to the orbital period P, by Qo =
-1%:—6. The energy of the system, E =K+ U, is

1
E = 2 (mud} +mad) 0, - G"gmz (3.63)
_1GpM,
e (3.64)

From (3.60) and (3.63), we find the time derivative of the distance between the

two stars,
dD 64 G? uM er

W5 E D (3.65)
This equation can be solved to find the function D(t),
D(t) = (D¢ —4pt)"* (3.66)
where
64 GPuM?
B= TS (3.67)
and Dy is the initial separation.
Therefore, the time the binary system takes to collapse is given by
D4
T (Do) = =-2. .
(Dy) 13 (3.68)

For a binary system of two stars of mass about 2.785 x 10%° kg and initial orbital
frequency of 20Hz, which is the case I will study later, this time is approxima-
tively 25 seconds. For the pulsar PSR 1913416, which is the observed pulsar
with the smallest distance between the stars, the time remaining before the bi-
nary system collapses is approximately 300 million years [4].

It is also possible to get an expression for the time derivative of the angular
momentum, J = udD?, [24]

dJ 3 _'?EG?/z MQMQE’Q

e (3.69)

This gives us the term that should be added to the lagrangian equation (3.30).
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3.4 Resonances

The different modes of oscillation can enter resonance. They then interact more
strongly with the orbital motion, taking more energy away.

To find the condition for resonance, first consider equations (3.9) or (3.10).
Since f a €=t when there is no external force, it would be natural to replace
respectively a, and ¢, by g.e®™=t. Also, notice that, for a particular m, the main
term in the summation

GM' )
Z szm%,zme""@ (3.70)

Im
is the one with 1 = m. If we make the substitution for ¢,, we get the following

equations. For the slow rotation approximation it is

GM’'

o+ 20 (Wo — Ta) o = Y  ——77 WinQame ™o (3.71)
%: [D ()
and in the general case,
) GM’ N
o= 7 ) g WinQame ™ L. (3.72)
2 % D )

A mode enters resonance when the argument of the exponential is zero, which

is when

Wa = ~Morp- (3.73)



34

Chapter 4

Numerical Methods and Results

In this chapter, I to present the equations I need in a form suitable for numerical
calculations. I also present the assumptions made, the numerical methods used

and the results.

4.1 Modification of the Equations

In this section, I use the equations presented in the last chapters for rotating

stars and put them in a format that can be used for numerical integrations.

4.1.1 Cases Studied

As stated chapter 2, equations (2.102) describes the modes with j = k and a
more general expression is given in spheroidal coordinates. So, I am going to
make calculations for the modes j = k for simplicity, and also because it is what
has been done in previous articles on the subject (see [15]).

Also, by looking at equations (3.9) and (3.10), we can see that the main
contribution for a given m to the modes excitation by the tidal potential is the

one with [ = m. So, I am going to study these contributions only.
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Since we already had m = k, all the indices of the different contributions are
going to be equal,

j=k=1l=m (4.1)

4.1.2 Maclaurin Spheroid

Since the star is rotating, its surface does not have the shape of a sphere, but
of an ellipsoid, described by a Maclaurin spheroid. The star has an equatorial
radius a; and a polar radius az. The eccentricity of the star, e, is defined as

2

Q3
=401 — -2, 4.2
e 22 (4.2)

where we assume that az < a;. We can also define a mean radius, R, as

1/3

R = (alas3) (4.3)

The shape of the spheroid is described by the following equations. The first one,

.. 9 9 —1/2
sin“d cos* @
e (6) = ( L0 ) (4.4
gives the maximum value of r for a given #. The next one,
2 .2 2
TV L E oy (4.5)
ai a3

describes the surface of the spheroid in cartesian coordinates.
The spin frequency of the star €2, and the eccentricity are related by the

following expression [5],

02 = 2Gp {\/ 1—e2 (3 —2¢e*)arcsine — 3e (1 — 82)] (4.6)

k] 63
where p is the density of the star, which we assume to be constant,

_3M
P= RS

(4.7)

Figure (4.1) shows % as a function of eccentricity.
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angular spin frequency
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Figure 4.1: —% as a function of eccentricity.

36
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Figure 4.2: Positive solution of “* as a function of eccentricity for a star of

density 6.6 x 10'7 kg/m3.

4.1.3 Eigenmodes

We need an expression for w,. In the case j =k, it has been derived in [9] and

is given by
We r
=1+ |1~
5=

2]{}€2Rk }

4.8
(3 —2¢e?)sin"' e — 3ey/1 — 2 (48

where Ry is

_ Vi-er(2k -1 {i @ -2 (2-0)
B!

e = e (2k) (2p— 1)1t

p=k+1

(1;62) [Sme \/1_2_65} (4.9)

For a star with a density of 6.6 x 10'” kg/m?, in the case j = k = m and
k > 0, figures (4.2) and (4.3) show the two solutions for 2.
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Figure 4.3: Negative solution of % as a function of eccentricity for a star of

density 6.6 x 10'7 kg/m?.
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The expressions for the eigenvectors in the co-rotating frame in three coor-
dinate systems were given in chapter 2 (equations (2.98) to (2.102)). Now, we

need to determine their normalization constant. Recall that
(&, , &) = MR (4.10)

To find the normalization constant of the eigenvectors, I am going to use the

expression given in the cylindrical coordinate system (2.99). Defining

kA

U= 11
k wa, T (wa, r 2QS)’ (4 )
we have
(&, &) =2U%p / dori® D, (4.12)
Equation (4.5) gives us
52
Timaz = @14/l — —. (413)
as
(é; , €a> then becomes
Lo 2mpUR far\F [ k
o &a) = —Z& (—-1-) dz (a3 — 2%)". (4.14)
as —o3
This integral can be performed using Mathematica or Maple. The result is
ag 2k+1 1
/ (a2 - 22)fdz =3 \/7?1“(3k+ ) (4.15)
~a (k+3)

for a3 > 0 and Re(k) > 0, and where I" is the gamma function related to the

factorial function by

'k+1)=k. (4.16)
Another useful relation is [35]
3 (2k + )N
Using these, we finally get
2
Uy ! MR k(2k+ 1)L (4.18)

= 25K\ dnpadta,
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The normalized eigenvectors in the three coordinate systems are

pud 1 MR2 ' . k—1 /A A
& 2.07) = g oot H Dl i) G i) (419)
- 1 MR? kel
0(r1007) = | oo K (25 1) rh=1eiko (u + ng) (4.20)

1 MR?
28k 4wpaikag

& (r,0,¢) = k(2k 4+ 1) 7* 1 (sin)* ! 9

(sin 67 + cos 00 -+ z'q‘b) . (4.21)

4.1.4 T,

I will now derive an expression for T, more suitable for numerical calculations.

First, recall equation (2.47),
T =i / dPapEt - (Ty - V) L (4.22)

To work on the part (v - V) g;, I am going to work in the cartesian coordinates.

First, since we are considering rigid rotation,

3 d
U - V = {1 (“yé—a? + :L'—a—:;> } (4.23)

Applying this to (4.19), we find

(To - V) € = Qs (1 — k) (—Eay + Exc) (4.24)
=(1—k)Q, x & (4.25)

and
& - (- V) &, = —2iQ,UE (r2) . (4.26)

Making use of (4.10) and (4.12), we finally find

To =, (1 - k) MR?. (4.27)
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4.1.5 Qg ik
From equation (3.7), Qq, im for the case l=m=k is given by
Qo = [ daps ¥ (¥ia 0,4)). (4.28)

First notice that
(-1)* [(2k+1)!

"V, (0,¢) = 71 gy r* (sin §)* ¢ (4.29)
= S (rsin 96i¢)k (4.30)
= Sy (z +iy)* (4.31)
with .
_(=DF @k + 1)
S = 3R dr (4.52)
so that
V (r*Yi) = Sk (z +iy)* " (& + i) . (4.33)
Substituting into (4.28), we get
Qu, ki = 2UxSikp / B2t (4.34)
Using (4.12), we finally find
Qa, 1k = (~1)F day*\/kpMR2. (4.35)

4.1.6 Gravitational Radiation

To introduce the contribution of gravitational radiation into the equations of
motion, I use different methods for the D and the ¢ components.

As stated in an earlier chapter, equation (3.69) gives a term that has to be
added to the equation for ®. This gives, for the configuration space expansion

2D% | GM' <~ ihkWiQokk  wo  32G7 i2MY*

e = DT uD? Deri a€ 5 & D2
k

(4.36)
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and, for the phase space expansion, it is

_ 2D®  GM' — kWit Qark

i o ikd * _—ik®
b = D +MD2 DRt (cae —c,e )
k
_REPpM
5 ¢ D72 (4.37)

For the D equation, since we already have an analytical solution giving D(t)
for a Keplerian orbit with the contribution of gravitational radiation (3.66), we
can use this solution and add to it the contribution of the tidal interaction with

the oscillations

D = Dgy + Dyige, (4.38)
where (recall (3.66))
Dgy, = (Dj — 46t)"/* (4.39)
and we have, for the slow rotation approximation
. GM' k+ 1) WiQ, ;
Duae = -0 5 D) Tt i, (4.40)
k

and in the general case

= GM’ (k+1) Wi Qo ik
Drige = — Z Dk+2

(cal™® + coe™™®) (4.41)
k
This split is not strictly correct, since the equations are nonlinear in D. However,

as long as the contribution from the tidal interactions is small compared to the
contribution from the gravitational radiation part, it will be a good approxima-

tion, and it is the case here.

4.1.7 Real and Imaginary Parts

To numerically integrate the set of equations, I have to separate the real and
imaginary parts of the equations. In the case of the slow rotation approximation,
if I replace

Qg = U + v, (4.42)
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where I have omitted the subscript o on u and v for simplicity, the equations to

be solved for the amplitude of the modes become
il = kcos (k) — 2To0 — (w2 — 2Thwa) u

= —ksin (k@) + 2Tpt — (w2 — 2Towa) v

where

GM Wi Qo, ki
k= Z DR+l
%

and those for the orbital motion,

Disge = —GM Z (k& 1) WerQo, 1 (ucos (k®) — vsin (kP))

k
— Dk+2
and
. 2D® GM' — kWiQq .
o= D D 3 g“kﬂ’kk (vcos (k®) + usin (k®)) .
For the general solution, with
Co = a + b,

the equations for the amplitudes become
R
a = —ksin (k) — wyb
Za

and

b= ;1—% cos (k®) + wqa.

The equations describing the orbital motion are

—2GM’ 3 (k + 1) Wik Qa, ks
P

ez (acos (k®) — bsin (kD))

D tide =

and

. 2D | 2GM' —~ kWi Qa, i

® 5t DT 2 AT (bcos (k@) + asin (k®)) .

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)
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4.2 Simulations

For my simulations, I used a fourth order Runge-Kutta algorithm. To be able to
compare the results using the two different formalisms, 1 first integrated simul-
taneously equations (4.43) to (4.47), substituting the results of (4.43) and (4.44)
into (4.46) and (4.47) for every loop of the algorithm. I did the same thing for
equations (4.49) to (4.52). Recall that I am using the split (4.38).

4.2.1 Parameters

To perform the calculations, I needed to choose the numerical parameters to be
used. First recall that one of the stars, the companion, is point-like. It is thus
described uniquely by its mass. Since a neutron star is born when the core of an
aging supergiant star reaches the Chandrasekhar limit (the maximum mass the
electron degeneracy pressure can support) and collapses, I use the Chandrasekhar

mass as the mass of the two neutron stars forming my binary system, which is
Mcy = 1.4Mp, (4.53)

where M, is the solar mass and is approximately 2.0 x 10°° kg.

Calculations considering the weight of a neutron star which is supported by
neutron degeneracy pressure can be made (see [4] for example) and it is found
that the radius of a 1.4M¢) neutron star lies roughly between 10km and 15km.
I am using a radius of 10km, so that the star has a higher density and is able to
rotate more rapidly.

I have performed the calculations with M and a3 constant instead of keeping
p constant. In this situation, figure (4.1) does not give me the eccentricity at
which the star has the fastest spin frequency. Keeping M = 1.4M and az=

10km, the representation of the angular spin frequency is given in figure (4.4).
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Figure 4.4: Angular spin frequency as a function of eccentricity for a 1.4Mq

with a polar radius of 10km.
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I have performed simulations using stars of two different eccentricities. As can
be seen on figure (4.4), the maximum spin frequency is for a star of eccentricity
about 0.71. Since I want to compare an approximation valid only for slowly
rotating stars with the solution valid for a general case, I will use this eccentricity.
It corresponds to an angular frequency of approximately 4440 rad/sec.

Puléars are believed to be rotating neutron stars. The fastest pulsar observed
(see [4] for example) has an angular frequency of approximately 4000 rad/sec. A
neutron star with a frequency of 4440 rad/sec does not seem to be completely
unrealistic. However, it is thought [2] that the stars will probably not be rotating
that fast, so I will also show results for another case, that of a star rotating with
a frequency of about 850 rad/s, which means an eccentricity of 0.1.

The binary system is going to emit gravitational waves strong enough to be
possibly detected on Earth only when it has an orbital frequency between 100-
1000 Hz [32], which is during the few last seconds of the final in-spiral. I am
then going to study the end of their coalescence. Concretely, in the code, this
means choosing an initial orbital period of 0.05 s. The equations derived in the
earlier chapters are not valid when the stars are very close to each other since
they do not consider the tidal deformations in the companion. Thus, I stop the
calculations when the stars are getting too close. This occurs when there is a
divergence in the béhavior or when the distance between the stars is twice the
radius of the studied star, since they would be merging.

The term with 1 = 0 (in equations (3.31) to (3.34) for example) represents a
global expansion or contraction of the star, with no angular dependence. It is

then not relevant for tidal interactions. For the term with 1 =1 (and m = 1),

rY1, = const x rsin 9e* (4.54)

= const X (z +1iy). (4.55)

Since we are working in the center of mass system of coordinates, (4, 11 gives zero.
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This term doesn’t have to be considered either. We then begin with k = | = 2.

In equations (4.42) to (4.52), there is a summation over all possible values
of k. However, the main contribution comes from the term with & = 2. The
contribution for £ = 3 is 100 times smaller, it is even smaller for £ = 4 and so
on. I could use only k = 2, but to add some precision, the modes for k = 2,3,4
are also included.

The effects of tidal interactions are more obvious at resonance. The condition
for resonance was given in equation (3.73). But during the final in-spiral of the
binary system, the orbital frequency changes so quickly that the passage through
resonances is almost instantaneous and no effect can be seen. It is then not
relevant to try to adjust the parameters of the simulation to study them. T am
using the positive solution of w, and positive values of {2,,, because this situation
is more likely to occur.

Finally, the initial amplitudes of the oscillations are set to zero. They are

excited by the tidal interaction with the companion.

4.2.2 Results

It is finally the time to show the results. Since the main point of this project is to
see if the fact of using a slow rotation approximation introduces noticeable error
in the results of the calculation, first look at figure (4.5). It shows the distance
between the two stars as a function of time for a star with eccentricity 0.71
and an initial orbital period of 0.05 second. It is obvious that the slow rotation
approximation introduces a big error in the result during the final in-spiral of
a rapidly rotating star. The stars fall toward each other faster when using the
phase space expansion. This would involve a difference in the gravitational waves
emitted.

As stated earlier, e = 0.71 is not the case the most likely to occur. Look
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Figure 4.5: Separation of the stars for e = 0.71 and an initial orbital period of

0.05 second.
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Figure 4.6: Separation of the stars for e = 0.1 and an initial orbital period of

0.05 second.

at figure (4.6). It shows the separation between the stars as a function of time,
for a star of eccentricity ¢ = 0.1. They start at the same initial orbital period
as in the previous case, which means their initial separation is the same. The
stars still move towards each other faster with the phase space expansion, but
the difference between the results using the two expansions is smaller then for a
more rapidly rotating star. The effect of tidal interactions is not as strong as in
the previous case and the acceleration of the two stars is smaller. Nevertheless,
this would still make a difference in the emitted gravitational waves.

If we define AD as the difference between the separation of the stars for the

phase space expansion and the configuration space expansion,

AD = Dyhase — Doony; (4.56)
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Figure 4.7: AD for a star with e = 0.71 and an initial orbital period of 0.05

second.

it is possible to have a better idea of the errors introduced by the slow rotation
approximation in the two previous cases. It is shown on figures (4.7) and (4.8).

As you can see, even for a star with e = 0.1, the use of a slow rotation
approximation introduces an error of over 20 km in the distance between the
stars in less then 12 seconds.

These errors affect the number of orbits that the stars perform during a
determined period of time, and consequently the phase. Let’s define AN as the
difference between the number of revolutions for the two expansions,

AN = ?ﬁ%&”ﬁ_ (4.57)

Figures (4.9) and (4.10) gives AN as a function of time for the two studied

cases. For the case of a star with e = 0.1, the total number of orbits lies
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Figure 4.9: AN for a star with e = 0.71 and an initial orbital period of 0.05

second.

between 310 and 320, depending of the formalism used, while the coalescence
lasts between 115 and 145 orbits in the case of a star with e = 0.71. As you can
see in the figures, AN(e = 0.1) is approximately 10 orbits, and AN(e = 0.71) is
approximately 30. We then have a relative error %’—V— of 3% for e = 0.1 and 23%
for e = 0.71. Recall that the accuracy has to be < 0.01% for detection.

The main conclusion that can be drawn from these results is that the ap-
proximation involved in using the configuration space expansion is not precise
when it comes to determining the phase of the waveform of the gravitational
radiation emitted by a coalescing binary system of neutron stars. Even though
the errors involved are bigger for a faster rotating star, using a configuration
space expansion as an approximation reduces the efficiency of the extraction of

the signal from the noise even for a star with a spin frequency of approximately
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136Hz (e = 0.1).
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Chapter 5

Conclusion

The main goal of this project was to study the orbital evolution of a binary
system of rotating neutron stars using two different formalisms. One of the stars
was supposed to be point-like, and it excited f-mode oscillations inside the other
star. The star was supposed to be made of fluid and to have a constant density.

The first formalism involves an expansion of the eigenmodes of oscillation
in the configuration space and the resulting equations for the amplitudes of the
modes are coupled. In order to be able to solve these equations, one has to
assume that the coupling terms are negligible. It is done by assuming that the
orthogonality condition valid for the non-rotating stars holds for rotating stars.
This is likely to introduce errors in the results.

The second formalism, developed by Schenk et al. in [28] involves an expan-
sion in the phase space. The resulting equations describing the amplitudes of
the modes are this time uncoupled from each other. There is no need to cut out
terms in order to solve the equation.

By comparing the results using the two formalisms, I could determine the
error on the predicted orbital evolution of the system when the configuration

space expansion is used. This is important to know because a difference in the
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phase of the orbital motion creates a difference in the phase of the waveform of
the emitted gravitational radiation.

I studied the case of a 1.4M(, star of polar radius of 10km with two eccen-
tricities, ¢ = 0.1 and e = 0.71. A star with e = (.1 has an angular spin frequency
of approximatively 850 rad/sec, and a star with e = 0.71 has a spin frequency of
4440 rad/sec.

In both cases, there was a non-negligible difference between the the results
from the two formalisms. In the case of the e = 0.1 star, the relative error in the
number of orbits during coalescence, ATVM was about 3% while it was about 23%
in the case of a e = 0.71 star. Even though the error is a lot bigger for a rapidly
rotating star, in both cases the error is big enough to reduce the ability to extract
the signal from the noise for the data that are eventually going to be provided by
gravitational wave detectors. In order to build an accurate theoretical template,
the phase space expansion formalism should be used.

These calculations were made using the simplest model of a neutron star. To
be more realistic and to get more accurate results, these calculations should be
done using corrections for general relativistic effects. They should also involve

a star with a density higher in its core than in its outer layers, and they should

take into consideration the viscosity of the neutron star material.
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