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Chapter 1 

Introduction

Managing and querying high-dimensional data is important in many domains 

such as time sequence data [2], protein sequence data [22], density-based clus

tering algorithms [15] and multimedia data [24]. For instance, images have 

features such as color and texture, which are typically mapped onto high

dimensional vectors for facilitating similarity searches. It is common for an 

image to be represented by a D-dimensional global color histogram (GCH), 

e.g., [31, 32], where D  is typically large. GCHs represent images by their 

color distribution, images are considered more similar if they have similar 

GCHs. In Figure 1.1, images (a) and (b) will have more similar GCHs than 

images (b) and (c). In Figure 1.1, we can see (using the L\ metric) the dis

tance between images (a) and (b) is 0.125 while the distance between images 

(b) and (c) is 0.750. When processing high-dimensional similarity queries, an 

efficient access method is needed because a full linear scan on the raw data 

set is typically not practical. On the other hand, techniques based on a linear 

scan of preprocessed data have been quite successful.

Most access methods require the distance function (or similarity function) 

to be a metric. Given a set of objects E S, a distance function d( ) is a 

metric if it obeys the following properties:

1. Symmetry: d(sa, s b) =  d(sb, sa)

2. Non-negativity: 0 < d(sa, sb) < oo

3. Reflexivity: d(a, o) =  0

4. Triangular inequality: d(sa, sb) < d(sa, sc) +  d(sb, sc)

1
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B W G B W B W G

0.500 0.375 0.125 0.500 0.500 0.000 0.125 0.125 0.750

d(a,b) = 0.125 feature
vector

similar dissimilar

Figure 1.1: The feature vectors for the three images show the percentages of 
each color (B =  black, W =  white, and G =  grey) the image is composed 
of, d(a,b) represents the distance between images a and b and is normalized 
between 0 and 1

A Similarity Search is defined as searching in a set of objects for the most 

similar objects to the query object based on some criteria or similarity func

tion. The two most important types of queries for similarity search in high

dimensional data and metric data are range queries (RQ) and nearest neighbor 

queries (NN). Given a query object q and a database S, range queries are de

fined as RQ(q,r)  =  {s* € 5jVsj £ S  : d(si,q) < r} where r is the radius 

(range) of search and d ( i , j ) is a metric distance function which measures the 

distance between database objects i and j . In Figure 1.2(a), the answer to 

range query q would be to return all objects which are less than distance r to 

q, i.e., all objects inside the ring around q. The nearest neighbor of q is de

fined as NN(q)  =  { s ^ n  £  SjVsi €  S  : d ( s x N ,  <?) <  d(si,q)}. Nearest neighbor 

queries can also be generalized to retrieve the TGnearest objects to the query 

object. In Figure 1.2(b), K  — 3, therefore the 3 nearest objects to q will be 

returned as the answer.

Indexing high-dimensional data is a hard problem due to the dimensionality 

curse. Often, as the dimensionality of the feature space increases, the ratio of

2
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(a )  (b )

Figure 1.2: (a)Range Query (radius =  r) (b)K-Nearest Neighbor Query (K=3)

the distance of the nearest neighbor and the distance of the farthest neighbor 

decreases [8]. This makes the problem difficult because many access methods 

attempt to discard objects based on their approximate distances to the query 

object while processing similarity queries. As the ratio of the distance of 

the nearest objects and the distance of the farthest objects decreases, access 

methods have a more difficult time differentiating between the objects close to 

the query object and those far away from the query object. In [34] the authors 

show that many access methods may degenerate to a sequential scan once the 

number of dimensions is sufficiently large. There are two main reasons why 

this occurs. One is that the cost of random disk I/Os is much greater than 

the cost of sequential disk I/Os. If an access method with a random access 

pattern does not access relatively few data pages, a sequential scan may be 

faster. It is also argued in [34] that a sequential reading of a set of pages on 

disk is faster than randomly reading as few as 20% of the same pages, which 

can likely be the case for high-dimensional data. In an interview with ACM 

Queue, Jim Gray says “Certainly we have to convert from random disk access 

to sequential access patterns. Disks will give you 200 accesses per second, so 

if you read a few kilobytes in each access, you’re in the megabyte-per-second 

realm, and it will take a year to read a 20-terabyte disk. If you go to sequential 

access of larger chunks of the disk, you will get 500 times more bandwidth-you 

can read or write the disk in a day. So programmers have to start thinking of 

the disk as a sequential device rather than a random access device” [27]. This

3
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illustrates the importance of access methods using sequential access patterns 

as opposed to random access patterns. Yet another reason is that most access 

methods use a tree-like structure with hierarchical minimum bounding regions 

to index objects. Minimum bounding regions are defined as the smallest region 

which contains a set of objects. The overlap and volume of these bounding 

regions increase sharply with the increase in the dimensionality, causing many 

branches of the tree to be searched; as well, the fanout of the indexing tree 

decreases, yielding taller and thinner search trees.

The main contribution of this thesis are three new access methods aimed 

at providing a solution to the problem of efficient similarity search for high

dimensional data and metric data.

Motivation for our first two approaches comes from examining the OMNI- 

Sequential ( O S e q ) algorithm which makes use of the O m n i  Access method [16]. 

This method reduces the dimensionality of the feature space into a lower di

mension, determined by a number of reference points (referred to as pivots). 

Pivot objects, which are selected from the data set, and OMNi-coordinates 

(precomputed distances from the data objects to the pivot objects) are used 

to increase the performance of similarity queries.

In this thesis we introduce two new access methods, the OMNl-Sequential+ 

(OSeq+) and the OMNI-Sequential* (OSeq*). Using the OSeq+, the time 

required to answer a similarity query can be further decreased by (1) identify

ing the best pivot object and by (2) changing the order the OMNi-coordinates 

are stored. The OSeq* algorithm builds on the O Seq+. In this algorithm 

we propose to select more pivot objects than will be used at query time and 

at query time only use the best pivot objects to improve the performance of 

the OSeq*. In Section 3.3 we will explain how to select these pivot objects. 

We show that for a vector space, Principal Component Analysis (PCA) selects 

better pivot objects than the pivot objects selected by the algorithms proposed 

in [12] and [16]. Our experimental evaluation using real and synthetic data 

sets shows that one can achieve up to three times faster query processing when 

compared to the original OSeq at the cost of little storage overhead. We also 

show experimentally that the OSeq+ method is up to 24 times faster than

4
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the VA-File when processing range queries and up to 69 times faster than a 

sequential scan of the data set.

Motivation for our third access method comes from further examination of 

the VA-File [34]. The VA-File is arguably the most efficient access method for 

similarity search in high-dimensional data. It partitions the data space into a 

grid and creates approximations of the data objects based on the cells in the 

grid containing the objects. Its main advantage is it sequentially scans the file 

containing these approximations, which is much smaller than the size of the 

original data file.

The third contribution of this thesis is we show how to construct a grid1 for 

any metric space (including of course Euclidean space) and perform efficient 

similarity searches. Such a grid is used to cluster the objects efficiently using 

any clustering algorithm, even if the data set is not vectorial. We will show 

how the clusters can be searched efficiently for similarity search queries and 

how the correctness of the answer set is guaranteed by the properties of the 

grid. Our experimental results show that we can perform query processing 

up to 42 times faster with our access method than a sequential scan of the 

original data set and up to 10 times faster than the VA-File. In addition, our 

method works in all metric spaces, can be easily implemented and scales well 

with increasing the number of nearest neighbors retrieved.

1.1 T hesis O utline

This thesis is structured as follows. Chapter 2 discusses the related work to 

indexing high-dimensional data and metric data. Chapter 3 details the O S e q + 

and O S e q * methods and the experimental results showing the efficiency of our 

proposed methods. The Metric Grid is described in Chapter 4, along with how 

the grid can be used to perform efficient similarity search and experiments are 

displayed comparing the M-Grid to the VA-File and a sequential scan of the 

data set. A conclusion and summary of this thesis will be given in Chapter 5.

lrThe grid is actually a pseudo-grid. It is not possible to  construct a real grid in general 
metric space because there may be no actual data  space with actual dimensions to be 
partitioned.

5
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Chapter 2 

R elated Work

There are many proposed methods attempting to solve the problem of efficient 

similarity search for high-dimensional data sets and general metric data sets. 

Most methods suffer from the dimensionality curse, the one notable exception 

is the VA-File, or cannot index metric data. In this chapter we present an 

overview of access methods which can be used for high-dimensional data sets 

and/or metric data sets.

The proposed indexing structures described in this chapter either use a 

tree-based structure, a linear scan-based structure or a combination of the two. 

Tree-based structures try to group objects which reside closest to each other 

in the data space. These groups of objects are typically stored as minimum 

bounding regions which are defined as the smallest region which contains the 

set of objects. Minimum bounding regions are stored in a hierarchical manner 

for similarity search. The tree structure (Figure 2.1) is searched by visiting 

branches in the tree which intersect the query region. For range queries, the 

volume of the query region remains constant with radius r, while for nearest 

neighbor queries, the volume will decrease as nearer objects to the query object 

are found, reducing the radius of the query region. Trees exhibit random access 

patterns, therefore if a tree-based access structure cannot access relatively few 

data pages, a sequential scan of the same set of pages may be faster. This is 

often the case for high-dimensional data sets and metric data sets.

Linear Scan-based approaches preprocess and store the data in sequential 

files (Figure 2.2). At query time portions of the preprocessed data are read

6
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D isk Pages

Figure 2.1: Organizing data in a tree structure for similarity search

sequentially. Although this can mean accessing more disk pages, sequential 

disk accesses are much less expensive than random disk accesses, therefore 

the efficiency of similarity search can be increased even if more disk pages are 

accessed. Two possible linear scan-based approaches to tackle the problem 

of high-dimensional and/or metric similarity searches are: to reduce the di

mensionality of the feature space or to reduce the granularity of the feature 

space. Reducing the dimensionality of the feature space is achieved by map

ping objects from the original feature space into a lower dimensional space. 

The coordinates of each object in the lower dimensional space can be read se

quentially. The mapping into a lower dimensional space preserves the relative 

distances of the objects so similarity search can still be preformed while still 

guaranteeing the correctness of the answer. Reducing the granularity of the 

feature space requires approximating the position of objects in the data space. 

This approach sequentially reads the approximations of the objects (which 

requires less storage space than the original feature vectors) and performs a 

refinement step to guarantee the correctness of the answer.

® ® @

Disk Pages

Figure 2.2: Storing preprocessed data for similarity search in a sequential file

Y
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2.1 Indexing Structures for V ector D ata

Vector data has the property that all attributes of an object are numerical. 

This gives positional information about the data objects in a vector space 

that can be used for indexing. There are many indexing structures proposed 

which can only index vector data because they require information about the 

position of each object in the data space in order to create approximations and 

minimum bounding regions of groups of objects. Two partitioning strategies 

for vector data are data partitioning and space partitioning. The indexing 

structures partition the data space in order to obtain approximations of where 

objects lie in the data space. This allows sub-regions to be accessed in the 

data space and to discard objects or groups of objects from the answer set 

without computing the actual distance between the query object and every 

object in the data set.

2.1.1 D ata Partitioning Structures

Indexing structures using the data partitioning strategy divide the objects in 

a hierarchical manner depending on the distribution of the data set. The ob

jects are partitioned into cells or minimum bounding regions which are stored 

in nodes of equal size. Indexing structures which use the data partitioning 

strategy are the R-tree, the R*-tree, the TV-tree, the SS-tree, the X-tree and 

the SR-tree.

The R-tree [17] is a multi-dimensional indexing structure. It was originally 

designed for 2D spatial data (though it can be easily generalized to multi

dimensional space) and can handle rectangles and point data. The data in a R- 

tree is partitioned into minimum bounding rectangles (MBRs) in a hierarchical 

manner and attem pts to minimize the area of the MBRs. As it will be clear 

shortly, it is important to minimize the area of the MBRs because the larger 

their area, the greater the probability an MBR will intersect the query region, 

leading to accessing more nodes during similarity search.

The R-tree is height-balanced tree, meaning each leaf node is the same 

distance from the root node. Each leaf node has the form (ObjID, R t) where

8
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Ob]ID  is a pointer to the actual object in the database and R t is the MBR 

that contains the object. Non-leaf nodes are composed of (Ch,dP,Rt) where 

ChdP  is a pointer to a child node and R t is the MBR that contains all the 

objects in its sub-tree. An example R-tree is shown in Figure 2.3(a) and refers 

to the points in Figure 2.3(b). Rectangle R1 completely covers rectangles A, 

B and C which are situated in R l ’s sub-tree.

R1 R2 R3

D E F

T

Figure 2.3: The R-tree Structure

The R-tree is a dynamic indexing structure, objects can be inserted and 

deleted from the tree without completely rebuilding the tree. Each node in 

the R-tree corresponds to one disk page and must contain between m and M  

objects except the root node. The root node must be able to have less than 

m  children because when beginning to build the R-tree, initially there are no 

objects and the only node is the root node. The nodes in the R-tree are not 

usually completely full as it is unlikely for all nodes to have M  objects because 

objects are inserted into the node in the tree for which the volume of the MBR 

increases the least, not the node which has the least objects. The reason for 

creating a lower bound m  and an upper bound M  on the number of objects in 

a node is prevent storage utilization from being too low but still maintain the 

tree structure. The value of M  is dependent on how mamy objects can fit on 

one disk page because it is assumed the complete R-tree is too large to fit in 

main memory and must be stored in secondary memory. The value of m  is less 

than or equal to because if a node splits during the insertion of an object 

and m  > 4f, the objects would not be able to be split into two new nodes

9
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and have at least m  objects in each of the two new nodes. Nodes can overflow 

or underflow as objects are inserted or deleted from the R-tree. If a node 

overflows, i.e., the number of objects in the node becomes greater then M, the 

node is split and the split propagates towards the root node maintaining the 

height of the tree. For deleting objects, if a node underflows, i.e., the number 

of objects in the node becomes less than m , all the objects in the node are 

reinserted into the tree.

The search algorithm for the R-tree begins at the root node and descends 

toward the leaf level. At each node the distance between the query object 

and the MBR is computed as the minimum distance to any point in the MBR 

(Figure 2.4). If the MBR of the node intersects the query region, its sub

tree is also searched. The query region can intersect more than one MBR so 

many sub-trees and branches may have to be searched. In Figure 2.3(a) and 

(b), the distance from MBRs R l, R2 and R3 will be computed to the query 

object. If the MBRs intersect the query region, their sub-trees will also have 

to searched. Sub-trees of MBRs not intersecting the query region do not have 

to be searched because no objects in the sub-tree can be in the answer set to 

the query. The reason for this is the MBR contains all objects in its sub-tree, 

therefore if the MBR does not intersect the query region, no objects inside 

the MBR can either. The search algorithm ends when all leaf nodes which 

intersect the query region have been accessed.

d(q,MBR)

q

Figure 2.4: Computing the distance from the query object to MBRs in the 
R-tree

For NN queries, the search algorithm for the R-tree (Figure 2.5) begins by

10
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R -tre e  N N  Search A lgo rithm : Find the nearest, neighbor to the query 
object
In p u t : Query Object q, Active Node List Aril =  [root], Nodes in the 

R-tree rq £ N, Objects in the data set st £ S  
Output: Nearest Neighbor (NN) to q

NN = Null 

NNdist =  oo

while Aril Not Empty do 
rii — first node in Anl

if rq is leaf node then  
foreach sq £ rii do

if  d(q, < NNdist then  
NN =  Si

NNdist =  d(q, sf)

_ Prune Anl with NNdist

else
/*rq is an internal node*/

foreach Child Node cy in rq do 
if  d(q, Ci) < NNdist then  
L Insert c, into Anl

Figure 2.5: R-tree Nearest Neighbor Query Search Algorithm

computing the distance from the query object to each MBR in the root node. 

The distances are stored in a sorted list called the Active Node List (Anl). The 

MBR closest to the query object is searched first and this process continues 

recursively down to the leaf level. If a leaf node is accessed, the actual distance 

from the query object to each object in the leaf node is computed and the 

nearest neighbor distance (NNdist) is updated if a nearer object to the query 

object is found. Nodes in the Anl are pruned and removed if their minimum 

distance to the query object is not less than the current NNdist. Each Node 

in the Anl must be searched to guarantee the answer is correct, the algorithm 

stops when the Anl is empty, indicating there are no more MBRs closer than 

the NNdist to the query object.

For range queries, the search algorithm (Figure 2.6) is slightly different
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R -tre e  R an g e  Q uery  S earch  A lgo rithm : Find all the objects within 
distance r of the query object
In p u t : Query Object q, Query Radius r, Active Node List Anl = [root], 

Nodes in the R-tree nt £ N,  Objects in the data set st £ S  
O u tp u t: List of objects whose distance to q is less than r, rList

w hile Anl Not Empty do 
=  first node in Anl

if Hi is leaf node th e n  
foreach  Si £ do

if d(q, Si) < r th e n  
|_ Insert Sj into rList

else
/*rq is an internal node*/

foreach  Child Node Ci in n,- do 
if  d(q, < r th e n
L Insert q into Anl

Figure 2.6: R-tree Range Query Search Algorithm

because the radius r of the query is known in advance unlike the actual NN 

distance. The search algorithm computes the distance to each MBR in the 

root node from the query object. Each MBR whose distance to the query 

object is less than or equal to r is placed in the Anl and must be searched. 

This continues until all nodes in the R-tree have been searched or pruned.

The R-tree is efficient for a small number of dimensions but is shown to 

perform poorly for high-dimensional data (dimensionality greater than 10) [7]. 

This occurs because in high-dimensional space, the volume and overlap of the 

MBRs increase sharply causing many branches in the tree to be searched for 

each query, as well, the fanout of the tree decreases. The importance of the 

R-tree is it laid a foundation for others to build upon. As will be seen shortly, 

many proposed indexing structures are based on the R-tree.

An indexing structure very similar to the R-tree is the R*-tree [5]. The R*- 

tree improves on the R-tree by not only minimizing the area of the MBRs, but 

also minimizing the overlap of the MBRs and increasing the storage utilization 

of the MBRs. Minimizing the overlap is important because if two MBRs
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exhibit high overlap, there is a high probability they will have to be both 

accessed for the same queries. Increasing the storage utilization will mean 

the disk pages are more full and the height of the tree will be less. This will 

reduce the number of nodes needing to be accessed to reach the leaf level of 

the tree and to answer similarity queries. The R*-tree employs the notion 

of forced reinsert which reinserts all entries of a node that overflows during 

the insertion of an object. This has been shown to increase the efficiency of 

the R*-tree because it provides an opportunity for dissimilar objects originally 

placed in the same node to be placed in different nodes as more similar objects 

are inserted into the tree. The R*-tree is shown to outperform the R-tree, but 

like the R-tree still suffers from the dimensionality curse.

The TV-tree (Telescopic-Vector tree) [23] is one of the first indexing struc

tures proposed specifically for high-dimensional data. The TV-tree proposes 

to use only a few features to distinguish between objects in the database at 

each level of the tree. By using a few features, the tree suffers less from the 

dimensionality curse.

The TV-tree uses a hierarchical structure (Figure 2.7(a)) similar to the 

R-tree. Feature vectors are stored in the leaf nodes and the parent (internal) 

nodes contain the TMBR (telescopic minimum bounding region) of its chil

dren, this continues recursively until the root node. The authors note that 

TMBRs can be stored as any shape, but in the paper spheres are used as they 

can be represented more simply by just storing the centroid and the radius 

of the sphere. The TMBR of a node contracts or extends depending on the 

objects inserted into or deleted from the region. The TV-tree uses less di

mensions close to the root and more dimensions as we descend down the tree 

to distinguish between objects. Techniques such as Karhunen Loeve trans

form, Discrete Cosine transfrom and Discrete Fourier transform can be used 

to find the dimensions which exhibit the most discriminative power. These 

dimensions are used at higher levels of the TV-tree when searching because 

the distance between objects can be distinguished more accurately using these 

dimensions than the dimensions with less discriminative power. This can pre

vent searching to the leaf level for many branches of the tree and allows the
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Figure 2.7: The TV-tree Structure

TV-tree to have a higher fanout in the higher levels of the tree because only a 

few of the most important dimensions are stored.

As the tree grows, the leaf levels may consist of some objects which agree 

on their first k dimensions, these dimensions are considered inactive. The 

dimensions the objects differ On are the active dimensions and are used to 

distinguish between objects in the same nodes. In Figure 2.7(b) only one 

active dimension is used. The active dimension for objects A and B is D l, 

while for objects E and F, the active dimension is D3. This means the TV- 

tree will only be able to distinguish between objects A and B using dimension 

D l. The TV-tree can however use more than one active dimension. TMBRs 

in the tree can overlap each other and like MBRs in the R-tree, it is more 

efficient to minimize the overlap of the TMBRs to minimize the number of 

branches to be accessed during similarity search.

Searching of the TV-tree is similar to the R-tree and always starts at the 

root node and follows the branches which intersect the query region. For 

NN queries, the most promising branches are searched first, i.e., the branches 

closest to the query object. This allows nearer objects to the query object 

to be found first and branches far away can be pruned. Objects are inserted 

into the most suitable branches of the TV-tree using the following criteria; (1) 

minimizing the overlap of the TMBRs, (2) the new object agrees on as many 

coordinates as possible in the sub-tree, (3) minimize the increase in the radius

14
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of the TMBR and (4) minimize the distance to the center of the TMBR. If the 

chosen node is full, leaf nodes are reinserted once and then split if the node 

overflows again, while internal nodes are always split. Deletion is straight 

forward, if the node underflows, the node is deleted and all the objects in the 

node are reinserted into the TV-tree.

The TV-tree has been shown to be more efficient than the R*-tree, but 

relies on two assumptions. There must be an “order of importance” of the 

dimensions of the data space. If all dimensions are equally important, the 

TV-tree will not be able to discriminate effectively between objects in the 

tree at high levels. The second assumption is that sets of feature vectors 

will tend to exactly match on some dimensions, especially on the important 

dimensions. This assumption often does not hold for real-valued data sets. 

The reason is that objects from real data sets, while they are often clustered, 

they will rarely have an exact match on many dimensions unless a discrete 

value distance function is used. If these two assumptions fail to hold for the 

TV-tree, its efficiency will sharply decline.

The SS-tree (Similarity Search tree) [35] is a R-tree variant designed for 

similarity search in high-dimensional spaces. The main design of the SS-tree 

is very similar to the R*-tree except minimum bounding spheres (MBS) are 

used instead of minimum bounding rectangles to index the data space. Like 

the R-tree and the R*-tree, the SS-tree is a dynamic indexing structure for 

vector data.

The structure of the SS-tree is shown in Figure 2.8(a). The objects are 

grouped together by spheres in a hierarchical manner where the parent nodes 

sphere completely bounds all the spheres of the nodes beneath it in the tree 

(Figure 2.8(b)). Each internal node keeps track of the centroid and the radius 

of the sphere and the number of children in the subtree. This allows the SS- 

tree to have a larger fanout than the R*-tree because spheres can be stored in 

half the space of rectangles. Minimum bounding rectangles have to store two 

coordinates for each dimension while minimum bounding spheres only need to 

store the centroid which requires one coordinate for each dimension plus the 

radius of the sphere. The radius of the sphere is the distance to the furthest
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Figure 2.8: The SS-tree Structure

object from the centroid.

The algorithm to search the SS-tree is also similar to the R*-tree. The 

closest nodes to the query object are visited first for nearest neighbor queries. 

The distance between each MBS and the query object is computed as the 

minimum distance from the query object to the MBS. The algorithm stops 

when all nodes (MBSs) have been either visited or pruned. The SS-tree also 

uses the same insertion algorithm as the R*-tree. The concept of forced insert 

is used and each node has a minimum of m  and maximum of M  children. To 

insert an object into the SS-tree, the tree is traversed until the object’s leaf 

node is found and all nodes along the way are updated by adjusting the radius 

of the node. The rule is to insert the objects into the subtree whose centroid 

is closest to the object. If the node overflows, the objects are reinserted into 

the tree. If the objects in the node have already been reinserted and the node 

overflows again, the parent node is split. The split algorithm searches for the 

dimension with the highest variance and then chooses a split location, this 

minimizes the variance in each of the new nodes.

The SS-tree is compared to the R*-tree and is shown to be more efficient. 

One reason for this is the SS-tree has a larger fanout than the R*-tree. This 

allows more MBSs to be stored in each node, decreasing the number of nodes 

which have to be accessed from disk during similarity search.

The X-tree (eXtended node tree) [7] is also an adaptation of the R*-tree 

and is intended for high-dimensional data. The X-tree attempts to deal with
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the shortfall of the R*-tree that the overlap of directories becomes large as 

the dimensionality of the data space increases. This causes many directories 

in the tree to be searched for the same queries because if two MBRs have a 

high degree of overlap, often both MBRs will intersect the query region for the 

same queries.

The solution the X-tree provides is to avoid splitting nodes in which the 

two nodes will exhibit a high degree of overlap. Instead of splitting a node 

and introducing two nodes with high overlap, the node is extended to create 

a supernode. In Figure 2.9 the shaded nodes indicate supernodes. Supern

odes allow portions of the data to be organized sequentially on disk. If both 

nodes will have to be searched anyway, a sequential scan of the supernode is 

performed to avoid using a random disk access to access each of the nodes 

that would have resulted if the node had been split. The size of supernodes 

are multiples of the size of ordinary nodes. Results have shown the number 

of supernodes in the X-tree increases with the dimensionality. The storage 

utilization of the X-tree also increases because there are less nodes in the tree, 

reducing the space which is not used.

Figure 2.9: The X-tree Structure, the shaded regions are supernodes

The insertion algorithm for the X-tree is also similar to the R*-tree. The 

algorithm determines the node to insert the object in the same way as the R*- 

tree and inserts the object in this node. If the node splits, the split algorithm 

attempts to find a good split. If the split algorithm can not find a good split in 

which each of the new nodes will contain at least m  MBRs, the split algorithm 

terminates without splitting the node and the current node is extended to a
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supernode. The deletion of objects is similar to the R*-tree.

The X-tree has two special cases. For data sets which exhibit no overlap, 

no supernodes will be created and the X-tree will be very similar to the R*- 

tree. For high-dimensional data with high overlap, the complete directory 

could become one large supernode and the X-tree would be equivalent to a 

sequential scan of the data set. Most data sets will create an X-tree similar to 

Figure 2.9 with a portion of nodes being extended to supernodes. The X-tree 

is shown to be up to two orders of magnitude more efficient than the R*-tree 

tree for high-dimensional data sets. The X-tree, like the R*-tree, still suffers 

from the dimensionality curse, but delays it to higher dimensions than the 

R*-tree.

The SR-tree (Square/Rectangle tree) [20] is an R-tree variant designed to 

overcome the deficiencies of the R*-tree and the SS-tree for high-dimensional 

data. The main difference in the structure of the SR-tree from the R*-tree 

and the SS-tree is the SR-tree uses minimum bounding spheres (MBSs) and 

minimum bounding rectangles (MBRs). An example SR-tree is shown in Fig

ure 2.10(a) and refers to the points in Figure 2.10(b). Minimum bounding 

regions in the SR-tree are defined by the intersection of MBRs and MBSs. 

This is to decrease the volume of the minimum bounding regions and improve 

the disjointness between the regions. Figure 2.11(a) and (b) illustrate this 

concept as the shaded regions show the intersection of the MBRs and MBSs. 

By using both MBSs and MBRs, nodes E and F do not exhibit any overlap 

(Figure 2.11(a)) and the minimum bounding regions of all nodes are reduced.

The R*-tree and SS-tree have been shown to perform poorly in high

dimensional spaces because the directories in the trees tend to exhibit high 

overlap causing many directories to be searched for each query. The intuition 

behind the SR-tree is the diameter of hyperspheres tend to be much shorter 

than the diagonal of hyperrectangles in high-dimensional space, but the vol

umes of hyperspheres are much larger. By using both spheres and rectangles, 

the SR-tree inherits the benefits of both the minimum bounding spheres of the 

SS-tree and the minimum bounding rectangles of the R*-tree. The SR-tree can 

prune sub-trees more effectively using MBSs and MBRs and prevent having
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(b)

Figure 2.10: The SR-tree Structure

Figure 2.11: The intersection of the MBSs and MBRs in the SR-tree (shaded 
regions)
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to access a large portion of the leaf level of the tree.

The insertion algorithm for the SR-tree is based on the SS-tree and chooses 

the subtree whose centroid is closest to the object being inserted. The authors 

choose to insert objects into the SR-tree based on the centroids of the MBSs 

rather than use the MBRs because experimental results show this method to 

be more effective. When a leaf node overflows, a portion of the entries are 

reinserted into the tree. The node is split if the entries are reinserted into 

the same nodes. The deletion of objects is performed the same way as the R- 

tree, if a node underflows, the entries in the node are reinserted into the tree. 

For the deletion and insertion of objects in the SR-tree, both the minimum 

bounding spheres and minimum bounding rectangles have to be updated.

The nearest neighbor search algorithm used for the SR-tree is very similar 

to the R*-tree and the SS-tree. One difference is the R*-tree computes the dis

tance between the query object q and the MBR as the minimum distance to the 

MBR (Figure 2.12(a)) and the SS-tree computes the distance between q and 

the MBS as the minimum distance to the MBS (Figure 2.12(b)). Since the SR- 

tree stores MBRs and MBSs in each node, the distance from the query object 

to the bounding region R  is computed as the longer of the minimum distance 

to the MBR and the MBS. This allows the distances to regions to be estimated 

more accurately. In the example in Figure 2.12(c), the distance to the min

imum bounding region for the SR-tree (d(q,R )) will be equal to d(q, M B R )  

and not d(q, M B S )  because is this example d(q, M B R )  > d(q, M B S ) .

Nodes in the SR-tree contain a smaller number of entries than the SS-tree 

and R*-tree because it stores a MBR and a MBS for each minimum bounding 

region in each node. This causes the SR-tree to have a smaller fanout. The 

SR-tree on the other hand prunes branches more efficiently than the R*-tree 

and the SS-tree because the minimum bounding regions of the SR-tree have 

a smaller volume. This occurs because the minimum bounding regions of the 

SR-tree are formed by the intersection of the MBRs and the MBSs (shaded 

regions in Figure 2.11). The SR-tree requires far fewer disk accesses at the 

leaf level because more branches of the tree are pruned at higher levels of the 

SR-tree because the minimum bounding regions have a smaller hyper-volume.
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(a ) R - t r e e

digpMBR)

q

(b )  S S - t r e e (c )  S R - t r e e

d(q.M B S)

Figure 2.12: How the distance is computed for the minimum bounding regions 
in (a) the R-tree, (b) the SS-tree and (c) the SR-tree

The SR-tree has been shown to outperform the R*-tree and the SS-tree but 

still suffers from the dimensionality curse.

2.1.2 Space Partitioning Structures

Unlike the data partitioning strategy, space partitioning strategies partition 

the data space into cells or a grid. The objects are indexed depending on 

the cell in the grid that contains the object. Here we will present two access 

methods which use the space partitioning strategy, the VA-File and Clindex.

The VA-File (Vector Approximation File) [34] is proposed for similarity 

search in high-dimensional spaces. The VA-File method does not use a tree 

structure but instead stores an approximation of the feature vector of each 

object in a sequential file and performs a sequential scan of the vector approx

imations. The vector approximations are compressed representations of the 

original feature vectors and are typically 25% of the size of the original feature 

vectors.

To obtain the vector approximations, the data space is divided 2l times 

along each dimension where I is the number of bits used per dimension. This 

divides the data space into 2lxD hyperrectangular cells where D  is the dimen

sionality of the data space and each object is approximated by the bit string 

of the cell where it lies. In the example in Figure 2.13, two bits are used per
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dimension resulting in 16 (22xi) hyperrectangular cells (I = 2,D  =  2). In the 

example, object B can be approximated by (01,11) (4 bits of storage) instead 

of the original values of (0.299,0.783), which will require two floats to store 

the values. The bit string is used to compute the approximation of each object 

because the partitions in each dimension are stored.

For each query the VA-File is read sequentially and a lowrer bound and 

upper bound on the actual distance between the approximate feature vector 

of each object and the query object is computed. This is illustrated in Fig

ure 2.14. The lower bound distance is computed from the query object to 

the nearest point in the object’s cell and the upper bound is computed as 

the distance from the query object to the farthest point in the object’s cell. 

Objects with lower bounds greater than the query radius (for range queries) 

or the current kth  smallest upper bound (for iF-nearest neighbor queries) are 

pruned from the candidate set because their actual distance to the query ob

ject must be too large for the object to be in the answer set. This allows many 

objects to be pruned from the candidate answer set without having to retrieve 

the object’s full feature vector. To guarantee the correctness of the answer, 

a refinement step is performed where the actual distance between objects not 

pruned and the query object is computed. Typically, if I is chosen to be large 

enough, this method only requires retrieving a small number of actual feature 

vectors in the refinement step.

One problem with the VA-File is I has to be chosen before the VA-File 

is constructed. If I is chosen poorly, it can severely limit the performance 

of the VA-File. If I is too small, a large number of feature vectors will have 

to be retrieved from the original data file. This is expensive because each 

feature vector must be accessed randomly because there is no order in the 

original data file. If I is chosen to be too large, there will be very little savings 

over a sequential scan of the original data set because the entire VA-File is 

read for every query. The VA-File must also compute a large number of 

high-dimensional distance calculations. The number of distance calculations 

is linear with the cardinality of the data set.

The VA-File has been shown to exhibit linear performance with respect
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V ector Data

A 0.126 0.243

B 0 .299  0.783

C 0.500 0.412

D 0.684 0.601

E 0.878 0.328

Approximation Data

A 00 00

B 01 11

C 01 01

D 10 10

E 11 01

Figure '2.13: Partitioning the data space with the VA-File to obtain approxi
mations for each object

query
object

low er bound

upper
bound object

Figure 2.14: Calculating lower and upper bounds for the VA-File
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to the cardinality and dimensionality of the data set. It should be rioted the 

VA-File can only index vector spaces because a grid of the data space must 

be constructed. In high-dimensional spaces, the VA-File has been shown to 

outperform the R*-tree and the X-tree.

An Access method which partitions the data space into a grid and clusters 

the data set is Clindex [21], Clindex answers approximate similarity search 

queries, i.e., it does not guarantee the correct answer. By answering approxi

mate similarity queries, Clindex trades accuracy for efficiency. Each dimension 

is divided into strips which form cells and the cells are grouped into clusters 

using a simplified version of the CLIQUE clustering algorithm [3]. The clus

ters are stored sequentially on disk and an index is built to provide fast access 

to the clusters. This enables the algorithm to perform approximate similarity 

search by visiting a few clusters and reading all the objects sequentially within 

the visited clusters.

For similarity search, the cell the query object belongs to is first identified 

by mapping the query object’s feature vector to the ID of the cell that contains 

it. The cell containing the query object is looked up in the mapping table 

(Figure 2.15). Only cells containing objects are stored in the mapping table, 

if the cell contains any objects, then the cluster it belongs to is accessed. If 

the cell is empty, then the distance from the query object to the centroid of 

each cluster is computed to determine the closest clusters.

Cell ID  Cluster ID

filename = filel

centroid = (...)

filename = file2 

centroid = (...)

filename = fileV 

centroid = (...)

Mapping Table Cluster Directory Disk

Figure 2.15: Clindex 

Clindex provides approximate similarity search so the answer set is not
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exact. The authors say approximately 90% of the exact answer set is returned 

on average after retrieving only a few of the closest clusters to the query object. 

The effectiveness of this method will also depend on how good the clustering 

algorithm is and the size of the clusters. The authors only test Clindex on 

vector data, and it is shown to be more efficient than other methods, but 

because it does not return the exact answer, its effectiveness is not guaranteed.

2.1.3 Hybrid Partitioning Structures

In an attempt to increase efficiency, some access methods have combined the 

data and space partitioning strategies. We will describe two indexing struc

tures which use both partitioning strategies, the A-tree and the IQ-tree.

The A-tree (Approximation Tree) [29] is designed from studying the SR- 

tree and the VA-File. The authors of the A-tree attem pt to use the best 

attributes of both structures to create an index structure efficient for simi

larity search in high-dimensional spaces. The A-tree partitions the data into 

minimum bounding regions, but also partitions the data space inside MBRs 

to create approximations of the child MBRs. Like the VA-File and SR-tree, 

the A-tree is only suitable for indexing vector space.

The A-tree uses a tree structure similar to the R-tree family of data struc

tures. The main distinction of the A-tree is it uses Virtual Bounding Regions 

(VBR) to approximate MBRs which can be stored more compactly to increase 

the fanout of the tree. In Figure 2.16, Rectangle B (Rb ) is approximated by 

VB which can be stored using less space, i.e., using less bytes than the ab

solute coordinates of R b because the coordinates of VB are stored as binary 

sub-codes and the actual coordinates of R b are stored as floats. The VBRs 

in the A-tree are calculated using the sub-codes and the coordinates of the 

parent MBR. This is possible because each node in the A-tree contains the 

MBR of the node and the VBRs of each childnode. The data space of the 

parent MBR is partitioned allowing the coordinates of the VBRs to be com

puted from the sub-codes. In this example, each sub-code of V# can be stored 

using 4 bits, while each coordinate of R b will be stored using 1 float (32 bits). 

Unlike the VA-File which uses absolute vector approximations and uses the
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Figure 2.16: An example of how VBRs (V#) approximate MBRs (Rb ) in the 
A-tree

same level of accuracy throughout the data space, the approximations in the 

A-tree adapt to the data distribution. This allows VBRs in more dense regions 

to be approximated by more bits and increases the accuracy of the VBRs.

Like the SR-tree, the A-tree uses minimum bounding spheres (MBS) to 

insert objects. The A-tree does not use the MBSs for similarity search because 

experiments have shown they are not as effective as MBRs for pruning branches 

in high-dimensional spaces. In high-dimensional spaces the hyper-volume of 

MBSs increase more rapidly than MBRs which increases the probability of 

visiting the node. Updating the A-tree is similar to the SR-tree, the main 

difference is the VBRs have to be updated and the MBSs are stored separately 

as they are only used for the insertion of objects.

Nodes in the A-tree consist of one MBR and its children VBRs. This allows 

each node to contain information about two levels of the tree as each VBR 

in a node covers its entire subtree. VBRs approximate MBRs using less bits, 

but to ensure an exact answer, each VBR completely contains the MBR it 

approximates, e.g., in Figure 2.16, Vb completely contains R b -

Searching the A-tree is similar to the R-tree. For similarity search nodes are 

visited in order of the minimum distance to its MBRs so the nearest sub-trees 

are searched first. Nodes are only pruned if the query region does not intersect
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the VBR of a node. If the VBR of a node intersects the query region, then 

the node containing the actual MBR that the VBR approximates is accessed. 

This process continues down to the leaf level of the tree.

In most tree index structures, the number of entries in a node is less than 

the maximum number of entries, so there is space not being used in nodes. The 

A-tree employs full utilization to make full use of all storage in a node. The 

empty space is used to increase the accuracy of the approximations (VBRs) 

and reduce the approximation error. This makes it less likely to access a sub

tree because the query region intersects the VBR, but does not intersect the 

MBR. Performance tests have shown the A-tree to access less disk pages than 

the VA-File and SR-tree for high-dimensional data.

It has been shown that hierarchical, directory based indexing structures 

are more efficient in low-dimensional spaces. These indexing structures tend 

to exhibit the dimensionality curse and are outperformed by a simple sequential 

scan of the original data set in higher dimensions. Linear scan-based compres

sion techniques are more effective in high-dimensional data spaces as they tend 

not to suffer from the dimensionality curse, i.e, the VA-File. The IQ-tree [6 ] is 

designed from examining the R*-tree and the VA-File. The IQ-tree’s intention 

is to perform well in both low-dimensional and high-dimensional spaces by us

ing the data partitioning strategy of the R-tree family of indexing structures 

and the space partitioning strategy used by the VA-File.

The IQ-tree is a combination of the R*-tree and the VA-File and tries to 

combine the benefits of both. It consists of 3 levels. The first level is a flat 

directory of MBRs (Figure 2.17(a)). As in the R*-tree, the MBRs describe 

the region containing all the objects in its subtree. The main difference is the 

IQ-tree does not use a tree structure to store the MBRs as the R*-tree does, 

but instead uses a flat directory file -which can be read sequentially to prevent 

expensive random disk accesses. The MBRs are also not constructed down 

to the leaf level, i.e., the data is only partitioned as far as it is considered 

beneficial. The stopping point is chosen based on a cost model to maximize 

the efficiency of the IQ-tree. The second level of the IQ-tree is similar to 

the VA-File and consists of quantized data pages (Figure 2.17(b)). At this
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level the IQ-tree partitions the data space containing the objects (the MBRs). 

Unlike the VA-File, the IQ-tree uses different compression rates, i.e., variable 

bit encoding is used. This allows higher density regions of the data space to 

use more bits and increase the accuracy of the approximations when required. 

The data pages are a fixed length so the number of approximations stored on 

each page depends on the accuracy of the approximations. The third level of 

the IQ-tree (Figure 2.17(c)) consists of the original data pages of the feature 

vectors of the objects. The actual feature vectors of objects not pruned must 

be accessed in the refinement step. In Figure 2.17(b), the quantized data page 

with 32 bits has a null pointer because when it is determined the approximation 

should be quantized to 32 bits, the original feature vector is stored instead, 

therefore the original feature vector will be accessed in level 2  and is omitted 

from level 3. A cost model is derived for the IQ-tree and is used to determine 

the compression rate and accuracy of the approximations which provides the 

most efficient similarity search for the data set. The goal is to find the lowest 

compression rate which provides sufficient accuracy to prune most objects not 

in the answer set to prevent having to access many objects in the third level 

of the tree.

For similarity search, the IQ-tree begins by sequentially reading the entire 

flat directory file of MBRs. The distance to the MBRs is computed in the same 

way as the R*-tree. MBRs not intersecting the query region are pruned and 

the objects in these MBRs are not considered further. The approximations in 

the second level of the tree are in the same order as the MBRs in the first level 

and the approximations of objects in MBRs not pruned are read sequentially. 

Each time a pruned object is reached, the IQ-tree calculates where the next 

object to be read is located. The IQ-tree either reads the pruned objects or 

skips over them depending on which is more efficient. The reason is it can 

be faster to read a few pruned objects sequentially rather than use a more 

expensive random disk access to skip to the next object not pruned. The 

third level of the IQ-tree is used for the refinement step and all points which 

have not been pruned in the first two levels are accessed.

The IQ-tree has been shown to outperform the X-tree and the VA-File in
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Figure 2.17: The IQ-tree Structure

uniform and clustered data sets. The IQ-tree combines both the tree structure 

and the minimum bounding regions of the R*-tree and the approximations 

of the VA-File to make an indexing structure useful for both low and high 

dimensional spaces.

2.2 Indexing Structures for G eneral M etric D ata

General Metric data, unlike vector data, does not have to consist of all at

tributes being numerical, nor does the number of attributes have to be con

stant for each object, i.e., video clips, audio clips, finger prints, etc. The only 

information available to index metric data is the distance between all data ob

jects can be computed. Metric Access Methods (MAM) require the distance 

function is a metric so objects can be pruned using the triangular inequality 

property.

In metric spaces objects can be pruned during similarity search using the 

triangular inequality property. By using precomputed distances between ob-
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Figure 2.18: Pruning objects in Metric Space using the triangular inequality

jects and pivots, objects which are far away from the query object can be 

discarded without computing the object’s actual distance to the query object. 

For a query object q and a query radius r, the pruning ring for a pivot pt is 

defined by two radii, dfa,  q )—r and d{pi, q)+r.  In Figure 2.18, 0 \  lies outside 

P i ’s pruning ring. As such, 0 \  can be pruned because the triangular inequal

ity says that d(q, Oi) d(p\, q) > d(pi, Oi), hence d(q, 0 \ )  > r and therefore 

Oi cannot be a possible answer to query q. This way, by using d(pi, q) and 

d(pi, Oi) (which is precomputed), the computation of d (q ,0 \ ) is avoided.

Metric Access Methods (MAMs) can prune objects or groups of objects 

from the answer set without computing the object’s actual distance to the 

query object using the triangular inequality property. To make use of the 

triangular inequality property, MAMs use pivots and precompute distances 

from the data objects to the pivot objects. The methods for selecting pivots for 

different MAMs differ considerably and many pivot selection techniques have 

been proposed. For general metric spaces it may be impossible to artificially 

create pivots, i.e. finger prints, therefore pivots must be chosen from the data 

set. For vector spaces, pivots can be created artificially inside or outside the 

data space and techniques specific to vector spaces can be applied.

The most simple method to select pivots is using the random pivot selection
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technique. This method arbitrarily chooses objects in the data set and uses 

them as pivots. Selecting pivots in this manner can produce pivots with high 

pruning power and pivots with low pruning power. Generally this method 

does not select pivots as good as other pivot selection techniques.

The authors in [16] propose to select pivots from the data set using the HF 

algorithm. The HF algorithm begins by randomly choosing an object sr in the 

data set and the object farthest from sr is selected to be the first pivot p x. The 

second pivot object is chosen to be the object farthest from px. Additional 

pivot objects are found by calculating the following error:

k
err or i =  \d(pi,p2) ~  d(pj} sf)|

j=i

for each object not yet chosen as a pivot object, where k is the number of 

pivots already chosen. The object that minimizes the errorj is selected as the 

next pivot. In Figure 2.19, if sr is the randomly selected object in the data 

set, the HF algorithm will choose px and p2 as pivots because px is the farthest 

object from sr and p2 is the farthest object from px. A similar method is 

proposed in [25] except the first pivot object is chosen randomly.

P r

, S r

P 2 .

Figure 2.19: The pivots chosen with the HF algorithm

The authors state that pivots should be chosen to be “orthogonal, far 

apart, and with the origin coinciding with the query center” . However, the HF 

algorithm cannot guarantee the pivot objects will be orthogonal to each other.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The HF algorithm selects pivots with higher priming power than randomly 

selecting pivots but does not guarantee all the pivots will be good.

The Incremental Selection algorithm (ISA) is proposed in [1 2 ] to select piv

ots for MAMs. ISA selects pivots that best distinguish the distances between 

pairs of objects chosen from the data set. In Figure 2.20 ISA will select p2 

rather than pi because |d21 — d22| > |o?ll — dl2|. The pivot pi would be 

considered a poor pivot because d l l  «  <2 1 2 , i.e., p\ cannot distinguish any dif

ference in the position of 0 1  and 0 2  because in metric space only the distance 

between objects in known.

oi

d21
02

d2zdl2

Figure 2.20: Selecting pivots using the Incremental Selection technique

The Incremental Selection Algorithm selects the pivots which maximize 

the following equation: D{Pi-]([Ar),[A'r}), 1  < r < A  where A  is the num

ber of pairs of objects selected from the data set and D{Pi}([Ar], [A'T]) is 

J2\d(Ar,Pi) -  d(A'r,pi) \ , l  < r < A.  ISA selects the first pivot as the one 

which maximizes this criterion. Additional pivots are chosen which maximize 

the distance between the same pairs of objects considering the first % — 1  piv

ots are fixed. This is given by the following equation: D{Pli...iP;}([Ar], [A!r] =  

m a x (D{p1,...,pi_l}([Ar\, [Ar], D{Piy({Ar], Ar])).

Based on experiments in [1 2 ] and from our own experiments, we have found 

this method to select pivots with higher pruning power than the other pivot 

selection techniques for general metric spaces. By selecting the objects in 

the data set as pivots which best distinguish the distances between pairs of
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objects in the data set, these pivots have a higher probability of distinguishing 

the distance between objects in the data set and the query objects. This allows 

a greater number of objects to be pruned at query time, decreasing the time 

required for MAMs to answer similarity queries.

For general metric spaces, the Incremental Selection algorithm is effective 

for selecting pivots with high pruning power. A pivot selection technique 

proposed for data sets in the vector space is Principal Component Analysis 

(PCA) [10]. PCA is shown to select pivots which exhibit higher pruning power 

and takes advantage of the properties of vector space.

PCA identifies the axes in a D-dimensional data set which exhibit the 

greatest variance. The principal axes of the data set are orthogonal to each 

other and by choosing pivot objects on the principal axis, the pivots will be 

orthogonal to each other. This is one of the desired properties stated in [16], as 

the volume of the intersection of the pruning rings is reduced in this situation.

To perform PCA on a data set, the dispersion matrix is determined by 

tij = ( 1  /N)  YliLo [(d  — d )  (xj — Xj)] where Xj is the average value of the x / s .  

The eigenvectors (</>*) and associated eigenvalues (A,;) of the dispersion matrix 

can be determined by singular value decomposition. The first principal axis 

is given by the eigenvector associated with the largest eigenvalue, the second 

principal axis is given by the eigenvector associated with the second largest 

eigenvalue, so on and so forth. After the principal axes are found, the pivots 

are created as artificial points outside the data space on the principal axes [1 0 ]. 

The pivot objects should be outside the data space so that the section of the 

pruning ring that intersects the data space will resemble a stripe which is 

perpendicular to the principal axes (see Figure 2.21). If the pivot objects 

are not chosen outside the data space, the pivots may not be orthogonal for 

every query object. In Figure 2.22 the pivot objects are chosen to occur on 

the principal axes of the data set but inside the data space. In this example 

we can see that even though the pivots are selected on the principal axes 

of the data set, the pivots may not be orthogonal with respect to the query 

object. This also may cause the intersection of the pruning rings to be larger, 

the intersection of the pruning rings in Figure 2.22 is much larger than the
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intersection of the pruning rings in Figure 2.21. By selecting the pivots outside 

the data space, the pivots will be orthogonal for all query objects.

P 2 x

P. x

Figure 2.21: Comparing the pruning power of pivots on each of the principal 
axes selected outside the data space, the pruning ring of pi is perpendicular 
to the first principal axis of the data set

Choosing the set of pivots based on PCA results in the first pivot object 

having on average greater pruning ability than the other pivot objects. This 

is because the first pivot object occurs on the first principal axis and therefore 

its pruning ring will intersect the major axis of the data set. Figure 2 . 2 1  

illustrates this concept. The pruning ring of pi prunes many more objects 

than the pruning ring of p2 because the portion of p i ’s pruning ring, which 

intersects the data set, cuts perpendicularly through the principal axis of the 

data set.

The indexing structures proposed for vector data cannot index all general 

metric data sets as they rely on the spatial information of the objects. On the 

other hand, MAMs can index and perform similarity search on vector data
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Figure 2.22: Choosing pivot objects inside the data space cannot guarantee 
the pivots will be orthogonal for every query object

because often a Lp-metric is used as the distance function. This allows MAM 

to treat vector data as if it is general metric data and index the data set 

using only the distance between objects and not information about the spatial 

distribution of the objects in the data set. Next we describe a few popular 

Metric Access Methods, the BK-tree, the FQ-tree, the Fixed Height FQ-tree, 

the FQ-array, the MVP-tree, the M-tree, the Slim-tree, Multiple Similarity 

Queries and the O m n i  access method.

The first metric tree based on the triangular inequality property is the BK- 

tree (Burkhard-Keller tree) [11]. The authors developed an indexing structure 

to minimize the number of distance calculations required to answer a sim

ilarity query for general metric data. Only discrete distance functions are 

considered for the BK-tree and the number of disk accesses is not considered 

as an efficiency measure.

The BK-tree arbitrarily chooses a pivot from the data set and divides all
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Figure 2.23: The BK-tree Structure

objects into subsets by their distance to the pivot. Since a discrete distance 

function is used, all objects in the same sub-tree are exactly the same distance 

from the pivot object at the root of the BK-tree. Additional pivots can be 

chosen from each subset and the tree can be built recursively with the subsets 

of objects being divided into smaller and smaller subsets. An example BK- 

tree is shown in Figure 2.23(a) and refers to the points in Figure 2.23(b). The 

stopping condition for building the BK-tree is when each branch has less than 

m  objects in its sub-tree. In the example in Figure 2.23(a), m  = 2, so the 

branches are divided into smaller groups until there are no more than two 

objects in each sub-tree. This leads to leaf nodes being at different heights in 

the tree.

For similarity search, the search algorithm for the BK-tree (Figure 2.24) 

begins by computing the distance between the query object q and the pivot 

at the root (object 9 in Figure 2.23(a)) and initially setting the NN to the 

root pivot pr and the nearest neighbor distance NNdist to d(q,pr). The first 

branch in the BK-tree to be searched is the branch containing objects the 

same distance from pr as q. This increases the probability the NN will be 

found quickly and the NN distance will be decreased so more branches in the 

tree can be pruned. Branches of the tree are pruned if they are not in the
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B K -tree  N N  Search A lgo rithm : Find the nearest neighbor to the query 
object
In p u t : Query Object q, Nodes in the BK-tree pt G P,  Objects in the 

data set s* G S  
O u tp u t: Nearest Neighbor to q NN

NN =  root pivot pr 

NN_dist =  d(q,pr) 

j =  NNLdist

foreach k = j,j+l,j-l,j+2,j-2...  do 
if  \k — j\  < NN-dist then

Search_Sub(sub-tree at distance k from pr, NN, NN_dist, q) / /  see 
Figure 2.25

return NN
Figure 2.24: BK-tree Nearest Neighbor Query Search Algorithm 

SearchJSub Algorithm : Search the sub-tree
In p u t : Nodes in the sub-tree to be searched pi, Nearest Neighbor NN, 

Nearest Neighbor distance NN_dist, Query object q

if  At leaf level of sub-tree then  
foreach Si G leaf node do 

if  d{q, sf) < NN^dist then  
NN =  Si

NN_dist =  d(q, sf)

e l s e
/* Not at leaf level of sub-tree */ 

j =  d(q,pi)
foreach k=j,j+l,j-l ,j+2,j-2;... do 

if  \k — j\ < NN-dist then
[_ Search_Sub(sub-tree at distance k from NN, NN_dist, q)

Figure 2.25: The Search sub-tree Function for the BK-tree

range d{q,pf) ±  NN dis t  where q is the query object and pi is the pivot. For 

each sub-tree not pruned, the distance between the query object and the pivot 

at the root of the sub-tree is computed. Branches in this sub-tree are then 

pruned in the same way as branches are pruned by the pivot at the root of the 

BK-tree. This process continues recursively until the leaf level of the sub-tree
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Figure 2.26: The FQ-tree Structure

is reached. The distance between all objects in branches not pruned and the 

query object is computed. This refinement step is necessary because although 

the method will not prune any objects in the answer set, objects not in the 

answer set may not be pruned. As nearer objects to the query object are 

found, NNdist is updated and more branches can be pruned using the new 

NNdist. For range queries, the radius is constant so the order the sub-trees 

are visited will not matter.

The Fixed-Queries tree (FQ-tree) [4] is similar to the BK-tree and is also 

based on the use of the triangular inequality property. The FQ-tree also tries to 

minimize the number of distance calculations for answering similarity queries 

and ignores the cost of disk accesses. The paper focuses on proximity (range) 

queries and only discrete distance functions are considered.

The FQ-tree, like the BK-tree arranges objects in a tree by their distance 

to an arbitrarily selected pivot from the data set. The major distinction of 

the FQ-tree is only one pivot is used at each level of the tree, each sub-tree in 

the BK-tree at the same level uses separate pivots. In Figure 2.26 we can see 

object 9 is used as the pivot at the root of the FQ-tree and object 10 is used 

as the pivot for all sub-trees at level 2. For the BK-tree (Figure 2.23) objects 

7, 10 and 4 are all used as pivots for different sub-trees at level 2. The authors 

explain that when the distance function is expensive, traversing trees can be 

expensive because computing the distance between the query object and each 

pivot is costly. Only having one pivot per level makes it inexpensive to follow 

many paths of the tree.
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9

Figure 2.27: The Fixed-Height FQ-tree Structure

Searching the FQ-tree is similar to searching the BK-tree. The FQ-tree is 

searched by inspecting each branch of the tree. Any branches which do not fall 

in the range d{q,pl) ±  r can be pruned by the triangular inequality property 

where q is the query object, r is the radius range of search and Pi is the pivot 

at the ith level of the tree. The distance between all objects in branches not 

pruned and the query object have to be computed in the refinement step to 

determine the final answer to the query. As mentioned for the BK-tree, the 

order branches are searched for range queries does not matter.

Like the BK-tree, sub-trees are only divided while there is greater than 

m  elements in the sub-tree. In Figure 2.26, m  =  2, therefore all the leaves 

of the tree contain no more than two objects. The authors mention the tree 

can be modified so all branches traverse to the same leaf level. This creates 

the Fixed-Height FQ-tree (Figure 2.27) and allows all objects to be pruned by 

all pivots. In the FQ-tree, if there are less than rn objects in a sub-tree, the 

sub-tree is not divided further using more pivots, even if other sub-trees need 

to be divided further. If the distance function is expensive, the Fixed-Height 

FQ-tree should be more efficient than the FQ-tree because more objects can 

be pruned using pivots in the branches of the FQ-tree that were previously not 

sub-divided further. In Figure 2.26, object 6  can only be pruned using pivot 

9, while in Figure 2.27, object 6  can also be pruned using pivot 10. Pivots in 

the FQ-tree and the Fixed-Height FQ-tree can be chosen other than randomly. 

Choosing pivots with higher pruning power will result in more branches in the 

tree being pruned and less distance calculations needing to be computed.

The FQ-array (Fixed Queries Array) was proposed in [13] and is very
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Object 9 6 5 It 7 10 13 8 4 14 2 3 12 15 | 1

d ( P l ,0 ;) 0 1 2 2 2 3 3 3 4 4 4 4 4 5 5

d(P2,O j) 3 4 2 4 5 0 4 6 2 2 6 7 7 5 6

Figure 2.28: Fixed Queries Array

similar to a Fixed-Height FQ-tree. It consists of a two dimensional array 

of k distances from each object in the database to each of the pivots. In 

the example in Figure 2.28, k =  2, i.e., there are two pivots. The first pivot 

PI is object 9 and the second pivot P2 is object 10 in Figure 2.23(b), this 

example uses the same pivots as the Fixed-Height FQ-tree does (Figure 2.27). 

A discrete distance function is used for the FQ-array as well and the objects 

are sorted by their distance to each of the pivots. In Figure 2.28, the distances 

from PI to each object (d (P l ,O i )) are sorted. Likewise, the distances form 

P2 to each object (d(P2, Oi)) are sorted recursively with the distances to PI, 

i.e., if two objects have the same distance to P I, they are then sorted by their 

distance to P2. We can see in Figure 2.28, objects 5 and 11 are both distance 

2 from PI, but object 5 occurs first in the FQ-array because it is closer to 

P2. The ordering of the objects in the array is the same as if we traversed a 

fixed-height FQ-tree from left to right (Figure 2.27).

Searching the FQ-array is also similar to the Fixed-Height FQ-tree as 

d(q,Pi) is computed for each pivot Pi. The authors only consider range queries, 

so searching the FQ-array consists of finding the ranges d(q,pi) ±  r  for each 

Pi in the linear array. A binary search can be used to find the intervals for 

each pivot because the distances in the array are sorted. Like the BK-tree and 

the FQ-tree, the actual distance between all objects not pruned and the query 

object must be computed to determine the final answer.

In that paper the measure of efficiency is also the number of distance 

calculations so adding more pivots should increase the efficiency as long as 

adding one extra pivot results in more than one additional object being pruned. 

The reason for this is for each pivot added, one more distance calculation needs 

to be computed (between the pivot and the query object). The authors say the 

performance is dependent on the number of pivots and the precision used to
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store the distance as they suggest if the distance function is discrete, a smaller 

precision may be used to store the distances. The number of disk accesses is 

not considered, therefore using a smaller level of precision is only useful if the 

amount of main memory is fixed. The FQ-array can also be adapted to use a 

continuous distance function.

The authors in [9] propose a static, height-balanced tree called the multi

vantage point tree (MVP-tree). The MVP-tree is an extension of the VP- 

tree [33] and attempts to provide a solution to some of the problems of the 

VP-tree. Like all the distance-based (metric) indexing structures, the MVP- 

tree requires a metric distance function, i.e., one that obeys the triangular 

inequality.

The MVP-tree arbitrarily selects a vantage point (pivot) from the data set 

and partitions the objects into two groups of equal cardinality, those closest 

to the vantage point and those farthest away. This is indicated by curve B in 

Figure 2.29(a). A second vantage point is then selected and the two groups 

are each divided into two more groups of equal cardinality (curves A and C), 

obtaining four branches in the tree (Figure 2.29(b)), one to represent each of 

the four partitions in Figure 2.29(a). This continues recursively until there 

are less than m  objects in each sub-tree. The distances to the first p vantage 

points are stored for each object in the leaf level of the MVP-tree. These 

p distances are stored so they can be used as an additional filter to prune 

objects individually in branches which can not pruned. The MVP-tree can 

also be modified to hold more than 2  vantage points in each node.

The algorithm to answer range queries using the MVP-tree begins by com

puting the distance to the vantage points in the first node. Each branch in the 

tree which intersects the query region, i.e., branches in the range d(q,pi) ±  r, 

where q is the query object, r is the radius of the range query and pi is the van

tage point, must be traversed to guarantee the correctness of the answer. The 

goal of the MVP-tree is to hopefully prune a significant number of branches 

quickly. When the search reaches the leaf level, the algorithm tries to prune 

objects individually using the stored distances to each of the first p vantage 

points using the triangular inequality property. The actual distance is com-
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Figure 2.29: The MVP-tree Structure

puted to q for each object which cannot be pruned.

The MVP-tree differs in a number of ways from the VP-tree. In the VP- 

tree, each branch uses a different vantage point, this requires one distance 

calculation each time we traverse a node in the tree. The MVP-tree uses 

two vantage points in each node of the tree and each level of the MVP-tree 

corresponds to two levels of the VP-tree. This allows the second pivot in the 

node to be used by all branches, whereas the VP-tree would use a separate 

pivot for each sub-tree. An advantage of this characteristic is the MVP-tree 

can have larger fanouts while still utilizing the same number of vantage points. 

Constructing the VP-tree also requires one distance calculation between every 

data object and each vantage point in its path in the tree but does not store 

these distances to provide additional pruning. The MVP-tree stores the first 

p  of these distances to provide additional pruning at the leaf level and save 

additional distance calculations.

The first vantage point at each level in the MVP-tree is chosen arbitrarily 

from the set of data objects in the sub-tree. The second pivot is chosen to be 

the farthest object from the first pivot in the subtree. The authors mention 

that any optomization technique to find pivots can be applied to the MVP- 

tree. The MVP-tree also does not consider the number of disk accesses as an 

efficiency measure, just the number of distance calculations.

The metric access methods previously discussed fail to consider the cost
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of disk I/Os for similarity searches in general metric spaces. The M-tree [14] 

is designed to minimize the number of distance calculations as well as the 

number of disk accesses. It is a paged, dynamic, height-balanced tree which 

uses only the distance between objects for indexing.

The M-tree consists of leaf nodes and internal nodes. Leaf nodes contain 

the actual data objects while internal nodes contain routing objects (similar 

to pivots). Each routing object is associated with a covering radius which is 

equal to the distance from the routing object to the farthest object in the sub

tree. Every object in the sub-tree of each node has to be within the covering 

radius (r(Oj)) of the routing object. This allows the M-tree to be able to apply 

the triangular inequality property to prune entire nodes using the distance to 

the routing object and the covering radius. The distance from the routing 

object to its parent is also stored in each node and can be useful for pruning 

branches without computing the actual distance between the query object and 

the routing object of the node when searching the M-tree.

In the example in Figure 2.30(a), the entire sub-tree of Op can be pruned 

for qi by only computing d(0P, qi) because the sphere defined by Op and 

its covering radius (r(Op)) does not intersect the query region of q4, i.e., 

\d(Op, qi) — r(Op)| > rqi. For q2, the entire sub-tree of Op can not be pruned 

by computing d(Op, q2) alone because d(Op, q2) — r(Op) < rq2, i.e., there are 

objects far enough away from Op which could be in the answer set to the 

query. This means each child node of O p ( O r i)  must be compared to the query 

object individually. Since each sub-tree stores the distance to Op, Or 3 can 

be pruned without computing d{q2, Or3) because the distance from a routing 

object to its parent is stored and can be used to prune nodes. In the example 

\(d(Op, Orz) + r(O r3)) — d(Op, q2)\ > rq2, i.e., it can be determined Or3 does 

not intersect the query region of q2 based on the distance between Or 3  and Op. 

The distance to the remaining Ori and the query object must be computed. 

After computing d(On-, q2) for each ri, Orl and Or2 can be pruned while Or4 

can not. The node containing Or 4 must be accessed to determine if objects in 

its sub-tree are in the answer set to q2 because \d(q2, Or4) — r(O r4 )| < rq2.

The M-tree is suitable for range queries and K-nearest neighbor (K-NN)
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Figure 2.30: (a)Pruning nodes in the M-tree and (b)The order nodes are visited

queries. For range queries, all subtrees which cannot be pruned based on 

the covering radius and the distance between its routing object and the query 

object must be traversed to determine the final answer. For K-NN queries, like 

the R*-tree, subtrees are visited in order of the minimum lower bound distance 

to the query object. In Figure 2.30(b), Orl would be searched first even though 

d(q, Ori) > d(q, Or2) because d l < d2, i.e., the lower bound distance of Ori is 

less than the lower bound distance of Or2. The current K-NN distance is used 

as the radius to prune subtrees. The search algorithm stops when all subtrees 

have either been visited or pruned.

The M-tree is built by inserting objects into the most suitable sub-tree at 

each level of the tree. The criteria for the insertion algorithm is to follow the 

sub-tree for which the covering radius does not need to be increased and the 

second criterion is to choose the subtree which has the closest routing object. 

It is better to insert objects into sub-trees which do not have to be enlarged 

because the smaller the covering radius of sub-trees, the smaller the probability 

of visiting the node during similarity search. If the covering radius must be 

enlarged, the subtree which minimizes the enlargement is selected. When 

inserting objects leads to nodes being split, the split algorithm minimizes the 

covering radius and overlap of the two new split nodes. Although designed for 

general metric spaces, the M-tree has been shown to outperform the R*-tree
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iii vector space.

The Slim-tree [19] is a dynamic indexing structure for metric data sets 

and is very similar to the M-tree. The triangular inequality property is used 

to prune sub-trees which do not intersect the query region. The main intent 

of the Slim-tree is to minimize the amount of overlap between nodes at the 

same level of the tree. This is to reduce the probability of having to access 

two sub-trees for the same queries and to reduce the time required to process 

similarity queries. The authors use the number of distance calculations and 

disk accesses as an efficiency measure.

The main structure of the Slim-tree is similar to the M-tree. The objects 

are stored in the leaves and the indexing nodes contain representative objects 

(similar to pivots and routing objects) which are the center of a minimum 

bounding regions which cover the objects in the sub-tree. Objects are inserted 

into the Slim-tree by locating the node at each level of the tree that covers it 

or the one whose representative object is closest. This is applied recursively at 

each level of the tree until the leaf level is reached. Minimum Spanning trees 

are used for splitting nodes which overflow during insertion to reduce the cost 

of splitting nodes. Results have shown Minimum Spanning trees produce trees 

as good as considering all pairs of objects for splitting nodes at only a fraction 

of the cost.

Regions in the tree can overlap each other, but the Slim-tree tries to min

imize the overlap of nodes. In vector space, the overlap of two nodes is com

puted as the volume of common space shared by two nodes. There may be 

no concept of actual space with dimensions for metric data, so the volume of 

common space shared can not be computed. The authors define the amount of 

overlap for a metric tree as the number of objects which are covered by more 

than one sub-tree at the same level of the tree. The authors note good trees 

should have little or no overlap among nodes at the same level as this may 

lead to searching additional branches of the tree during similarity search.

A Slim-down algorithm is presented which decreases the amount of overlap 

in the tree producing tighter trees to reduce the total search time. The Slim- 

down algorithm selects a node i in the tree and finds the furthest object c
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node j node i node j node i

Before Correction After Correction

Figure 2.31: Before and after running the Slim-down algorithm

from the representative object of the node. The algorithm searches all other 

nodes at the same level of the tree for a node that also covers object c. If 

another node j  does cover object c and is not full, c is removed from node i 

and inserted into node j.  If node i is not empty, its covering radius is corrected. 

If node i is empty, then it is deleted. This can lead to fewer nodes and higher 

storage utilization because fewer nodes are used to index the same data set. 

The Slim-down algorithm is applied to all nodes of the tree and if any objects 

move during a full round of the algorithm, then the algorithm is applied again 

to all nodes at this level of the tree. Figure 2.31 illustrates the algorithm. 

Object c is the farthest object from the representative in node i and node 

j  also covers object c. The algorithm moves object c to node j  and node i ’s 

radius is corrected. After the correction, nodes i and j  do not have any objects 

which are covered by both nodes.

Experiments have shown the Slim-tree requires fewer disk accesses and 

distance calculations compared to the M-tree. One reason this occurs is the 

Slim-tree has higher storage utilization of nodes and therefore requires less 

nodes to index the same data set. The main reason for this is the Slim-down 

algorithm is applied once the tree is built to rearrange parts of the tree making 

similarity search more efficient.

The authors in [10] propose to speedup similarity search processing in met

ric databases by using information computed from previous queries. By storing 

distances computed to the previous queries, the triangular inequality property
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can be used to prune objects which are far away from the query object.

This method is very similar to the techniques proposed in [4, 11, 13]. The 

method computes the distance from the current query object to the previous 

query objects and uses the previous query objects as pivots pt. The objects in 

the data set are processed sequentially. For each object, if |d(pj, S i )  — d(q, Pj) j  >  

r, where q is the query object, s* is an object in the data set and r is the query 

radius, then object is pruned from the answer set. The actual distance 

between the query object and all objects not pruned must be computed to 

determine the final answer.

The authors also suggest that reference objects (pivots) can be selected 

prior to any queries and used to prune objects instead of using previous queries. 

Reference objects should be selected to be orthogonal to each other in order to 

prune the most objects. A method is given to select the best reference objects 

for vector space using Principal Component Analysis (PCA). The reference 

objects are selected to occur on the major axis of the data set which are 

orthogonal to each other. This method is also shown to achieve linear speedup 

when used in a parallel shared-nothing environment. The paper also proposes 

that queries can be processed in sets so data pages only have to be read once 

for a set of queries, this reduces the time required for similarity search per 

query.

Another MAM very similar to [10] is the O m n i  Access method [16]. The 

main idea is to reduce the cost of similarity search by quickly filtering a large 

portion of objects which are not part of the answer set.

The O m n i Access method [16] selects pivot objects using the HF algorithm. 

It should be noted that any pivot selection technique can be used with the 

OMNI Access method. The distances between each object in the database 

and each pivot object is computed and stored on disk. These distances are 

used to prune objects during similarity search. Three methods are proposed 

which use the OMNI-Access method.

The first method (OMNl-sequential) begins by computing the distances 

between the query object and each pivot object. All the precomputed distances 

are read sequentially and each object not in the range \d(q,pj) — d(sl7 pj)\ > r
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for each pivot object p j ,  query object q,  data object sl and radius r, is pruned 

using the triangular inequality property. This produces a candidate set for 

which a refinement step is needed to determine the final answer. During the 

refinement step, each object not pruned is accessed from the original data 

file and the actual distance to the query object is computed. For K-nearest 

neighbor queries, the current K-NN distance is used to prune objects. The 

current K-NN distance is updated as nearer objects to the query object are 

found. The OMNl-sequential method for K-nearest neighbor queries is not as 

efficient because there is no initial radius to use for pruning and the nearest 

neighbor radius can only be refined by computing the distance between the 

query object and the actual data objects in the database. In the beginning the 

algorithm will have to read all the actual data objects until the K-NN distance 

becomes small enough for objects to be pruned.

The second and third methods use existing index structures. The second 

method (O m n i B-tree) uses k B-trees, one to store the distances to the data 

objects for each of the pivot objects. The B-trees are then used to find all the 

objects in the range |d(q,pj) — d{silpj )| > r  for each pivot object pj. A list 

of candidate objects (objects not pruned) are produced from each B-tree and 

are merged together to produce one candidate set. A refinement step is also 

necessary to determine the final answer. For K-nearest neighbor queries an 

initial radius is approximated, if the resulting answer set does not produce at 

least K answers, the radius is enlarged until at least K-nearest neighbors are 

retrieved.

The third method ( O m n i  R-tree) uses an R-tree, the coordinates are the 

distances to each of the pivot objects. For range queries, all branches in 

the O m n i R-tree intersecting the query region are searched. When the leaf 

level of the tree is reached, the distance to all objects in the leaf node must 

be computed to the query object to determine the final answer. For K-NN 

queries, an initial radius can be estimated and enlarged if less than K-nearest 

neighbors are retrieved like the O m n i  B-tree does. A second method is to 

perform K-NN search in the O m n i  R-tree by searching the nearest sub-trees 

to the query object first. The K-NN distance is updated as nearer objects to
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th e  q u e ry  o b je c t  a re  fo u n d . E ach  t im e  th e  K-NN d is ta n c e  is u p d a te d ,  b ran ch es  

in  th e  O m n i  R - tre e  a re  p ru n e d .

The O m n i  Access methods can be used w ith  any metric distance function. 

It has been shown to be quite efficient, e.g., i t  outperforms the Slim-tree. In 

the following chapter the O S e q  access method will be described in greater 

detail because it forms the basis for two of our access methods, the O S e q + 

and the O S e q *. We choose to base two of our access methods on the O S e q  

because it is simple to implement, linear scan-based and efficient.
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Chapter 3

The O SEQ + and the OSEQ* 
Access M ethods for 
High-Dim ensional D ata and 
M etric D ata

3.1 O M N I A ccess M ethod

The O m n i  Access method has been recently proposed in [16] and resulted 

in the family of O m n i  structures. Its noteworthy mentioning that variations 

of the same idea have also been proposed and used in [4, 10, 11]. Table 3.1 

summarizes the notation that will be used in this section.

Table 3.1: Summary of notation

p set of pivots {pi,P2 ,~;Pk}
s database of objects (s*)

d(x,y) distance between objects x  and y
N number of objects in the data set
D number of dimensions in the data set
q query object
r query radius for a range query

drain (.Pj) d{Pj, q ) - r
dmax {Pj ) d(pj,q) + r

V preferential pivot
k number of pivots

The main idea behind the O m n i  Access method is to reduce the cost of 

similarity search by quickly filtering a large portion of objects which are not
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part of the answer set. The Omni Access method uses a set of pivots, P  = 

{PhP2 -, ■■■iPk}, f°r which the distance between the pivot objects and every ob

ject in the database is precomputed. Each distance d(pj, st) is referred to as an 

OMNi-coordinate and the set of distances {d(p\,  s*), d(p2, st), ... . d(pk, s;)} for 

each object Si in the database S, is referred to as the OMNl-vector of the object. 

These sets of distances are used to prune candidate objects for a range query 

as follows. For a query object q, query radius r and pj G P , p,/s pruning ring is 

defined by two radii, dmin(pj) and dmax(pj), where dmm(pj) = d(pj ,q) -  r and 

dmaxiPj) — d(pj, q) +  r. An object s ,- G  S  is pruned if \d(pj, Si) — d(pj,q)\  > r, 

where d(i, j )  is a metric distance function that measures the distance between 

objects i and j .  For instance, in Figure 3.1(a), for the query object q and 

query radius r, 0 4 lies outside p { s pruning ring (shaded area) and can be 

pruned because by the triangular inequality (d(pi,q) +  d ( q , 04) > d(p4, 0 4 )), 

d(q, O4 ) > r  and therefore O4  cannot be a possible answer to query q. This 

way, by using d(p\,q)  and d ( p i , 0 4) (which is precomputed), the computation 

of the actual distance d(q, 0 4) is avoided. One should note that reducing the 

number of distance calculations can be very important since the distance func

tion can be expensive, (e.g., [28, 30]), where the distance is obtained via the 

solution of a network transportation problem. In Figure 3.1(b) we can see that 

the candidate space (shaded area) can be reduced further by using additional 

pivot objects; for instance by adding pivot p2, Cfi is now also pruned.

The O m n i  Access method does not prune any objects which are part of 

the answer set, but it may yield false positives, requiring a refinement step to 

determine the exact answer. In Figure 3.1(b), only 0 2 is in the answer set 

to the query object q and query radius r, but O3 cannot be pruned because 

\d(pi, 0 3) -  d(pu q)\ < r and \d{p2, 0 3) -  d(p2 ,q)\ < r, i.e., 0 3 lies in the 

shaded region in Figure 3.1(b). The actual distance between the query object 

and each object not pruned must be computed to determine which objects 

are part of the final answer. Only after this refinement step will object O 3  be 

eliminated as a possible answer to the query. Hence, it is important to reduce 

the size of the candidate set as much as possible because retrieving objects 

from disk and computing distance calculations in the refinement step can be
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(a) 1 pivot (b) 2 pivots

Figure 3.1: Pruning candidate objects using pivots

expensive.

In order to prune objects using pivots, a radius is required. For nearest 

neighbor search in the R-tree family of index structures, the radius can be 

refined as the tree is traversed up and down. The O S e q + and O S e q * methods 

are based on a single scan of the OMNi-file and the data file. To determine 

the actual nearest neighbor radius by refining the radius during the sequential 

scan, will require computing the actual distance of many objects to the query 

object while scanning the OMNi-file, which we want to avoid because it is 

expensive. For this reason we focus on range queries, which have a fixed 

radius, for the O S e q + and O S e q * methods.

The O m n i  Access method selects pivots from the data set using the HF 

algorithm [16]. Like many Metric Access methods (MAM), the O m n i  Access 

method can use pivots selected with any of the pivot selection techniques de

scribed in Section 2.2. The authors state that pivots should be “orthogonal, far 

apart, and with the origin coinciding with the query center.” In Figure 3.1(b), 

the HF algorithm will likely choose pi and p 2 as pivots because these are the 

objects in the data set which are the farthest from each other1. Furthermore, 

the authors suggest that the number of pivots should be chosen based on the

1This will also depend on which object is arbitrarily selected from the data  set to start 
the algorithm
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intrinsic (fractal) dimensionality (5) of the data set [26] and should be between 

[<f| +  1 and 2 x [d] +  1. Based on our experiments, we observed that pivots 

should indeed be orthogonal, origin coinciding with the query center, but not 

necessarily far apart, rather the best pivots are closest to the query object. 

We explore this observation in Sections 3.2 and 3.3.

The algorithm to build the OMNi-file (the file containing the O m n i-vector 

for each object) for the OMNl-sequential method (O Seq) is shown in Fig

ure 3.2. The algorithm begins by selecting pivots using the HF algorithm. The 

distances between each pivot and each data object (the OMNl-coordinates) are 

computed and stored in the OMNi-file.

OSeq Build Algorithm : Building the OMNi-file
Input : The data set Si G S,  the number of pivots k
Output: Pivot set pj G P,  the OMNi-file

Select the set of pivots P  with the HF algorithm

foreach s, e  S do 
foreach pj G P  do
|_ compute d(pj, Si) and store in the OMNi-file 

Figure 3.2: O Seq Build Algorithm

The OMNl-Sequential Search algorithm for range queries [16] is shown in 

Figure 3.-3. The algorithm attem pts to prune each object using their Omni- 

coordinates (d(pj, s*)) and processes the objects sequentially in the database. 

The Omni-vector for each object is typically much smaller than the actual size 

of the feature vector of the object and the entire OMNi-file is read sequentially 

from disk. This ultimately allows many objects to be pruned by reading a small 

number of pages from disk and consequently yielding a fast sequential scan. 

As discussed above, the algorithm initially finds a candidate set which needs to 

be further verified. The refinement step for the algorithm is expensive, hence 

the goal is to prune as many objects as possible. In the refinement step, the 

distance between each object not pruned and the query object is computed. 

There is no order in the data file so the objects are accessed from disk using 

random disk I/Os.

A few observations that can be explored about the OSeq  method are:

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



O Seq Search A lg o rith m : Find all answers to a given range query
In p u t : The data set ,sl G S ,  Pivot set p 3 G P,  query object q,  query 

radius r, the OMNl-coordinates (d(pj,Si))
O u tp u t: answer set A  to the range query

Initialize candidate set C  to contain all st £ S

foreach p j  G P  d o
calculate d(pj , q)

dminiPj) =  d(pj, q) — r 
_ dmax(pj) =  d(pj, q ) + r

foreach s ,  G C d o
foreach pj G P  d o

if d(pj, Si) < dminipj) or d(pj , s i) > dmax(Pi) th e n  
[_ remove st from C  and break inner loop

foreach q  G  C  d o
calculate d(sj, q)

if d(si, q) < r then  
|_ place Si in answer set A

return A
Figure 3.3: OSeq Search Algorithm

1. The pivot objects selected with the HF algorithm are not equally good, 

some have higher pruning ability than others.

2. The O Seq Search algorithm reads the entire OMNi-file from disk because 

the O M N i-vecto r for each object is stored together on the same disk page.

3. The OSeq Search algorithm requires a large number random disk ac

cesses in the refinement step to access the actual feature vectors of the 

candidate objects. This occurs because the actual distances of objects 

not pruned by the pivots have to be computed requiring the feature 

vectors of objects, which occur randomly in the data file, be read from 

disk.

In the following sections we describe techniques that address these problems.
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3.2 R estru cturin g  the O M N I-F ile — OSEQ+

T h e  O m n i S e q u e n t i a l  ( O S e q + ) m e th o d  is d e s ig n ed  to  reso lve  som e o f th e  

p ro b le m s  o f th e  O S e q  m e th o d  p o in te d  o u t  ab o v e  a n d  fu r th e r  d ec rease  th e  

t im e  re q u ire d  to  an sw er ra n g e  q u erie s  fo r h ig h -d im e n s io n a l d a ta  a n d  m e tr ic  

d a ta .  I t  im p ro v es  o n  th e  o rig in a l O S e q  by:

1. Finding a preferential pivot, i.e., a pivot object which on average prunes 

more objects than other pivots.

2. R e s tru c tu r in g  th e  O M N i-file so t h a t  th e  O M N l-c o o rd in a te s  of each  o b je c t 

a re  o rd e re d  a n d  do  n o t re s id e  on  th e  sa m e  d isk  p a g e  (a n d  th u s  can  b e  

accessed  in d e p e n d e n tly ) .

3. P re s o r t in g  th e  O M Ni-file a n d  th e  d a t a  file su ch  t h a t  th e  o b je c ts  n o t 

p ru n e d  a re  s to re d  c loser to g e th e r  on d isk .

3.2.1 Preferential Pivot

I f  we ca n  fin d  a  p re fe re n tia l  p iv o t (one t h a t  p ru n e s  m o re  effec tively ), d e n o te d  as 

V , w h ich  c a n  p ru n e  a  s ig n ifican t n u m b e r o f o b je c ts , th e  re m a in d e r  o f th e  O m n i-  

c o o rd in a te s  o f  th e s e  o b je c ts  w ill n o t b e  n ee d ed . T h e se  O M N l-co o rd in a tes  w ill 

n o t have  to  b e  read fro m  d isk , w hich  w ill sp e e d  u p  s im ila r i ty  q u e ry  p ro cessin g .

We conducted experiments using two data sets to test the pruning power 

of pivot objects selected by different pivot selection algorithms. The first data 

set is real and consists of 59,652 global color histograms (GCH), each having 

64 dimensions, obtained from images in a set a of Corel CDROMS and will 

be referred to as the COREL data set. The second data set is synthetic and 

contains 1,000,000 uniformly distributed, 64-dimensional GCHs, hereafter this 

data set will be denoted as 1MGCH. For pivot selection algorithms such as 

the HF algorithm, where the order in which the pivots are selected does not 

indicate any importance, i.e., the main criteria is pivots are chosen to be far 

apart from each other, V  is chosen to be the pivot which is closest on average 

to all objects in the database. Figure 3.4 shows the percentage of objects 

pruned by pivots selected with the HF algorithm. The pivot objects on the
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x-axis are sorted by their average distance to all objects in the data set. We 

can see the pivots which are closer on average to other objects in the data 

set prime more objects than the pivots farther away. One reason this occurs 

is pivot objects close to other objects better approximate the actual distance 

between these objects and the query object. Therefore, for the HF algorithm 

we select V  as the pivot object whose average distance to all objects in the 

database is smallest.

COREL
1MGCH

toT50)io0
|  25
1 20

1 3 9 11 13 15 175 7

P iv o t  o b j e c t s  b y  d i s t a n c e

Figure 3.4: Pruning power of pivots selected by the HF algorithm and sorted 
by the pivots’ average distance to all objects in the database

For pivot selection techniques such as Principal Component Analysis and 

the Incremental Selection algorithm, the order the pivots are selected in is 

important. For these algorithms, we select V  as the most important pivot 

determined by the algorithm. For PC A, the most important pivot is px. Pivot 

P i  is created on the first principal axis of the data set, i.e., the axis with the 

greatest variance, this causes the pruning ring of px to be perpendicular to 

the first principal axis of the data set which is a desirable characteristic. In 

Figure 3.5, the pivots objects are in the order they are created using the PCA 

pivot selection technique. The curve for 1MGCH remains fairly stable and all 

the pivots have similar pruning ability because the data set is composed of 

uniformly distributed GCH. This means all dimensions in the data set are of 

approximately equal importance, therefore all the pivots have similar pruning 

power. For real data sets, i.e., COREL, often the data set is correlated so some 

dimensions are more important than others causing pivots to have different
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pruning ability. For the Incremental Selection algorithm, p\ is also the most 

important pivot because it is chosen as the object which best distinguishes 

the distances between pairs of objects in the data set. Since pj is chosen 

as the pivot which overall best distinguishes the distances between objects 

in the data set, it should have the highest pruning ability. In Figure 3.6 

we can see the first pivot selected with the Incremental Selection algorithm 

prunes more objects than the other pivots. The reason is each pivot selected 

with the Incremental Selection algorithm takes into consideration the pivots 

previously chosen. This means additional pivots are selected which distinguish 

well between objects in the data set that previous pivots cannot differentiate 

well between. An advantage of selecting V  in this manner is V  is selected 

independent of the query object and is chosen offline.

100

COREL - 
1MGCH -

0
c2
CL

9 11 13 15 171 3 5 7
Pivot Objects by Order

Figure 3.5: Pruning power of pivots selected using PCA and the pivots are 
sorted by the order they are created

3.2.2 Restructuring the OM Ni-file

T h e  O M Ni-file c o n ta in s  th e  O M N i-c o o rd in a te s  fo r every  o b je c t in  th e  d a ta b a s e . 

In  o rd e r  to  b en e fit fro m  V  h a v in g  b e t t e r  p ru n in g  pow er, th e  O M Ni-file h a s  to  

b e  r e s tru c tu re d  to  p re v e n t a  c o m p le te  s e q u e n tia l sca n  o f th e  w hole  file as 

th e  O S e q  m e th o d  does. T h e  im p ro v e d  O M N i+ -file s to re s  each  o f th e  O m n i- 

c o o rd in a te s  o f an  o b je c t  on  s e p a ra te  d isk  pages. T h is  a llow s fo r one  O m n i- 

c o o rd in a te  o f an  o b je c t to  b e  in d e p e n d e n tly  accessed  from  d isk  w ith o u t  re 

tr ie v in g  th e  e n tire  O M N l-vecto r fo r each  o b je c t. T h is  p re v e n ts  a  co m p le te
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F ig u re  3.6: P ru n in g  p o w er o f  p iv o ts  se lec ted  w ith  th e  In c re m e n ta l  S e lec tio n  
a lg o r i th m  a n d  th e  p iv o ts  a re  s o r te d  in  th e  o rd e r  th e y  a re  se lec ted

se q u e n tia l scan  o f th e  O M N l+ -file  fo r each  query .

T h e  O M N i-co o rd in a tes  a re  a lso  s o r te d  by each  o b je c t’s d is ta n c e  to  V.  T h is  

cau ses  th e  O M N l-co o rd in a tes  o f  a ll o b je c ts  n o t  p ru n e d  b y  V  to  o c c u r  a d ja c e n t 

to  each  o th e r  on  d isk  b e c a u se  a ll th e  o b je c ts  w hich  can  n o t  b e  p ru n e d  by  V  

w ill o cc u r in  th e  ra n g e  d(V, q) ± r .  T h is  allow s th e  O M N l-co o rd in a te s  re la t in g  

to  th e  re m a in in g  p iv o ts  to  b e  re a d  seq u en tia lly .

F ig u re s  3 .7 (a ) a n d  (b ) show  a n  e x a m p le  o f  th e  o rig in a l O M N i-file s t ru c tu re  

a n d  th e  log ical v iew  o f  th e  im p ro v e d  OM Nl+ -file s tru c tu re .  T h e  sh a d e d  p ag es 

re fe r to  th e  d isk  p ag es  w h ich  w ill b e  accessed  for th e  e x a m p le  q u e ry  w h ich  

re fe rs  to  th e  o b je c ts  in  F ig u re  3 .8 . T h e  o rig in a l OM Ni-file s t r u c tu r e  s to re s  a ll 

th e  O M N l-co o rd in a tes  o f a n  o b je c t  o n  th e  sam e  d isk  p ag e . T h is  re su lts  in  th e  

c o m p le te  OM Ni-file n ee d in g  to  b e  re a d  (15 p ag es  accesses in  th e  e x a m p le  o f F ig 

u re  3 .7 (a ))  for th e  O S e q  m e th o d  b e c a u se  a t  le a s t one O M N i-c o o rd in a te  o f each  

o b je c t  m u s t b e  c o m p a re d  fo r ev e ry  query . T h e  im p ro v ed  O M N l+ -file s t ru c tu re  

av o id s  re ad in g  every  p ag e  c o n ta in in g  th e  re m a in in g  O M N l-co o rd in a te s  b ec au se  

th e  O M N l-co o rd in a tes  a re  s to re d  to g e th e r  by  p iv o ts , n o t  by  o b je c t . T h u s , one 

O M N i-co o rd in a te  o f a n  o b je c t  c a n  b e  re ad  w ith o u t re a d in g  ev e ry  d isk  p ag e  

c o n ta in in g  O M N l-co o rd in a tes  o f  t h a t  o b je c t fro m  disk . T h is  a llow s us to  ac 

cess th e  O M N l-co o rd in a tes  in d iv id u a lly  fo r each  o b je c t a n d  n o t  access m a n y  

O M N l-co o rd in a tes  w h ich  c a n  n o t  h e lp  p ru n e  a d d itio n a l o b je c ts .

T h e  O M N l-co o rd in a tes  in  th e  O M N l+ -file a re  p re s o r te d  b y  th e i r  d is ta n c e  to
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(a) OM NI-File Structure (b) O M Nl+-F ile  Structure (logical view)

P 1 P 2 P 3 P 1 P 2 P 3

° . 8 11 8_ DP, 0 , 2 DP, 15 d p6 14 DP 1,
o , d p 2 0 , 3 13 14

° 3 " 5~ ~?4 10 d p ) ° s 3 12 16

° 4 15 13 3 d p 4 0 3 ~5~ dp2 14 DPy 10 DP j.
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7z" 18 I d p 6 0,3 6 14 8
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O10 I F  12 " DP,0 O ? HI dp4 14 d p 9 ..r DP,4

A t ’l2 14 2 OP 11 0 6 12 18 1
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0,3 (> 14""’ f DP ,3 o „ 7 7 dp5 14 DPi0 2 DP 15
0,4 5 12 JO DP ,4 O 4 15 s 13 3
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tW iV  = n
dn,i„(P3> = 3

d,„â P))= 11 

d , m x ( P 7 ) = 1 5

query radius 

r = 2

(c) OMNI+-File Structure (Physical view)

DP, DP, DP, DP, DP,

| 2 ' ' 3 3 A  : $ . T | 7  . . 8 , . a  J io 12 12312 15 16 j

d p6 dp7 d p8 d p 9 DP 10

115 13 12] 14 12 1 4 jl5  11 13 j 14 18 I?) 14 13 6 1
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F ig u re  3.7: T h e  (Im p ro v ed ) O M N l+ -F ile  S tru c tu re

F ig u re  3.8: A n  e x a m p le  q u e ry  u s in g  3 p iv o ts  to  p ru n e  o b je c ts
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Pi (which is also denoted by V).  All objects O, where dmm{pi) > d(p7, Ot) or 

dmax(Pi) < d(pi, Oi), i.e., all objects which reside outside of p{s  pruning ring, 

are pruned and the rest of the OMNl-coordinates for the pruned objects are 

not required. In Figure 3.7(b), by using the improved OM N l+ -file structure, 

disk pages DP$, DP7, DPW, DPU, DPU, and DP i 5  will never be read from 

disk using the O S e q + Access method because the disk pages only contain 

OMNl-coordinates for objects which have already been pruned. By examining 

Figure 3.8, we can see objects On,  0 15 and 0 7  cannot be pruned by any of the 

pivots as they are located in the intersection of the three pruning rings (shaded 

area). Their actual distances must be computed to determine whether they 

belong to the answer set. Even in this trivial example, the improved O m n i+- 

file structure reads only 9 pages of OMNl-coordinates from disk compared to 

the original OMNi-file structure which requires reading all 15 disk pages. The 

OMNi+-file allows many less pages to be read and the only additional cost it 

incurs is one random disk access is required to jump to the start of the OMNl- 

coordinates of the objects not yet pruned for each pivot object. This is more 

efficient than reading the entire OMNl+-file because there are many pages in 

the OMNi+-file which will not have to be read. In the example in Figure 3.7(b), 

a random disk access would be required to jump from DP 5  to DPg and from 

DPg to DP\3. Since the number of pivot objects is small, this cost is negligible. 

Hence, the O S e q + algorithm potentially (and typically, as our experiments 

show) avoids a full scan of the OMNi+-file and still performs all but a few I/Os 

sequentially. In Figure 3.7(c) we can see a physical view of the OMNi+-file. 

On disk the OMNl-coordinates pertaining to pi occur sequentially followed by 

the OMNl-coordinates of p2 and p3. The O S e q + in the example reads the sets 

of pages DPi  — DPg, DPg — DPg and D P n  — DPU.

3.2.3 Sorting the Data File

T h e  d a ta  file fo r th e  O S e q + m e th o d  is a lso  s o r te d  by  each  o b je c t’s d is ta n c e  to  

V  a n d  th e re fo re  is in  th e  sam e  o rd e r as th e  O M N l+ -file. S o rtin g  th e  d a t a  file 

im p ro v es th e  p e r fo rm a n c e  o f th e  O S e q + c o n s id e ra b ly  by  re d u c in g  th e  n u m b e r 

o f d isk  p ag es  accessed  a n d  n o t u s in g  ra n d o m  d isk  I /O s  to  access th e  d a ta
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file. The reason this results in reducing the cost of accessing the candidates’ 

feature vectors is the candidates occur closer together in the data file and do 

not occur randomly. This allows the objects to be read sequentially from disk 

as opposed to using more expensive random disk I/Os for each object. In the 

example in Figure 3.7(b), objects On,  O 1 5 , and O7 cannot be pruned by any 

pivot object and therefore the actual feature vectors of these objects have to 

be retrieved from disk. The O Seq method will require one random disk access 

to retrieve the feature vectors of On,  0 1 5  and O7 , whereas the O Seq+ would 

read On,  0 1 5 ,  0 \  and O7 sequentially from disk. Even while some objects that 

are already pruned will be read, i.e., Oi, and not be needed, it is more efficient 

to do so than to force random disk accesses for each object not pruned because 

sequential disk I/O s are much less expensive than random disk I/Os. Unless 

the number of objects not pruned is extremely small, the O Seq method will 

not be efficient.

3.2.4 Building and Searching - OSeq+ M ethod

The O S eq+ build algorithm (Figure 3.9), builds the OMNl+-file offline and 

the pivots can be chosen using any pivot selection technique such as the HF 

algorithm, the Incremental Selection algorithm or using PCA in vector spaces. 

V  (pi) is selected as the most important pivot object, i.e., the closest pivot on 

average to every object in the database for the HF algorithm or for PCA and 

the Incremental Selection algorithm, the first pivot selected by the algorithm. 

The OMNl+-file and the data file are sorted by each object’s distance to V.  

As mentioned previously, one of the main advantages of the O Seq+ method 

compared to the O Seq method is it uses sequential disk I/Os to access the 

OMNl-coordinates and to access the data objects in the refinement step. This 

is possible because the objects are sorted by their distance to V,  therefore the 

objects occur close together in the data file and can be read sequentially.

The search algorithm for the O Seq+ (Figure 3.10) is similar to the O Seq 

search algorithm. Its main advantages are the format of the O M N l+-file and 

the data file, and how both files are accessed. The search algorithm computes 

the distance from each pivot object to the query object and calculates dmin(pj)
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O Seq+ B u i l d  A l g o r i t h m :  Building the OMNi+-file
I n p u t  : The data set s?; €  S,  the number of pivots k

O u tp u t: Pivot set pj £ P , the OMNl+ -file, the sorted data file

Select pivot objects with a pivot selection algorithm

Select pi as the most important pivot depending on the pivot selection
a lg o r i th m

f o r e a c h  pj  d o  
f o r e a c h  d o
[_ com pu te  d(pj,Si) and s to re  in OMNl+ -file

Sort th e  OMNl+ -file by each o b je c t ’s d is tance  to  p x

Sort the data file by each object’s distance to p x

F ig u re  3.9: O S e q + B u ild  A lg o rith m

a n d  d max(pj )  fo r each  p r  T h e  a lg o r i th m  p ru n e s  by  V  a n d  se q u e n tia lly  re ad s  

th e  O M N l-c o o rd in a te s  p e r ta in in g  to  V .  I t  sh o u ld  b e  n o te d  t h a t  o b je c ts  c a n  also  

b e  p ru n e d  b y  V  u s in g  a  B +- tre e  to  fin d  d min( V )  a n d  dmax( V) .  A ll th e  o b je c ts  

n o t  p ru n e d  b y  V  o cc u r a d ja c e n t to  each  o th e r  in  th e  OM N l+ -file b ec au se  th e  

O M N i+ -file is s o r te d  by  th e  o b je c ts ’ d is ta n c e s  to  V .  T h is  allow s th e  a lg o rith m  

to  ju m p  to  th e  f irs t c a n d id a te  o b je c t  n o t  p ru n e d  b y  p re v io u s  p iv o ts  w ith  one 

ra n d o m  d isk  access fo r each  p iv o t a n d  re a d  th e  O M N l-co o rd in a te s  o f th e  o b je c ts  

n o t p ru n e d  by  p re v io u s  p iv o ts  seq u e n tia lly . T h is  m a y  lead  to  re a d in g  som e 

O M N l-c o o rd in a te s  o f o b je c ts  a lre a d y  p ru n e d , b u t  i t  is m o re  efficien t to  use 

se q u e n tia l  r a th e r  th a n  ra n d o m  d isk  I / O s  a n d  re a d  a  few u n n e c e ssa ry  OM Nl- 

c o o rd in a te s .  A fte r  a ll th e  o b je c ts  h av e  b ee n  p ru n e d  by  each  p iv o t,  th e  a c tu a l 

d is ta n c e  is c o m p u te d  b e tw een  each  c a n d id a te  o b je c t  a n d  th e  q u e ry  o b jec t. 

T h e  fe a tu re  v ec to rs  o f the c a n d id a te  o b je c ts  a re  re a d  s e q u e n tia lly  b ec au se  th e  

d a t a  file is so r te d . O n e  ra n d o m  d isk  access is re q u ire d  to  fin d  th e  fe a tu re  

v e c to r  o f th e  f irs t o b je c t n o t p ru n e d .

The O S e q + method performs all but k (k < <  D )  of its disk I/O s sequen

tially to avoid expensive random disk accesses. The number of random I/Os is 

equal to the number of pivot objects used, which is much less than the size of 

the candidate set, making the O S e q + method more efficient than the O S e q  

method. As can be seen in Figure 3.7(c), the data pages are read sequentially,
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OSeq f Search A lg o rith m : Find all answers to a given range query 
In p u t : The data set sl E S  sorted by V, Set of pivots pj E P,  OMNl+-file 

sorted by  V ,  query object q and query radius r  
O u tp u t: Answer Set A  to the range query

In it ia l iz e  C a n d id a te  S e t C to  c o n ta in  all s t E S

foreach pj E P do
c a lc u la te  d{pj , q)

dmmiPj)  =  d{pj,  q) — r 

dmaxiPj ) =  d(pj,  q ) + r

foreach pj £ P  do 
foreach Si £ C  do

i f  d(pj ,  Si) < dmin(Pj ) or d{ph Si) > dmax(pj)  t h e n  
L remove Sj from C

foreach s* € C  do
c a lc u la te  d(si ,  q)

if  d ( s i} q) < r  then  
1_ p lace  Si in  A n sw er se t A

r e tu r n  A

F ig u re  3.10: O S e q + S earch  A lg o rith m

o n ly  o n e  ra n d o m  d isk  access is re q u ire d  to  find  th e  O M N i-co o rd in a te  o f th e  

f irs t o b je c t  w h ich  h a s  n o t  b e e n  p ru n e d  fo r each  re m a in in g  p iv o t o b je c t. T h is  

m ak es  th e  O S e q + m e th o d  v e ry  fa s t a n d  y e t s im p le  to  im p le m e n t.

3.3 U sing O nly a Few G ood P ivots — OSEQ*

T h e  O S e q + m e th o d  chooses V  such  th a t  th e  firs t p iv o t on  av e rag e  h a s  h ig h e r 

pruning p o w er th a n  th e  o th e r  p iv o t o b je c ts . H ow ever, th e  O S e q + m e th o d  

d o es  n o t  ad d re ss  th e  p ro b le m  t h a t  th e  o rd e r  th e  p iv o ts  a re  se lec ted  by  th e  

H F  a lg o r i th m  a n d  th e  In c re m e n ta l  S e lec tio n  a lg o r ith m  d o es n o t  in d ic a te  th e y  

w ill b e  e q u a lly  g o o d  fo r a ll q u erie s , i.e ., re a d in g  th e ir  O M N l-co o rd in a te s  is n o t 

ju s t if ie d  b y  th e ir  p ru n in g  a b il i ty  fo r every  q u e ry  o b je c t . A  s o lu tio n  to  th is  

p ro b le m  is to  se lec t m o re  p iv o ts  th a n  a re  n eed ed  fo r p ru n in g  (o v e rsam p lin g  

th e  p iv o t se t)  a n d  a t  q u e ry  t im e  o n ly  choose a  sm a ll n u m b e r o f  p iv o ts , th o se  

w h ich  a re  c lo sest to  th e  q u e ry  o b je c t. A s m en tio n e d  in  S ec tio n  3.2, by  usin g
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more pivot objects closer to the query object, the pivot objects used better 

approximate the position of the query object. Choosing pivot objects closer to 

the query object also results in reducing the hyper-volume of the intersection of 

the pruning rings of the selected pivot objects. This allows more objects to be 

pruned and results in less disk accesses and less distance calculations needing 

to be computed to answer similarity queries. In Figure 3.11 we can see the 

advantage of having pivot objects closer to the query object. The area of the 

intersection of the pruning rings of pivot objects A and B is much smaller than 

that of pivot objects C and D. To illustrate this, consider again Figure 3.7, and 

assume that in addition to V  = Pi, only one additional pivot is used. Since 

p$ is closer to q than p2, pz is used and all pages related to p2  (DPq — DPW) 

will never be accessed, reducing even further the number of pages accessed. 

The choice of better pivot objects per query reduces the candidate set size and 

increases the efficiency of processing similarity queries, this is confirmed by 

our experimental results. If we again consider Figure 3.4, we can see the pivot 

objects selected with the HF algorithm which are closer on average to other 

objects in the database have higher pruning power. For PCA, the pivots are 

created artificially on the principal axes of the data set outside the data space. 

Therefore the O S e q * method will be the same as the O S e q + method when 

selecting pivots using PCA because the notion of closeness does not apply 

because as explained in Section 2.2, all pivots are created the same distance 

outside the data space. For the Incremental Selection algorithm, the same 

result occurs as with the HF algorithm. In Figure 3.12, we can see the pivot 

objects selected with ISA that are on average closer to other objects in the 

data set have higher pruning power. The O S e q * attempts to select the pivots 

with higher pruning power to be used to prune the candidate set for each 

query. The additional cost of this method compared to the O S e q  method 

and the O S e q + method is that there is an overhead of extra disk space to 

store the OMNl-coordinates of the extra pivots. However, no additional cost 

is incurred at query time because the same number of pivots or less are used 

for pruning as with the O S e q + algorithm, the efficiency is actually increased 

because pivots with higher pruning power are used for pruning.
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Figure 3.11: The effect of having pivots closer to the query object
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Figure 3.12: Pruning power of pivots selected with the Incremental Selection 
Algorithm and the pivots are sorted by the pivots’ average distance to all 
objects in the database

The build algorithm for the O S e q * method is exactly the same as for the 

O S e q + method. The difference is the build algorithm for the O S e q * method 

selects more pivots than will be used at query time and oversamples the pivot 

set, while the O S e q + build algorithm selects the same number of pivots as 

the search algorithm uses for similarity search.

As with the O S e q + Search algorithm, the O S e q * Search algorithm (Fig

ure 3.13) requires that the OMNl+-file is presorted by V,  where V  is still 

chosen to be the pivot which is most important. Unlike the OSEQ+ method, 

the O S e q * method oversamples the pivot set a n d  selects more pivots than it 

will use at query time (K  pivots). At query time, the algorithm computes the 

distance between the query object and each of the K  pivot objects. Besides
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V ,  the O S e q *  search algorithm selects the k — 1  pivots (k — 1 < K)  which are 

closest to the query object. Note that unlike the case for V ,  these pivots are 

query-dependent, i.e., they are chosen based on the query object. The remain

der of the O S e q *  Search algorithm is similar to the O S e q + Search algorithm 

once the k — 1 pivot objects are selected.

OSeq* Search Algorithm : Find all answers to a given range query 
Input : The data set ,s, G S  sorted by V ,  set of pivots Pj G P  ( |P | =  K , 

oversampled), OMNl+-file sorted by V ,  query object q ,  query 
radius r, number of pivots to use k 

Output: Answer Set A  to the range query

Initialize Candidate Set C  to contain all s, G S

foreach p j  G P  d o
[_ calculate d(p3, q)

Choose the k — 1 closest p j  G { P — V }  to q and place in P C  (pCj  G P C )  

Sort P C  by distance to q and place V  in P C  as p c i  

foreach p C j  G P C  do
dmin(pCj) = d(pcj, q) -  r 

_ dmax(pcj) = d(pcj, q) + r

Find all s, £ S such that dmin(V) < d(V,  Sj) < dmax(V), place s* which 
satisfies the above inequality in Candidate Set C

foreach pc .j G P C  do 
foreach Sj E C  d o

if d(pcj,Si) < dmm(pcj) or d{pc3 ,Si) > dmax(pcj) then  
L remove s* from C

foreach s, £ C do
calculate d(si, q)

if  d(si, q) < r then  
L place Si in Answer set A

return A
Figure 3.13: O S e q * Search Algorithm
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3.4 E xperim ental R esu lts

We test the efficiency of the O S e q + and the O S e q * methods using the same 

two data sets described in the previous section. The 1MGCH data set is cre

ated to test the scalability of o u r  algorithms on large data sets. We select a 

sample of 100 random query objects from each of the data sets to use in our 

experiments. Our measure of efficiency is the speedup in terms of I/Os and 

simulated time2 required to process a range query. To calculate the simulated 

time, we perform experiments using the facilities offered by our experimental 

environment3 to obtain the cost (in seconds) of distance calculations, compar

isons, absolute values, sequential disk I/O s and random disk I/Os. The results 

are shown in Table 3.2. Although others have used the number of distance 

calculations as a measure of query cost [9, 16, 19], we choose time because it 

combines the total cost of answering similarity queries, i.e., random and se

quential disk accesses, distance calculations, absolute values and comparisons.

Table 3.2: Costs

1 64D distance calculation 655.4 nsecs
1 comparison 1.3 nsecs
1 absolute value 1.3 nsecs
1 sequential disk I/O 105,300 nsecs
1 random disk I/O 1,852,000 nsecs

We use the L\ metric distance because it has been shown to be more 

effective in high-dimensional spaces than the Euclidean distance (L2  norm) [1]. 

As opposed to NN-queries, a range query cannot guarantee an answer size, 

thus, for our experiments, we fix r so that an average answer size between 15 

and 45 is obtained. The page size is set to 4Kb.

Initially we designed an experiment to verify our intuition about the ex

istence of a preferential pivot (V) with higher pruning capability for pivots 

selected by the HF algorithm, Incremental Selection algorithm and PCA. The

2Due to caching management issues, we were unable to accurately measure real time, 
therefore we report simulated time

31600 MHz PC, AMD Athlon processor, Seagate ST360021A disk, RedHat Linux 9 and 
gcc-3.4.0

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



results for these experiments are detailed in Section 3.2.1 and provide evidence 

that it is beneficial to explore the notion of a preferential pivot, and that such 

a pivot should indeed be the one which is closest on average to every other 

object in the data set if there is no order of importance imposed by the pivot 

selection algorithm (HF algorithm). If pivots are selected with an order of 

importance (ISA and PCA), then V  should be chosen as the most important 

pivot. Recall that V  can be found a priori yielding no overhead at query time.

Figures 3.14 and 3.15 show the performance of the O S e q + method and 

the O S e q * method compared to the O S e q  method and a sequential scan 

(SeqScan) of the data set. The HF algorithm is used to select the pivot objects 

for the O S e q , O S e q + and O S e q * methods. It should be noted that the pivot 

objects used by the O S e q + method are the first k pivot objects selected by 

the HF algorithm, V  is chosen from these k pivots. For the O S e q * method, 16 

pivot objects are always selected by the HF algorithm, this makes the O m n i+ - 

file 25% of the size of the original data file. From these 16 pivot objects, V  

is selected and in addition to V,  the k — 1 pivot objects closest to the query 

object are also selected for each query. In Figures 3.14(a) and (b ) the O S e q + 

method processes range queries faster than the O S e q  and a sequential scan 

(SeqScan) of the data set (curves SeqScan/OSEQ+ and O S e q / O S e q + ). The 

curve SeqScan/ OSEQ+ represents the number of disk accesses of the SeqScan 

divided by the total number of I/O s of the O S e q + to obtain the speedup 

of the O S e q + compared to the SeqScan. The O S e q * method requires the 

least disk accesses and query processing time. The speedup of the O S e q * 

method compared to the O S e q + is on top of the savings the O S e q + already 

achieves over the O S e q  and SeqScan. This is expected as both methods 

use the preferential pivot V,  the OMNi+-file and sort the data file by V.  This 

means fewer OMNi-eoordinates have to be accessed for the O S e q + and O S e q * 

compared to the O S e q  method and the actual feature vectors of candidate 

objects occur closer together in the data file. This results in accessing up 

to 60% and 80%  fewer data pages from disk than the O S e q  for the O S e q + 

and O S e q * methods respectively. In Figure 3.15 we can see the time for the 

O S e q + method and O S e q * method compared to the O S e q  and SeqScan to
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process range queries. The actual number of disk accesses for all methods 

follows a similar curve because each of these methods are I/O  bound.
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Figure 3.14: The speedup in terms of the number of disk accesses of the 
proposed sequential metric access methods
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Figure 3.15: The query performance of the proposed sequential metric access 
methods in terms of simulated time

All the OMNl-based methods use k pivots at query time. The difference is 

the O Seq and O Seq+ methods use the first k pivot objects initially selected 

by the HF algorithm, whereas the OSeq* selects K  pivots (in our experiments 

K  =  16) with the HF algorithm and in addition to V,  at query time it chooses 

the k — 1 pivots (fc — 1 < K)  which are closest to the query object. We can see in 

Figure 3.14 that the OSeq* accesses fewer disk pages as the closer pivot objects 

prune more candidates. When more pivot objects are used, the methods are 

using a larger common set of pivots, this is why the curves approach each other 

as k increases in Figure 3.15. At k — 16, both the O S eq+ and the OSeq* 

methods are using the same set of pivots. In Figure 3.15, the curve for the 

OSeq* method rises slightly as more pivot objects are used (k >  4) because 

reading the OMNl-coordinates of additional pivot objects is not justified by
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the number of additional data objects which are pruned. The initial closest 

pivot objects for the OSEQ* method prune so many objects that the last pivot 

objects can not prune any further. This observation will also occur for the 

O S e q  method a n d  O S e q + method if a  greater number of pivot objects are 

used.

For the case of the Euclidean space, we want to test the effectiveness 

of selecting pivots using PCA compared to the HF algorithm and ISA. Fig

ure 3.16(b) shows that the O S e q + saves up to 27 times the number of disk 

accesses by selecting pivots with PCA compared to using pivots selected with 

the HF algorithm and saves up to 20 times the number disk I/Os compared to 

using pivots selected with the Incremental Selection algorithm. The savings in 

time are displayed in Figure 3.17. Pivots selected with PCA prune more ob

jects as pivot objects are selected to lie on the principal axes of the data set and 

are orthogonal to each other as shown by the authors in [10]. We do not show 

results for the O S e q *  method using PCA to choose the pivot objects because 

the pivot objects selected with PCA are all created the same distance outside 

the data set so the notion of closest does not apply. Figures 3.16 and 3.17 

also show the pivot objects selected by the Incremental Selection algorithm 

are better than the pivots selected with the HF algorithm. The O S e q + using 

ISA to select the pivots is up to 1.6 times faster. This provides evidence that 

for general metric spaces it will be beneficial to use the Incremental Selection 

algorithm compared to the HF algorithm.

(b) 1MGCH
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Figure 3.16: The speedup in terms of the number of disk accesses of the O S e q + 
method using different pivot selection algorithms

Next we compare the O S e q + method using PCA to select the pivots
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Figure 3.17: The elapsed time of the O Seq+ method using different pivot 
selection algorithms

( O S e q + (PCA)), the O S e q *  method using ISA to select the pivots (O S e q *  

(ISA)) and the VA-File in Euclidean space. Figure 3.18 shows the speedup 

of the O S e q + (PCA) method compared to the SeqScan, the VA-File and the 

O S eq *  (ISA) in terms of I/O s and Figure 3.19 shows the time required to 

answer range queries for the O S e q + (PCA) method, the O S e q *  (ISA), the 

VA-File method and the sequential scan. The O S e q + (PCA) method is up 

to 24 times faster than the VA-File method in terms of time. While it is 

true that more efficient implementations of absolute values, comparisons and 

distance calculations would benefit the VA-File more than the O S e q + (PCA) 

method, Figure 3.18 shows that the O S e q + (PCA) method requires fewer disk 

accesses for both data sets when the number of pivots is greater than 8. This 

means that no m atter how much faster the implementation, the VA-File will 

still be less efficient than the O S e q + (PCA) method because both methods 

use sequential access patterns and avoid random disk I/Os, while the VA-File 

requires a substantial amount of CPU time. In Figure 3.18 we can also see 

the  O S eq *  (ISA) and the VA-File have similar performances in terms of the 

number of disk accesses. In terms of time (Figure 3.19), th e  O S eq *  (ISA) 

is faster than the VA-File for both data sets because of the large amount of 

CPU time required for the VA-File. Figures 3.18 and 3.19 also show that in 

Euclidean space, the O S e q + (PCA) is more efficient than the O S eq *  (ISA). 

T he O S eq *  (ISA) outperforms the O S e q + (ISA), we can see the speedups in 

Figure 3.16 are larger for the O S e q + (PCA) compared to the O S e q + (ISA) 

then in Figure 3.18 for the O S e q + (PCA) compared to the O S e q *  (ISA).
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Figure 3.19: The performance of the SeqScan, the VA-File, the OSeq* (ISA) 
and the O S e q + (PCA) in terms of time (secs)

It is interesting to note that even though the sequential scan of the data 

set accesses approximately four times more disk pages than the VA-File, the 

VA-File is not even twice as fast in terms of time as the sequential scan for 

the COREL data set and only about 2.8 times faster for the 1MGCH data set. 

This supports our argument that high-dimensional index structures must be 

efficient not only with respect to disk accesses but CPU operations as well.

The number of random disk I/O s increases rapidly for the VA-File as the 

radius of the range query increases. In Figures 3.20(a) and (b), we can see that 

the time required for the VA-File to process range queries increases quickly due 

to the increase in the number of random disk I/O s in the refinement step. This 

occurs because as the radius increases, the number of objects returned and the 

number of objects which can not be pruned based on their approximations for 

the VA-File increases, while the VA-File requires one random disk access for 

each candidate object in the refinement step. For this reason we do not show 

the speedup in terms of disk accesses for these experiments. The comparison
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in terms of the number of disk accesses is unfair because the VA-File is no 

longer primarily a sequential access method as the radius of a range query 

increases. In contrast, the O S e q + (PCA) method uses sequential disk I/Os in 

the refinement step. Therefore, as the radius of the range query increases, the 

time required for the O S e q + (PCA) method to process range queries increases 

at a much smaller rate.

SeqScan — * — 
OSaq+(PCA) -••Q--- 

VA-Ffle

(b) 1MGCH

...................... - a ........

SeqScan — * —  
OSeq+{PCA) — G— 

VA-File

0.15 

Query Radius

Figure 3.20: The performance of the access methods in terms of time (secs) 
as the radius of the range query increases
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Chapter 4 

The M etric Grid

It is a known result, e.g., [4, 11], that when processing similarity queries in 

a general metric space, objects can be pruned using the triangular inequality 

property. All one needs is a set of pivots, the distance from all objects in the 

database to the pivots and a query range. That is, the actual distance from 

the query object to the objects in the data set need not be computed for a 

potentially large set of pruned objects. Given that the actual distance can be 

computationally expensive, this is an important gain.

The VA-File partitions the data space by dividing it into a grid of cells. 

This allows objects to be approximated by the cells where they lie. These 

approximations require less storage than the original feature vectors of the 

objects. One drawback of the VA-File is it can only be applied to vector 

data spaces because each dimension is divided into slices to form a grid. For 

general metric data, the only information available is the distances between 

objects, there may be no concept of dimensions, thus we cannot partition 

each dimension into slices to form cells. Nevertheless, the idea of creating a 

pseudo-grid can be generalized to a metric data space. An actual grid cannot 

be created in all metric spaces because there may be no actual dimensions, but 

a grid-like structure can be constructed. Instead of dividing each dimension 

into slices, pivots in the data set can be selected and rings can be formed based 

on the distances from the pivots. In Figure 4.1 the pivot objects are pi and p 2  

and the rings are created based on the radii distances to the pivots.

For the VA-File, each object is approximated by the cell in which it lies,
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Figure 4.1: The rings splitting up the data space into a grid-like structure

the size of these approximations is smaller than the original feature vectors. 

Objects cannot be approximated for general metric data because there are 

often no feature vectors for objects, but the object’s position on a pseudo

grid can be approximated by its distance to each of the pivots. In effect, the 

data set is mapped into a low-dimensional vector space and the objects can be 

clustered based on their positions in the grid. The intuition is that objects close 

together in the original data space will also be close together on the grid in the 

low-dimensional mapped space. Using this notion, we propose to cluster the 

data objects by their distances to the pivots. Any clustering algorithm can be 

used because the distances to the pivots are numerical (vectorial). Clustering 

high-dimensional data and metric data is typically a complex and expensive 

task. Using a small number of distances to the pivots to cluster the data 

objects makes the clustering much more efficient.

Objects can be pruned using their distances to pivots and the triangular 

inequality property. Further, we can think of clusters as objects. Clusters 

can be pruned in the same manner as objects using the triangular inequality 

property, that is, clusters that do not touch pruning rings can be safely dis

carded. In Figure 4.1, for query q and radius r, the shaded cells intersect the 

query region, i.e., the region defined by the circle around q. By employing the 

notion of a grid, a cluster can be pruned if the cluster does not intersect any
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cells which also intersect the query region. Only clusters C and E intersect 

cells intersecting the query region and therefore clusters A, B. D, F and G can 

be pruned from the answer set without computing any of the actual distances 

between objects in the cluster and the query object.

Given this rationale we can now propose a new access method for both 

vector data (under a metric distance) and general metric data. We call this 

method the M-Grid. The M-Grid is a dynamic, metric access structure and 

is designed to reduce the processing time of similarity search queries for high

dimensional data sets and metric data sets, in particular for data sets that 

present some inherent clustered structure. The M-Grid clusters objects by 

their positions in a pseudo-grid based on their distances to the pivot objects. 

The pivots are selected from the data set because it is often not possible to 

artificially create pivots for metric data sets. For vector space however, we can 

create artificial pivots with higher pruning power using PCA to select pivots on 

the major axis of the data set, e.g., [10]. Cells in the grid are determined by the 

distance the rings are from the pivots (Figure 4.1) which allows a cluster to be 

pruned if the cluster does not occupy any cells that intersect the query region. 

In order to take advantage of sequential disk accesses, the M-Grid performs 

most of its disk accesses sequentially within the clusters, being an I/O  efficient 

metric access method. In addition the M-Grid is computationally inexpensive 

as the computation of the actual, and potentially expensive, distance functions 

are avoided for most objects.

4.1 B u ild in g  th e  M -Grid

The algorithm to build the M-Grid is shown in Figure 4.3. To begin building 

the M-Grid, the pivot objects must first be selected. Pivots can be selected in a 

variety of different ways for metric data, i.e., selecting objects randomly from 

the data set, selecting objects with the HF algorithm [16], using the Incre

mental Selection algorithm [12], etc. We have found (Section 3.4) that a very 

effective way to select pivots for general metric spaces is with the Incremental 

Selection algorithm.
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The Incremental Selection algorithm selects pivots that best distinguish 

the distances between pairs of randomly chosen objects from the data set. 

The intuition behind this is if the pivots can distinguish well the distances 

between arbitrarily selected objects in the data set, they will better be able 

to distinguish the distances between the query object and the objects in the 

data set. Being able to distinguish the distance between the query object 

and objects in the data set is important because only the triangular inequality 

property can be used to prune objects in metric spaces which are non-vectorial. 

If the distance between the query object and the pivot is the same as an object’s 

distance to the pivot, the object will not be able to be pruned from the answer 

set.

The distance from each object in the data set to all the pivots must be 

computed. The rings are selected so there is an equal number of objects in 

each ring for each pivot, this allows more dense regions of the data space to be 

covered by more rings and increases the number of objects pruned during sim

ilarity search. The intersection of the rings form cells in the low-dimensional 

mapped space, a pseudo-grid for metric data (see Figure 4.1 for a 2-D exam

ple).

The objects are clustered using the K-means clustering algorithm [18] for 

simplicity. It is important to note however, that this is not a requirement. Any 

clustering algorithm for vector data can be used because the distances from 

objects to pivots are numerical (vector), hence forming a feature vector. Since 

the number of pivots tends to be small, the data set can be clustered efficiently. 

Objects are clustered based on their distances to pivots so objects occurring 

in the same rings will be placed in the same clusters. The clusters closest to 

the cell containing the query object are retrieved during similarity search and 

the clusters which do not intersect the query region are not accessed.

The main structure of the Metric Grid consists of three levels. The first 

level of the M-Grid contains the pivots, the distances the rings are from each 

pivot and the mean of each cluster. The number of pivots, k, tends to be small, 

in the range of 5 to 25 where 5 is equal to the fractal (intrinsic) dimensionality 

of the data set [16]. As a direct consequence the data set can be clustered
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Figure 4.2: The storage of the M-Grid on disk (a) CC-Array (b) The clusters 
are stored contiguously on disk

efficiently. The data objects of the pivots, the distances to the rings from the 

pivots and the mean of each cluster on the metric grid can be stored in a 

small number of disk pages. Since the storage space for this level is small, it 

is assumed that it can be stored in main memory.

The second level consists of the Cluster Cell-Array (CC-Array) (Figure 4.2). 

Each cell is represented in the CC-Array by a structure (Cell[}.ptr, Cell[].Obit) 

where Cell\\.ptr is a pointer to the cluster the cell belongs to and Cell\\.Out is 

one bit which indicates if the cell is empty or contains objects (Figure 4.2(a)). 

This level is also assumed to fit in main memory. In Section 4.2 we show good 

performance is obtained using four pivots and ten rings per pivot which is 

equivalent to 20 Kb, which can be easily stored in main memory.

The closest cluster to each cell is determined by computing the distance 

from the center of each cell to the mean of each cluster. The structure for 

empty cells also point to the nearest clusters because the first cluster to visit 

is determined by the cell the query object is in, even if the cell is empty. Also, 

the pointers are used for the insertion and deletion algorithms to determine the 

cluster to insert or delete the object. In Figure 4.2(a) we can see the structures 

in the CC-Array contain pointers to one cluster and one bit indicating if the cell 

is empty. In the example, Cell 1 contains zero objects but points to cluster B, 

while the Cell[].Obtt for Cell 3 is equal to 1, indicating Cell 3 contains at least
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one object and the pointer for the cell points to cluster D. Storing whether each 

cell contains any objects (or is empty), is useful to prevent visiting clusters 

based on a cell that does not contain any objects but intersects the query region 

and points to a cluster that would not otherwise be visited. In Figure 4.1, the 

dark-shaded cell is empty but intersects the query region and its pointer will 

point to Cluster D (its nearest cluster). By using 1 bit for the cell to indicate 

the cell is empty, we can avoid visiting Cluster D in this example. It should be 

noted that each cell can only point to one cluster, i.e., the cluster it is closest 

to in the metric grid. While a cell can only belong to one cluster, several 

different cells can point to the same cluster, there is not just one cluster stored 

for each cell in the grid. The actual number of objects in each cell is stored 

separately on disk and is only used to aid inserting and deleting objects from 

the M-Grid.

The third level of the M-Grid contains the original objects in the data set. 

The data for each object in the same cluster is stored sequentially on disk. 

This is to allow clusters to be accessed using sequential disk accesses during 

the NN search algorithm.

The pseudo-code for the algorithm to build the M-Grid is shown in Fig

ure 4.3.

4.1.1 Similarity Search in the M-Grid

The K-Nearest Neighbor Search algorithm for the M-Grid visits clusters in 

order depending on their distance to the query’s position on the metric grid 

with the closest clusters being visited first. A good initial radius can be found 

quickly visiting only a few clusters as the closest clusters usually contain the 

closest objects to the query object. This current nearest neighbor radius is 

then used to prune clusters which are farther from the query object and do 

not intersect the query region.

The K-Nearest Neighbor search algorithm for the M-Grid is shown in Fig

ure 4.4. The first step is to compute the distance between the query object 

and each pivot. The cell containing the query object [q^cell) is determined by 

calculating which ring for each pivot that the query object belongs to by its
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B uild  A lgo rithm : Constructing the M-Grid
In p u t : The number of pivots, the data set of objects (sj G S'), the num

ber of rings no-.rings
O u tp u t: The set of pivots p3 G P, the ring distances, the clusters, the cell 

pointers, the number of objects in each cell numjper -cell\\

Select t h e  set of pivots (p3 G P )

foreach s* G S  d o  
foreach pj G P  d o
[_ compute d(si,pj)

Determine the ring distances for each pivot such that each ring contains
the same number of objects

Cluster the objects using the cells in the grid to represent the objects

Compute the mean of each cluster

foreach cell do
foreach cluster (ck E C )  d o  

compute d(cell, cli)

|_ Set cell pointer to nearest cluster 
Count the number of objects in each cell

Figure 4.3: The algorithm to build the M-Grid

distance to each of the pivots. The pointer for the cell containing the query 

object is accessed (in the CC-Array) to determine the first cluster to visit. 

The algorithm calls the Visit_Cluster() function (Figure 4.5) and sequentially 

retrieves all the objects in the first cluster. The distance between the query 

object and each object in the cluster is computed. Using the distance from the 

query object to the Kth nearest object found so far (KNN_dist[K]), the rings 

intersecting the query region are identified. Any clusters not intersecting cells 

which intersect the query region, are pruned and never visited.

After the first cluster is visited and the clusters are pruned using KNN_dist[K], 

the K-NN search algorithm computes the distance from q-cell to the mean of 

each cluster which has not been pruned or visited and stores the distances in 

the Cluster Distances Array (CD A). The CD A  is sorted in ascending order 

and the clusterlDs of each cluster are placed and sorted in the same order in 

the Active Cluster List (Acl) as the CD A. The first cluster in the Acl which
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K -N N  Search Algorithm : Searching the M-Grid
In p u t : The set of pivots (p3 E P), the ring distances, the query object 

q, the clusters, the cluster means cm^ E CM ,  the cell pointers, 
the number of nearest neighbors I(

Output: The K-NN objects to q

Active Cluster List (Acl) =  [Null]

Cluster Distances Array (CDA) =  [Null] 

i=l
while i < i f  do

KNN_dist[i] =  oo

_ i+ +

foreach pj E P do
|_ compute d(q,pj)

Calculate the cell the query object lies in (q_cell)

Visit_Cluster(The cluster containing q_cell, KNN_dist[ ], KNN[ ], K) / /  see 
Figure 4.5

Prune clusters not intersecting the query region using the KNN_dist[K] and 
the CC-Array

foreach Cluster not pruned or visited do 
[_ CDA[i] = d(qjcell, cm*)

Sort the CD A  in ascending order

Place the clusterlDs of each cluster in the Acl and sort the Acl in the same 
order as the CD  A

curr_KNN_dist =  KNN_dist[K]

i =  1

while i < number of clusters do 
if  Acl[i) is not pruned then

Visit-Cluster (Ad [z], KNN_dist[ ], KNN[ ], K) / /  see Figure 4.5

if KNN-dist[K] < curmKNN-dist then  
curr_KNN_dist =  KNN-dist[K]

Prune clusters not intersecting the query region using the 
KNN_dist[K] and the CC-Array

_ i+ +

Figure 4.4: The K-Nearest Neighbor Search algorithm for the M-Grid
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V isit-C lu s te r  F unction : Visit the cluster and compute the distance be
tween the query object and every object in the cluster 
In p u t : Cluster of objects s7; G C, KNN_dist[ ], KNN[ ], K

f o r e a c h  Sj G C  d o
if d(q, < K N N .d is t[K ] th e n

KNN[K] =  Sj

KNN_dist[K] =  d(q, st)

Place KNN[ ] and KNN_dist[ ] in ascending order of KNN_dist[ ] 

Figure 4.5: Visit_Cluster Function

has not been pruned is then visited. Like the first cluster visited, the distance 

between the query object and all objects in the cluster are computed. If a 

closer object is found than KNN[K], the closer object is placed in KNN[K] 

and its distance is placed in KNN_dist[K]. KNN[ ] and KNN_dist[ ] are then 

placed in ascending order by KNN_dist[ ] and clusters are pruned again by 

determining the cells intersecting the new query region defined by the new 

KNN_dist[K]. This process continues until every cluster has been either vis

ited or pruned. Note that once a cluster has been pruned, it never has to 

be considered again because for K-NN queries, the query region can only get 

smaller. The search algorithm continues to visit clusters in the Acl until every 

cluster has been either pruned or visited to guarantee the exact answer.

The correct answer to each similarity query is guaranteed by the properties 

of the grid. The triangular inequality can be used to prune objects which are 

far away from the query object using precomputed distances to pivots. Clusters 

can be considered large objects and the triangular inequality can be used to 

prune clusters on the M-Grid. Since we know the cells which intersect (belong 

to) each cluster from the CC-Array, we only need to identify the cells which 

intersect the query region. The pointers for these cells can be looked up in the 

CC-Array and all clusters these cells point to are identified. This allows us to 

prune only clusters which are outside the cells which intersect the query region 

and guarantee the correctness of the answer. As mentioned earlier, only non

empty cells are used to identify clusters intersecting the query region. Using 

empty cells to determine the clusters to visit can lead to visiting additional
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clusters which do not contain any objects which also intersect the query region. 

The pointers for empty cells are used to find the first cluster to visit, e.g., if 

the query object lies in an empty cell. It is also useful to have the pointers 

for empty cells stored when new objects are inserted into or deleted from the 

M-Grid, this way we know which cluster to access for the object.

The M-Grid reduces the number of disk accesses of feature vectors of ob

jects and keeps the number of random disk accesses small. Clusters are stored 

sequentially on disk, so the objects in each cluster are accessed sequentially. 

Only one random disk access is needed to find the beginning of the cluster on 

disk, therefore the number of random disk accesses is equal to the number of 

clusters visited. The M-Grid is designed for K-nearest neighbor queries but 

can be easily modified to process range queries. To process range queries, the 

algorithm can be changed so the K-NN radius is equal to the radius of the 

range query and unlike K-NN queries, the radius is fixed. All clusters inter

secting the radius of the range query will be retrieved and all objects less than 

the radius will be returned as the answer to the range query.

4.1.2 Inserting and D eleting Objects

As mentioned earlier, the M-Grid is a dynamic indexing structure. The algo

rithm for inserting objects into the M-Grid is shown in Figure 4.6. To insert an 

object into the M-Grid, the cell containing the object (C ell[Oinsert}) must be 

identified by its distances to each of the pivots. The cluster to insert the object 

is determined by looking up in the CC-Array the cluster Cell[Oinsert] belongs 

to. If the object bit for the cell containing the object (Cell[Oinser^.Out) is 

equal to 0, then the bit must be set to 1 to indicate the cell contains at least 

one object. The number of objects in the cell is also incremented by 1. The 

object is inserted into the closest cluster to Cell[Oinsert] and the mean of the 

cluster is recomputed.

Objects can be easily deleted from the M-Grid by removing the object from 

its cluster. Similar to an insert, the cell containing the object to be deleted 

( O d e l e t e )  is identified and the cell is looked up in the CC-Array to determine the 

cluster containing Odelete- The number of objects in the cell is decremented by
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M -G rid  In se r tio n  A lg o rith m : Inserting Objects into the M-Grid 
In p u t : The set of pivots pj G P, insertion object ()m^,ri, the ring dis

tances, the cluster means cml G CM, the clusters, the cell point
ers, object bits of cells Cell[].Out 

O u tp u t: Object inserted into M-Grid

foreach p, g P  do
[_ compute d(Oinsert,pj)

Determine the cell (Cell[Oinsert]) containing OinseTt

Find the cluster Cell[Oinsert} belongs to

Insert Oinsert into this cluster

if number^cell[Cell[Oinsert}} = 0 th e n  
Set Cell[Oinsert}-Obit W 1 

nurri-per ~cell{C ell{0 insert)] +  +
Recompute mean of the cluster

Figure 4.6: M-Grid Insertion Algorithm

1 and if no other objects reside in the cell, i.e., numjperjcell[Cell[Odelete]] — 0, 

Cell[0deiete\-Obit is set to 0. The mean of the cluster is then recomputed.

4.2 E xperim ental R esu lts

We tested the performance of the M-Grid using a variety of synthetic data sets. 

The data sets are designed to test the scalability of the M-Grid with respect to 

varying the cardinality (nobj) of the data set, the number of clusters (no-d), 

the percentage of noise (noise), the number of dimensions (dim), the maximum 

distance (max-d) of objects in each cluster to the seed of the cluster, the 

number of pivots (no^pivots) and the number of rings (nojrings) used in the 

M-Grid and the number of nearest neighbors (K) retrieved during similarity 

search. The default values for the data sets are shown in Table 4.1.

We assigned objects to clusters non-uniformly. It should be noted the M- 

Grid is designed for data sets which exhibit some clustered structure. Some 

clusters in the data set contain more objects than others to simulate real data 

sets. An example of the distribution of how many objects are in each of the 

100 clusters is shown in Figure 4.7. Note that changing the number of objects
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Table 4.1: Default values of the data sets

nobj 250,000
no-d 100
noise 20%
dim, 64
max-d 1% of dim
no-pivots 4
no-rings 10
K 10
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Figure 4.7: An example distribution for the number of objects in each cluster. 
The average number of objects in each cluster is 2500 or 1% of the total number 
of objects when using the default values shown in Table 4.1. The distance 
objects are from the seeds of the clusters follows the same distribution

or the number of clusters in the data set does not affect the distribution of 

the number of objects in each cluster, it just changes the average number of 

objects in each of the clusters. The distance the objects are from the seeds of 

the clusters also follows the distribution in Figure 4.7. We use the L\ metric 

distance in our experiments and all data sets are generated in the unit cube. 

The default value for the maximum distance from the seeds of the clusters is 

set to 1% of the maximum possible distance objects can be apart in the data 

set.

For each data set, we generate a sample of 100 queries the same way we 

generate objects in the data sets to use in our experiments. Our measure of
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efficient:}' is the number of disk accesses and the simulated time1 required to 

process a K-nearest neighbor query and the page size for all experiments was 

set to 4KB. To evaluate the efficiency of the M-Grid, we compare it to the 

VA-File and a sequential scan (SeqScan) of the data set. For each experiment 

we show the results in a graph where the number of disk accesses for the 

sequential scan and the VA-File are divided by the number of disk accesses of 

the M-Grid to show the speedup of the M-Grid, as well, the simulated time is 

also shown. Using the number of disk accesses as an efficiency measure is fair 

because the VA-File and the M-Grid both use sequential access patterns and 

only a few random disk I/Os. For all experiments, 10 data sets are generated 

the same way (following the same distribution) and the average number of 

disk accesses is used for the M-Grid and the VA-File. For the sequential scan, 

the number of disk accesses is constant for each experiment.

The first experiment is designed to test the scalability of the M-Grid while 

varying the cardinality of the data set. In Figure 4.8(a) we can see the speedup 

of the M-Grid compared to a sequential scan of the data set is stable at ap

proximately 20 with a slight increase in performance of the M-Grid as the 

number of objects in the data set is increased. This occurs because as the 

number of objects in the data set is increased and the number of clusters re

mains the same, there are more objects in each cluster. This results in a slight 

increase in performance of the M-Grid because the K-NN distance is reduced 

slightly for most queries, resulting in accessing slightly fewer clusters. For the 

same reason, the speedup of the M-Grid compared to the VA-File increases 

slightly to greater than 5. Figure 4.8(b) indicates the same results. The time 

for all three access methods to answer K-NN queries increases linearly with 

increasing the number of objects in the data set.

The next set of experiments test the performance of the M-Grid while 

varying the number of clusters. As expected, increasing the number of clus

ters improves the performance of the M-Grid. When decreasing the number 

of clusters, the number of objects per cluster increases and if any part of the 

cluster intersects the query region, the entire cluster is retrieved from disk.

1 We use the same cost values as shown in Table 3.2 to  compute the simulated time
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Figure 4.8: The effect of varying the number of objects in the data set
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Figure 4.9: The effect of varying the number of clusters in the data set

Dividing a cluster into two smaller clusters can mean retrieving only half the 

objects if only one of the two clusters now intersects the query region. Di

viding clusters into smaller clusters is only beneficial to a certain extent. At 

some point the same objects will still need to be retrieved, just more clus

ters (with fewer objects per cluster) will be visited. Figure 4.9(a) shows the 

M-Grid is more than 40 times faster than a sequential scan of the data set 

and up to 10 times faster in terms of disk accesses than the VA-File when the 

number of clusters the M-Grid divides the data set into is increased to 400. 

In Figure 4.9(b) we can see the performance of the VA-File and the SeqScan 

remains constant while increasing the number of clusters in the data set, while 

the performance of the M-Grid increases. In Figure 4.9(b) the M-Grid is up 

to 15 times faster in terms of time because the M-Grid requires far fewer CPU 

operations. Note that even when the number of clusters is very small, the 

M-Grid is still faster than the VA-File.

Noise in the data set are objects which are created randomly in the data 

set and are not part of any cluster. By using noise, one can investigate the
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Figure 4.10: The effect of varying the percentage of noise in the data set

resiliency of an access structure. Figures 4.10(a) and (b) show the M-Grid is 

resistant to increasing the percentage of noise in the data set and the perfor

mance of the M-Grid only decreases slightly when the amount of noise in the 

data set is increased to 80% of the total number of objects in the data set. 

This means the M-Grid can perform nearest neighbor search efficiently as long 

as the data set contains some objects which are clustered. At 100% of the data 

set being noise, the distribution of the data set is uniform as all the objects 

in the data set are generated randomly. Since the M-Grid is designed for data 

which has some sort of clustered structure, it cannot improve on the perfor

mance yielded by a sequential scan, and it is outperformed by the VA-File. 

This occurs because the VA-File approximates the actual distance of every 

object in the data set and actually performs the best for uniform data sets 

because the objects in the dataset are farther from each other. This reduces 

the likelihood of objects occurring in the same cell for the VA-File and thus 

having the same approximations. For a reasonable amount of noise, say 50%, 

the M-Grid is about 5 times faster than the VA-File and 20 times faster than 

the sequential scan respectively.

The performance of the M-Grid was also tested against varying the dimen

sionality of the data set while keeping the remaining parameters of the data 

set constant. The results for varying the dimensionality between 32 and 512 

are shown in Figure 4.11. The maximum distance (max^d) objects can be 

from the seeds of the clusters also remains constant at 1%. However, when 

the dimensionality of the data set is increased, 1% of the maximum possible 

distance between two objects will also increase. Figure 4.11(a) shows the M-
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Grid is more than three times faster than the VA-File when the number of 

dimensions is 256. For dimensionalities of 32 and 64, the M-Grid is five times 

faster than the VA-File in terms of disk accesses. The relative performance 

of the M-Grid decreases slightly as the dimensionality increases compared to 

a sequential scan of the data set and the VA-File. One reason for this is the 

maximum distance objects in clusters can be by default is 1%. Therefore the 

size of the clusters increases when increasing the dimensionality and the total 

hyper-volume of the clusters increases faster than the maximum distance. Al

though the total hypervolume of the data space also increases, each dimension 

is still in the range, zero to one. This causes the chance of clusters overlapping 

to be higher and increases the chance of visiting additional clusters.

Figure 4.12 shows the performance of the M-Grid decreases as max^d in

creases. The main reason for this is as max-d increases, the distribution of 

the objects in the data set becomes more uniform. This causes the iV-nearest 

neighbor distance to increase significantly, reducing the ability of the pivots to 

prune clusters. It should be noted that if the data set can be clustered more 

effectively, the M-Grid would be able to prune more clusters and increase its 

efficiency. Even when max-d reaches 10%, the VA-File and the M-Grid exhibit 

the same performance and the M-Grid is still a little more than two times 

faster than a sequential scan of the data set.

The M-Grid has two main input parameters for building the metric grid, 

the number of pivots and the number of rings. Both of these parameters af

fect the performance of the M-Grid. Figure 4.13 shows the affect of varying 

the number of pivots. Increasing the number of pivots results in more clus-
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Figure 4.13: The effect of varying the number of pivots used by the M-Grid

ters being pruned. This occurs because the more pivots we use, the greater 

the probability that clusters will not intersect rings which the query region 

intersects, for at least one pivot. This results in visiting less clusters and re

trieving less objects from disk which reduces the query processing time for the 

M-Grid (Figure 4.13(b)). Increasing the number of pivots used by the M-Grid 

can only increase the performance up to a certain extent, at some point us

ing more pivots will not result in pruning more clusters. This occurs because 

there is always going to be at least one cluster for every query which must 

be visited and clusters which intersect the query region can not be pruned no 

m atter how many pivots we use. The speedup of the M-Grid compared to a 

sequential scan of the original data set increases to 33 and to 8 for the VA-File 

when the number of pivots is equal to 8 (Figure 4.13(a)).

Figure 4.14 shows increasing the number of rings also increases the perfor

mance of the M-Grid compared to a sequential scan of the data set and the 

VA-File. Increasing the number of rings divides the data space into a finer 

grid which makes approximating objects and clusters by the cells they inter-
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Figure 4.14: The effect of varying the number of rings used by the M-Grid

sect more accurate. This allows some clusters which just border the query 

region to be pruned and not be visited. Similar to increasing the number of 

pivots, increasing the number of rings also increases the number of clusters 

pruned and improves the efficiency of the M-Grid. As noted above for increas

ing the number of pivots, for every data set there will be some limit at which 

increasing the number of rings can not result in pruning more clusters as some 

clusters will have to be visited anyway.

Next, we test the effect of varying the number of nearest neighbors K  re

trieved. Figure 4.15(a) shows the largest advantage for the M-Grid is achieved 

when K  — 1. The reason for this is for small values of K ,  only 1 or 2 clusters 

have to be retrieved (or 1% — 2% of the data set) for the M-Grid. Increasing 

the number of nearest neighbors retrieved past 10 has very little impact on the 

performance of the M-Grid because often the additional nearest neighbors re

trieved are found in the clusters already accessed and additional clusters do not 

have to be visited. The IT-nearest neighbor distance usually does not increase 

rapidly when K  is larger than 10. This causes the number of disk accesses to 

increase slowly with increasing K .  It should be noted that as K  is increased, 

the additional disk accesses for the VA-File are random disk accesses. This is 

why in Figure 4.15(b) the curve for the VA-File is increasing at a faster rate 

than the M-Grid, while in Figure 4.15(a) it appears the performance of the 

M-Grid is decreasing compared to the VA-File as K  is increased. As K  is 

increased, the total number of disk accesses for the VA-File and the M-Grid is 

comparable, but because these additional disk accesses for the VA-File occur 

in the refinement step and are random disk I/Os, the performance of the M-
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Figure 4.15: The effect of varying the number of nearest neighbors retrieved 
by the M-Grid

Grid increases compared to the VA-File in actual query processing time. This 

means the actual time required for the VA-File to perform K-NN search will 

increase rapidly as K  increases, even if the total number of disk accesses does 

not increase as quickly.
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Chapter 5 

Conclusion

5.1 Sum m ary and C ontributions

In  th is  th e s is  we h av e  e x a m in e d  th e  ch a llen g es  o f  c r e a t in g  efficient access 

m e th o d s  fo r h ig h -d im e n s io n a l d a ta  a n d  g e n e ra l m e tr ic  d a ta .  W e h av e  p ro 

p o sed  th re e  n ew  access s t ru c tu re s  fo r effic ien t s im ila r i ty  sea rch . T h e  first 

tw o s tru c tu re s ,  th e  O S e q + m e th o d  a n d  th e  O S e q *  m e th o d , s p e e d u p  ra n g e  

q u e ry  p ro c ess in g  w ith  a  n u m b e r  o f  im p ro v e m e n ts  over th e  O S e q  m e th o d . T h e  

p ro p o se d  m e th o d s  r e s tr u c tu re  th e  O M N l-file a n d  em p lo y  th e  n o tio n  o f a  p re f

e re n tia l p iv o t V  to  b e  u sed  as th e  f irs t p iv o t to  p ru n e  o b je c ts . T h e  O S e q + 

a n d  O S e q *  m e th o d s  also  s o r t  th e  O M N i+ -file a n d  th e  d a t a  file re s u lt in g  in  

s u b s ta n tia l  sav in g s  b y  a llo w in g  th e  tw o  files to  b e  accessed  seq u e n tia lly  a n d  

also  red u ce  th e  t o t a l  n u m b e r  o f d isk  accesses. In  a d d it io n ,  we have  show n 

th a t  i t  is b en e fic ia l to  o v ersam p le  th e  p iv o t se t w h en  th e  o rd e r  th e  p iv o ts  a re  

se lec ted  d o es n o t  in d ic a te  th e ir  p ru n in g  ab ility , a n d  th e n  a t  q u e ry  t im e , choose 

a  sm a ll p o r t io n , i.e ., th o se  w h ich  a re  c lo sest to  th e  q u e ry  o b je c t.

Our experimental results show that with often less than 25% storage over

head, the O S e q * method can process similarity queries up to five times faster 

than the O S e q  for metric data. The O S e q + and O S e q * methods work in 

high-dimensional vector spaces as well as general metric spaces. We have 

shown in vector spaces, the O S e q + method using the PCA pivot selection 

technique, clearly outperforms the VA-File by a large margin when process

ing range queries, up to 24 times faster and is up to 69 times faster than a 

sequential scan of the data set.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The third access method we have proposed is the M-Grid. We have shown 

how to construct a pseudo-grid structure for any metric space, including Eu

clidean space, and use the metric grid to cluster the data objects using any 

clustering algorithm, even if the original data is not vectorial. The M-Grid per

forms efficient similarity search in high-dimensional spaces and general metric 

spaces by searching the clusters sequentially while the properties of the metric 

grid guarantee the correctness of the answer.

Our experimental results show the M-Grid can perform nearest neighbor 

search up to 40 times faster than a sequential scan of the data set and up to 

15 times faster than the VA-File. In addition, our method works for all metric 

spaces, not just vector spaces, can be easily implemented and scales well with 

increasing the number of nearest neighbors retrieved. We have further verified 

that it is critical to not only limit the number of disk accesses, but to perform 

most I/O  sequentially and to reduce the number of CPU operations to create 

an efficient access method.

5.2 Future R esearch

This thesis explores the challenges of creating an efficient access method for 

both high-dimensional data and general metric data. Some interesting research 

issues for future work include:

•  d e te rm in in g  a n  o p tim a l o v e rsam p lin g  r a te  a n d  th e  n u m b e r  o f  p iv o ts  to  

use  a t  q u e ry  t im e  for th e  O S e q * a lg o r ith m .

® Modifying the Q S e q + and O S e q * algorithms to process nearest neigh

bor queries, specifically, a good method is needed to estimate the nearest 

neighbor distance.

•  D e te rm in in g  a n  o p tim a l a lg o r ith m  fo r se lec tin g  V  in d e p e n d e n t  o f th e  

p iv o t se le c tio n  a lg o rith m  fo r th e  O S e q + a n d  O S e q *  m e th o d s .

• Exploring the effectiveness and efficiency of the clustering using the met

ric grid and comparing it to other state-of-the-art clustering algorithms.
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• Optimally selecting the number of rings and pivots to use for each data 

set when building the metric grid.

• Determining new ways to store the CC-Array so the number of rings and 

pivots can be increased without increasing the storage of the CC-Array.

• Investigating if the distribution of the data set changes through insertions 

and deletions, how will this affect the performance of the M-Grid and 

how can we detect this problem.
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