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Abstract

With the increasing complexity and capacity of modern Field-Programmable Gate

Arrays (FPGAs), there is a growing demand for efficient FPGA computer-aided de-

sign (CAD) tools, particularly at the placement stage. While some previous works,

such as RLPlace, have explored the efficacy of single-state Reinforcement Learning

(RL) to optimize FPGA placement by framing it as a multi-armed bandit (MAB)

problem, numerous AI techniques remain unexplored due to the outstanding engineer-

ing challenges of integrating them into the FPGA CAD flow, which is implemented

typically using C++. In this thesis, we propose VPR-Gym, a Python environment

built on OpenAI Gym that allows seamless integration with various machine learning

libraries, including PyTorch, TensorFlow, and Nevergrad, while enabling the compar-

ison between different AI techniques for FPGA placement optimization. To deter-

mine the optimal RL algorithm for FPGA placement, we perform regret analysis and

non-stationary analysis of MAB algorithms used in FPGA placement optimization.

Moreover, we introduce a learning objective that reformulates the MAB problem as

an optimization problem, thereby expanding the range of AI techniques that can

be investigated beyond those for MAB problems. To investigate the effectiveness of

different algorithms in FPGA placement and thus showcase the capabilities of our

VPR-Gym platform, we conduct experiments that compare the performance of var-

ious MAB algorithms and evolution strategy (ES) algorithms. Our findings demon-

strate that the ES approaches exhibit superior performance over the existing MAB

approaches, highlighting the effectiveness of VPR-Gym in facilitating AI research to

enhance FPGA placement.
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Chapter 1

Introduction

1.1 Motivation

The Field-programmable gate array (FPGA) is a type of Integrated Circuit (IC)

which can be configured after manufacturing. Although FPGA’s performance is not

as efficient and cost-effective as application-specific integrated circuits (ASIC), FPGA

offers flexibility, allowing users to tailor their specific application after the manufac-

turing of the chip. The flexibility and high performance make FPGA a popular choice

in many industries. For example, Microsoft has deployed FPGA hardware in Bing

and other data centers since 2014 [1, 2].

The growth of FPGA technology follows the exponential forecast of Moore’s law

[3], turning the FPGA into an intricate device with great capacity and architectural

complexity. Nowadays, the most powerful FPGA, AMD’s Versal VP1902 Premium

Adaptive SoC, has 18.5 million logical cells [4], increased from 8.5 million logical cells

available per device in 2019. The increasing capacity and architectural complexity

of modern FPGAs have led to a growing demand for efficient FPGA computer-aided

design (CAD) tools. Modern FPGA CAD flow can be divided into multiple steps [5],

as shown in Fig. 1.1. The introduction of each step is listed as follows:

• RTL Synthesis: RTL (Register Transfer Level synthesis) synthesis is the process

of translating a high-level hardware description of a digital design, typically

written in a hardware description language (HDL) such as VHDL or Verilog,

1



into a gate-level representation.

• Logic Synthesis: The logic synthesis stage focuses on optimizing clusters of logic

gates and registers in an effort to reduce the cost of the circuit.

• Technology Mapping: Technology mapping transforms the circuit from a net-

work of generic logic elements gates into a network of the logic blocks available

in the target FPGA.

• Packing: Packing, or clustering, involves organizing technology-mapped circuit

elements into logic blocks comprised of LUTs and flip-flops.

• Placement: The result of technology mapping and packing is a network of logic

blocks, which is located on the target two-dimensional FPGA device by the

placement step.

• Routing: Routing is to form the desired electrical connections between the logic

blocks in the post-placement design.

• Physical Synthesis: Physical synthesis provides feedback containing physical

information after placement (or routing) to earlier phases of the flow, to allow

better optimizations to be applied based on more accurate information.

Among the various stages in the CAD flow, placement is the most time-consuming,

while its outcome significantly impacts the runtime and quality of result (QoR) of the

subsequent routing stage [6]. Moreover, if a placement result requires an excessive

amount of wiring, the routing step will fail or be highly limited by the available

routing resources of the FPGA. Therefore, optimizing the placement stage is vital for

enhancing the overall efficiency of traditional FPGA CAD tools.
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Design in VHDL or
Verilog

Logic Synthesis

Technology Mapping

Packing

Placement

Routing

Bitstream Generation

Physical Synthesis

RTL Synthesis

Figure 1.1: Modern FPGA CAD flow.

1.2 FPGA Placement

The placement stage aims to determine which logical cell should implement the logical

components required by the input circuit design, in order to minimize the required

wiring and critical path delay (CPD). Because the FPGA placement is an NP-hard

problem, most algorithms are heuristic to find a sufficient result within a reasonable

runtime [7]. Traditionally, there are three categories of placement algorithms [7]:
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Simulated Annealing, Partition-based algorithms, and Analytical placement methods.

Simulated annealing mimics the annealing process used to gradually cool a sample

of molten metal in order to produce high-quality metalwork. Starting from an initial

placement configuration, simulated annealing introduces moves to the configuration

by swapping the positions of two blocks or moving a block to an unoccupied position.

A cost function is calculated afterward to determine whether to accept or reject the

moves. A hill-climbing mechanism allows the simulated annealing algorithm to accept

less desirable moves, in order to escape local optima. SA can guarantee high-quality

results, while it suffers from the long runtime. Versatile Place-and-Route (VPR) [8],

an open-source FPGA CAD tool, uses simulated annealing to perform FPGA place-

ment. Recently, Some researchers have reformulated SA into a Reinforcement Learn-

ing (RL) problem [9–11] (or specifically the multi-armed bandit (MAB) problem),

allowing the simulated annealing algorithms to generate “smart” moves by choosing

directed moves [12] or block types rather than randomly swapping blocks, which can

significantly improve the runtime without sacrificing QoR.

Partition-based algorithms use a divide-and-conquer paradigm by recursively par-

titioning a circuit design into two sub-circuits, which induces ever-smaller placement

problems. [13–15] are all fast placement methods for FPGAs, while using different

methodologies to partition the circuit and minimize the sub-circuits delay. Because

partition-based algorithms solve the problem locally, they produce solutions with

short runtime but suffer from low QoR.

Analytical placement methods define the placement goals as a mathematical opti-

mization problem based on design objectives and constraints then solve it to find an

optimal or near-optimal placement arrangement. Commonly, the analytical goal is to

optimize wirelength and increase routability, as done by Gplace [16] and elfPlace[17].

FPGA CAD tools, like [18], incorporate timing performance goals as well.
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1.3 Contributions

We investigate the RL algorithms of the VPR. We provide a theoretical analysis and

comparison between multiple RL agent algorithms. From the theoretical perspec-

tive, we find that the Upper Bound Confidence (UCB) family algorithm and Boltz-

mann–Gumbel Exploration (BGE) are better than the VPR’s current RL algorithm

for simulated annealing placement in FPGAs.

Meanwhile, we discovered an issue that can’t be solved by the current VPR al-

gorithm. The current algorithm doesn’t consider the FPGA placement problem’s

non-stationary. In the context of RL, non-stationary refers to a situation where the

optimal actions or policies change over time, which means that the algorithm needs

to continually adapt its policy to maximize its performance in the evolving environ-

ment. However, the current VPR algorithm that assumes stationary environments

may struggle to adapt to changing conditions. Based on this fact, we integrate the

multiple MAB algorithms in the VPR and conduct experiments to show whether

changing they can improve the FPGA Reinforcement Placement.

We notice that a wide variety of other AI techniques remain unexplored due to

the difficulty of directly integrating them into the FPGA CAD flow based on C++,

creating a significant obstacle for AI researchers who seek to contribute to the field

without specialized knowledge in FPGA CAD. To reduce the entry barrier, we propose

and develop VPR-Gym, a Python environment built on top of the OpenAI Gym

framework for simulated annealing FPGA placement. Our platform enables seamless

integration with several Python-based machine learning libraries, including PyTorch

[19], TensorFlow [20], and Nevergrad [21], which allows researchers to focus on high-

level algorithm design and reduces the engineering effort required for porting ML

libraries from Python to C++.

Besides proposing Vpr-Gym, we introduce a learning objective that formulates

the FPGA placement task into an optimization problem, expanding the range of AI
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techniques that can be explored beyond algorithms for the MAB problem.

To demonstrate the capability of our platform and learning objective, we conducted

experiments on VPR-Gym, comparing the performance of various MAB algorithms as

well as different algorithms that belong to evolution strategy (ES). Note that ES is one

of the AI techniques that has not been previously utilized for FPGA placement. Our

experiments reveal that the ES approaches exhibit superior performance compared to

the existing MAB approaches, demonstrating the potential of VPR-Gym to facilitate

AI research for FPGA simulated annealing placement and enhance its performance.

1.4 Thesis Outline

The content of this thesis is organized in the following manner. Chapter 2 is a survey

of related background. Chapter 3 shows the investigation of VPR’s RL algorithms.

Chapter 4 demonstrates our VPR-Gym and its design details. Chapter 5 details our

experiment setting. Chapter 6 presents the experimental results of different MAB

and AI techniques on VPR-Gym. Chapter 7 contains the conclusion and potential

future works.
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Chapter 2

Background

2.1 FPGA Simulated Annealing Placement

VPR, which is part of the FPGA CAD design flow Verilog-to-routing (VTR) 8 [22],

applies Simulated Annealing (SA) to achieve high QoR in placement. SA randomly

performs perturbations that move and swap the blocks on an FPGA board to op-

timize the placement. RLPlace, as illustrated in Fig. 2.1, is the SA-based FPGA

Reinforcement Learning (RL) placement technique on VPR proposed by Elgammal

et al.[9]. Directed moves, e.g., Bounded Median Move, Critical Random Move, etc.

[12], are more likely to produce useful perturbations compared with random moves.

Six different types of directed moves are added to the standard VPR 8 SA FPGA

placement algorithm and can benefit QoR in different ways, e.g., in terms of wire

length, critical path delay (CPD), or both. Table 2.1 shows the detailed information

of each directed move.

Directed moves’ effectiveness depends on the operating netlist, current placement

progress, targeted architecture, etc. Since manually scheduling directed moves that

can balance all these factors is challenging, a multi-armed bandit (MAB) agent is

designed to learn and select the most effective directed move type for optimizing the

SA placement process [9, 10]. Specifically, for every single step:

• The agent chooses a directed move type as an action;

7



Table 2.1: Information about different FPGA directed moves.

Directed Move Type Average Runtime Prefer Optimization
Target

Random Move Low None

Bounded Median Move High Wirelength

Bounded Edge-Weighted
Median Move

Median Wirelength and CPD

Bounded Centroid Move High Wirelength

Bounded Weighted
Centroid Move

Median Wirelength and CPD

Critical Random Move Low CPD (Timing
Performance)

Quasi-Bounded Feasible
Region Move

Median CPD (Timing
Performance)

• The move generator decides the origin and destination of the next move;

• SA process swaps the logical blocks at the origin and destination and returns

the change in cost and whether to accept the swap;

• The observer sends a reward to the agent based on SA’s outcome.

Murray et al. [11] propose another way to enhance the VPR by defining logical

block types as the action space and performing RL on it, which also outperforms the

standard VPR 8 FPGA placement algorithm. Similarly, the agent is designed to solve

an MAB problem, except that the available actions are logical block types instead of

directed move types.

All these approaches [9–11] demonstrate strong scalability characteristics: As the

FPGA size increases, neither the number of directed move types nor logical block

types will experience a corresponding increase, which means the RL agent is facing

the same problem size.

However, there are several challenges to investigating AI techniques for FPGA

8



Agent

Simulated
Annealing (SA)

Process

Move
Generator Observer

Directed move
type (Action)

Environment

Accept / Reject
Origin and Destination

coordinates

reward

Figure 2.1: The RLPlace mechanism

placement:

• Applying latest AI methods: since VPR is written in C++, it is hard to

apply popular state-of-the-art AI techniques to FPGA placement, as most of

these techniques are developed in Python language.

• Algorithm-Environment Coupling: Existing FPGA placement algorithms [9,

23] are all highly coupled with the rest parts of VPR, serving as one phase of

VPR’s FPGA CAD workflow. This means employing a new algorithm requires

a deep understanding of VPR, and the new agent must be written inside the

source code of VPR. Besides, every improvement to the agent learning code

requires a recompilation of the entire VPR project, which is time-consuming.

• Algorithm Limitation: Existing FPGA placement algorithms [9, 23] only

support a reinforcement learning formulation, specifically the MAB problem,

maximizing the long-term rewards during the simulated annealing process, which

are assumed to be stationary. However, RLPlace has investigated its agent be-

havior on different FPGA designs and observed that the optimal directed move

9



type is changing over time [9].

2.2 The Multi-armed Bandit Problem

The MAB problem is a classic problem in RL, in which the agent iteratively selects

from multiple competitive actions in a way that can maximize the expected out-

come. Note that the properties of those choices are unknown or partially known at

the selecting moment, and may become better understood by choosing actions and

receiving rewards. In fact, MAB is a simplified special case of RL, as shown in Fig.

2.2. Because there is no observation in MAB, the knowledge of each action is based

on the historical rewards receives from the environment while taking this action.

Agent

Environment

Reward Action

(a) MAB

Agent

Environment

Reward ActionObservation

(b) RL

Figure 2.2: Formulation of MAB problem and RL problem

In the MAB problem, the agent faces an exploration-exploitation trade-off dilemma:

• Exploration: Explore every action and improve the estimation of the action’s

expected reward.

• Exploitation: Exploit the optimal action in order to maximize the overall re-

ward.

2.3 Evolution Strategy

ES is a heuristic algorithm inspired by biological evolution. A typical evolution strat-

egy algorithm is demonstrated in Algorithm 1. It maintains a population of candidate

10



solutions and creates new candidate solutions by recombining and mutating the exist-

ing candidates. By eliminating the worse candidates in the population, all candidates

generally converge to the optimal solution. ES has emerged as a highly effective

solution for continuous optimization problems and its popularity has been further

bolstered by the recent surge of research [24].

Algorithm 1 Evolution Strategy

Require: Initial population size N , number of generations G
Ensure: Solution x∗

1: Initialize population P with random solutions
2: for g = 1 to G do
3: Evaluate fitness for each solution x in P
4: Select parents Pparents

5: Generate offspring o by recombining p1 and p2

6: Mutate offspring o
7: Update P by choosing the best solutions among o and P
8: end for
9: return Best solution x∗ found in P

2.4 OpenAI Gym

OpenAI Gym [25] is an open-source toolkit designed to facilitate research and devel-

opment in reinforcement learning. It provides a collection of diverse environments

that enable users to create and test reinforcement learning agents. Also, it provides

a standardized API for users to create their own environment. The standard API is

easy to work with popular ML libraries, such as Tensorflow [20] and Pytorch [19].

The original purpose of OpenAI Gym was to provide a standardized and accessi-

ble way for researchers and practitioners to experiment with reinforcement learning

algorithms. Hence, those early environments are mainly derived from classic control

problems [25] and simple arcade games [26], as shown in Fig. 2.3 and Fig. 2.4. They

have become popular benchmarks to compare the performance of different RL agents

and investigate the behaviours of those algorithms. However, there is an opinion [27]

that believes that these toy environments hinder potential principled studies in RL

11



because some state-of-the-art methods are overfitted to those toy environments but

not to real-world problems.

(a) Cart Pole

(b) Mountain car

Figure 2.3: Classic control problems: (a) is to keep the pole vertical and (b) is to
move the car from the bottom to the right hill.

Fortunately, a variety of OpenAI Gyms have been built recently for different

real-world application areas, such as compiler design [28], auto traffic control [29],

Robotics [30], and networking [31], which provide more challenging but fruitful puz-

zles for RL development. Compared to toy environments, those real-world gyms no

longer represent ideal problems. Instead, the problems have become more complex.

The complexity lies in two perspectives:

• The difficulty of the problem increases. For example, real-world problems usu-

ally come with noise and disruption.

• The interaction between agent and environment requires a lot more effort.

12



Figure 2.4: The Pingpong game in the OpenAI Atari Gym environment

The effort spent on interaction is greatly reduced by the availability of OpenAI Gym

in different research areas. As an illustration, Piotr et. [31] have built Ns3-gym in

order to apply ML techniques such as RL to the Ns-3 network simulator. They built

a connection between Python and Ns-3 network simulator via sockets and abstract

the complex details about the Ns-3 network simulator, as shown in Fig. 2.5. All

details are hidden from the agent except the Gym API. The convenience brought by

Ns3-gym catalyze the research in networking area such as in [32].

13



Figure 2.5: Architecture of the ns3-gym framework
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Chapter 3

The MAB Algorithm in FPGA
Placement

In this section, we first introduce the current MAB algorithm applied to VPR. Then

we analyze the weakness of the current algorithms and provide MAB algorithms that

can mitigate the shortcomings.

Before further discussion, we want to provide a clearer definition of the MAB

problem: Let µ1, . . . , µN be the mean values associated with the reward distributions

for actions a = 1, . . . , N . The agent is required to iteratively choose one action at at

each round t and observe the associated reward rt. The objective is to maximize the

sum of the collected rewards Rsum =
∑︁T

t=1 rt, i.e., the overall reward in the long run.

3.1 Introduction to Current VPRMABAlgorithms

Currently, VPR’s MAB algorithms are Epsilon-greedy and Boltzmann Exploration

(also called Softmax).

3.1.1 Epsilon-greedy

Algorithm 2 shows the procedure of Epsilon-greedy: Given a fraction ϵ, the agent

randomly selects one from all available actions by this fraction; in other cases, the

agent always selects the greedy action with the highest expected reward.

15



Algorithm 2 Epsilon-Greedy

Require: Number of actions N , exploration rate ϵ
Ensure: Selected action a
1: Initialize sum of reward S(a) for all a ∈ {1, 2, . . . , N} to zeros
2: Initialize counter N(a) for all a to zeros
3: while not end do
4: if rand uniform(0, 1) < ϵ then
5: Select a random action a uniformly from {1, 2, . . . , N}
6: else
7: Select action a with the highest estimated value: a = arg maxa

S(a)
N(a)

8: end if
9: Take action a, observe reward r
10: Update action-value estimate: N(a)← N(a) + r
11: Update action counter: N(a)← N(a) + 1
12: end while

3.1.2 Boltzmann Exploration (BE)

The agent assigns a different probability of being chosen to each action based on the

action value Q(a), as in Algorithm 3. The action value Q(a) represents the expected

reward from selecting action a. The exploitation goal is achieved by choosing the best

action with the highest probability. On the other hand, the other non-greedy actions

can also be explored, hence the requirement of exploration is also met. The action

value Q(a) can be defined in various forms, while the average of accumulated rewards

is a common choice [33, 34].

Algorithm 3 Boltzmann Exploration

Require: Number of actions N , temperature parameter τ
Ensure: Selected action a
1: Initialize action-value estimates Q(a) for all a ∈ {1, 2, . . . , N} to zeros
2: while not end do
3: Compute the softmax distribution over action-values:
4: P (a) = exp(Q(a)/τ)∑︁N

b=1 exp(Q(b)/τ)

5: Select action a based on the probability distribution P (a)
6: Take action a, observe reward r
7: Update action-value estimate: Q(a)
8: end while

16



3.2 Algorithm Analysis

3.2.1 Regret Analysis

Definition

One popular measure of a strategy addressing this exploration/exploitation dilemma

is regret ρ. Recall that µ1, ..., µn are the mean values of reward distributions for

different actions. Note that µ1, ..., µn are fixed values and remain unchanged in the

regular MAB setting. The regret after T rounds is defined as:

ρ = Tµ∗ −
T∑︂
t=1

rt (3.1)

where µ∗ = max(µ1, ..., µn) is the mean value of the optimal action’s reward dis-

tribution and rt is the reward at round t. Therefore, the regret ρ is defined as the

expected difference between the reward sum associated with the optimal action and

the sum of the collected reward. Regret is a fundamental concept that can be used

to compare different algorithms for MAB problems. Algorithms that achieve lower

regret are considered to have better performance theoretically.

Lai and Robbins [35] prove that the regret RT of MAB grows at least logarithmi-

cally, denoted by ρT = Ω(log T ). An algorithm is said to solve the MAB if its regret

matches this lower bound [33].

Epsilon-greedy and BE Regret Bound

According to Kuleshov and Precup’s summary [36] of the epsilon-greedy algorithm, its

regret depends on whether the ϵ is a fixed value or not: if ϵ is fixed, its expected regret

is linear O(T ); if ϵ is decreasing over time, Cesa-Bianchi and Fisher [37] prove it has

polylogarithmic regret O(log T 2). As for the BE algorithm, Cesa-Bianchi and Fischer

[37] prove that the BE algorithm with decreasing temperature τ has a polylogarithmic

regret O(log T 2). Neither Epsilon-greedy nor BE is able to solve the MAB problem.
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Upper Confidence Bound (UCB) algorithm

The UCB family of algorithms was proposed by Auer et al. [38]. It chooses actions

based on the combination of historical observed reward and uncertainty, as shown in

Algorithm 4.

Algorithm 4 UCB Algorithm

Require: Number of arms N , confidence parameter α
Ensure: Selected arm a
1: Initialize sum of reward S(a) for all a ∈ {1, 2, . . . , N} to zeros
2: Initialize counter N(a) for all a to zeros
3: Initialize time step t = 1
4: while not ended do
5: Select arm a with the highest UCB value:

6: a = arg maxa

(︂
S(a)
N(a)

+ α
√︂

log(t)
N(a)

)︂
7: Take action a, observe reward r and new state
8: Update S(a), N(a)
9: Increment time step: t← t + 1
10: end while

The UCB algorithm [38] was proposed based on the idea of optimism in the face

of uncertainty from Lai and Robbins [35]. The expected regret of the UCB algorithm

is bounded by O(log(t)). To verify whether UCB can improve the performance of

FPGA placement, we describe experiments in the later chapters.

Boltzmann–Gumbel Exploration (BGE)

BGE is a variant of Boltzmann Exploration proposed by [34] together with theoretical

proof that BGE has near-optimal guarantees, in contrast to BE which has a monotone

learning rate which is sub-optimal. BGE leverages the Gumbel-max trick [39] by

adding a noise term drawn from a Gumbel distribution to increase the robustness of

the exploration, as shown in Algorithm 5. Experiments are conducted in the later

chapters to compare the performance among BGE and other MAB algorithms.
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Algorithm 5 Boltzmann-Gumbel Exploration

Require: Number of arms N , temperature parameter τ
Ensure: Selected arm a
1: Initialize action-value estimates Q(a) for all a ∈ {1, 2, . . . , N} to zeros
2: Initialize counter N(a) for all a to zeros
3: Initialize time step t = 1
4: while not ended do
5: Sample values from the Gumbel distribution for each arm a as Zt,a

6: Compute the Boltzmann-Gumbel probabilities:

7: P (a) =
exp((Q(a))/τ)+

√︂
C2

N(a)
Zt,a∑︁N

b=1 exp((Q(b))/τ)+
√︂

C2

N(b)
Zt,b

8: Select arm a based on the probabilities P (a)
9: Take action a, observe reward r
10: Update Q(a), N(a)
11: Increment time step: t← t + 1
12: end while

3.2.2 Non-stationary Analysis

A limitation of the above MAB algorithms is that they are designed to maximize the

overall rewards, while concept drift might be present in the SA process during FPGA

placement, i.e., the expected reward for a directed move type can change at every

time step. Elgammal et al. [9] investigate the VPR’s BE agent behavior on different

designs. Fig. 3.1 shows the number of moves at different temperature indexes on the

stereovision1 design from the VTR benchmark. Note that the B.W.Med., C.R., and

QB.F.R. are designed to be activated near the end of the simulated annealing process.

Each temperature index represents one epoch in the SA process and a higher temper-

ature index means the epoch is closer to the end. At the early annealing, the agent

almost equally chooses the move type. By the definition of the BE algorithm, the µ of

each move type is almost equal. After the middle of the annealing process, diversity

appears, which means the mean value µ of each directed move type is changed.

In this case, the problem is called the non-stationary bandit problem. Hartland

et al. [40] propose that standard MAB algorithms are not appropriate for abruptly

changing environments. Therefore, we apply Discounted Thompson Sampling (DTS)
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Figure 3.1: The number of directed move types for stereovision1 at different temper-
atures.

[41], a Thompson Sampling [42] variant designed for the non-stationary MAB prob-

lem, to the FPGA placement problem. Unlike other MAB algorithms, DTS system-

atically increases the variance of the unexplored actions’ prior distribution in order

to increase the probability of picking them. DTS’s implementation is specified in

Algorithm 6.
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Algorithm 6 Discounted Thompson Sampling

Require: Number of arms N , discount factor γ
Ensure: Selected arm a
1: Initialize Bayesian distributions β for each action a ∈ {1, 2, . . . , N}
2: while not ended do
3: for a = 1 to N do
4: Sample a value θa from the distribution for action a
5: end for
6: Select action a with the highest sampled value:
7: a = arg maxa (θa)
8: Take action a, observe reward r
9: Update β based on reward r and discount factor γ:
10: end while
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Chapter 4

ES algorithm in FPGA placement

In this section, we first propose a new problem formulation for the FPGA SA-based

placement problem in order to broaden the range of AI techniques that can be used

on this specific problem, including but not limited to ES algorithms. Under the new

formulation, the problem turns from an MAB problem into a continuous optimization

problem. Next, we apply ES algorithms to solve the continuous optimization problem

with a thorough discussion about their features and the reasons for adopting them.

4.1 Problem Formulation

The current learning objective in FPGA placement is to learn the best directed move

at the current step without observations from the environment, which can only be

solved by the MAB algorithms. In order to accommodate a wider range of AI op-

timization techniques, we propose a more general learning objective: let the agent

learn the optimal or near-optimal ratio among all available actions. Our learning

objective converts the current RL (MAB) formulation of FPGA placement into an

optimization problem, as shown in Fig. 4.1, which allows us to solve the problem

using ES, as well as a potentially broader range of other AI optimization algorithms.

The MAB problem is a special case under this formulation when k = 1. For example,

if the agent is the UCB algorithm, it will update its knowledge every time it receives

a reward and propose an action by setting one action’s probability to 1 and all others
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to 0.

Environment

Agent

V

Probability

action

Activation
Function

Yes

No

Update Loss(V)

count++

count = 0

Figure 4.1: Problem Formulation

We define a control vector V as the optimization target to control the probability

of choosing each action. The length of V is determined by the number of available

actions. For example, if the agent needs to choose among 7 directed move types, the

length of V is 7. Then, the probability Pa of each action a is given by

Pa =
Sig(Va)∑︁N
i=1 Sig(Vi)

, (4.1)

where Sig(x) = 1/(1− e−x) is the Sigmoid activation function over a domain of real

values and N is the number of available actions. We apply the Sigmoid activation
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function because it can map the real number domain to a range between 0 and 1, by

which we don’t need to set up constraints to use continuous optimization algorithms

such as ES.

The optimization problem is to find an input vector V that minimizes a loss func-

tion Loss(V), which is defined as

Loss(V) = −
t∑︂

i=(t−k+1)

ri. (4.2)

Minimizing Loss(V) will maximize the sum of reward during the past τ steps. As the

agent maximizes the reward dynamically in moving windows, the overall placement

performance is maximized. We will show that this formulation can accommodate

multiple algorithms by changing the specific form of action sampling probability Pa

and minimizing different losses as functions of step-wise rewards. In fact, by adjusting

k, we can dynamically generate a non-stationary policy to sample different actions as

the SA process progresses.

4.2 Apply ES Algorithms

ES, as discussed in Section 2.3, is a category of algorithms that mimic biological

evolution. We introduce ES to solve FPGA placement with the problem shown in

Fig. 4.1. ES agent proposes a candidate vector V from its population and transfers

it into a probability distribution via a Sigmoid activation function. Action will be

sampled from the probability distribution until k steps have been taken. After k steps

have been taken, the ES agent receives Loss(V) as the fitness of the candidate. Then

the agent performs an update and proposes a candidate V again. By generating new

candidates and eliminating worse candidates among them, the ES agent optimizes the

probability Pa periodically and dynamically as moving windows, i.e., every k steps,

the ES agent will propose V to minimize the loss term in (4.2).

Specifically, we introduce two ES algorithms into the VPR placement problem, in-

cluding Test-Based Population Size Adaptation (TBPSA) [43] and Covariance Matrix
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Adaptation (CMA) [44]. CMA’s design follows the concept of ES which is shown in

Algorithm 1, except it uses a covariance matrix to guide the mutation of its candidate,

which can lead to faster convergence to optima. The covariance matrix is a matrix

that summarizes the relationship between different variables. In ES cases, variables

are the dimensions of the optimization problem’s input. Fig. 4.2 demonstrates the

intuition of how CMA works: the dotted line represents the covariance matrix and

it move generally towards the global optima. Besides the traditional features with a

covariance matrix, TBPSA has a population control features, adjusting its population

size with a statical test.

Figure 4.2: Illustration of the CMA algorithm [45].

TBPSA and CMA both have the ability to escape from local optima, increasing

the robustness to the non-stationary in FPGA placement. TBPSA applies a popu-

lation size adaptation technique [46] to increase the population size to explore the

search space more thoroughly when it gets stuck in local optima or when there is a

need to handle noise. Conversely, it can decrease the population size to accelerate
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convergence. On the other hand, CMA uses a restart strategy [47] to escape from

local optima, i.e., when the algorithm stagnates, it will restart from a random initial

point. According to [43, 46], TBPSA outperforms CMA in noisy settings as well as

multimodal settings which means the presence of many local optima.
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Chapter 5

VPR-Gym

In this chapter, we introduce the design and implementation of VPR-Gym, a novel

approach to interacting with VPR through the OpenAI Gym framework in Python.

As illustrated in Fig. 5.1, VPR-Gym abstracts the SA-based placement in VPR away

from the agent such that the researchers can employ different agents directly without

having background knowledge about VPR C++ source code. In the following section,

we will discuss different components of VPR-Gym.

Agent

VPR-Gym

OpenAI GYM VPR

env.step()

attributes

env.init()

FPGA
Placement

action

reward

start VPR

input
params

Stage Change

Other
Information update

update

Figure 5.1: Architecture for VPR-Gym.
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5.1 Overview

Fig. 5.2 shows an example of how to use VPR-Gym. Lines 2-3 show the initial-

ization of VPR-Gym. We provide two options for the environment: VprEnv and

VprEnv blk type, depending on whether block type will be a part of the action

space, which will be introduced in Section 5.3. Lines 5-8 show how the agent learns

using VPR-Gym. At each step, the agent takes an action and passes the action to

VPR via function env.step(). The function will return a reward and other neces-

sary information from the VPR environment to the agent. Updating the agent is not

necessary after each env.step(): researchers are free to define the agent’s behavior.

For example, to follow the optimization learning objective, researchers can collect

the rewards over any given number of steps and use that to update the agent action

probability distribution. When the FPGA placement process terminates, the function

env.step() will set done = True as a flag to indicate termination.

Figure 5.2: Example of VPR-Gym usage.

5.2 Gym Initialization

The initialization of the gym environment starts a VPR kernel under the Gym mode.

Under this mode, the VPR program will pause at certain points and communicate

with the OpenAI Gym framework via the Zeromq socket.

Users can specify the arguments in the VprEnv() constructor to control the set-
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ting of VPR. The OpenAI Gym framework uses those arguments to initialize the

VPR kernel via the command line interface (CLI). Therefore, any viable simulation

settings in the VPR kernel are still viable in the VPR-Gym. Note that our VPR-

Gym supports parallel initialization and parallel execution. This, however, requires

correctly assigning different working directories and port numbers for different tasks

to avoid conflicts between multiple environments, which is shown in Fig. 5.3.

Figure 5.3: Example of VPR-Gym parallel initialization.

5.3 Action Space

To build our basic environment VprEnv in VPR-Gym, we employ the same action

space as that in RLPlace [9]: there are 7 directed move types, which are Random

Move, Bounded Median Move, Bounded Edge-Weighted Median Move, Bounded Cen-

troid Move, Bounded Weighted Centroid Move, Critical Random Move, and Quasi-

Bounded Feasible Region Move. Therefore, in VPR-Gym, an action space is specified

by a single discrete number from 1 to N , where the size of action space N is also

subject to changes because there are two placement stages in VPR, for which the

numbers of available directed move types are 4 and 7, respectively.

In VPR-Gym, we also introduce a new custom environment called VprEnv -

blk type where the logical blocks’ types are added to the action space. The action

space of VprEnv blk type is defined as a 2-tuple, where the first element represents
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directed move types and the second element represents the block types. Note that for

the two directed moves that only happen in the second stage (Bounded Weighted

Centroid Move and Critical Random Move), selecting logical block types is not

supported because these directed moves only manipulate blocks with highly critical

connections. If there are some block types which do not contain highly critical blocks,

this action pair will always lead to an aborted result and become a trivial action.

Because we define the action space in a similar way as demonstrated in 2.1, VPR-

Gym inherits the scalability that the current VPR placement algorithm has. The

action space size won’t experience an increase as the targeted FPGA design’s size

increases.

5.4 Reward

VPR-Gym provides more freedom for researchers to design the agent’s reward. Three

variables are passed from VPR to the OpenAI Gym framework by storing them in

the info dictionary, including the normalized change of the wire length cost (∆cost),

the normalized change of the timing cost (∆tcost), and the change of the bounding

box (related to Wire Length) cost (∆bbcost). All existing reward functions can be

calculated from these three parameters. For example, the reward function of WLbi-

ased runtime aware [9] is

rt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1
t(i)

((0.5 + Rs) ∗∆bbcost

+(1−Rs) ∗∆tcost), if ∆cost < 0

0, otherwise

(5.1)

where Rs is a constant empirically set to 0.4. Equation (5.1) can be computed locally

at the Python end with these three variables. Moreover, in VPR-Gym, the value of

Rs becomes an adjustable variable, which can be learned by the agent or tuned by a

hyperparameter optimization mechanism.
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5.5 Environment Attributes

Other important information is stored in the attributes of the environment, including:

• num moves: An integer shows the number of logical block types in the targeted

FPGA design;

• num types: This is a list consisting of the number of blocks for each logical

block type category;

• horizon: An integer that shows the number of steps within one temperature in

the SA Process. After each temperature ends, some FPGA placement settings

are changed, such as the maximum distance a block can be moved. We assume

that this change brings an abrupt change to the reward distribution of each

action. The horizon indicates how often an abrupt change happens. Note that

some multi-armed bandit algorithms require the horizon information in order

to better plan the exploration and exploitation;

• is stage2: This is a Boolean variable showing a stage change of the SA process.

As mentioned above, it would affect the number of available directed move

types.
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Chapter 6

Experimental Result

6.1 Experimental Setting

6.1.1 Environment

We compare the AI algorithms in two different environments setting, which include

a primary environment VprEnv and a custom environment VprEnv blk type, as

defined in Section 5.3. The number of available actions in each environment is shown

in Table 6.1. The number of block types depends on the benchmark being used.

The available blocks that were considered in VPR placement are Input/Output (IO),

phase-locked loop (PLL), logic array block (LAB), digital signal processing (DSP),

and memory blocks M9K and M144K.

Table 6.1: The number of available actions in VprEnv and VprEnv blk type.

Environment Stage 1 Stage 2

VprEnv 4 7

VprEnv blk type 4 * (# of block types) 7 * (# of block types)

6.1.2 Benchmark

The experiments on VprEnv were conducted on eight circuits from the Titan23

benchmark suite [6], which are stereo vision, bitonic mesh, neuron, SLAM spheric,

dart, mes noc, denoise, and cholesky mc. The experiments on VprEnv blk type
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were conducted on five circuits from the Titan23 benchmark suite [6], which are

stereo vision, bitonic mesh, neuron, SLAM spheric, and dart.

6.1.3 Metrics

We evaluate the runtime/QoR tradeoffs of different placement techniques by the post-

placement estimated wirelength (WL) (based on VPR’s fanout-adjusted WL metric)

and critical path delay (CPD) versus runtime to align with [8, 9]. For each bench-

mark, we set 6 different numbers of moves attempted at each temperature, which will

provide 6 runtime budgets. We use geometric means (Equation (6.1)) to combine

the algorithms’ performance on each benchmark versus 6 different runtime budgets.

At each runtime budget, 3 separate experiments are conducted under different ran-

dom seeds. Their average wirelength/CPD is used to perform the evaluation and

comparison.

Geometric Mean = n
√
x1 · x2 · . . . · xn (6.1)

6.1.4 Algorithm Hyperparameter

We evaluate MAB algorithms including Softmax (Boltzmann Exploration), UCB,

BGE and DTS, as discussed in Chapter 3. Note that we don’t evaluate Epsilon-

greedy because in [9] a thorough experiment demonstrated that Softmax is superior

to Epsilon-greedy in SA-based FPGA placement. The MAB algorithms are from

SMPyBandits [48], an open-source library for MAB problems.

• Softmax: Temperature τ = 0.01

• UCB: Constant α = 1

• BGE: Constant C = 0.5

• DTS: Discount factor γ = 0.999
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Also, we evaluated two ES algorithms: TBPSA and CMA. Their hyperparameters

are set as the default value in [21]. The ES algorithms are updated every k = 100

moves. The reward that is used for updating the MAB and ES algorithms is calculated

based on basic reward function from [8] as suggested in [9].

6.2 Result in VprEnv

Fig. 6.1 presents the post-placement estimated WL and CPD of different algorithms

on the Titan23 benchmark suite. We discuss the performance to showcase different

algorithms’ performance on VprEnv.

6.2.1 MAB Algorithms vs. ES Algorithms

Compared to the ES algorithms, the MAB agents require a longer runtime to com-

plete all the runtime points in each SA temperature, as they update on every move,

leading to the increased computational cost. In terms of the estimated WL, the ES

algorithms exhibit superior performance across all runtime points. In terms of the

estimated CPD, DTS shows the best overall performance. However, all six algorithms

demonstrate CPD that doesn’t monotonically decrease, which is consistent with the

results of RLPlace method [9].

6.2.2 TBPSA vs. CMA

TBPSA demonstrates better performance compared with the CMA algorithm on both

estimated WL and CPD, although its runtime is slightly higher under the same run-

time setting. Recall that TBPSA outperforms CMA in noisy settings and multimodal

settings as supported by experimental and theoretical results [43, 46]. Either the ro-

bustness to noise or the stronger ability to escape local optima helps TBPSA achieve

superior performance compared with CMA.
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6.2.3 BGE vs. Softmax

Cesa-Bianchi, Nicolò, et al. [34] suggest that the Boltzmann Exploration strategy with

a monotone learning-rate sequence is sub-optimal and they propose a non-monotone

schedule strategy, which is the BGE algorithm. Although according to the conclusion

by Cesa-Bianchi [34] BGE algorithm should be better than the softmax algorithm, the

BGE agent doesn’t show a dominant result compared with softmax: BGE is better

in wire length but worse in CPD compared with softmax. As the optimal directed

move type is subject to change over time, we anticipated this result since it violates

the assumption underlying the MAB problem.

6.2.4 DTS vs. Other MAB Algorithms

DTS is a variant of Thompson Sampling designed for non-stationary multi-armed

bandit problems. Non-stationary multi-armed bandit means that the expected re-

ward of each arm (action) is subject to change, which matches the SA-based FPGA

RL placement problem’s nature, as different directed moves would be preferred at

different annealing temperatures. Hartland et al. [40] propose that standard MAB al-

gorithms, such as UCB and Boltzmann Exploration, are not appropriate for abruptly

changing environments. The results demonstrate that DTS outperforms other MAB

algorithms, which matches Hartland et al.’s conclusion. The results indicate that it’s

fruitful to consider the non-stationary problem in designing the SA-based FPGA RL

placement agents.

6.3 Result in VprEnv blk type

Fig. 6.2 shows the comparison of post-placement estimated wirelength and CPD

between multiple algorithms on the custom environment. We see that the TBPSA

outperforms all other algorithms in both wirelength and CPD. This result demon-

strates that the TBPSA is able to learn better than the MAB agents in environments
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Figure 6.1: Comparison of different algorithms in VprEnv at 6 different runtime
points (3-seed average). The lower the better. TBPSA and CMA are ES algorithms.
SOFTMAX, UCB, BGE, and DTS are MAB algorithms
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with larger action space. In the case of employing more directed move types and

block types to the toolkit, using the TBPSA algorithm can better enhance the CAD

tool’s performance compared to other algorithms.

6.4 Discussion

Through the above experiments, the proposed ES has proven to be superior and

more efficient than the traditional RL (MAB) approaches for FPGA placement, espe-

cially in environments with a more complex action space. Besides, VPR-Gym enables

the evaluation of a diverse range of AI optimization algorithms without implement-

ing them in the VPR source code in C++, leading to insightful discoveries such as

introducing discounting factors into MAB agents and adding robustness to noise.

Furthermore, Table 6.2 shows VPR-Gym’s overhead using the CMA agent on the

neuron circuit which belongs to the Titan23 benchmarks, in terms of the time spent

between the point the agent receives a reward and the point the agent takes an action

in the next step, and its proportion in the total running time. Although the CMA

agent can perform calculations fast, the overhead is mainly caused by Inter-process

communication between VPR and the OpenAI Gym framework. This means that

VPR-Gym can mainly be used as a tool to fast investigate, prototype, select, and

improve a wide range of AI techniques, while the optimized algorithms should still

be transplanted to the original VPR kernel to further conduct and finalize FPGA

placement in practice.
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Figure 6.2: Comparison of different algorithms on VprEnv blk type at 6 different
runtime points. The lower the plotted metrics better. TBPSA outperforms other
algorithms on both post-placement estimated wirelength and CPD
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Table 6.2: CMA agent’s Overhead at 6 different runtime points

Inner num Overhead (s) Total Time (s) Overhead (%)

0.1 48.40 97.92 49.43

0.2 93.11 155.93 59.71

0.3 129.42 204.03 63.43

0.4 185.86 280.81 66.19

0.5 209.44 312.96 66.92

0.6 275.28 386.41 71.24
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Chapter 7

Conclusions & Future Work

7.1 Conclusions

In this thesis, we conducted an investigation of a wide range of AI techniques’ per-

formance on SA-based FPGA placement. In order to fully explore the potential of

different AI techniques, we propose the VPR-Gym for the sake of lowering the barrier-

of-entry to the development of AI optimization algorithms for FPGA RL placement.

VPR-Gym significantly simplifies the implementation of agents in the VPR place-

ment research area and enables the interaction between VPR and some advanced

Machine Learning and optimization libraries such as Nevergrad [21]. Furthermore,

we performed experiments on VPR-Gym and provided exciting findings that can help

enhance the FPGA CAD tools’ placement performance from the algorithmic perspec-

tive as the following:

• In the original setting, applying algorithms with robustness to non-stationarity,

is able to improve the performance;

• The effectiveness of ES algorithms demonstrates that it is unnecessary to per-

form updates upon every single SA move, which can significantly reduce the

time spent on the AI end;

• When appending the action space, such as adding block type selection, ES

algorithms, especially TBPSA, perform better than MAB algorithms.
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7.2 Future Work

In the future, we plan to extend VPR-Gym’s features. The current trend of RL is

using deep neural networks as the agent policy. We will focus on adding state infor-

mation to VPR-Gym to facilitate studies of Deep Q-Network (DQN) [49], contextual

bandit [50, 51], and other RL techniques in our future work. Another interesting

avenue is shaping the reward function, which can better relate to the post-placement

estimated wirelength and CPD metrics. Last but not least, we plan to consider

multi-agent systems. At present, the Sequential Annealing (SA) process within VPR

operates sequentially and is thus unable to harness the CPU’s multi-core capabilities.

By duplicating the VPR with multiple copies to different agents and periodically re-

placing the placement result with the best solution among all the agents, multiple

agents can work in a parallel and competing manner.

We can also consider the techniques investigated in this thesis in other FPGA

CAD steps outside of the placement problem. For example, [52] uses epsilon-greedy

to speed up the routing step while maintaining a similar or better QoR as compared

to the conventional negotiation-based congestion-driven routing solution. According

to our findings in this thesis, there are multiple possible ways to further improve the

routing performance: one way is to use more robust MAB algorithms such as DTS;

the other way is to re-formulate the problem and apply other AI techniques such as

ES.

41



Bibliography

[1] C. Nast and W., Microsoft Supercharges Bing Search With Programmable Chips,
https://www.wired.com/2014/06/microsoft-fpga/, Jun. 2014.

[2] Project Catapult - Microsoft Research, https ://www.microsoft .com/en- us/
research/project/project-catapult/.

[3] G. E. Moore, “Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.,” IEEE Solid-
State Circuits Society Newsletter, vol. 11, no. 3, pp. 33–35, 2006. doi: 10.1109/
N-SSC.2006.4785860.

[4] With 18.5 million logic cells, AMD’s Versal VP1902 Premium Adaptive SoC be-
comes “World’s Largest FPGA”, https://www.eejournal.com/article/with-18-
5-million-logic-cells-amds-versal-vp1902-premium-adaptive-soc-becomes-worlds-
largest-fpga/, Jul. 2023.

[5] J. H. Anderson and T. S. Czajkowski, “Computer-aided design for FPGAs:
Overview and recent research trends,”

[6] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling large and
complex benchmarks in academic cad,” in 2013 23rd International Conference
on Field programmable Logic and Applications, 2013, pp. 1–8. doi: 10.1109/
FPL.2013.6645503.

[7] W. Wang, Q. Meng, and Z. Zhang, “A survey of FPGA placement algorithm
research,” in 2017 7th IEEE International Conference on Electronics Infor-
mation and Emergency Communication (ICEIEC), 2017, pp. 498–502. doi:
10.1109/ICEIEC.2017.8076614.

[8] K. E. Murray et al., “VTR 8: High-performance cad and customizable FPGA
architecture modelling,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 13, no. 2, pp. 1–55, 2020.

[9] M. A. Elgammal, K. E. Murray, and V. Betz, “Rlplace: Using reinforcement
learning and smart perturbations to optimize FPGA placement,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 8, pp. 2532–2545, 2022. doi: 10.1109/TCAD.2021.3109863.

[10] M. A. Elgamma, K. E. Murray, and V. Betz, “Learn to place: FPGA place-
ment using reinforcement learning and directed moves,” in 2020 International
Conference on Field-Programmable Technology (ICFPT), 2020, pp. 85–93. doi:
10.1109/ICFPT51103.2020.00021.

42

https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/FPL.2013.6645503
https://doi.org/10.1109/FPL.2013.6645503
https://doi.org/10.1109/ICEIEC.2017.8076614
https://doi.org/10.1109/TCAD.2021.3109863
https://doi.org/10.1109/ICFPT51103.2020.00021


[11] K. E. Murray and V. Betz, “Adaptive FPGA placement optimization via rein-
forcement learning,” in 2019 ACM/IEEE 1st Workshop on Machine Learning
for CAD (MLCAD), 2019, pp. 1–6. doi: 10.1109/MLCAD48534.2019.9142079.

[12] K. Vorwerk, A. Kennings, and J. W. Greene, “Improving simulated annealing-
based FPGA placement with directed moves,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 28, no. 2, pp. 179–192,
2009. doi: 10.1109/TCAD.2008.2009167.

[13] P. Maidee, C. Ababei, and K. Bazargan, “Timing-driven partitioning-based
placement for island style FPGAs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 3, pp. 395–406, 2005.
doi: 10.1109/TCAD.2004.842812.

[14] J. Zhao, Q. Zhou, and Y. Cai, “Fast congestion-aware timing-driven placement
for island FPGA,” in 2009 12th International Symposium on Design and Diag-
nostics of Electronic Circuits Systems, 2009, pp. 24–27. doi: 10.1109/DDECS.
2009.5012092.

[15] P. Maidee, C. Ababei, and K. Bazargan, “Fast timing-driven partitioning-based
placement for island style FPGAs,” in Proceedings 2003. Design Automation
Conference (IEEE Cat. No.03CH37451), 2003, pp. 598–603. doi: 10 . 1145 /
775832.775984.

[16] Z. Abuowaimer et al., “Gplace3.0: Routability-driven analytic placer for ultra-
scale FPGA architectures,” ACM Trans. Des. Autom. Electron. Syst., vol. 23,
no. 5, 2018, issn: 1084-4309. doi: 10.1145/3233244. [Online]. Available: https:
//doi.org/10.1145/3233244.

[17] W. Li, Y. Lin, and D. Z. Pan, “Elfplace: Electrostatics-based placement for
large-scale heterogeneous FPGAs,” in 2019 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2019, pp. 1–8. doi: 10 . 1109/
ICCAD45719.2019.8942075.

[18] T. Martin, D. Maarouf, Z. Abuowaimer, A. Alhyari, G. Grewal, and S. Areibi,
“A flat timing-driven placement flow for modern FPGAs,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC), 2019, pp. 1–6.

[19] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32, Curran As-
sociates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf.

[20] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous
systems, Software available from tensorflow.org, 2015. [Online]. Available: https:
//www.tensorflow.org/.

[21] J. Rapin and O. Teytaud, Nevergrad - A gradient-free optimization platform,
https://GitHub.com/FacebookResearch/Nevergrad, 2018.

43

https://doi.org/10.1109/MLCAD48534.2019.9142079
https://doi.org/10.1109/TCAD.2008.2009167
https://doi.org/10.1109/TCAD.2004.842812
https://doi.org/10.1109/DDECS.2009.5012092
https://doi.org/10.1109/DDECS.2009.5012092
https://doi.org/10.1145/775832.775984
https://doi.org/10.1145/775832.775984
https://doi.org/10.1145/3233244
https://doi.org/10.1145/3233244
https://doi.org/10.1145/3233244
https://doi.org/10.1109/ICCAD45719.2019.8942075
https://doi.org/10.1109/ICCAD45719.2019.8942075
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.tensorflow.org/
https://www.tensorflow.org/
https://GitHub.com/FacebookResearch/Nevergrad


[22] K. E. Murray et al., “Vtr 8: High-performance cad and customizable FPGA
architecture modelling,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 13, no. 2, pp. 1–55, 2020.

[23] A. Al-Hyari, A. Shamli, T. Martin, S. Areibi, and G. Grewal, “An adaptive ana-
lytic FPGA placement framework based on deep-learning,” in 2020 ACM/IEEE
2nd Workshop on Machine Learning for CAD (MLCAD), 2020, pp. 3–8. doi:
10.1145/3380446.3430618.

[24] Z.-H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolutionary com-
putation for complex continuous optimization,” Artificial Intelligence Review,
pp. 1–52, 2022.

[25] G. Brockman et al., Openai gym, 2016. eprint: arXiv:1606.01540.

[26] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning
environment: An evaluation platform for general agents,” Journal of Artificial
Intelligence Research, vol. 47, pp. 253–279, 2013.

[27] K. Azizzadenesheli, “Maybe a few considerations in reinforcement learning re-
search?,” 2019.

[28] C. Cummins et al., “Compilergym: Robust, performant compiler optimization
environments for ai research,” in 2022 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), IEEE, 2022, pp. 92–105.

[29] L. N. Alegre, SUMO-RL, https://github.com/LucasAlegre/sumo-rl, 2019.

[30] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig, “Learning
to fly—a gym environment with pybullet physics for reinforcement learning of
multi-agent quadcopter control,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021.

[31] P. Gawlowicz and A. Zubow, “Ns-3 meets openai gym: The playground for ma-
chine learning in networking research,” in Proceedings of the 22nd International
ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, 2019, pp. 113–120.

[32] M. Aboelwafa, G. Alsuhli, K. Banawan, and K. G. Seddik, “Self-optimization of
cellular networks using deep reinforcement learning with hybrid action space,”
in 2022 IEEE 19th Annual Consumer Communications & Networking Confer-
ence (CCNC), IEEE, 2022, pp. 223–229.

[33] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit problems,”
arXiv preprint arXiv:1402.6028, 2014.

[34] N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu, “Boltzmann exploration
done right,” Advances in neural information processing systems, vol. 30, 2017.

[35] T. L. Lai, H. Robbins, et al., “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[36] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit problems,”
arXiv preprint arXiv:1402.6028, 2014.

44

https://doi.org/10.1145/3380446.3430618
arXiv:1606.01540
https://github.com/LucasAlegre/sumo-rl


[37] N. Cesa-Bianchi and P. Fischer, “Finite-time regret bounds for the multiarmed
bandit problem.,” in ICML, Citeseer, vol. 98, 1998, pp. 100–108.

[38] T. L. Lai, H. Robbins, et al., “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[39] I. A. M. Huijben, W. Kool, M. B. Paulus, and R. J. G. van Sloun, “A review
of the gumbel-max trick and its extensions for discrete stochasticity in ma-
chine learning,” CoRR, vol. abs/2110.01515, 2021. arXiv: 2110.01515. [Online].
Available: https://arxiv.org/abs/2110.01515.

[40] C. Hartland, S. Gelly, N. Baskiotis, O. Teytaud, and M. Sebag, “Multi-armed
bandit, dynamic environments and meta-bandits,” 2006.

[41] V. Raj and S. Kalyani, “Taming non-stationary bandits: A bayesian approach,”
arXiv preprint arXiv:1707.09727, 2017.

[42] P. A. Ortega and D. A. Braun, “A minimum relative entropy principle for learn-
ing and acting,” Journal of Artificial Intelligence Research, vol. 38, pp. 475–511,
2010.

[43] M. Oquab, J. Rapin, O. Teytaud, and T. Cazenave, “Parallel noisy optimization
in front of simulators: Optimism, pessimism, repetitions, population control,”
in Workshop Data-driven Optimization and Applications at CEC, 2019.

[44] N. Hansen, “The CMA evolution strategy: A comparing review,” Towards a
new evolutionary computation: Advances in the estimation of distribution algo-
rithms, pp. 75–102, 2006.

[45] Wikipedia contributors, CMA-ES — Wikipedia, the free encyclopedia, https :
//en.wikipedia.org/w/index.php?title=CMA-ES&oldid=1169643638, [Online;
accessed 11-August-2023], 2023.

[46] M. Hellwig and H.-G. Beyer, “Evolution under strong noise: A self-adaptive evo-
lution strategy can reach the lower performance bound-the pccmsa-es,” in Par-
allel Problem Solving from Nature–PPSN XIV: 14th International Conference,
Edinburgh, UK, September 17-21, 2016, Proceedings, Springer, 2016, pp. 26–36.

[47] A. Auger and N. Hansen, “A restart CMA evolution strategy with increasing
population size,” in 2005 IEEE Congress on Evolutionary Computation, vol. 2,
2005, 1769–1776 Vol. 2. doi: 10.1109/CEC.2005.1554902.

[48] L. Besson, SMPyBandits: an Open-Source Research Framework for Single and
Multi-Players Multi-Arms Bandits (MAB) Algorithms in Python, Online at:
GitHub . com / SMPyBandits / SMPyBandits, Code at https : / / github . com /
SMPyBandits/SMPyBandits/, documentation at https://smpybandits.github.io/,
2018. [Online]. Available: https://github.com/SMPyBandits/SMPyBandits/.

[49] V. Mnih et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

45

https://arxiv.org/abs/2110.01515
https://arxiv.org/abs/2110.01515
https://en.wikipedia.org/w/index.php?title=CMA-ES&oldid=1169643638
https://en.wikipedia.org/w/index.php?title=CMA-ES&oldid=1169643638
https://doi.org/10.1109/CEC.2005.1554902
GitHub.com/SMPyBandits/SMPyBandits
https://github.com/SMPyBandits/SMPyBandits/
https://github.com/SMPyBandits/SMPyBandits/
https://github.com/SMPyBandits/SMPyBandits/


[50] J. Langford and T. Zhang, “The epoch-greedy algorithm for contextual multi-
armed bandits,” in Proceedings of the 20th International Conference on Neural
Information Processing Systems, ser. NIPS’07, Vancouver, British Columbia,
Canada: Curran Associates Inc., 2007, 817–824, isbn: 9781605603520.

[51] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit approach
to personalized news article recommendation,” in Proceedings of the 19th in-
ternational conference on World wide web, ACM, 2010. doi: 10.1145/1772690.
1772758. [Online]. Available: https://doi.org/10.1145%2F1772690.1772758.

[52] I. Baig and U. Farooq, “Efficient detailed routing for FPGA back-end flow using
reinforcement learning,” Electronics, vol. 11, no. 14, 2022, issn: 2079-9292. doi:
10 .3390/electronics11142240. [Online]. Available: https ://www.mdpi . com/
2079-9292/11/14/2240.

[53] A. Mirhoseini et al., “Chip placement with deep reinforcement learning,” arXiv
preprint arXiv:2004.10746, 2020.

[54] A. Alhyari, A. Shamli, Z. Abuwaimer, S. Areibi, and G. Grewal, “A deep learn-
ing framework to predict routability for FPGA circuit placement,” in 2019 29th
International Conference on Field Programmable Logic and Applications (FPL),
2019, pp. 334–341. doi: 10.1109/FPL.2019.00060.

[55] Z. He, L. Zhang, P. Liao, Y. Ma, and B. Yu, “Reinforcement learning driven
physical synthesis : (invited paper),” in 2020 IEEE 15th International Confer-
ence on Solid-State Integrated Circuit Technology (ICSICT), 2020, pp. 1–4.
doi: 10.1109/ICSICT49897.2020.9278350.

[56] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for
FPGA research,” in FPL, vol. 97, 1997, pp. 213–222.

[57] M. Leeser, S. Handagala, and M. Zink, “Fpgas in the cloud,” Computing in
Science Engineering, vol. 23, no. 6, pp. 72–76, 2021. doi: 10.1109/MCSE.2021.
3127288.

46

https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145%2F1772690.1772758
https://doi.org/10.3390/electronics11142240
https://www.mdpi.com/2079-9292/11/14/2240
https://www.mdpi.com/2079-9292/11/14/2240
https://doi.org/10.1109/FPL.2019.00060
https://doi.org/10.1109/ICSICT49897.2020.9278350
https://doi.org/10.1109/MCSE.2021.3127288
https://doi.org/10.1109/MCSE.2021.3127288

	Introduction
	Motivation
	FPGA Placement
	Contributions
	Thesis Outline

	Background
	FPGA Simulated Annealing Placement
	The Multi-armed Bandit Problem
	Evolution Strategy
	OpenAI Gym

	The MAB Algorithm in FPGA Placement
	Introduction to Current VPR MAB Algorithms
	Epsilon-greedy
	Boltzmann Exploration (BE)

	Algorithm Analysis
	Regret Analysis
	Non-stationary Analysis


	ES algorithm in FPGA placement
	Problem Formulation
	Apply ES Algorithms

	VPR-Gym
	Overview
	Gym Initialization
	Action Space
	Reward
	Environment Attributes

	Experimental Result
	Experimental Setting
	Environment
	Benchmark
	Metrics
	Algorithm Hyperparameter

	Result in VprEnv
	MAB Algorithms vs. ES Algorithms
	TBPSA vs. CMA
	BGE vs. Softmax
	DTS vs. Other MAB Algorithms

	Result in VprEnv_blk_type
	Discussion

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

