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Abstract

In the traditional reliability theory, a system or a component is allowed to take only 

two possible states: working or failed. The binary reliability theory has been well 

developed and has been used in various industries over the past half century. However, 

a system or a component may experience more than two levels of performance. The 

multi-state reliability theory is attracting more and more research attention in the 

past two decades.

This thesis provides a systematic literature review on both binary and multi-state 

reliability theories. The multi-state reliability theory is built on the basis of coherent 

structures in the same way as binary reliability theory. Many concepts in the binary 

case have been extended to the multi-state case. The literature review focuses on the 

fundamentals of the multi-state reliability theory, which include multi-state relevancy 

conditions, binary decomposition methods of multi-state systems, multi-state system 

modeling techniques, and algorithms for system performance evaluation.

Binary fc-out-of-n systems and binary consecutive fc-out-of-n systems are com

monly used models in engineering practice. Their definitions have been extended to 

the multi-state case by assuming that the system has a constant fc-out-of-n struc

ture or constant consecutive-Ar-out-of-n structure at all system levels. In this thesis, 

we propose the definitions of the generalized multi-state fc-out-of-n systems and the 

generalized consecutive A:-out-of-n systems. Under the proposed definitions, the sys

tems are allowed to have different structures at different system levels. Such models 

are more flexible for describing some engineering problems. Algorithms for system 

performance evaluation or bounding techniques are developed.

Since the state space of a multi-state system is usually complex, it is difficult to 

evaluate the probabilities for the system to be in different states. An approach for 

multi-state system performance evaluation is to extend binary algorithms to the multi
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state context. In this thesis, we investigate the internal relationship between binary 

systems and multi-state systems and then propose a definition of the dominant multi

state system. A dominant system has some binary properties and can be bounded by 

two binary structures. A dominant system with binary image can be treated like a 

binary system. Various properties of dominant systems are explored. The proposed 

definition has excellent potential for multi-state system performance evaluation.

In summary, this thesis contributes to multi-state system modeling technique, 

system analysis, and performance evaluation. The proposed generalized multi-state 

fc-out-of-n systems and multi-state consecutive Ar-out-of-n systems are more flexible 

than the models proposed by other researchers. The definition of the dominant system 

provides a new tool for classifying multi-state systems and evaluating or bounding 

the system performance indexes.
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Chapter 1

Introduction

Reliability is the branch of quality assurance that deals specifically with functionabil- 

ity upon demand. A commonly quoted definition of reliability is the probability of 

a system or a component performing its intended function adequately for the period 

of time intended under stated conditions (Koval, 1996). In this definition, a system 

is regarded as a set of interacting components. If improving the performance of a 

component does not cause the system to deteriorate, then such a system is called a 

coherent system. Based on the characteristics of the system structure, the reliability 

of a system can be evaluated with different analytical methodologies.

Reliability practices can be traced back to the late 1940’s. With the introduc

tion of solid-state electronics, equipment became more and more complex, and the 

electronic industries recognized that the concern of their customers with the reliable 

performances of the products was not adequately addressed by the quality control 

practices of their day. They began using the term reliability to refer to the capability 

of a product not only meeting the customer’s needs but also functioning according 

to the customer’s needs when the customer need occured. During the late 1950’s, a 

comprehensive study on the reliability of electronic components was established by 

AGREE (Advisory Group on Reliability of Electronic Equipment).

1
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The concept of performing its intended function in the definition of reliability 

dictates that a  component or a system must perform adequately according to some 

specifications. The classical reliability theory assumes that a system and its compo

nents can only be in one of two states: either working or failed. Hence the meanings 

of “function” is unique. There is a one-to-one correspondence between the reliability 

of a component or system and its intended functions. Such a system (component) 

is called a binary system (component). In the past half century, the binary system 

reliability has been well developed and it services a vast range of industries including 

electronics.

However, a system or a component could experience more than two levels of 

performance varying from perfectly functioning to completely failed in many real- 

world situations. For example, a vehicle dealer usually uses more than two states to 

describe the running condition of a vehicle: perfect, good, average, rough or failed such 

that a vehicle can be considered to be a multi-state system. The idea of multi-state 

system was first introduced by Hirsch and Meisner (1968). Although both the binary 

system reliability and the multi-state system reliability are built on the coherent 

structure theory, the contents of the latter are much more extensive and complex 

than the former. The first multi-state coherent system model was not presented until 

1978 (Barlow and Wu, 1978). Lately, many authors made their contributions to enrich 

the multi-state reliability theory.

In a multi-state system, it is usually assumed that both the system and the com

ponents may be in one of M  +1 possible states: 0,1,2, • • •, M, where M  is the perfect 

functioning state while 0 is the complete failure state. If M  =  1, it reduces to a bi

nary system. Regarding to system level j  ( j  =  1,2, • • •, M), if the state of a system 

is equal to j  or above, then the system may be considered to be functioning; Other-

2
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wise, the system is considered to be failed. The function of a multi-state system has 

dynamic meanings with respect to different system performance levels. The reliabil

ity of a multi-state system or a multi-state component is no longer one single value. 

We use “performance distribution” instead of “reliability” to denote the probability 

of a multi-state system or a multi-state component performing its intended function 

at different performance levels. In the past two decades, over 150 papers relevant 

to multi-state systems were published. As a more flexible tool for analysis of prac

tical systems, the multi-state system reliability theory is attracting more and more 

attention.

This thesis strives to contribute to the multi-state system reliability theory, espe

cially in multi-state system modeling and its applications, the relationship between 

binary system and multi-state system, and multi-state system reliability evaluation. 

This research work aims to achieve three objectives: generalized multi-state Ar-out- 

of-n system; multi-state consecutive Ar-out-of-n system; and dominant system and its 

properties. The thesis is presented in seven chapters.

In Chapter 2, we review the fundamental theory of both binary system reliability 

and multi-state system reliability. The key concepts in the binary context, including 

the definition of a coherent system, minimal path sets and minimal cut sets, duals, 

modules and the algorithms for system reliability evaluation, are discussed. These 

concepts are then extended to the multi-state case. The inherent differences between 

binary systems and multi-state systems are discussed. Binary Ar-out-of-n systems and 

consecutive Ar-out-of-n systems are also reviewed.

Chapter 3 provides an overview of advanced topics on multi-state reliability theory. 

The topics discussed include:

1. multi-state relevancy conditions. Over half of the papers in multi-state system 

reliability are on defining multi-state systems either using component relevancy

3
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conditions or binary structure functions. Various multi-state component rele

vancy conditions are reviewed and their classifications are presented.

2. binary decomposition of multi-state systems. Two binary decomposition meth

ods for multi-state systems are discussed.

3. multi-state system models and their properties. The techniques to model multi

state systems are presented.

4. algorithms for multi-state system performance evaluation or its bound compu

tation. The advantages and shortcomings of the algorithms are compared.

Other related issues about multi-state reliability are also summarized in this chapter.

In Chapter 4, we propose a definition of the generalized multi-state Ar-out-of-n 

system. Other researchers define a multi-state Ar-out-of-n system as a system with a 

single Ar-out-of-n structure at all the system levels. Thus the system can be treated as 

a binary Ar-out-of-n system. In our definition, we allow the system to have different 

Ar-out-of-n structures at different system levels. It implies that k  could take different 

values at different system levels. Two special cases, the increasing system and the 

decreasing system, are considered. Algorithms for the system performance evaluation 

are developed. Examples are provided to illustrate the applications of the proposed 

definition.

Chapter 5 provides a definition of the multi-state consecutive Ar-out-of-n:F system. 

Again two special cases, the decreasing system and the increasing system, are con

sidered. The dual relationship between multi-state consecutive A:-out-of-n:F system 

and consecutive Ar-out-of-n:G system is explored. We develop an algorithm for the 

performance evaluation of the decreasing systems and a bound computation method 

for the increasing systems. Examples are provided to illustrate the applications of 

the proposed definitions and methods..

4
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In Chapter 6, we investigate how a multi-state system can be dichotomous at all 

the performance levels and how a multi-state system can be treated as a binary system 

in its performance evaluation. The definition of dominant system is proposed. Under 

the proposed definition, multi-state systems are divided into two groups: dominant 

systems and non-dominant systems. A dominant system with binary image can be 

treated as a binary system such that existing binary algorithms for system reliability 

evaluation can be applied on it directly. The properties of minimal path sets and 

minimal cut sets of dominant systems are discussed. The dual relationship between 

a dominant system and a non-dominant system is explored. Examples are given to 

illustrate the potentials of the concept of dominant system in performance evaluation 

of multi-state systems.

Chapter 7 provides a summary of this research and discusses future research di

rections in the area of multi-state system reliability.

5
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Chapter 2 

Fundamentals of Binary System  

and M ulti-state System  R eliability  

Theory

2.1 Introduction

The reliable performance of a system is of utmost importance in many industrial, 

commercial and military situations. The fundamental problem in reliability theory is 

determining the relationship between the reliability of a system and the reliabilities 

of its components. The theory of binary coherent structures has served as a unifying 

foundation for the mathematical theory of reliability (Barlow and Proschan, 1975). 

Various modeling techniques for binary systems have been developed and many mod

els have been applied in practice. In this chapter, we present a literature review 

related to the fundamentals of the binary system reliability theory and the multi

state system reliability theory. We will show how relevant concepts in the binary case 

are extended to the multi-state case. Other advanced topics of the multi-state system

6
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reliability theory will be discussed in Chapter 3. Section 2.2 reviews the definition 

of binary coherent systems and various key concepts in the binary context. Section

2.3 briefly reviews binary Ar-out-of-n systems and consecutive Ar-out-of-n systems. A 

practical example is used to illustrate the applications of binary Ar-out-of-n struc

tures in oil-sands industry. Section 2.4 focuses on important concepts of multi-state 

systems and their relations to those in the binary system reliability theory. The in

herent differences between binary systems and multi-state systems are also pointed 

out. Section 2.5 provides concluding remarks.

2.2 Binary system  reliability theory

Notation:

n number of components.

C  collection of components, C  =  {1,2, • • • ,  n}.

Xi state of component i, Xi E {0,1}.

x  vector of component states, x  =  (xi, x2, . . . ,  x n).

1 =  (1,1, - - - T1).

0  =  (0 , 0 , • • • , ( ) ) .

O system structure function representing the state of the system,

0(x) E {0,1}. 

oD dual of <p.

Pi Pr(xi =  1), reliability of component i.

p P ~  Pi when components are s-independent and identically distributed.

Qi 1 -  Pi-

q I - p .

h Pr(0 =  1), system reliability function.

7
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0 empty set.

c proper subset of.

€ basic element of.

U intersection.

n union.

n?=i =  m in(rl, • • • ,x n).

U?=i = max(xi, • • • ,x„).

In a binary system, the system and all of its components have only two states: func

tioning or failed. Consider a system comprising n components. To indicate the state 

of the zth component, we assign a binary indicator variable x t to component i:

Xi  =  <
1, if component i is functioning 

0, if component i is failed

The vector x  =  (xt, • • • , x n) is called a component state vector. The state of the 

system is determined completely by the states of the components so that the structure 

function of the system o may be written as:

0 =  0(x).

Definition 2.1: A system comprising n  components, often denoted by (C. 0), is

called a coherent system if its structure function o: {0, l} n >—► {0,1} satisfies:

1. 0(x) is non-decreasing in each argument;

2. For any component z, there exists a vector (-,-,x) such that 0(1*. x) =  1 and

0(0,-, x) = 0 ;

3- 0(j) =  j  for j  = 0,1.

8
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where (•;, x) =  (xlt • • •, Xi_i, Xi+i, • • •, x n). In Definition 2.1, Condition 1 implies that 

improving the performance of a component never causes the system to deteriorate,

i.e., its structure function 0 is a monotonically non-decreasing function of each argu

ment. Condition 2 implies that each component is relevant. In mathematical form, 

Condition 2 can be written as: for any component z, there exists a vector (•;, x) such 

that 0(1 x) > 0(0;, x). Condition 3 indicates that if all the components work, then 

the system works, and if all the components are failed, then the system is failed. This 

condition is automatically satisfied with coherent systems.

Series and parallel structures are two of the most commonly seen coherent systems. 

Figure 2.1 and 2.2 show a series configuration and a parallel configuration respectively. 

A series system works if and only if all the components work and its structure function 

is given by:
n

0(x) =  F I xi =m in(xi,
t=i

n*1

Figure 2.1: A series configuration

A parallel system works if and only if at least one redundant component works 

and its structure function is given by:

n

<?KX) =  I I  x i =  max(xt, • • •, xn)
i=  1

A component state vector x  is a path vector if 0(x) =  1. A path vector x  

is a minimal path vector if y  < x  =► 0(y) =  0 for all y. A component state 

vector x  is a cut vector if 0(x) =  0. A cut vector x  is a minimal cut vector if
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Figure 2.2: A parallel configuration

y > x => <p(y) = 1 for all y, where y > x  means that iji > Xi for all i and at 

least one yj > xr  i , j  = 1,2, • * • ,n . Physically, a minimal path set is a minimal set 

of components whose functioning ensures the functioning of the system. A minimal 

cut set is a minimal set of components whose failure causes the system to fail. A 

series system of n components has one minimal path and n minimal cuts. A parallel 

system of n components has n minimal paths and one minimal cut. Minimal path 

sets and minimal cut sets play important roles in the analysis of system reliability. 

The reliability of a system is equal to the probability that at least one of the minimal 

path sets works. The unreliability of the system is equal to the probability that at 

least one minimal cut set is failed.

A coherent system can be represented in terms of minimal path sets and minimal 

cut sets. Consider a coherent system <t> with s minimal path sets {Pi, P2, • • •, P,} and 

t minimal cut sets {Ki, Ko, • • •, K t}. The system is functioning if and only if all the 

components in at least one minimal path set are functioning, or alternatively, if and 

only if at least one component in each minimal cut set is functioning. Thus we have 

the following two representations of the structure function o  in terms of minimal path 

sets or minimal cut sets:

10
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0(x) =  { maXl^ *  m m * p’ Xi (2.1)
minl<;<t Xj.

The following inequality holds for any system structure 0 (Barlow and Proschan, 

1975):

n nn**s«*)<ii*lf (2-2)i=l i=l
Equation (2.2) means that the performance of a coherent system is bounded below 

by the performance of a series structure and above by the performance of a parallel 

structure.

Given a structure function 0, we define its dual <pD by:

0D(x) =  1 -  0(x) (2.3)

The concept of dual structure has a physical interpretation. For example, the dual 

of a series structure is a parallel structure and vice versa. If x  is a minimal path for 

0, then 1 — x is a minimal cut for o D and vice versa.

In reliability analysis of large and complicated systems, one often computes the 

reliability of each of its disjoint sub-systems first, and then compute the overall system 

reliability from these sub-system reliabilities. Modular decomposition provides such a 

method for breaking a system into several sub-systems. A coherent sub-system (A, x) 

is a module of the coherent system (C , 0) if and only if

0(x) =  0[x(x*4), x-4C] (2.4)

where 0  is a coherent structure function and A  C C, x A denotes the vector with

elements x* for i €  A  and Ac  is a subset of C  and complementary to A. Intuitively,

a module is a coherent sub-system that acts as if it were just a component. x(xA) 

is a binary variable indicating the state of xA. Knowing whether \  is 1 or 0 is as

11
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informative as knowing the value of x* for each i in A  as far as system reliability is 

concerned. A modular decomposition of a coherent system (C, <p) is a set of disjoint 

modules {(Ai, Xi), • • •, (Ar, Xr)} together with an organizing structure i/;, i.e.,

1. C  =  UJ_lAi, where A,- fl Aj =  0 for i ^  j;

2. 0(x) =  ),*••, Xr(X‘4r)]-

Various approaches and algorithms have been reported for reliability evaluation

or bound computation of binary systems. The system reliability function h is a deter

ministic function of component reliabilities. Assume that components are statistically 

independent and let p =  (pi,po, • • • ,pn) be the reliability vector of components. We 

have:

h( p) =  Pr(0(x) =  1) =  £(0(x)). (2.5)

The pivotal decomposition of the system reliability function is as follows:

h { p) =  p M U ,  p) +  (1 -  P i ) h { 0 i ,  p). (2.6)

where h(l,-,p) =  Pr(0(li,x) =  1) and (l,-,x) =  (xt, • • • .Xj-i, 1, Xj+i, • • • ,x n), and

h(0i,p) = Pr(0(Oi,x) = 1) and (0,-,x) =  (xi, • • • , X j _ i , 0 , • • • ,x n). Equation

(2.6) permits us to express a reliability function of order n in terms of reliability

functions of order n — 1.

The minimal path and minimal cut representations provide a means for computing 

the exact system reliability.

h(p) = E  n n (2.7)
j= i «ePj

Mp) = E  n  II Xi (2.8)

12
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Usually, finding the exact system reliability is a formidable task for complex sys

tems. The bounds on system reliability sometimes are used to approximate the reli

ability of these systems. Assume that all components are independent in a system, 

the following are the commonly-used approaches for system reliability evaluation or 

bound computation (Barlow and Proschan, 1975):

1. The Inclusion-Exclusion method (IE)

This method provides successive upper and lower bounds on system reliability 

which converge to the exact system reliability. Assume that the system has s minimal 

path sets. Let Er be the event that all components in minimal path set Pr function, 

where r  =  1,2, ••• ,s.

Pv(Er) =  n  Pi (2-9)
ie P r

System success corresponds to the event UJL;lEr. Then we have:

h = Pr(<£ =  1) =  Pr(Ur= l£'r) (2.10)

Let Sk =  H  P r(£ 'ii n  Ei2 fl • • • n  E ilc). By the inclusion-exclusion 

principle:

h =  E ( - l ) ‘ - ‘& . (2-11)
fc=t

2. The Min-Max method

This method results from the minimal path and minimal cut representations of the 

system structure function. Assume that a system has s minimal path sets {Pi, • • •, Pa} 

and t minimal cut sets {Ki, - • ■, K t}. The upper bounds of the system reliability

depend on minimal cuts and lower bounds depend on minimal paths.

13
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max n  Pi < P r(0(x) =  1) < min J J  pt
ieP r  ~ r ~  i&KT

3. The Sum of Disjoint Products method (SDP)

The SDP method produces a formula which expresses the union of events as a 

sum of disjoint products. The formula is entirely additive. Let Er be the event that 

all components in minimal path set Pr function, r  =  1,2, • • •, s.

Pr(<i>=l) = P r(E l) + P r ( r i -E 2) + --- + Pr(E~l -B ; - - -E ^ r i -Es) (2.12)

2.3 Binary A>out-of-n system s and consecutive k -  

out-of-n system s

As a special class of binary systems, fc-out-of-n systems receive considerable research 

interest because: (I) Such systems are more general than series or parallel systems; 

and (2) They are frequently encountered in practice (for example, Zuo et al, 1998; 

Huang and Zuo, 1997). Many researchers have been focusing on fc-out-of-n systems 

and consecutive /e-out-of-n systems (for example, Chiang and Niu, 1981; Barlow and 

Heidtmann, 1984; Rushdi, 1986). In the following, we review fc-out-of-n system and 

consecutive fc-out-of-n system separately.

2.3.1 fc-out-of-n system s

We again assume that all components are s-independent. A A>out-of-n:G system with 

n components works if and only if at least k components work. A fc-out-of-n:F system 

with n  components is failed if and only if at least k components are failed. A fc-out- 

of-n:G system becomes a series system when k  =  n  and a parallel system when k =  1.

14

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



A fc-out-of-n:G system is equivalent to an (n — k +  l)-out-of-n:F system. Since the 

value of n  is usually larger than the value of k, redundancy is built in a Ar-out-of-n 

system. There are minimal paths in a A>out-of-n:G system and (n_£+l) minimal 

cuts in an (n — k +  l)-out-of-n:F system. Figure 2.3 shows a 2-out-of-3:G structure in 

terms of its minimal paths. If we find the reliability of a A>out-of-n:G system, we have 

found the reliability of a (n — k + l)-out-of-n:F system. The dual of a fc-out-of-n:G 

system is a  A:-out-of-n:F system with the same components. The dual and equivalence 

relationships between the fc-out-of-n G and F systems are summarized below:

1. A A:-out-of-n:G system is equivalent to an (n — k + l)-out-of-n:F system.

2. A /c-out-of-n:F system is equivalent to an (n — k + l)-out-of-n:G system.

3. The dual of a A>out-of-n:G system is a A:-out-of-n:F system.

4. The dual of a fc-out-of-n:G system is an (n — k + l)-out-of-n:G system.

5. The dual of a A:-out-of-n:F system is a /c-out-of-n:G system.

6. The dual of a fc-out-of-n:F system is an (n — k + l)-out-of-n:F system.

Figure 2.3: A 2-out-of-3:G structure 

15

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



In the case that all the components are i.i.d., the following equation can be used

for reliability evaluation of a fc-out-of-ra:G system:

=  E  ( " W  <2 1 3 )

where Rs is the system reliability. When the components are non identical, the 

following recursive equation can be used (Barlow and Heidtmann, 1984; Rushdi,

1986):

R(n, k ) =  pnR(,n — 1, k — 1) +  (1 — pn)R(n — 1, k), (2.14)

where R(n , k) is the probability that at least k out of n components are good. The

complexity of Equation (2.14) is 0(A;n). The following boundary conditions are 

needed.

R(n, 0) =  1 (2.15)

R(n,k)  =  0 for k > n  (2.16)

2.3.2 C onsecu tive  A>out-of-n sy stem s

Consider a system which consists of a sequence of n components numbered consecu

tively from 1 to n. Such a system is a consecutive fc-out-of-n:F system if the system 

fails whenever at least k consecutive components fail. An efficient formula for relia

bility evaluation of consecutive fc-out-of-n:F systems is (Hwang, 1982):

n

Q{n; k) =  Q(n - l ; k )  + { l -  Q{n — A: — 1; fc))pn_fc J J  qj, (2.17)
j = n —k + I

where Q(n — k — 1; k) is the failure probability of a consecutive-A>out-of-(n — k — 1):F 

sub-system with components 1 through n — k — 1. Equation (2.17) can be applied
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recursively to calculate the reliability of a consecutive-fc-out-of-n:F system with the 

following boundary conditions:

Q{j;k) = 0, for j  < k, (2.18)

Po =  I- (2.19)

The complexity of Equation (2.17) is O(n). The dual relationship between the con

secutive /e-out-of-n:F system and the consecutive A:-out-of-n:G system was reported 

by Kuo et al, (1990). A system is a consecutive A>out-of-n:G system if the system 

works whenever at least k consecutive components work. For the reliability evalua

tion problem of a consecutive fc-out-of-n:G system with component reliability vector 

p, there is a corresponding dual unreliability evaluation problem of a consecutive 

/c-out-of-n:F system with component reliability vector 1 — p (Zuo. 1993). Let R and 

Q be the reliability and unreliability, respectively, as a function of system structure, 

k , n and p. Then we have:

Q(F, n, k, 1 -  p) =  R(G , n, k , p) (2.20)

From Equation (2.20), we can summarize the following procedure for reliability 

evaluation of the dual system if the available algorithms are for the primal system.

1. Given: k, n, pi, p2 , . . . ,  pn for a consecutive fc-out-of-n:G system

2. Calculate qi = 1 — pi for i =  1 ,2 ,.. . ,  n

3. Treat as the reliability of component i in a consecutive A:-out-of-n:F sys

tem and use the algorithms for the F system discussed above to evaluate the 

reliability of the F system

17

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



4. Subtract the calculated reliability of the F system from 1 to obtain the reliability 

of the original consecutive fc-out-of-n:G system

2.3.3 A  p ra c tic a l exam ple on  b in a ry  £>out-of-n s tru c tu re s

In this section, we provide an application of the fc-out-of-n:F and the consecutive 

fc-out-of-n:F system reliability models in evaluation of the life distribution of furnaces 

in oil-sands industry (Zuo, et al, 1998).

A petro-chemical company produces crude oil. It uses several hydrogen plants to 

provide hydrogen for hydro-treating. The company’s oil production is proportional 

to the amount of hydrogen supplied, i.e., more hydrogen production results in more 

oil production until the maximum production capacity of the company is reached. 

Therefore, it is very important that the hydrogen plants operate without interruptions 

of equipment failures. Of specific interest to the company is the operation of three 

methane reformer furnaces. These furnaces have hundreds of tubes which are filled 

with catalyst. Methane and steam are passed through these tubes at high temperature 

and hydrogen is produced.

The furnaces are considered to be systems while the tubes in the furnaces are com

ponents of the corresponding systems. A tube is designed to provide an environment 

for methane, steam, and catalyst to react at high temperature to produce hydrogen. 

When we say that a tube is “failed”, we mean that the tube is unable to perform its 

intended function any more. In practical terms, a tube “failure” may mean that the 

tube is ruptured, or the tube is pinched for whatever reasons. The function of a fur

nace is to produce hydrogen at certain output, temperature, pressure, and efficiency. 

If too many tubes are “failed” or pinched, the furnace’s proper operation is affected,

i.e., the efficiency may be too low. Thus, the system’s performance can be defined in 

terms of the performances of the components.

18
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Figure 2.4: Tube arrangement in Furnace 3

One of the furnaces has 368 tubes evenly divided into 8 rows. Each row has 46 

tubes. Figure 2.4 shows the tube arrangement in the furnace. The following furnace 

failure scenarios are generated with the assistance of engineers in the company.

•  Scenario 1: The furnace is failed whenever a certain percentage of the tubes 

in the furnace are all failed. For example, the furnace is failed whenever at 

least 10% of the tubes (i.e., at least a total of 37 tubes) of the 368 tubes in the 

furnace are all failed.

•  Scenario 2: The furnace is failed if at least one row of tubes has at least a 

certain number of consecutive tubes that are all failed. For example, we may 

say that the furnace is failed when there are five or more consecutive pinched 

tubes in a row.

Assuming that the failures of the components are independent of one another, 

we can describe Scenario 1 using a fc-out-of-n:F system model, for example, a 37- 

out-of-368:F system, and Scenario 2 using a consecutive A:-out-of-n:F system, for 

example, a consecutive 5-out-of-46:F system. Equation (2.14) and (2.17) can be used

19

R e p ro d u c e d  with p erm iss ion  of  th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Ln evaluation of the reliability of the furnace system.

2.4 Fundamentals o f m ulti-state system  reliability  

theory

Generally speaking, multi-state system reliability models can be divided into discrete 

models and continuous models based on the properties of the state space. In this sec

tion, we will focus on discrete models. We will discuss continuous models in Chapter 3.

Acronym:

MMS: multi-state monotone system.

Notation:

n number of components.

M  +  1 number of states of system and its components.

S {0,1, - - -, A/}.

X i  state of component i ,  X i  G {0,1, • • • , A/}.

x  an n-dimensional vector representing the states of all components,

x  =  (xl,x 2, . . . , x ri).

j  i  =

M M  = (A/, A/, • • •, M).

0(x) system structure function representing the state of the system,

<£(x) €  { 0 ,1 , . . . ,A/}.

Pij Pr(x, > j) .

Pj Pj =  P^ when components are i.i.d.

Pij P r ( x i = j ) .
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Pj pj =  pij when components are i.i.d.

Rsj Pr(0(x) > j )

r3j Pr(0(x) =  j)

Various approaches have been proposed to define the multi-state structure function

0. All papers that we have reviewed consider a multi-state system to be a coherent 

system. We present the definition of a multi-state coherent system given by Griffth 

(1980) first.

D efinition 2.2: A multi-state system comprising n components is said to be a co

herent system if its structure function 0 satisfies:

1. 0(x) is non-decreasing in each argument;

2. For any component i, there exists a vector x such that 0(A/itx) > 0(Oj,x);

3- 0(j) =  j  for j  =  0,1, • • •, A/.

Comparing Definition 2.2 with Definition 2.1, we see that condition 1 in Defini

tion 2.1, the non-decreasing requirement of binary structure functions, is reasonably 

extended to multi-state structures. Condition 3 in Definition 2.1 is also extended to 

the multi-state context by requiring 0(j) =  j  for all levels j  =  0,1,2, • • •, M.  This 

condition is always true in binary coherent systems. However, there are two different 

assumptions on the number of states of a multi-state system and its components. 

In Definition 2.2, it is assumed that a system and all of its components have the 

same number of states, i.e., Mi = A/2 =  • • • =  M„ =  A/, where Mi is the best state 

of component i while M  is the best state of the system. In this case, condition 3 

means that if all the components are in a certain state, the system will also be in that 

state. Most multi-state models reported in the literature require this assumption. In
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the more general case, a multi-state system and its components may have different 

numbers of states. For example, a system with three components has M  =  2 while 

Mi =  3, M2 = 2 and M3 =  4. If this kind of model is used, condition 3 in Definition 

2.2 is not satisfied. In this thesis, we will focus on models in which the system has 

the same number of states as all components.

Condition 2, the relevancy condition, can be extended in many ways. In Def

inition 2.2, it simply says that all the components are relevant to the system but 

not necessarily to every system level (to be illustrated in Example 2.1). A relevancy 

condition represents the relationship between the state of a system and the states of 

its components. The reason that there are many different ways to define the rele

vancy condition (condition 2) is that there are different degrees of relevancy that a 

component may have on the system in the multi-state context. A component has 

M  + 1 levels and the system has M  + 1 levels as well. A level of a component may 

be relevant to some levels of the system but not others. Every level of a component 

may be relevant to every level of the system (this is the case in the binary case since 

there are only two levels). Definition 2.2 represents the weakest relevancy condition. 

More discussions on multi-state relevancy conditions will be presented in Chapter 3.

Example 2.1 : Consider a multi-state coherent system wherein both the system and 

the components may be in one of three possible states, 0, 1, and 2. The following 

table illustrates the relationship between system state and component states. In this 

example, 0(0,0) <  0(2,0) and 0(0,0) < 0(0,2) so 0 is coherent based on Definition 

2 .2 .
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0(x) : 0 1 2

x :

(0,0) (0,1) (2,0) 

(1,0) (1,1) (2,1) 

(0,2) (1,2) 

(2,2)

Table 2.1: System state table for Example 2.1 

2.4.1 M in im al p a th  se ts  a n d  c u t se ts

The concepts of minimal path sets and minimal cut sets used in the binary systems

are extended to the multi-state context in two different ways. El-Neweihi et al (1978) 

propose the definitions of connection vectors, lower critical connection vectors and 

upper critical connection vectors as follows:

Definition 2.3 (El-Neweihi et al, 1978)

• A vector x is said to be a connection vector to level j  if o(x) =  j;

•  A vector x is said to be a lower critical connection vector to level j  if 0(x) =  j  

and 0(y) < j  for all y  <  x;

•  A vector x  is said to be an upper critical connection vector to level j  if 0(x) =  j

and 0(y) > j  for all y >  x.

In this definition, each connection vector to level j ,  including the lower critical 

and upper critical connection vectors, results in exactly system level j .  The following 

concepts of minimal paths and minimal cuts in the multi-state context are more 

analogous to the corresponding concepts in the binary case.

Definition 2.4 (Natvig, 1980):
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• A vector x  is called a minimal path vector to level j  if 0(x) > j  and 0(y) < j  

for all y  < x;

•  A vector x is called a minimal cut vector to level j  if 0(x) < j  and <p(y) > j  

for all y > x.

In this definition, both minimal path vectors and minimal cut vectors are defined 

in terms of whether they result in a system state "equal to or greater than j ” or not. 

A minimal path vector to level j  may or may not be a connection vector to level j  as 

it may result in a system state higher than j .  A minimal cut vector to level j  may 

or may not be a connection vector to level j  — 1 as it may result in a system state 

below j  — 1. Example 2.2 is given to illustrate these concepts.

Example 2.2: Consider a two-component system wherein both the system and the 

components may be in one of three possible states, 0, 1, and 2. The following table 

illustrates the relationship between system state and component states.

0(x) : 0 1 2

x  :

(0,0) (1,1) (2,0) 

(1,0) (0,2) 

(0,1) (2,1) 

(1,2) 

(2,2)

Table 2.2: System state table for Example 2.2

In this system, the lower critical connection vector to level 1 is (1,1) and to level 2 

are (2,0) and (0,2). However, (2,0) and (0,2) are also the minimal path sets to level
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1 according to Definition 2.4. We will use Definition 2.4 throughout this dissertation.

Similar to Equation (2.1), a multi-state structure function 0 can be represented 

using the concepts of minimal path sets or minimal cut sets (Barlow and Wu, 1978):

0(x) =
maxt<j<a mmjgPj x*

mmi<r<£ maxi6ft:r Xj.

where P j  represents the j th  minimal path set for j  =  1,2, • • • , s  and K r  represents the 

rth  minimal cut set for r = 1,2, • • •, t. In words, Equation (2.21) says that the system 

state is equal to the state of the "worst” component in the “best” minimal path or 

the “best” component in the “worst” minimal cut. This relevancy condition simply 

extends the domain of the state space from {0.1} in the binary case to {0,1, • • •, M}  

in the multi-state case. Hence there is a one-to-one correspondence between the 

structure of a multi-state structure and a binary structure whenever Equation (2.21) 

is satisfied.

A multi-state series system is defined as (El-Neweihi et al, 1978):

0(x) =  min xi;
t < i < n

and a multi-state parallel system is defined as:

0(x) =  max Xi.
l < « < n

These definitions are natural generalizations from the binary case. The following 

inequality gives simple bounds on system state similar to Equation (2.2).

min Xi <  0(x) < max xit (2.22)
l < t < n

Equation (2.22) indicates that the performance of a multi-state system is bounded 

below by the performance of a series system and above by the performance of a parallel 

system.
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2.4.2 D u a lity  in  m u lti-s ta te  sy stem s

In a multi-state system, let <f> be the structure function of the system, then its dual 

structure function <pD is defined as (Xue, 1985):

<pD(x) =  M  -  0(M  -  x) =  M  -  <j>{M — xi, ■ ■ ■, M  -  xn) (2.23)

The following summarizes the results related to the duality of multi-state systems, 

which form the theoretical basis of dual transformation of multi-state systems.

•  The dual of a multi-state coherent system is still a multi-state coherent system 

(El-Neweihi et al, 1978);

•  For any multi-state systems <p, the dual oD is in the same class of coherence as 

<p (Griffith, 1980);

• (<pD)D(x) =  0(x) (Xue, 1985);

•  x  is an upper critical connection vector for level j  of if and only if M — x 

is a lower critical connection vector for level M  — j  of <pD\ x  is a lower critical 

connection vector for level j  of 0 if and only if M — x is an upper critical 

connection vector for level M  — j  of <pD (Block and Savits, 1982).

These results are analogous to the binary case. But some dual relationship exist

ing in a binary system may be lost in a multi-state system as illustrated in Example 

2.3.

Example 2.3: Let us examine the dual of the system in Example 2.2. In the primal 

system, the system is a series structure in level 1, in other words, the system is in 

state 1 or above if both components are in state 1 or above, and the system is a 

parallel structure in level 2, in other words, the system is in state 2 if at least one
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component is in state 2. Using Equation (2.23), we obtain the dual of the system as 

shown in the following table. This duality converts the system neither from a series 

structure to a parallel structure at level 1 nor from a parallel structure to a series 

structure at level 2. This contradicts with what happens in the binary case. We will 

investigate this issue further in Chapter 5 and 6.

0D(x) : 0 1 2

X  :

(0,0) (1,1) (2,1) 

(1,0) (1,2) 

(0,1) (2,2) 

(2,0)

(0,2)

Table 2.3: System state table for Example 2.3 

2.4.3 M odu les o f a  m u lti-s ta te  sy s tem

Since multi-state systems are much more complicated than binary systems, exploring 

an efficient modular decomposition method is very important for the analysis of multi

state systems. In this section, we review the definition of modules in a multi-state 

system and summarize some important conclusions. The modular decomposition 

algorithms will be discussed in Chapter 3.

A module of a multi-state system is defined as (Butler, 1982; Hudson and Kapur, 

1983):

Definition 2.5: let (C, <t>) be a multi-state system and let A be a nonempty proper 

subset of C. Let and x^/ be the component state vectors for A and its com

plement A'. If the coherent structure (A, x a ) and its structure function ip satisfy:
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d>(x) =  0(x.4, x.4') =  ^[xa(xa)> Xa'(x.4')]> then A is a modular set of (C, <p), (A, X a ) is 

a module of (C , <t>) and ip is called an organizing structure fimction. A modular decom

position of a multi-state system (C, <f>) is a set of modules of {(Ai, Xi), • ■ •, (A*,, \k)}  

together with an organizing structure ip such that: (1) At , ,Ak is a partition of C,

i.e, Uf=lAi =  C  and A, D Aj = 0 for i £  j ; (2) <p(x) =  ^ [ x i f o ,) ,  • • •, Xfc(x.4 t )].

Some important results about multi-state system modules are listed below (Hud

son and Kapur. 1983):

•  Unlike binary systems, it is claimed that any subset A of a multi-state system 

qualifies as a module, i.e., there exists a way to define A and \ a  that always 

makes (A, xa) a module:

•  Let ({(Ai, Xi), • • •, (A*,, Xk)}, 0) be a modular decomposition of (C,o), then 

({(A f, X ?);"  '» (Aj?, Xit>)}> 0 D) is a modular decomposition of (C D, oD)\

•  An index / , named “modular efficiency” , is defined to measure whether reliabil

ity computation using the modular decomposition is more efficient than without 

the decomposition.

/  =  (2.24)n{<p)

where n(*) is the number of components in the corresponding system or subsys

tems and k  is the total number of modules of the system. The decompositions 

with an index less than 1 are desirable. This formula is easy to apply and de

serves further investigation.

In the dichotomous opinion, the states of a multi-state system can be decomposed 

into two groups: O > j  and <f> < j  at any level j , j  = 1 ,2 , . . . ,  M  so that the
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system performance with respect to level j  can be defined as R 3j = Pr(<p > j ) .  The 

component performance with respect to level j  can be defined as =  Pr(xi > j )  for 

i =  1, • • •, n. The algorithms for system reliability evaluation in the binary context can 

then be applied in the multi-state context. For example, assume that the performance 

function h{p) of a multi-state system is given, then it can be expressed using the 

pivotal decomposition method as (El-neweihi et al, 1978; Hudson and Kapur, 1983):

M
/ i (p i ,P 2 ,- " 1Pn) =^2Pijh(j i;  P i,P 2 ,---,P n) (2.25)

j= o

where h{ji\p i, p2, • • •, p n) =  E<f>(Xu • ■ ■, X£_!, j , X i+l, • • •, X n).

IE and SDP techniques are also applicable to system performance evaluation or 

bound computation. We will discuss them in Chapter 3.

In addition, many stochastic performance properties, such as mean time to failure, 

mean time between failures, the generalized IFRA(Increasing Failure Rate Average) 

closure theorem and so on (Barlow and Proschan, 1975), can also be extended from 

the binary case to the multi-state case (El-Neweihi et al, 1978). But not much work 

has been done on investigating the conditions for the use of these concepts in the 

multi-state case.

2.5 Concluding remarks

This chapter reviewed various key concepts in the binary system reliability theory 

and in the multi-state system reliability theory. Almost all concepts in the binary 

case can be extended to the multi-state case and the latter inherits many properties 

from the former. However, the progression from the binary theory to the multi

state theory is not simply extending the domain of the system state space from 

{0,1} to {0,1, • • -, M}.  We have seen that there exist some essential distinctions
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between them. For example, the minimal path sets of a multi-state system could 

have more comphcated meanings as shown in Example 2.2. Such distinctions result 

from the complicated relevancy conditions of multi-state systems. In Chapter 3, we 

will discuss various multi-state relevancy conditions and then proceed to advanced 

topics of multi-state system reliability theory, which include binary decomposition of 

multi-state system, generalization of multi-state models, the algorithms and bounding 

techniques for multi-state system performance distribution evaluation and so on, and 

then propose the research motivation of this thesis.
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Chapter 3 

Advanced Topics of M ulti-state  

System  Reliability Theory

3.1 Introduction

The concept of multi-state coherent structures was reported as early as 1968 by Hirsch 

and Meisner (1968). However, the generalizations to multi-state reliability theory 

had not been fruitful until the first multi-state coherent structure was suggested by 

Barlow and YVu (1978). The reasons that it took such a long time for the multi-state 

reliability theory to develop are (1) the binary coherent reliability theory was able 

to serve many practical requirements well; and (2) multi-state coherent systems have 

much more complicated properties than binary systems.

In Chapter 2, we have reviewed many fundamental concepts of the multi-state 

system reliability theory. The contents of the multi-state reliability theory is more 

profound and extensive than the binary reliability theory. In this chapter, we present 

a literature review on advanced topics of multi-state reliability. Section 3.2 discusses 

multi-state relevancy conditions and how to define a multi-state system using rele-
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vancy conditions. Section 3.3 briefly reviews two binary decomposition methods for 

multi-state systems. Some multi-state systems can be expressed in terms of a bi

nary structure function and binary variables. Section 3.4 is on various multi-state 

modeling techniques and the properties of multi-state reliability models. Section 3.5 

discusses the algorithms and bounding techniques for system performance evaluation. 

In Section 3.6, we propose the research motivation of this thesis.

3.2 Relevance conditions

In a binary system, the component relevancy condition is unique as defined in Def

inition 2.1. In a multi-state system, the component relevancy conditions have been 

defined in many ways. For example, consider a coherent system with two components, 

under the relevancy condition as defined in Definition 2.2 (Barlow and Wu, 1978), 

the system has only two possible structures: either series or parallel just like in the 

binary case. But under the relevancy condition imposed by El-Neweihi et al (1978), 

the system could have 12 possible structures. As the central notion of the multi-state 

reliability theory, component relevancy conditions contain many interesting issues. 

Over half of the papers on multi-state reliability theory are about defining relevancy 

conditions. It has led to the introduction of several classes of multi-state coherent 

systems.

3.2.1 F u n d am en ta l re levance conditions

The first multi-state system was proposed using the concepts of minimal path sets or 

minimal cut sets (Barlow and Wu, 1978). Assume that a system has s minimal path 

sets and t minimal cut sets. The system structure function 0  is defined:

•  B W  Class (Barlow and Wu, 1978):
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0 ( X )  =

f

maxi<7<3 miriiep X{
(3.1)

mxni<r<t mdXtg/cP Xj»

where P j  represents the j th minimal path set, j  =  1,2, • • • , s and K r represents the 

r th  minimal cut set, r = 1,2, • • • ,  t.

Based on the BW relevancy condition, the system state is equal to the state of 

the “worst” component in the “best” minimal path or the “best” component in the 

“worst” minimal cut. BW class simply extends the domain of the state space from 

{0,1} in the binary case to {0,1, • • •, M}  in the multi-state case. Hence there is a 

one-to-one correspondence between the structure of a multi-state system and a binary 

structure under this definition. For example, for a two-component system, BW class 

yields only two possible systems: the parallel system when t =  1 and the series system 

when s =  1. Although this definition is very simple and specific, it lays the foundation 

for a theory of multi-state systems.

Later, other classes of multi-state relevancy conditions were proposed following the 

BW class to reflect the complex inherent properties of multi-state systems. Griffth 

(1980) divided the multi-state relevancy conditions into three types: strong coherent, 

coherent and weak coherent.

• EPS Class: strong coherent (El-Neweihi, Proschan and Sethuraman, 1978):

A system of n components is said to be a coherent system if its structure function 

4> satisfies: (i) (j) is non-decreasing; (ii) for every level j  of component i, there exists a 

vector (•jjX) such that = j  while 0(/t,x) ^  j  for I ±  j , j  =  0,1, • • •, M; (iii)

0(j) =  j-
The relevancy condition (ii) means that every level of each component is relevant 

to the same level of the system. This condition is very strong such that it is called 

strong coherency by Griffth (1980). EPS class includes BW class as a sub-class. This 

means that the BW class also specifies a strong coherent system.
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Example 3.1: A multi-state structure under EPS class

Consider a two-component system wherein both the system and the components 

may be in one of three possible states, 0, 1, and 2. The following table specifies the 

relationship between system state and component states.

0 ( x )  : 0 1 2

x  :

(0 ,0 )  (1 ,1 )  (2 ,1)  

(1 ,0 )  (1 ,2)  

(0 ,1 )  (2 ,2)  

(2 ,0 )

(0,2)

Table 3.1: System state table for Example 3.1

Based on the definitions of multi-state series system and parallel system defined 

in Chapter 2, at system level 2, the system structure is neither series nor parallel so 

it does not belong to BW class. But it is one of the structures under EPS class.

•  G R I1  Class: coherent (Griffith, 1980):

If there exists a vector (•*, x) such that — l)i,x ) <  o(ji, x) for any component 

i and state j  > 1, then <j>(x) is said to be coherent.

•  G R I2  Class: weak coheren t (Griffith, 1980):

If there exists a vector ( * i , x )  such that o(k, x )  ^  j  for some I ^  j ,  then <p(x) is 

said to be weakly coherent.
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The relevancy condition of GRIl class requires that every level of each compo

nent is relevant to the system but not necessarily to the same level of the system. 

GRI2 class only requires that each component is relevant to the system. GRI2 class 

is equivalent to that for any component i, there exists a vector (• ;,x) such that 

0(Oi, x) < 0(A/t, x). We have discussed GRI2 class in Chapter 2.

Example 3.2: A multi-state structure under G RIl class

Consider a two-component system wherein both the system and the components 

may be in one of three possible states, 0, 1, and 2. The following table specifies the 

relationship between system state and component states.

0 ( x )  : 0 1 2

x  :

(0,0 )  ( 1 ,0 )  (2 ,1)  

(0 ,1 )  ( 1 , 1 )  (2 ,2)  

( 2 ,0 )

( 0 ,2 )

( 1 ,2 )

Table 3.2: System state table for Example 3.2

This structure belongs to GRIl class, but not to EPS class. At system level 1, 

0(1, 0) =  0(1,1) =  0(1,2), it does not satisfy the strong coherency condition.

Example 3.3: A multi-state structure under GRI2 class

Consider a two-component system wherein both the system and the components 

may be in one of three possible states, 0, 1, and 2. The following table illustrates the 

relationship between system state and component states.
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0 ( x )  : 0  1 2

x  :

( 0 ,0 )  (0 ,1 )  (2 ,0)  

( 1 ,0 )  (1 ,1 )  (2 ,1)  

(0 ,2 )  (2 ,2)  

(1 ,2 )

Table 3.3: System state table for Example 3.3

This structure belongs to GRI2 class, but not to GRI1 class since level 1 of com

ponent 1 is irrelevant to any system state.

There are many other classes of multi-state relevancy conditions. Their definitions 

and properties are summarized as below:

• N A T1 Class (Natvig, 1980):

A system of n  components is said to be coherent if there exists a vector (•i,x) 

such that 4>(ji, x) > j  and <f)((j -  l ) i? x) < j  — 1 for all components i =  1, • • •, n and 

all states j  =  1, • • •, M.

•  EBR  Class (Ebrahimi, 1983):

For any components i, there exists a vector (»i,x) such that 4>{ju x) > j  and 

d>((j — l)i,x ) <  j  — 1 for at least one j .

Considering that the states of both a system and its components can be divided 

into two groups: >  j  or < j ,  NAT1 class can be rephrased as : there exists a vector 

(•i,x ) such that 0(Zi;x) >  j  for I > j  and 0(fcj,x) <  j  for k < j . NATl class implies 

that every level j  of each component is relevant to the same level or above of the
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system while GRI1 class just claims that 4>((j — l) i,x ) < 4>(ji, x). Clearly, NAT1 

class is stronger than GRI1 class. EBR class is equivalent to NAT1 class if it holds 

for every level j  so it has a weaker requirement than NAT1 class.

•  NAT2 Class (Natvig, 1980):
\r

If a multi-state structure function 0 has the representation 0(x) =  Y  <!>j(Ij(x)), 

where <j>\ ><&-•■> <p\r are M  binary coherent structures and Ij(x) =  (Ij(xi), • • •, Ij(xn)) 

is a vector of indicator functions defined as:

1, if X; >  j
=

0, otherwise

then 0(x) >  j  0j(lj(x)) =  1.

NAT2 class represents a multi-state structure in terms of a uniquely determined 

binary structure function, but it is far more general than BVV class. It allows the 

system to have different structures at different levels while BVV class assumes the 

system structure is the same at all levels. If ail Oj's have the same structure, NAT2 

class reduces to BVV class. But NAT2 is not the same as EPS class to be illustrated 

in Example 4.

Example 3.4: A multi-state structure under NAT2 class

Consider a two-component system wherein both the system and the components 

may be in one of three possible states, 0, 1, and 2. The following table specifies the 

relationship between system state and component states.

The system belongs to NAT2 class. At system level 1, it is a parallel structure 

while at level 2, it is a series structure. But it does not belong to the EPS class.

The relevancy conditions discussed above are accepted as the fundamental ones. 

VVe use A  C  B  to denote A is properly contained in B. According to the order from the 

strongest to the weakest, we develop a detailed classification scheme for the relevancy 

conditions as follows.
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0 ( x )  : 0 1 2

x :

(0,0)  (0 ,1 )  (2 ,2 )  

(1 ,0 )

(1 ,1 )

(2 ,0 )

(0 ,2 )

(2 ,1 )

(1 ,2 )

Table 3.4: System state table for Example 3.4 

B W c  E P S (or NAT2)C N A T lc  G R Il(o r  E B R )c  GRI2C M M S

Andrzejezak (1992) discussed various relevancy conditions. His conclusion is the 

same as the above scheme except replacing MMS with the BW class since he believes 

that the BW model is suitable for any MMS. A MMS is irrespective of any relevancy 

condition so it should be the weakest. Each class of relevancy condition has its 

own advantages and limitations. The strong relevancy conditions may restrict the 

analyst’s freedom, but the enumeration of the system structure provides a tighter 

range because they allow fewer possible structures. The weak relevancy conditions are 

flexible but may be too general to analyze. It is easy to verify that when M  =  1. all the 

above relevancy conditions are reduced to binary coherent system. These relevancy 

conditions are often cited in building multi-state system models. For example, Hudson 

(1983) used a relevance condition which is the same as GRI2 class. Xue (1985) used 

one similar to GRI1 class. This is why we call them the fundamental relevancy 

conditions.
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3.2.2 G en era liza tio n s  o f re levance co n d itio n s

Since there are so many ways to define relevancy conditions, it seems necessary to 

generalize the relevancy conditions using some criterion. Such attempts have been 

made by: (1) Producing a sequence of relevancy classes which contains those existing 

relevancy conditions in a unified form (Ohi and Nishida, 1983). (2) Producing a 

unified formula for expressing various classes of relevancy conditions (Abouammoh 

and Al-Kadi, 1991 and 1997).

Ohi and Nishida (1983) defined a sequence of relevancy conditions, which contains 

most of the fundamental relevancy conditions. Consider a multi-state coherent system 

0 with state space S  =  {0,1, • * *, A/}. For each s € S  and each t > s, there exist

{ki,x) and (/j,x), k and / 6 S  and k < I such that:

1. OHI Class: o(ki, x) = s, and o{li, x) =  t for i =  1, • • •, n:

2. OH2 Class: o{ki, x) = s — 1, and 0 (lit x) =  s for i =  1, • • •, n:

3. OH3 Class: <p(kiyx) £  s, and = s for i = 1 equivalent to ESP

class;

4. OH4 Class: 0(A:,,x) <  s — 1, and 0 (^ ,x ) > s for i — equivalent to

NAT1 class;

5. OH5 Class: 0(fcj,x) ^  0(^,x) for i =  1, • • • ,n , equivalent to GRI2 class;

6. OH6 Class: equivalent to MMS;

7. OH7 Class: there exists («;,x) such that 0(fcj,x) ^  equivalent to GRI1

class.

In the sequence, only OHI class and OH2 class are not contained in those funda

mental classes discussed in Section 3.2.1. In these two classes, the relations among
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the states, s, t, k  and I, are not well defined so it is difficult to give their physical 

interpretations. Similarly, the rephrasing of other classes in the sequence does not 

look any clearer than the original definitions.

By observing the fundamental classes of relevancy conditions and the sequence 

by Ohi and Nishida (1983), it is possible to express most of them in some unified 

mathematical form. Abouammoh and Al-Kadi (1991 and 1997) made such effort to 

recognize the relevancy conditions in terms of the combination of two binary indicator 

functions. They presented a new definition for multi-state coherent systems of order k, 

where k refers to the minimum number of levels for which the underlying components 

of the system are relevant.

1. Let Aj and Bj be two subsets of levels of performance with respect to level j  

and let Oj be a binary structure function such that

0 j ( x )  =  -
1, if 0(x) > j

0. otherwise

2. A monotone system is a multi-state coherent system of order k , where k £ S  =  

(1,2, • • •, M}, if each component i is relevant to at least k levels of performance 

of the system $  according to the relevance condition | x)  — 0 i{kt, x)  |=  1 

for some k G Aj  and for some I 6 Bj.

The class of multi-state coherent systems of order k  is in accordance with most of 

the classes of the fundamental relevance conditions by specifying k values. EPS class, 

GRI1 and GRI2 classes, NAT1 class and EBR class can be viewed as the special 

case by selecting different k  and I values. For example, setting Aj = { j  — 1} and 

Bj =  (1,2, • • •, M},  we get: x )  — — 1),-,x )  =  1 for some I =  1, • • •, M.  This

is reduced to GRIl class and then GRI1 class is of order M , i.e., the minimum number 

of levels for which the underlying components of the system are relevant for GRIl
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class is M.  This method is helpful for better explaining the relevancy conditions. 

But BW class and NAT2 class can not be expressed using this definition. Generally 

speaking, there does not exist a unified method commonly accepted for classifying all 

existing relevancy conditions.

3.2.3 T h e  re levancy  cond itions based  o n  L -su p erad d itiv e  func

tio n

Another approach concerning a multi-state system is to explore the mathematical 

properties of its structure function rather than the underlying relevance condition. 

Structure functions relate the level of performance of a system to the performance 

levels of its components. L-superadditive (LSP) function and L-subadditive function 

(LSB) are two particular types of structure functions, which have an intuitive prop

erty to describe whether a system is more series-like or more parallel-like (Block et 

al, 1989).

D efinition 3.1: A monotone function <p is called LSP if it satisfies 0(x V y) + 0 (x  A 

y) > 0(x) +  <p(y) f°r ail x >y> where x  V y  =  (xt V yx,x2 V y2, • • • ,x„ V yn) and 

Xi V yi =  max{xi, y,}; x  A y =  (xx A yu x2 A y2, • • •, xn A yn) and x* A yt =  min{xi, &}.

If the inequality signs are reversed, the function is called LSB. The dual of LSP is 

LSB. LSP and LSB functions have important reliability interpretations. They can be 

used to describe whether a system is more series-like or parallel-like. If the structure 

function of a system is a LSP, then we say it is more series-like. If the structure 

function of a system is a LSB, then we say it is more parallel-like. In the binary 

case, the only systems having a LSP function are series systems. The only systems 

having a LSB are parallel systems. In the multi-state case, there are many structure
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functions which axe LSP and LSB. However, if we restrict our attention to structure 

functions of BW class, then only the series system is LSP and the parallel system is 

LSB.

Example 3.5: A multi-state system with LSP

Consider a two-component system wherein both the system and the components 

may be in one of three possible states, 0, 1, and 2. The following table specifies the 

relationship between system state and component states.

0(x) : 0 1 2

X  :

(0,0) (1,1) (2,1) 

(0,1) (1,2) (2,2) 

(0,2) (2,0)

(1,0)

Table 3.5: System state table for Example 3.5

It is easy to check that 0 is MMS and the LSP property holds, but it is not a 

series system. We say it is more series-like because if component 1 is in state 0, then 

the system will be in state 0 too. From this example, it is of interest to raise such a 

question: under what relevancy conditions, is a system with LSP exactly a series one 

and a system with LSB exactly a parallel one? The following two classes of relevancy 

conditions provide answers to this question (Meng, 1993).

•  M FC1 C lass (Meng, 1993): For each component i, level k > 0, there exists a 

vector (*i,x) such that 0(0;, x) < k < 0(A^,x).

•  M FC 2 C lass (Meng, 1993): For each component i, level k  > 0, there exists a
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vector (•,-,x) such that 0((fc — l)i,x ) <  k  <  0(A/,-,x).

In MFCl class, at system level k, functioning (>  k) of component i can ensure 

the system to be functioning and removing this component can cause system failure 

(< k). MFC2 class means that failure of the component will cause system failure 

and improving the component truly improves the system. The properties enjoyed by 

MFCl class or MFC2 class have their counterparts in each another. If 0  G MFCl 

class, then <pD G MFC2 class. By imposing these two relevancy conditions, series and 

parallel structures are characterized within LSP and LSB functions, i.e, if 0 is a LSP 

function, then 0  G MFC2 class implies 0  is a series structure; if 0  is a LSB function, 

then 0  G MFCl class implies 0  is a parallel structure. The relation between these two 

classes of the relevancy conditions and others is: NATlC MFC1DA/FC2 C MFCl U 

MFC2 C GRI2.

3.2.4 C h a ra c te riz a tio n  re su lts  on  B W  class

Of all the relevancy conditions, BVV class is the most intimately related to that of 

a binary system and it possesses many properties inherited from the binary system. 

Although many classes of relevancy conditions include BW class as a special case, 

only BW class provides an intuitive expression for the system structure function. 

Characterizing BW class within other classes is a natural task that has been addressed 

by some authors. Many axiomatic characterization results relating BW class to other 

classes have been developed. Two important issues are: (1) The equivalent condition 

of BW class and (2) The elimination of those strict assumptions imposed on BW 

class, for example, BW class requires the system structures to be the same at binary 

structures.

The first group of equivalent conditions for the characterization of BW model is
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presented as below (Borges and Rodrigues, 1983):

1. For every x  6 S n with 0(x) > k > 1, there exists y  G {0, A:}n such that y < x  

and 0(y) > fc;

2. For every x G {0, M } n, 0(x) =  either 0 or M;

3. For every i , there exists x  G Sn such that 0(0*, x) < 0(A/t, x).

A monotone system belongs to BVV class if its structure function 0 satisfies these 

three conditions. Condition 1 is equivalent to: a system structure function 0 can be 

expressed by a set of minimal paths. Condition 2 means that 0(j) =  j  just for j  = 0 

and A/, but not necessarily for j  = 1,2, • • •. A/ — 1. Condition 3 has been introduced 

to the weak relevancy in GRI2 class. 0 is under NAT2 class if only conditions 1 and 

3 hold.

When the system state space is continuous, it leads to a continuous multi-state 

system. An axiomatic characterization for BW class given a continuous state space 

is investigated by Mak (1989), where the system structure function 0 is assumed 

to be a continuous function in the interval [0,1]. A continuous structure function 

0 : [0,1]" —► [0,1] has the BW form if and only if it satisfies the following conditions:

1. 0  is non-decreasing in each of its arguments;

2. For each i, there exists x3 G [0,1] for all j  ^  i such that with all x 's  fixed the 

function : x* G [0,1] —*■ 0(x t , • • •, x*, - • •, xn) is non-constant;

3. 0  is continuous;

4. for each x G [0, l]n, there exists a i such that 0(x) =  x,-.

Conditions 1 and 2 say that the system is coherent. The essential feature of a BW 

continuous structure function is the property stated in Condition 4. It says that the 

system must perform at the same level as that of some component.
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Realizing that BW model is the class of least generality but with most dichoto- 

mous characterization among relevancy conditions, it is natural to attem pt to develop 

a new class of multi-state systems which is similar to BW class except that it pos

sesses no relevancy restrictions (Ansell anu Bendell, 1987). A coherent system is 

defined in the wide sense if and only if its structure function 0 satisfies 0(0) =  0 and 

0(M ) =  A/; or in the narrow sense if and only if 0(j) =  j  for all j  =  0,1, • • •, M. 

Wide-sense coherency is identical to Condition 2 proposed by Borges and Rodrigues 

(1983). Narrow-sense coherency is included in most of the other classes, for examples, 

EPS class and GRIl class.

Definition 3.2: A wide-sense coherent system 0 is said to have a well-defined binary 

image if and only if /,-(x) =  /_,(y) implies that 0>(0(x)) =  0>(0(y)) for any j , where 

/j(x) is a binary indicator vector, i.e., Ij{x ) =  {Ij{xi), Ij(x 2 ), • • •, /_,(xn)) and Ij(xi) = 

1 if Xi > j  and =  0 otherwise. 0> is a binary indicator function (Ansell and Bendell.

1987).

A coherent system with a well-defined binary image is such that no ambiguity is 

obtained if the multi-state system modeled as a two-state one. In such a system, if 

the number of minimal paths at every level is the same and each one is of the form 

(j, • • - 0 ,  • ■ •, 0), it is called a coherent system with a constant binary image (Ansell 

and Bendell, 1987). Coherent systems with constant binary images lead to BW class 

by an additional relevancy requirement. All BW coherent systems are contained in 

the class of narrow sense coherent systems possessing a well-defined binary image. 

We have noticed that this definition contains strong restrictions. For example, a 

system could be divided into a two-state one, but it is not necessarily one that is 

called a coherent system with a well-defined binary image. A system that is defined 

as a  narrow-sense coherent system with a constant binary image actually may not be
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coherent. We will discuss more about this definition in Chapter 6.

Example 3.6: A narrow-sense coherent system with a constant binary image

Consider a two-component system wherein both the system and the components 

may be in one of three possible states, 0, 1, and 2. The following table specifies the 

relationship between system state and component states.

0(x) : 0 1 2

x  :

(0,0) (1,0) (2,0) 

(0,1) (1,1) (2,1) 

(0,2) (1,2) (2,2)

Table 3.6: System state table for Example 3.6

It is easy to check 0 satisfies Definition 3.2 and thus the system is a narrow-sense 

coherent system with constant binary image, but component 2 is irrelevant to the 

system.

To relate BW class to other classes more explicitly, we can use the following two 

conditions provided by Meng (1994):

1. A non-decreasing function 0 : Sn —* S  satisfies condition A: if o(x - f a - 1 )  =  

0(x) -I- a for every x  and some a > 0;

2. A non-decreasing function 0 : S71 —+ S  satisfies condition B: if 0 (x -a) =  a • 0(x) 

for every x  and a > 0.

where a is a constant and a • x  =  (axi, <2 x 2 , • • •, axn).

The structure functions satisfying condition A or B have intersections with other 

classes of multi-state structures. For example, if an EPS class also satisfies condition
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A, then it leads to the BW class. Conditions A and B imply condition 1 and 2 

presented by Borges and Rodrigues (1983). But conditions A and B are easier to be 

applied. At the same time, these two conditions can also be used for a continuous 

system structure function.

3.2.5 C onclud ing  rem ark s

As the foundation of multi-state reliability theory, relevancy conditions have received 

much attention. Various relevancy conditions reveal a world of complex multi-state 

structures. Multi-state coherent theory is a new development milestone of reliability 

theory rather than a simple extension of the binary coherent theory. Although many 

results about multi-state relevancy conditions have been obtained, there are many 

unexplored questions in this research area. In the following, we summarize some 

major conclusions:

1. Barlow and Wu (1978) first introduced a multi-state model and extended many 

concepts from the binary coherent theory. Although their model is simple, it 

has attracted attention from other authors since it enjoys many nice properties 

extended from the binary reliability theory.

2. Among various fundamental multi-state relevancy condition, EPS class, GRIl 

class and GRI2 class are popularly accepted as strong coherent, coherent and 

weak coherent conditions. Other relevancy conditions can be classified among 

these three.

3. Relevancy conditions are so complex that the system structure function can not 

be mathematically formulated except BW class. In this case, it is almost im

possible to know the exact number of system structures under a given relevancy 

condition for a given component number n  and a maximum state A/. In some
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articles, the authors used some simple examples to show how the structures 

vary for the given relevancy condition. More work is needed to verify how these 

structures reflect the problems in real-life.

4. A few authors tried to build up a unified form of relevancy conditions. Their 

contributions are helpful for analysis of multi-state systems. But there is still 

not a real unified model which includes all the existing relevancy conditions.

3.3 Binary decom position of m ulti-state system s

Relevancy conditions show one aspect of the multi-state reliability theory which is 

quite different from the binary reliability theory. Another central notion in the multi

state reliability theory is to investigate the inherent relationship between binary sys

tems and multi-state systems. In NAT2 class, we have seen that a multi-state function 

can be expressed using M binary functions, namely 4>\,-■ ■ ,<b\f Similarly, a multi

state variable can be expressed using M binary variables. As a result, a multi-state 

system can be analyzed from the relationship between the binary system function 

and the binary variables. Here the questions to be answered are: (1) How to model 

a multi-state system using the binary decomposition method? (2) How to utilize the 

binary decomposition method to find multi-state system performance distribution? 

Block and Savits (1982) provided a solution for the first question with a decomposi

tion theorem for multi-state structure functions. Their result can be used to interpret 

BW class. The answer for the second question results from another decomposition 

technique by Wood (1985). His method allows existing binary algorithms for block di

agrams to be applied to some multi-state systems such that it is called the multi-state 

block diagram method. In the followings, we will discuss these two decomposition 

methods.
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3.3.1 BS m odel (B lock a n d  Savits, 1982)

BS Model considers a non-decreasing multi-state system with a structure function 0 

as an MMS by imposing the conditions that 0(0) =  0 and 0(M ) =  M. It does not 

make the assumption that 0(j) =  j  for j  = 1, • • •, M  — 1 imposed by other classes.

Given a system function 0 and its minimal path sets denoted by Pj, j  = 1, • * •, M, 

where Pj is the collection of the minimal path sets to level j .  To decompose such a 

function into binary functions, the following procedure is proposed:

1. For each x  € Pj,  let Lj(x)  =  {(i.Xi) : x, ^  0}; Those components, which are 

not at state 0 in the minimal path sets to level j ,  are recognized.

2. Define the binary functions 4>k in terms of M  x n  binary variables y = ( :  1 < 

i < n. 1 < j  < M) by

0j(j/) =  max min ijijxePj (i,j)€Lj(x)
where j  = L, - - -, A/; Note that each 4>j is a function of 2 x M  variables. It 

implies that the system state is equal to the state of the “worst" component in 

the “best” minimal path.

3. Define the binary indicator a(x) =  (a;j(x) : 1 < i <  n, 1 <  j  < M), where 

Oij (x) =  1, if Xi > j  or =  0 otherwise. For a selected component state vector, 

convert it into a binary vector using the binary indicator first and then compare 

with the state of the “worst” component in the “best” minimal path.

M
4. 0(x) =  t .  ^ (a (x ))-

j = i

Example 3.7: Decomposition of a multi-state system

Consider a two-component system wherein both the system and the components 

may be in one of three possible states, 0, 1, and 2. The following table specifies the 

relationship between system state and component states.
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0(x) : 0 1 2

x  :

(0,0) (0,1) (2,0) 

(1,0) (1,1) (2,1) 

(0,2) (2,2) 

(1,2)

Table 3.7: System state table for Example 3.7

The minimal path sets to level 1 are (0,1) and (2,0). L t(0 ,1) =  (2,1) and

Li(2,0) =  (1,2). y =  (yn,yi2,2tei,Jte)* We have:

<P l (y) =  max min yy =  max( t/2i , I/1 2) (3.2)xePi (t.j)et.i(x)

Equation(3.2) implies that for the system function Q\ to be equal to 1, at least one 

of the binary variables y-2.\ and y 12 must be equal to 1. For example, we check com

ponent state vector x  = (1,2). Since a(x) =  a (l,2 )  =  (1,0,1,1), then 0i(a(x)) =  

max{0,1} =  1. Similarly, we can obtain <po(y) =  2/12 and (p2 (oi(x)) = 0 . As a result, 

0(x) =  1.

A similar decomposition can be obtained using minimal cut sets. The decomposi

tion theorem provides a general expression for multi-state system functions in terms 

of binary functions and binary variables. It is analogous to express a system function 

in terms of minimal path sets in the binary case. Another application of BS model 

is that some relevancy conditions can be interpreted using the relationship between 

the binary functions Oj and the binary variables y F o r  example, GRIl class can 

be rephrased that 4> is coherent if and only if y^ is relevant to some <pk for each 

component i and state k  =  1.2, • • •, M.
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3.3.2 M u lti- s ta te  b lock  d iag ram  m e th o d

A block diagram is used by reliability engineers to find the probability distribution 

for the state of the system. In multi-state systems, the concept of multi-state block 

diagrams was first introduced by Wood (1985). Binary variables x,j and binary

The state of component i is the sum of the x t] and the system state <p(x) is the
X I  X I

sum of the i.e., x* =  Y  xa  and <p(x) =  Y  Obviously, each of (ft*{x) is
i = i  j = t

a binary monotone structure function which only depends on those binary variables.

From Equation (3.3), multi-state block diagrams can be formulated in terms of 

binary variables for evaluation of system performance distribution at any given level. 

In a multi-state block diagram, each block represents a binary random variable. If the 

components in a block diagram are s-independent, the calculation of system reliability 

is simple, just replace x^ with py. Otherwise, conditional probability expansions are 

required. In the following, we use a simple example to show how a multi-state system 

can be expressed by multi-state block diagrams.

Example 3.8: Multi-state block diagram

function (ft*{x) are used to represent the states of the components and the system, 

where x^ and <^(x) are the binary indicators defined as follows:

1, if <?>(x) > j  

0, otherwise

1, if Xi > j  

0, otherwise

(ft* (x) — (ft* (xU, • • * , XLV/, X2 1 , ‘ ■ ’ , %2X1 1 ' ' ' 1 ^nA/) (3.3)
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Assume that a  multi-state system has 3 components and both the system and 

its components have 4 states, j  =  0,1 ,2 ,3 . Let 0 be parallel at level 1, 2-out-of-3:G 

structure at level 2 and series at level 3. Figure 3.1 is the block diagram of the system.

-BJ—CD-

suu i Suu 2 Suu 3

Figure 3.1: Multi-state block diagram for Example 3.8

0 ‘(x) =  1 -  (1 -  x u )(l -  x2l)(l -  x3l)

02(x) =  1 -  (1 -  X t2 X 2 2 ) ( l  -  a r12x 32 ) ( l  -  X22X 32)

03(x) =  X 13X23X33

The system performance distribution can be calculated using s-independence for 

0 l and 03, but conditional probability is required for calculating Pr(02(x) =  1):

Pr(0[(x) =  1) =  1 -  (1 -  pu )(l -  p2l )(l  -  P31)

Pr(02(x) =  1) =  P 12P 22 +  P12P32 +  P22P32 — 2pi2p22p32

Pr(03(x) =  1) =  P13P23P33

In Equation (3.3), each binary function &  is determined by n  x M  binary variables. 

Many of these variables may be irrelevant for the calculation of system performance 

distribution so the computation efficiency needs to be enhanced. This modeling tech

nique can be extended to analyze multi-state fault-trees.
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3.3.3 C onclud ing  rem ark s

Generally speaking, BS model and the multi-state block diagram method provide a 

binary decomposition for multi-state systems, which releases the relevancy restric

tion. These ideas are similar to each other. A multi-state system is treated as M  

binary systems while its n  multi-state components are represented using n x M  binary 

variables. Multi-state components and MMS functions are represented in terms of 

binary components and binary structure functions.

BS model relates multi-state system structure functions to binary system structure 

functions in terms of minimal path sets or minimal cut sets. The model is quite 

theoretical and not easy to be applied for the calculation of system performance 

distribution or the computation of its bounds. The decomposition theorem can also 

be used to explain the relevancy conditions of some other classes.

Compared with BS model, the multi-state block diagram method is much more 

intuitive. It allows existing binary algorithms to be used for the performance dis

tribution evaluation of multi-state systems. Computer programs for the binary case 

can be applied to the multi-state case with adjustments in models rather than the 

programs.

A common disadvantage of both methods is that many irrelevant binary variables 

are included or involved. In principle, it is possible to eliminate those irrelevant binary 

variables, but further research is needed.

3.4 M ulti-state reliability m odels and their prop

erties

A key problem in reliability analysis is to find out how reliability characteristics 

of a complex system can be determined from a knowledge of reliability indices of
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its components. In the binary case, many well-known systems have been used to 

model various practical problems, for examples, series and parallel systems, fc-out- 

of-n systems, bridge systems and so on. These simple models can be extended to 

the multi-state case. But restricted by the complicated relevancy conditions, there 

has been little work on general multi-state modeling techniques. Alternatively, some 

authors stress to investigate the properties in multi-state systems and develop their 

models by imposing some specific properties. In the following, we will review existing 

multi-state reliability models and their properties.

3.4.1 M u lti-s ta te  series, paralle l a n d  /c-out-of-n system s

Series system, parallel system and A>out-of-n system are the most fundamental sys

tems in the binary context. They are then naturally extended to the multi-state 

context. The definitions of multi-state series, parallel and Ar-out-of-n systems are first 

introduced by El-Neweihi et al (1978) as follows:

1. A system is a series system if its structure function satisfies:

<p(x) =  min x*
l< « < n

2. A system is a parallel system if its structure function satisfies:

4>(x) =  max Xi 
l<‘<«

3. A system is a A:-out-of-n:G system if its structure function satisfies:

0 ( ^ 0  =  *£(n—fc+1)

where X(j) <  X(o) <  • • • <  X(n) is an increasing arrangement of Xi, X2 , • • •, xn.

These definitions are natural generalization of the corresponding binary systems 

and have been popularly accepted. For example, a  A:-out-of-rc:G system can be defined
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in term of minimal path sets or minimal cut sets as: 0 is a A>out-of-n:G structure 

function if and only if 0 has minimal path sets to level j  and (fc2 t) minimal 

cut sets to level j ,  where j  =  1,2, • • •, M  (Boedigheimer and Kapur, 1994). A series 

system is a n-out-of-n:G system and a parallel system is a l-out-of-n:G system.

3.4.2 E qu ivalen t an d  sy m m etric  re la tio n s  in  m u lti-s ta te  sys

tem s

The focus of multi-state reliability modeling is on finding an appropriate definition 

for the states of the system and its components and their relationship. Equivalent 

and symmetric relations are two types of relations in multi-state systems.

Equivalent classes of component state vectors

Considering that different components in a system may have different effects on the 

system, the concept of equivalent classes is introduced for the analysis of multi-state 

systems (Hudson and Kapur, 1983). Assume S  =  {0,1, • * •, M  — 1, A/}. A multi-state 

system consists of M  +  1 equivalent classes {So, Si, • • • ,S\t}, where Sj =  {x | 0(x) =  

j}> j  =  0,1, - - *, M. {So, Si, • • •, S\r} partitions the set of component state vector S 

and Sj is non-empty.

D efinition 3.3: Two component state vectors x  and y  are said to be equivalent if 

0(x) =  0(y) =  j , indicated by x  y. If x <-+ y, then we say that x  and y belong to 

the same equivalence class (Hudson and Kapur, 1983).

For example, assume that there are two component state vectors (1,2) and (1,1). 

If 0(1,2) =  1 and 0(1,1) =  1, then we say component state vectors (1.2) and (1,1) 

are in the same equivalent class. In the model proposed by Hudson and Kapur (1983),
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a system and its components could have different numbers of states. For example, 

a system is allowed to have 3 states while some of its components may have only 

2 states. To find the system performance distribution in each equivalent class, only 

upper and lower critical vectors to every system level are needed. The relevancy 

condition of GRI2 class is imposed on this model.

The series, parallel and A:-out-of-n systems are defined different from those defined 

in 3.4.1. A series system is defined such that if at least one component is at state 

0, then the system is at state 0, and if all the components are at state M, then the 

system is at state M. A parallel system is defined such that if all the components are 

at state 0, then the system is at state 0, and if at least one component is at state M, 

then the system is at state M. A /c-out-of-n structure is defined such that if at least 

(n — k + 1) components are at state 0, then the system is at state 0, and if at least 

k  components are at state M, then the system is at state M. In other words, only 

the perfect state (state M) and the failure state (state 0) of a system are concerned. 

Those intermediate states (states 1,2, • • •, M  — 1) of the system are determined by 

the combinations of the component states, which depend on the definition of each 

component state. A basic opinion of the authors (Hudson and Kapur, 1983) is to 

relax the restrictions on modeling a multi-state system as much as possible such that 

the model can be widely used in engineering practice.

Sym metric relation in m ulti-state system s

Although minimal path sets and minimal cut sets play important roles in the com

putation of multi-state system performance distribution, it is usually difficult to find 

all minimal path sets or minimal cut sets of a multi-state system. Finding a solution 

for this problem is equivalent to finding a simplified mathematical form of the multi

state structure function. In the binary case, a system structure can be described by
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a Boolean function. In the multi-state case, a system structure can be described by a 

discrete function. However, a general discrete function can not be expressed using a 

simple mathematical form in most cases. Wood (1985) noticed that a multi-state sys

tem function is only related to n binary variables in multi-state Ar-out-of-n structures 

but he did not make further exploration. This characteristic was further investigated 

and generalized by Xue and Yang (1995). They defined symmetric function as a spe

cial class of discrete functions.

D efinition 3.4: Given a multi-state function 0, if 0 (x t , • • • , xs, ■ • •, xc, • • • , xn) = 

0 (x t, • • •, xt, • • •, x s, • • • ,xn), then we say that components s and t are symmetric, 

indicated by s ~  t.

The symmetric relation between two components implies that these two compo

nents play the same role in the system.

Definition 3.5: Two component state vectors x and y are said to be symmetric if 

all the components in the vectors are symmetric and o(x) =  0(y), written as x  ~  y.

x  ~  y implies that x can be obtained by some permutation on y. The symmetric 

relation between two state vectors is a special equivalent relation. 0 is a symmetric 

function if all its components are symmetric at all levels. A symmetric relation is 

common in engineering systems. Series, parallel and A:-out-of-n systems all belong to 

symmetric systems. If 0(x) is a symmetric function, then its domain S  can be repre

sented by its subset s .  The number of elements in S  is (M  + l)n while the number of 

elements in s is ( iV/(£n) so the domain of 0 is significantly simplified. Correspondingly, 

the number of minimal path sets or minimal cut sets in the subset is also decreased.
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Concluding remarks

Multi-state reliability models are complicated and it is often difficult or impossible 

to find a mathematical form for its structure function. However, as illustrated in 

this section, there exist some special properties in multi-state structure functions. 

Both equivalent and symmetric relations are good examples of such properties. They 

provide a valuable tool for simplifying multi-state reliability models.

3.4.3 G enera lized  m u lti-s ta te  re liab ility  m odels

In the following, we discuss two generalized multi-state reliability models. In fact, 

it is hard to say which model is a generalized one since there are so many classes 

of relevancy conditions. With respect to the meanings of “generalized” here, it at 

least implies that (1) the weakest relevancy condition, i.e., GRI2 class is used in the 

model; (2) some restrictions on multi-state reliability models are relaxed. The first 

model, “Customer-driven reliability model” , is proposed by Bodeighemier and Kapur 

(1994). This model allows a different number of discrete states for a system and for 

each component. The second model, “Partially-ordered reliability model”, releases 

the restriction that the system states are totally ordered from 0,1, • • •, A/. Instead, 

some states in (1,2, • • •, M  — 1} may not be normally ordered.

Customer-driven reliability m odel (Bodeighem ier and Kapur, 1994)

This model is developed based on the model proposed by Hudson and Kapur (1983). 

It is described as:

Assume Sq, S i , - ■ •, S\r ore disjoint sets that partition the multi-state system <p into 

M  + 1 equivalent classes and then 4> is a coherent system if it satisfies:

1. 0 is non-decreasing;
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2. SQ and S\[ are not empty;

3. 0 belongs to GRI2 class.

Such a model is called a customer-driven reliability model since it allows the 

customer to define the states for the system and for each component. In other words, 

it considers the effect of the component importance on the system. For example, given 

two component state vectors (2,3,3) and (3,2,3), we define 0(2,3,3) < 0(3,2,3) if 

component 1 is more important to the customer than component 2. The new ideas 

in this model is that the authors re-defined multi-state series, parallel and k-out- 

of-n systems since they believe that those definitions of multi-state series systems, 

parallel systems and fc-out-of-n systems proposed by Hudson and Kapur (1983) do 

not specify which vectors belong to the equivalent classes between Si and S \t- \ .  

The definitions proposed by Bodeighemier and Kapur (1994) have been discussed 

in Section 3.4.1. A binary decomposition similar to BS model (Block and Savits, 

1982) is developed for calculating the system performance distribution. Branded 

and Kapur (1997) renamed such a model as “customer-centered” reliability model by 

further explaining the relationship between quality of a product and its reliability. 

Reliability is a time-oriented quality-characteristic. As quality must be defined from 

the viewpoint of the customer, so must reliability. A series of dynamic measures for 

the model is developed.

Partially-ordered reliability model (Yu et al, 1994)

Realizing that the states of a system and its components are not necessarily completely 

ordered, Yu et al (1994) proposed a generalized coherent system model which allows 

the states of a system and its components to be partially ordered . The key idea 

in this model is that the system and the components can possess more than one 

performance parameter, and each of the parameters can degrade independently. For
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example, neither fail-open nor fail-close of a valve is a degradation from the other. 

Both the system and the components are assumed to have a perfect functioning 

state and several performance deterioration modes. Every intermediate state is a 

degradation from the perfect-functioning state, but not every complete failure state 

needed to be a degradation from this intermediate state such that there need not 

exist a smallest element in the state set. The model is described as:

Let Ei be the collection of states of component i and E  be the complete collection 

of component states, Et = {0,1, • • •, Mi}, and E  =  n?=t Ei —* S, and S  be the 

collection of system state. The elements in both E  and S  are partially ordered. The 

definition of such a MMS is described as follows:

1. Reachability: For any s* 6 S, there exists x  6 E  such that 0(x) =  s*;

2. Normality: The mapping <t>: E  —*■ S  maps the greatest element of E 

onto the greatest element of S, and maps every minimal element of 

E  onto some minimal element of S;

3. Coherence: For any component i and some minimal element of £*, 

e°-\ there exists an x € E  such that <?((eflj)j,x) > <p((e°J)j,x).

The reachability implies that for every intermediate state s, of the system, there 

is at least one component state vector x  such that o(x)  = The normality indicates 

that if all the components are in the perfect functioning state, then the system will 

be in the perfect-functioning state. The different combinations of the intermediate 

states of the components may result in the system to be in different intermediate 

states. For example, consider a 3-state system with two components. 4> can take 

values from {0,1,2}, where 2 is the perfect state while 0 and 1 indicate two failure 

states. At the same time, the components also take values from {0,1,2}, where 2 is 

the perfect state while 0 and 1 are two failure states. The normality is equivalent
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to that 0(2,2) =  2 and possibly 0(1,0) =  1 and 0(0,1) =  0. The relevancy condi

tion used in this model is equivalent to GRI2 class. An interesting phenomenom is 

that many common properties contained in other totally-ordered models are lost in a 

partially-ordered model. For example, the dual function of a partially-ordered system 

does not always exist and its structure function 0 is not always bounded above by 

a series structure and below by a parallel structure. However, if some of its subsets 

is totally ordered, these properties do exist in this subset. The concepts of minimal 

path sets and minimal cut sets in the totally ordered case are extended to the par

tially ordered case. Since the expression of the system structure function in terms of 

minimal path sets or minimal cut sets is quite different from the totally ordered case, 

there may exist several paths along which the system can degrade from the perfect 

functioning state to some complete failure state, the system reliability is re-defined 

and bounds for the system performance distribution are derived.

In summary, these two models consider wider application conditions for multi

state reliability models. However, both of them have their limitations. The customer- 

driven reliability model re-defined multi-state series, parallel and /c-out-of-n systems. 

In these definitions, the systems are assumed to have a constant structure at all lev

els. In this case, the relevancy condition should be GRI1 class rather than GRI2 

class. Otherwise, if a system could have different structures at different levels, then 

the definitions do not apply. We will further discuss this issue in Chapter 6. In the 

second model, the relation between the totally ordered case and the partially ordered 

case has not been well studied.
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3.4 .4  C o n tinuous m u lti-s ta te  re liab ility  m odels

We have been considering discrete multi-state reliability models, i.e., the state spaces 

of both the system and the components are a set of discrete numbers: {0,1,2, • • •, M — 

1, A/}. However, a state space could be continuous in some applications. For example, 

a system state can be described by a continuous variable if its percentage effort or 

percentage capacity is recorded. In this case, the states of a system and its components 

can take values from an interval. Ross (1979) proposed that a multi-state system or a 

component may take performance levels from an interval. The first continuous model 

was proposed by Block and Savits (1984). An integral representation for a general 

multi-state structure function is defined. Various concepts corresponding to discrete 

models, for example, upper sets and extreme points corresponding to path sets and 

minimal path sets, are proposed. A decomposition similar to BS model (Block and 

Savits, 1982) is also developed.

One of the major difficulties in implementing continuous state reliability analysis 

is its mathematical complexity. Yang and Xue (1997) discuss how to simplify and use 

continuous random processes in product reliability modeling and how to use statistical 

methods to estimate parameters in reliability models. Zuo et al (1999) investigated 

three approaches for reliability modeling of continuous state devices. The first uses 

the random process to fit model parameters of a statistical distribution as functions 

of time. The second approach uses the general path model to fit model parameters 

as functions of time. The third uses multiple linear regression to fit the distribution 

of lifetime directly. Generally speaking, not many results have been reported on 

continuous models.
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3.4.5 D ynam ic m ulti-state reliability  m odels

Markov processes have been used to analyze dynamic multi-state systems. Here 

“dynamic” means time-dependent. Many results about dynamic multi-state reliability 

models have been reported, for examples, Karpinski (1986); Cao and Wu (1988); 

Levitin and Lisinanski (2000) and so on. Regarding to Markov processes, readers 

may refer to the references by Chung (1979). In a Markov process, the system state 

is expressed using a transition matrix of the component states rather than the system 

structure function. For examples, Cafaro, Corsi and Vacca (1986) have shown how to 

use Markov models for evaluating the availability and reliability of a system when the 

transition rates of each component depend on the state of the system. The structural 

properties of the system transition rate matrices based on the transition-rate matrices 

of the components are analyzed. The key achievement of their work is the potential of 

using parallel computing resources with this approach, which promises a reduction in 

computing time, thus renewing interest in Markov models. Lesanovsky (1988) dealt 

with a system that can be described by a homogeneous continuous time discrete state 

Markov process. The case when transition rates of each unit depend on the current 

state of the system is considered. Usually, Markov process models consider certain 

inspection or repair activities. For example, Huang and Wu (1990) used the Markov 

decision model to analyze the maintenance activity of a shovel-truck system for an 

open-pit mine. A shovel-truck system consists of a fleet of trucks. The system state 

is defined as the monthly production amount of the shovel while the component state 

as the monthly production amount of the trucks. Various maintenance and repair 

activities are considered. The transition probability of the component state with 

or without maintenances and repairs is calculated. The objective of this model is 

to optimize the expected gross benefit in infinite time span. By means of dynamic 

programming, the optimal maintenance and repair periods matching such an objective
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are obtained. Buihan and Allan (1995) and Bai and Zhang (1997) analyzed large 

power system reliability applying Markov processes.

At present, Markov process is still a powerful tool for analyzing dynamic multi

state system reliability. However, this technique has certain limitations: first, it 

requires the system to have Markov property, i.e, the sojourn time distribution in 

each system state is exponentially distributed. This assumption is not always sat

isfied. If this property is not applicable to a system, more complicated stochastic 

process models are required. For example, Yieh (1996) used a semi-Markov model to 

find the optimal inspection and replacement policies for a multi-state deteriorating 

system. For such a model, mathematical formulation becomes so complicated that 

it is essentially intractable. An approximation method must be used to transform a 

semi-Markov process into a Markov process in this case. Secondly, as the number of 

components increases, the system state transition matrix becomes very large so it can 

only be applied to small multi-state systems. To analyze large a  multi-state systems, 

we have to use system structure function to define system states.

A different approach for the dynamic reliability analysis of multi-state systems is 

to combine Markov processes and multi-state system theory (Xue and Yang, 1995; 

Amari and Misra, 1997). In such a analysis, Markov process technique is used to 

describe the dynamic characteristics of component state transition, and through the 

system structure function, the dynamic characteristics of the system are analyzed. 

Usually, a system structure function can be expressed by the sum-of-product form of 

its minimal path sets at every level (Xue, 1985). By generalizing reliability measure 

parameters in the binary case to the multi-state case, the problem of dynamic reli

ability analysis of multi-state systems can be transformed into a series of dynamic 

reliability analysis of binary systems. The generalized multi-state reliability param

eters include system reliability R(t), unreliability F(t), failure rate A(£) and MTTF
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(Mean-Time-To-Failure). Existing methods of reliability testing and parameter esti

mation and system modeling can be applied for multi-state reliability. This method 

also requires the system to have Markov property.

Example 3.9: Dynamic system reliability measures of a series structure

Consider a series system 0 with n components. The system performance distri

bution R{t,j)  is defined as R ( t , j ) =  Pr(0(t) >  j) ,  where j  =  0,1, • • •, M. Then

i=i

where Ri{t,j) =  exp[— /q \i(u ,j)du\  is the performance distribution function of com

ponent i and Ai(t, j)  is the transition rate for component i from state set {j, j  -F 

1, • • •, A/} to state set {0,1, • • •, j  — 1} at time t. And then the system transition rate

A ( t j )  = £ A  i(t, j)
i=i

In particular, if all the components are i.i.d., i.e., A i(t, j) = A (j), then R{t, j)  =  

exp[—nA(i)t|.

There are many other issues on dynamic multi-state system reliability models, for 

example, multi-state fault-tree analysis by Xue (1985); the redundancy optimization 

problem for series-parallel multi-state systems by Levitin et al (1998); the structure 

optimization problem of multi-state system with time redundancy by Lisinanski et al 

(2000).

3.4.6 C on c lu d in g  rem ark s

Generally speaking, the techniques of multi-state reliability modeling are still in its 

infant stage of development. The key problem is how to find a simple expression for 

a multi-state system structure function. More attention should be paid to common
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properties of multi-state systems, for examples, equivalent relation and symmetric 

relation.

3.5 System  performance distribution evaluation

As discussed in Chapter 2, almost all algorithms for reliability evaluation of binary 

systems can be extended to the multi-state case. But determining the exact sys

tem performance distribution of a multi-state system can involve extremely large 

amounts of computations because of its huge state space and complex relevancy con

ditions. Alternatively, finding the bounds of a system performance distribution is 

more practical sometimes. Basically, we can divide the algorithms for performance 

evaluation of a multi-state systems into three types: decomposition methods, other 

methods and bounding techniques. Decomposition methods include binary decom

position, pivotal decomposition and modular decomposition. Other methods include 

Inclusion-Exclusion method(IE) and Sum-of-Disjoint-Product method(SDP). We will 

review these algorithms one by one.

3.5.1 F in d in g  m in im al p a th  se ts  an d  m in im al c u t sets

In a multi-state system, the minimal path sets and minimal cut sets play important 

roles in computing the system performance distribution or establishing the bounds 

of the system performance distribution. As a result, finding all minimal path sets or 

minimal cut sets is very important. A multi-state system can always be expressed in 

terms of its minimal path sets and minimal cut sets using the lattice exponentiation 

form of a discrete function (Xue and Yang, 1995). In other words, the complexity 

of the structure function of a multi-state system is proportional to the number of 

its minimal path sets or minimal cut sets. Hudson and Kapur (1983) illustrated
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the existence of minimal path sets and minimal cut sets for any levels of multi

state systems. But the computation of finding all the minimal path sets of a multi

state system could be overwhelming and using the enumeration method may be more 

effective in some cases (Xue, 1985).

From the viewpoint of system theory, any large system has a hierarchical structure. 

Thus the structure function of a large system may be in hierarchical decomposition 

form (Xue, 1985). Modular decomposition is a commonly-used hierarchical decompo

sition method for a large system. If a system has a complete modular decomposition, 

then its minimal path sets at level j  can be found by implementing: (1) finding the 

minimal path sets of the sub-systems; (2) obtaining the minimal path sets of the 

modular system; (3) obtaining the minimal path sets of the original system. If a 

multi-state system does not have a modular decomposition form, an enlarged-system 

is needed. Since it is required to delete some vectors which are not the minimal path 

sets of the original system from Step (2) in order to obtain Step (3), this method is 

still not a direct way for finding minimal path sets of a system. Actually, whether a 

component state vector is a minimal path set or not depends on the relevancy condi

tion of the system. A minimal path to system level j  could result in the system to be 

in a higher level. Thus it is not easy to find an efficient method for finding minimal 

path sets of multi-state systems. We will discuss the properties of minimal path sets 

of multi-state systems further in Chapter 6.

3.5 .2  D ecom position  m e th o d s  

Pivotal decom position

Pivotal decomposition is a commonly-used tool for reliability evaluation of binary 

systems. This method can be used for calculating the exact performance distribution 

of multi-state systems (El-Neweihi et al, 1978; Hudson and Kapur, 1983; Korczak,
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1993). The system performance function of n components may be expressed in terms 

of system performance functions of n — 1 components by:

M
MPi.Pa. - - - .Pn)  =  E po'MJm Pi ,P2, - - - ,Pn)  (3.4)

j=0
where h(ji, p x, p2, •, p n) =  E(f>(Xu • • •, X i - Uj, X i+u • • •, X n), and pi =  {piQ, • • • ,p lA/).

A decomposition identity is as below:

Pr(0(x) > j)  =  E  Pr(0(x) > j  | Xi =  j )  Pr(Xi = j )  (3.5)
j=o

B inary  decom position

In Section 3.3, we have discussed two binary decomposition methods presented by 

Block and Savits (1982) and Wood (1985). The common idea of these two methods 

is: dividing a multi-state system into M binary structures and a multi-state variable 

into M binary variables. Usually, the following indicators are used for such trans

formations: <^(x) =  1 if 0(x) > j  and ^ (x )  =  0 otherwise; xtJ =  1 if > j  and 

Xij =  0, otherwise. Thus a multi-state system structure function can be expressed 

using Equation (3.3). The problem is that mutual s-independence among components 

may be lost in this equation even components are assumed s-independent. For exam

ple, let x  =  (3 ,2 ,0 ),y  =  (3,2,1) and z =  (3,1,0), 0(x) =  0(y) =  3 while 0(z) =  2. 

then we can write: 03(x) =  03(y) =  1, 03(z) =  0. However, if now we express these 

three vectors x, y  and z in binary variable vectors for system state 3, they all become 

(1,0,0). We obtain a conflicting conclusion. It seems that the same binary vector 

(1,1,0) is giving different system state indicator values (0 for z and 1 for x  and y). 

To avoid this contradiction, all decomposition methods for a multi-state systems re

quires minimal path sets or minimal cut sets to be known first before the calculation 

of system performance distribution. Wood (1985) claimed that binary algorithms can 

be applied for evaluation of system performance distribution by means of block dia-
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grams. Indeed, his method also requires to find minimal path sets of systems first and 

then either the pivotal decomposition or conditional probability method is applied.

To consider a binary decomposition for multi-state systems, we need to answer 

the following questions first:

1. Under what conditions can a multi-state system be divided into a dichotomous 

system at the same level as its components? In other words, when is a multi

state system dichotomous at all levels?

2. How to eliminate the s-dependence among the binary components so that we 

can find an equivalent binary system for a multi-state system at any level? 

In other words, when can existing binary algorithms be used for multi-state 

systems directly?

We will discuss these two issues in Chapter 6.

Modular decom position

For the analysis of a large system, modular decomposition is often used. The modular 

decomposition method can be applied for either exact system performance evaluation 

or bound computation. In Chapter 2, we have reviewed the definition of modular 

decomposition and the measurement of decomposition efficiency proposed by Hudson 

and Kapur (1983). Based on this measurement, we can judge whether the system 

performance distribution computation using modular decomposition is more efficient 

than without the decomposition.

One of the main reasons for modular decomposition of a system is to facilitate the 

calculation or approximation of system performance distribution. In most cases, by 

using the modular decomposition, the computations involved in computing bounds 

can be greatly reduced and the bounds produced are as good as or better than other 

approaches, for examples, IE and SDP methods (Butler, 1982).
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In the binary case, the procedure of obtaining reliability bounds using modular de

composition is to determine lower bounds (or upper bounds) on the reliability of each 

module first, and then to treat these lower bounds(or upper bounds) as if they were 

actual reliabilities of the modules in determining a lower bound (upper bound) for 

the reliability of the overall system. Such a procedure can not be directly extended to 

multi-state systems since the bounds on the performance of each module at every level 

will not in general constitute a performance-distribution vector (Butler, 1982), where 

the performance-distribution vector is defined as a vector v =  (uq,Vi , uo, - • •, um ) sat_ 

isfying 0 < u, < 1 and t>0 =  1. For example, the performance distribution of a 

multi-state component i (Pl0, Pa, • • •, Paw) is a performance distribution vector. For 

a multi-state system, we have to construct a performance distribution vector for the 

module from these lower bounds (or upper bounds) such that the results in the binary 

case can be generalized to the multi-state case. Butler (1982) described the proce

dures for constructing such performance distribution vectors for modules. Examples 

axe given to illustrate that the bounds with the modular decomposition is better than 

a direct approach.

One of the advantages of the modular decomposition is avoiding to find minimal 

path sets and minimal cut sets. The problem is that not all multi-state systems can 

be modularly decomposed and there is not an easy shortcut for judging whether a 

multi-state system can be modularly decomposed or not.

3.5.3 O th e r m e th o d s  

IE and SD P m ethods

Both IE and SDP methods can be used for performance distribution evaluation of 

multi-state systems. The IE method follows the same procedure as in the binary case 

(El-Neweihi et al, 1978; Natvig, 1980; Butler, 1982; Boedigheimer and Kapur, 1985).
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Let P j , Po,  , P / be r  minimum paths to level j ,  j  = 1,2, • • • M .  To calculate

RSj  =  P (0  >  j),  let A{ denote that x  >  P?,i = 1,2, • • • , r.

R ,1  =  Pr(«> > j )  =  P r(U  A i) (3.6)
i = l

Let Sfc =  51 n  Ai2 • • • D Aik)
l < i l < « 2 <  — i fc<r

By the Inclusion-Exclusion principle, we have:

P(?>J)= E (-l)‘- ‘St
f c= l

And then a sequence of upper and lower bounds on Rsj  can be obtained:

Rsj <  Si 

Raj ^ Si — So

Rsj ^  Si — So + S3

The exact value of RSJ can be found by using IE method continuously.

SDP method for multi-state systems is extended by Hudson and Kapur (1983)

and Korczak (1993). Again let P f , Po, ......... , P / be the minimal paths to level j ,

j  =  1,2, • • • M .  Define sets B {  =  {x  | x  > P i } for A: =  1, • • •, r and T t(  =  Pr(x G 

) =  Pr(x G * •UPj'). Then the exact system performance distribution

can be generated from a sequence of lower bounds { T { ,  T ( ,  • • •, T h } :

P r(0(x) > j )  > T Jk

The calculation of each T k  is shown by Hudson and Kapur (1983). The bounds 

resulting from SDP are always between 0 and 1 and SDP only generates lower bounds, 

but the bounds are strictly monotone increasing. Technically, both of IE and SDP 

can result in satisfactory bounds. SDP is better when computation time is concerned 

(Hudson and Kapur, 1983).

71

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Other algorithms

Aven (1985) reported two algorithms for evaluation of multi-state system performance 

distribution, which are based on Doulliez and Jamoulle decomposition method (Doul- 

liez and Jamoulle, 1972), in which the state space is decomposed into certain sets: a 

set of acceptable states, a set of non-acceptable states, and sets of unspecified states. 

Algorithm 1 requires known minimal path sets. Regarding to level j ,  a component 

state vector x is acceptable if and only if 0(x) > j  and non-acceptable if and only if 

0(x) < j .  Algorithm 2 requires known minimal cut sets. A component state vector 

x is acceptable if and only if 0(x) < j  and non-acceptable if and only if 0(x) > j .  

Each unspecified state is again decomposed and so forth until there are no unspecified 

states left. The fundamental idea is that solving a group of sub-systems, which are 

obtained by decomposing a large system, is easier than solving the whole system. 

But the algorithms are not well explained. Comparisons with IE method and state 

enumeration method are performed. The presented algorithms seem to be better.

3.5.4 Sim ple b o u n d in g  techn iques

Although modular decomposition and IE and SDP can be used to find the exact sys

tem performance distribution, it is usually very time-consuming. Alternatively, find

ing bounds is preferred sometimes. As we know, both IE and SDP are commonly-used 

bounding techniques. The modular decomposition methods can also be used to gen

erate bounds. Many simple formulas have been developed to bound the performance 

distribution of a multi-state system. The simplest bounding formula is:

minx, <  0(x) < maxi,-,

i.e., 0(x) is bounded below by the series structure and above by the parallel structure. 

Of course, this formula generates the loosest bounds. To obtain sharper bounds,
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a bounding technique using minimal path sets and minimal cut sets is developed 

(Butler, 1982). Consider a multi-state coherent system <f> with a set of minimal 

path P\, • • •, P3 and a set of minimal cut K\, ■ ■ -, K t at level j .  Define the min- 

path structure function Pj(x) and the min-cut structure function ivj(x) as: Pj(x) =  

n?=i hxi>xtk) for fc =  1, • • • ,s, x*  =  {xj | i € Pfc}; and Kj(x) = 1  -  n?=i /(x,<xtfc) for 

k  =  1 , • • •, t, Xik = {xi | i 6  Kk}, where /(,) is the indicator function.

•  Path-Cut bounds:

n  Pr(A-i(x) = 1)) <  Pr(^(x) > j )  < f [  Pr(PS(x) =  1))
fc=l fc=l

• Max-Min bounds:

{p r(Pj(x) =  1)} <  Pr(<p(x) > j )  < mjn {Pr(Kj {x )  =  1 )}

The Path-Cut bounds can be applied to associated components and provides a 

lower bound based upon cuts and an upper bound based upon paths. The Max-Min 

bounds can only be applied to independent components and provide a lower bound 

based upon paths and an upper bound based upon cuts. Similar to the binary case, the 

Max-Min lower bound is usually better than the Path-Cut lower bound for systems 

composed of very unreliable components, and the Path-Cut lower bound is better 

for systems composed of highly reliable components. The Max-Min upper bound 

is better than the Path-Cut lower bound for systems composed of highly reliable 

components, and the Path-Cut lower bound is better for systems composed of very- 

unreliable components. If only one-sided bound is required, the above comments do 

not apply. We classify these bounds as simple bounding techniques as they do not 

bound system reliability in a tight form.

Utkin (1993) presented methods to evaluate variance, interval width and frizziness 

importance of multi-state component. Since it is difficult to estimate precise prob

abilities of multi-state component states, one may use stochastic, fuzzy and interval
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description, which are characterized by uncertainty measures, variance, interval width 

and fuzziness respectively, of these probabilities.

3.5.5 C onclud ing  rem ark s

In summary, almost all existing algorithms for evaluation of multi-state system per

formance distribution or bounds are extended from the binary case. Among them, 

the modular decomposition seems to have excellent potential.

3.6 Research m otivation

In this chapter, we have reviewed most of the publications on multi-state reliability 

theory, which are published in the span between 1978 and 2000. Generally speaking, 

the papers published before 1990 concentrated on establishing the fundamental theory 

of multi-state system reliability, including relevancy conditions and the extensions of 

various concepts from the binary case to the multi-state case. Papers published 

since 1990 mainly aim to illustrate the applications of multi-state models in practical 

engineering. A framework of multi-state reliability theory has been established. There 

were two important issues on multi-state reliability theory: relevancy conditions and 

the relationship between binary systems and multi-state systems.

Various multi-state relevancy conditions have been discussed. Multi-state rele

vancy conditions are so complicated that there are many different versions. A major 

drawback of the existing work is that most of the papers did not illustrate how their 

definitions are applicable to real-world problems. The focus of this thesis is not on 

relevancy conditions.

The multi-state reliability theory extends various concepts and theorems from the 

binary reliability theory. When a multi-state system has the stone structure at all state
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levels, many properties of binary systems exist in such a system. However, in general, 

a multi-state system may have different structures at different state levels. When 

this happens, such a multi-state system usually has different properties from binary 

systems, for example, the dual property illustrated in Example 2.3. Under various 

relevancy conditions except the BW class, multi-state systems may have different 

structures at different levels. To investigate the relationship between binary systems 

and multi-state systems, the following issues will be addressed in this thesis.

1. The existing definitions of multi-state series, parallel and Ar-out-of-n systems 

assume that the systems have a constant structure at different system states. 

Such systems are similar to binary systems. We will define generalized multi

state A-out-of-n and consecutive fc-out-of-n systems, in which the systems are 

allowed to have different structures at different state levels, and then investigate 

their properties. The definitions to be proposed will be more general than the 

existing ones and have wider applications;

2. The inherent relationship between binary systems and multi-state systems is 

an interesting topic. Wood (1985) noticed that the indicator functions of some 

multi-state systems are only related to n  binary variables. However, he did not 

study the conditions under which such a phenomenon exists. We will investigate 

the equivalent conditions under which a multi-state system can be treated like 

a binary system. Finding such conditions will be beneficial for simplifying the 

calculation of multi-state system reliability;

3. Finding efficient algorithms for reliability evaluation of multi-state systems is 

usually difficult, especially for large systems. Although all binary algorithms 

can be extended to the multi-state case, the computation time for multi-state 

systems rapidly increases as M  and n increase. More efficient algorithms are to 

be developed.
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In summary, the theory of multi-state systems is still under development. There exist 

various problems to be addressed in order to make the multi-state system model a 

useful tool in practical system modeling. This Ph.D. is motivated to address some of 

these issues in order to make multi-state models more useful to engineers.
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Chapter 4

Generalized M ulti-state A > o u t-o f-n  

System s

4.1 Introduction

The A:-out-of-n system is one of the fundamental models in the binary case. It finds 

wide applications in both industrial and military areas. Lately a few researchers 

have extended the definitions of binary parallel, series, and A>out-of-n:G systems to 

the multi-state cases by allowing both the system and its components to have more 

than two possible states. As we have reviewed in Chapter 3, the state of a multi-state 

fc-out-of-n:G system is defined to be equal to the state of the Arth best component (El- 

Neweihi et al 1978) or as a system with ^  lower boundary points to system state j  

(j  =  1 ,2 , . . . ,  M) and (fc" t) upper boundary points to system state j  ( j  = 1 ,2, • • •. M) 

(Boedigheimer and Kapur, 1994). These definitions of the A:-out-of-n:G system are 

consistent with one another. The series and the parallel systems are special cases of 

the A:-out-of-n:G system. A series system is a n-out-of-n:G system. A parallel system 

is a l-out-of-n:G system. For the fc-out-of-n:G system, maintaining at least a certain
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system state level requires the same number of components to be at that state or 

above. That is, at least k components must be at state j  or better for the system to 

be at state j  or better (j = 1,2, • • •, A/), where k is independent of the value j  of the 

system state level. Such a k-oat-o[-n system is the simplest case because it requires 

the system to have the same structure at all system levels.

However, a multi-state system may have different structures at different system 

levels. For a multi-state Ar-out-of-n system, it implies that k is allowed to take differ

ent values. For example, considering a 3-component system with four possible states. 

The system could be a l-out-of-3:G structure at level 1 , in other words, it requires 

at least one component to be in state 1  or above for the system to be in state 1 or 

above. It may have a 2-out-of-3:G structure at level 2, in other words, for the system 

to be in state 2 or above, at least 2 components must be in state 2 or above. It may 

have a 3-out-of-3:G structure at level 3, namely, at least three components have to be 

in state 3 for the system to be in state 3. Such a A:-out-of-n:G system is more flexible 

for describing some real-life problems. In this chapter, we first propose a definition of 

the generalized multi-state A:-out-of-n:G system in Section 4.2. Section 4.3 provides 

examples to illustrate the ideas and applications of the proposed definition. In Sec

tion 4.4, reliability evaluation algorithms are provided for the proposed multi-state 

A:-out-of-n:G systems. Section 4.5 presents concluding remarks.

Notation and Assum ptions 

Notation:

n

M  4- 1

Xi

X

78

number of components.

number of states of the system and its components, 

state of component i, Xi €  {0,1, • • •, A/}, 

vector of component states, x  =  faq, X2 , . - -, xn).
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0 (x) system structure function representing the state of the system, 

0(x) € ( 0 ,1 , . . . ,  M }.

kj minimum number of components with x,- > j  for j  =  1,2, • • •, M.

k a constant when k^ = ko = ■ • ■ = k\j = k.

Pa Pr(x£ >  j) .

Pi Pj =  Pij when the components are i.i.d.

Pa Pr(xi = j).

Pi Pi =  Pii when the components are i.i.d.

Qa Pr(xi < j) .

Rsj Pr(0 (x) > j)

rsi Pr(0 (x) =  j)

MP( The zth lower boundary point or min path to level j

Assumptions:

1. The system is a multi-state monotone system (Griffith 1980):

•  0 (x )  is non-decreasing in each argument.

•  0(j) =  , j )  =  j  for j  =  0,1, • • •, M .

2. The Xi's are mutually s-independent.

4.2 D efinition o f m ulti-state fc-out-of-n:G system

The definition of the multi-state fc-out-of-n:G system is proposed as follows:

Definition: <p(x) >  j  ( j  =  1,2, . . . ,  M )  i f  there ex is ts  an  in teg er  va lue I 

( j  <  I <  M )  su ch  th a t a t least ki com ponen ts are in  s ta te s  a t least a s good
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as I. A n  n -co m p o n en t sy s te m  w ith  su ch  a property  is called a m u lti-s ta te  

k -o u t-o f-n :G  system .

In this definition, fc/s do not have to be the same for different system states 

j  (1 < j  < M). This means that the structure of the multi-state system may 

be different for different system state levels. Generally speaking, k / s  values are 

not necessarily in a monotone ordering. But the following two special cases of this 

definition will be particularly considered:

•  When ki < ko < < k\i, the system is called an increasing multi-state k-

out-of-n:G system. In this case, for the system to be at a higher state level j,  

a larger number of components must be at state j  or above. In other words, 

there is an increasing  requirement on the number of components that must be 

at a certain state or above for the system to be at a higher state level. That is 

why we call it the increasing multi-state A;-out-of-n:G system.

•  When ki > ko > ■ • • > k\[, the system is called a decreasing multi-state k- 

out-of-n:G system. In this case, for a higher system state level j ,  there is a 

decreasing  requirement on the number of components that must be at state 

level j  or above. That is why we call it the decreasing multi-state A:-out-of-n:G 

system

When kj is a constant, i.e., =  ko =  • • • =  kM=k, the structure of the system is

the same for all system state levels. This reduces to the definitions of the multi-state 

fc-out-of-n:G system in the literature as reviewed in Section 4.1. We call such systems 

constant multi-state A:-out-of-n:G systems. All the concepts and results of binary 

A:-out-of-n:G systems can be easily extended to the constant multi-state fc-out-of-n:G 

systems. We will treat the constant multi-state fc-out-of-n:G system as a special case 

of the increasing multi-state fc-out-of-n:G system in our later discussions.
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4.3 Illustrative exam ples

In this section, we provide examples to illustrate the ideas and applications of the 

proposed multi-state fc-out-of-n:G systems.

Example 4.1: An increasing multi-state fc-out-of-n:G system:

Consider a three-component system with ki =  1 , ko =  2, and k3 = 3. Both 

the system and the components may be in one of four possible states, namely, 0 , 1 , 

2, and 3. The following table illustrates the relationship between system state and 

component states.

0 (x) : 0  1 2 3

(0 , 0 , 0 ) (1 , 0 , 0 ) (2,2,0) (3,3,3)

(1 , 1 , 0 ) (2 , 2 , 1 )

(1 , 1 , 1 ) (2 , 2 , 2 )

(2 , 0 , 0 ) (3,2,0)

x  : (2 , 1 , 0 ) (3,2,1)

(2 , 1 , 1 ) (3,2,2)

(3,0,0) (3,3,0)

(3,1,0) (3,3,1)

(3,1,1) (3,3,2)

+ +

Table 4.1: System state table for Example 4.1

In this table, the “+ ” sign in the table represents the permutations of the component 

states listed above the sign. Because ki < k2 < k3 in this case, we have a simpler 

version of the proposed definition of the multi-state A>out-of-n:G system. The system
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is in state 3 if all three components are in state 3. The system is in state 2 or above 

if at least two components are in state 2 or above. The system is in state 1 or above 

if at least one component is in state 1  or above.

The system in this example has a series structure at system state 3 (3-out-of-3:G), 

a 2-out-of-3:G structure at system state 2, and a parallel structure at system state 1  

(l-out-of-3:G).

Example 4.2: A decreasing multi-state fc-out-of-n:G System:

Consider a three-component system wherein both the system and the components 

may be in one of four possible states, 0, 1,2, and 3. A decreasing A>out-of-n:G system 

satisfies the relationship between system state and component states as specified in 

the following table. In this example, we have ki =  3, Ar2 =  2, and k3 =  1 .

<2>(x) : 0 1 2  3

x :

(0,0,0) (1,1,1) (2,2,0) (3,0,0) 

(1,0,0) (2,1,1) (2,2,1) (3,1,0) 

(2,0,0) 4- (2,2,2) (3,1,1)

(1.1.0) +  (3,2,0)

(2.1.0) (3,2,1) 

+  (3,2,2)

(3.3.0)

(3.3.1)

(3.3.2)

(3.3.3) 

+

Table 4.2: System state table for Example 4.2
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Again, the sign represents the permutations of the states of the components listed 

above the “+ ” sign. For example, system state level 2 can result from component 

states (2, 2, 0) and their permutations, namely, (0, 2, 2) and (2, 0, 2). This is because 

all the components in a A>out-of-n:G system perform the same functions.

In terms of the definition of a multi-state A>out-of-n:G system we have provided, 

the system in this example is in state 3 if at least one component is in state 3 (k3 =  1 ). 

The system is in state 2 or above if at least two components are in state 2 or above 

(ko =  2) or at least one component is in state 3 (k3 =  1 ). The system is in state 

1 or above if all three components are in state 1 or above (ki =  3), or at least two 

components are in state 2  or above (Ar2  =  2 ), or at least one component is in state 

3  (k3 =  1 ). We can see that in this example, ki > ko >  k3 indicating a strictly 

decreasing multi-state fc-out-of-n:G system.

We can say that the system in this example has a l-out-of-3:G structure at system 

state 3, a 2-out-of-3:G structure at system state 2 , and a 3-out-of-3:G structure at 

system state 1 .

Example 4.3: A constant multi-state fc-out-of-n:G system:

Consider a three-component system wherein both the system and the components 

may be in one of four possible states, 0, 1,2, and 3. A constant multi-state 2-out-of-3 

system satisfy the following relationship between system state and the states of the 

components:

Again, the sign represents the permutations of the component states listed above 

the sign. Because =  k2 =  =  2, we also have a simpler version of the pro

posed definition of the multi-state fc-out-of-n:G system in this case. The system is in 

state 3 if at least two components are in state 3. The system is in state 2 or above 

if at least two components are in state 2 or above. The system is in state 1  or above
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0(x) : 0 1 2 3

(0 , 0 , 0 ) ( 1 , 1 , 0 ) (2 , 2 , 0 ) (3,3,0)

(1 , 0 , 0 ) ( 1 , 1 , 1 ) (2 , 2 , 1 ) (3,3,1)

X : (2 , 0 , 0 ) (2 , 1 , 0 ) (2 , 2 , 2 ) (3,3,2)

(3,0,0) (2 , 1 , 1 ) (3,2,0) (3,3,3)

+ (3,1,0) (3,2,1) +

(3,1,1) (3,2,2)

+ +

Table 4.3: System state table for Example 4.3

if at least two components are in state 1 or above. The system has a 2-out-of-3:G 

structure at each of the system states 1, 2, or 3.

Example 4.4: A production management problem:

Suppose that a plant has five production fines for producing a certain product. 

The plant has four different production levels: full scale for maximum customer de

mand (state 3), average scale for normal customer demand (state 2), low scale when 

the customer demand is low (state 1 ), and zero scale when the plant is shut down. 

Ail the five production fines have to work full scale (at state 3) for the system to 

be in state 3. At least three fines have to work at least at the average scale for the 

system to be at least in state 2 or above. At least 2 fines have to work at least at 

the low scale (state 1 ) for the system to be in state 1  or above. Such a system can 

be represented by an increasing multi-state fc-out-of-n:G system model with k\ = 2 , 

k2 =  3, and k^ =  5.

Example 4.5: A mining operation example:
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Take a shovel-truck system in an open-pit mine as an example. A shovel-truck sys

tem usually consists of a shovel and a fleet of trucks (say 20 trucks). The deteriorating 

rates of the trucks are often higher than that of the shovel. Each truck and the system 

may be in five possible states. The system will be in state 4 if at least 14 trucks are in 

state 4. The system is in at least state 3 if at least 15 trucks are in at least state 3 or 

at least 14 trucks are in state 4. The system is in at least state 2 if at least 16 trucks 

are in at least state 2. or at least 15 trucks are in at least state 3, or at least 14 trucks 

are in state 4. The system is in at least state 1 if at least 18 trucks are in at least 

state 1, or at least 16 trucks are in at least state 2. or at least 15 trucks axe in at least 

state 3, or at least 14 trucks are in state 4. This system can be represented by a de

creasing multi-state A>out-of-n:G system with ki = 18. ko =  16, k3 =  15, and k4 =  14.

From these examples, we can see that multi-state A:-out-of-n:G systems are more 

flexible to describe practical problems than binary fc-out-of-n:G systems.

4.4 System  performance evaluation

A commonly-used approach for multi-state system performance evaluation is to ex

tend the results from existing binary algorithms. In binary systems, the ‘‘domination 

phenomenon” always exists. A vector x  dominates another vector y  if x  > y  and 

0 (x) >  <p{y). This phenomenon also exists in the increasing or constant multi-state 

fc-out-of-n: G systems. T hat’s why the wordings are simpler for these systems as 

illustrated in the examples. In these cases, the system is at state j  or above if at 

least kj components are at state j  or above. If the states equal to j  or above are 

treated as “functioning” and the states below j  are treated as “failure” , these multi

state systems can be treated the same as how binary systems are treated. Thus, the 

algorithms for binary A>out-of-n:G systems can be extended to the increasing or con-
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stant A>out-of-n:G systems. But for decreasing fc-out-of-n:G systems, the domination 

phenomenon does not exist with all vectors. For instance, in Example 4.1, (2, 2, 2) 

results in system state 2 and (3, 0, 0) results in system state 3. However, vector 

(2, 2, 2) does not dominate vector (3, 0, 0). Both vectors (2,2,0) and (3,0,0) and 

their permutations are the minimal paths to system level 2. If we use them to calcu

late Pr(<p(x) > 2), there exists an overlapping problem for vectors (3,2,2), (3,3,2), 

(3,3,3) and their permutations. The binary algorithm can not be used directly in 

the decreasing systems. In the followings, we discuss the algorithms for performance 

evaluation of the increasing systems and the decreasing systems separately.

Case I: Increasing or constant A>out-of-n:G system s, i.e., < ko <  - • • < k \ f i

In this case, the definition of a multi-state A:-out-of-n:G is equivalent to that 

<p(x) > j  if and only if at least kj components have x; > j.

If at least kj components are in at least state j  (these components can be con

sidered “functioning” as far as state level j  is concerned), then the system will be in 

state j  or above (the system is considered to be “functioning”). The algorithms for 

binary fc-out-of-n:G system reliability evaluation by Barlow and Heidtmann (1982) 

and Rushdi (1986) can be extended in this case for multi-state fc-out-of-n:G system 

performance distribution evaluation:

R j ( n ,  k j )  = PnjR j ( n  -  1, k j  -  1) -I- (1 -  Pnj ) R j ( n  -  1, k j ) ,  (4.1)

where R j ( a , b )  is the probability that at least b out of a  components are at state j  or

above. The following boundary conditions are needed in equation (4.1):

R j ( a , b )  = 0 ,  for b > a > 0, (4.2)

Rj {a ,  0) =  1, for a > 0, (4.3)

where R j ( n ,  k j )  is the probability that the system is in state j  or above.
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When all the components have the same state probability distribution, i.e., p^ =  

Pj for all i, the probability that the system is in at least state j ,  R aj  can be expressed 

as:

R‘s =  £  ( « )

Equations (4.1) and (4.4) are similar to (2.13) and (2.14). Once we find Pr(0 (x) =  

j )  or Pr(0 (x) >  j )  for all j  values, we have found the probability distribution of the

system in different states. The probability that the system is in state j  can be

calculated as:

T"aj =  Raj Ra(j+l) ■ (d.o)

Example 4.6:

In Example 4.2, assume po =  0.1, pi =  0.3, p2 =  0.4, P3 =  0.2. We can use 

Equation (4.4) to calculate the system probabilities at all levels.

Solution:

We have Pi =  0.9, Po =  0.6, P3 =  0.2.

At level 3, k3 =  3. Ra3 =  P33 =  0 .2 3  =  0.008

At level 2 , k2 =  2 . Ra2 =  g )  x 0 .6 2 x ( 1  -  0.6) +  0.63 =  0.648

At level 1 , Art =  1. Ral = g )  x 0.9 x ( 1  -  0.9) 2 +  g )  x 0.92 x ( 1  -  0.9) +  0.93  =  0.999

The system probabilities at all levels are as follows: 

r s 3  =  0.008

rso =  R a2 -  Ra3 =  0.64

rai — Rat -  R a2 =  0.351

rao =  l — 0.008 -  0.64 -  0.351 =  0.001

Case II: Decreasing A>out-of-n:G system s, i.e., k i  >  k 2 >  • - - >  k^ t

87

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



We assume that at least one of the inequalities is a strict inequality because 

otherwise the system is a constant A>out-of-n:G system. When kt is the same for all i 

values, we can use the formulas for Case I to calculate system probability distribution. 

In Case II, the definition of the multi-state A:-out-of-n:G system is equivalent to the 

following:

0 (x) =  j  if and only if at least kj components are at or above state j  and 

at most ki — I components are at state I or above for / =  j  + 1, j +2, • • •, M  

where j  =  1,2, • • •, M.

In the following, we will separate the case with i.i.d. components and the case 

with non i.i.d. components. When all the components have the same state probability 

distribution, the following equation can be used to calculate the probability that the 

system is in state j:

-  ±  (*) ( £  a .)*  + t  « * ) ) .  W-«)
k=kj W  \m=0 /  \  l=j+l,ki>l )

where Pi(k) is the probability that there are at least one and at most ki — l components 

that are in state I, at most ku — 1 components that are in state u for j  < u < I. and 

the total number of components that are at states between j  and I inclusive is k.

As shown in Equation (4.6), n — k  components are in states below j  and the 

remaining k components must be in state j  or above. At the same time, all these 

component states must make sure that the system is exactly in state j .  In Equation

(4.6), we are summing up the probabilities that there are exactly k components 

that are in state j  or above without bringing the system state above j  for k = 

k j,k j  -f l , . . . , n  where 0i{k) is dependent on the value of k. The quantity in the 

last parentheses is the probability that at least k  components are in state j  or above 

without causing the system to be in a state above j .  Within the last parentheses, 

Pj is the probability that all the k components are exactly in state j , 0 j+i(k) is the

88

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



probability that there are at least one and at most kj+i — 1 components that are in 

state j  + 1 and the other components are in state j .  When I = j  + 2, ,3[(k) =  0j+2 (k) 

is the probability that there are at least one and at most kJ+2 — 1 components that 

are in state j  + 2, at most kj+i — 1 components are in state j  + 1, and the remaining 

components are in state j .  Generally speaking, 0i{k) is the probability that there are 

at least one and at most ki — 1 components that are in state I, and at most ku — 1 

components that are in state u for j  < u < I. U ku = 1 for any u, j  4- 1 < u < M, 

there is no need to calculate 0i{k) for I > u because ki is non-increasing. To calculate 

3i(k), we can use the following equation:

where I i- j- i  = E m il1 *m and Ii =  £m=t im- The programming procedure for calcu

lating 0 i is as follows:

1. Calculating 0j+\ at state j  ■+* 1.

Si =  Si +  Qi

next ii

0 j + l  —  S i

2. Calculating 0j+ 2  at state j  + 2.

Here, we still allow r  =  1 ~  kj+2 — 1 components are in state j + 2, k —r components 

are in state j  or t  =  1  ~  kj+i — 1  — r  components are in state j - 1 - 1  and other k — r — t 

components are still in state j .

Pj+iPj (4.7)

let Si =  0

for ii = 1 to kj+i — 1
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A--M =  ( ‘ )pjv 2 E f e i" i,_1

let Si =  0 and s2 =  0 

for i\ =  1 to kj+ 2 — 1

Ql =  (*)p ; + 2  

A = A
for io  =  0 to fcj+i — 1 — A 

Io  = A ■+■ io

Q2 =  I JPj+lPj
50 =  So -|- Qio

next to

51 =  Si -f- SoGi 

So =  0

next i i

^j+2 =  s l

3. Calculating $  at state I

Basically, we can extend the above algorithm to state I, here > 1.

a = s f c }  O f  ■ • ■ E f c #

here, U -j-i  = E m il ' *"m and h  =  Em ii *‘m 

let Si =  0; so =  0; • • • si-j =  0 

for it =  1 to ki — 1

«> = Of
A = A
for io =  0 to fc/_ i — 1 — A

A = A “b A

=  (‘- 'O p!- '
for A =  0 to fc/_i — 1 — Io
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^3 — *3 +  ^2

“ 3 =  (‘ 7/’)pi-3

for k - j  =  0 to kj+ 1  — 1 — i 

Ii-j =  k - j  +  Ii- j - 1

a i-j = (k~ k r l)p '& pi ~ !l~ 3

S[—j  =  $ l—j  "F  &l—j  

next ii-j

S l - j - 1  =  S i - j - i  -f- S ( _ j Q ; _ j _ i  

S i - j  =  0  

next ii- j-i

next t3

So =  So 4"  S 3 Q 0  

S3 =  0  

next io

S[ — S 1 +  S o ^ t  

So =  0

next t'i

0 i =  St.

The number of terms to be summed up in Equation (4.7) is equal to the number 

of ways to assign k identical balls to I — j  different cells with at least 1 and at most 

ki — 1 balls in cell /, at least 0 and at most kt — 1 balls in cells t for j  < t < I, 

and the remaining balls in cell j .  The complexity for such a problem can not be ex

pressed using a simple mathematical form (Chung, 1979). A computer program has
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been developed based on the programming procedure above and we have found the 

computation time for 0i(k) in Equation (4.7) will be much smaller than kl~j where 

k = max { k j , j  = 1 ,2 , . . . ,  A/}. In turn, the computation time for in Equation 

(4.6) is much less than nkM. For most practical engineering problems, a limited state 

number of M , for example M  =  10, is big enough to describe the performances of the 

system and its components. Thus, the proposed algorithm is practical.

Example 4.7:

Given a 4-component multi-state system, assume both the system and its com

ponents may be in state 0, 1, 2, 3, or 4. Let A:i =  4, k2 =  3, k3  =  2, fc4 =  1 . The 

components are assumed to be i.i.d. with po =  0.1, pi =  0.2, po =  0.3, P3 = 0.3, 

p4 =0.1. Use the above algorithm to calculate the system probabilities at all levels.

Solution:

At level 4, fe, =  1. By Equation (4.6), r s 4  =  £  (4) ^ ? 0Pm)  P4 =  £  (J)(0.9)4-' 

0.1* =  0.3439

At level 3, k3 =  2. By Equation (4.6), r s 3  =  £  (J) ^ ? 0Pm) P3 =  (J.)(0-6)4-

0.3* =  0.2673

At level 2, k2 =  3. Since fc3 > 1 , we need to find the expression of f t  (A:). Based 

on Equation (4.7), f t  =  £  (fJp^P^T 1 =  (?)0.3 x 0.3* " 1 =  k  x 0.3*.

r . 2  =  ■£ ( ;)  ( J ; / " . )  ( r f + a w )  =  £ ,  (;.)(o.3)-'-‘ (o.3‘ + & ( * » = 0 .1 7 0 1 .

At level 1, ki = 4. Since k2 > 1 and fc3 =  2 >  1 , we need to find ft(A;) and ft(Ar). 

By Equation (4.7), f t  =  _£ “ d  f t  =  . £  (  £  ( ,y p ?P ?-i5)  •

By Equation (4.6), r3l =  £  (4)po- 4  (pi ft(fc)) =  0.24 -fft(fc) +  ft(fc) =  0.0856. 

rs0 =  1 — rsl -  r s 2  -  r a 3  — r s 4  =  0.1331.
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When the components axe non i.i.d., the following equation can be used to calcu

late the system probability at level j .

>Vi= £  |«5(*.»)+ E  4 (0 1 ,  (4.S)
fc=fcj (  l= j+l , l> l  )

where Re(k,n)  is the probability that there are exactly k components that are in 

state j  and the other components are below state j  and r{(l) is the probability that 

at least one and at most ki — 1  components are at state /, at most ku — 1  components 

are at state u for j  < u < I, the total number of components at state j  or above is 

equal to k, and n — k  components are at states below j .  The first term in Equation
n

(4.8), Y  Ri(k,n)  is the probability that there are at least kj components that are
k—kj

in state j  and the other components are below state j .

RJe(k,n) =  PnjRi(k -  l ,n  -  1 ) + qnjR>e{k,n -  1)

R3e(k,k) =  n  Pij
i=i
k

Rei^ - i  k )  ~  ’ * '  <7(i— l ) jP i jQ( i+l ) j—Qkj
t = l

To calculate rJs(l) , we use the following equation:

fc j — l  Art— i  —  1 — f c j - t - i  —  1 —  h - j - i

’i d )  = E  E  E  +  n[4.9)
i l  =  l  i 2 = 0  i ( _ j = 0

l - j - 1  l - j
where, im and Ii-j =  Y,

m = 1 m =  1

In Equation (4.9), let /?((!“ , ( f — 1)*2, * * -, (j  +  I Y1' 1 , j k~lt- 1 ),n) = R((l ~  j) ,n )  

be the probability that there are exactly ti components at level I, components at 

level I — 1 , • • •, ii-j components at level j  +  1 , k — Ii-j  components at level j ,  and the 

other components at states below j  out of n  components. It can be calculated using 

the following recursive relation:

R{{1 ~  j ) ,n )  = PniR((lil- 1, *),n -  I) + pn(i - l)R(((l -  I)1"2-1, *),n  — 1) -f-----
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+PnU+l)R(((j +  1 Y‘-J \  *), n -  1) +  PnjR((jk /|_i l , *), n -  1) 

+qnjR{{l ~  j) ,  n -  1) (4.10)

Here, R{(1' 1 l , *),n  -  1 )  =  R{(ln l , I — I*2, • • •, j  +  Vl~J, j k — 1 )  and so on.

The boundary conditions are as follows: 

f i ( ( Z ° ,  (Z -  1 ) ° ,  ■ ■ • ,  i > ,  ■ ■ • ,  ( j  +  1 )  =  Pu

(Z -  I)0, ••■,() +  1)“, ? ) , n )  =  n j_ ,

(Z -  I)0,..., i»,..., ( j  +  1)0 ,/),  n ) = Ph

f t ( ( Z ° , ( Z  -  1 ) ° ,  ■ ■ • ,  i 1 .  • • • ,  ( j  +  1 ) ° , J ° ) , n)  =  £ J = 1  <7 , , ! j2j pt f  ■ qnj

The computation complexity for rS3 in the non-i.i.d. case is much less than n2kAl, 

where k = max{fcj, i =  1 , 2 , . . . ,  n}.

Example 4.8:

There is a three-component multi-state fc-out-of-n system. The component’s prob

abilities satisfy the following table:

P robab ilities

State 1 2 3

0 0 . 1 0 . 1 0 . 1

1 0 . 2 0 . 1 0 . 2

2 0.3 0 . 2 0.4

3 0.4 0 . 6 0.3

Assume k\ = 3 ,k 2 = 2, k3 =  2. Use Equations (4.8), (4.9) and (4.10) to calculate 

the system probabilities at all levels.
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Solution

At level 3, fc3 =  2, r *3  =  E*=*, *£(*. «) =  E iU  *£(*»")

When k  = 2, Rg(2, 3) =  P3 3 ^ ( l ,  2 )+<7 3 3 i?e(2 , 2) =  P33(Pl3Q23+Ql3P23)+(l33Pl3P23 =

0.324

When k  = 3, R%(3,3) =  P13P23P33 = 0.072 

r s 3  =  0.324 +  0.072 =  0.396

At level 2, A* = 2, r s 2  =  E j U  «£(*, ") +  E  r*(0 =  £ L 2 ") +  ^ ( 0
Z=3

When k  = 2,

R~( 2,3) =  P32̂ ?e(̂ > 2) 4- g3 2 i?g( 2,2) = P32(pi2<722 +  Q12P22) +  Q32P12P22 — 0.066 

r 2 (3) =  /2((3il,2fc-i,),3) =  fl((3l,2 l),3) =  P3 3 ^ (( 3 0; 2l), 2) +  p3 2 /2((3l, 2°), 2) +

g3 2 f l ( (3 \2 l),2) =  P33(Pl2922+ 9 l2P22)+ P 32(Pl3<?22+<7l3P23)+932(Pt2P23+Pl3P22) = 0.14 

When k =  3, /?*(3,3) =  pi2po2 p3 2  =  0.024

r 2 (3) =  /2((3'l ,2fc-‘l),3) =  f l( (3 \2 2 ),3) =  p3 3 /?((3°, 22), 2) +  p s ^ O 1, ^ ) ^ )  =

P33P22Pl2 +  P32(Pl3P22 + P12P23) = 0.2

r „ 2 =  0.066 +  0.024 +  0.14 +  0.2 =  0.43

At level 1 , An =  3 , r sl =  E L t ,  R & , n )  + E  rj(i) =  R le ( 3 .3) +  rj(2) +  rj(3)
i = 2

3) =  P 11P21P31 = 0.004 

rj(2) =  fl((2iM fc“i‘)!3) =  f l ( ( 2 \ l 2 ),3) =  p3 2 ft((2°, l 2 ) ,2) +  p3iR ( ( 2 l , l l), 2) =  

P32P21P1I + P 3 l(P l2P2I "h P llP 22) =0.022

r](3) =  /2((3'l ,2‘2, l fc-£l-i2 ),3) =  /2((3l , 2°, l 2 ) ,3) =  p3 3 /2((3°,20, l 2), 2)

+  P3iR((3l . 2°, l 1), 2) =  P33P21P11 +  P3i(p23Pu +  Pi3P2i) =  0.038 

rai = 0.004 +  0.022 +  0.038 =  0.064 

rsQ = 1 — 0.064 -  0.43 -  0.396 =  0.11

As we see in this example, the algorithm for the performance evaluation of the de

creasing fc-out-of-n:G system is complex. Alternatively, various bounding techniques
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can be used to establish bounds on the decreasing systems. In the following example, 

we use IE method to see how to establish the bounds of a decreasing fc-out-of-n:G 

system.

Example 4.9:

Consider a 3-component decreasing Ar-out-of-n system. Both of the system and 

its component may be in state 0, 1, 2, or 3. Let ki =  3, fc2 =  3, Ar3 =  1 . The 

components are assumed to be i.i.d. with po =  0.1, pi =  0.2, po = 0.3,p3 = 0.4. Use 

Inclusion-Exclusion method to find the system performance distribution.

Solution

The performance probability distribution of the components are: Pi = 0.9, P2 =

0.7, Pz =  0.3

At level 3, the minimal paths are M Pp =  (3,0,0), M P 3  =  (0> 3,0), M P 3  =  (0,0.3) 

and let A? =  {x > M P 3}, Ai> =  (x  >M P23}, A3  =  {x >M P33}

51 =  E  Pr(A3) = 3 x 0 . 4  =  1 . 2
i =  1

52 =  E  Pr(A? n A3) =  3 X 0.42  =  0.48
l< i< j< 3

5 3  =  Pr(A? D A l n  A§) =  0.43  =  0.064 

Rs 3 =  Si — So +  S3  =  0.784

For level 2 or above, the minimal paths are M Pf =  (2,2,2), M P 2 =  (3,0,0), M Pf = 

(0,3,0), M P42  =  (0,0,3) and let A\  =  {x >M Pp}, A\  =  {x > M P |} , A§ =  {x >M P32}, 

-42 =  {x > M P 2}.

51 =  E  Pr(A?) =  0.73  + 3 x 0 . 4
t=i

5 2  =  Z  Pr(A2  n A?) =  3 x 0.42  +  3 x 0.4 x 0.72

^ 3  =  E  Pr(A 2  n  Af n  Al) =  3 X 0.42  x 0.7 +  0.43
l<i<j<k<4

5 4  =  Pr(A2  n  A\ n  Al  n  A2) =  0.43  

Ps2  =  Si — S2 +  S3  — S4  =  0.811
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Similarly, for level 1 or above, the minimal paths are MP* =  (1,1,1), M P i  =  

(3,0 ,0 ) ,  MP* =  ( 0 ,3 ,0), MP* = ( 0 ,0 ,3)

R si =  0 .93 +  3 x 0 . 4 - 3 x 0 .42 - 3  x 0 .4 x 0.92 +  3 x 0.42 x 0.9 +  0.43 - 0 .43 =  0.909  

rs3 =  0.784

rs 2  =  Ra2 ~  Rs3 — 0.027  

rs i =  Rs i — Ra o =  0.098  

rs0 =  1 — Rsi =  0.091

From this example, IE method seems to be simpler than the proposed algorithm. 

However, no matter applying IE or SDP method, one has to find all minimal paths of 

the system first. This could be time-consuming. As the number of minimal paths is 

increased, the computation of IE will be increased rapidly. For performance evaluation 

of some multi-state systems, it may be time-saving by using the enumeration method 

than finding minimal paths to establish the bounds (Xue, 1985). The decreasing 

fc-out-of-n system is an example of such cases.

4.5 Concluding remarks

In this chapter, we propose a definition of the generalized A>out-of-n:G system. The 

proposed systems are more flexible than those previously defined in the literature. 

The algorithms for the system performance evaluation are developed. Examples are 

used to illustrate the ideas of the proposed definition. The generalized A:-out-of-n:G 

system provides an example about how to model a multi-state system. The following 

summerizes some issues for our further consideration.

1. The binary algorithms can be extended to the constant and increasing fc-out- 

of-n:G systems, but not to the decreasing systems. This is determined by the 

different properties of their minimal path sets. More work is needed to investi-
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gate how a general multi-state system can be treated like a binary system.

2. Since the algorithm for the decreasing system is enumerative in nature. More 

work is needed to find other efficient bounding techniques or formulas for the 

decreasing system.

3. In the binary case, there exists duality and equivalent relationships between 

/c-out-of-n:G and fc-out-of-n:F systems. In this chapter, we only dealt with 

multi-state Ar-out-of-n:G systems. It deserves to investigate the multi-state k- 

out-of-n:F systems and the relationships between the multi-state A>out-of-n:G 

and fc-out-of-n:F systems.
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Chapter 5 

M ulti-state Consecutive /e-out-of-n 

System s

5.1 Introduction

la  binary /e-out-of-n structures, consecutive /e-out-of-n system is one class of the 

most important. We have reviewed the definitions of binary consecutive k-out-of- 

n:F and consecutive Ze-out-of-n:G systems and the formulas for the system reliability 

evaluation in Chapter 2 . Many research results have been reported on such systems, 

for example, see Chiang and Niu (1981), Hwang (1982), Kuo et al. (1994) and Chao 

et al. (1995). An example often used to interpret a consecutive fc-out-of-n:F system 

is to add a component 0  (source) and a component n + 1  (sink) to the system and 

assume that each component, if working, is directly connected to the subsequent k  

components (or all the remaining components if the number is less than k), and that 

the source and the sink always work. The system works if and only if a flow can be 

sent from the source to the sink. One limitation of such a system is that it does not 

model the system in which components have different transmitting capabilities.
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Lately a few researchers have partially extended the definition of binary consec

utive A:-out-of-n:F system to the multi-state case by allowing the system to remain 

binary and its components to have more than two possible states. Shanthikumar 

(1987) extended the consecutive fc-out-of-n:F system to the consecutively-connected 

system (CCS) by assuming that component i, if working, is directly connected to 

the subsequent ki components at probability The system works if and only if 

there is a connection from the source to the sink through functioning components. 

A CCS can be either a linear system or a circular system depending on whether the 

components are arranged in a line or a circle. A CCS allows the modeling of systems 

in which components have different transmitting capabilities (different states). The 

algorithms for the linear CCS reliability evaluation has been developed by Hwang and 

Yao (1989) and Kossow and Preuss (1995). Zuo and Liang (1993) and Malinowski 

and Preuss (1995) provided the algorithms for the circular CCS reliability evaluation. 

Malinowski and Preuss (1996) also investigated a 2 -way linear CSS system.

Sometimes, it is necessary to allow both the system and its components in a con

secutive A:-out-of-n:F system to experience more than two possible states. Hiam and 

Porat (1991) provides a Bayes reliability model of the consecutive A;-out-of-n:F sys

tem, in which both the system and its components are assumed to have more than 

two possible states while k is assumed to be constant. When k  is constant, the system 

has the same reliability structure at all system states. However, a multi-state system 

may have different structures at different system states or levels. The following ex

ample illustrates this point.

Example 5.1: A quality control problem

A batch of products may be labeled one of the following three classes based on the 

level of quality: Grade A, Grade B, and Rejected. The following sampling procedure
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is used to classify the product items: if consecutive 3-out-of-10 items of a sample do 

not meet the standard of Grade A, then a subsequent inspection is conducted under 

the standard of Grade B; otherwise, it is labeled Grade A. If consecutive 5-out-of- 

10 items of a sample are judged to be lower than Grade B, then this batch will be 

rejected; otherwise, it is labeled Grade B. For such a  problem, we can define a multi

state consecutive /c-out-of-n:F system with the label of the batch as system state and 

the sampled items as components. Both the system and the components have three 

possible states: State 2 (Grade A), state 1 (Grade B) and state 0 (rejected). At the 

system state level 2, it has a consecutive 3-out-of-10:F structure and at the system 

state level 1, it has a consecutive 5-out-of-10:F structure.

In this chapter, Section 5.2 proposes a definition of the multi-state consecutive 

A>out-of-n:F system. Under the proposed definition, a different number of consec

utive components is needed to be below level j  for the system to be below level j  

for different j  values. The required number of consecutive component "failures” is 

dependent on the system state level under consideration. Two special cases are taken 

into consideration: the decreasing consecutive fc-out-of-n:F system and the increasing 

consecutive fc-out-of-n:F system. Section 5.3 discusses system performance evaluation 

algorithms for the proposed multi-state consecutive A;-out-of-n:F system. In Case I, 

if the system is a decreasing system, then the binary algorithm can be applied on it 

directly. In Case II, if the system is an increasing system, then the binary algorithm 

can not be extended on it. Section 5.4 develops a bounding technique to establish the 

bounds of system state distribution for increasing consecutive Ar-out-of-n:F systems. 

Concluding remarks are provided in Section 5.5.

N o ta tion  a n d  A ssum ptions
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Notation:

kj minimum number of consecutive components to be in states below j

Qij Pr(Xj < j).

Qj Qj =  Qij when the components are i.i.d.

Fj(n;kj) probability that at least kj consecutive components are in states below j  for

an n component system 

R j{n \kj) 1 -F j(n ;k j)

Fsj 1 -  Rsj.

Other notions are the same as Chapter 4.

Assumptions:

1. The system is a multi-state monotone system (Griffith 1980):

•  0 (x )  is non-decreasing in each argument.

•  0(j) = 00, j, ■ ■ ■, j ) =  j  for j  =  0, l r • • •. M.

2. The Xi's are mutually s-independent.

5.2 T he m ulti-state consecutive &>out-of-n:F sys

tem

We propose a definition of the multi-state consecutive fc-out-of-n:F system as follows:

D efinition: 0(x) < j  (j  =  1,2, • • •, M) i f  at least ki consecutive compo

nents are in states below I for all I such that j  <  I <  M . An n-component 

system with such a property is called a multi-state consecutive k-out-of-n:F 

system.
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In this definition, k /s  do not have to be the same for different system states j  

(1 < j  < M). This means that the structure of the multi-state system may be 

different for different system state levels. A few examples will be given to illustrate 

this definition. The following two special cases of this definition will be taken into 

consideration:

• When k\ > ko > • • • >  k\t, the system is called a decreasing multi-state consec

utive fc-out-of-n:F system. In this case, for the system to be below a higher state 

level j ,  a smaller number of consecutive components must be below state j .  In 

other words, as j  increases, there is a decreasing requirement on the number of 

consecutive components that must be below state j  for the system to be below 

state level j .

•  When ki < k2 < ■ ■ ■ < k\[, the system is called an increasing multi-state 

consecutive fc-out-of-n:F system. In this case, for the system to be below a 

higher state level j ,  a larger number of consecutive components must be below 

state j .  In other words, as j  increases, there is an increasing requirement on the 

number of consecutive components that must be below a state j  for the system 

to be below state level j .

When kj is constant, i.e., ki = k% =  - • • =  k\r=k, the structure of the system is the 

same for all the system state levels. This reduces to the definition of the multi-state 

consecutive fc-out-of-n:F system provided by Hiam and Porat (1991). We call such a 

system constant consecutive fc-out-of-n:F system. We consider the constant consecu- 

tive-A;-out-of-n:F system as a special case of the decreasing consecutive-A:-out-of-n:F 

system.

Example 5.2: A decreasing consecutive fc-out-of-n:F system
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Consider a three-component system wherein both the system and the components 

may be in one of three possible states, 0, 1, and 2. The system state and the compo

nent states have the relationships as shown in the following table. In this example, 

we have k\ =  2 and ko =  1.

<?(x) : 0 1 2

x  :

(0,0,0) (0,1,0) (2,2,2) 
(1,0,0) (1,1,0)+
(0,0,1) (1,1,1)
(2,0,0) (0,2,0)
(0,0,2) (2,1,1)+

(2,2,0)+
(2,2,1)+

Table 5.1: System state table for Example 5.2

In the table, the "(x )+” sign represents all the permutations of the elements of 

the component state vector x. For example, system state level 1 can result from 

component states (1, 1, 0) and their permutations, namely, (0, 1, 1) and (1, 0, 1).

In terms of the definition of a multi-state consecutive A:-out-of-n:F system we have 

provided, the system in this example is below state 2 if and only if at least one (con

secutive) component is below state 2 (k2 = 1). The system is below state 1 if and 

only if at least two consecutive components are below state 1 (fci = 2 ) .  VVe can see 

that in this example, ki > ko indicating a strictly decreasing multi-state consecutive 

Ar-out-of-n:F system. We can say that the system in this example has a consecutive 

l-out-of-3:F structure at system state level 2 and a consecutive 2-out-of-3:F structure 

at system state level 1.

Example 5.3: An increasing consecutive fc-out-of-n:F system
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Consider a three-component system with ki =  1, fc2 =  2, and fc3 =  3. Both 

the system and the components may be in one of four possible states, namely, 0, 1, 

2, and 3. The following table illustrates the relationship between system state and 

component states.

<£(x) : 0 1 2 3

(0,0,0) (1,1,1) (0,2,0) (3,0,0)+
(1 ,0 ,0)- (2,1,1) (1,2,0) (3,1,0)+
( 1 , 1 , 0 )+ (1,1,2) (0,2,1) (3,1,1)+
(2,0,0) (2,2,0)+ (3,2,0)+

x  : (0,0,2) (2,2,1)+ (3,2,1)+
(2,1,0) (2,2,2) (3,2,2)+
(2,0,1) (3,3,0)+
(1,0,2) (3,3,1)+
(0,1,2) (3.3.2)+

(3.3.3)

Table 5.2: System state table for Example 5.3

Again, the “(x)+” sign in the table represents all permutations of the elements of 

the component state vector x. The system is below state 3 if and only if at least three 

(consecutive) components are below state 3. The system is below state 2 if and only if 

at least two consecutive components are below state 2 and at least three (consecutive) 

components are below state 3. The system is below state 1 if and only if at least one 

(consecutive) component is below state 1, at least two consecutive components are 

below state 2, and at least three (consecutive) components are below state 3. The 

system in this example has a parallel structure at system state 3 (3-out-of-3:F), a 

consecutive 2-out-of-3:F structure at system state level 2, and a series structure at 

system state level 1 (l-out-of-3:F).
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Example 5.4: A constant multi-state consecutive fc-out-of-n:F system

Consider a 3-component system with k  =  2 wherein both the system and the 

components may be in one of three possible states, 0, 1, and 2. It satisfies the 

following relationship between system state and the states of the components:

0(x) : 0 1 2

( 0 , 0 , 0 ) ( 0 , 1 , 0 ) ( 0 , 2 , 0 )

( 1 , 0 , 0 ) ( 1 , 1 , 0 ) - ( 2 , 2 , 1 ) +

x  : ( 1 , 1 , 1 ) ( 2 , 1 , 0 ) ( 1 , 2 , 1 )

( 2 , 0 , 0 ) ( 2 , 1 , 1 ) JO IO o +

( 0 , 0 , 2 ) ( 1 , 1 , 2 ) ( 2 . 2 . 2 )

Table 5.3: System state table for Example 5.4

Again, the “(x)+” sign represents the permutations of the elements of the compo

nent state vector x. Because ky = ko = =  2, the system is below state j  whenever

at least 2 consecutive components are below state j  for j  = 1,2. The system has a 

consecutive 2-out-of-3:F structure at each of the system states 1 and 2.

5.3 Evaluation of system  state distribution

In this section, we discuss the algorithms for performance evaluation of the increasing 

systems and the decreasing systems separately.

Case I: Decreasing m ulti-state consecutive fc-out-of-n:F system s, i.e., k i  >

k2 > ■ • • > kxr:

In this case, the definition of a multi-state consecutive A;-out-of-n:F system is 

equivalent to that <p(x) < j  if and only if at least kj consecutive components have
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Xi < j  for j  =  1 ,2 ,. . . ,  M. Those components with Xi < j  are considered “failed” 

with respect to state level j .  The system is considered “failed” with respect to 

state level j  if <p(x) < j .  The corresponding binary algorithms can be used to find 

Pr(<£ < j )  in a multi-state consecutive fc-out-of-n:F system. Once Pr(<p < j )  is found 

for j  =  1 ,2 ,. . . ,  M, we can easily find Pr(<p =  j)  for j  =  0 ,1 , . . . ,  M . The following 

formula is similar to Equation (2.17) (Hwang, 1982):

Fj(n; kj) = Fj(n -  1; kj) +  (1 -  Fj(n -  kj -  1; kj)) P{n- k])j Qmj, (5-1)
m = n —hj -f I

where Fj(a;b) is the probability that at least b consecutive components are below

state j  in an a component system and j  may take values from 1 to M. Equation (5.1)

can be applied recursively with the following boundary conditions:

Fj(a\b) = 0 ,  for____ 6 > a > 0, j  = 1.2__ ,M  (5.2)

P0j = 1, j  =  l ,2 , . . . , i t f  (5.3)

By recursively applying Equation (5.1), we can find the probabilities that the system 

is below state j  for j  = 1 ,2 , . . . ,  M  and then find the probabilities that the system is

in state j  for j  =  0 ,1 , . . . ,  M  using the following equations:

Pr ( 0 < i )  =  Fj{n;kj), for j  =  1 ,2 ,. . . ,  A/, (5.4)

Pr(0 =  0) =  Pr(0 < 1), (5.5)

P r(d> = M) = 1 — Pr(0 <  M), (5.6)

Pr(0 =  j )  = Pr(e) < J +  1) — Pr(0 < j), for j  =  1 , . . . ,  M  -  1. (5.7)

Note: The constant consecutive A>out-of-n:F systems can be treated as a special 

case of the decreasing consecutive fc-out-of-n:F systems with =  fc2 =  • • - =  k \ i .
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Example 5.5: Evaluation of performance distribution of a decreasing system

Consider Example 5.2 wherein n  =  3 and M  =  2. Assume that all the components 

are i.i.d. with the following common component state distribution:

po =  0.1, pi =  0.4, po =  0.5.

Calculate the system state distribution.

Solution:

Qi =Po =0 .1 , Q2 = Pq + P\ = 0.5

P\ = pi +  P2  =  0.9, P-i =  po =  0.5

For j  =  2, we have ko =  1. Using Equation (5.1), we have:

^>(3; 1) =  Fi(2; 1) +  (1 — Fi(l; I ^ P h Qh  = Q n  +  P\iQn  +  PnPuQzi

= 0.5 +  0.5 x 0.5 +  0.5 x 0.5 x  0.5 =  0.875

For j  =  1, we have k[ =  2. Again using Equation (5.1), we have:

f i ( 3 ; 2 )  =  F i(2; 2) +  (1 — F i ( l ;  l ) )Q 2 iQ 3i =  Q n Q a i +  P n Q n Q z i  

=  0 .1x0 .1  +  0 .9 x 0 .1 x 0 .1 = 0 .0 1 9

The system state distributions can be calculated as follows:

Pr(0 <  2) =  Fi(3; 1) =  0.875

Pr(0 <  1) =  Fi(3;2) =0.019 

Pr(0 =  2) =  1 -  P r{4> <  2) =  1 -  0.875 =  0.125

Pr(^ =  1) =  Pr(0 < 2) -  P r(0 < 1) =  0.875 -  0.019 =  0.856

Pr(0 =  O) =  Fi(3;2) =0.019
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Case II: Increasing m ulti-state consecutive /c-out-of-n:F system s, i.e., ki  <

ko <  ■ • • <  k t\,f

We assiune that at least one of the inequalities in this case is a strict inequality. 

Based on the definition of minimal paths of multi-state systems, the minimal path sets 

to level j  in an increasing consecutive Ar-out-of-n:F system could also be a minimal 

path to level j  + 1 or even higher levels. Consider the system structure given in 

Example 5.3. One of the minimal path sets to system level 1 is (0, 2, 0) because 

<Z>(0,2,0) >  1 and 0(x) < 1 for all x  < (0,2,0). At the same time, component state 

vector (0, 2, 0) is also a minimal path set for system state level 2. The same as 

the decreasing A:-out-of-n:G system, the “domination phenomenon” does not exist in 

increasing consecutive A>out-of-n:F systems. As a result, we are unable to extend the 

binary formula for evaluation of system state distribution under Case II.

Alternatively, bounding techniques may be used to establish bounds for the prob

ability that the system will be in each possible state. Given the minimal path sets 

or minimal cut sets of a multi-state system, either IE or SDP method can be used 

to establish the bounds (El-Neweihi et al. 1978). In the following, we present a new 

technique for bounding system state distribution in Case II.

5.4 Bounding system  state  distribution o f the in

creasing system s

As we have discussed in Chapter2, there exists a duality relationship between consecu

tive A:-out-of-ra:F and consecutive A>out-of-n:G systems. The consecutive-/c-out-of-n:F 

and G systems are duals of each other (Kuo et al. 1990). Equation (2.20) indicates
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that we can obtain the unreliability of a consecutive fc-out-of-n:F system through the 

reliability of a consecutive A>out-of-n:G system or vice versa. Naturally, we are won

dering if it is possible similarly to use the dual conversion method to find the system 

state distribution of the increasing consecutive A>out-of-n:F systems.

First, we investigate the relationship between the performance distributions of a 

multi-state system and its dual system. The dual definition of multi-state systems is 

as:

0°(x) =  A / - 0 (  M - x), (5.8)

where M  =  (A/, M , . . . .  A/). As a result, we have

Pr(0D(x) =  j )  = Pr(0(M  -  x) =  M  -  j). (5.9)

Based on Equation (5.9), if we let p ,̂ =  p£jU-j) f°r * =  1 ,2 ,. . . .  n and j  =  0 ,1 , . . . ,  M, 

then the probability for the primal system to be in state j  is equal to the probability 

for the dual system to be in state A/ — j  for j  = 0 ,1 , . . . ,  A/. VVe call such a method 

a dual conversion method.

Example 5.6: Relationship between a primal system and its dual system

Consider the system structure given in Example 5.3 as the primal system, which 

is an increasing consecutive-A:-out-of-n:F system. By applying Equation (5.8) to each 

component state vector in Example 5.3, we obtain the structure function of its dual 

system as shown in the following table:

Again, the “(x)+” sign in the table represents all permutations of the elements of 

the component state vector x. By examining the structure function in this table, we 

find that the dual system becomes a decreasing multi-state consecutive-A:-out-of-n:G 

system. The system is at state 1 or above if at least three consecutive components 

are at state 1 or above. The system is at state 2 or above if at least two consecutive
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0D(X) : 0 1 2 3

(0,0,0) (1,1,1) (2,2,1) (3,2,1)
(1,0,0)+ (2,1,1)+ (1,2,2) (2,3,1)
(1,1,0)+ (2,1,2) (2,2,2) (1,3,2)
(2,0,0)+ (3,1,1)+ (1,2,3)
(0,0,2) (3,1,3) (3,2,2)+

x : (2,1,0)+ (2,1,3) (3,3,1)
(2,2,0)+ (3,1,2) (1,3,3)
(3,0,0)+ (3,3,2)+
(3,1,0)+ (3,3,3)
(3,2,0)+
(3,3,0)+

Table 5.4: System state table for Example 5.6

components are at state 2 or above and at least three components are at state 1 or 

above. The system is at state 3 (or above) if at least one component is at state 3 (or 

above) and at least two consecutive components are at state 2 or above and at least 

three components are at state 1 or above. We notice that k\ = 3, k2 =  2, and k$ = 1 

and we have to use the “and” relationship to specify the conditions that should be 

satisfied for the system to be at a certain state or above.

We now formalize the definition of a multi-state consecutive-A:-out-of-n:G system 

as follows.

D efinition 1 <p(x) > j  ( j  =  1,2, • • •, M) if  at least ki consecutive components are 

in state I or above for all I (1 <  I < j) .  A system with such a structure function is 

called a multi-state consecutive-k-out-of-n:G system.

The condition in this definition can also be phrased as follows: 0(x) > j  (j  =
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1,2, • • •, M)  if at least kj consecutive components are in state j  or above; and at least

k j- i  consecutive components are in state j  — 1 or above; and • • •; and at least k{

consecutive components are in state 1 or above.

As we have seen from Example 5.3 and 5.6, the dual of an increasing consecu- 

tive-A;-out-of-n:F system becomes a decreasing consecutive-A;-out-of-n:G system. In 

general, we have the following proposition:

P ro p o sitio n  1: The dual of an increasing consecutive fc-out-of-n:F system is a de

creasing consecutive-/c-out-of-n:G system.

Proof:

Assume that 0 is the structure function of an increasing consecutive A>out-of-n:F 

system and k =  (Art, k2, ■ ■ •, k\[). We have: fcv < k2 <  ••• <  k\[. Let Aj denote 

that at least kj components are in states below j  for j  =  1,2. • • •, M. The system is 

equivalent to:

•  0(x) < 1 if x  6 .4i D An H • • • fl A m ;

• 0(x) <  2 if x  G Ao n  • • • n  A m ;

•  :

•  0(x) <  M  if x  6 A m -

Let Bj denote that at least consecutive k f  components in the daul structure oD 

are in state j  or above.

We examine system level 1 ( j  =  1) first. Consider a x  with at least consecutive Aq 

components in states below 1(< 1), consecutive k2 components in states below 2(< 

2), • • •, and consecutive kM components in states below M{< M), then in y =  M  — x, 

there are at least consecutive kM components in state 1 or above, consecutive kM-i 

components in state 2 or above, • • *, and consecutive Aq components in state M. Letting
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kD =  (fcf, k g ,  • • • , kgf ) = (k \{, fcju-ir • • *, ^i)- We have: If a x  6 A \  D A2 fl • • • fl A M, 

then y e  Bt fl B2 H • • • fl B \r- By the definition 0D(M — x) =  M  — 0(x) and since 

0(x) < 1, we have: 0D(M — x) =  0D(y) =  M.

Generally, at system level j ,  If a x  G Aj D Aj+ 1  fl • • • fl A;vf, then 0 ( x )  < j .  For 

y  =  M  — x ,  y e  Bi n  £ 2  n  • • • fl Bxr-j. And then <pD( y )  =  M  —  0 ( x )  >  M  — j  

for j  =  1,2,•• •, M .  Since k D =  (A:f, * * •, kgt) =  • • •, ki)- 4>° is a de

creasing consecutive A:-out-of-n:G system. We can interprete a decreasing consecutive 

fc-out-of-n:G system as: 0 D ( y )  > j  if y  e  B\ fl Bo n  • • • n  Bj. ( E N D )

Based on the definition, we know that a decreasing multi-state consecutive-fc-out- 

of-n:G system has the following properties:

1. n = ko > ki > ko > . . .  > k\[,

2. The minimal paths to system level j  will cause the system to be exactly in level

j ,

3. One of the minimal paths to level j  is in the following form:

(5.10)
kj

h j  — i

*1

n

where the number of elements taking the value of i is equal to ki — > 0 for

t =  l , . . . , i - l .

4. Every minimal path to level j  can be obtained by permutating the elements of 

this minimal path shown in (5.10).

Because the set of minimal path sets to level j  contains some permutations of the 

vector shown in (5.10), it is easy to find all these minimal path sets to level j .  For

113

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



example, suppose that a system has 5 components and a minimal path set to level 

3 is (3, 3, 2, 1, 0). From this minimal path set, we know that for the system to be 

at level 3 or above, at least two consecutive components must be in level 3 or above, 

and at least 3 consecutive components have to be in state 2 or above, and at least 4 

consecutive components have to be in state 1 or above, and all 5 components have to 

be in state 0 or above. VVe also note that the last condition that all 5 components have 

to be in state 0 or above may be ignored because it is automatically satisfied. The 

following vectors will also satisfy these requirements and thus, they are also minimal 

paths to system level 3:

(2,3,3,1,0), (1,3,3,2,0), (1,2,3,3,0), (0,1,2,3,3)

(0,1,3,3,2), (0,2.3,3,1), (0,3,3,2,1).

All these vectors can be obtained by permutating the elements of vector (3, 3, 2, 1, 

0). However, not all permutations of the elements of vector (3, 3, 2, 1, 0) are minimal 

paths to system level 3.

Observing these minimal path vectors, we see that each may include more than 

two different values as its elements. In the example of vector (3, 3, 2, 1, 0), there are 

four different values, namely, 3, 2, 1, and 0. If the number of such different values in 

a minimal path vector to system level j  is less than or equal to 2, we can use binary 

reliability evaluation algorithms to find the exact probability that the system is in 

state j  or above. However, if this number of different values in the minimal path 

vector is greater than two, we can not use binary algorithms to evaluate the exact 

probability that the system is in state j  or above. In the following, we present a 

method to bound Pr(0 >  j )  when this happens.

Suppose we have a minimal path vector for system state level j ,  denoted by y, 

which is in the form shown in Equation (5.10). We will use y* to represent all minimal
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path vectors to system state level j .  Then, we have

Pr(<z> > j )  =  Pr(x > yJ), (5.11)

where x  represents all possible component state vectors. If y  has no more than two 

different element values, we can evaluate Pr(x > yj) directly, to be illustrated later. 

If y  has more than two different element values, define

s = Min{i\i €  y , i  < j } ,  (5.12)

t =  Max{i\i 6 y, i < j } .  (5.13)

Note that we have 0 < s < t < j .  Vectors L and U  both with dimension n are defined 

as

L =  0 ',- - - , i ,s , - - - ,s ) ,  (5.14)

n

u  = (5.15)

n

Obviously, we have

L < y <  U. (5.16)

Let L* represent all component state vectors in which exactly kj  consecutive elements

have a value of j  and all other elements have a value of s. Let U* represent all

component state vectors in which exactly kj  consecutive elements have a value of j  

and all other elements have a value of t. Then, we have

Pr(x  > UJ) < Pr(0 > j )  =  Pr(x > y*) < Pr(x >  L*) (5.17)

InequaUty (5.17) can be used to find upper and lower bounds on the probability that 

the system is in state j  or above. When s =  t, the two bounds are the same and
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equal to the exact value of Pr(0 >  j) .  The question remaining to be answered is how 

to evaluate the two bounds in the inequality (5.17).

Based on the definition of a decreasing multi-state consecutive-A:-out-of-n:G sys

tem, event {x > U j} represents that at least kj consecutive components are in state 

j  or above and at the same time, all components must be in state t or above in an 

n-component system. In other words, this event represents that at least kj consecu

tive components are in state j  or above and all other components must be in states 

t or above but below state j .  Similarly, event {x > L*} represents that at least kj 

components must be in state j  or above and all other components must be in state s 

or above but below j .  The question to be answered is then how to find the probability 

that at least kj components are in state j  or above and all other components are in a 

lower state s (or t) or above but below j .  In the following, we discuss the two cases 

when the components are i.i.d. and non-i.i.d. separately.

Case I: The com ponents are i.i.d.:

The number of possible ways to have exactly k consecutive components at a certain 

state or above in an n-component system is equal to (n—k + 1). When all components 

are i.i.d., the following formula can be used to calculate Pr(x > U*) and Pr(x > L*).

Lower Bound =  Pr(x >  U*) =  (n — k  -t- l)Pk(l  — P, — Qt)n-fc, (5.18)
k=k}

Upper Bound =  Pr(x >  L*) =  ^2  (n -  k  + l)P f( l  — Pj — Q3)n~k, (5.19)
k= kj

We now use the following example to illustrate how we find or bound Pr(o > j )  for 

an increasing consecutive-A:-out-of-n:F system.

Example 5.7: Evaluating system state distribution of an increasing system
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Consider the system given in Example 5.3. Assume that all components axe i.i.d.

n  =  3, M  =  3, ki = 1, k2 =  2, k3 =  3,

P o = 0 . 1 ,  p i  = 0 . 2 ,  p 2 = 0 . 3 , p 3 =  0 . 4 .

The exact system state distribution has been calculated with the enumeration method:

Pr(0 =  0) =  0.049, Pr(<p =  1) =  0.032, Pr(<p =  2) =  0.135, Pr(0 =  3) =  0.784.

The dual system structure of this system is a decreasing multi-state consecutive- 

fc-out-of-n:G system as shown in Example 5.6. We now illustrate the use of this 

dual structure in evaluating the state distribution of the primal system. We will use 

superscript D to indicate the parameters of the dual system.

n =  3, M  =  3, Arf =  k3 = 3, k? = k2 = 2, Arf =  An =  1,

Po5 = P 3 =  0 .4 , p f = p 2 = 0 .3 ,  p f = p 1 =  0.2, p f = p o =  0.1.

P?  =  Pi +Pv =  0-6, =  p? +  p f  =  0.3, P °  = pi? =  0.1.

Q f =  1 -  P?  =  0.4, Q$ =  1 -  P2°  =  0.7, Q f =  1 -  P3°  =  0.9.

For system state level 1, the only minimal path set is (1,1,1). Thus,

R °  = p r (0D > 1) =  P?  x P tD x P °  =  0.63 =  0.216.

For system state level 2, the minimal paths are (2,2,1) and (1,2,2). These minimal 

paths have only two different element values.

k = k °
3

=  £ ( 3  -  A: -F l)0.3fc(l -  0.3 -  0.4)3“fc =  2 x 0.32 x 0.3 +  0.33 =  0.081.
k=2
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For system state level 3, the minimal paths are (3,2,1), (2,3,1), (1,3,2), and (1,2,3). 

Each of these vectors have three different element values. By selecting L =  (3,1,1) 

and U  =  (3,2,2), we have:

Upper bound =  ^  (n — k  +  1 )(P3D)fc(p? +  p?)”- *
fc=fcf

=  3 x 0.1 x 0.52 +  2 x 0.12 x 0.5 +  0.13 =  0.086,

Lower Bound =  ^  (n — k  +  l)(P 3D)fc(po))ri_fc

=  3 x 0.1 x 0.22 +  2 x 0.12 x 0.2 +  0.13 =  0.017

Now we have:

0.017 <R?3 < 0.086

while exactly R^  =  0.049 calculated with an enumeration method. VVe can now 

express the probability for the dual system to be in each state as follows:

r% = 1 — R% =  1 -  0.216 =  0.784

= R?i ~  r ?2 = 0-216 -  0.081 =  0.135

rg  =  r ?2 ~  RZ  =  0-081 -  flg

-0.05 <  r£  < 0.064 or 0 < r °  <  0.064

0.017 <  r £  =  R g <  0.086

The primal system state distributions can be calculated as follows based on Equa

tion (5.9):

rs3 =r?0 = 0.784 

^ = 7 - 2 = 0 .1 3 5  

0 <  r3l = r °  < 0.064 

0.017 <  ra0 = r g <  0.086 
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Case II: The com ponents are non-i.i.d:

When the components in a system are non-i.i.d., Equation (2.17) is used for re

liability evaluation of binary consecutive fc-out-of-rc:F systems. To avoid notation 

confusion with what has been defined in this chapter, we will use tq and to rep

resent the working and failure probabilities of component i in the binary system

for i =  1 ,2 ,. . . ,n .  Equation(2.17) is for binary systems and require the following 

condition to be satisfied for every component i:

Ui  +  Ui =  1, z =  1 . 2 , . . . , n .  (5.20)

To enable our analysis of multi-state consecutive-fc-out-of-n:G system, we now propose 

to relax the requirement shown in Equation (5.20) into the following:

0 < U i + V i < l ,  z =  1,2,  . . . , n .  (5.21)

We will still call tq the ‘"working” probability of component i and qt the "failure”

probability of component i. Since u, -I- i/£ may be less than 1, a component may be 

in a state other than “working” or “failed” . Under this relaxed condition, we pro

vide the following equation for calculating the probability that at least k consecutive 

components are “working” and all other components are “failed” .

R (n;k ) =  vnR(n—1: k)+un |  |  U j  j R*(n —  k) +  ^  ( I I  u j  J —
\  \ j '= n —fc+I J  i= n —k + l  \ j = i + 1  /

(5.22)

where R(n; k) is the probability that at least k consecutive components in the system 

of n components are “working” while all other components are “failed” and R*{i) =  

n}=lK  +  Vj) for i > 1.

The derivation of Equation (5.22) is based on the Bayes Theorem. The first 

term vnR(n — 1; k) is the probability that component n  is “failed” and at the same
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time at least k consecutive components out of the remaining (n — 1) components are 

“working”. The second term Un(9) represents the probability that component n  is 

“working” and the system is “working”. In the brackets, the first term represents 

the case that components (n — 1), (n — 2), • • *, and (n — k + 1) are all “working” 

and the remaining n — k  components are either “working” or “failed” (but with a 

probability of Ui+Vi < 1). The second term in the bracket represents the probability 

that component i (n — k + l < i  < n — 1) is the first “failed” component counting from 

component n — 1 downward and the 2 — 1 component subsystem including components 

1 through 2 — 1 is “working” .

Equation (5.22) is a recursive formula. The following boundary conditions are 

needed.

R(k; k ) = u.\U2 • • ■ Uf., (5.23)

R(a; b) =  0, for 6 > a > 0 (5.24)

Equation (5.22) with boundary conditions (5.23) and (5.24) can be used to find 

the upper bounds and lower bounds for Pr(0 >  j )  for j  =  1 ,2 , . . . ,  M  in a multi-state 

consecutive-A:-out-of-n:G system, as outlined below.

When one is considering system state level j ,  define the following:

U i  —  P jj ,  i —  1 ,  2, .  . . , 72.

For upper bound calculation, define

Vi  =  1 -  Ui — Qu , i =  1 ,2 ,.. . ,  72, (5.25)

where s is given in equation (5.12). Equation (5.22) can then be used to derive the 

lower bound for Pr(o > j ) .  For lower bound calculation, define

Vi =  1 Ui Qitt 2 =  1,2 , . . . , 72, (5.26)
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where t is given in equation (5.13). Equation (5.22) can then be used to calculate the 

upper bound for Pr(0 > j) .  The following example illustrate this procedure.

Example 5.8: Evaluating system state distribution of an increasing system

Evaluate the state distribution of the system given in Example 5.3 assuming the 

component state distributions are non-i.i.d. as follows:

Component 1 Component 2 Component 3

State Its Probability in State

0 0.1 0.2 0.1
1 0.2 0.2 0.3
2 0.3 0.3 0.1
3 0.4 0.3 0.5

The component state distribution in the dual system is:

P m = P i 3  =  0 . 4 ,  P n  =  p i a  =  0 . 3 ,  P 12 =  P u  =  0 . 2 ,  p ^ = p i O = 0 . 1 .

P 20 =  P 23 =  0 . 3 ,  p ? i  =  P 22 =  0 . 3 ,  P 2 2  =  P 21 =  0 . 2 ,  P 03 =  P 20 =  0 . 2 .

P m = P 3 3  =  0 . 5 ,  p f 1 = p 32 =  0 . 1 ,  P 32 =  P 3 1  =  0 . 3 ,  P 33 =  p 30 =  0 . 1 .

P f i  =  0 . 6 ,  P g  =  0 . 3 ,  P g  = 0 . 1 .

^21  =  0 - 7 ,  P g = Q A , P g = 0 .2 .

P i ?  = 0 . 5 ,  P g = 0 A ,  F 33 = 0 . 1 .

The exact state distribution of the dual system has been calculated with the 

enumeration method:

Pr(0D =  0 )  =  0 . 7 9 ,  Pr(0D =  1 )  =  0 . 1 0 2 ,  Pr(0D =  2 )  =  0 . 0 3 4 ,  Pr(0D =  3 )  =  0 . 0 7 4 .  

For system state level 1 , let Ui =  and Vi = p%. Using Equation ( 5 . 2 2 ) :

R% =  R{3 ;  3 )  =  PR x PR  x Pg  =  0 . 6  x 0 . 7  x 0 . 5  =  0 . 2 1 .
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For system state level 2, let u, = Pg  and v, =  pf(. Using Equation (5.22): 

flg  =  f l ( 3 ;2 ) = P3D1fl(2 ;2 )+ P 3? (P ^ il- ( l)+ p ? ,f l( l;2 ) )

=  pgiP&Pn + P £ P £ (P u + P 8 )

=  0.1 x 0.4 x 0.3 +  0.4 x 0.4(0.3 + 0.3) =  0.108.

For system state level 3, selecting L =  (3,1,1) and U =  (3,2,2) and k =  2. For

L =  (3,1,1), let Ui =  Pi3 and t/,- =  pfx 4- pQ. For U =  (3,2,2), let Ui = Pi3 and

yi = Pa. Using Equation (5.22), we have:

Upper bound =  fl(3; 1) = (p£ +  p£)fi(2; 1) + P&IV(2)

=  (p?, +p?2)((pf, + p g )f l(  i; i) +  P g tv ( i ) )  + P&R'f. 2)

=  0.4 x (0.5 x  0.1 4- 0.2 x 0.6) 4- 0.1 x 0.6 x  0.7 =  0.11

Lower Bound =  R(3; 1) =  p&R(2; 1) +  P g /T (2)

=  p3D2(pf2^ ( i ; i )  +  ^ 3 ^ ( i ) )  +  ^ * ( 2 )

=  0.3 x (0.2 x  0.1 +  0.2 x  0.3) 4- 0.1 x 0.3 x  0.4 =  0.036

Now we have:

0.036 <R?3 < 0.11.

With the calculated R%[ and R& values and the bounds on we can find the 

following for the primal system following the same approach as shown in Example 8:

0.036 <  Fsl = R°Z < 0.11,

Fai = R °  =  0.108,

Fs3= P f 1 = 0 .2 l.
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5.5 Concluding remarks

In this chapter, we propose a definition of the multi-state consecutive A;-out-of-n:F 

system. This model contributes towards the analysis of multi-state A:-out-of-n struc

tures. Similar to the generalized multi-state fc-out-of-n system, the binary algorithm 

can be extended to the decreasing consecutive A>out-of-n:F system for system perfor

mance distribution evaluation. For the increasing consecutive A>out-of-n:F system, 

no efficient algorithm has been available for system performance evaluation yet. Al

ternatively, we present a new technique for establishing the bounds of the system 

performance distribution. We also define the multi-state consecutive fc-out-of-n:G 

system. The duality between multi-state consecutive A>out-of-n:F and G systems is 

investigated. The dual conversion method can be used for bounding the performance 

distribution of the increasing consecutive fc-out-of-n:F system.

The issues that should be further investigated on multi-state consecutive k-ont- 

of-n systems include:

1. Improve the bounds of the increasing consecutive A>out-of-n:F systems and de

velop an index to measure the bound precision.

2. Find an efficient algorithm for system performance evaluation of the increas

ing consecutive A>out-of-n:F systems or the decreasing consecutive fc-out-of-n:G 

systems.
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Chapter 6

Dom inant M ulti-state System s

6.1 Introduction

In Chapter 4 and 5, we have found that the algorithms for system state distribution 

evaluation of multi-state increasing fc-out-of-n:G systems and decreasing consecutive 

A;-out-of-n:F systems are so simple. Both of them can be treated like the corresponding 

binary systems. VVe also noticed the “domination” phenomenon exists in these two 

types of the systems. However, the algorithms for multi-state decreasing A;-out-of- 

n:G systems and increasing consecutive /c-out-of-n:F systems are complicated or even 

difficult to develop. In both of them, the “domination” phenomenon does not exist. 

The systems can not be treated like binary systems. This raises a question: under 

what conditions, a multi-state system can be treated like a binary system? In the 

dichotomous opinion, a multi-state coherent system and its components could be 

divided into two groups: 4> > j  and 4> < j  or Xi > j  and x t < j ,  at any level j ,  

j  =  1 ,2 , . . . ,  M. However, because of different relevancy conditions that are used, it 

is not always possible to divide the states of the system and its components into two 

groups separated by the system state level j  for system performance evaluation.

As we have reviewed in Chapter 3, the relationship between binary system struc-
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tures and multi-state system structures has been explored by some researchers, for 

example, Block and Savits (1982) and Wood (1985). However, they mainly focused 

on binary decomposition of multi-state systems rather than the equivalent conditions 

between a multi-state system and a binary system.

In this chapter, we propose a definition of the dominant multi-state system. With

out referred to component relevancy conditions, multi-state systems can be divided 

into two groups: dominant or non-dominant systems. In a dominant system, the 

system state and component state vectors can be divided into two separate groups at 

any given system level while a non-dominant system does not have such a property. 

Furthermore, dominant systems can be divided into two types: with binary image 

and without binary image. A dominant system with binary image can be treated as 

a binary system. The dominance property of multi-state systems possesses excellent 

potential for system performance evaluation and bound computation. Section 6.2 

proposes a definition of the dominant system. In Section 6.3, we present a definition 

of the binary-imaged dominant system. In Section 6.4, the properties of dominant 

systems are discussed and an approach for the bound computation of dominant sys

tem state distribution is developed. Concluding remarks are provided in Section 6.5.

N o ta tion :

Xij
f 1, if Xi > j; 

a binary indicator; Xij = <
[ 0, otherwise.

x j a binary indicator vector, x j  =  (x^ ,  x2j, * *

& ( x )
, . . ,. ,, f l  if0 (x) >  j;

a binary indicator; (p =  <
0 otherwise.

4>° the dual structure function of <t>

ifj structure function of binary variables.

ipj binary structure function for system state

Pij Pr(Xi > j) .
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PP the corresponding Pij of <t>D,Pij =  P^M-j)-

Pj Pj =  P^ when the components axe i.i.d.

PP PP = PP when the components are i.i.d.

Pij P r (x j= j) .

pP the reliability of component i of q>D, pP = Pr(xi =  M  — j).

Pj Pj = p^ when the components are i.i.d.

P-7 component state distribution vector at level j ,  P-7 =  (Pij, Pij, • • •, Pnj)-

hj (P J) system reliability function at level j  or above, 

h = E (p (x )  =  1) =  Pr(<p(x) > j).

RSJ Pr(0(x) > j ) ,  Rsj = hj (Pj ).

r sj Pr(0(x) =  j )

Other notations are the same as Chapter 4 and 5.

6.2 The definition of dom inant m ulti-state system s

Much research work has been reported on the relevancy conditions of multi-state sys

tems. However, the relevancy conditions are complicated and many different versions 

are proposed (Andrzejezak, 1992). Another approach by researchers for multi-state 

system reliability analysis is to investigate the mathematical properties of the struc

ture functions rather than the underlying relevancy conditions. Generally speaking, 

we can divide multi-state systems into dominant systems and non-dominant systems 

depending on their system structure functions. Such a classification is independent 

of what relevancy conditions are used.

D efin ition  2.1: Two component state vectors x  and y  are said to be equivalent
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if and only if there exists a j  such that <p(x) =  4>{y) =  j ,  j  =  0,1, • • •, M. We use 

notation x  «-» y  to indicate that these two vectors are equivalent (Hudson and Kapur, 

1983).

Property 2.1: If x *-* y and y  *-* z, then x  <-*• z.

Equivalent state vectors have the transferable property. Obviously, x <-* x. All 

component state vectors that result in the same system state level are equivalent to 

one another. We can say that these equivalent vectors are in the same class called 

equivalent class.

Definition 2.2: A multi-state coherent system is called a dominant system if and 

only if its structure function 4> satisfies: 0(y) > <p(x) implies either ( 1 ) y  > x or (2 ) 

y  > z and x «-+ z.

The dominance condition states that if <p(y) > 0(x), then vector y must be bigger 

than a vector that is in the same equivalent class as vector x. A vector is bigger than 

another vector if every element of the first vector is at least as big as the corresponding 

element in the second vector and at least one component in the first vector is bigger 

than the corresponding one in the second vector. For example, vector (2,2,0) is bigger 

than (2,1,0), but not bigger than (0,1,1). We use the word ‘‘dominant” to indicate 

that vector y dominates vector x  even though we may not necessarily have y > x. If 

a multi-state system does not satisfy Definition 2.2, we call it a non-dominant system.

Example 6.1:

Consider a two component coherent multi-state system. Both the system and 

its components may be in three possible states: 0, 1, and 2. Table 6.1 shows one 

structure function of such a  system (called system A), which has a series structure
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at level 2  because the system is at level 2  if and only if both components are at level 

2 ; and the system has a parallel structure at level 1 because the system is in state 1  

or above if and only if at least one of the components is in state 1  or above. Based 

on Definition 2.2, we conclude that system A is a dominant system. Table 6.2 gives 

a different system structure of a two-component system (called system B). System 

B has a parallel structure at level 2  and a series one at level 1 . Since vector (2 ,0 ) 

resulting in system state 2  is not bigger or equal to any vector resulting in system 

state 1 so system B is a non-dominant system.

0 (x) : 0  1 2

x :

(0 , 0 ) ( 1 , 0 ) (2 , 2 ) 

(0 , 1 )

( 1 , 1 )

(2 , 0 )

(0 , 2 )

(2 , 1 )

(1 , 2 )

Table 6.1: System A: a dominant system

Let (f> and f t  be the structure functions of two different binary coherent systems 

with the same number of components. If 0(x) > d>'(x) holds for all x, then we 

say that structure O is stronger than structure 4>'. Among binary systems with n 

components, the series structure is the weakest structure while the parallel structure 

is the strongest structure because fl?=i x i — 0(x ) 1 — 117=1 (1 ~  x i) (Barlow and

Proschan, 1975). In a dominant system, let <bl and 0* denote the binary structure 

functions for system levels I and j  respectively, where I > j .  For any component state
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0(x) : 0 1 2

x  :

(0,0) (1,1) (2,0) 

(1,0) (0,2) 

(0,1) (2,1) 

(1,2) 

(2,2)

Table 6.2: System B: a non-dominant system

vector x. it is always true that 0 *(x) < 0 ; (x) based on Definition 2.2. Otherwise, if 

4>l{x) > 0 ,(x), then we will have: x  > x, this is not true. As a result, we say that 

the structure of a dominant system changes from strong to weak as its system level 

increases.

With respect to any given system level j ,  the states of a multi-state system can be 

divided into two separate groups: “functioning” if 0 (x) >  j  and “failed” otherwise. 

Similarly, component i is said “functioning” when Xi > j  and “failed” otherwise. Since 

j  may take different values, “functioning” and “failure” have different meanings for 

different j  values. We can say that the meanings of “functioning"” and “failure” are 

dynamic or context dependent. The dichotomy of the system and the components 

can be done at all state levels for a dominant system while a non-dominant system 

does not have this property. For instance, in Example 6 .1 , the minimal paths to 

level 1  of system A are (1,0) and (0,1), which result exactly in system level 1 . The 

only minimal path to level is (2,2), which also results exactly in system level 2. The 

system state and component state vectors can be divided into two groups at both 

levels, i.e., 0 (x) >  2  if and only if x  >  (2 , 2 ), 0 (x) > 1  if and only if x  > (0 , 1 ) or

(1,0). However, the minimal paths to level 1 of system B are (1 , 1 ), (2,0) and (0,2). 

As 0(2,0) =  0(0,2) =  2, the system state and component state vectors can not be
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divided into two separate groups at system level 1 .

A key problem in the multi-state context is how to find the system performance 

probability distribution Pr(0(x) > j)  for all j.  Although the component state vectors 

of a dominant system can be divided into two separate groups at any system state 

level j ,  the binary algorithm may not be able to applied on it sometimes. In the 

following, we will propose the definition of binary-imaged systems.

6.3 The definition o f binary-imaged m ulti-state sys

tem s

In general, dominant systems can be divided into two types: with binary image and 

without binary image, where the meanings of “binary image” implies that the system 

can be treated as a binary system and thus binary reliability evaluation algorithm can 

be applied on it. As illustrated in the previous paragraph, a non-dominant system is 

not a binary-imaged system because its component state vectors can not be divided 

into two separate groups. For instance, system B in Example 6.1 is not a binary- 

imaged system since it is a non-dominant system, even it has a parallel structure at 

level 2 and a series structure at level 1. In other words, the dominance property has 

to be satisfied first for the system to have a binary image. Ansell and Bendell (1987) 

defined a multi-state coherent system with a binary image by:

xy =  y 1 = >  0 *(x) =  (^(y), (6 .1 )

for any j .  If a system satisfies (6.1), then it can be treated as a binary system. How

ever, this condition is incomplete. Some systems can also be binary-imaged even they 

do not satisfy Equation (6.1). We propose a definition of the binary-imaged dominant 

system as follows:
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D efinition 2.3: A multi-state system is a binary-imaged system if and only if its 

structure indicator functions satisfies either: ( 1 ) x 7 =  y j  ==*> <^(x) =  <f>*(y); or (2 ) 

x 7 =  z7 and z <-* y  =>  <^(x) =  <j>>(y).

This definition implies that a binary-imaged system must be a dominant system. 

Consider a non-dominant system and assume level j - 1-1 does not dominant level j .  It 

means that at level j  -f-1 , there exists at least one component state vector y  such that 

y  is not bigger than any component state vectors at level j .  Simply, we assume that y 

is one of the minimal paths to level 7 +  1 such that y =  ( j  +  1, • • •, j  +  1, r L, • • •. rm),
”  V

n —m
where element r, 6 (0,1, • • •, j}  for i = 1, • • • ,m. Now construct a x  such that 

x  =  ( j  + 1, • • •, j  +  1, r t , • • •, rm, j) , i.e.. replacing one element j  + 1 in y  with j  to
n —m — I

obtain x. We have: 0 (x) ^  j  since 0  is a non-dominant system. Regarding to level 

j . xJ =  yJ and ^ ( y )  =  1, but ^ (x )  =  0. y) 7  ̂ ^ (x ) .  This contradicts with 

Definition 2.3.

In Example 6.1, system A is a binary-imaged system based on Definition 2.3. 

However, system B is not a binary-imaged system. In system B, let x  =  (1,0) and 

y  =  (2 , 0 ), with regard to level j  =  1 , we have: xJ =  y j = ( 1 , 0 ), but ^ (x )  =  

0  ^  0 >(y) =  1 . Usually, a dominant system is not binary-imaged since the structure 

property of a multi-state is very complex. For example, a binary system with two- 

components have only two possible structures: either series or parallel. The two 

systems A and B in Example 6.1 contain only two structures out of 2 components 

in the multi-state context. There are many other structures that can be constructed 

out of 2 components in the multi-state context. Example 6.2 is used to illustrate this 

point.
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Example 6.2:

Consider a two component coherent system. Both the system and its components 

may be in three possible states: 0, 1, and 2. Table 6.3 shows another structure 

function of such a system (called system C), which is neither series nor parallel at each 

level, however it is a dominant system. System D in Table 6.4 belongs to dominant 

system too, but its structures are neither series nor parallel. In this example, both 

systems C and D are dominant, but they are not binary-imaged systems.

0(x) : 0 1 2

X :

(0,0) (1,0) (2,0) 

(0,1) (1,1) (2,1) 

(0,2) (2,2) 

(1,2)

Table 6.3: System C: a dominant system

0(x) : 0 1 2

x :

(0,0) (1,0) (2,1) 

(0,1) (1,2) 

(1,1) (2,2) 

(2,0)

(0,2)

Table 6.4: System D: a  dominant system 

An equivalent definition of the dominant system using the expression of binary
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structure function is as follows:

D efinition 2.4: A multi-state system is a dominant if and only if its structure indi

cator functions satisfies: c^(x) =  ^ ( y )  implies either (1 ) xJ =  y j  or (2 ) xP =  zJ and 

z «-*• y  for j  =  1,2, • • •, M.

Usually, The structure function 0  of a multi-state system can be expressed in 

terms of n x  M  binary variable as follows:

0 (x) =  ip(x  1 0 , I n ,  • • • ,  x i w , • • • ,  X n t ,  • • • , ! „ * / )  ( 6 - 2 )

For a binary-imaged system, we can express its structure function o as the follow

ing:

Q*(x) =  ip ix ij, x 2j, • • •, Xnj) (6.3)

Equation (6.3) indicates that the structure function of a binary-imaged multi-state 

system is only related to n binary variables. Existing binary algorithms can be used 

to evaluate the probability that a binary-imaged system is at state j  or above for 

any level j. For instance, in Example 6.1, the minimal paths with respect to level 

1 are (1,0) and (0,1). The minimal paths with respect to level 2 is (2,2). We can 

write: 0 l (x) =  (/’l (iu ,X 2 i) and 0 2 (x) =  (1 1 2 ,^ 2 2 )- In a binary system, a system

reliability function of n components can be expressed in terms of system reliability 

function of {n — 1) components as:

KP) = PiM U; p) +  (1 -  Pn)h(0i; p) (6.4)

For a binary-imaged multi-state system, similar principle can be used as follows:

tf'(PJ') =  Pijh(U; & )  + (1 -  Pij)li(0,-; Pj) (6.5)
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Once hj (Pj ) =  Pr(0 > j )  is calculated for all j  values, we can find Pr(0 =  j)  as 

follows.

Pr(0 =  j)  =  h?(P J) -  hj+l(Pj+l) (6.6)

In the following, we use an example to illustrate how to apply binary algorithm 

for the system performance evaluation of a binary-imaged multi-state system.

Example 6.3:

A multi-state coherent system consists of 3 i.i.d. components. Both the system 

and the components are allowed to have four possible states: 0, 1, 2, 3. Assume 

Po =  0.1, pi =  0.3, po =  0.4, p3  =  0.2. The structures of the system are shown as Fig.

Obviously, the system has a parallel structure at level 1, a mixed parallel-series 

structure at level 2 and a series structure at level 3. The structures change from 

strong to weak as the level of the system increases. The minimal paths to level 1 

are (1,0,0) and its permutations; to level 2 are (2,0,2) and (0,2,2); and to level 3 is 

(3,3,3). The system is a binary-imaged system. The following table illustrates the 

relationship between the system state and the component states.

6 .1.

Figure 6.1: A dominant system with binary image for Example 6.3

Solution:
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In the table, the sign represents all permutations of the states of the compo

nents listed above the ” + ” sign. To calculate the system reliabilities at all levels, we 

can extend binary algorithms:

Pi =  0.9, P2 =  0.6, P3 = 0.2.

Ps3 =  P13 x P>3 x P33 =  P33 =  0.008.

Rs2 = (1 -  (1 -  P l2)(l -  Poo)) x P32 =  2 x P22 -  P? =  0.504.

Rsl = 1 -  (1 -  P „ ) ( l  -  P21)(l -  P31) =  1 -  (1 -  P t)3 =  0.999.

r* 3 =  Rs3 =  0.008.

r3o = Rao -  Ra3 = 0.496.

rai =  Rsi -  Rs2 = 0.495.

r30 =  1 - - R s i  =  0.001.

As shown in Example 6.3, a commonly-used approach for multi-state system re

liability evaluation is to extend the results from binary system reliability evaluation. 

The minimal path sets and minimal cut sets play important roles for the reliability 

evaluation of binary systems. In the following section, we discuss the properties of 

minimal path sets and minimal cut sets of dominant systems.

6.4 Properties of dom inant system s

Usually, finding all minimal path sets or minimal cut sets of a multi-state system is 

difficult because some minimal path sets to level j  are hidden in some higher system 

levels. This often happens in a non-dominant system. But for a dominant system, 

this will not happen.

P ro p e r ty  3.1: Let Pj7 , P2 , • • -, P / be the minimal path sets to level j  of a dominant 

systems, then 0(P/) =  j  for i =  1 ,2 ,---, r.

Proof:
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o(x) : 0  1 2 3

(0,0,0) (3,1,1) (3,3,2) (3,3,3)

(3,1,0) (3,2,2)

(3,0,0) (2 , 2 , 2 )

(2 , 1 , 1 ) -F

(2 , 1 , 0 ) (3,1,3)

(2 , 0 , 0 ) (1,3,3)

(1 , 1 , 1 ) (3,0,3)

(1 , 1 , 0 ) (0,3,3)

x  : (1 , 0 , 0 ) (3,1,2)

+ (1,3,2)

(3,3,1) (1,2,3)

(3,3,0) (2,1,3)

(3,2,1) (0,2,3)

(2,3,1) (3,0,2)

(3,2,0) (0,3,2)

(2,3,0) (2,0,3)

(2 , 2 . 1 ) (1 , 2 , 2 )

(2 , 2 , 0 ) (2 , 1 , 2 )

(2 , 0 , 2 )

(0 , 2 , 2 )

Table 6.5: System state table for Example 6.3
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Assume that there exists an m  (1 <  m  < r) such that 0 (P^) = I > j .  By the 

definition of the dominant system, we have:

If 0(P£) =  I > (p{Pi) =  j  for i =  1, • • •, r  and i ^  m, then either we have P^ > Pf or 

there exists some z «-► Pf such that P^ > z. This contradicts that P^ is a minimal 

path set to level j .  (END)

P ro p e rty  3.2: Let K{, K f, be the minimal cut sets to level j  of a dominant

system, then (p(K{) =  j  — 1 for i =  1 , 2 , • • •, s.

Proof: Similar to that for Property 3.1.

For a non-dominant system, there exists at least one level j  such that at least 

one of the minimal path sets P{, P j , • • •, Pf satisfies (p(Pf) > j, i = 1,2, • • •, r  . And 

there exists at least one level j  such that its minimal cut sets K {. K L - ■ ■. K Jk satisfy 

(p(Kj) < j  — 1, i =  1,2, • • •. k.

Since all minimal path sets to level j  of a dominant system result in system level j , 

we can dichotomize the system. But for a non-dominant system, some minimal path 

sets may have <t>{Pf) > j .  A minimal path set to level j  could also be the minimal 

path set to level j  + 1 , j  -f-2 , and so on, this is the reason why we can not dichotomize 

a non-dominant system.

P ro p e rty  3.3: The minimal path sets to level j  of a binary-imaged multi-state system 

are of the form (j, • • •, j ,  0, • • •, 0) for j  =  1 ,2, • * •, M  or one of its permutations. 

Proof:

With respect to level j ,  assume that there exists one minimal path y, which is not 

of form (j, • - ■ , j ,  0 , • - -, 0), where the form (j, • • •,_/, 0 , • - •, 0 ) means that the vector
m  n —m  m  n —m

contains m elements equal to j  and other n — m  elements equal to 0, but the po

sitions of these n elements are exchangeable. Without loss of generality, assume 

y =  (j, ■ • •, j ,  r, • • •, r, 0, • • •, 0) and 1 <  r  < j , i.e., there are not only m  elements
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equal to j ,  but also k  non-zero elements (their states axe at 1  or above, but below j )  in

y. Now select a component state vector x  =  (j, • • •, j ,  0, • • •, 0). Since y  is a minimal
m

path to level j  and x  <  y, we have <p(x) < j .  Thus, for level j .  we have: xJ =  yJ, but 

<^(x) 7^ < '̂(y). This contradicts Definition 2.3. Thus, if y  is a minimal path to level 

j  of a multi-state system, then the system is not a binary-imaged system. (END)

If a binary-imaged dominant system has n  minimal path sets at level j .  it is a 

parallel structure; if it has one minimal path set at level j , then it is a series structure. 

Property 3.3 is a strong restriction on multi-state systems resulting from Definition 

2.3.

Usually, a dominant system may have minimal path of a form different from that 

stated in Property 3.3, for example, (j, • • •, j, s, • • •, s, f, • • •, t) for j  > s > t. In 

this case, we can not say the system is binary-imaged. In the following, we will 

present a method to deal with minimal paths of a dominant system with a form of 

(./!••• or one °f its permutations. Here, we require that each minimal

path of a dominant system exactly includes two distinct values as its elements, say 

(j, •••,_/,s, • • • ,s) and its permutations, where j  > s and s may not be zero.

With regard to level j ,  to calculate Pr(0(x) > j) ,  what we concern is that com

ponent state probability Py (“functioning”) and Pr(s <  x* <  j )  ( “failed”). The 

component state probability Pr(xj < s) can be ignored for calculating Pr(o(x) >j ) .  

Assume p, =  Py and <7, =  Qy — Qia, we can extend the corresponding binary al

gorithm to such a multi-state system if its structure is analogous to some binary 

structure. Note that the condition pi + qi =  1 always satisfied in the binary context is 

not necessarily satisfied here. Thus the binary algorithms need to be modified. This 

method has been applied to establish the bounds of system performance distribution 

for multi-state consecutive A:-out-of-n systems (Huang, Zuo and Fang, 2001). In the 

following, we use an example to illustrate this point.
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Example 6.4:

Consider system D in Example 6.2. The system has a parallel structure at system 

level 1 because the system is at level 1 or above if at least one component is at state 

1 or above, the system has neither a series nor a parallel structure at level 2. But 

we notice that the system is at level 2 if at least one component is at state 2 with 

the restriction that no component is allowed to be below state 1. It is analogous a 

“parallel” structure. Let us see how the binary algorithm for parallel systems can be 

extended to such a system. Recall a binary parallel system with n components. If the 

reliability of component i is pt and the unreliability is qu then the system reliability 

can be calculated:

R s =  1 — f [ ( l  ~  P») =  1 -  f l  (6-7)
« = i  1= 1

Now if the minimal paths to level j  of a multi-state system is (j, ■ • •, j, s, • • ■, s) and 

its permutations, where s may be non-zero, we can treated it as a parallel structure. 

With regard to system level j ,  no components are allowed to have a state below s,.

i.e., those states below s can be ignored when calculating R 3j.  The maximum system

reliability R 3j of a “multi-state system” when ignoring states below s is n?=i Rs rather 

than 1. Thus the following formula can be used to calculate /?SJ:

ft,;  =  f [  a .  -  f [(Q «  -  <?(.). (6.8)
1 = 1  1 = 1

Now in Example 6.2, we assume piQ = 0.1, pn =  0.2 and pa =  0.7 in system D. 

The system reliabilities are calculated:

R sl = l -  n L i  Qn =  1 -  0.1 x 0.1 =  0.99.

Rs2 =  nf=i Pn -  nr=i(Qi2 -  Qn) =  0 . 9  x 0 . 9  -  0 . 2  x 0 . 2  =  0 .7 7 .

rs2 =  R s 2 =  0.77.

139

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



r ,i =  Rsi -  Rs2 = 0.99 -  0.77 =  0.22. 

r *0 =  1 — ral -  ra2 =  1 -  0.22 -  0.77 =  0.01.

In general, there are three fundamental elements in a formula used for binary 

system reliability evaluation: maximum system reliability, it is always equal to 1; 

reliability p, and unreliability of component i (i =  1,2, • * •, n). In a multi-state 

system, if its minimal paths to every state level j  are of form (j , • • •, j ,  s, • • •, s), then 

we use the maximum system reliability n?=i Pis to replace 1, Pis to replace pi and 

Qij —Qis to replace g*. Thus the binary algorithm can be extended to the multi-state 

system.

Usually, the number of different values in each minimal path vector of a dominant 

system may be greater than two. We can not use binary reliability evaluation algo

rithms to evaluate the exact probability that the system is in state j  or above. In 

Chapter 5, we have used a bounding technique to deal with the decreasing multi-state 

consecutive A>out-of-n:G system when this happens. This method can be used for 

any multi-state systems.

Suppose we have a minimal path vector for system state level j ,  denoted by y, 

which is in the form shown below or one of its permutations:

y  =  (j ,  • • •,  J , n ,  • • • , n ,  r2, • • •,  r2, • • - , r m, • • •,  r m)
k

where rj, i =  1, * • •,  m  is a set of numbers taking from { 0 , 1 ,  • • •,  j  — 1} and r* >  ri+ l.

We will use y* to represent all minimal path vectors to system state level j .  Then, 

we have

Pr(<P >  j)  = Pr(x >  y*), (6.9)

where x  represents all possible component state vectors. Now define:

140

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



s =  M in{i\i G y  ,i  < j} ,  

t =  M ax{i\i G y, i < j ) .

(6.10)

(6 .11)

Note that we have 0 <  s < t < j .  Vectors L and U  of dimension n are defined as

(6 .12)
k

n

(6.13)
k

n

Obviously, we have

L <  y  < U. (6.14)

Then, we have

Pr(x > U*) < Pr(<p > j )  =  Pr(x > y*) <  Pr(x > L* (6.15)

Inequality (6.15) can be used to find upper and lower bounds on the probability that 

the system is in state j  or above. When s = t, the two bounds are the same and 

equal to the exact value of Pr(<p > j) .  We use the following examples to illustrate 

this method.

Example 6.5:

Consider a three-component system wherein both the system and the components 

may be in one of four possible states, 0, 1,2, and 3. The relationship between system 

state and component states are shown in the following table.

In the table, the sign represents the permutations of the states of the com

ponents listed above the u+ ” sign. Assume all the components are i.i.d. and let
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p0  =  0.1, pi =  0.2, P2 =  0.3, P3 =  0.4. The minimal path to level 1  is (1 , 1 ,1). We 

can use the binary formula directly.

P r(<?> > 1 ) =  P uP 21P3i =  0.729.

The minimal paths to level 2 are (2,2.1) or its permutations and they are the 

two-element vectors. The system structure is analogous to a fc-out-of-n system (a

2-out-of-3:G structure) because the system is at state 2  or above if at least two 

components are at in state 2  or above, but no components are allowed to be below 

state 1. Recall that the following formula is used for calculating the reliability of 

binary A>out-of-n:G system with i.i.d. components:

Rs =
m

Py - ‘

O(x) : 0 l 2 3

(0 , 0 , 0 ) ( i , i , i ) (2 , 2 , 1 ) (3,2,1)

( 1 , 0 , 0 ) (2 , 1 , 1 ) (2 , 2 , 2 ) (3,2,2)

(2 , 0 , 0 ) (3,1,1) + (3,3,1)

( 1 , 1 , 0 ) + (3,3,2)

(2 , 1 , 0 ) (3,3,3)

X : (2 , 2 , 0 )

(3,0,0)

(3.1.0)

(3.2.0)

(3.3.0) 

+

+

Table 6 .6 : System state table for Example 6.5
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When extending this formula for our system, ^  1 here so we need modifying 

the formula.

Pr(0 >  2) =  E  (?) ( W U  - P 2 -  Po)3_£ =  E  (?) x O.r x 0.23- '  =  0.637.

As the minimal paths to level 3 are (3,2,1) and its permutations, which in

clude more than two values, we select L =  (3,2,2) and U =  (3,1,1). Assume 

L and U  and their permutations to be the minimal paths of two structures. The 

structures identified by L and U  are denoted by (p\ and 02 respectively. Since

(3,1,1) < (3,2,1) < (3,2,2), then Pr(02 > j )  < Pr(0 > j)  < Pr(0t > j) . Us

ing Equation (6.8):

Pr(0 i > 3) =  r i L  Pi2 -  n ii(Q .3  -  Qa) =  0.73 -  0.33 =  0.316.

Pr(02 > 3) =  n U  Pn ~  U U iQ a  ~  Qn) = 0.93 -  0.53 =  0.604.

The bounds are: 0.218 < Pr(0 > 3) < 0.316 while the exact value of Rs3 is 0.556.

r ,0 =  1 -  P(0 > 1) = 1 -  0.729 =  0.271.

rsl = P r(0 > 1) -  Pr(0 > 2) =  0.729 -  0.637 =  0.092.

r s 2  =  Pr(0 > 2) — Pr(0 > 3) =  0.637 — Pr(0 >  3).

0.033 < r32 < 0.321. while the exact value of r s2 is 0.081.

0.316 < rs3 < 0.604.

In the following, we provide an example (a A>out-of-n:G system model) worked out 

for the illustration of the properties reported in this chapter on multi-state systems.

Example 6.6:

Consider a pumping system which consists of four pumps wherein each pump is 

a component of the system. First, we consider the binary case: both the system 

and the components have only two states, either working or failed. The system is 

working if at least three pumps are working. Such a system can be described us-
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ing a binary 3-out-of-4:G system model. Assume that all the components are i.i.d. 

and p =  0.95 and q =  0.05. Equation (2.13) can be used to calculate system reliability.

Rs = E  (?y<7(a~° = E  (i)0.95‘ x 0.05{4"° = 0.986

Now we extend the pumping system to the multi-state case by allowing both the 

system and the components to have three states: state 2 (perfect working state), state 

1 (marginal working state) and state 0 (failed). Assume that all the components are 

i.i.d. and p2 =  0.8, pi =  0.15 and po =  0.05. To determine the system state in 

terms of the component states, customers may choose different reliability models in 

accordance to their individual concerns. As an example, we consider the following 

three scenarios:

Scenario I: The system is in state j  or above if at least three components are in state

j  or above for j  = 1,2. Such a system can be described using a constant multi-state

3-out-of-4:G system model where k  =  3. The system is binary-imaged and can be 

treated like a binary fc-out-of-n:G system. The relationship between system state and 

component states are shown in Table 6.7. In this table, the sign represents the 

permutations of the states of the components listed above the sign. Equation

(4.1) can be used to calculate the system performance.

Rs2 =  E  =  E  (4)0.8‘ x 0.2(4-i) =  0.819
i=Jfc w  * i=3 w

Rsi =  E  (n)PiQ in~0 =  E  (*)0.95i x 0.05(4-i) =  0.986
i=k i=3 w

r3 2  =  Rs2 =  0.819

r31 =  Rsl -  Ra2 =  0.986 -  0.819 =  0.167

raQ =  1 — ral — ra2 =  0.014 

Scenario II: The system is in state 2 if at least four components are in state 2 and
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0 (x) : 0 1 2

(0,0,0,0) (1,1,1,0) (2,2,2,0)

(1,0,0,0) (1,1,1,1) (2,2,2,1)

(1,1,0,0) (2,1,1,0) (2,2,2,2)

x : (2,0,0,0) (2,1,1,1) +

(2,1,0,0) (2,2,1,0)

(2,2,0,0) (2,2,1,1)

+ +

Table 6.7: System state table for Example 6.6: Scenario I

is in state 1 or above if at least three components are in state 1 or above. Such a 

system can be described using an increasing multi-state Ar-out-of-n:G system model 

with ki =  3 and ko =  4. The relationship between system state and component states 

are shown in Table 6.8. In this table, the sign represents the permutations of 

the states of the components listed above the sign. The system has dominant

property since all the state vectors resulting in state 2 are bigger than at least one

vector resulting in state 1. Compared with Definition 2.3, we find that the system 

is a binary-imaged system. Equation (4.1) can be extended to the evaluation of the 

system performance.

R a2 =  E (?)PiQ(2 ~i] = E  0)0 .8 ' x 0.2(4-0 =  0.410
«=fc2 K '  ‘= 4  W

Rsi =  E  (n)P?Q(r °  =  E 0)0.95' x 0.05(4-9 =  0.986
«=fc i i=3

rS2 =  Rs2 = 0.410

raI =  Rsi — R& =  0.986 — 0.410 =  0.576

ra0 =  1 — rsi -  rs2 =  0.014
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0(x) : 0 1 2

(0,0,0,0) (1,1,1,0) (2,2,2,2)

(1,0,0,0) (1,1,1,1) +

(1,1,0,0) (2,1,1,0)

x : (2,0,0,0) (2,1,1,1)

(2,1,0,0) (2,2,1,0)

(2,2,0,0) (2,2,1,1)

+ (2,2,2,0)

(2,2,2,1)

+

Table 6.8: System state table for Example 6.6: Scenario II

Scenario  III: The system is in state 2 if at least two components are in state 2 

and is in state 1 or above if at least three components are in state 1 or above. Such 

a system can be described using a decreasing multi-state A:-out-of-n:G system model 

with fci =  3 and k2 = 2. The relationship between system state and component states 

are shown in Table 6.9. In this table, the “+ ” sign represents the permutations of the 

states of the components listed above the sign. The system is not a dominant 

system since some state vectors resulting in state 2 are not bigger than any vector 

resulting in state 1. For example, 0(2,2,0,0) =  2, but x  =  (2,2,0,0) is not bigger 

than any vector resulting in state 1. Vector (2,2,0,0) is not only a minimal path to 

level 2, but also a minimal path to level 1. The binary formula can not be applied 

on such a system. Equations (4.6) and (4.7) can be used for the evaluation of the 

system performance.
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rs2 =  E  =  E  0)0-8i X 0.2(4-i) =  0.9728
i=k2 V /  "  t= 2  W

r*i =  E  f y p o ^ t P i  +/ k( k ) )
k= kl  v '

02 (k) =  ( E  ] (*;)P2 P {l ~ n )  = k  X P2 X pt~l
U =  1 V l /

r * i =  E  (fc)Pon~fc)(Pi +  A: x p2  x p*-1) =  0.0228 

ra0 =  1 — rsl -  rj2 =  0.0044

0(x) : 0 1 2

(0,0,0,0) (1,1,1,0) (2,2,0,0)

(1,0,0,0) (1,1,1,1) (2,2,1.0)

x : (1,1,0,0) (2,1,1,0) (2,2,1,1)

(2,0,0,0) (2,1,1,1) (2,2,2,0)

(2,1,0,0) (2,2,1,1) (2,2,2,1)

+ + (2,2,2,2) 

+

Table 6.9: System state table for Example 6.6: Scenario III

6.5 Concluding remarks

In this chapter, we define the dominant multi-state system. This definition reveals 

the inherent relationship between binary systems and multi-state systems. In gen

eral, multi-state systems can be divided into two groups: dominant systems and 

non-dominant systems. A dominant system is a binary-prone system. If a domi

nant system is binary-imaged, then it can treated completely like a binary system. 

Existing binary algorithms can still be applied on some dominant system with modi

fications even these systems may not be binary-imaged. A new bounding technique is

147

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



developed for dominant systems. In summary, dominant systems have the following 

advantages than non-dominant systems:

1. Easy to find all the minimal path sets or cut sets;

2. Usually, the number of the minimal path sets are less;

3. Convenient for system performance evaluation or bound computation.

The performed research also answers some questions in the previous chapters, for 

example, the dual relationship between multi-state consecutive fc-out-of-n:F system 

and consecutive fc-out-of-n:G system; the properties of minimal paths and cuts of 

multi-state systems. “Dominant system” is a newly-proposed topic in this thesis. 

There are many interesting issues left. For example, we have discovered that for some 

system states, the dominance condition may become satisfied in its dual system even 

though it is not satisfied in the primal system. This means that a dual transformation, 

which has been applied in Chapter 5, may be used to transform a non-dominant sys

tem into a dominant system. Further investigation on this subject may produce very 

interesting and useful research results for multi-state system performance evaluation.
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Chapter 7

Conclusions

In this thesis, a systematic review of the multi-state system reliability theory is pro

vided. Over the past two decades, extensive research has been conducted on defining 

component relevancy conditions and exploring the relationship between binary sys

tems and multi-state systems. In a multi-state system, the relevancy condition repre

sents the relation between the state of the system and the states of the components. 

Under different relevancy conditions, the structure of a multi-state system may be 

very complicated. A multi-state system may have different structures at different 

system state levels. However, other researchers assume that the system has the same 

structure at all state levels when extending the definitions of series system, parallel 

system and fc-out-of-n system in the binary context to the multi-state context. This 

assumption only represents the simplest extension because it hides the flexibility of 

multi-state system structure for reflecting practical problems and then limits the ap

plications of the multi-state systems. Multi-state system reliability extended many 

concepts from binary systems. However, a multi-state system is much more complex 

than a binary system. It is necessary to investigate the relationship between binary 

systems and multi-state systems. Although some research has been performed in this 

direction, not many satisfactory results are available.

149

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



This research contributes to multi-state fc-out-of-n structures considering systems 

with different structures at different state levels. The proposed multi-state fc-out-of-n 

systems and consecutive fc-out-of-n systems not only extend the ideas of the corre

sponding binary systems, but also expand the applications of A:-out-of-n structures 

in practice. The algorithms and bounding techniques developed for these systems in

corporate many concepts of the multi-state reliability theory, for examples, minimal 

paths and minimal cuts, dual and binary decomposition. Based on observation on 

different multi-state fc-out-of-n systems and consecutive fc-out-of-n systems, we pro

pose a definition of the dominant system. This definition reveals the inherent relation 

between binary systems and multi-state systems.

In Chapter 4, we propose a definition of the generalized multi-state Ar-out-of-n:G 

system by releasing the assumption that a multi-state Ar-out-of-n system must have 

the same structure imposed by other researchers. Based on practical examples, we 

concentrate on two special cases: the increasing system and the decreasing system. 

An increasing fc-out-of-n system is totally like a binary system such that the binary 

formula can be used. A new algorithm for the decreasing fc-out-of-n system is devel

oped in this thesis.

In Chapter 5, we define the multi-state consecutive fc-out-of-n:F system. Similar 

to the multi-state fc-out-of-n system, two special cases are taken into consideration. 

For a decreasing consecutive fc-out-of-n:F system, we can treat it like a binary system. 

However, we find that it is very difficult to develop an efficient formula for calculat

ing the performance distribution of an increasing consecutive fc-out-of-n:F system. 

Alternatively, we provide a new bounding technique for the increasing consecutive 

Ar-out-of-n:F system. This technique can be applied to general multi-state systems. 

The work performed in Chapter 4 and 5 not only deals with multi-state fc-out-of-n 

structures, but also attempts to provide answers to some questions encountered in the

150

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



literature review. For example, the duality relation between consecutive Ar-out-of-n:F 

system and consecutive Ar-out-of-n:G system is investigated. Based on the definition 

of the dual of multi-state systems, some special duality relations in binary A:-out-of-n 

structures are lost in the multi-state case.

Chapter 6 generalizes the “domination phenomenon” existing in the increasing 

A:-out-of-n:G system and the decreasing consecutive A:-out-of-n:F system and then 

proposes a definition of the dominant multi-state system. In general, we can divide 

multi-state systems into two groups: dominant systems and non-dominant systems. 

This classification provides a tool for judging whether a multi-state system is dichoto- 

mous at all system state levels or not. If a multi-state system is a dominant system, 

we can extend binary algorithm to evaluate its performance distribution or use the 

bounding technique presented in this work to establish the bounds of the system 

state distribution. Furthermore, if a dominant system is binary-imaged, we can treat 

it like a binary system. For a non-dominant system, we could use the dual conversion 

method to transform it into a dominant system. These results can be applied on any 

multi-state systems systems without referred to relevancy conditions.

Along the line of this thesis, further studies can be done in the following areas:

•  Finding efficient algorithms for multi-state A:-out-of-n structures;

• Investigating the duality relation between multi-state A:-out-of-n:G and F struc

tures;

• Studying on improving the bounds of the performance distribution of the dom

inant system;

• Investigating the relation between dominant systems and non-dominant sys

tems.
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In summary, this research introduces two multi-state fc-out-of-n structures, the 

generalized multi-state A>out-of-n:G system and multi-state consecutive A:-out-of-n:F 

systems, and then proposes a definition of the dominant multi-state system. It makes 

significant contributions to multi-state system modeling, reliability evaluation and 

analysis.
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