
Applications of Optimal Transport Theory to Process Optimization and
Monitoring

by

Sanjula Kammammettu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Process Control

Department of Chemical and Materials Engineering
University of Alberta

© Sanjula Kammammettu, 2024



Abstract

Process optimization and process monitoring form two major cornerstones of the field

of process systems engineering. This thesis tackles selected problems from these foci

through the lens of optimal transport theory, a powerful mathematical methodology

that is receiving renewed attention in recent years. The optimal transport problem

seeks to transport probability mass from one probability distribution to another at

the least total cost. This thesis uses this underlying concept in three main ways.

Firstly, the optimal transport distance is used as a measure of similarity between

probability distributions. This thesis explores the use of entropy-regularized opti-

mal transport to accomplish optimal reduction of large datasets that may be further

used for scenario-based stochastic optimization. Entropy regularization for optimal

transport proves to be advantageous in this case due to the availability of a numer-

ical iterative solution scheme, alleviating the curse of dimensionality encountered in

large-dimensional optimization problems. This work is further extended to generate

optimal scenario trees for multistage stochastic programming problems. Results from

case studies demonstrated that the proposed algorithms provide an efficient, iterative

method to reduce the computational burden in scenario-based stochastic optimiza-

tion, while also preserving the solution quality.

Secondly, the optimal transport distance is used to construct ambiguity sets used in

distributionally robust optimization. This thesis explores the use of optimal transport

between Gaussian mixtures for distributionally robust optimization, which seeks to
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retain desirable features of both stochastic and robust optimization frameworks. In

this work, the optimization problem is considered fraught with distributional ambi-

guity on multimodal uncertainty that is modeled as a Gaussian mixture. An optimal

transport variant for Gaussian mixtures is further used to construct an ambiguity

set of distributions around this reference model, and a tractable formulation is pre-

sented. The superior performance of this proposed formulation is contrasted with the

established Wasserstein method on an illustrative study, as well as on a portfolio op-

timization problem. The thesis then uses the proposed formulation to tackle chance-

constrained optimization in a distributionally robust setting, wherein the worst-case

expected constraint violation is restricted to a user-defined limit. In a similar vein,

this formulation is shown to outperform the conventional Wasserstein method.

Finally, optimal transport distance is used as a measure of similarity in a process

monitoring framework. This thesis presents the applicability of the optimal transport

distance as a metric for change-point and fault detection in multivariate processes

and compares its performance with that of conventional fault detection metrics. The

final component of this thesis tackles the fault detection problem through the lens of

distributional ambiguity. In this work, distributional ambiguity is considered in the

context of a multimodal process, and the worst-case performance of a fault detection

system is evaluated on the basis of two performance metrics - false alarm rate, and

fault detection rate. The evolution of worst-case performance metrics is tracked for

varying levels of ambiguity, using the distributionally robust optimization formulation

proposed in earlier chapters. The thesis concludes with a summary of the work

conducted, the knowledge gaps addressed, and some future directions.
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“I say not that it is, but that it seems to be; as it now seems to me to seem to be.”

- Hubert N. Alyea
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Chapter 1

Introduction

1.1 Motivation

Decision-making is an inherent part of numerous process operations and industries,

such as manufacturing, mining, logistics, finance, economics, risk management and

disaster response. In recent decades, the task of making optimal decisions has be-

come increasingly automated, and therefore, developing a mathematical model that

describes the true system well is a key task. Since the decisions prescribed as a result

of simulating such optimization models for required operating conditions must finally

be applied to the real system, it is imperative that these decisions be feasible in the

face of real-world uncertainties (Edgar et al. 2001; Sahinidis 2004; Ning and You

2019; Keith and Ahner 2021). The development of probability theory in the 20th cen-

tury has provided researchers with a rigorous mathematical framework using which

mathematical definitions of uncertainty may be incorporated into optimization mod-

els. With continual progress in the development of new mathematical techniques,

bolstered by improvement in computational power, optimal decision-making under

uncertainty is now a multifaceted, multidisciplinary field that is fast-evolving. In this

context, a host of mathematical research problems, especially in science, engineering,

and economics, have been created that address a number of end-use cases and appli-

cations.
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Process monitoring forms another major component of process systems engineer-

ing. The automation of industrial processes has brought about a number of changes

in the protocols and operation of daily activities; significant among these is the task of

monitoring processes to detect uninitiated changes in operation, and abnormal events

(also termed faults). In the past, human operators formed the main supervisory con-

trol layer in industry. However, with time, industries have grown larger in scale

and complexity, and their data is multidimensional and often correlated. Therefore,

industries have begun to move away from relying on a manual process monitoring

framework to ensure normal operation. To this end, abnormal event management

(AEM) is a component of the process control hierarchy, and involves the automated

tasks of detecting faults, diagnosing their origins in the system, and providing rec-

ommendations for remedial measures (Isermann 1984; Wise and Gallagher 1996; Qin

2012; Ge et al. 2013; Severson et al. 2016). The primary step in monitoring a pro-

cess for normal operation is to ensure that the system operates only at conditions

prescribed by the operator. This requires that any changes in the process, or any

abnormal events that move the process away from its normal operating conditions be

detected in a timely fashion. In literature, this is referred to as the “change point

detection” or “fault detection” problem. The performance of a fault detection system

is primarily assessed through its fault detectability, and the false alarm rate. Fun-

damentally, a system designed for high fault detectability is also susceptible to more

false alarms; therefore, an optimal design of a fault detection system is a topic of

interest in the process monitoring community.

This thesis addresses problems in the broad areas of mathematical optimization

methods under uncertainty, and process monitoring. The chapters in this thesis are

connected by the common thread of the underlying mathematical concept, namely

optimal transport theory. The objectives of this thesis may be broadly classified into

three categories,
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1. To propose improvements for enhanced computational performance of a tradi-

tional method for optimization under uncertainty, namely stochastic program-

ming

2. To propose mathematical formulations for a newer approach to optimization

under uncertainty, called distributionally robust optimization, for uncertainty

that exhibits multimodal characteristics

3. To address aspects of the process monitoring (fault detection) problem via op-

timal transport theory

The rest of this chapter provides an introduction to the different frameworks of

optimization under uncertainty explored in this thesis, and where they fit into its

considerations. This chapter further expands on optimal transport theory (the con-

ceptual link) that forms the basis of the methods and formulations proposed in this

thesis. It may be noted that a rigorous mathematical treatment of the methods and

concepts is not presented in this chapter; however, all pertinent mathematical formu-

lations have been derived and discussed in detail in each following chapter. It may be

noted that some background and theory is repeated for completeness in each chapter

that has been published independently.

1.2 Background theory

1.2.1 Optimization under uncertainty

Real world process optimization is riddled with uncertainty arising from a number of

factors such as pricing, supply and demand targets, modeling approximations, and

unmodeled disturbances. To this end, while deterministic formulations of the prob-

lem may offer “optimal” solutions, these decisions often fail in practice due to their

disregard of uncertainty in the modelling and solution process. Optimization under

uncertainty has been a significantly studied field since the 20th century wherein re-
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searchers noticed that practical applications of optimization were almost always bot-

tlenecked by uncertainty (Sahinidis 2004). A large amount of research has gone into

the fundamental concepts of mathematical modelling of the problem accounting for

uncertainty, addressing computational intractability arising due to this, and finding

solution procedures for the same. This section introduces an overview of the tradi-

tional approaches to optimization under uncertainty, namely stochastic programming,

chance-constrained programming, and robust optimization that are distinguished by

their consideration of uncertainty and its characterization in the model. It further in-

troduces the distinction between uncertainty and “ambiguity” to give an overview of

the relatively newer paradigm in optimization under uncertainty that offers solutions

with “distributional robustness”. Throughout this section, uncertainty is denoted by

ξ, and the probability distribution governing it is denoted as P(ξ). While the general

mathematical formulations are given where relevant, a detailed derivation of the ap-

proaches studied in this thesis may be found in their associated chapters.

1.2.1.1 Two-stage stochastic programming

Stochastic programming (SP) models are mathematical formulations of optimization

models accounting for uncertainty (that is, risk) by leveraging information about

the probability distribution governing the uncertainty in the problem (Dantzig 1955;

Beale 1955). Under an objective cost minimization framework, SP models find opti-

mal decisions under uncertainty by minimizing the “expected” cost under the distri-

bution P(ξ).

SP models are commonly used in literature in the context of stage-wise scenario-

based programming, wherein a finite set of scenarios approximates the support of the

underlying distribution P(ξ). The scenario-based approach offers attractive compu-

tational advantages owing to its linear programming structure for a piece-wise linear
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function f(x, ξ). The two-stage scenario-based SP model is a classic case of this type.

Here, first-stage decisions are made independent of uncertainty, while second-stage

decisions are taken as a recourse to the realization of uncertainty between these stages.

To this end, first-stage decisions are static, while recourse decisions are adaptive to

the realized uncertainty. The general form of the two-stage stochastic programming

problem may be given as (Shapiro and Philpott 2007),

min
x∈X

cTx +EP(ξ)[Q(x, ξ)] (1.1)

where Q(x, ξ) ∶=min
y
{qTy ∣ Tx+Wy ≤ h}, and ξ = (q, T,W,h). The K−scenario-

based formulation of the stage-wise SP model in 1.1 may be given as,

min
x∈X,yk ∣

K
k=1

cTx +
K

∑
k=1

qTk yk (1.2a)

s.t. Tkx +Wkyk ≤ hk, ∀k = 1, ...,K (1.2b)

A natural extension to the two-stage SP model is the multi-stage SP model wherein

uncertainty is gradually realized successively over time.

Scenario-based stochastic programming, through its definition, is risk-neutral in

its formulation. A number of works suggest that the distribution P(ξ) be approx-

imated by an empirical uniformly-weighted discrete distribution. This technique is

popularly referred to as “sample average approximation” (SAA) in literature (Ahmed

and Shapiro 2002; Luedtke and Ahmed 2008). Consequently, the performance of the

SP model is significantly affected by this fitted empirical distribution. Compiling a

scenario set for SP is therefore a significant part of the optimization process, and a

considerable amount of research has gone into the same (Dantzig and Infanger 1991;

Dempster and Thompson 1999; Høyland and Wallace 2001; Pflug 2001; Høyland et

al. 2003; Heitsch and Römisch 2009b). While it is agreed upon that a larger set of

scenarios provides more information on the true nature of P(ξ), leading to better so-

lutions, incorporating too many scenarios into the SP model renders it too large and
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possibly intractable. Therefore, it is imperative that a scenario set be optimally sized

with a good amount of information on P(ξ) (Heitsch and Römisch 2003; Dupačová

et al. 2003). Chapter 2 of this thesis deals with the reduction of a large (super)set of

scenarios to an optimal subset using an entropy-regularized variant of optimal trans-

port theory, as described in further sections. In this chapter, the idea of scenario

reduction is also extended to multistage scenario tree generation from a large number

of time-varying uncertainty profiles.

1.2.1.2 Chance-constrained programming

Scenario-based stochastic programming deals with the minimization of the expected

objective cost function value subject to a set of discrete realizations (or scenarios)

of uncertainty (ξ), wherein all constraints in the model must be satisfied for all

realizations in this scenario set.. This introduces a possibility of model infeasibility.

To this end, chance-constrained programming (CCP) is a technique of optimization

under uncertainty developed to tackle this issue of constraint satisfaction (Charnes

and Cooper 1959). Specifically, in CCP, a “probabilistic” constraint is introduced

wherein a certain small level of constraint violation is permissible, thus broadening

the feasible space for the decision variables. That is, for the general optimization

problem under uncertainty of the form,

min
x∈X

f(x) (1.3a)

s.t. gi(x, ξ) ≤ 0 ∀i = 1, ...,m, ∀ξ (1.3b)

the general form of the m−joint chance-constrained programming problem (Miller

and Wagner 1965) may be given as,

min
x∈X

f(x) (1.4a)

s.t. Pr{gi(x, ξ) ≤ 0 ∀i = 1, ...,m} ≥ 1 − δ (1.4b)

It may be noted that while chance-constrained programming introduces a certain

relaxation in the constraints of the problem that aid in finding a feasible solution, the
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probabilistic constraint involved with CCP also introduces computational intractabil-

ity in its general form. In practice, this probabilistic constraint is often reformulated

to an indicator function-based form of the expectation under P(ξ), and further ap-

proximated by a convex, conservative approximation to the same (Ben-Tal and Ne-

mirovski 2000; Rockafellar, Uryasev, et al. 2000; Nemirovski and Shapiro 2007) or

using sample average approximation (Luedtke and Ahmed 2008). Furthermore, as in

the case of stage-wise stochastic programming, the probabilistic constraint in CCP

requires the knowledge of the distribution P(ξ). Chapter 4 contains a mathematical

discussion on CCP, as well as its extension to the distributionally robust framework

to hedge against the lack of exact information on P(ξ).

1.2.1.3 Robust optimization

While stochastic programming techniques offer formulations that leverage distribu-

tional information for optimization under uncertainty, these methods are also limited

by the quality of data, and consequently, the empirical distribution fitted. In many

industrial applications, particularly in the case of design, as well as safety features,

this dependence on the quality of discrete scenarios is limiting, and a safer, conserva-

tive solution is preferable. To this end, robust optimization (RO) techniques optimize

for the worst-case realization of the problem across a feasible uncertainty set, and re-

quire no knowledge on the distribution P(ξ). It is noteworthy to mention that the

robustness of the solution may refer to its feasibility towards different realizations of

uncertainty, or even objective value or optimality guarantees. However, RO requires

the careful design of an uncertainty set in order to avoid overly conservative decisions

that come at an unnecessarily higher cost to the end user. Furthermore, disregarding

information on P(ξ) entirely may cause the loss of relevant and useful features for

optimization.

In order to ensure feasibility of the solution over all realizations of the uncertain
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parameter in the model, in practice, a limited “uncertainty set” of scenarios is con-

structed around nominal information available on the parameter. The pioneering

work in RO was undertaken by Soyster (1973). A major component of RO research

has been undertaken on solving the worst-case optimization problem. Specifically,

this refers to the class of methods that minimize the objective based on the worst-

case feasible solutions that are realized from the uncertainty set constructed. The

general form of the RO problem may be given as,

min
x∈X

max
ξ∈Ξ

f(x, ξ) (1.5a)

s.t. gi(x, ξ) ≤ 0, ∀i = 1, ...,m, ∀ξ ∈ Ξ (1.5b)

Here, Ξ denotes the uncertainty set. It is worth noting that Model 1.5 finds optimal

one-time decisions with no recourse. Similar to stage-wise stochastic programming,

RO can also be tackled in an “adjustable” form wherein some decision variables may

be defined as “wait-and-see” decisions that may be arrived at once the value of the

uncertain parameter is realized at a future time (Ben-Tal et al. 2004; Boni and Ben-

Tal 2008; Yanıkoğlu et al. 2019). A key factor to be addressed in RO is the tradeoff

between robustness and conservatism of the solution that is to be tuned for best per-

formance (Bertsimas and Sim 2004).

This thesis does not explicitly focus on robust optimization methods. However, it

leverages the worst-case approach that is typical of RO, to tackle a “distributionally

robust” version of the optimization problem under uncertainty, as detailed in the next

section.

1.2.1.4 Uncertainty vs ambiguity - extended approaches to optimization
under uncertainty

Optimization under uncertainty has been a topic of interest in a myriad of settings

ranging from process optimization and design, to profit maximization and portfolio
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design in economic studies. The latter field of research has provided a number of

conceptual insights into the incorporation of uncertainty in system modeling and op-

timization. Specifically, the concepts of uncertainty, risk, and ambiguity have been

refined by various researchers over the years, and different techniques to address

the same have been continually studied. In this context, Keynes (1921) and Knight

(1921) separately made the primary characterization of uncertainty and risk; however,

in their works, the term “uncertainty” refers to all models containing parameters with

unknown probability distributions. An analysis, and comparison of their philosophies

and treatment of uncertainty in a system is presented in Packard et al. (2021). While

these seminal works lay the ground for the philosophy of uncertainty, Arrow (1951)

made a clear distinction between the types of uncertainty a user may encounter in the

model, namely, the uncertainty in the hypothesis, and the uncertainty in the obser-

vations, given the hypothesis. The uncertainty in the hypothesis is more commonly

referred to now as “ambiguity”, and refers to the uncertainty on the probability dis-

tribution itself, while the uncertainty in observations is expressed by that probability

distribution. It follows that if one is “certain” about the probability distribution (that

is, the hypothesis is a certainty), ambiguity may be disregarded, and the uncertainty

in realizations/observation may be addressed by the aforementioned traditional ap-

proaches.

Accounting for ambiguity in the distribution P(ξ) provides a new outlook to op-

timization under uncertainty, which may be summarized under two main points.

Firstly, accounting for ambiguity in P(ξ), particularly in the face of limited amounts

of data from which statistical properties may be gleaned, ensures a degree of prac-

ticality into the optimization model. Secondly, accounting for ambiguity in P(ξ)

has allowed for a new paradigm in optimization methods under uncertainty, called

“distributionally robust optimization” (DRO) that is able to retain the positive qual-

ities of the traditional stochastic programming (SP) and robust optimization (RO)
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approaches, while simultaneously alleviating their drawbacks. Indeed, DRO is also

referred to as “ambiguous stochastic optimization” in literature, and may be consid-

ered an intermediate approach to SP and RO. The first instances of DRO in literature

were published in the context of a newsvendor problem by Karlin et al. (1958) and

on generic linear programming problems by Žáčková (1966). The DRO problem aims

to minimize the supremum, or the worst-case realization, of the expected cost due

to uncertainty in the problem, over a defined “ambiguity set” containing a number

of possible candidate distributions that the uncertain parameter may follow. DRO

retains elements of SP by incorporating the use of P(ξ) into the problem. However,

unlike traditional SP, DRO does away with the certainty on P(ξ), and introduces a

degree of belief on P(ξ) through the ambiguity set that is usually constructed using

available knowledge on ξ. On the other hand, DRO retains the worst-case approach of

RO by hedging, not against a single P(ξ), but against that distribution from amongst

all the candidate distributions in the ambiguity set that realizes the worst-case per-

formance of the model. The general formulation of the DRO problem may be given

as,

min
x∈X

max
P(ξ)∈P

EP(ξ)[f(x, ξ)] (1.6)

where P denotes the ambiguity set containing all hypothesized models or probabil-

ity distributions on ξ. A number of review papers are available on DRO, that classify

and summarize work done by researchers over the years on the different formulations,

algorithms, and ambiguity set construction procedures (Bayraksan and Love 2015;

Postek et al. 2016; Shapiro 2021; Lin et al. 2022). Specifically, the construction of the

ambiguity set for DRO is a significant consideration for solution quality. A number of

works in literature have focused on methods for ambiguity set construction (Ghaoui et

al. 2003; Popescu 2005; Pflug and Wozabal 2007; Delage and Ye 2010; Hu and Hong

2013; Hanasusanto and Kuhn 2013; Bayraksan and Love 2015; Ning and You 2018; Li

2018; Shang and You 2018; Esfahani and Kuhn 2018; Chen 2018; Chen et al. 2022).
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All of these methods construct the ambiguity set around a “nominal” distribution

that is empirically determined from available data on ξ. Chapters 3 and and 4 of this

thesis tackle the DRO problem for multimodal uncertainty. Chapter 3 tackles the

DRO problem to find the optimal solution to the worst-case expectation maximiza-

tion problem, which is the inner maximization problem applied to the expected value

of the objective function under uncertainty. Chapter 4 tackles the distributionally ro-

bust chance-constrained problem (DRCCP) using the results of Chapter 3. Chapter

6 extends the methodology proposed in Chapter 3 to process monitoring applications

in the context of optimal fault detection system design.

1.2.2 Optimal transport theory

The basic foundations of optimal transport theory were laid against the backdrop of

the French Revolution of the 18th century, when Gaspard Monge, the inventor of de-

scriptive geometry and a mathematician working with the French military body was

tasked with the following problem statement, “what is the most cost-effective method

to shape a pile of dirt into a desired form?”. This problem underwent a number of

rebirths from the 18th century to the present day, giving rise to different formulations,

computational solution strategies, and a host of new applications as other fields of

science and technology progressed. The seemingly logistical nature of the original

problem statement is now far-reaching; in contemporary literature, optimal trans-

port forms a strong basis for a host of machine learning and artificial intelligence

applications including image and computer vision, and generative networks.

1.2.2.1 Mathematical formulations of the optimal transport problem

From its inception through its evolution in mathematical literature, the aim of the

optimal transport problem has been to obtain the least-cost method of transporting

probability mass from a source distribution to a destination distribution. For the

source and destination distributions P(x) and Q(y) on supports X and Y , respec-
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tively, Monge’s pioneering formulation (Monge 1781) of the optimal transport (OT)

problem may be defined as,

M(P,Q) ∶= inf
f∈M

{∫
X
c(x, f(x)) dP(X)} (1.7)

wherein M(P,Q) is a continuous transport map between P and Q. c(x, f(x)) de-

notes the cost incurred during the transport of probability mass from P toQ computed

between the elements of their support sets; in his original work, Monge computed the

cost using the L1 norm. M refers to the set of measure-preserving mappings from X

to Y for any Borel subset A of Y as,

M = {f ∶X → Y ∣∫
f−1(A)

dP(x) = ∫
A
dQ(y)} (1.8)

Solving the OT problem using Monge’s formulation in Model 1.7 poses a number of

practical difficulties owing to its “pushforward” definition of a transport map which

induces nonlinearity. Furthermore, in this definition of the OT problem, it is worth

noting that probability mass is mapped from one distribution to another (Kantorovich

1942); this means that it may not be split during transport. This inherent assumption

in Model 1.7 poses difficulties regarding the existence of such transport maps when

the problem is treated in a discrete capacity. To solve this issue, Leonard Kantorovich

posed the relaxed version of the OT problem wherein probability mass is “transferred”

from one distribution to another, allowing for mass from the source to be split across

multiple supporting locations in the destination. The Kantorovich optimal transport

problem may be defined as,

K(P,Q) ∶= inf
γ∈Γ(P,Q)

{∫
X×Y

c(x, y) dγ(x, y)} (1.9)

wherein K(P,Q) is referred to as the optimal transport “plan” of probability mass

from P to Q. Γ(P,Q) refers to the set of all joint distributions whose marginal

distributions are P and Q; that is, for all measurable sets A ⊆X and B ⊆ Y ,

Γ = {γ ∶ γ(A,Y ) = P(A), γ(X,B) = Q(B)} (1.10)
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When P and Q are absolutely continuous with respect to the Lebesgue measure,

it has been proven that a unique solution to γ may be obtained (Brenier 1991; Vil-

lani 2021). It may be shown that when transport maps do exist between probability

distributions P and Q, the optimal transport “distance”, which is the total cost of

transporting probability mass from P to Q, obtained from the Kantorovich formula-

tion serves as a lower bound to that of the Monge OT problem. It may further be

noted that the Kantorovich problem in Model 1.9 is a convex optimization problem in

that, (1) the constraints involved in the problem are convex, and (2) the cost function,

which is usually norm-based or distance-based, is also convex. The Kantorovich OT

problem also naturally admits a linear programming (LP) formulation in the discrete

case; insofar as the application of optimal transport theory to the problem statements

addressed in this thesis, the discrete OT problem forms the starting point. For the

discrete measures ζ = ∑
m
i=1 aiδxi

and ω = ∑
n
j=1 bjδyj wherein the support elements are

modeled as Dirac point masses δxi
and δyj with weights ai and bj respectively, the

discrete formulation of the Kantorovich OT problem is given as,

min
π

m

∑
i=1

n

∑
j=1

ci,jπi,j (1.11a)

s.t.
n

∑
j=1

πi,j = ai, ∀i = 1, ...,m (1.11b)

m

∑
i=1

πi,j = bj, ∀j = 1, ..., n (1.11c)

πi,j ≥ 0, ∀i = 1, ...,m, j = 1, ..., n (1.11d)

where π refers to the optimal transport plan. Inherent in this formulation is the

assumption that the weights ai and bj of the Dirac point supports for ζ and ω,

respectively, are nonnegative, and have unitary sum.

1.2.2.2 Optimal transport distances

While the optimal transport (OT) problem was founded owing to the need to find

a least cost “method”, which may be a map or a plan, to move probability masses
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from one measure to another, a significant number of advances have been made in

literature whose focus is on the subsequent cost due to this method, rather than

this transport method itself. The objective function value of the OT problem, which

denotes the total cost of transporting probability mass from the source P(x) to the

destination Q(y) as a result of following the transport plan K∗(P,Q) is referred to

as the optimal transport (OT) “distance” between P and Q; simply put, the OT dis-

tance is an aggregate cost incurred by transporting probability mass between P and Q.

The OT distance so defined from the optimal transport problem finds notable appli-

cation as a metric of similarity between probability distributions. The p−Wasserstein

distance is such a metric defined as the pth root of the optimal objective cost (that is,

the OT distance) of the Kantorovich OT problem between measures ζ and ω which

have bounded pth moments. The p−Wasserstein distance, denoted as Wp(ζ, ω), may

be calculated as,

Wp(ζ, ω) = min
π∈Π(ζ,ω)

(∫
X×Y
∣x − y∣p dπ(x, y))

1
p

(1.12)

It has been proven that Wp(ζ, ω) is a metric using the triangle inequality. The use

of Wp as a metric has found considerable applications in the fields of computer vision

and machine learning, as a method of comparison of histograms. It has also be used for

image analysis and signal processing along similar lines. This thesis explores the use of

the OT/Wp distance, or more specifically its extensions in different contexts. Chapter

2 treats the support of the destination distribution Q(y) as a subset of that of the

source P(x). Chapters 3 and 4 construct a number of distributions around the source

P(x) constrained by a defined OT distance to propose extended OT-distance-based

distributionally robust frameworks for optimization. Chapter 5 explores the use of the

OT distance as a metric for similarity for process change point and fault detection.

Chapter 6 presents a study of the worst-case performance of a fault detection system

using the frameworks proposed in Chapters 3 and 4.
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1.2.2.3 Extensions to the conventional OT problem

Since its inception in the 18th century, the field of optimal transport (OT) theory

has undergone a number of changes and rebirths under varying formulations and

implementation strategies. In recent years, interest in the use of OT has experi-

enced yet another regeneration owing to the development and easy availability of

new solvers that can handle large high-dimensional datasets. This interest is fur-

ther reinforced due to the current availability of large amounts of data that may be

leveraged for decision-making. To this end, a popular extension to the OT problem

that is often used in a myriad of fields from computer vision to machine learning is

the entropy-regularized variant, also called Sinkhorn optimal transport. Chapter 2

of this thesis uses Sinkhorn optimal transport to address the optimal scenario reduc-

tion, and scenario tree generation problem for stochastic programming. While many

other variants, such as multi-marginal, unbalanced, and semi-discrete versions of OT

exist, in this section, Chapters 3 and 4 focus on modeling multimodal uncertainty in

optimization problems, and to this end, the use of a Gaussian mixture model-based

variant of OT is used in order to design components of the distributionally robust

optimization frameworks in Chapters 3 and 4.

1.2.2.3.1 Entropy-regularized (Sinkhorn) optimal transport

The increase in the availability of computational power in recent decades has led re-

searchers to explore numerical approximations to the Kantorovich optimal transport

(OT) problem. One such approximation was made through an “entropic regulariza-

tion penalty” added to the objective function in the OT problem. This regularization

leads to a reformulated OT problem that may be easily solved iteratively by means

of the Sinkhorn-Knopp algorithm; therefore, entropy-regularized OT is also referred

to as the Sinkhorn optimal transport problem. The theory and numerical scheme of

Sinkhorn optimal transport has been well-explained in the introduction of Chapter

2. This section provides an overview of the same.
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The idea of introducing entropy regularization into the original OT problem was

originally used in transportation theory by Wilson (1969) and Erlander (1980). In

these works, it was observed that transport problems tend to have more diffused

solutions in practice than those given by OT theory which by nature offers more

sparse couplings; to this end, an entropy-regularized version of OT was developed

seeking these diffused couplings. The discrete entropy of the optimal transport plan

may be given as,

H(π) ∶= −
m

∑
i=1

n

∑
j=1

πi,j[ log(πi,j) − 1] (1.13)

When (negative) discrete entropy −H(π) is added to the objective function of the

optimal transport problem in Model 1.11, it serves as a regularization function, and

thus, the entropy-regularized variant of the OT problem may be given as,

min
π

m

∑
i=1

n

∑
j=1

ci,jπi,j + γπi,j[ log(πi,j)] (1.14a)

s.t.
n

∑
j=1

πi,j = ai, ∀i = 1, ...,m (1.14b)

m

∑
i=1

πi,j = bj, ∀j = 1, ..., n (1.14c)

πi,j ≥ 0, ∀i = 1, ...,m, j = 1, ..., n (1.14d)

In the context of numerical approximation to the OT problem, entropic regular-

ization offers computational advantages, especially for large datasets. Specifically,

entropy-regularization of the OT problem transforms the problem such that its so-

lution is of a form easily written using matrix notation. This matrix, indeed the

optimal transport plan for a prescribed regularization value, may be obtained using

the Sinkhorn-Knopp algorithm (Sinkhorn 1964; Sinkhorn and Knopp 1967; Sinkhorn

1967) through a simple iterative procedure. It is worth noting here that the entropy

term added to the objective function is scaled by a regularization coefficient (γ); for

large values of this coefficient, the Sinkhorn OT plan is an increasingly diffused cou-

pling, while for smaller values tending to zero, the Sinkhorn OT plan converges to
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that of the original OT problem (Cominetti and Martin 1994). Chapter 2 provides

a discussion of these results prior to presenting algorithms that utilize the Sinkhorn

OT problem to optimally reduce a large (support) set of data points to a smaller

subset such that the information in these probability distributions is preserved to the

greatest extent; in other words, the optimal subset obtained through these algorithms

has the least Sinkhorn OT distance amongst all possible subsets.

1.2.2.3.2 Optimal transport between Gaussian mixtures

The entropy-regularized optimal transport (OT) problem presented in the previous

section offers one method of obtaining OT plans, and consequently the OT distances,

for large datasets. There have many other advances in the field of OT theory that

have provided alternative methods for the same; one such method is the optimal

transport between Gaussian mixtures presented by Chen et al. (2018). The detailed

mathematical derivation for this OT variant is described in Chapters 3 and 4.

The optimal transport variant for transport between probability measures ζ and

ω modeled as Gaussian mixtures Gζ and Gω, respectively, builds upon the discrete

Kantorovich OT framework, with conceptual modifications made to the measures’

supports. Specifically, in this variant, the discrete supports available are modeled as

finite-component Gaussian Mixture Models (GMMs). GMMs have been well-explored

in literature for a number of applications (Roweis and Ghahramani 1999; Kostanti-

nos 2000; McLachlan et al. 2019). Modeling the supports of the discrete measures as

GMMs expresses the measures as linear weighted combinations of Gaussian measures

(Gζ = ∑
Lζ

l=1w
ζ
l ν

ζ
l ,Gω = ∑

Lω

l′=1w
ω
l′ν

ω
l′ ). As a result, the OT problem between ζ and ω

may be approximated by the OT problem between Gζ and Gω. In the OT(Gζ ,Gω)

problem, the Gaussian components (ν
Lζ

l , νLω

l′ ) are analogous to the Dirac point masses

(δxi
, δyj) in the original OT problem (Model 1.11), while the weighting proportions

(wζ
l ,w

ω
l′ ) are akin to the weights (ai, bj), respectively. Therefore, the cost of transport
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between the measures is defined on the Gaussian point masses (ν
Lζ

l , νLω

l′ ) and the prob-

ability conservation constraints are imposed on the weighting proportions (wζ
l ,w

ω
l′ );

in their work, Chen et al. (2018) defined this cost as the squared 2-Wasserstein dis-

tance. This cost is calculated using the closed-form expression for the W2 distance

between the Gaussian measure point masses developed by Takatsu (2011). The opti-

mal transport problem between the Gaussian mixtures Gζ and Gω may be given as,

z ∶=min
π∈Π

Lζ

∑
l=1

Lω

∑
l′=1

cl,l′πl,l′ (1.15a)

s.t.
Lω

∑
l′=1

πl,l′ = w
ζ
l , ∀l = 1, ..., Lζ (1.15b)

Lζ

∑
l=1

πl,l′ = w
ω
l′ , ∀l

′ = 1, ..., Lω (1.15c)

πl,l′ ≥ 0, l = 1, ..., Lζ , l′ = 1, ..., Lω (1.15d)

The optimal transport distance between GMMs from this model is the square root

of the optimal objective value (z); this distance (
√
z) is proven to be a lower bound

on W2(ζ, ω).

1.3 Thesis outline and structure

Having presented an overview of the background and theory pertinent to the prob-

lem statements tackled in this thesis, this section outlines the work flow and structure.

Chapter 2 addresses the problem of optimal scenario reduction and scenario tree

generation using the entropy-regularized optimal transport variant. This work lever-

ages the iterative numerical Sinkhorn algorithm for OT, and proposes algorithms for

the reduction of large dimensional supersets of scenarios, to optimal smaller subsets

with minimal loss in information for stochastic programming. This work provides a

study of the proposed method’s computational performance as well as solution qual-

ity, and highlights the efficacy of the algorithms proposed on case studies.
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Chapter 3 leverages optimal transport between Gaussian mixture models (GMMs)

to propose a novel ambiguity set construction method for distributionally robust opti-

mization (DRO). This work is designed to reduce conservatism of the DRO solution by

retaining the multimodal characteristics of the available data on process uncertainty,

and further incorporating the same through first- and second-order moments into the

GMM-OT-based ambiguity set construction step. Chapter 4 builds upon the DRO

formulation proposed in Chapter 3 for distributionally robust chance-constrained pro-

gramming (DRCCP). The studies performed show that the overconservativeness re-

sulting from a distributionally robust treatment of the problem may be reduced by

incorporating multimodal characteristics into the metric-based ambiguity set con-

struction step, and demonstrate the application of the proposed formulations on case

studies from financial and chemical engineering fields.

Chapter 5 pivots to the application of optimal transport theory to process mon-

itoring. This work showcases the performance of the OT distance as a metric for

change point detection in multivariate processes, and further gives a moving window

approach to online process monitoring for fault detection. This work shows that the

optimal transport distance provides good fault detection performance, and demon-

strates its applicability on benchmark studies. Chapter 6 leverages the formulation

proposed in Chapter 3 to assess the worst-case performance of a fault detection system

under distributional ambiguity of multimodal processes (modeled as GMMs).
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Chapter 2

Scenario Reduction and Scenario
Tree Generation for Stochastic
Programming using
Entropy-Regularized Optimal
Transport

Abstract : Scenario-based stochastic programming is a widely used method for opti-

mization under uncertainty. The solution quality of this approach is dependent on

the approximation of the underlying uncertainty distribution. Therefore, the optimal

generation of scenarios (or scenario trees) is a pertinent research objective in stochas-

tic programming. In this work, we approach the scenario reduction and scenario

tree generation problem through the perspective of optimal transport, specifically

entropy-regularized optimal transport. The availability of an iterative procedure to

compute the optimal entropy-regularized transport plan between support sets, using

the Sinkhorn-Knopp algorithm in lieu of conventional linear programming-based op-

timal transport, is found to decrease solution time appreciably, with a decrease in

memory burden as well. We present algorithms for optimal scenario reduction and

multistage scenario tree generation, and illustrate their use through two case studies.

We show that the proposed approach generates high-quality scenarios whose use in

stochastic programming offers solutions with good accuracy.

20



2.1 Introduction

Industrial processes generally operate under a varying range of uncertainties, from de-

mand and supply, to resource availability and scheduling. Optimal decision-making,

therefore, must take into account the underlying uncertainty in order to obtain prac-

tically feasible decisions. In this regard, it is imperative to assess the amount of

distributional information about the uncertain parameters, if any, available for incor-

poration into optimization.

Two popular optimization approaches under uncertainty are robust optimization

and stochastic programming. Robust optimization uses the support information

about the underlying uncertainty in the optimization problem, and solves the prob-

lem for the worst case realization of uncertainty, thus offering a risk-averse solution.

While this approach is often used in applications concerning process safety and de-

sign, robust optimization also leads to markedly higher costs. In contrast, stochastic

programming, proposed by Dantzig (1955), comprises methods in which the proba-

bility distribution of the uncertain parameter is assumed to be known, or reasonably

estimated from available process history. In order to solve the stochastic program-

ming problem numerically, a deterministic equivalent of the problem may be obtained

through scenario-based approximation method. In this method, the optimization

problem is solved for a finite set of scenarios generated to represent the uncertainty

in discrete realizations with corresponding probabilities of occurrence. Generally, a

large number of scenarios would capture the true uncertainty distribution better than

a smaller number. However, it is found that as the number of scenarios increases, the

problem complexity, as well as solution time, increases greatly. Therefore, there is a

need to explore methods of optimal scenario reduction.
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The concept of scenario reduction was pioneered by Dupačová et al. (2003), who

proposed the use of a natural probability metric as an approximation metric in order

to obtain the closest subset from a larger superset of scenarios. The authors proposed

the use of Fortet-Mourier metrics for the reduction of electrical load scenario trees

used for power management under uncertainty. The stability of multistage stochastic

programs was analyzed by Heitsch et al. (2006) who posited that the reduction of mul-

tistage scenario trees should be based on Lr distances as well as filtration distances.

Subsequently, Heitsch and Römisch (2009a) derived algorithms for the reduction of

multistage scenario trees using this idea. Xu et al. (2012) developed algorithms using

K-means clustering and LP moment-matching methods to approximate multistage

scenario trees from a large scenario fan description of the uncertain parameter. In

this method, the authors generated a multistage scenario tree from a scenario fan

composed of a large number of profiles evolving in time, generated as a result of

random processes. At each stage, the superset of points is reduced to a smaller sub-

set comprising cluster centers chosen by the K-means clustering technique. Chen and

Yan (2018) designed a scenario tree reduction algorithm through clustering tree nodes

based on a new distance function to measure the difference between two scenario trees.

Li and Floudas (2014) treated the scenario reduction problem as a mixed integer

linear programming (MILP) problem. The authors designed an MILP-based method

for scenario reduction using Kantorovich Distance. In this method, the binary vari-

ables denote whether the scenario is retained or removed to meet the new reduced

scenario set size. The constraints in the MILP model pertain to the conservation

of probability mass from the superset to the reduced subset. This is a single-step

approach in the sense that this optimization problem is solved once, and the opti-

mal reduced scenario subset is obtained. In contrast, Li and Li (2016) proposed a

computationally efficient iterative algorithm for scenario reduction that circumvents

the limitations posed by the aforementioned MILP formulation through the use of
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transportation distance. In a recent work by Zhou et al. (2019), the authors introduce

an improved method using K-means with a typicality degree approach for scenario

reduction.

In addition to transportation metric-based techniques, scenario reduction has also

been accomplished for decision-making under uncertainty using other methods. Karup-

piah et al. (2010) proposed a heuristic scenario selection strategy that the overall

probability of occurrence of a particular realization of any uncertain parameter in the

final set of scenarios should be equal to the probability of the uncertain parameter tak-

ing on that particular value. Meira et al. (2016) performed scenario reduction using

representative models in oil fields. Arpón et al. (2018) have chosen the Conditional-

Value-at-Risk (cVaR) measure as the objective function in order to accomplish the

reduction. In the work of Hu and Li (2019), they balanced the objective of scenario

reduction by maximizing the likeness between the original scenario superset and the

reduced subset, while simultaneously minimizing the correlation loss before and af-

ter the reduction process. Silvente et al. (2019) proposed a scenario tree reduction

method using sensitivity analysis for nonlinear optimization models. In their work,

the authors chose the sensitivity of scenarios as a measure of identifying which sce-

narios to retain in a larger superset. Scenario reduction has also been approached

through the purview of machine learning. Li and Gao (2019) used deep learning to

reduce scenario supersets. In their work, the authors transformed scenarios into a

format similar to that of images, and fed these transformations to a deep convolu-

tional neural network to obtain a similar image-like output of the reduced subset.

Medina-Gonzalez et al. (2020) proposed a scenario-reduction method that integrates

data mining, graph theory and community detection concepts to represent the uncer-

tain information as a network and identify the most efficient communities/clusters.

Bounitsis et al. (2022) proposed a data-driven MILP model for the distribution match-

ing problem behind scenario reduction. They have shown improved efficiency through
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integration of copula-based simulation and clustering method.

In this work, we aim to improve the LP-based scenario reduction strategy, pro-

posed by Li and Li (2016) by replacing the inner linear optimal transport problem

with entropy-regularized optimal transport solved using the Sinkhorn-Knopp algo-

rithm (Section 2.3). We present the algorithm for optimal scenario reduction using

Sinkhorn distance (Section 2.4), and extend its application to the optimal generation

of multistage scenario trees for stochastic programming (Section 2.5). Furthermore,

we use the process distance metric (Pflug and Pichler 2012) to evaluate the approx-

imation quality between the generated scenario tree, and the original scenario fan.

Finally, we illustrate the use of these algorithms on two case studies (Section 2.6).

2.2 Optimal transport distance between distribu-

tions

The extent of similarity between two probability distributions is quantified in liter-

ature through a number of measures, such as Kullback-Leibler Divergence (KLD),

Hellinger Distance, power distance, and correlation similarities. However, there are

certain instances where measures like KLD cannot be used, as is the case when the

level of similarity between two distributions defined on different probability spaces is

to be quantified.

When distributions defined on different support sets are to be compared, the prob-

lem can be viewed through the lens of optimal transport. Optimal transport was

first studied by Monge (1781) in the context of transportation of mined soil from the

quarry to various construction sites, famously titled the “earth-mover’s problem” in

literature. The optimal transport problem aims to find the most efficient manner in

which to transfer probability mass from the elements of one distribution to another,

while minimizing a chosen cost function. It follows intuitively that if the two distri-
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butions in question are vastly dissimilar, the task of moving the probability masses

from one distribution to the other requires more effort, which is quantified by the

optimal transport distance.

In the pioneering work of Monge (1781), a continuous transport map f(x) was

estimated between two probability distributions P(x) and Q(y), with support sets X

and Y , respectively, so as to minimize the expected cost of transportation c(x, f(x)),

as given by Equation 2.1,

M(P,Q) = inf
f∈MP

∫
X
c(x, f(x))dP(x) (2.1)

MP denotes the set of all mappings that preserve the transfer of probability from

P(x) to Q(y) for any Borel subset A of Y (Equation 2.2).

MP =

⎧⎪⎪
⎨
⎪⎪⎩

f ∶X → Y ∣∫
f−1(A)

dP(x) = ∫
A
dQ(y)

⎫⎪⎪
⎬
⎪⎪⎭

(2.2)

It must be noted that the Monge formulation of the optimal transport problem

does not allow for probability masses to be split during transfer.

2.2.1 Kantorovich Distance and Wasserstein Distance

Kantorovich (1942) approached the optimal transport problem through a relaxed

formulation, allowing for the splitting for probability masses; this formulation uses

the concept of a transport plan which is given by (Equation 2.3),

K(P,Q) = inf
π∈Π(P,Q)∫X×Y

c(x, y)dπ(x, y) (2.3)

Here, Π(P,Q) is the set of all joint distributions whose marginal distributions are

P(x) and Q(y).

The optimal transport problem can be formulated as a linear programming (LP)

problem for transport between discrete distributions. Consider a simplified version of

the same (Model 2.4),
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KD =min
πi,j

∑
i,j

ci,jπi,j (2.4a)

s.t. ∑
j

πi,j = ai ∀i (2.4b)

∑
i

πi,j = bj ∀j (2.4c)

πi,j ≥ 0 ∀i, j (2.4d)

In Model 2.4, the variables πi,j are elements of the optimal transport plan, and

represent the amount of probability mass that is transferred from one distribution’s

elements (xi ∼ P(x)) to those of another distribution’s (yj ∼ P(y)). The cost of mov-

ing probability mass between elements xi and yj is computed as ci,j, which is often

computed using the norm c(x, y) = ∥x − y∥. For example, 1-norm and 2-norm based

distance for two n−dimensional points x and y is given as: ∥x − y∥1 = ∑
n
k=1 ∣xk − yk∣,

and ∥x − y∥2 =
√
∑

n
k=1(xk − yk)2.

The objective function in Equation 2.4a represents the total cost in moving prob-

ability masses from P(x) to Q(y) to be minimized for optimal transport. The con-

straints in Model 2.4 represent the conservation of probability mass with respect to

P(x) and QP (y), respectively, subject to non-negativity constraints on πi,j. The

vectors a and b in Equations 2.4b and 2.4c contain the probability masses of the

elements xi ∼ P(x) and yj ∼ Q(y), respectively. It must be noted that the transport

plan obtained through the Kantorovich formulation of the optimal transport problem

is not a one-to-one mapping, ergo allowing for the probability mass of one discrete

element in the source distribution to be split across that of multiple elements in the

destination.

The above optimal transport problem formulation is a special case of the p-Wasserstein

distance (p ≥ 1), which is the optimal objective of the following optimal transport
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problem (Equation 2.5),

Wp(P,Q) = ( inf
π∈Π(P,Q)∫X×Y

c(x, y)pdπ(x, y))

1
p

(2.5)

For p = 1, the 1-Wasserstein distance is termed as the Kantorovich Distance (KD),

which is the optimal objective of the optimal transport problem in Model 2.4.

2.3 Entropic regularization and Sinkhorn distance

The optimal transport plan πi,j in Model (2.4) is an M × N -dimensional decision

variable, where M and N are the sizes of the support sets X and Y . For large dimen-

sional optimal transport problems, the formulation in Model 2.4 encounters a memory

bottleneck for computation of the optimal transport plan . To mitigate this issue,

Lellmann et al. (2014) used the concept of Kantorovich-Rubenstein duality in which

the dual formulation of the optimal transport problem is solved. Another method to

tackle the memory burden in conventional optimal transport makes use of entropy

regularization of the problem(Cuturi 2013) that be solved using an iterative approach,

rather than a linear programming-based formulation.

A matrix with lower entropy has most of its non-zero values concentrated in fewer

points, while a matrix with higher entropy is smoother and has a more uniform distri-

bution of its non-zero values across its elements. Therefore, entropy regularization is

carried out to make the coupling matrix smoother by introducing the regularization

coefficient (γ) and the entropy of the transport plan (H = −∑i,j πi,j[log(πi,j) − 1]) to

the objective function(Peyré, Cuturi, et al. 2019). Notice that the objective is of min-

imization type and we use negative entropy such that the entropy can be maximized

to achieve smooth transport plan. The entropy-regularized optimal mass transport

problem is given as Model 2.6,

SD =min
πi,j

∑
i,j

ci,jπi,j + γπi,j[log(πi,j) − 1] (2.6a)
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s.t. ∑
j

πi,j = ai ∀i (2.6b)

∑
i

πi,j = bj ∀j (2.6c)

πi,j ≥ 0 ∀i, j (2.6d)

Note that the Sinkhorn distance is not a metric since it is biased: SD(P,P) ≠ 0.

The smoothness of the coupling matrix increases with the value of γ. Therefore,

lower the value of γ, closer the solution to that of the original optimal transport

problem(Peyré, Cuturi, et al. 2019). The entropy-regularized transport problem can

be solved using the Sinkhorn-Knopp algorithm (Peyré, Cuturi, et al. 2019; Sinkhorn

1964).

The Lagrangian for Model (2.6) is given as (Equation 2.7),

L = {∑
i,j

ci,jπi,j + γ∑
i,j

πi,j[log(πi,j) − 1]} +α
⊺[Π(1N×1) − a] +β

⊺[Π⊺(1M×1) − b]

(2.7)

where αM×1 and βN×1 are Lagrange multiplier vectors corresponding to constraints

2.6b and 2.6c, respectively, andΠ is the matrix [πi,j]. Based on stationary conditions,

differentiating the Lagrangian with respect to the transport plan, we have (Equation

2.8),

∂L

∂πi,j

= ci,j + γ log(πi,j) + αi + βj = 0 (2.8)

Solving for πi,j, the expression for the optimal transport plan is obtained as (Equa-

tion 2.9),

πi,j
°
Π

= exp( −
αi

γ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U

exp( −
ci,j
γ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M

exp( −
βj

γ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V

(2.9)

When the entries of the optimal transport plan are viewed in matrix form, Equation

2.9 shows that the optimal transport plan Π is obtained from a positive kernel cost
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matrix M scaled by diagonal matrices U and V. For a matrix M with positive

entries, there exist two diagonal matrices, U and V, with positive diagonal entries

such that the matrix product UMV has the ith row sum ai and jth column sum bj -

this is termed as the matrix scaling problem (Nemirovski and Rothblum 1999). The

corresponding iterative algorithm for computing these vectors u and v (constructed

using diagonal entries of U and V, respectively) is given as (Equation 2.10),

u(g+1) =
a

Mv(g)
v(g+1) =

b

M⊺u(g+1)
(2.10)

Here, g represents the iterations in the calculation of u and v. The proof of

convergence of this iterative procedure (Deming and Stephan 1940; Bacharach 1965)

was worked upon by (Sinkhorn 1964). The errors associated with the vectors u and

v are given by (Equation 2.11),

ϵa =
∣∣uMv − a∣∣

∣∣a∣∣
ϵb =
∣∣vM⊺u − b∣∣

∣∣b∣∣
(2.11)

The vectors u and v are iteratively computed until both error terms ϵa and ϵb

are below the specified error threshold, ϵ̄. The entries of the optimal transport plan

πi,j ∈ Π are calculated using Equation 2.9, where the final u and v vectors comprise the

principal diagonal elements of matrices U and V, respectively. Finally, the Sinkhorn

Distance (SD) is computed as (Equation 2.12),

SD =∑
i,j

ci,jπi,j + γ∑
i,j

πi,j[log(πi,j) − 1] (2.12)

A step-wise procedure for the calculation of Sinkhorn distance between two sets I

and S is outlined in Algorithm 1.
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Algorithm 1: Sinkhorn Algorithm for Optimal Transport with Entropic Regu-
larization
Input: Set I = {xi}, with probability ai for element xi ∈X,xi ∼ P(x)

Set S = {yj}, with probability bj for element yj ∈ Y, yj ∼ Q(y)
Error threshold ϵ̄

Procedure:
Step 1: Evaluate cost matrix entries ci,j ∶= ∣∣xi − yj ∣∣2
Step 2: Evaluate kernel function entries mi,j ∶= exp(−

ci,j
γ )

Step 3: Initialize iteration: g ← 1
Initialize vector v (g) (value 1 for all entries)

while ϵa, ϵb ≥ ϵ̄ do

Evaluate vectors u(g+1) = a
Mv(g)

, v(g+1) = b
M⊺u(g+1)

Evaluate errors ϵa =
∣∣u(g+1)Mv(g+1)−a∣∣

∣∣a∣∣ , ϵb =
∣∣v(g+1)M⊺u(g+1)−b∣∣

∣∣b∣∣
g ← g + 1

end
Step 4: Calculate optimal transport plan Π = [πi,j] =UMV
Step 5: Calculate Sinkhorn distance

SD = ∑i,j ci,jπi,j + γ∑i,j πi,j[log(πi,j) − 1]
Output: Sinkhorn distance SD

Optimal transport plan πi,j

Next, we illustrate an instance of entropy-regularized (SD-based) optimal trans-

port. Here, the optimal transport problem entails the movement of probability point

masses of one distribution, represented by the blue dots in the outer annulus, to those

of another distribution, represented by the red dots in the inner spiral, in Figure 2.1,

using the Sinkhorn distance iterative calculations detailed in Algorithm 1.

Figure 2.1 illustrates the effect of the regularization coefficient γ on the smoothness

of the optimal transport plan. The solid lines represent maximum probability trans-

fers, while the dotted lines represent probability mass transfer greater than 5%. Here,

the optimal transport problem was solved for four values of γ = 10,1,0.1 and 0.01.

It is observed that as the value of γ decreases, the smoothness of the optimal trans-

port plan reported decreases as well. This is illustrated by the gradual disappearance

of the dotted lines as γ increases, thereby showing that the optimal transport plan

at lower values of γ mirrors the plan obtained from conventional optimal transport
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(γ = 0), and contains a number of zero values.

Choice of regularization coefficient (γ): In the entropy-regularized optimal trans-

port problem, γ is introduced to smoothen the optimal transport plan such that the

number of non-zero elements reduces with an increase in γ. In practice, γ is chosen

to be sufficiently small so as to best approximate the conventional optimal trans-

port plan, while large enough to avoid numerical issues in the computation of the

exponential terms involved in the Sinkhorn algorithm (Algorithm 1).

Figure 2.1: Effect of the regularization coefficient (γ) on smoothness of the transport
plan
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2.4 Scenario reduction using Sinkhorn distance

In this section, we propose an algorithm for optimal scenario reduction using Sinkhorn

distance for a large superset of points, denoted by I, to obtain a reduced subset S

using an iterative method where the extent of similarity between I and S is computed

using the Sinkhorn distance. Section 2.4.1 presents the problem through a mixed inte-

ger nonlinear optimization (MINLP) formulation. Section 2.4.2 presents an iterative

solution algorithm for this problem using the Sinkhorn distance calculation detailed

in Algorithm 1, followed by a numerical illustration of the algorithm.

2.4.1 MINLP model

The mixed integer linear programming (MILP) model presented in Li and Floudas

(2014) may be used to reduce a superset of scenarios to an optimal reduced sub-

set. This optimization model minimizes the Kantorovich Distance (KD) between the

superset and subset. In a similar manner, a mixed integer nonlinear programming

(MINLP) formulation of the entropy regularized optimal transport problem may be

developed, as shown in Model 2.13.

min
πi,i′ ,bi′ ,yi

∑
i∈I

∑
i′∈I

πi,i′ci,i′ +∑
i∈I

∑
i′∈I

γπi,i′[log(πi,i′) − 1] (2.13a)

s.t. ∑
i′
πi,i′ = ai ∀i ∈ I (2.13b)

∑
i∈I

πi,i′ = bi′ ∀i′ ∈ I (2.13c)

∑
i′∈I

bi′ = 1 (2.13d)

∑
i∈I

yi = r (2.13e)

ϵyi ≤ bi ≤ yi ∀i ∈ I (2.13f)

πi,i′ ≥ 0 ∀i, i′ ∈ I (2.13g)

bi′ ≥ 0 ∀i′ ∈ I (2.13h)

yi ∈ {0,1} ∀i ∈ I (2.13i)
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In this model, r is the desired number of scenario is the reduced set, the binary

variable yi denotes the status of retention of the scenario i ∈ I in the optimal sub-

set. The variable bi denotes the amount of probability mass assigned to the retained

scenario i. Finally, πi,i′ denotes the amount of probability mass transported between

the elements i, i′ ∈ I. The parameter ϵ is taken to be a small value of the order of

magnitude 10−9, in order to define the relationship between the binary status variable

yi and assigned probability mass bi.

In addition to utilizing a nonlinear objective function to be minimized, Model 2.13

contains binary variables, whose number increases as the size of the superset to be

reduced increases, thus escalating the problem complexity and computational time

involved. This issue of rapidly surging problem complexity, with the number of integer

variables, presents a clear need for an iterative solution of a simplified optimization

problem. It is also noted that an MILP formulation for scenario reduction based on

KD can be easily obtained after removing the second term in the objective function.

2.4.2 Solution algorithm

The Sinkhorn distance calculation presented in Algorithm 1 details the procedure for

transporting probability masses of the elements of one distribution (with finite support

set I) to the other distribution (with support set S). Therefore, SD may be viewed as

a quantitative measure of dissimilarity between the two distributions: a smaller value

of SD is indicative of more similar probability distributions. This interpretation of

the optimal transport problem can be extended to finding the optimal S∗ such that

SD(I, S) is as small as possible. To this end, we propose the following iterative

procedure for optimal scenario reduction in Algorithm 2.

The scenario superset I is fed as input to this algorithm, and it is to be reduced

to an optimal subset S∗ containing r scenarios. At every iteration (d), the Sinkhorn
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Algorithm 2: Optimal scenario reduction using Sinkhorn distance

Input: Superset I, Subset size r, Error threshold βSD

Procedure: Initialize iteration (d← 1)
while RelativeError ≥ βSD do

Step 1: Define subset (S)
if d = 1 then

S(d) is set as r randomly chosen points in I
else

S(d) ∶= S(d−1)

end

Step 2: Calculate Sinkhorn distance (SD(d)) and optimal transport plan
(Π(d)) using Algorithm 1
Step 3: Form clusters C1,C2, ...,Cr around points in S, using maximum
probability transfer links in Π(d)

Step 4: Calculate relative error
if d = 1 then

Proceed to step 5
else

RelativeError = SD(d−1)−SD(d)

SD(d−1)

end
Step 5: Update cluster centers S(d) as points with minimum in-cluster
transportation distance

d← d + 1
end
Step 6: Obtain final reduced subset S∗ ∶= S(d), and corresponding clusters
C1,C2, ...Cr

Step 7: Compute probabilities of points in optimal reduced subset S∗ as

pr =
Number of points in cluster Cr

Number of points in superset I

Output: Final reduced subset S∗ containing r points, the corresponding
probability and clusters C1,C2, ...,Cr
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distance between I and S(d) is computed using Algorithm 1. Using the maximum

probability transfer links from the optimal transport plan Π(d), clusters are formed

around the points retained in S(d). The relative error between the Sinkhorn distance

values at successive iterations is computed; this value is compared with the specified

threshold value (βSD) as the termination criterion. If the computed relative error

is above the threshold, the cluster centers are updated to give minimum in-cluster

transportation distance, and this updated subset is used in the following iteration.

The optimal subset S∗ is obtained from the final iteration of the algorithm. In this

work, we assume that all points in the superset have an equal probability of occur-

rence. The probabilities of the optimally retained scenarios in S∗ are computed using

the cardinality of the optimal clusters. The optimal subset S∗ with the corresponding

probability vector, and the final clusters C1,C2, ...,Cr, are reported as outputs. Note

that each cluster contains the values as well as the indices of the points with respect

to the superset I.

Choosing number of scenarios (r) in the optimally reduced subset

In the scenario reduction problem addressed in this work, the number of scenarios (r)

in the optimally reduced subset is a fixed, user-defined parameter. Ideally, through

the law of large numbers, a large r ensures that the optimal solution to the scenario-

based problem tends to the true optimal solution. However, too large a value of r

might make the problem computationally difficult to solve, and therefore, the user

may compute a large enough value of r. Kleywegt et al. (2002) proved that a large

enough value of r may be chosen as,

r ≥
1

γ(δ, ϵ)
log (
∣S/Sϵ∣

α
) (2.14)

Here, 1 − α is the user-defined confidence level for an ϵ−optimal solution where ϵ ≥

0,0 ≤ δ ≤ ϵ, and γ(δ, ϵ) ∶= minx∈S/Sϵ Ix(−δ), I(.) being the exponential rate function.

In the event that the above expression is difficult to compute, Kleywegt et al. (2002)
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have proposed an algorithm that allows for a dynamic adjustment of r through an

iterative process.

Illustrating example

In this section, we present a numerical illustrative example of the proposed optimal

scenario reduction algorithm using Sinkhorn distance (Algorithm 2) presented in Sec-

tion 2.4.2. Here, a superset I comprising 20 points (blue) is to be reduced to a subset

containing 3 points. Initially, a random subset S containing 3 points (red) is chosen

(Figure 2.2a). The Sinkhorn distance between I and S is calculated, using Algorithm

1, as 1.3379, and links (black) are established between points in the superset and sub-

set, representing the clusters formed using the optimal transport plan. The subset

S is updated (Snew) as the points in each cluster that give the minimum in-cluster

transportation distance. The SD between I and Snew is calculated to be 0.9824 (Fig-

ure 2.2b). The relative error in Sinkhorn distance is found to be 26.57%. In this

example, the chosen threshold (βSD) for relative error is 5%, that is, the clusters are

successively updated until the relative error in Sinkhorn distance is below 5%. In the

next iteration, the SD between I and the updated Snew is 0.9184, and the new relative

error in SD is 6.52%. In the following iteration, it is observed that the updated subset

does not change from that of the previous iteration; here, the SD remains 0.9184 and

the relative error in SD is, thus, 0%. Therefore, the subset from the final iteration is

chosen as the optimal subset of scenarios (Figure 2.2c).
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Figure 2.2: Illustration: optimal scenario reduction using Sinkhorn distance

2.4.3 Computational study

Figure 2.3 depicts the evolution in computational time for scenario reduction of in-

creasingly large superset sizes, from 1000 to 20000 scenarios, to an optimal subset

containing 50 scenarios. The figure compares the results from the proposed SD-based

reduction in this work, to the LP-based scenario reduction proposed by Li and Li

(2016). The LP-based reduction is found to be computationally slower than the pro-

posed SD-based approach. Both scenario reduction schemes were tested on a desktop

computer running on Intel(R) Core(TM) i5 CPU @3.2GHz, 4 cores with 8 GB of

physical RAM.

Figure 2.4 compares the Sinkhorn distance between a superset of 100 normally dis-

tributed scenarios to a number of reduced size subsets obtained through the MINLP

approach in Model 2.13, and the proposed iterative SD-based algorithm (Algorithm

2). Since the iterative approach utilizes a random starting subset to begin the sce-

nario reduction process, 25 trials were conducted to obtain an average SD for this

approach, as depicted by the boxplot. The numerical results for Figure 2.4 are pre-

sented in Table 2.1. The MINLP formulation runs to the default GAMS resource

limit of 1000 seconds, while each trial of the proposed iterative SD-based algorithm
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Figure 2.3: A comparison of computational times using the LP-based algorithm (Li
and Li 2016), and the proposed SD-based approach

takes less than 10 seconds. It must further be noted that the MINLP formulation

was run on GAMS using the BONMIN (Bonami and Lee 2011) solver, which reports

the locally optimal solution.

Table 2.1: A comparison of evolution of Sinkhorn distance for the MINLP approach
versus the proposed iterative SD-based algorithm for scenario reduction

Size of

superset

Size of

reduced subset

SD

(MINLP approach)

Mean SD

(proposed iterative algorithm)

100

20 0.2686 0.2580

40 0.1061 0.1601

60 0.0180 0.1178

80 0 0.0636

95 0 0.0091

Table 2.2 presents a summary of different scenario reduction approaches through
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Figure 2.4: A comparison of Sinkhorn distance between a 100 scenario superset and
reduced size subsets via the MINLP approach and the proposed SD-based algorithm
for scenario reduction

the lens of optimal transport. The entropy-regularized formulation of the optimal

transport problem enjoys a computational time advantage due to the availability of

the Sinkhorn-Knopp iterative algorithm to obtain a smoother optimal transport plan,

as compared to the conventional formulation, especially when the datasets involved

are high-dimensional in nature. The exact scenario reduction problem utilizes binary

variables that depict the status of retention or removal of scenarios from the superset;

in either the conventional, or the entropy-regularized formulations, the optimization

problem suffers from a slow solution process. To this end, an iterative LP-based

algorithm was developed by Li and Li (2016). The iterative Sinkhorn distance-based

approach to scenario reduction presented in this section is shown to perform faster

than the iterative LP-based method (Li and Li 2016), as shown in Figure 2.3.
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Table 2.2: A summary of scenario reduction approaches through optimal transport

Kantorovich Distance

(KD)

Sinkhorn Distance

(SD)

Conventional optimal

transport

Entropy-regularized

optimal transport

Distance

evaluation

problem

LP problem [Model 2.4]

NLP problem with convex objective

and linear constraints [Model 2.6]

Efficiently solved using numerical iterations

Exact scenario

reduction

problem

MILP problem

Li and Floudas (2014)

MINLP problem with convex objective

and mixed integer linear constraints

[Model 2.13]

Iterative scenario

reduction

algorithm

- Integer variables are removed

- Each iteration solves an LP formulation

of the conventional optimal transport

Li and Li (2016)

- Integer variables are removed

- Each iteration solves a numerical computation

of the entropy-regularized optimal transport problem

[Algorithm 2]

2.5 Multistage scenario tree generation algorithm

In this section, we extend the scenario reduction algorithm presented in Section 2.4.2

to the problem of optimal scenario tree generation from a scenario fan. A scenario fan

comprises a number of profiles generated as a result of stochastic processes and the

task is to obtain a multistage scenario tree to be used for stochastic programming.

The algorithm presented in this section uses the procedure outlined in Algorithm

2 in a stage-wise manner to obtain the nodes of the scenario tree. Section 2.5.1

describes the proposed algorithm for optimal scenario tree generation, while Section

2.5.2 introduces the Process Distance (PD) measure that is used to evaluate the

approximation quality of scenario trees generated using the proposed algorithm. A

process distance-based solution quality analysis of the scenario trees obtained through

the proposed algorithm is also presented.

2.5.1 Proposed workflow

The generation of a multistage scenario tree from a scenario fan is treated as a se-

quential extension of the scenario reduction problem, as described in Section 2.4.2.
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Here, a scenario fan is considered to be a collection of profiles generated via stochastic

processes over time, originating from a single root. An important convention to be

clarified in this work is that of the “stage”.

In this work, we refer to the root node of the scenario tree as “stage 0”. The

subsequent stages are numbered 1, 2, ..., and so on. With this notation, a two-stage

stochastic programming problem is solved using a scenario tree with stage 0 and stage

1. Similarly, a n-stage stochastic programming problem is solved using a scenario tree

with stages 0, 1, ..., n − 1.

The proposed algorithm 3 for optimal scenario tree generation contains two main

loops:

• Time stages (t = 1,2, ..., T ),

• Nodes over each stage (w = 1,2, ..., nt−1)

Let Bt, t = 1,2, ..., T describe the number of leaf nodes that originate out of nodes at

stage t. The total number of leaf nodes nt at each stage t is nt = nt−1Bt. Here, n0 = 1

by default. At each stage t, an optimal set of nodes approximating the superset of

nodes at the time step pertaining to that stage in the scenario fan is found. However,

the number of such supersets to reduce at each stage depends on the number of nodes

present in the previous stages. At each stage t ≥ 1, there exist multiple supersets

to be reduced, denoted by I tw, where w = 1,2, ..., nt−1, each superset corresponding

sequentially to the leaf nodes of the previous stage. The use of clusters to generate

subsequent supersets, ensures that there is a stage-wise link between the nodes of

the generated multistage scenario tree. Every parent node at stage t in the scenario

tree branches out to leaf nodes at stage t + 1; these leaf nodes are obtained through

the reduction of supersets containing points from the same profiles for which scenario

reduction was previously performed to give the parent node at stage t.
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Algorithm 3: Optimal scenario tree generation using Sinkhorn distance

Input: Scenario fan Xq,τ where q: profile number, τ : time step
Number of stages t = 1,2, ..., T
Branching Bt

Procedure:
for t = 1 ∶ T do

Compute nt = nt−1Bt, where n0 = 1
for w = 1 ∶ nt−1 do

if t = 1 then
Define I tw := X(all, t)

else
Define I tw ∶=X(q

′, t) where q′: profile numbers of points in Ct−1
w

end
Using Algorithm 2, reduce I tw to St

w, obtain clusters Ct
1,C

t
2, ...,C

t
nt

and
the corresponding probabilities

end

end
Output: Scenario tree with stage-wise leaf nodes St

w, and corresponding
probabilities Pr(St

w)

Consider a simple 3 stage example as shown in Figure 2.5. The branching structure

in this tree is {2,3,2} for stages 0, 1 and 2, respectively.

Figure 2.5: An example scenario tree
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At stage 1, the superset comprises values from all profiles of the scenario fan at the

time step corresponding to stage 1. This superset is to be reduced to B1 = 2 points

using Algorithm 2. Therefore, the optimal subset of nodes at stage 1 contains 2 points,

and therefore, 2 clusters, where each point occurs is associated with a probability of

occurrence equal to the ratio of number of points in the corresponding cluster and in

the superset. At stage 2, two different supersets must be reduced to Bt=2 = 3 points

each. These supersets comprise values from those profiles clustered around each node

at the previous stage t = 1, at the time step corresponding to stage 2. Similarly, at

stage 3, six different supersets corresponding to each of the leaf nodes at stage 2,

must be reduced to Bt=3 = 2 points each.

Illustrating example

Random parameter occurrences can be described by a scenario fan simulation over

time, as shown in Figure 2.6. Each strand of the scenario fan depicts a random

occurrence of the parameter over the entire time horizon. This scenario fan can be

assimilated into a simpler scenario tree structure.

Figure 2.6: Scenario fan generation

The scenario fan in Figure 2.6 contains 10 profiles, and is generated using a base
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value of 3.65 with a random walk model, as follows,

xt+1 = xt + 0.25e (2.15)

Here, e is a random number generated from the standard Gaussian distribution.

(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Multistage scenario tree generation

In this example, the scenario fan Xq,τ is a matrix containing 10 rows, and 11

columns spanning time steps 0 to 10. The task is to construct a 2-stage scenario
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tree from this fan, where each stage occurs after 5 time steps; i.e., columns 6 and

11 correspond to stages 1 and 2. It must be noted that the intermediate values or

information between stages is not taken into account while generating the scenario

tree, and only values at the time steps (τ) corresponding to the stages (t) are used.

At each stage, we consider the branching to be Bt = 2.

Using the algorithm presented in Section 2.5, the multistage scenario tree (Figure

2.7) is obtained as follows: we start with stage t = 1. The number of nodes at stage

t = 1 is given by n1 = n0B1. The number of nodes at stage 0 (n0) is taken to be 1,

by default, and this node occurs with a probability of 1. Therefore, n1 = 1 × 2 = 2.

In order to obtain the nodes at stage 1 of the scenario tree, it is necessary to assess

the number of supersets to be reduced at stage 1; at any stage t there are as many

supersets to reduce as there are nodes in the previous stage nt−1. Therefore, at stage

1, there is n0 = 1 superset to reduce, and the inner loop variable, w, spans just 1

iteration. Each superset is denoted by I tw where w denotes the superset index corre-

sponding to each node at the previous stage, sequentially, and t denotes the stage.

At stage 1, since there is only one superset, I11 comprises the values from all rows of

X whose column pertains to stage 1, i.e., X[1,2,...,10],6 (yellow points in Figure 2.7a).

The points in the superset I11 are reduced to a subset containing B1 = 2 points using

Algorithm 2, which gives the optimal subset containing the points {2.6560, 4.2895},

with probabilities [0.5,0.5], as well as clusters C1
1 and C1

2 formed around the two

points (Figure 2.7b). These clusters are formed based on the maximum probability

transfer links in the optimal transport plan. Each cluster contains the profile numbers

q′ as well the values of the points at t. Here, the point 2.6560 is the cluster center

for C1
1 containing profile numbers (2,4,6,8,10) with corresponding values at t = 1 as

{2.6560,2.4237,2.8028,3.1973,2.2557}, and the point 4.2895 for C1
2 containing profile

numbers (1,3,5,7,9), with values {4.2895,3.4032,3.7732,3.9175,3.9316}, respectively.

The profile numbers in these clusters determine the profiles comprising each superset
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in the following stage. The corresponding links between parent and leaf nodes at each

stage are made, and the probabilities associated with the leaf nodes are recorded from

Algorithm 2.

At stage t = 2, there are nt−1 = n1 = 2 supersets to be reduced, each corresponding

to the nodes {2.6560,4.2895} in stage 1, respectively. Therefore, w spans the range

[1,2], and the supersets to be reduced are I21 and I22 , respectively. I21 corresponds

to the first node, 2.6560, of the previous stage t = 1 (yellow points in Figure 2.7c);

therefore, I21 comprises the values from that column of X pertaining to stage t = 2,

whose row numbers are the profile numbers corresponding to the points in the first

cluster C1
1 , i.e., X[2,4,6,8,10],11. It is reduced to the optimal subset containing the points

{3.2895,1.1758} (Figure 2.7d). Similarly, I22 corresponds to the second node, 4.2895,

which is the cluster center of C1
2), and contains the points X[1,3,5,7,9],11 (Figure 2.7e).

It is reduced to the optimal subset {2.9582,5.6080}. The total number of leaf nodes

at the final stage determines the number of profiles in the generated scenario tree

(Figure 2.7f); in this case, the generated scenario tree has 4 leaf nodes in the final

stage t = 2.

2.5.2 Process distance for quality evaluation

Consider two probability distributions, p ∈ P1 and p′ ∈ P2. Let the support sets for the

distributions be Σ1 and Σ2, both defined on vector space Ξ. Then, the Kantorovich

Distance (KD) between the distributions is the optimal objective function value of

the optimization problem presented in Model 2.4.

This does not take into account the amount of information being revealed at each

stage, with respect to the filtration.

The Kantorovich Distance (KD) can be extended to stochastic processes. Consider
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a stochastic process in finite time, ξt, where t = 0,1,2..., T . The information available

at time t is denoted by vt = (η0, η1, ..., ηt). Here, ξt can actually be denoted as a

function of vt. The sigma algebra generated by vt is denoted by Ft. The sequence of

increasing sigma algebras is known as a filtration, F = (Ft)
T
t=0.

The multistage distance, or the Process Distance (PD) is a more suitable metric

to judge the similarity of two filtered probability measures, p ∈ P1 and p′ ∈ P2, and is

the optimal objective function value of the optimization problem ((Pflug and Pichler

2012),(Beltrán et al. 2017)),

PD =min
πi,j

∑
i∈NT ,j∈N ′T

ci,jπi,j (2.16a)

s.t. ∑
j∈N ′T ∶f→j

πi,j =
pi
pe

∑
i′∈NT ∶e→i′

∑
j′∈N ′T ∶f→j′

πi′,j′ ∀pi ∈ P1, (e→ i, f) (2.16b)

∑
i∈NT ∶e→i

πi,j =
p′j
p′f

∑
i′∈NT ∶e→i′

∑
j′∈N ′T ∶f→j′

πi′,j′ ∀p′j ∈ P2, (f → j, e) (2.16c)

∑
i,j

πi,j = 1 (2.16d)

πi,j ≥ 0 ∀i, j (2.16e)

In Model 2.16, NT and N ′T denote the set of all nodes at a given stage in the two

scenario trees under consideration. The notations f → j and e→ i denote that inter-

mediate nodes f and e are predecessors of leaf nodes j and i. pi, p′j, pe and p′f are the

probabilities of reaching nodes i, j, e, and f , respectively. The constraints (Equations

2.16b and 2.16c) impose the probability transfer between nodes of the scenario trees

under comparison, at their corresponding time stages, subject to the satisfaction of

conditional probability, by taking into account the sigma algebras involved.

The optimization problem in Model 2.16 accounts for probability mass transfer be-

tween corresponding time stages. This LP problem may become rather large, based

on the number of stages, and the number of profiles in the original scenario fan, as
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well as the number of profiles in the reduced tree. It is solved in a decomposed man-

ner, moving from one stage to the other.

Computational study

Figure 2.8 depicts the performance of the Sinkhorn distance-based scenario reduction

in contrast with the K-means clustering-based reduction (Xu et al. 2012) available in

literature, using the process distance (PD) metric. In their work (Xu et al. 2012), the

authors constructed a multistage scenario tree from a scenario fan by performing K-

means clustering of the supersets at every stage t in order to obtain the reduced nodes.

The reduced subset at every iteration is updated as the mean of the points in the

K-means clusters. In the comparison between the Sinkhorn distance-based approach

and the K-means based approach, the scenario fan width was varied between 40 and

250 profiles, and a 4-stage scenario tree was generated in every test case, containing

32 profiles (with Bt = 2, t = 0,1, ...,4). In order to generate these profiles, for every

fan width, 100 test scenario fans were generated, each of which was converted into

multistage scenario trees using the two methods, and their average approximation

performance was plotted in the figure. It is observed that, overall, the proposed

Sinkhorn distance-based scenario reduction algorithm gives better performance that

the K-means clustering-based algorithm.
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Figure 2.8: A comparison of scenario tree generation approaches using process/mul-
tistage distance (PD) for a 5-(time) stage scenario tree

2.6 Case studies

In this section, we present two case studies to demonstrate the application of the

proposed optimal scenario reduction and scenario tree generation approaches. The

first case study is a two-stage stochastic programming-based planning problem where

the scenario reduction approach from Section 2.4.2 is applied. The second case study

is a multistage stochastic programming-based chemical plant design problem where

the scenario tree generation method from Section 2.5.1 is applied.

2.6.1 The farmer’s problem

The farmer’s problem (Birge and Louveaux 2011) presents a bench-mark case study

for stochastic programming in literature; in this work, we illustrate the performance of

the proposed Sinkhorn distance-based scenario reduction algorithm developed on this

study. The problem deals with the allotment of 500 acres of land as farming area to be

distributed between a choice of three crop species - wheat, corn, and sugar beet - under
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uncertainty in crop yield (y1, y2, y3). To this end, x1, x2, and x3 are defined as the

amounts of land (in acres) allotted to wheat, corn, and sugar beet, respectively. The

planting costs per acre are given as $150,$230, and $260, respectively. Furthermore,

constraints are placed on the problem as follows,

• Since wheat and corn are also used as cattle feed, the minimum required yield

of wheat and corn are 200 tons and 240 tons, respectively.

• Wheat may be purchased at a price of $238 per ton, while corn may be purchased

for $210 per ton. In this problem, b1 and b2 are defined as the amount of wheat

and corn purchased (in tons), respectively.

• Wheat and corn may be sold at $170 and $150 per ton, respectively. Sugar beet

may be sold at a price of $36 per ton for amounts under 6000 tons, and at a

lower price of $10 per ton thereafter. In this problem, s1 and s2 are defined as

the amount of wheat and corn sold (in tons), respectively. The amount of sugar

beet sold at the higher price is defined as s3, whereas that sold at the lower

price is defined as s4.

The optimization model for the farmer’s problem may be written as (Model 2.17):

min 150x1 + 230x2 + 260x3 + 238b1 − 170s1 + 210b2 − 150s2 − 36s3 − 10s4 (2.17a)

s.t. x1 + x2 + x3 ≤ 500 (2.17b)

y1x1 + b1 − s1 ≥ 200 (2.17c)

y2x2 + b2 − s2 ≥ 240 (2.17d)

s3 + s4 ≤ y3x3 (2.17e)

s3 ≤ 6000 (2.17f)

x1, x2, x3, b1, b2, s1, s2, s3, s4 ≥ 0 (2.17g)
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In the scenario-based stochastic programming formulation of the problem, a finite

set (K) of scenarios of crop yield (y1,k, y2,k, y3,k ∀k ∈ K) are considered. These

scenarios are assumed to be based around the average yield of 2.5, 3, and 20 for

wheat, corn, and sugar beet, respectively. To this end, 1000 representative scenarios

are generated, as shown in Figure 2.9a. The scenario-based stochastic programming

formulation of the farmer’s problem is given in Model 2.18 as,

min 150x1 + 230x2 + 260x3 + ∑
k∈K

pk(238b1,k − 170s1,k + 210b2,k − 150s2,k − 36s3,k − 10s4,k)

(2.18a)

s.t. x1 + x2 + x3 ≤ 500 (2.18b)

y1,kx1 + b1,k − s1,k ≥ 200, ∀k ∈K (2.18c)

y2,kx2 + b2,k − s2,k ≥ 240, ∀k ∈K (2.18d)

s3,k + s4,k ≤ y3,kx3, ∀k ∈K (2.18e)

s3,k ≤ 6000, ∀k ∈K (2.18f)

x1, x2, x3 ≥ 0 (2.18g)

b1,k, b2,k, s1,k, s2,k, s3,k, s4,k ≥ 0, ∀k ∈K (2.18h)

Here, pk refers to the probability of occurrence of scenario k. The probability val-

ues (pk) are computed by the Sinkhorn distance-based scenario reduction algorithm

as the probability mass allocated to each element in the set of reduced scenarios from

the superset of elements.

The stochastic optimization model using the scenarios generated from the proposed

Sinkhorn distance-based method was solved using the PySP (Watson et al. 2012) mod-

ule in Python, for 30 different runs, for the same original superset of 1000 scenarios.

The solutions from each of these stochastic optimization runs was extracted, and the

optimal objective values were calculated.

51



(a) (b)

Figure 2.9: Scenario representation of 3-dimensional uncertain yield (a) 1000 scenario
superset, (b) 50 scenario subset from the proposed Sinkhorn distance-based scenario
reduction method (Algorithm 2)

The quality of the generated scenario set is judged by two tests: in-sample sta-

bility and out-of-sample stability (Kaut and Stein 2003). It is important to note

here, that how good a scenario generation method is does not depend on how well-

approximated the scenario tree is with respect to the original continuous scenario

distribution; rather, it depends on how good the solution of the model using the sce-

nario tree is, with respect to the solution using the original model.

The in-sample stability test for a scenario generation method requires that, “for

a number of scenario trees generated by the chosen scenario generation method,

whichever scenario tree is chosen, the optimal objective value reported across these

multiple scenario trees is approximately the same”. In-sample stability of a scenario

generation method ensures that each time the method is used to generate a set of sce-

narios, it always performs to give similar optimal objective values. In-sample stability

does not give any insight into how good the stochastic approximation of the model

itself is, with respect to the true model; rather, it is only concerned with achieving

a similar level of good each time it is used for scenario generation for a particular
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problem statement.

In contrast to the in-sample stability test, which compares the performance of the

scenario generation method across different iterations of the method itself, the out-

of-sample stability test compares the performance of the scenario generation method

to the performance of the actual model itself. The out-of-sample stability test for

a scenario generation method requires that, “for a number of scenario sets (trees)

generated by the chosen generation method, whichever scenario tree is chosen, the

optimal solution reported by each of these scenario sets is approximately equal to the

true solution itself, and by extension, the optimal objective value reported by each

of these multiple scenario sets is approximately equal to the true optimal objective

value”. In contrast to in-sample stability, out-of-sample stability does give insight

into how good the stochastic approximation of the model itself is, with respect to the

true model - it gives insight into how good the scenario generation method is for a

particular problem statement.

The in-sample, and out-of sample stability results for this case study are depicted

in Figures 2.10a and 2.10b, respectively. Both stability tests were conducted for a

number of reduced scenario subset sizes of 50, 100, 150, 200, 250, and 500 scenarios,

for the same reference scenario superset of 1000 scenarios. From Figure 2.10a, it

is observed that as the number of representative scenarios in the reduced subset

increases, the variance in the optimal objective value decreases overall. From Figure

2.10b, it is observed that when the true problem is solved for first stage decisions fixed

from the solutions of the approximated problems, the optimal objective on average

reaches close to the true optimal objective value of 1.113 × 105.
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(a) (b)

Figure 2.10: Stability test results for the 2-stage farmer’s problem: (a) In-sample
stability, (b) Out-of-sample stability

2.6.2 Chemical plant design problem

In this section, we illustrate the use of optimal scenario trees generated using Algo-

rithm 3 in the multiperiod design and operation of a chemical plant under demand

uncertainty, adapted from the work of Subrahmanyam et al. (1994).

The design superproblem in this case study is defined over the set of all tasks to

be performed, denoted by i ∈ I, the set of all plant types that can be considered for

construction denoted by j ∈ J , the set of all resources in play is denoted by s ∈ S, and

the set of all time nodes is denoted by t ∈ T . Furthermore, Itasksj is the set of tasks

that can be performed by by each plant type, while Iequipi is the set of plant types

that each task can be performed on.

The model contains a number of decision variables defined over the aforementioned

sets. yi,j,t denotes the number of times task i is performed on plant type j during

the time period t. Each time period is Ht days long, and each task takes pi,j days to

complete. The number of plants of type j that come online in time period t is denoted

by nj,t, while the total number of plants of type j that are active in the time period
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t is denoted by Nj,t. The cost incurred in performing tasks is denoted by coi,j,t, and

the total operational budget for each time period is given by Co
t . The amount of each

task that is performed on each plant type is arbitrarily measured in reaction units,

and is denoted by Bi,j,t. The capacity of each plant to perform a task is given by mi,j.

The amount of resource s that is available in inventory at the end of time period t

is denoted by As,t, and is estimated by a material balance, where the stoichiometric

ratio is given by fs,i. The amount of resource s that is sold in time period t is given

by qs,t and the amount purchased by zs,t. It is to be noted that only certain resources

(s = 4,7) are sold, and only some resources (s = 1,2) are purchased. The limit on the

amount of resources that can be stored in inventory at the end of any time period is

given by Amax
s,t . The maximum purchase limit on resources is given by Zs,t.

Additionally, the amount of resources sold, qs,t, is classified into two types, the

amount sold below and equal to the demand, denoted by q0s,t, and the amount sold

exceeding demand, given by q+s,t. Only the amount of resources sold below and equal to

the demand contributes to the total profit. In this problem, the demand for resources

is stochastic in nature, and takes the value Qs,k,t, where k ∈ K represents the set

of discrete uncertain scenarios. The parameters used in the problem are given in

Table 2.3. The demand for resources Q4,k,t and Q7,k,t across k scenarios is uniformly

distributed between with an average of [150,200], respectively, and deviation of 7,

across 1000 scenarios, which is further reduced optimally to smaller subset sizes. The

complete stochastic optimization problem is formulated as Model 2.19.

min
T

∑
t=1

Ek

⎡
⎢
⎢
⎢
⎢
⎣

S

∑
s=1

(vsolds,k,tq
0
s,k,t − v

buy
s,t zs,k,t) −

J

∑
j=1

⎛

⎝
nj,k,tCj,t+

I

∑
i=1

coi,j,tyi,j,k,t
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(2.19a)

s.t. ∑
i∈Itasksj

pi,jyi,j,k,t ≤HtNj,t ∀j ∈ J, t ∈ T, k ∈K (2.19b)

Nj,t =
t

∑
τ=1

nj,k,τ ∀j ∈ J, t ∈ T, k ∈K (2.19c)

As,k,t = As,k,t−1 +∑
i

∑

j∈Iequipi

fs,iBi,j,k,t − qs,k,t + zs,k,t∀s ∈ S, t ∈ T, k ∈K (2.19d)
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As,k,t ≤ A
max
s,t ∀s ∈ S, t ∈ T, k ∈K (2.19e)

Bi,j,k,t ≤mi,jyi,j,k,t ∀i ∈ I, j ∈ J, t ∈ T, k ∈K (2.19f)

qs,k,t = q
0
s,k,t + q

+
s,k,t ∀s ∈ S, t ∈ T, k ∈K (2.19g)

qs,k,t ≤ Qs,k,t ∀s ∈ S, t ∈ T, k ∈K (2.19h)

zs,k,t ≤ Zs,t ∀s ∈ S, t ∈ T, k ∈K (2.19i)

As,k,t, zs,k,t, q
0
s,k,t, q

+
s,k,t,Bi,j,k,t ∈ R+ ∀i ∈ I, j ∈ J, s ∈ S, t ∈ T, k ∈K

(2.19j)

nj,k,t, yi,j,k,t ∈ Z+ ∀i ∈ I, j ∈ J, t ∈ T, k ∈K (2.19k)

Nj,t ∈ Z+ ∀j ∈ J, t ∈ T (2.19l)

As in the case of the farmer’s problem case study, we solved this multistage stochas-

tic programming problem using the PySP (Watson et al. 2012) module in Python. The

PySP module generates a stochastic formulation of the optimization model, given the

scenario structure, containing the following correspondence information: 1) variable-

stage, 2) parent node-leaf node, 3) node-stage, 4) scenario-leaf node at final stage.

In this case study, we assume that the true distribution of the resource demandsQs,t

may be represented by a set of 1000 scenarios. In order to evaluate the performance

of the proposed algorithm for scenario tree generation, a number of scenario trees

containing 50, 100, 150, 200, 250, and 500 profiles, respectively, were generated, and

the scenario-based stochastic programming problem was solved. Figure 2.11 shows

the in-sample stability results for the chemical plant case study. From the figure, we

observe that as the number of scenarios in the reduced scenario tree increases from

50 to 500, the objective function value gets closer to the true objective function value

of 2.6667×104. Figure 2.12 shows the evolution of process distance with tree size. As

the number of approximating scenarios increases, the process distance decreases and

gets closer to the PD value of a 1000 scenario tree.
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Table 2.3: List of parameters for the chemical plant design problem

Parameter
Time period

Remarks
t = 1 t = 2 t = 3

Amax
s,t

s = 1

400

s = 2

s = 3

s = 4

s = 5

s = 6

s = 7

Ht 80 80 80

Cj,t

j = 1

j = 2

j = 3

Zs,t

s = 1

s = 2

vsold4,t 51 50 49
vsolds,t = 0,∀s = 1,2,3,5,6

vsold7,t 70 71 68

vbuy1,t 23 24 25
vbuys,t = 10

20,∀s = 3,4,5,6,7
vbuy2,t 25 26 27

Parameter
Plants

j = 1 j = 2 j = 3

pi,j

i = 1

4
i = 2

i = 3

i = 4

mi,j

i = 1

100 200 150
i = 2

i = 3

i = 4

Itasksj 1,4 1,4 2,3

Parameter
Tasks

i = 1 i = 2 i = 3 i = 4

Iequipi 1,2 3 3 1,2

fs,i

s = 1 -1 0 0 0

s = 2 -1 0 -1 0

s = 3 1 -1 0 0

s = 4 0 1 0 0

s = 5 0 1 -1 0

s = 6 0 0 1 -1

s = 7 0 0 0 1
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Figure 2.11: In-sample stability results for multi-period stochastic design of a chemical
plant

Figure 2.12: Process distance evolution with reduced scenario set size for multi-period
stochastic design of a chemical plant
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2.7 Conclusion

In this work, we propose a method to reduce a large set of scenarios to a smaller sub-

set of chosen size through entropy-regularized optimal transport. We leveraged the

Sinkhorn-Knopp algorithm to replace the linear programming formulation of the dis-

crete optimal transport problem with an iterative computational procedure, to obtain

the Sinkhorn distance as a quantitative measure of similarity between the probability

distributions of the superset and the optimal subset. Using this measure, we devel-

oped an algorithm for optimal scenario reduction, and extended its use to scenario

tree generation for multistage stochastic programming. We illustrated the proposed

scenario reduction and scenario tree generation algorithms on two case studies, and

assessed their stability. We found that replacing the Kantorovich Distance with the

Sinkhorn distance in scenario reduction resulted in a significant decrease in compu-

tational time. Furthermore, in stochastic programming applications, the solutions

obtained from using Sinkhorn distance-based scenario reduction converged to the so-

lutions of the problems solved using the original scenario set with good accuracy. The

proposed algorithms for scenario reduction and scenario tree generation are effective

for scenario-based stochastic programming.

The scenario reduction, and scenario tree generation methods proposed and dis-

cussed in this chapter leveraged the “distance” or similarity metric property of (entropy-

regularized) optimal transport. To this end, we treated the destination probability

distribution’s support set as the decision variable to be optimized (in an iterative

fashion). In Chapters 3 and 4, we pivot to a different applicability of the optimal

transport distance wherein we no longer seek the explicit optimal support set of the

destination distribution; rather, a variant of the optimal transport problem in incor-

porated into a higher-level optimization problem wherein the objective is to obtain

the optimal solution to this higher-level problem subject to a “constrained” optimal
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transport problem. Here, the “constraint” refers to the radius of the ambiguity set,

which is discussed in detail in Chapters 3 and 4.
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Chapter 3

Distributionally Robust
Optimization using Optimal
Transport for Gaussian Mixture
Models

Abstract : Distributionally robust optimization (DRO) is an increasingly popular ap-

proach for optimization under uncertainty when the probability distribution of the

uncertain parameter is unknown. Well-explored DRO approaches in literature, such

as Wasserstein DRO, do not make any specific assumptions on the nature of the

candidate distributions considered in the ambiguity set. However, in many practical

applications, the uncertain parameter may be sourced from a distribution that can

be well modeled as a Gaussian Mixture Model (GMM) whose components represent

the different subpopulations the uncertain parameter may belong to. In this work,

we propose a new DRO method based on an ambiguity set constructed around a

GMM. The proposed DRO approach is illustrated on a numerical example as well

as a portfolio optimization case study for uncertainty sourced from various distribu-

tions. The results obtained from the proposed DRO approach are compared with

those from Wasserstein DRO, and are shown to be superior in quality with respect

to out-of-sample performance.
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3.1 Introduction

Mathematical optimization refers to the task of finding the best set of decisions that

minimize a defined cost pertaining to the system, over a set of constraints that de-

scribe systems including but not limited to physical or chemical systems, manufac-

turing processes and supply chains. In a practical setting, however, most systems are

affected by uncertainty. Therefore, the optimization must take this perturbation into

consideration. Optimization under uncertainty is of immense importance for real-

world applications and therefore, a considerable amount of research has been devoted

to this task (Sahinidis 2004; Ning and You 2019; Keith and Ahner 2021).

Optimization problems under uncertainty are mainly tackled through the lens of

whether the probability distribution of the underlying uncertainty in a system is

available. If the probability distribution of the uncertainty is readily available or can

be reasonably estimated from sampled data, the problem may be tackled through

stochastic programming (Dantzig 1955). When the support of the uncertainty can be

considered a finite and discrete set of realizations, this strategy is termed scenario-

based stochastic programming. Significant strides have been made in optimization

literature regarding this technique which provides a framework to incorporate sampled

information about the underlying uncertainty into the optimization process (Wallace

and Ziemba 2005). However, the quality of this approach relies heavily on the ap-

proximation of the underlying probability distribution through the set of scenarios

(Esfahani and Kuhn 2018; Shapiro and Nemirovski 2005). While approaches such as

sample average approximation (SAA) offer certain finite sample performance guar-

antees under certain assumptions (Shapiro and Nemirovski 2005), the out-of-sample

performance of such approximations proves lacking in situations where the sample size

is small. In contrast, another common way to tackle optimization under uncertainty

is through robust optimization (Ben-Tal and Nemirovski 1998). In this approach, no
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information about the underlying probability distribution of the uncertainty is used;

rather, the problem hedges against the worst-case realization of sampled uncertainty.

While this approach eliminates the need for a probability distribution, it requires

efficient design of the uncertainty set to avoid overly conservative solutions.

Distributionally robust optimization (DRO) was developed as an intermediate ap-

proach to optimization under uncertainty that combines facets of both stochastic

programming as well as robust optimization to combat the drawbacks of each tech-

nique. This approach was first utilized by Scarf 1958 to solve the newsvendor op-

timization problem for worst-case profit maximization. Since his seminal work on

DRO, a significant amount of research has been done on this topic (Rahimian and

Mehrotra 2019). The distinguishing feature of distributionally robust optimization

(DRO), also referred to as ‘ambiguous stochastic optimization’ in literature, is the

treatment of the underlying distribution of the uncertainty in the problem. Unlike

in stochastic programming wherein the estimated distribution is assumed to be a

reasonable approximation, DRO introduces a level of ambiguity into this step by con-

sidering an ‘ambiguity set’ (Wiesemann et al. 2014) of distributions centered on this

approximation. Therefore, DRO bypasses the approximation drawbacks of stochastic

programming, while still utilizing some amount of probabilistic information about

uncertainty, unlike in robust optimization which discards it entirely, to give better

optimal solutions. More specifically, DRO aims to hedge against the worst-case ex-

pectation of the objective function, further denoted as the loss function, over the

ambiguity set of probability distributions (termed as candidate distributions) that

is constructed using the approximated ‘nominal’ distribution supported on sampled

uncertainty (Wiesemann et al. 2014). Furthermore, for convex and compact ambigu-

ity sets and real-valued loss functions, the worst-case expectation in DRO is found

to be equivalent to a coherent risk measure (Artzner et al. 1999), thus establishing

the connection between DRO and risk averse optimization (Ruszczyński and Shapiro
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2006). When DRO is considered in a chance-constrained setting, it refers to a distri-

butionally robust risk-averse optimization approach in which a small probability of

violation of constraints affected by uncertainty is allowed so as to avoid infeasibility

due to hard violations. In this approach, the allowed probability of violation of con-

straints is enforced over the ambiguity set accounting for distributional uncertainty.

To this end, distributionally robust chance-constrained programming (DRCCP) is a

topic that has garnered significant interest in recent times (Hota et al. 2019; Yang

and Li 2022; Chen et al. 2022).

The performance of a DRO model is heavily governed by the choice of ambigu-

ity set made by the modeler. In order to obtain an optimal solution that delivers

good out-of-sample performance, it is necessary to construct an ambiguity set that

is large enough so as to contain the true underlying distribution with a good level

of certainty but not so large as to consider pathological distributions that contribute

to overly conservative solutions (Esfahani and Kuhn 2018). The construction of an

ambiguity set for DRO may be moment-based, shape-preserving, kernel-based, or

metric-based (Rahimian and Mehrotra 2019). Moment-based ambiguity sets consider

those probability distributions whose statistical moments satisfy certain properties

(Ghaoui et al. 2003; Goldfarb and Iyengar 2003; Grunwald and Dawid 2004; Delage

and Ye 2010; Goh and Sim 2010; Natarajan and Teo 2017). When the ambiguity set

is constructed to be shape-preserving, it includes all candidate distributions that have

similar structural properties to those of the nominal distribution (Popescu 2005; Parys

et al. 2016). Kernel-based ambiguity set construction seeks to build an ambiguity set

containing all candidate distributions formed through a kernel, whose parameters

are similar to those of the nominal distribution (Bertsimas and Kallus 2020; Zhu et

al. 2021). Metric-based ambiguity sets - using similarity measures such as optimal

transport distances, maximum mean discrepancies, lp norm-based distances, and ϕ

divergences, and total variation distances - treat the nominal distribution to be the
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‘center’ around which a neighborhood of candidate distributions that are a certain

ϵ−level of similarity to the center are considered (Pflug and Wozabal 2007; Hanasu-

santo and Kuhn 2013; Bayraksan and Love 2015; Abadeh et al. 2015; Esfahani and

Kuhn 2018; Jiang and Guan 2018; Gao and Kleywegt 2022; Blanchet et al. 2022).

This ϵ is a hyperparameter that is defined by the user, and is an indicator of how

‘ambiguous’ we consider the approximated distribution to be.

Ambiguity set construction via the optimal transport distance has been studied ex-

tensively over the past decade (Pflug and Wozabal 2007; Mehrotra and Zhang 2014;

Esfahani and Kuhn 2018; Gao and Kleywegt 2022; Chen et al. 2022). Esfahani and

Kuhn 2018 demonstrated the finite convex reformulation available for 1-Wasserstein

distance-based DRO ambiguity sets, and presented interesting out-of-sample results.

More recently, Li and Mao 2022 studied the different choices of pth order Wasserstein

metrics available for DRO, and introduced a new class of coherent Wasserstein metrics

for DRO. Liu et al. 2022 used Wasserstein DRO in the context of power scheduling

under pricing as well as wind power uncertainties, wherein the authors show that

the DRO method outperforms stochastic optimization in terms of its out-of-sample

performance.

In many applications, the underlying data distribution may not be fully known or

may be subject to variability, and accurately modeling this uncertainty is crucial for

achieving good performance in DRO. Gaussian Mixture Models (GMMs) provide a

flexible and powerful framework for modeling uncertain data distributions, as they

are known to capture complex and multimodal distributions with relatively few pa-

rameters. Using GMMs to model uncertainty in DRO may thus help in improving

the robustness and generalizability of optimization algorithms, by allowing them to

effectively handle uncertain or variable data distributions. The objective of this work

is to explore the usage of GMMs in modeling ambiguity sets for DRO applications.
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Contributions of the presented work include:

• A novel approach for distributionally robust optimization wherein the ambi-

guity set is constructed using a variant of optimal transport distance between

Gaussian Mixture Models (Chen et al. 2018).

• A tractable formulation of the proposed DRO problem, henceforth referred to

as the Wd-DRO problem, under the OT-GMM-based ambiguity set and a nu-

merical example illustrating its use.

• Comparison of the proposed OT-GMM-based DRO method to the established

Wasserstein DRO over a portfolio optimization case study to illustrate the im-

provement in out-of-sample performance.

• Results on the worst-case expectation distribution in the proposed DRO method

and a simple method to compute an upper bound on the radius of the ambiguity

set, an important hyperparameter in DRO that affects the conservativeness of

the solution.

The rest of the chapter is organized as follows; we introduce the relevant theory

in Section 3.2 and the derivation of the tractable formulation of the proposed Wd-

DRO method in Section 3.3. In Section 3.4, we present a numerical illustrative study

which we use to discuss the worst-case expectation distribution and a protocol for

the upper bounding radius of the Wd-DRO ambiguity set. Section 3.5 compares and

contrasts the performance of the established Wasserstein DRO and the proposed Wd-

DRO methods for a portfolio optimization case study in the context of in-sample and

out-of-sample performance. Finally, in Section 3.6, we present a summary of the work

undertaken in this chapter.
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3.2 Preliminaries

3.2.1 Ambiguity set and DRO

A metric-based ambiguity set may be defined as a ball in the space of probability

distributions by specifying a center and a radius. The center of the ball represents

the most plausible, or the prior belief about the probability distribution, while the

radius represents the degree of uncertainty or ambiguity surrounding this belief. The

ambiguity set is shown schematically in Figure 3.1.

Figure 3.1: An illustration of the ambiguity set and the various probability distribu-
tions of interest in the distributionally robust optimization (DRO) framework

With a defined ambiguity set of uncertainty, denoted by P, the general distribu-

tionally robust optimization (DRO) problem may be given by

min
x∈X

max
P(ξ)∈P

EP(ξ)[f(x, ξ)] (3.1)

Here, we only consider the objective function to be affected by uncertainty ξ ∈ Ξ,

where Ξ is a measurable continuous support. X denotes the feasible region for the

decision variables x.
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3.2.2 Optimal transport

Optimal transport, as a mathematical topic, has a rich history dating back to the

eighteenth century when Monge (1781) posed the problem in the context of alloca-

tion of quarried soil under minimum transportation cost. In recent years, optimal

transport has regained interest in several fields such as computer vision, and sta-

tistical as well as machine learning due to progress in computational ability that is

able to overcome the curse of dimensionality that the conventional formulation of

the problem possesses. In particular, entropy regularization of the optimal transport

problem (Cuturi 2013; Clason et al. 2021) has gained recognition for its ability to

lower computational cost of optimal transport from O(n3 logn) in its conventional

setting to O(n2 logn) owing to the availability of the Sinkhorn Algorithm (Sinkhorn

1967), thus enabling its usage in large scale data analysis and machine learning. A

number of variants of optimal transport have also been studied recently - such as

unbalanced optimal transport (Benamou 2003; Caffarelli and McCann 2010; Blondel

et al. 2018; Chizat et al. 2018), semi-discrete optimal transport (Oliker and Prussner

1989; Mérigot 2011; Lévy 2015), and multi-marginal optimal transport (Pass 2012;

Pass 2015; Nenna 2016; Haasler et al. 2021).

Arising from the optimal transport problem, the so-called p-Wasserstein distance

between any two probability measures P1 and P2 is given by

Wp(P1,P2) ∶= ( inf
π∈Π(P1,P2)

∫
Ξ×Ξ
∣∣ξ1 − ξ2∣∣

pdπ(ξ1, ξ2))
1/p

(3.2)

Here, ξ1 and ξ2 are the uncertain parameters that belong to the probability dis-

tributions P1 and P2, respectively. That is, P1 and P2 are marginal distributions,

and Π(P1,P2) denotes the set of joint distributions π on the space Ξ × Ξ. For two

random variables (or vectors of the same dimension) following Gaussian distributions

P1 ∶= N (µ1,Σ1) and P2 ∶= N (µ2,Σ2), the squared 2-Wasserstein distance has a closed
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form analytical expression as follows,

W 2
2 (P1,P2) ∶= ∣∣µ1 − µ2∣∣

2
2 +Tr(Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )

1/2) (3.3)

3.2.3 Wasserstein DRO

The p-Wasserstein distance-based ambiguity set of radius ϵW is defined as

P = {P ∶Wp(P,P0) ≤ ϵW} (3.4)

When the ambiguity set P is constructed using the 1-Wasserstein metric (W1), the

DRO problem presented in (3.1) may be rewritten as

min
x∈X

max
P(ξ)

EP(ξ)[f(x, ξ)] (3.5a)

s.t. W1(P,P0) ≤ ϵW (3.5b)

The aim of Wasserstein DRO is to provide an optimal solution by hedging against

the expectation taken over the worst-case distribution from an ambiguity set of candi-

date distributions P, which is constructed as a Wasserstein ball of radius ϵW centered

around the nominal distribution P0, and contains the various corresponding candi-

date distributions P(ξ). When there is no prior knowledge or assumptions about the

distribution of the uncertain parameters, a common approach for setting the nominal

distribution (P0) in distributionally robust optimization is to use empirical distribu-

tions. An empirical distribution estimated from data assigns equal probability mass

to each observed sample. Estimating such an empirical distribution to further serve

as a nominal distribution for DRO provides a more realistic and data-driven approach

to decision making under uncertainty.

The tractable form of the Wasserstein DRO problem may be obtained by first

substituting the 1-Wasserstein optimal transport problem into constraint 3.5b, and

taking the dual of the inner maximization problem in Model 3.5. Model 3.6 presents
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the tractable form of the Wasserstein DRO problem when the loss function is an

affine function in uncertainty as f(x, ξ) ∶= a(x)Tξ + b(x). A detailed derivation of

the tractable forms of the Wasserstein DRO model for different support sets for the

underlying uncertainty can be found in Yang and Li (2022).

min
x,η≥0,zk

ηϵW +
1

N

N

∑
k=1

zk (3.6a)

s.t. zk ≥ f(x, ξ
0
k), ∀1 ≤ k ≤ N (3.6b)

∣∣a∣∣∗ ≤ η (3.6c)

x ∈X (3.6d)

In Model 3.6, the parameter ξ0k, k = 1,⋯,N refers to the available data samples on

uncertainty. η and z are the dual variables. The dual norm ∥ ⋅ ∥∗ in constraint 3.6c

depends on the norm used in the ground cost of the 1-Wasserstein optimal transport

problem (Equation 3.2). In this work, the 2-norm cost was used and its dual norm is

also 2-norm. The structure of the Wasserstein DRO model is dependent on the loss

function; for an affine loss function in ξ, and linear constraints in x ∈X, Model 3.6 is

a quadratically constrained optimization problem (QCP), which may be solved using

solvers such as CPLEX or XPRESS. It may be noted that setting ϵW = 0 in Model 3.6

effectively converts the DRO model to a stochastic programming model solved using

the sample average approximation (SAA) approach, as follows,

min
x,zk

1

N

N

∑
k=1

zk (3.7a)

s.t. zk ≥ f(x, ξ
0
k), ∀1 ≤ k ≤ N (3.7b)

x ∈X (3.7c)

3.3 GMM-based DRO

3.3.1 Gaussian Mixture Models

A Gaussian mixture model refers to a parametric probability density function that

is denoted as a weighted sum of a finite number of Gaussian component density

70



functions. Due to their ease of representation as well as their capability to perform as

universal estimators (Aragam et al. 2018), GMMs are a powerful tool notably used for

clustering and pattern recognition applications. A typical Gaussian mixture model

defined over a support x ⊆ Rd, containing L components may be represented as

P(x) ∶=
L

∑
l=1

wiGl(x) (3.8)

Here, each component density Gl, ∀1 ≤ l ≤ L may be represented as multivariate

Gaussian function with mean vector µi and covariance matrix Σl respectively, such

that the component weights wl sum up to 1,

Gl(x) =
1

(2π)
d
2 ∣Σl∣

1
2

exp

⎧⎪⎪
⎨
⎪⎪⎩

−
1

2
(x − µl)

′Σ−1l (x − µl)

⎫⎪⎪
⎬
⎪⎪⎭

(3.9)

Gaussian mixture models have several variants based on the defined structure of

their parameters, namely component means and variances. The covariance matrices

of the Gaussian components may be assumed (by the user) to be full ranked, or may

be restricted to diagonal matrices, depending on whether the data may be assumed

to be correlated or uncorrelated, respectively. Furthermore, component attributes,

most commonly the covariance matrix, may be shared between the L components.

A GMM is most commonly estimated using the expectation-maximization (EM) al-

gorithm. The EM algorithm is a well-established method of finding the attributes of

the components in the GMM. It is an iterative two-step method: first, the maximum

likelihood of a sampled data point belonging to each Gaussian density is estimated;

second, the GMM attributes are optimized through a maximization problem (Demp-

ster et al. 1977; Bishop and Nasrabadi 2006). Additionally, other methods such as

maximum a-posteriori (MAP) parameter estimation are available to fit GMMs to

data for pattern recognition applications (McLachlan et al. 2019).
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3.3.2 Wd metric between two GMM distributions

Consider two probability distributions, P(1) and P(2), modeled as Gaussian Mixture

Models (GMMs) as follows

P(1) ∶= w
(1)
1 ν

(1)
1 +w

(1)
2 ν

(1)
2 + ... +w

(1)

L(1)ν
(1)

L(1) (3.10a)

P(2) ∶= w
(2)
1 ν

(2)
1 +w

(2)
2 ν

(2)
2 + ... +w

2
L(2)ν

(2)

L(2) (3.10b)

The notation w refers to the weights of the Gaussian components ν (of the same

dimension) in each GMM, while L(1) and L(2) refer to the number of Gaussian com-

ponents used to model the support of the GMMs P(1) and P(2), respectively; they may

also be interpreted as the number of subpopulations identified in the supporting data.

The superscripts (1) and (2) in Equations 3.10a - 3.10b refer to the probability distri-

butions, while the subscripts denote Gaussian component indices; e.g, w
(1)
1 refers to

the weighting proportion of the first Gaussian component of probability distribution

P(1) and v
(1)
1 refers to the first Gaussian component of P(1).

The Wasserstein distance between two GMM distributions P(1) and P(2) (Equation

3.2) is computed as the optimal transport distance between the elements of their

corresponding support sets. However, when P(1) and P(2) may be modeled as GMMs,

Chen et al. (2018) have shown that the optimal transport problem may be formulated

as,

W 2
d (P(1),P(2)) = δ ∶=min

πl,l′

L(1)

∑
l=1

L(2)

∑
l′=1

cl,l′πl,l′ (3.11a)

s.t.
L(2)

∑
l′=1

πl,l′ = w
(1)
l , ∀1 ≤ l ≤ L(1) (3.11b)

L(1)

∑
l=1

πl,l′ = w
(2)
l′ , ∀1 ≤ l′ ≤ L(2) (3.11c)

πl,l′ ≥ 0, ∀1 ≤ l ≤ L(1),1 ≤ l′ ≤ L(2) (3.11d)
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The Wd metric used in this work is the square root of the optimal objective

(Equation 3.11a) of the OT-GMM problem (Model 3.11). The cost of transport

(cl,l′) is computed between the Gaussian components of the GMMs using the closed-

form expression described in Equation 3.3. Specifically for the Gaussian components

of P(1) and P(2), cl,l′ is calculated as the squared 2-Wasserstein distance between

ν
(1)
l ∼ N (µ

(1)
l ,Σ

(1)
l ) and ν

(2)
l′ ∼ N (µ

(2)
l′ ,Σ

(2)
l′ ) described as

cl,l′ ∶=W
2
2 (ν

(1)
l , ν

(2)
l′ ) ∶= ∣∣µ

(1)
l −µ

(2)
l′ ∣∣

2
2+Tr(Σ

(1)
l +Σ

(2)
l′ −2(Σ

(1)1/2
l Σ

(2)
l′ Σ

(1)1/2
l )

1/2

) (3.12)

(a) (b)

Figure 3.2: A schematic comparison between the transport problems involved in (a)
Wasserstein optimal transport, (b) and optimal transport between GMMs

Figure 3.2 illustrates the difference between the optimal transport problems using

conventional Wasserstein setting (Figure 3.2a) and the GMM-based setting (Figure

3.2b). In the former case, transport is conducted between the elements supporting

the probability distributions under consideration. In the case of OT-GMM, each

Gaussian component in either GMM is considered akin to an element in the support

set, and the weight of that component is treated as its probability mass which is

conserved overall during transport. Additionally, in the OT-GMM problem, trans-

port is conducted between spaces of Gaussian distributions, and not Euclidean spaces

themselves.

In the OT-GMM problem, the conservation constraints are imposed on the compo-

nent weighting proportions of the mixture models. Chen et al. (2018) have shown that
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Wd is an upper bounding value on the 2-Wasserstein distance between the support

sets of P(1) and P(2). Furthermore, the authors emphasize that since the OT-GMM

problem involves transport among the Gaussian components of the mixture models

rather than between the supporting elements themselves, the problem scales with the

number of subpopulations represented in the GMMs. This presents a computational

advantage over the traditional optimal transport problem which scales with the size of

the support sets involved. In addition, the Wd distance is shown to obey all properties

of a metric.

3.3.3 Wd metric-based ambiguity set

In our work, the OT-GMM based Wd metric is used to construct the ambiguity set

when the presence of subpopulations, or multiple modes are known or observable in

the sampled uncertainty. More specifically, when the data on the uncertain parameter

contains multiple modes, an ambiguity set of a certain radius ϵd, may be constructed

around the nominal distribution P0 which is the GMM fitted to the sampled uncer-

tainty, that contains all the candidate GMMs P such that the Wd distance between

P and P0 is at most ϵd.

The Wd metric-based ambiguity set, parameterized by radius ϵd, for DRO applica-

tions is defined as follows

P = {P ∶Wd(P,P0) ≤ ϵd} (3.13)

It is important to note here that in this work, we consider all the candidate GMMs

(P) to be based on the same components (L) as the nominal GMM (P0) as,

P0 ∶= w0
1ν

0
1 +w

0
2ν

0
2 + ... +w

0
Lν

0
L (3.14a)

P ∶= w1ν
0
1 +w2ν

0
2 + ... +wLν

0
L (3.14b)

Therefore, the various candidate distributions in this proposed ambiguity set are

assumed to arise as a result of flexible component weights (wl′ , 1 ≤ l′ ≤ L) on the
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nominal distribution’s Gaussian components (ν0
l′ , 1 ≤ l′ ≤ L). This assumption is

illustrated on an arbitrary 3-component GMM in Figure 3.3; where the weights of the

components of this GMM are made flexible with the only constraint imposed being

∑
L
l′=1wl′ = 1. All the candidate distributions in the ambiguity set are around the

nominal GMM distribution. They are defined on the same Gaussian components as

the nominal GMM but different weights on the Gaussian components can be applied.

Therefore, the quality of the ambiguity set is affected by the goodness of fit of the

nominal distribution. However, the method can naturally accommodate some fitting

error since the candidate distribution can have various weights.

Figure 3.3: An illustration of some candidate distributions supported on the nominal
GMM’s (P0) Gaussian components with flexible weights wl′ .

3.3.4 GMM-based DRO (Wd-DRO)

In the context of DRO, You et al. (2021) have used GMMs to develop a data-driven

ambiguity set by accounting for variable parameters, namely mean, variance, and

component weights. The authors allow the aforementioned parameters to vary within

their own credible regions defined by confidence thresholds to achieve a distribution-

ally robust framework for their CVaR-based optimal power flow problem for which

they further proposed a novel cutting-plane approach.
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In our work, the DRO problem under the Wd metric-based ambiguity set may be

written as,

min
x∈X

max
P(ξ)

EP(ξ)[f(x, ξ)] (3.15a)

s.t. Wd(P,P0) ≤ ϵd (3.15b)

where the loss function f(x, ξ) is assumed to be an affine function of ξ. The

tractable form of the Wd-DRO problem may be obtained by taking the dual of inner

maximization problem in Model 3.15. First, the constraint 3.15b is replaced by the

OT-GMM problem (Model 3.11) as follows,

min
x∈X

max EP(ξ)[f(x, ξ)] (3.16a)

s.t. min
π≥0

L

∑
l=1

L

∑
l′=1

cl,l′πl,l′ ≤ ϵ
2
d (3.16b)

L

∑
l′=1

πl,l′ = w
0
l , ∀1 ≤ l ≤ L (3.16c)

After dropping the min operator in constraint 3.16b, the model is reformulated as,

min
x∈X

max
π≥0

EP(ξ)[f(x, ξ)] (3.17a)

s.t.
L

∑
l=1

L

∑
l′=1

cl,l′πl,l′ ≤ ϵ
2
d (3.17b)

L

∑
l′=1

πl,l′ = w
0
l , ∀1 ≤ l ≤ L (3.17c)

Since the candidate distributions P(ξ) ∈ P are treated as GMMs, the expectation

operator in the objective function (3.17a) may be expanded as

EP(ξ)[f(x, ξ)] ∶ =
L

∑
l′=1

wl′Eν0
l′
[f(x, ξ)] (3.18a)
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=
L

∑
l=1

L

∑
l′=1

πl,l′Eν0
l′
[f(x, ξ)] (3.18b)

=
L

∑
l=1

L

∑
l′=1

πl,l′f(x,Eν0
l′
[ξ]) (3.18c)

Note that the last step in the above is based on the assumption that the loss

function is affine with respect to ξ. Substituting expression 3.18c into 3.17a, the

model is reformulated as,

min
x∈X

max
π≥0

L

∑
l=1

L

∑
l′=1

πl,l′f(x,Eν0
l′
[ξ]) (3.19a)

s.t.
L

∑
l=1

L

∑
l′=1

cl,l′πl,l′ ≤ ϵ
2
d (3.19b)

L

∑
l′=1

πl,l′ = w
0
l , ∀1 ≤ l ≤ L (3.19c)

The dual of the inner maximization problem in Model 3.19 may be found to give

the overall minimization problem pertaining to the tractable Wd-DRO problem as

follows,

min
x,η≥0,yl

ηϵ2d +
L

∑
l=1

w0
l yl (3.20a)

s.t. yl ≥ f(x,Eν0
l′
[ξ]) − ηcl,l′ , ∀1 ≤ l ≤ L,1 ≤ l′ ≤ L (3.20b)

x ∈X (3.20c)

Here, η and yl refer to the dual variables involved in the inner maximization prob-

lem, while x refers to the original decision variable for the problem. For an affine

loss function, Model 3.20 is a linear programming (LP) problem. It may be noted,

however, that the proposed Wd-DRO approach in Model 3.20 can also be applied to

non-affine loss functions in ξ.
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3.4 Numerical example

In this section, the results of the proposed Wd-DRO approach are compared and

contrasted with those of the Wasserstein DRO problem through a numerical example.

The DRO model under objective function uncertainty is taken as,

min
x1,x2

max
P(ξ)∈P

EP(ξ)[x1(1 + ξ) + x2] (3.21a)

s.t. 3.2x1 + 0.2x2 ≥ 7.5 (3.21b)

2x1 + 3x2 ≥ 12 (3.21c)

x1 − 1.5 ≤ x2 (3.21d)

12 − 4x1 ≥ −2x2 (3.21e)

− 1.2x1 + x2 ≤ 1 (3.21f)

− 0.3x1 + 1.7x2 ≤ 6.2 (3.21g)

x1 + x2 ≤ 8 (3.21h)

4.6x1 + 5.2x2 ≥ 23.92 (3.21i)

2.8x1 + 0.76x2 ≥ 8.4 (3.21j)

x1, x2 ≥ 0 (3.21k)

In this example, 500 instances of ξ are sampled (Figure 3.4) from a 3-component

GMM, denoted as Ptrue, with the following attributes

Ptrue ∶= 0.24N (−5.21,2.39) + 0.4N (1.23,4.12) + 0.36N (7.47,3.36) (3.22)

For the Wasserstein DRO problem, sampled uncertainty ξ0k, ∀k = {1, ...,500} is

directly used in Model 3.6c to obtain the solution. However, for theWd-DRO problem,

the sampled uncertainty first needs to be fitted to a GMM. In this work, we fit

the GMMs using MATLAB’s fitgmdist function which utilizes the EM algorithm to

obtain the GMM attributes. In this case, since 3 observable modes are present in the
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Figure 3.4: An illustration of sampled uncertainty from the source distribution (Equa-
tion 3.22) for the numerical example under distributional uncertainty in Model 3.21.
The blue bars represent the histogram of the sample set, while the black line depicts
the fitted GMM (P0).

histogram of the sampled uncertainty (Figure 3.4), a 3-component GMM is fitted,

denoted as P0 to the samples as follows,

P0 ∶= 0.24N (−5.28,2.56) + 0.46N (1.23,4.55) + 0.3N (7.44,3.16) (3.23)

Then, the attributes of the Gaussian components in P0, namely the mean and

variance of each components, are used in Model 3.20. Both the Wasserstein DRO

problem, as well as the Wd-DRO problem were solved for increasingly large radii of

the ambiguity set (ϵW for Wasserstein DRO, and ϵd for Wd-DRO) to obtain the opti-

mal solution, as well as the DRO optimal objective. The results of the Wasserstein,

and Wd-DRO problems are shown in Table 3.1.

From Figure 3.5, we observe that the Wasserstein DRO optimal objective increases

sharply with an increase in the ambiguity set radius ϵW . In contrast, the Wd-DRO

optimal objective shows a much less sharply increasing trend with an increase in the

ambiguity set radius ϵd. The reason for this difference in the trends can be explained

by highlighting the main difference between the approaches, namely the ambiguity

set construction step. As mentioned earlier, the Wasserstein DRO approach hedges
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Table 3.1: Evolution of optimal model objective values through Wasserstein, and
Wd-DRO methods as a function of ambiguity set radius (ϵ)

Ambiguity

set radius

(ϵW or ϵd)

DRO optimal objective value

Wasserstein

DRO

Wd

DRO

0.01 8.44 8.40

1 11.85 8.77

10 42.86 21.27

100 352.95 21.27

Figure 3.5: Evolution of the DRO model optimal objective value with radius of the
ambiguity set for Wasserstein DRO (red) and the proposed Wd-DRO (black) for the
numerical study

against all such candidate distributions P in its ambiguity set that present within the

threshold radius ϵW of the nominal distribution P0. However, this method does not

impose any further restrictions on the type of candidate distributions to be included

in its ambiguity set. Therefore, for Wasserstein DRO, at large radii, there is a distinct

possibility that the ambiguity set might be too rich, thus giving a very conservative

optimal objective. In contrast, the Wd-DRO approach restricts its ambiguity set to
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contain only GMMs, specifically those GMMs based on the same components as those

of the nominal distribution P0. Therefore, for Wd-DRO, even at larger radii, the am-

biguity set is restricted to a smaller number of distributions than the Wasserstein

DRO. Furthermore, this restriction on the distributions included in the ambiguity set

is not arbitrary; rather, it is a restriction that is informed through the fitting of the

nominal GMM P0 (Equation 3.23) to the sampled uncertainty, thus ensuring that in-

formation about the subpopulations or modes present in the samples is incorporated

into the optimization step.

For all the studies chosen in this work, the Wasserstein and Wd DRO methods

have a comparable computational time to solve in GAMS on a desktop computer

with Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz, 3201 Mhz, 4 Core(s). Note that,

for the numerical example, the Wasserstein (QCP) DRO problem and the Wd (LP)

problem were both solved using XPRESS with around 0.5 second; for the case studies,

the Wasserstein and Wd DRO problems (both QCP owing to the second term in the

loss function) were also solved using XPRESS.

3.4.1 Comparing the worst case distribution

As mentioned in Section 3.2.1, the DRO approach to a problem under uncertainty

aims to find the optimal solution by hedging against the expectation taken over the

worst case distribution, further denoted by Pwc in this chapter, in the ambiguity

set. To this end, in this section, we compute and illustrate the worst case distribu-

tion for Wasserstein DRO, as well as Wd-DRO, for different radii of the ambiguity set.

The worst case distributions for different ambiguity set radii, denoted as Pwc∣ϵW

and Pwc∣ϵd respectively for Wasserstein DRO and Wd-DRO, are found as follows: for

a specific ambiguity set radius, the DRO problem is solved to obtain the optimal

solution x∗; this x∗ is further used to solve the inner maximization problem in the
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DRO model (Model 3.1) to obtain the probability masses of the elements supporting

the candidate distribution, which in this case, is the worst case distribution.

Table 3.2 presents the GMMs that give the worst case expectation of the loss func-

tion for Wd-DRO for various radii ϵd ranging from 0.01 to 100, centered around the

same nominal distribution (P0), which is the GMM fitted to the sampled uncertainty

(Equation 3.23). At smaller radii, such as 0.01 ∼ 1, the worst case probability distribu-

tion at the periphery of the ambiguity set is found to be a GMM (Pwc∣ϵd=0.01,Pwc∣ϵd=1)

whose component weights are close to those of the nominal GMM. When the radius

is increased to 3.5, 5.3 and 6.5, the worst case distribution is a GMM based on the

same components as P0, but with markedly different weights. When the radius is

increased to larger values such as 10 ∼ 100, the worst case GMM tends to a single

Gaussian component among the 3 components in P0. The worst case distributions

for ambiguity set radii ϵd ∶= {0.01,1,3.5,5.3,6.5,10,100} are listed in Table 3.2.

Table 3.2: Worst case distribution under different ambiguity set radius. Numbers
shown in the table are the weighting coefficients of the GMM distribution.

ϵd N (−5.283,2.564) N (1.232,4.553) N (7.442,3.159)

0.01 0.238 0.464 0.298

1 0.238 0.438 0.324

3.5 0.238 0.148 0.615

5.3 0 0.238 0.762

6.5 0 0.119 0.881

10 0 0 1

100 0 0 1

Figures 3.6a - 3.6f illustrate the worst case distributions for ambiguity set radii

0.01, 1, and 10. It must be noted that in the case of Wasserstein DRO, the problem

hedges against a discrete worst case distribution that is supported on at most N + 1

points, where N refers to the size of the sample set (Yue et al. 2022). Therefore, the
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DRO solution obtained may suffer from the issue of over-conservativeness since it is

may hedge against unnecessary distributions. In contrast, for Wd-DRO, the worst

case distribution is always a continuous distribution; at low values of ϵd, Pwc tends to

the nominal GMM (P0), whereas for higher values of ϵd, the worst case distribution

tends to a singular component of P0.

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Illustrations of the Wasserstein worst-case distribution vs the Wd worst-
case distribution, respectively, for radii of 0.01 [(a) and (b)], 1 [(c) and (d)], and 10
[(e) and (f)], respectively. The red bars represent the discrete weights of the support
set of the worst case expectation distribution in Wasserstein DRO, the blue curve
depicts the true/source distribution in Equation 3.22, and the green curve represents
the worst case expectation distribution in Wd-DRO.
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3.4.2 Upper bound on ϵd for Wd-DRO

As mentioned in Section 3.3, in the Wd-DRO approach, all candidate distributions in

the ambiguity set are assumed to be based on the same components as the nominal

GMM (P0). Figure 3.7 illustrates the simplex that may be constructed given P0, whose

edges contain all countably infinite possible combinations of the Gaussian components

in P0. The vertices of this simplex, namely ν0
1 , ν

0
2 and ν0

3 , correspond to the three

fitted Gaussian components in P0. From the aforementioned assumption, and owing

to the existence of the optimal solution of a linear programming problem at the vertex

of its feasible region, an upper bound on the ambiguity set radius ϵd may be obtained

as

ϵd ≤ max
1≤l≤L

Wd(P0, ν
0
l ) (3.24)

Figure 3.7: An illustration of the worst-case distributions (Pwc) for different ambiguity
set radii (ϵd)

For the numerical study in Section 3.4, the upper bound on ϵd, denoted as U[ϵd],
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using Equation 3.24 is as follows

U[ϵd] ∶=max{Wd(P0, ν
0
1),Wd(P0, ν

0
2),Wd(P0, ν

0
3)} =max{8.253,4.657,7.513} = 8.253

(3.25)

Here, Wd(P0, ν0
l ), ∀1 ≤ l ≤ L is computed using Model 3.11, where Wd ∶=

√
δ.

It must be noted that choosing U[ϵd] = 8.253 does not imply that the worst case

distribution for the Wd-DRO problem is ν0
1 ∶= N (−5.283,2.564). Rather, when the

Wd-DRO problem is solved for ambiguity set radius ϵd = U[ϵd] = 8.253, and the inner

maximization problem in Model 3.16 solved using the resulting DRO optimal solution

(x∗1, x
∗
2)∣ϵd=8.253 = (2.147,3.141), the worst case distribution Pwc is obtained as

Pwc∣ϵd=8.253 ∶= N (7.442,3.159) (3.26)

That is, Pwc∣ϵd=8.253 is the worst case distribution corresponding to the largest

possible ambiguity set radius (computed as U[ϵd]), for the fitted P0. Upon solv-

ing the optimal transport problem between P0 and Pwc∣ϵd=8.253, it was found that

Wd(P0,Pwc∣ϵd=8.253) = 7.513, thus illustrating that the computed value of 8.253 is in-

deed an upper bounding value on 7.513. It is further observed, and illustrated in

Figure 3.7, that increasing ϵd beyond 7.513 to larger values such as 10 ∼ 100 does not

change the DRO solution for a given P0.

3.5 Case study - a portfolio optimization example

Having illustrated some features of the proposed Wd-DRO approach, and contrasted

its performance on a numerical study in Section 3.4, we further applied the proposed

method to a portfolio optimization case study.

The portfolio optimization case study in this section is adapted from the work of

Esfahani and Kuhn (2018). In their study, they designed a mean-risk portfolio opti-

mization problem that minimizes the weighted sum of the mean and the conditional
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Value-at-Risk (CVaR) of the portfolio loss. In our study, we chose to replace the

CVaR measure with the variance of the optimal portfolio to get the following DRO

problem,

min
x∈Rm

max
P(ξ)∈P

EP(ξ)[−ξ
⊺x] + λx⊺Σx (3.27a)

s.t. 1Tx = 1 (3.27b)

Here, the portfolio loss is denoted by −ξ⊺x where xi denotes the fraction of each

asset i = 1, ...,m in the portfolio. The uncertainty in the problem arises from the

returns ξi on each asset. The assets are sorted such that lower-indexed assets offer

smaller mean returns, while higher indexed assets offer larger mean returns but with

relatively higher variance. For this study, we set m = 10. Since the portfolio variance

term in the objective function is independent of uncertain returns ξ, it is brought out

of the inner maximization problem such that the loss function addressed in the DRO

problem is linear with respect to ξ.

Using the formulations described in Models 3.6 and 3.20, respectively, we obtained

the Wasserstein DRO model specific to the portfolio optimization case study as,

min
x,η≥0,zk

ηϵW +
1

N

N

∑
k=1

zk + λ
m

∑
i=1

xi

m

∑
i′=1

σi′,ixi′ (3.28a)

s.t.
m

∑
i=1

−xiξ
0
k,i ≤ zk, 1 ≤ k ≤ N (3.28b)

m

∑
i=1

x2
i ≤ η

2 (3.28c)

m

∑
i=1

xi = 1 (3.28d)

and the corresponding Wd-DRO model is

min
x,η≥0,yl

ηϵ2d +
L

∑
l=1

w0
l yl + λ

m

∑
i=1

xi

m

∑
i′=1

σi′,ixi′ (3.29a)

s.t.
m

∑
i=1

−xiEν0
l′
[ξi] − ηcl,l′ ≤ yl, 1 ≤ l, l′ ≤ L (3.29b)
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m

∑
i=1

xi = 1 (3.29c)

3.5.1 Gaussian mixture distribution-based uncertainty

To test the performance of the proposed method, we assume that the uncertainty is

sourced from a 3-component Gaussian mixture model as follows, wherein the Gaussian

components are described using their corresponding means and variances,,

ξi ∼ 0.6N (i × 0.75, i × 1.8) + 0.25N (i × 2.5, i × 1.8) + 0.15N (i × 4.25, i × 1.8) (3.30)

We used the data directly to solve the Wasserstein DRO model. Prior to solving

Wd-DRO, we first fit the sampled uncertainty to a GMM whose component number we

specify. In this study, we fit the samples to a 3-component nominal GMM distribution

(P0). For the purpose of studying the effect of sample size on the DRO performance,

we solved the models for two sample set sizes N = {50,500}. Furthermore, to assess

the DRO performance from the lens of in-sample as well as out-of-sample stability,

we performed 200 independent simulations; that is, we generated 200 independent

datasets of samples and obtained their respective resulting optimal portfolios (x∗) to

test for performance.

In this section, we discuss the performance of the Wasserstein and Wd-DRO prob-

lems in the context of in-sample and out-of-sample stability of their respective optimal

solutions trained on the same dataset, as well as the reliability of their solutions. In-

sample stability refers to how stable the solution from a proposed model is for different

datasets generated from the same source. In contrast, out-of-sample stability refers to

how stable the expected returns are when the solutions from the proposed models are

used in conjunction with a large test sample dataset. Therefore, in-sample stability

provides a measure of how sensitive a model is to a difference in the sample data,

while out-of-sample stability is a better measure of the actual model performance
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itself (Kaut and Stein 2003). In this study, we assess the solutions by computing

their reliability (Esfahani and Kuhn 2018) across an increasing range of ambiguity

set radii, and further compare the Wasserstein and Wd-DRO solutions at a defined

threshold of 95%.

Figures 3.8a and 3.8b illustrate the in-sample stability results, namely the DRO

model objective as a function of ambiguity set radius, for the portfolio optimization

case study for uncertain asset returns sampled from a 3-component GMM, as well as

the reliability of the solutions. From the figures, as illustrated in Section 3.4 also, it

is observed that as the radius of the ambiguity set radius increases, the Wasserstein

DRO (red) model objective increases steeply, while for Wd-DRO (black), the increase

is less steep, and saturates beyond a certain radius. In the context of variability of

the model objective, it is observed that both Wasserstein and Wd-DRO display com-

parable in-sample model objective variability for smaller ambiguity set radii, while

for larger radii, the variability of the Wd-DRO method is slightly more than that

of Wasserstein DRO. It is also observed that an increase in number of samples (in

this case, from 50 to 500) results in an increase in in-sample stability for both DRO

methods.

Figures 3.9a and 3.9b showcase the out-of-sample stability results of the Wasser-

stein (red) and Wd-DRO (black) methods for 50, and 500 samples each. In the

figures, the solid lines depict the average values out of 200 trials, while the shaded

region represents the area between the 20% and 80% percentiles, respectively. The

dotted lines depict the evolution of reliability of the Wasserstein (red) and Wd-DRO

(black) solutions for increasing ambiguity set radii. The green solid line depicts the

95% reliability threshold.

From the results illustrated in Figure 3.9, the following observations and inferences
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(a) (b)

Figure 3.8: Evolution of in-sample model objective through Wasserstein DRO (red)
and Wd-DRO (black) with respect of ambiguity set radius for (a) 50 samples, and
(b) 500 samples of uncertainty sourced from a 3-component GMM; the solid lines
represent the means and the shaded region represents the 20% and 80% percentile
values over 200 independent trials.

(a) (b)

Figure 3.9: Evolution of expected out-of-sample returns through Wasserstein DRO
(red) and Wd-DRO (black) with respect of ambiguity set radius for (a) 50 samples,
and (b) 500 samples of uncertainty sourced from a 3-component GMM; the solid lines
represent the means and the shaded region represents the 20% and 80% percentile
values over 200 independent trials. The yellow highlighted region depicts the range
of the upper bounding radii calculated for the Wd-DRO method, as put forth in
Section 3.4.2, across the 200 independent trials. The green solid line depicts the 95%
reliability threshold, while the dotted lines represent the evolution of reliability of the
Wasserstein (red) and Wd-DRO (black) methods.

can be made specifically regarding how the models perform in a test scenario.

• Firstly, we discuss the average performance of the expected out-of-sample re-
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turns using the solutions obtained via the Wasserstein and Wd-DRO methods.

For smaller ambiguity set sizes, both Wasserstein DRO as well as Wd-DRO of-

fer a comparable performance. As the radius of the ambiguity set increases,

Wasserstein DRO’s average out-of-sample performance appears to deteriorate

steeply; in contrast, Wd-DRO’s performance only shows a slight dip in returns

and saturates beyond a certain radius.

• Secondly, we discuss the effect of sample set size on the performance of both

Wasserstein and Wd-DRO. With a larger number of samples, it is found that

the variability of expected out-of-sample returns of Wasserstein as well as Wd-

DRO, depicted by the shaded red and black regions respectively, decreases sig-

nificantly. In the case of Wd-DRO, this may be attributed to the ability to find

a better nominal GMM that describes the sampled uncertainty when a larger

number of samples is available.

• We assess the quality of the obtainedWasserstein andWd-DRO solutions through

the lens of reliability. From Figures 3.9a and 3.9b, we see that for 95% relia-

bility, the Wd-DRO method offers larger average returns than the Wasserstein

method.

• Finally, we draw the reader’s attention to the highlighted region (yellow) in

Figures 3.9a and 3.9b. This region depicts the various upper bounding radii

obtained via the approach described in Equation 3.24, for the nominal GMMs

fitted to the samples corresponding to the 200 independent trials. As previously

discussed, increasing the ambiguity set radius beyond a certain value does not

result in a change in the worst case expectation distribution for Wd-DRO. This

is because theWd-DRO problem formulation is designed such that the candidate

distributions are described on the same Gaussian components as the nominal

distribution, and the worst case expectation distribution may be reasonably as-

sumed to tend towards a single Gaussian component (refer to Figure 3.7. Simply
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put, the highlighted range of ambiguity set radii in Figure 3.9 correspond to

a good enough ambiguity set size for the datasets under consideration to give

100% reliable solutions. This result illustrates an advantage over the conven-

tional Wasserstein DRO, which requires the user to try different radii and check

whether desired reliability is achieved.

3.5.2 Lognormal mixture distribution-based uncertainty

In this section, we study the case wherein the true uncertainty distribution is a

lognormal mixture distribution, instead of GMM distribution, to test the performance

of the proposed method when the true distribution is not a perfect GMM. We define

a mixture (x) of two Gaussian distributions, and define ξ as the exponential of the

mixture, leading to a lognormal mixture distribution as follows,

xi ∼ 0.6N (i × 2.5, i × 1.8) + 0.4N (i × 5, i × 1.8) (3.31)

ξi ∼ exp(xi) (3.32)

Figures 3.10a and 3.10b depict the in-sample stability results, while Figures 3.11a

and 3.11b depict the out-of-sample performance of the Wasserstein and Wd-DRO

models, respectively. From Figures 3.10a and 3.10b, we find that in-sample stabil-

ity improves for both methods with an increase in sample size, as well as with an

increase in ambiguity set radius. From figures 3.11a and 3.11b, we see that the av-

erage out-of-sample returns from the Wd-DRO method are higher than those from

the Wasserstein method for samples sourced from a lognormal mixture distribution.

These results show that the improved performance of the proposed Wd-DRO method

is not just limited to sampled uncertainty sourced from a Gaussian mixture distri-

bution. Rather, the ability of a Gaussian Mixture Model to function as a universal

density estimator (Aragam et al. 2018) enables the fitting of the multimodal distri-

bution to a GMM, thus constructing an ambiguity set with a tighter selection of

candidate distributions leading to lesser conservative solutions with higher out-of-
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sample expected returns.

(a) (b)

Figure 3.10: Evolution of in-sample model objective through Wasserstein DRO (red)
and Wd-DRO (black) with respect of ambiguity set radius for (a) 50 samples, and
(b) 500 samples of uncertainty sourced from a lognormal mixture distribution; the
solid lines represent the means and the shaded region represents the 20% and 80%
percentile values over 200 independent trials.

(a) (b)

Figure 3.11: Evolution of expected out-of-sample returns through Wasserstein DRO
(red) and Wd-DRO (black) with respect of ambiguity set radius for (a) 50 samples,
and (b) 500 samples of uncertainty sourced from a lognormal mixture distribution;
the solid lines represent the means and the shaded region represents the 20% and
80% percentile values over 200 independent trials. The yellow highlighted region
depicts the range of the upper bounding radii calculated for the Wd-DRO method,
as put forth in Section 3.4.2, across the 200 independent trials. The green solid line
depicts the 95% reliability threshold, while the dotted lines represent the evolution
of reliability of the Wasserstein (red) and Wd-DRO (black) methods.
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3.6 Summary

In this work, we presented a novel distributionally robust optimization method, that

uses a recently-developed variant of optimal transport distance between Gaussian

Mixture Models. Since the cost function associated in this problem is computed

using the closed-form expression for the 2-Wasserstein metric between Gaussian dis-

tributions, it is possible to incorporate statistical information such as the mean and

variance, namely the first and second moments, into the optimal transport metric-

based DRO problem. We presented the tractable formulation of the DRO problem

under the OT-GMM-based ambiguity set, and illustrated its use on a numerical exam-

ple. Through this example, we discussed the evolution of the DRO optimal objective

through our method, in contrast to the established Wasserstein DRO approach. We

also presented results on the worst-case expectation distribution in the proposed DRO

method, and presented a simple method to compute an upper bound on the radius

of the ambiguity set which is an important hyperparameter in DRO that affects

the conservativeness of the solution. We further conducted a portfolio optimiza-

tion case study using the proposed DRO method, and examined the out-of-sample

performance of the method for uncertainty sampled from two types of source distri-

butions. Through our work, we observed that the proposed OT-GMM-based DRO

method offers significant improvement in the out-of-sample performance, as compared

to Wasserstein DRO. We also note that the efficacy of the proposed method is depen-

dent on the quality of the GMM fitted to the available data. In this sense, to have

sufficient amount of data for GMM fitting is a requirement for the proposed method.

The DRO method using a GMM-based ambiguity set provides a method to assess

the worst-case performance of an optimal solution that was obtained by quantifying

a level of confidence about the uncertain parameters’ probability distribution into the

optimization problem by means of an ambiguity set. In many practical applications,
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it is preferable to build upon this “worst-case” expectation problem, and attempt

to minimize the worst-case performance. One such method that has been developed

in literature is the distributionally robust chance-constrained programming method

(DRCCP) wherein the worst-case expected value of a probabilistic constraint in an

optimization model is constrained using a threshold. In Chapter 4, we use the worst-

case expectation problem under a GMM-based ambiguity set developed in this chapter

to address this DRCCP problem.
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Chapter 4

Distributionally Robust
Chance-Constrained Optimization
with a Gaussian Mixture Optimal
Transport-based Ambiguity Set

Abstract : Conventional chance-constrained programming methods suffer from the

inexactness of the estimated probability distribution of the underlying uncertainty

from data. To this end, a distributionally robust approach to the problem allows

for a level of ambiguity considered around a reference distribution. In this work,

we propose a novel formulation for the distributionally robust chance-constrained

programming problem using an ambiguity set constructed from a variant of optimal

transport distance that was developed for Gaussian Mixture Models. We show that

for multimodal process uncertainty, our proposed method provides an effective way

to incorporate statistical moment information into the ambiguity set construction

step, thus leading to improved optimal solutions. We illustrate the performance of

our method on a numerical example as well as a chemical process case study. We

show that our proposed methodology leverages the multimodal characteristics from

the uncertainty data to give superior performance over the traditional Wasserstein

distance-based method.
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4.1 Introduction

Real industrial and allied processes are often fraught with a number of uncertain

factors ranging from demand and supply, pricing, process measurements and model

parameter estimation. In such cases, any optimization model or application developed

must take into account these uncertainties in order to give not only a mathematically

optimal solution, but also a practically feasible one (Sahinidis 2004; Ning and You

2019). Optimization under uncertainty has been a topic of great academic and in-

dustrial interest since the late 1900s wherein mathematical programming techniques

have been used in areas such as process design, planning and scheduling operations,

as well as process control. The main methods of optimization under uncertainty are

distinguished primarily by their treatment of the probability distribution of the under-

lying uncertainty in the process. Stochastic programming methods consider that the

probability distribution of the uncertain parameters is known, or that it can be well-

estimated from the available data, and incorporates this distributional information

into its formulations (Dantzig 1955; Birge and Louveaux 2011). Robust optimization

methods, on the other hand, disregard any information on the probability distribution

of the uncertainty and instead optimize for the worst-case realization of the problem

subject to an uncertainty set (Ben-Tal and Nemirovski 1998; Ben-Tal et al. 2009). A

considerable amount of research and applications have been undertaken using vari-

ants of stochastic and robust optimization techniques.

From a theoretical standpoint, operations research focusing on decision theory

makes a distinction between the ideas of “risk” and “ambiguity” associated with

an optimization problem (Keynes 2013). Simply put, risk points to underlying un-

certainty accounted for in the problem by means of a known probability distribu-

tion, while ambiguity refers to the uncertainty in the knowledge of this distribution

itself (Wiesemann et al. 2014). Stochastic programming and robust optimization

96



approaches to decision-making under uncertainty address the incorporation of the

underlying risk in the process into the optimization problem; however, neither class

of methods is well-equipped to deal with ambiguity. Recent research has focused on

an intermediate approach to stochastic programming and robust optimization meth-

ods by considering “distributional ambiguity”. Distributionally robust optimization

(DRO), also known as ambiguous stochastic optimization, considers limited distribu-

tional information. It safeguards against worst-case outcomes within an ”ambiguity

set” of candidate distributions centered around a nominal distribution. This nominal

distribution may be obtained from domain knowledge, as well as statistical analysis

of the process history data. In the context of real-world performance of optimal solu-

tions obtained through various methods, it has been empirically proven that account-

ing for distributional robustness is favorable since hedging against a single probability

distribution of uncertainty often leads to poor test (or out-of-sample) performance

(Esfahani and Kuhn 2018).

Distributionally robust optimization (DRO) was first well-addressed in optimiza-

tion literature by Scarf et al. (1957). In this work, the authors addressed worst-case

profit maximization of an inventory under distributional ambiguity of the product

demand with a known mean and variance. From a modeling perspective, DRO may

be formulated as a semi-infinite programming problem with respect to the space of

probability distributions in the ambiguity set. The methods dealing with the compu-

tational intractability arising from this semi-infinite aspect may be broadly classified

into cutting plane approaches, and the dual method. In the former, the semi-infinite

quantifier of the candidate distributions is approximated by a finite atomic subset of

the space. In each iteration of the method, a new probability distribution is added to

this finite approximation and the problem is solved until optimality criteria are met

(Mehrotra and Papp 2014; Bansal et al. 2018). In contrast, the dual methods lever-

age linear, Lagrangian and conic duality principles in order to convert the original

97



primal maximization over the continuous candidate space of probability distributions

to a dual minimization problem (Bertsimas et al. 2010; Ben-Tal et al. 2013). These

methods may be employed when strong duality holds, and find notable use when the

ambiguity set formulation may itself be defined using the decision variables in the

problem (termed “decision-dependent ambiguity sets”) (Noyan et al. 2018).

Ambiguity sets put forth in literature may be classified into four main groups,

namely, discrepancy-based, moment-based, shape-preserving, and kernel-based (Rahimian

and Mehrotra 2019). As previously mentioned, an ambiguity set contains a number of

probability distributions that share common features; these four groups differ in these

features. Specifically, moment-based ambiguity sets contain those probability distri-

butions that all satisfy certain statistical moment properties, while shape-preserving

sets exhibit similar structural qualities such as symmetry, and skewness. Kernel-based

ambiguity sets contain common distributions formed through a kernel function whose

characteristics closely match those of a reference kernel function. It is important to

note that this grouping of ambiguity sets is not disjoint, and that certain methods of

ambiguity set construction may be classified into more than one of these groups. The

“shape” and “size” of the ambiguity set are key descriptors of an ambiguity set. The

shape of the ambiguity set plays into the tractability of the associated DRO model;

for practical ease of implementation, researchers have focused on constructing ambi-

guity sets that give rise to “solvable” formulations, such as a linear programming (LP)

form, a second-order conic (SOCP) form, or a semi-definite (SDP) form (Rahimian

and Mehrotra 2019). The size of the ambiguity set, on the other hand, is associated

with the level of ambiguity associated with the underlying probability distribution of

uncertainty; in practice, this is a hyperparameter tuned to the process needs.

Discrepancy-based ambiguity sets are constructed around a reference or “nominal”

distribution which is usually an empirical distribution estimated from the available
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process history data on uncertainty. As the name suggests, discrepancy-based am-

biguity sets account for all those probability distributions whose similarity to the

reference distribution may be quantified by a chosen “discrepancy measure” of a

user-defined magnitude (which controls the size, ergo also the level of distributional

robustness accounted for in the problem), which may or may not be a metric. A

number of such measures have been studied in the context of DRO, such as optimal

transport discrepancy measures/distances, ϕ−divergences, and Lp norms. It may be

noted that certain discrepancy-based ambiguity sets are classified as metric-based

sets (e.g., optimal transport distance), while others are not (e.g., Kullback-Leibler

Divergence).

Optimal transport (OT) problem admits a proper metric in the space of probability

distributions; furthermore, it does not restrict the distributions in the ambiguity set

to share the same support as that of the nominal distribution (Villani et al. 2009).

In recent years, a significant number of works have focused on the use of this metric

for ambiguity set construction; one of the first works using OT/Wasserstein distance

(as the Kantorovich distance) in this context was published by Pflug and Wozabal

(2007) for a portfolio optimization problem under distributional ambiguity of stock

returns associated with their assets. Some other notable works in this area utilizing

the Wasserstein distance are summarized here. Blanchet and Murthy (2019) proposed

a strong dual one-dimensional formulation of the worst-case expected value problem

over the ambiguity set, while considering the nominal distribution supported on gen-

eral Polish spaces. Esfahani and Kuhn (2018) model the nominal distribution as an

empirical uniformly-weighted discrete measure, for specific structures of uncertainty-

riddled functions in the optimization problem, and for norm-based optimal transport

cost. An important contribution of this work is the reformulation of the DRO prob-

lem as a finite-dimensional convex problem; furthermore, the authors also detail a

method to construct the worst-case distribution and present finite-sample as well as
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asymptotic consistency guarantees using a portfolio optimization case study. Gao

and Kleywegt (2023) also utilized the p−Wasserstein metric to construct an ambi-

guity set for DRO, wherein the cost function admits a metric on a Polish space,

and further provide strong duality results using Lagrangian duality and obtain the

worst-case distribution (or its approximation) using first-order optimality conditions

from their dual reformulation of the worst-case expectation problem. In addition

to these works, a number of other works have studied various reformulations of the

DRO problem under specific assumptions, such as a conic reformulation for distribu-

tionally robust two-stage stochastic programming problems (Hanasusanto and Kuhn

2018), and a semi-infinite programming problem illustrated on a logistic regression

case study (Luo and Mehrotra 2019).

In distributionally robust chance constrained optimization problem, the constraints

are affected by uncertainty without exact distribution information. The worst-case

probability of chance-constraint satisfaction is constrained to a minimum thresh-

old. A few works in literature have utilized various discrepancy measures to obtain

tractable formulations. Jiang and Guan (2016) derived an exact reformulation of

a data-driven stochastic programming problem with distributionally robust chance

constraints with a ϕ−divergence-based ambiguity set formulation, which they showed

is equivalent to the classical form of a chance constraint with a shifted risk level. Xie

and Ahmed (2018) studied distributionally robust chance-constrained programming

problems (DRCCP) with convex nonlinear uncertain constraints, and a moment-based

ambiguity set, and provided tractable convex reformulations for the problem under

specific assumptions, as well as a tractable mixed-integer convex reformulation for

such DRCCP involving binary variables. Ji and Lejeune (2021) proposed reformu-

lation frameworks for DRCCP with individual as well as joint chance constraints,

ranging from mixed integer linear programming to exact mixed integer second or-

der cone programming frameworks depending on the type of uncertainty considered,
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and illustrated their use cases on a knapsack problem. Chen et al. (2022) studied

data-driven DRCCPs with a general p-Wasserstein distance-based ambiguity set, and

provided exact tractable reformulations for both individual as well as joint chance con-

strained problems with right-hand side uncertainty as mixed-integer conic problems;

furthermore, they showed that for special cases of p = 1 or p = ∞, the reformulation

tends to a mixed-integer linear problem.

Formulating a tractable approach and determining the best decisions hinge greatly

on how we define the ambiguity set for Distributionally Robust Optimization (DRO).

Designing this set is critical, as it should capture a reasonable level of uncertainty

about the probability distribution while excluding irrelevant or extreme distributions

that could skew decisions. This chapter delves into creating discrepancy-based ambi-

guity sets, encompassing distributions close to a nominal one according to a distance

metric. Our focus lies on addressing uncertainty showcasing multi-modal distribu-

tional characteristics. Rather than employing a broad ambiguity set, we propose

utilizing the optimal transport distance between Gaussian mixture models, tailored

to capture relevant distributions. This approach aims to hedge against pertinent

candidates. Building on this, we introduce a novel Distributionally Robust Chance-

Constrained Programming (DRCCP) method utilizing a variant of optimal transport

for Gaussian mixture models. Unlike existing techniques, our method extends to a

broader range of uncertain constraint functions, not limited by linearity or convexity

constraints.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the

general theory involved in chance-constrained programming under distributional am-

biguity, the Wasserstein ambiguity set, and the recently-developed optimal transport

distance between Gaussian Mixture Models. In Section 4.3, we derive the distribu-

tionally robust chance-constrained programming model. In Section 4.4, we discuss
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the results of applying the derived method to an illustrative example. We further dis-

cuss the worst-case expectation distribution associated with this example. In Section

4.5, we apply the derived method to a practical chemical process case study. Finally,

we summarize the key findings of our work in Section 4.6.

4.2 Theory

4.2.1 Distributionally robust optimization

Distributionally robust optimization (DRO) is a method of optimization under un-

certainty wherein the user seeks to optimize the expected value of a cost function

under its worst-case realization over an ambiguity set of probability distributions.

The general form of the DRO problem is given as,

min
x∈X

max
P(ξ)∈P

EP[L(x, ξ)] (4.1)

Here, x ∈ X denotes the set of constraints defining a feasible solution space for

the decision variables, and ξ denotes the parametric uncertainty involved in the cost

function L(x, ξ). For the metric-based ambiguity sets used in this work, the general

form of the ambiguity set P may be defined as,

P = {P(ξ) ∶M(P,P0) ≤ ϵ} (4.2)

The membership of the elements of the ambiguity set, hereby termed as candidate

distributions (P), is defined using the radius ϵ. The ambiguity set contains all candi-

date probability distributions P which are within a certain ϵ-magnitude of a metric

M relative to a nominal distribution P0. The size of the ambiguity set is controlled

via ϵ which further introduces the level of distributional ambiguity considered, and

must be carefully tuned to ensure that P is not unnecessarily large thereby admitting

unnecessary distributions for consideration under the worst-case setting. A schematic

representation of a metric-based ambiguity set is depicted in Figure 4.1. The nominal

distribution P0 is usually defined on available information of the uncertainty ξ; for
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Figure 4.1: A schematic representation of a metric-based ambiguity set (P) used for
DRO. Ptrue is the true underlying probability distribution of the uncertainty (ξ) in
the problem, which is not known exactly by the user. P0 is the nominal distribution
estimated from available information on ξ. ϵ is the user-defined radius of P. Pwc

refers to that distribution in P that gives the worst-case expected performance of
the problem. The different distributions are among the candidate distributions (P)
located within ϵ−magnitude of a metric from P0

.

instance, it may be estimated as a uniformly weighted empirical distribution using N

sampled data realizations of ξ ∶= {ξ01 , ξ
0
2 , ..., ξ

0
N} as,

P0(ξ0j ) =
1

N
, ∀1 ≤ j ≤ N (4.3)

Under the definition in Model 4.1, the DRO model is well-equipped to deal with op-

timization problems involving parametric uncertainty in the objective function. When

the problem involves uncertainty in the its constraints, chance-constrained program-

ming is a popular stochastic programming method to obtain optimal solutions. This

approach is discussed in the next section.

4.2.2 Chance-constrained programming

As mentioned in Section 4.1, stochastic programming methods for optimization under

uncertainty utilize the probability distribution information of the underlying uncer-

tainty. Chance-constrained programming (CCP), is one such method in which the
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uncertainty-riddled constraints in an optimization problem are modeled as proba-

bilistic constraints. More specifically, CCP models the problem such that the optimal

solution obtained optimizes the given objective function while simultaneously satis-

fying the constraint defining its feasibility to a user-defined level. The general form

of a CCP problem is given as,

min
x∈X

f(x) (4.4a)

s.t. Pr(gi(x, ξ) ≤ 0, ∀1 ≤ i ≤m) ≥ 1 − δ (4.4b)

Here, δ ∈ [0,1] defines the level of “strictness” (also termed as constraint violation

allowance) to which the m constraints must be satisfied; it is usually set to a small

value such as 0.1 or 0.05 to ensure that the constraint 4.4b is satisfied with a prob-

ability of 90% or 95%, respectively. Model 4.4 considers no distributional ambiguity

with respect to the distribution of ξ. Under the setting discussed in Section 4.2.1, the

distributionally robust chance-constrained programming (DRCCP) problem may be

defined as,

min
x∈X

f(x) (4.5a)

s.t. min
P∈P

PrP(gi(x, ξ) ≤ 0, ∀1 ≤ i ≤m) ≥ 1 − δ (4.5b)

Constraint 4.5b restricts the model to find an optimal solution such that the worst-

case probability of satisfaction of the feasibility constraints, over all the distributions

in P, is at least 1 − δ. It must be noted that the CCP models in (4.4) and (4.5)

consider the “joint” chance-constrained (JCC) problem which is a setting under which

m constraints must be simultaneously satisfied to the required level. When m = 1,

the problem is termed an ”individual” chance-constrained (ICC) problem.
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4.2.3 Wasserstein distance

Optimal transport (OT) theory is a mathematical concept that borrows from the

logistic optimization problem of matching supply to demand at least cost, in order

to address the topic of computing the similarity between probability distributions.

Under this view, the OT problem quantifies the effort required to “reshape” one

probability distribution to fit another as a metric of similarity between the distribu-

tions.

Consider the probability spaces ζ ∼ P(1) and ω ∼ P(2), and an associated pairing cost

function θ(ζ, ω) that may be described by a distance. The p−Wasserstein distance

between P(1) and P(2) is computed as,

Wp(P(1),P(2)) ∶= ( inf
π∈Π(P(1)×P(2))

∫ θ(ζ, ω)
pdπ(ζ, ω))

1/p

(4.6)

Here, θ(ζ, ω) is a measurable, nonnegative distance function, usually norm-based,

that describes the cost of transporting probability mass from elements of ζ to those

of ω. Π denotes the set of all joint distributions whose marginal distributions are

P(1) and P(2). The optimal objective value of the problem is denoted as the “optimal

transport (OT) distance”, which is a quantitative similarity measure between P(1) and

P(2), while the “optimal transport plan” refers to the least cost method of transporting

probability masses from ζ to ω. The 1-Wasserstein (W1) distance is obtained by

setting p = 1 in 4.6 as,

W1(P(1),P(2)) ∶= min
π∈Π(P(1),P(2))

∫ ∣∣ζ − ω∣∣dπ(ζ, ω) (4.7)

In practical applications, the discrete form of the 1-Wasserstein optimal transport

problem in 4.7 is used. For the discrete distributions P̃
(1)

and P̃
(2)

supported on A

and B samples, respectively, the 1-Wasserstein distance is computed as,

W1(P̃
(1)

, P̃
(2)
) ∶= min

πa,b≥0

A

∑
a=1

B

∑
b=1

∣∣ζa − ωb∣∣πa,b (4.8a)
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s.t.
B

∑
b=1

πa,b = ρa, ∀1 ≤ a ≤ A (4.8b)

A

∑
a=1

πa,b = ρb, ∀1 ≤ b ≤ B (4.8c)

Here, the constraints 4.8b and 4.8c denote the probability mass conservation con-

straints imposed on the discrete transport problem, while ρa and ρb denote the prob-

ability mass associated with the support elements ζa and ωb of the distributions P̃
(1)

and P̃
(2)

, respectively. An illustration of the discrete optimal transport problem is

presented in Figure 4.2.

Figure 4.2: A schematic depiction of the discrete optimal transport problem (Model
4.8). The color intensity of the transport map depicts the amount of probability mass

transported from the supporting elements of P̃(1) (green) to those of P̃(2) (red). The
length of the bars depict the probability masses of the elements supporting P̃(1) and
P̃(2)

.

The 1-Wasserstein distance is a popularly used metric that has been used exten-

sively in literature (Rahimian and Mehrotra 2019) to construct ambiguity sets for
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DRCCP. The 1-Wasserstein ambiguity set is defined as,

PW = {P ∶W1(P0,P) ≤ ϵW} (4.9)

That is, the 1-Wasserstein ambiguity set PW is defined as the set of all candidate

probability distributions P which are located within a certain ϵW -magnitude of 1-

Wasserstein distance relative to the nominal distribution P0. Here, P0 and P may be

considered analogous to P̃
(1)

and P̃
(2)

in Model 4.8, respectively.

4.2.4 Optimal transport between Gaussian Mixture Models

In this work, we leverage a variant of optimal transport developed by (Chen et al.

2018) for Gaussian mixture models (GMMs) to construct an ambiguity set for DR-

CCP. While the Wasserstein distance applies optimal transport in the Euclidean

space, the authors extend this idea to developing optimal transport between GMMs,

wherein each GMM is treated as a discrete weighted measure of Gaussian support

elements, in a space of Gaussian distributions. Specifically, the authors consider each

marginal P(1) and P(2) as a GMM equivalent to an finite-dimensional discrete measure

of weights supported by Gaussian component distributions as follows,

P(1) ∶=
L(1)

∑
l=1

w
(1)
l ν

(1)
l , P(2)∶=

L(2)

∑
l=1

w
(2)
l ν

(2)
l (4.10)

to solve the following optimal transport problem by solving the following discrete

linear programming (LP) problem, henceforth termed the OT-GMM problem in this

work,

W 2
d (P(1),P(2)) =min

π≥0

L(1)

∑
l=1

L(2)

∑
l′=1

cl,l′πl,l′ (4.11a)

s.t.
L(2)

∑
l′=1

πl,l′ = w
(1)
l , ∀1 ≤ l ≤ L(1) (4.11b)

L(1)

∑
l=1

πl,l′ = w
(2)
l′ , ∀1 ≤ l′ ≤ L(2) (4.11c)
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We denote the “optimal transport distance between GMMs” as Wd(P(1),P(2)) in

our work, which is the square root of the optimal value of the above problem 4.11.

It may be noted that the cost cl,l′ of transport between the Gaussian components

of the GMM marginals may be computed using closed form expression for optimal

transport between Gaussian marginals, namely ζ ∼ ν(1) ∶ N(µ(1),Σ(1)) and ω ∼ ν(2) ∶

N(µ(2),Σ(2)), which is established in literature (Takatsu 2011),

W2(ν
(1), ν(2))2 ∶= min

γ∈Γ(ν(1),ν(2))
∫ ∣∣ζ − ω∣∣

2dπ(ζ, ω) (4.12a)

= ∣∣µ(1) − µ(2)∣∣2 +Tr[Σ(1) +Σ(2) − 2([Σ(1)]
1
2

Σ(2)[Σ(1)]
1
2

)

1
2

] (4.12b)

Wd(P(1),P(2)) defines a metric on the GMM distributional space. It may be noted

that (Delon and Desolneux 2020) also propose a Wasserstein-type metric for GMMs;

the authors further extend their formulation to probability distributions that are not

GMMs by proposing a similarity metric that is a combination of their Wasserstein-

type distance and the Kullback-Leibler (KL) Divergence. (Dusson et al. 2023) ex-

tended their work (Delon and Desolneux 2020) to generic mixture models to provide

an optimal transport-type metric to measure the similarity between spaces described

by location-scatter atoms, and group-invariant measures. In the following section, we

illustrate the use of Wd(P(1),P(2)) as an alternative to the 1-Wasserstein metric for

DRCCP, and derive a tractable model formulation for the same.

4.3 Proposed distributionally robust chance-constrained

optimization method

4.3.1 Preliminaries and background

We start with the general formulation of the DRCCP problem in Model 4.5 wherein

the worst-case constraint satisfaction is rewritten from the lens of worst-case con-
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straint violation,

min
x∈X

f(x) (4.13a)

s.t. max
P∈P

PrP(gi(x, ξ) > 0, ∀1 ≤ i ≤m) ≤ δ (4.13b)

Using an epigraph reformulation of the constraints within the joint chance con-

straint, Model 4.13 is modified as,

min
x∈X

f(x) (4.14a)

s.t. max
P∈P

PrP(max
1≤i≤m

gi(x, ξ) > 0) ≤ δ (4.14b)

Solving Model 4.14 for its current form of the probabilistic constraint 4.14b poses

difficulties for a number of reasons chief of which is that its feasible region may not

be convex, or quasi-convex, even for convex functions gi(x, ξ), ∀i in addition to

the need for the computation of multidimensional integrals to check the feasibility

of a point. The JCC may be quasi-convex for a number of special cases, such as

when gi(x, ξ), ∀i are all quasi-convex functions of (x, ξ), and ξ has a log-concave

distribution (Prékopa 2003). It may be noted that all log-concave distributions are

necessarily unimodal (An 1997), and therefore, in practical applications where ξ may

follow multimodal distributions, as in our assumption for this work, this condition for

quasi-convexity of the JCC, and subsequently, convexity of the JCCP does not hold.

In this context, a better alternative to dealing with the probabilistic constraint

would be to use a convex conservative approximation to the same, a number of which

have been studied in the literature. One popular approach is to use the Conditional

Value-at-Risk (CVaR) approximation (Rockafellar, Uryasev, et al. 2000). It may be

noted that other approximation techniques such as quadratic approximation (Ben-Tal

and Nemirovski 2000), and Bernstein approximation (Nemirovski and Shapiro 2007)
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are also available. In this work, we use the CVaR approximation to the probabilistic

DRCCP.

The probabilistic constraint in 4.14b is first transformed to its indicator function-

based form, and the CVaR approximation is applied to the expectation of the indicator

function reformulation of constraint 4.14b to give,

min
x∈X

f(x) (4.15a)

s.t. max
P∈P

min
η

η +
1

δ
EP[(max

1≤i≤m
gi(x, ξ) − η)

+

] ≤ 0 (4.15b)

Here, (g(x))
+
∶=max (g(x),0). A detailed derivation of constraint 4.15b from 4.14b

may be found in Nemirovski and Shapiro (2007). The “min” and “max” operators in

Constraint 4.15b may be rearranged to give,

min
x∈X

f(x) (4.16a)

s.t. min
η

η +
1

δ
max
P∈P

EP[(max
1≤i≤m

gi(x, ξ) − η)

+

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Worst-case expectation problem

≤ 0 (4.16b)

The worst-case expectation problem indicated in Model 4.16 incorporates the dis-

tributional ambiguity considered in this DRCCP formulation. In the following section,

we derive the worst-case expectation problem for an ambiguity set constructed using

the optimal transport distance between Gaussian mixture models described in Section

4.2.4.
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4.3.2 Worst-case expectation problem under the Wd ambigu-
ity set

To address the inner worst-case expectation problem, consider a general form as

follows,

max
P∈P

EP[L(ξ)] (4.17)

Under the Wd distance, Model 4.17 may be articulated as,

max EP[L(ξ)] (4.18a)

s.t. Wd(P0,P) ≤ ϵd (4.18b)

where ϵd denotes the radius of the ambiguity set defined by the Wd distance. A

schematic illustration of the ambiguity set is given in Figure 4.3. When P0 and P are

modeled as Gaussian mixture models (GMMs), constraint 4.18b may be explicitly

written using the optimal transport problem in Model 4.11 as,

max EP[L(ξ)] (4.19a)

s.t. min
πl,l′≥0

L

∑
l=1

L

∑
l′=1

cl,l′πl,l′ ≤ ϵ
2
d (4.19b)

L

∑
l′=1

πl,l′ = w
0
l , ∀1 ≤ l ≤ L (4.19c)

L

∑
l=1

πl,l′ = wl′ , ∀1 ≤ l′ ≤ L (4.19d)

for the nominal (P0) and candidate (P) distributions modeled as Gaussian mixture

models,

P0 ∶= w0
1ν

0
1 +w

0
2ν

0
2 + ... +w

0
Lν

0
L (4.20a)

P ∶= w1ν
0
1 +w2ν

0
2 + ... +wLν

0
L (4.20b)
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and where, for the Gaussian components ν0
l ∶= N(µ0

l ,Σ
0
l ) and ν0

l′ ∶= N(µ0
l′ ,Σ

0
l′),

cl,l′ ∶=W2(ν
0
l , ν

0
l′)

2 = ∣∣µ0
l − µ

0
l′ ∣∣

2 +Tr[Σ0
l +Σ

0
l′ − 2([Σ

0
l ]

1
2

Σ0
l′[Σ

0
l ]

1
2

)

1
2

] (4.21)

The ambiguity set is defined here using ϵ2d since the Wd distance is defined as the

square root of the objective value of the OT-GMM problem. An important point to

note here is that the candidate distributions (P) are defined on the same Gaussian

support elements as the nominal distribution (P0). In doing so, we incorporate some

amount of first- and second-order statistical moment information identified from un-

certainty data realizations into the defintion of the ambiguity set. The expectation

EP[L(ξ)] with respect to a GMM may be written as ∑
L
l′=1wl′Eν0

l′
[L(ξ)]. Dropping

the “min” operator in constraint 4.19b, and rewriting the problem in terms of πl,l′

only,

max
πl,l′

L

∑
l=1

L

∑
l′=1

πl,l′Eν0
l′
[L(ξ)] (4.22a)

s.t.
L

∑
l=1

L

∑
l′=1

cl,l′πl,l′ ≤ ϵ
2
d (4.22b)

L

∑
l′=1

πl,l′ = w
0
l , ∀1 ≤ l ≤ L (4.22c)

πl,l′ ≥ 0, ∀1 ≤ l ≤ L,1 ≤ l
′ ≤ L (4.22d)

In order to convert constraint 4.16b into an overall minimization form, the dual of

Model 4.22 is taken,

min
κ,yl

κϵ2d +
L

∑
l=1

w0
l yl (4.23a)

s.t. yl ≥ −κcl,l′ +Eν0
l′
[L(ξ)], ∀1 ≤ l, l′ ≤ L (4.23b)

κ ≥ 0 (4.23c)

Strong duality holds due to the linear program nature of the primal problem.
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Figure 4.3: An schematic illustration of theWd distance-based ambiguity set proposed
in this work. Here, an ambiguity set of radius ϵd = 5 is constructed around the nominal
distribution P0. A number of candidate distributions whose Wd distance from P0 is
at most ϵd = 5 are shown.

4.3.3 CVaR-based DRCCP problem under the Wd ambiguity
set

Substituting the dual form of the worst-case expectation problem (Model 4.23) into

Model 4.16, the following Wd DRCCP problem is obtained,

min
x∈X

f(x) (4.24a)

s.t. min
yl,η,κ

η +
1

δ
(κϵ2d +

L

∑
l=1

w0
l yl) ≤ 0 (4.24b)

yl ≥ −κcl,l′ +Eν0
l′
[(max

1≤i≤m
gi(x, ξ) − η)

+
], ∀1 ≤ l, l′ ≤ L (4.24c)

κ ≥ 0 (4.24d)

The inner minimization operator of 4.24b can be dropped without changing the

feasible set. Furthermore, constraint 4.24c requires the computation of the expec-

tation over a max-function imposed on the constraints within the original JCC. To

this end, we have chosen to use sample average approximation (SAA) for the inner
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expectation term as follows,

min
x∈X,yl,η,κ

f(x) (4.25a)

s.t. η +
1

δ
(κϵ2d +

L

∑
l=1

w0
l yl) ≤ 0 (4.25b)

yl ≥ −κcl,l′ +
1

K

K

∑
k=1

(max
1≤i≤m

gi(x, ξk) − η)
+
, ∀1 ≤ l, l′ ≤ L (4.25c)

κ ≥ 0 (4.25d)

Furthermore, an epigraph formulation is used with the introduction of a new vari-

able tk,l′ to reformulate (max
1≤i≤m

gi(x, ξ) − η)
+
,

min
x∈X,yl,η,κ,tj,l′

f(x) (4.26a)

s.t. η +
1

δ
(κϵ2d +

L

∑
l=1

w0
l yl) ≤ 0 (4.26b)

yl ≥ −κcl,l′ +
1

K

K

∑
k=1

tk,l′ , ∀1 ≤ l, l′ ≤ L (4.26c)

tk,l′ ≥ gi(x, ξk) − η, ∀1 ≤ k ≤K,1 ≤ l′ ≤ L,1 ≤ i ≤m (4.26d)

tk,l′ ≥ 0, ∀1 ≤ k ≤K,1 ≤ l′ ≤ L (4.26e)

κ ≥ 0 (4.26f)

The above model is a deterministic optimization problem, which can be solved using

standard optimization solvers depending on the type of the constraint function. For

instance, if f(x) and gi(x, ξ) are all linear functions, then it is a linear program-

ming problem. The above reformulation is applicable for general constraint function

gi(x, ξ). Hence, this method is more general and can be used for various types of

optimization problem. This is one advantage compared to the Wasserstein ambiguity

set based method, which has limitations in the types of the constraint functions.
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4.4 Numerical example

4.4.1 Performance evaluation of the proposed Wd DRCCP
method

In this section, we illustrate our DRCCP proposed method (Model 4.26) on a numer-

ical example. This problem (Pagnoncelli et al. 2009) refers to a cost minimization

problem for a choice of two fertilizers, where x1 and x2 refer to the mass amounts of

the fertilizers, to achieve certain total nutritional thresholds specified by the contents

of the joint chance-constraint. ξ1 and ξ2 refer to the uncertain nutritional content in

one of two fertilizers, and the objective of this optimal problem is to obtain a decision

policy that achieves a minimum nutritional content satisfaction - 12 units for nutrient

1 and 5 units for nutrient 2 - with a user-defined threshold. When the probabilistic

constraint is considered under distributional ambiguity, the following distributionally

robust joint chance-constrained problem is defined,

min
x1,x2

x1 + x2 (4.27a)

s.t min
P (ξ)∈P

P
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ξ1x1 + x2 ≥ 12

ξ2x1 + x2 ≥ 5

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

≥ 1 − δ (4.27b)

x1, x2 ≥ 0 (4.27c)

We set the joint chance-constraint violation probability to δ = 0.05; that is, we

constrained the problem to achieve a minimum joint chance-constraint satisfaction of

95%. As mentioned in the previous sections, our proposed method fits a Gaussian

mixture model to the uncertainty data available, to further construct an ambiguity

set against which the problem hedges to give an optimal solution. Here, we chose to

source the realizations of [ξ1, ξ2] from a multimodal process described by the following

bivariate 3-component Gaussian mixture model and its corresponding attributes,

Ptrue ∶= 0.25N(µ1,Σ1) + 0.45N(µ2,Σ2) + 0.3N(µ3,Σ3) (4.28)
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where,

µ1 = [1.7,0.51], µ2 = [2.15,0.72], µ3 = [3.4,0.79],

Σ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.04 0

0 0.0006

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,Σ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.06 0

0 0.0009

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,Σ3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.025 0

0 0.0008

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The Wd DRCCP method proposed in this work is based on the Gaussian Mix-

ture Model (GMM) fitted to the available data on the underlying uncertainty in the

problem (P0). In this work, we leverage the fitgmdist function available in MATLAB,

which uses the expectation maximization (EM) algorithm. The convergence of the

EM algorithm to a GMM that describes the multimodal nature of the data well is

largely dependent on the choices made regarding the type of covariance matrix for

each fitted component, the starting solution for the algorithm, the number of repli-

cates performed, as well as any regularization needed to avoid singularity issues. It

may be noted that only attributes of P0 are utilized in the proposed Wd DRCCP

method.

To compare the efficacy of our proposed Wd DRCCP formulation, we ran studies

using our method, as well as the established 1-Wasserstein DRCCP method for a test

set of uncertainty realizations sourced from Ptrue. The solution from each DRCCP

method is evaluated on the basis of two metrics, namely, the optimal cost associated

with the distributionally robust solutions, and the 5th percentile of the joint chance-

constraint satisfaction, henceforth denoted as 5th percentile JCSP in this text. The

latter metric is a measure of conservatism of the solution. As a general trend in

chance-constrained programming, there is a trade-off between the optimal cost asso-

ciated with a minimization problem and the conservatism of the solution, which is

evidenced by the existence of a Pareto front between these metrics. More specifically,

a low cost solution displays lower conservatism while a higher cost solution displays
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more conservatism. In the context of an optimization problem with a minimization

objective, it is desirable for this Pareto front to lie in the bottom right hand side of

the optimal objective-JCSP plot. It may be noted that larger values of ϵ correspond

to a larger degree of ambiguity or a smaller level of confidence regarding the nominal

distribution fitted to available data. From a distributionally robust perspective, an

increase in the ambiguity set radius is usually associated with an increase in con-

servatism due to the inclusion of a higher number of probability distributions in the

ambiguity set against which the problem hedges. Figure 4.4 illustrates this Pareto

front between the median optimal cost over 100 trial datasets, and corresponding the

5th percentile JCSP obtained using a test dataset of 106 samples.

Figure 4.4 illustrates the trade-off between the optimal cost and the conservatism

of the optimal solution for an increasing range of Wasserstein (ϵW ) and Wd (ϵd) am-

biguity set radii, denoted by the red and black curves, respectively, for a choice of 4

different sample sizes N = {30,40,50,60}. The green line represents the user-defined

threshold for a minimum joint chance constraint satisfaction of 95%. From this figure,

we show that the trade-off curve pertaining to our proposed method is located lower

than that of the Wasserstein method for DRCCP. This result may be explained as

follows. In the case of Wasserstein DRCCP, the ambiguity set, being metric-based,

includes all probability distributions that are located within a certain ϵW -magnitude

of Wasserstein distance relative to the nominal distribution. To this end, no further

restrictions are placed on the construction of the Wasserstein ambiguity set which, in

practice, might include numerous pathological distributions that direct the problem

towards finding a more conservative solution, with an associated higher cost, than is

required.

However, in the Wd DRCCP approach, the nominal distribution (P0) is estimated

as a GMM from the data realizations available on ξ. Furthermore, the candidate dis-
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tributions in a Wd ambiguity set are restricted to those GMMs defined on the same

Gaussian components (or modes) identified in the data (refer to the definition in

4.20). Therefore, the Wd ambiguity set includes all GMMs based on the components

identified in the nominal model (P0) that are located within a certain ϵd-magnitude

of Wd distance relative to the nominal distribution. This restriction imposed on the

Wd ambiguity set ensures that the Wd DRCCP problem hedges against a smaller

number of distributions as compared to the Wasserstein approach; furthermore, this

restriction is an informed one. That is, the imposed restriction on the Wd-ambiguity

set effectively incorporates first- and second-order statistical moments from the un-

certainty data realizations into the model. To that end, the proposed method may be

seen as effectively incorporating not only elements of metric-based, but also moment-

based ambiguity set construction for DRCCP.

Table 4.1 displays the results of the studies conducted for the numerical example as

the median optimal costs and their corresponding tuned ambiguity set radii. We show

that for all considered sample sizes (N), as evidenced in Figure 4.4, our proposed Wd

DRCCP formulation offers a lower-cost solution compared to the Wasserstein formu-

lation for a tuned 5th percentile JCSP of 95%. It may be noted that for N = 60,

the Wd DRCCP formulation offers 5th percentile JCSP > 95% even for an ambiguity

set radius of ϵd = 0. We recall that the CVaR-based approximation of the chance

constraint is a convex, conservative approximation in order to explain this finding.

Finally, we draw the reader’s attention to the effect of the number of sampled un-

certainty realizations available (N) to fit the nominal distribution. It may be noted

that the performance of both Wasserstein and Wd DRCCP methods improves with an

increase in N which may be attributed to a better approximated nominal distribution

for larger N.
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(a) (b)

(c) (d)

Figure 4.4: Evolution of the trade-off between median optimal objective and joint
chance constraint satisfaction probability (JCSP) for Wasserstein DRCCP (red curve)
and the proposed Wd DRCCP (black curve) using (a) 30 samples, (b) 40 samples, (c)
50 samples, and (d) 60 samples of uncertainty realizations to fit P0. The green line
depicts the minimum threshold of 95% JCSP to be achieved by the optimal solution.

Table 4.1: Median optimal objective values and their corresponding tuned ambiguity
set radii for 95% JCSP

Sample size Wasserstein DRCCP Wd DRCCP

30 9.7143 / 0.0056 9.3604 / 0.2385

40 9.6465 / 0.0050 9.3137 / 0.1700

50 9.3146 / 0.0033 9.1675 / 0.1350

60 9.2537 / 0.0011 9.1292 / 0.0000
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4.4.2 Worst-case distributions

In this section, we investigate the worst-case distributions encountered in the Wasser-

stein and the proposed Wd approaches to DRCCP for the numerical example shown

in Model 4.27. As mentioned in Section 4.2.2, DRCCP finds optimal solutions under

distributional ambiguity associated with the chance constraint by hedging against

the worst-case distribution in the ambiguity set. To this end, it is worthwhile to,

first, find the probability distribution associated with the worst-case realization of

the probabilistic constraint (henceforth, referred to as Pwc), and then, compare and

contrast the worst-case distributions encountered in Wasserstein and Wd DRCCP.

The Wasserstein worst-case expectation distribution is obtained by solving Model

4.17 with the loss function set to (max
1≤i≤m

gi(x, ξ)−η)
+
, and the ambiguity set descrip-

tion taken from Model 4.8. The corresponding Wasserstein worst-case expectation

problem is given as,

max
πW
j,h
≥0

N(1)

∑
j=1

N(2)

∑
h=1

[max
1≤i≤m

gi(x
∗
Wass, ξh) − η

∗
Wass]

+
πW
j,h (4.29a)

s.t.
N(1)

∑
j=1

N(2)

∑
h=1

∣∣ξh − ξj ∣∣π
W
h,j ≤ ϵW (4.29b)

N(2)

∑
h=1

πW
j,h =

1

N
, ∀1 ≤ j ≤ N (1) (4.29c)

where {ξh} denotes the discrete support point for the candidate distributions, while

{ξj} denotes the discrete support of the nominal distribution. N (1) is the number of

samples in the nominal empirical distribution, N (2) is the number of support points

for the candidate distribution. In this illustration, we choose N (2) >> N (1) to inves-

tigate the worst-case distribution. πW
j,h denotes the OT plan between the empirical

(uniformly-weighted) discrete nominal distribution and the Wasserstein worst-case

distribution.
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The Wd worst-case expectation distribution is obtained by solving Model 4.22 with

the same loss function (max
1≤i≤m

gi(x, ξ) − η)
+

max
πd
j,h
≥0

L

∑
l=1

L

∑
l′=1

1

K

K

∑
j=1

[max
1≤i≤m

gi(x
∗
Wd

, ξj,l′) − η
∗
Wd
]
+
πd
l,l′ (4.30a)

s.t.
L

∑
l=1

L

∑
l′=1

cl,l′π
d
l,l′ ≤ ϵ

2
d (4.30b)

L

∑
l′=1

πd
l,l′ = w

0
l , ∀1 ≤ l ≤ L (4.30c)

where {ξj,l′} refer to the sampled uncertainty realizations from each Gaussian com-

ponent (ν0
l ) of the GMM fitted to the data {ξ0j }. πd

l,l′ denotes the OT plan between

the fitted nominal GMM and the Wd worst-case (GMM) distribution. Both models

4.29 and 4.30 are solved using their respective DRCCP model solutions (x∗Wass, x
∗
Wd
)

and CVaR approximation variables (η∗Wass, η
∗
Wd
). The discrete probability masses {ρh}

associated with the Wasserstein candidate support set {ξh} are computed from πW
j,h.

The Gaussian component weights wl′ associated with the Wd candidate Gaussian

components are computed from πd
l,l′ . These weights were further used to visualize the

worst-case distributions for Wasserstein and Wd DRCCP in Figure 4.5.

Figures 4.5a and 4.5b illustrate the discrete worst-case distribution in 2-dimensions

(red bars) for an instance of the problem in 4.27 solved using Wasserstein DRCCP

with an ambiguity set radius ϵW = 0.0022. Figures 4.5c and 4.5d illustrate the GMM

in 2-dimensions (red curves) corresponding to the worst-case distribution for the same

instance of Model 4.27 solved using Wd DRCCP with ϵd = 0.0022. The blue curve

illustrates the true underlying distribution in (4.28).

It may be noted that the discrete worst-case distribution associated with a Wasser-

stein ambiguity set is supported on at most N (1)+1 points (Gao and Kleywegt 2023),

which is also verified by the figure above. Therefore, since Wasserstein DRCCP hedges
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(a) (b)

(c) (d)

Figure 4.5: An illustration of the worst-case distributions associated with the Wasser-
stein DRRCP [(a) - (b)] and Wd DRCCP [(c) - (d)] formulations. The red bars in (a)
- (b) depict the discrete weights corresponding to the worst-case distribution for the
Wasserstein DRCCP approach, while the red curves in (c) - (d) depict the worst-case
continuous (GMM) distributions for the Wd DRCCP approach. The blue curves in
(a) - (d) depict the true GMM (Ptrue).

against a discrete distribution, it is not well-equipped to offer optimal (or even fea-

sible in some cases) solutions when the true underlying distribution of uncertainty is

continuous in nature. In contrast, the worst-case distribution associated with the Wd

ambiguity set used in this work is always a continuous distribution (that is, a GMM).

In the case that the true distribution shows multimode feature, the worst-case GMM

can well capture this multimodal property. In other words, the proposed method can

hedge against the right type of distributions to avoid conservative solution, which is

the case by using classical Wasserstein ambiguity set.
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4.5 Case study

In this section, we apply the proposed Wd DRCCP formulation to a chemical pro-

cess design case study under parametric uncertainty. This problem statement was

adapted from Example 14.3 (Edgar et al. 2001) (along similar lines as in Yang and

Li (2023)). The chemical process shown in Figure 4.6 refers to a simplified alkylation

process described by Sauer et al. (1964) whose total operating profit per day is to be

maximized, subject to various performance and economic constraints, and physical

relationships.

Figure 4.6: A schematic representation of the process flowsheet for acid-catalysed
alkylation of olefins.

The objective is to maximize the net profit, calculated from revenue due to alky-

late product sales and costs due to olefin feed, isobutane recyle, acid addition, and

isobutane makeup streams. The process variables xp descriptions and bounds are

given in Table 4.2. The process model is described through the physical relationships

in Equations 4.31. Equation 4.31a describes the volumetric balance over the reactor

in order to compute the isobutane makeup flow rate (x5), accounting for shrinkage.
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Equation 4.31b computes the acid strength (by weight percentage) using the acid ad-

dition rate (x3), alkylate yield (x4), and the acid dilution factor (x9), assuming that

the added acid stream has a strength of 98%. The motor octane number (x7) is mod-

eled through a nonlinear function of the isobutane-olefin ratio (x8) and acid strength

(x6) (Equation 4.31c). Equation 4.31d is used to compute the isobutane-olefin ratio

(x8) using the recycle (x2) and the makeup streams (x5), and the olefin feed rate (x1).

The acid dilution factor (x9) is a linear function of the F-4 performance number (x10)

(Equation 4.31e).

x5 = 1.22x4 − x1 (4.31a)

x6 =
98000x3

x4x9 + 1000x3

(4.31b)

x7 = 86.35 + 1.098x8 − 0.038x
2
8 + 0.325(x6 − 89) (4.31c)

x8 =
x2 + x5

x1

(4.31d)

x9 = 35.82 − 0.222x10 (4.31e)

The model also includes two regression models 4.32b and 4.32c for x4 and x10,

respectively. In this work, we relaxed the regression models by introducing user-

defined acceptable levels of prediction error. Furthermore, we consider parametric

uncertainty in the regression coefficients of the nonlinear model for x4 by means of

a distributionally robust joint chance-constraint imposed on this relationship. The

corresponding DRCCP problem is formulated as following,

max
x

C1x4x7 −C2x1 −C3x2 −C4x3 −C5x5 (4.32a)

s.t. min
P∈P

PrP
⎛
⎜
⎝

x1(ξ(1) + ξ(2)x8 + ξ(3)x2
8) ≥ 0.89x4

x1(ξ(1) + ξ(2)x8 + ξ(3)x2
8) ≤ 1.12x4

⎞
⎟
⎠
≥ 1 − δ (4.32b)

−0.89x10 ≤ 133 + 3x7 ≤ 1.12x10 (4.32c)

Eqs. 4.31a - 4.31e (4.32d)
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Table 4.2: Description, bounds and values associated with the operating variables
and parameters associated with the alkylation process case study

Variable Description Units Lower bound Upper bound

x1 Olefin feed rate barrels/day 0 2000

x2 Isobutane recycle rate barrels/day 0 16000

x3 Acid addition rate 103 lbs/day 0 120

x4 Alkylate yield rate barrels/day 0 5000

x5 Isobutane makeup rate barrels/day 0 2000

x6 Acid strength (weight percentage) - 85 93

x7 Motor octane number - 90 95

x8 Isobutane-olefin ratio - 3 12

x9 Acid dilution factor - 0.01 4

x10 F-4 performance number - 145 162

Parameter Description Units Value

c1 Alkylate product value $/octane-barrel 0.063

c2 Olefin feed cost $/barrel 5.04

c3 Isobutane recycle cost $/barrel 0.035

c4 Acid addition cost $/103 lbs 10

c5 Isobutane makeup cost $/barrel 3.36

We consider multimodal uncertainty sourced from a 3-component GMM.

Ptrue ∶= 0.25N(µ1,Σ1) + 0.5N(µ2,Σ2) + 0.25N(µ3,Σ3) (4.33)

where,

µ1 = [1.1,0.099,0.0058], µ2 = [1.12,0.1317,0.0067], µ3 = [1.14,0.1670,0.0071],

Σ1 = Σ2 = Σ3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.9 × 10−5 0 0

0 8.4 × 10−6

0 0 1.8 × 10−8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Model 4.34 illustrates the Wd DRCCP formulation of the case study.

max
x,κ,tk,l′ ,η,yl

C1x4x7 −C2x1 −C3x2 −C4x3 −C5x5 (4.34a)

s.t. η +
1

δ
(κϵ2d +

L

∑
l=1

yl) ≤ 0 (4.34b)
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yl ≥ (
1

K

K

∑
j=1

tk,l′) − κcl,l′ , 1 ≤ l, l′ ≤ L (4.34c)

tk,l′ ≥ −x1(ξ
(1)
j,l′ + ξ

(2)
j,l′ x8 − ξ

(3)
j,l′ x

2
8) + 0.89x4, ∀1 ≤ k ≤K,1 ≤ l′ ≤ L (4.34d)

tk,l′ ≥ x1(ξ
(1)
j,l′ + ξ

(2)
j,l′ x8 − ξ

(3)
j,l′ x

2
8) − 1.12x4, ∀1 ≤ k ≤K,1 ≤ l′ ≤ L (4.34e)

133 − 3x7 + 0.89x10 ≤ 0 (4.34f)

−133 + 3x7 − 1.12x10 ≤ 0 (4.34g)

κ ≥ 0, tk,l′ ≥ 0, ∀1 ≤ k ≤K,1 ≤ l′ ≤ L (4.34h)

Eqs. 4.31a - 4.31e (4.34i)

The resulting problem in Model 4.34 is a nonlinear programming (NLP) problem in

x. In order to compare the practical performance of the proposed Wd formulation, we

also solved the DRCCP formulation of this problem using the Wasserstein ambiguity

set (also an NLP problem). As in the case of the numerical example, we solved this

problem for different sample sizes N = {20,30,40,50} for 100 replicate datasets, and

tracked the evolution of the optimal objective value and the joint chance constraint

satisfaction for increasing ambiguity set radii for δ = 0.05. Figures 4.7 contrast the

trade-off between the median optimal profit obtained through the solutions of the

proposed Wd DRCCP approach (black curve) and the established Wasserstein DR-

CCP approach (red curve) and the associated JCSP, wherein the solid lines represent

the median profit values and the shaded regions depict the 20th and 80th percentile

values. As in the case of the numerical example, it is evident that the proposed Wd

DRCCP method is able to leverage the inclusion of statistical moment information

to produce solutions with higher profit as compared to the Wasserstein DRCCP, for

all levels of JCSP ≥ 95%, based on the relatively higher position of the Wd DRCCP

tradeoff curve/Pareto front compared to that of Wasserstein DRCCP. Additionally,

for the threshold JCSP of 95%, we observe that the Wd DRCCP method offers opti-

mal profits with a lower variability over repeat trials than the Wasserstein DRCCP
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method.

In addition to the evident improvement in the optimal objective value, we draw the

reader’s attention to the slope of the trade-off curves in Figure 4.7 that signifies the

rate at which the problems tends to higher levels of JCSP at the cost of lower profits

(i.e., conservative solutions). In the case of Wasserstein DRCCP, this slope is seen

to be significant for small changes in the ambiguity set radius and therefore, careful

tuning of the ϵW , usually through cross validation techniques, is required to obtain

acceptable levels of conservatism. However, for Wd DRCCP, the optimal solution

tends to saturate at higher ϵW thus preventing the model from returning solutions

with significantly lower profits for JCSP ≥ 95%. This phenomenon occurs as a result

of the worst-case distribution for Wd DRCCP tending towards a single component

in the fitted GMM, and not further changing beyond a certain ϵd. This property

also naturally leads to a method to compute an acceptable upper bound on ϵd from

the fitted GMM P0 with no need for cross validation as in the case of Wasserstein

DRCCP. Therefore, the proposed Wd DRCCP may be more user-friendly in terms of

tuning of the ambiguity set size/radius than the Wasserstein DRCCP method.
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(a) (b)

(c) (d)

Figure 4.7: Evolution of the trade-off between optimal objective (profit) and the
5th percentile joint chance constraint satisfaction probability (JCSP) for increasing
ambiguity set radii of ϵW = [0,0.0001] for Wasserstein DRCCP (red), and ϵd = [0,0.04]
for Wd DRCCP (black) using (a) 20 samples, (b) 30 samples, (c) 40 samples, and (d)
50 samples of uncertainty realizations to fit P0. The solid lines represent the median
optimal profits, while the shaded areas represent the region between the 20th and 80th

percentile optimal profits for Wasserstein DRCCP (red) andWd DRCCP (black). The
green line depicts the minimum threshold of 95% JCSP to be achieved by the optimal
solution.

4.6 Summary

In this work, we propose a novel formulation for distributionally robust optimization

in the chance-constrained programming setting (DRCCP) that utilizes a metric-based

ambiguity set constructed using the optimal transport distance between supports

modeled as Gaussian mixture models (GMMs). A driving force behind this formula-
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tion was assessing the effect of incorporating statistical moment information, namely

the mean and variance, into the construction of the ambiguity set from the perspec-

tive of conservatism of the solution given an acceptable threshold. In our approach,

we address this by modeling the available information of the underlying uncertainty,

often multimodal in practical applications, as a Gaussian mixture model which is

further used as a nominal distribution around which the ambiguity set is built. We

illustrated the applicability of our proposed DRCCP formulation on a linear program-

ming numerical example, and developed a formulation of the worst-case distribution

problem. We further implemented our formulation on a practical nonlinear chemi-

cal process optimization case study, and demonstrated the performance in terms of

conservatism, as well as variability. From our results, we show that our formulation

provides better optimal solutions with lower levels of conservatism. Furthermore, we

show that our method offers solutions that are less sensitive to the ambiguity set size,

and are thus less sensitive to tuning of the set radius. Additionally, the Wd DRCCP

method proposed in this work is more generalizable than Wasserstein DRCCP as it

can be applied to both affine as well as non-affine functions of the primitive uncer-

tainty in the joint chance-constraint. As a future work, the proposed method can

be extended to more general mixture models to address the multi-mode nature and

possibly outlier data simultaneously.

Chapters 2, 3 and 4 of this thesis utilize variants of the optimal transport problem to

address challenges in the mathematical optimization framework. Specifically, Chapter

2’s methodologies provide a computationally efficient way to improve the performance

of stochastic programming, while the formulations presented in Chapters 3 and 4

offer ways contribute to literature on ways to incorporate multimodal characteristics

of data into the ambiguity construction step for distributionally robust optimization.

In the following chapters, we pivot to a different use of optimal transport, namely,

to address process monitoring challenges. In Chapter 5, we provide a framework
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to use optimal transport distance as a metric for fault detection. In Chapter 6, we

consider the process monitoring problem under uncertainty accounting for ambiguity

in the probability distribution describing a multimodal process; here, we utilize the

formulation presented in Chapter 3 to provide a study of the worst-case expected

performance of a fault detection system.
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Chapter 5

Change Point and Fault Detection
using the Optimal Transport
distance

Abstract : The automation of real-time process monitoring in the industry is an ongo-

ing challenge. Chief among the objectives of monitoring are change point detection

and the detection of faults in process variables and sensor measurements. In this

chapter, we propose a novel algorithm for change point and fault detection using

Kantorovich Distance (KD), a metric induced from optimal transport theory. To

evaluate the performance of the proposed method, we first evaluate the change point

detection capability of the KD metric for data sampled from various probability dis-

tributions. Next, the fault detection performance of the KD metric is evaluated for

three cases of faults – sustained bias, drift, and multiple intermittent biases – and

contrasted against that of the traditional PCA-based metrics, Q and T 2 statistics.

The algorithm is tested on several case studies including a synthetic data, a simulated

continuous stirred tank heater system and the benchmark Tennessee Eastman pro-

cess. The results obtained showcase the superiority of the proposed algorithm over

the conventional scheme.
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5.1 Introduction

The advent of automated systems in process industries in the past decades has revolu-

tionized process modelling and control to a large extent. In addition to this, process

monitoring plays a vital role in ensuring that the process functions at the chosen

optimal condition. Process monitoring is routinely carried out in industries for a

variety of reasons; an important one among those is abnormal event management

(AEM). AEM comprises the following steps: detection of process changes or abnor-

malities, diagnosis of their origins, and synthesis of control decisions to mitigate them

(Venkatasubramanian et al. 2003c). This exercise is still heavily dependent upon hu-

man supervision and interpretation, due to the broad scope of process abnormalities

and their varied signatures. Additionally, it is costly to depend on human supervision

for monitoring a process plant with large number of variables, as evidenced by various

incidences in history. Hence, there is a need to develop automated process monitoring

systems that are capable of dealing with large volumes of process data quickly.

One common monitoring objective in process industries is change point detection.

The detection of abrupt process changes is of particular interest in chemical process

industries, which operate at certain set optimal conditions deviation from which could

cause serious product quality deterioration or process safety violations. The change

point detection problem can be solved in two ways: supervised learning methods

and unsupervised methods, as briefly detailed by Aminikhanghahi and Cook (2017).

Supervised methods of change point detection use a variety of classifiers, such as

Support Vector Machines (SVM), Gaussian Mixture Models (GMM) and logistic re-

gression. Desobry et al. (2005) used single-class SVM to find dissimilarities between

two descriptors of a signal, for abrupt change detection. Han et al. (2012) used GMM

as a classification technique, for context recognition applications, which is essentially

change point detection, using sensor data from a smartphone. Unsupervised methods
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use techniques such as clustering, likelihood ratios, and probabilistic methods. Kawa-

hara and Sugiyama (2009) proposed the idea of estimation of probability densities for

the purpose of change point detection. Kuncheva (2011) proposed a change detec-

tion algorithm using a semi-parametric log-likelihood criterion (SPLL). For practical

implementation, it is deemed necessary for a change point detection algorithm to be

capable of on-line monitoring and have as little detection delay as possible.

Fault detection methods are broadly classified into quantitative model-based, qual-

itative model-based, and process history-based methods. Both quantitative and qual-

itative model-based methods require knowledge of the process to be monitored, often

relying on first principles. Some commonly used quantitative model-based approaches

are Kalman filters and parity relations (Venkatasubramanian et al. 2003c). Qualita-

tive model-based methods include the use of fault trees and digraphs (Venkatasub-

ramanian et al. 2003a). Process history-based methods, however, only require large

amounts of process history data, which is further transformed and fed into the detec-

tion and diagnostic algorithms. These methods, also known as data-driven feature

extraction methods, are further classified into qualitative and quantitative methods.

Some important methods of qualitative feature extraction include expert systems and

trend analysis (Venkatasubramanian et al. 2003a). Quantitative feature extraction

methods are of two types: statistical and non-statistical (Venkatasubramanian et al.

2003b). Chief among the non-statistical classifiers are neural networks. Statistical

feature extraction methods include Principal Component Analysis (PCA), Partial

Least Squares (PLS) and pattern classifiers. Both PCA and PLS are multivariate

statistical tools that uncover the underlying trends in high-dimensional correlated

data and project them to an alternate space that best depicts the trends. PCA and

PLS, both conceptually similar, have been used extensively as modelling techniques

for anomaly detection in large volume noisy datasets.
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Conventionally, PCA modelling of data is used for fault detection in conjunction

with the Q and Hotelling’s T 2 statistics, which explain the variance not captured, and

captured by the model, respectively, as illustrated by Garcia-Alvarez et al. (2009).

Numerous variants of PCA have been developed for different types of datasets. An

extension of PCA, called dynamic PCA, has been developed for time series process

data which exhibits auto-correlation, and its application in fault detection in a flow

control valve has been evaluated by Mina and Verde (2005). Another extension of

PCA, called multiscale PCA, has been developed by Bakshi (1998) to deal with data

containing events whose behavior changes over both time and frequency scales. This

approach utilizes the ability of wavelet analysis to extract the deterministic features

out of multiscale data, combined with the de-correlation ability of PCA, to detect

anomalies in data. Most industrial data are highly non-linear in nature. Therefore,

a variant called kernel PCA (KPCA) was developed to deal with data exhibiting

non-linear relationships. Samuel and Cao (2014) have shown the fault detection per-

formance of KPCA on the Tennessee Eastman process simulation. In this approach,

the non-linear data is transformed into a higher-dimensional space first, and PCA is

performed on this transformed dataset. Zhang and Jia (2017) proposed a method

called kernel uncorrelated component analysis (KUCA) for complex process monitor-

ing, and applied it to a waste liquor treatment process; the efficacy of this process

was highlighted particularly for non-Gaussian and non-linear processes. In addition

to refining PCA for various types of datasets, the fault detection capability of various

probabilistic and statistical metrics has also been documented in literature. One such

metric is the Kullback-Leibler Divergence (KLD), which is a measure of dissimilarity

between two probability distributions. Harrou et al. (2016) show the superiority of

fault detection performance of the KLD metric applied to PLS model residuals, over

that of the Q and T 2 statistics. Another metric whose fault detection performance

has been evaluated, is the Hellinger Distance. Harrou et al. (2017a) have used the

Hellinger Distance metric with non-linear projection to latent structures (NLPLS)
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modelling for fault detection of data from a simulated plug flow reactor.

In this chapter, we propose the use of the Kantorovich Distance (KD), a metric

from optimal transport theory, for the purpose of change point and fault detection.

In this novel algorithm, we propose to employ KD between PCA model residuals of

training and testing data. The chapter also highlights the change detection capa-

bilities of the KD metric and showcases its ability to deal with data from various

distributions.

The chapter is organized in the following manner. Section 5.2 explains the theory

behind Kantorovich Distance and its various formulations. Section 5.3 studies the

change detection, and fault detection capability of KD for time series data; it also

presents a contrast between the performance of the KD metric calculated using the

linear programming and closed-form approaches for data from different distributions.

The novel PCA model-based fault detection scheme is presented in Section 5.4, and its

performance is evaluated using two case studies and a benchmark setup, as described

in Section 5.5. The conclusions of this work are presented in Section 5.6.

5.2 Optimal Transport Theory and Kantorovich

Distance

The concept of Kantorovich Distance (KD) originates from the optimal transport

problem, which is the basis of transport-based techniques for data analysis. In the

optimal transport problem, the objective is to find the most efficient way of trans-

forming one distribution of mass to another, relative to a given cost function. In

recent literature, these techniques are receiving special attention in the field of signal

processing due to their ability to compare signals and data from different sources.

Kantorovich Distance (KD) is a metric that quantifies the minimum cost needed to

redistribute the probability mass between two distributions.
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5.2.1 Optimal transport

Monge (1781) initially studied the optimal transport problem. His formulation uses

a continuous transport map to assign the spatial correspondence between two distri-

butions P and Q, with supports X and Y, respectively,

M(P,Q) ∶= inf
f∈M

{∫
X
c(x, f(x)) dP(X)} (5.1)

where f is the mapping function to be optimized, c is a given cost function, MP

is the set of measure-preserving mappings,

M = {f ∶X → Y ∣∫
f−1(A)

dP(x) = ∫
A
dQ(y)} (5.2)

Kantorovich (1942) proposed a relaxed formulation, which uses a mass transport

plan instead. The main difference to Monge’s formulation is that mass splitting

is allowed in the transport plan, whereas it is not allowed in the transport map.

Kantorovich’s formulation is given in Equation 5.3,

K(P,Q) ∶= inf
γ∈Γ(P,Q)

{∫
X×Y

c(x, y) dγ(x, y)} (5.3)

where Γ(P,Q) is the set of all joint distributions with marginal distributions P and

Q,

Γ = {γ ∶ γ(A,Y ) = P(A), γ(X,B) = Q(B)} (5.4)

The minimizer γ∗ is the optimal transport plan, also called the optimal coupling.

Kantorovich’s formulation also covers the discrete mass distribution and is more gen-

eral than Monge’s formulation.

To illustrate the above concepts, consider two univariate distributions. Assume

that the transport is from the ‘source’ distribution P to the ‘destination’ distribution

Q. Monge’s transport map seeks a one-to-one map between two points of the two

distributions, while Kantorovich’s formulation seeks a transport plan which can map
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a point from the source distribution to multiple points in the destination distribution.

Figure 5.1 shows the difference between the two formulations. It is to be noted that

the transport map/plan shown in the figure represents only a feasible solution, not

necessarily an optimal transport solution.

(a) (b)

Figure 5.1: (a) Representation of the transport map between two univariate distri-
butions (darkness of the curve is proportional to the weight of mass transport), (b)
Transport plan between two univariate distributions (the surface plot reflects the dif-
ference in probability mass transport)

5.2.2 KD between continuous distributions

The KD metric is a distance function defined between two probability measures with

respect to a given cost function. A commonly used method to define the cost function

is based on norm,

c(x, y) = ∣∣x − y∣∣p (5.5)

For example, the norm can be selected as ∣∣x − y∣∣1 = ∑
k
i=1 ∣xi − yi∣, ∣∣x − y∣∣2 =

∑
k
i=1(∣xi − yi∣)2, or other valid forms. With the above norm-based cost function, the

corresponding KD between two probability measures P and Q is also known as the

p-Wasserstein distance for p ≥ 1,

Wp(P,Q) = ( inf
γ∈Γ(P,Q)∫

∣∣x − y∣∣pdγ(x, y))
1
p

(5.6)
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For the special case of p = 1, the distance is also known as the Monge-Rubinstein

metric or the Earth Mover’s distance.

For Gaussian distributions, the closed form expression of the 2-Wasserstein distance

has been evaluated by Takatsu (2011). Assume n-dimensional random variable x and

y belong to Gaussian measures with mean vectors µ1 and µ2, and covariance matrices

Σ1 and Σ2 respectively, and 2-norm is used for ∣∣x− y∣∣. Then, the KD between x and

y is given by the following closed-form expression in Equation 5.7,

W2(P,Q) = {∣∣µ1 − µ2∣∣
2
2 +Tr(Σ1 +Σ2 − 2(Σ

1
2
1Σ2Σ

1
2
1 )

1
2 )}

1
2

(5.7)

The above conclusion on Wasserstein distance for Gaussian distribution was gen-

eralized to elliptically symmetric distributions by Gelbrich (1990). He showed that

the formula holds for any two distributions P and Q which are translations of distri-

butions whose covariance matrices are related in a certain way. While this condition

is fulfilled as long as they are in the same class of elliptically symmetric distributions

(Rippl et al. 2016). As an example, if both P and Q follow t-distributions, the above

conclusion still holds.

5.2.3 KD between discrete distributions

In many realistic change detection problems, the information available are discrete

data. In such case, the KD can be evaluated through the solution of simple linear

optimization problem. The Kantorovich formulation of the optimal transport prob-

lem treats the problem as a supply-demand linear programming problem between the

elements of two discrete distributions. Consider two discrete distributions given as

follows, X = ∑
n
i=1 piδxi

, Y = ∑
m
j=1 qjδyj .

The KD between two discrete distributions is defined by the optimal objective of
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the following linear programming (LP) problem,

min
γ

n

∑
i=1

m

∑
j=1

γi,jci,j (5.8a)

s.t.
m

∑
j=1

γi,j = pi, ∀i = 1, ..., n (5.8b)

n

∑
i=1

γi,j = qj, ∀j = 1, ...,m (5.8c)

γi,j ≥ 0, ∀i = 1, ..., n, j = 1, ...,m (5.8d)

Here, γi,j refers to the amount of probability mass transferred between xi and yj,

c(xi, yj) refers to the ‘cost’ associated with each transfer of probability mass, pi and

qj are the probability masses associated with each element in X and Y respectively.

The first constraint of Model 5.8 ensures that the probability mass of each xi is

conserved when it is distributed among the elements of Y while the second constraint

ensures that the total transport of probability mass from X to each element in Y is

exactly equal to the probability mass of each yj. It is to be noted that the transfer of

probability mass from X to Y is not a one-one mapping, but a one-many mapping,

as illustrated in Figure 5.2.

(a) (b)

Figure 5.2: Mass transport between two distributions (a) Schematic representation
of mass transport, (b) An example of optimal mass transport between discrete dis-
tributions

Figure 5.2b illustrates an optimal transport between two discrete distributions.
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The circle size is proportional to the probability mass of each element of the two

distributions. The grey circle reflects the transportation plan, where the circle size is

also proportional to the amount of probability mass transformed.

When the distributional information of the data is not available and the closed

form KD formula is not applicable, the LP formulation of KD can be used since it is

not dependent on specific distribution.

5.3 Change point detection using KD

Based on the introduction of KD in the previous section, we present the change point

detection method for time series data.

5.3.1 KD evaluation for time series data

As described in Section 5.2, the Kantorovich Distance between two probability distri-

butions is the optimal “distance” to be traversed, or rather, the optimal cost incurred,

when the probability masses of elements of one distribution are mapped to those of

the other distribution. When it is applied to time series data for change detection, a

natural way to construct the distribution is to consider each data observation as an

element. However, it is observed that grouping individual observations of the data

into “segments” and evaluating the KD based on the probability mass mapping of

these segments, offers a smoother time evolution of KD. The segmentation strategy

employed is illustrated in Figure 5.3. The two signals are split into segments by

sliding a moving window of fixed size k samples across the data. Notice that in the

extreme case with k = 1, it is reduced to the case that each observation is an element

of the distribution.

For univariate data, each element of the distribution is a vector and the cost func-

tion c(xi, yj) = ∣∣xi − yj ∣∣ can be calculated using vector norm. For multivariate data,
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Figure 5.3: Schematic representation of the data segmentation strategy
.

each element is a matrix, which can be rearranged as a vector, and then the vector

norm can be used in a similar fashion.

5.3.2 Change detection within a single signal

When the change point is to be detected within a time series data without a reference

data representing the “normal” condition, segmentation is performed within the data

set itself. This is illustrated through Figure 5.4. To evaluate the change potential

at a time instant, a same size window of m samples of data before and after this

time instant is taken as two time series signals and the segmentation and distribution

generation is performed following the procedure in Section 5.3.1. Finally, the KD

score for that specific time instant is computed. This procedure is repeated for every

time instant. Finally, a KD score plot can be generated and it will be further used as

the basis for change detection.

The change detection capability of this approach is illustrated in Figure 5.5 on a

signal with intermediate mean shift and a signal with intermediate variance change.
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Figure 5.4: Data segmentation and distribution generation within single time series
data

.

The mean shift detection capability of KD, calculated through the linear programming

approach, is illustrated in Figure 5.5a. The signal x experiences a mean shift for a

duration of 200 samples in the course of its time evolution. For each sample, the LP

problem is solved for m samples of the signal preceding and succeeding the sample,

including the current sample itself. It is observed that the points at which the signal

mean shift occurs are clearly detected as significant peaks in the time evolution of

KD. Next, the variance change detection capability of KD, calculated through the

LP approach, is illustrated in Figure 5.5b. The signal x undergoes shows increased

variance for a duration of 200 samples in the course of its time evolution. It is

observed that the period of variance change of the signal is clearly detected in the

time evolution of KD, as a sustained increase in its value.

The aforementioned strategy utilizes data from samples past and future with re-

spect to the current data sample to calculate KD. In the case of on-line monitoring,

the future samples are not available and so, detection is delayed. It is observed that
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(a) (b)

Figure 5.5: Change point detection performance of KD for data with (a) mean shift,
and (b) variance change (right)

the larger the number of segments chosen, the longer it will take for the change to be

detected. Hence, detection delay is found to be directly proportional to the number

of segments s. Another parameter to be chosen in this approach is the number of

data points k in each segment. Arifin et al. (2018) found that the KD score profile is

smoother when the value of k is larger.

When the above strategy is used on a signal that undergoes a (faulty) magnitude

variation in its course, only the point of change from normal process operation is

detected by a significant rise in the KD value. However, once the past and future

windows of m samples corresponding to the two distributions used for the KD cal-

culation move into the fault-ridden signal region, the KD drops back to a negligible

value, thereby providing a false positive that the signal has moved back into normal

process operation. Therefore, to be able to use KD as a fault detection metric, a refer-

ence data set representing normal process operation must be used, against which the

on-line testing data must be compared, to calculate the KD. In the next subsection,

we investigate the change detection performance with a reference signal.
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5.3.3 Change detection against a reference signal

In this section, the change detection using the KD metric is illustrated against a refer-

ence data set. The test signals are generated from five data distributions: Gaussian,

Student’s t, uniform, Gaussian mixture, and beta. We also evaluate the performance

of the metric calculated through the linear programming approach with that calcu-

lated through the closed form expression.

For each distribution, two sets (D1,D2) of 1000 samples of pure noise were gen-

erated. For D2, a constant bias type of change was added to each noise vector from

sample number 300 to the end. D1 serves as the reference data and D2 serves as

the test data. D2 is illustrated in Figure 5.6. A moving window of m = 50 samples

was employed on D2 and the KD was computed between these samples (Y ) and a

chosen subset of the vectors from D1(X), by solving the LP problem at each sample

point. Therefore, the test noise signal (with change) is compared against a reference

signal, at each sample point. In addition, KD is also computed for the same subsets

at each sample point using the closed-form expression. The change point detection

performance through both approaches in contrasted in Figure 5.7.

Figure 5.6: Time series data for pure noise signals from various distributions
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Figures 5.7 (left panel) illustrate the change detection performance of KD computed

using the LP approach, while Figures 5.7 (right panel) illustrate that of KD computed

using the closed form expression. Both sets of results depict satisfactory change

detection performance of the KD metric using a reference data set. While the first

two distributions are elliptical distributions and the closed form KD is applicable, we

also test the rest to see the performance on other type of distributions. The results

indicate that the closed form expression of KD developed for data from multivariate

Gaussian measures performs well for non-Gaussian data also. Therefore, for the

proposed fault detection scheme in Sections 5.4 and 5.5, we utilize the closed form

expression to compute KD.

Figure 5.7: Time series evolution of KD for different distributions: (left panel) using
LP approach, (right panel) using the closed form expression

In the subsequent section, a fault detection method using KD is presented. This

method relies on the technique of online change point detection with reference signal

obtained from normal process operations.
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5.4 Fault detection using KD

In the realistic process monitoring problem, we often deal with multivariate process

data where correlation exists. This correlation in the data can further be exposed

by data-driven modelling such as Principal Component Analysis. Any changes that

occur in the data signals are found to be amplified in the residual subspace and so,

a fault detection framework that combines the proposed fault detection method and

PCA is presented here.

5.4.1 Principal Component Analysis

PCA is a quantitative feature extraction method that provides insight into the un-

derlying structure of a dataset (Venkatasubramanian et al. 2003b). PCA takes a

multidimensional correlated data set and projects it into an uncorrelated space by

maximizing the variance (of the original data) captured in each new dimension (Har-

rou et al. 2017b). As a result, a fewer number of the new dimensions are usually

sufficient to capture the essence of the original dataset. PCA may be accomplished

by the Singular Value Decomposition (SVD) of the covariance matrix (Σ) of the orig-

inal dataset X ∈ Rr×c as follows. Here, r refers to the number of c−dimensional data

samples in X. It is to be noted that SVD is performed on the dataset that has been

scaled to zero mean and unit variance.

X = USPT (5.9)

The diagonal matrix S contains the eigenvalues of Σ in descending order, and the

matrix P contains the orthonormal eigenvectors (column-wise), termed as loadings,

associated with each eigenvalue in S. The transformed data is termed as the scores,

and is obtained by the multiplying the data with the loadings. When the percentage of

variance to be captured is specified as v, the PCA model can be obtained by retaining

l principal components (PCs), where l is the number of PCs to be retained to capture

v. Several techniques have been developed to compute the optimal number of PCs
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(l) to be retained, such as the Scree plot, the cumulative percent variance (CPV)

approach, the cross validation method, etc. In the proposed fault detection scheme,

the CPV approach has been chosen to compute l. The CPV captured retaining p

PCs at a time is calculated as,

CPV (p) =
∑

p
i=1 λi

∑
c
i=1 λi

× 100 (5.10)

The optimal number of PCs (l) is chosen as l = p when,

CPV (p) ≥ v (5.11)

The model prediction for the chosen l-dimensional PCA model is obtained as fol-

lows.

X̂ =XPlP
T
l (5.12)

Here, Pl refers to the l retained eigenvectors from the matrix P . The PCA-model

residuals are calculated as,

E =X − X̂ (5.13)

5.4.2 Conventional PCA-based fault detection scheme

The conventional PCA-based fault detection scheme utilizes T 2 and Q statistics to

analyse the principal and residual subspaces respectively.

The Squared Prediction Error (SPE) or the Q statistic is a quantification of the

residual subspace of the PCA model of a dataset. It is a metric that accounts for

the amount of variance that is not captured by the chosen l-dimensional PCA model.

The Q statistic for each c-dimensional sample of data is computed as follows.

Q = eTe (5.14)

Here, e denotes the PCA model residual for the chosen sample of data. The

threshold for the Q statistic, denoted by Qα, is computed using the formula specified
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by Jackson and Mudholkar (1979). Here, cα is the standard normal variate with

confidence level (1 − α).

Qα = θ1
⎛

⎝

h0cα
√
2θ2

θ1
+ 1 +

θ2h0(h0 − 1)

θ21

⎞

⎠

1
h0

(5.15)

where θi = ∑
c
j=l+1 λ

i
j and h0 = 1 −

2θ1θ3
3θ22

.

The Hotelling’s T 2 statistic is a quantification of the principal subspace of the PCA

model of a dataset. This metric accounts for the variance that is captured by the

chosen l-dimensional PCA model. The T 2 statistic for each c-dimensional sample of

data is computed as follows (Villegas et al. 2010).

T 2 =XTPlS
−2
l XPT

l (5.16)

Here, Sl is a diagonal matrix that contains the eigenvalues associated with the

l retained PCs. The threshold for the T 2 statistic, denoted by T 2
α, is computed as

follows (Villegas et al. 2010).

T 2
α =
(n − 1)l

n − l
Fl,n−l,α (5.17)

The l−dimensional PCA model is developed for scaled training data and the thresh-

olds Qα and T 2
α are calculated. The model is used to obtain data estimates, and Q

and T 2 statistics for the testing data set. The violation of the Q and/or T 2 statistics

is interpreted as the detection of an abnormality in the dataset. The flow diagram of

this conventional scheme is illustrated in Figure 5.8.

5.4.3 Proposed PCA-based fault detection scheme with KD
metric
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Figure 5.8: Flow diagram representation of the conventional PCA-based fault detec-
tion scheme

The PCA based fault detection scheme using the KD metric follows the same

basic outline as that of the conventional scheme, with a few modifications. The

algorithm for the PCA-based fault detection scheme using KD is outlined below, and

the corresponding flow diagram is illustrated in Figure 5.9.

Threshold estimation:

1. Obtain 2 sets of normal process data – D1 and D2. Scale the data to zero mean

and unit variance

2. Build separate l−dimensional PCA models for both datasets, for v % variance

to be captured

3. Obtain PCA model residuals for both datasets – R1 and R2

4. Set R1 as x. To compute KD for each sample, employ a moving window of m

samples on R2 and set this as y

5. Compute KD between x and y for each sample using the closed-form expression

6. Compute the mean (µKD) and standard deviation (σKD) of KD for normal

operation and set the threshold as h = µKD + 3σKD
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Figure 5.9: Flow diagram representation of the proposed PCA-based fault detection
scheme with the KD metric

On-line monitoring :

1. Obtain a set of normal process data Dmain. Scale the data to zero mean and

unit variance

2. Build an l−dimensional PCA model for Dmain, for v % variance to be captured

3. Obtain PCA model residuals for Dmain – Rmain.

4. Obtain testing datasetDtest. Scale the data using the normal process parameters

from step 1.

5. Obtain PCA model residuals for Dtest – Rtest.
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6. Set Rmain as x. To compute KD for each sample, employ a moving window of

m samples on Rtest and set this as y.

7. Compute KD between x and y for each sample using the closed-form expression.

8. If KD > h, fault is detected.

Notice that the normal process data in the online monitoring stage (Dmain) can be

the any of the two sets used in training phase. It can be also another independent

new set of normal data. In the proposed algorithm, the parameters v and m are given

as inputs by the operator. The choice of v and m is system-specific, and is found

to be largely dependent on the nature and noise content of the data. Parameter v

is chosen to obtain an adequate PCA model of the system, leaving the noisy charac-

teristics of the data out of the model. This enables us to obtain significant residuals

even in the presence of smaller magnitude faults, and thus, enables detection of more

sensitive faults. The size of the normal data sets used in the algorithm and the choice

of moving window size m, are made to obtain an adequate estimate of the mean and

covariance information of the signal. As a result, m is dependent on the type and

amount of noise in the signal: if the signal is significantly noise-ridden, a higher choice

of m might be required to obtain a better estimate of the mean and variance.

The proposed method is based on the calculation of KD between two sets of residu-

als. The KD is a metric to quantify the distance between probability distributions. In

this sense, it is more appropriate to classify it as a distance metric than a correlation

metric.
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5.5 Case study

5.5.1 Case 1: Synthetic data

To illustrate the fault detection capability of the KD metric, the synthetic dataset

from Chapter 2 of the thesis of Harmouche (2014) was generated. The dataset con-

tains 1000 samples of 8 variables, out of which 3 are independent. In this section, we

evaluate the fault detection capability of the KD metric for data corrupted with (i)

Gaussian noise, and (ii) t−distributed noise. A signal to noise ratio (SNR) of 35 was

maintained for both cases, as in the original thesis. The equations for generation of

the raw dataset are listed in 5.18. Here, n refers to the sample number between 1

and 1000, and N refers to the total number of samples (in this case, 1000).

x1 = 1 + sin(0.1n) (5.18a)

x2 = 2 cos
3 (

n

4
) exp(

−n

N
) (5.18b)

x3 = log10(χ
2
2) (5.18c)

x4 = x1 + x2 (5.18d)

x5 = x1 − x2 (5.18e)

x6 = 2x1 + x2 (5.18f)

x7 = x1 + x3 (5.18g)

x8 ∼ N(0,1) (5.18h)

5.5.1.1 Data corrupted with Gaussian noise

The proposed PCA model residual-based fault detection scheme utilizing the KD

metric was applied on data corrupted with Gaussian noise, shown in Figure 5.10.

The detection ability of the metric was investigated for 3 types of faults – a sustained

bias, an incipient fault, and intermittent faults. 4 PCs were retained for v = 95% of

the original variance captured. A sustained bias of 0.25 in x1, a drift with slope 0.001
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in x1 and intermittent faults of magnitude 0.2, 0.5 and 0.8 on variables x1, x4, and

x6 were applied in each case, respectively. All faults were introduced at sample point

300. A moving window of m = 50 samples was used. The fault detection results for

KD, as well as Q and T 2 statistics are illustrated in Figures 5.11 - 5.13.

Figure 5.10: Synthetic reference data (blue) vs testing data with intermittent faults
(red)

From the results, the following observations can be made. Firstly, it is evident

that the fault detection capability of the KD metric is superior to that of the Q

and T 2 statistics. KD gives no false alarms prior to the introduction of the fault

and exhibits sustained violation of the threshold after the fault is introduced. In

the case of the Q statistic, the noisy nature of the data leads to false alarms and

missed detection. Furthermore, it is observed that the T 2 statistic does not respond

to the small magnitude of faults introduced, whereas the response of the KD metric is

appreciable. Therefore, it is inferred that the KD metric offers better fault detection

capability when compared to the conventional metrics, even when data is significantly

corrupted with Gaussian noise. It is to be noted that the KD statistic detects the
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Figure 5.11: Detection results for data with a sustained bias of +0.25 in x1 (corrupted
with Gaussian noise)

Figure 5.12: Detection results for data with an incipient anomaly of slope 0.001 in x1

(corrupted with Gaussian noise)
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Figure 5.13: Detection results for data with multiple intermittent faults of +0.2, +0.5
and +0.8 in x1,x4 and x6 (corrupted with Gaussian noise)

drift fault with a delay. This is attributed to the small slope of the drift (0.001).

5.5.1.2 Data corrupted with t−distributed noise

The proposed PCA model residual-based fault detection scheme utilizing the KD

metric was applied on data corrupted with t−distributed noise with 5 degrees of

freedom. The purpose of using t−distribution is to test the detection performance

while the data contains a few outliers, for which a t−distribution is more appropriate.

The detection ability of the metric is investigated for the same types and magnitude

of faults as in Section 5.5.1.1. In this case also, 4 PCs were retained for v = 95% of

the original variance captured. A moving window of m = 50 samples was used. The

fault detection results for KD, as well as Q and T 2 statistics are illustrated in Figures

5.14 - 5.16.
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Figure 5.14: Detection results for data with a sustained bias of +0.25 in x1 (corrupted
with t−distributed noise)

Figure 5.15: Detection results for data with an incipient anomaly of slope 0.001 in x1

(corrupted with t−distributed noise)
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Figure 5.16: Detection results for data with multiple intermittent faults of +0.2, +0.5
and +0.8 in x1,x4 and x6 (corrupted with t−distributed noise)

From the results, it is observed that the fault detection performance of the KD

metric remains largely unchanged, when the nature of the noise in the data set is

changed from Gaussian to non-Gaussian. t−distributed noise in the data is charac-

terized mainly by random large spikes in the measurements. It is observed that the

KD metric still offers a superior performance, when compared with the Q and T 2

statistics, with no false alarms and no missed detection. The performance of the Q

and T 2 statistics still remains unsatisfactory, being largely affected by the noise con-

tent in the signals, giving rise to numerous false alarms and missed detections. It is

to be noted that the KD statistic detects the drift fault with a delay of approximately

170 samples.

5.5.2 Case 2: Continuous Stirred Tank Heater (CSTH) sim-
ulation

The data for this case study is generated from a simulation developed for the Continu-

ous Stirred Tank Heater (CSTH) setup (Thornhill et al. 2008). This system comprises
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two stirred tank heater units to which cold water is supplied (u1 and u2). Inputs u4

and u5 feed the heater inputs Q1 and Q2 to the tanks, and input u3 recycles water

from tank 2 to 1. The output variables of interest are the tank outlet temperatures T1

and T2 measured in K, and the liquid level in tank 2 measured in m. Flow rates are

provided in m3s−1 and heater inputs in Js−1. The system is described by equations

5.19, and a schematic representation is provided in Figure 5.17. The nominal model

parameters and steady state values are given in Table 5.1.

V1
dT1

dt
= F1(u1)(Tc − T1) + FR(u3)(T2 − T1) +

Q1(u4)

ρCp

(5.19a)

A2h2
dT2

dt
=

F1(u1)(T1 − T2) + F2(u2)(Tc − T2) − FR(u3)(T2 − T1)

+ 1
ρCp
[Q2(u5) − 2πr2h2U(T2 − Ta)]

(5.19b)

A2
dh2

dt
= F1(u1) + F2(u2) − Fout(h2) (5.19c)

Fout(h2) = (0.1 × 10
−3)
√
0.406h3

2 + 0.8061h
2
2 − 0.01798h2 + 0.1054 (5.19d)

F1(u1) = (42379u1 − 456.85u
2
1 + 8.0368u

3
1) × 10

−11 (5.19e)

F2(u2) = (196620u2 − 8796.8u
2
2 + 190.64u

3
2 − 1.294u

4
2) × 10

−11 (5.19f)

FR(u3) = 2u3(
1

3600
) × 10−3 (5.19g)

Q1(u4) = 7.9798u4 + 0.9893u
2
4 − (7.3 × 10

−3u3
4) (5.19h)

Q2(u5) = 104 + 14.44u5 + 0.96u
2
5 − (8 × 10

−3u3
5) (5.19i)

The inputs u2, u4, and u5 are supplied to the system as pseudo-random binary

signals, while u1 and u3 are steady state signals corrupted with zero mean Gaussian

noise e passed through the first-order filter depicted below (set α = 0.95). The

simulation was run for 1000 samples of data, collected for normal process operation.

uk(n)

ek(n)
=

1 − α

1 − αq−1
, where k = 1,3 (5.20)
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Figure 5.17: Schematic representation of the CSTH setup

Table 5.1: Model parameters and steady state operating conditions for the CSTH
simulation

Parameter Description Value

V1 Volume of tank 1 1.75 × 10−3 m3

A2 Cross sectional area of tank 2 7.854 × 10−3 m2

r2 Radius of tank 2 0.05 m

U Heat transfer coefficient 235.1 W/m2K

Tc Cooling water temperature 30 0C

Ta Ambient temperature 25 0C

u1 Flow F1 (% input) 50%

u2 Flow F2 (% input) 50 %

u3 Flow FR (% input) 50 %

u4 Heat input Q1 (% input) 60 %

u5 Heat input Q2 (% input) 50 %

5.5.2.1 Data corrupted with Gaussian noise

The proposed PCA model residual-based fault detection scheme using the KD metric

was applied on CSTH data corrupted with Gaussian noise. It is to be noted that noise

(SNR = 35) is added only to the output variables – T1, T2, and h2 – in order to sim-
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ulate real sensor measurements. The detection ability of the metric was investigated

for 3 types of faults – a sustained bias, an incipient fault, and intermittent faults. 6

PCs were retained for v = 95% of the original variance captured. A sustained bias of

+1 0C in T1, a drift with slope 0.002 in T2 and intermittent faults of magnitude +1.25

0C in T1, +2 0C in T2, and 0.02 m in h2, were applied in each case, respectively. All

faults were introduced at sample point 300. A moving window of m = 50 samples was

used. The fault detection results for KD, as well as Q and T 2 statistics are illustrated

in Figures 5.18 - 5.20.

Figure 5.18: Detection results for data with a sustained bias of +1.25 0C in T1 (cor-
rupted with Gaussian noise)
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Figure 5.19: Detection results for data with an incipient anomaly of slope 0.002 in T2

(corrupted with Gaussian noise)

Figure 5.20: Detection results for data with multiple intermittent faults of +1.25 0C,
+2 0C and +0.02 m in T1, T2 and h2 (corrupted with Gaussian noise)
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From the results, it is evident that the fault detection performance of the KD

metric on PCA model-based residuals is far superior to that of the T 2 statistic, and

also the Q statistic. The time evolution of the KD metric gives a smooth detection

profile, with no missed detection during the fault period, and no false alarms before

the fault is initiated. In contrast, the Q statistic appears to be heavily susceptible to

missed detection, and the T 2 statistic shows low sensitivity to fault magnitude. It is

to be noted that the KD statistic detects the drift fault with a delay of approximately

400 samples.

5.5.2.2 Data corrupted with t−distributed noise

The proposed PCA model residual-based fault detection scheme utilizing the KD

metric was applied on CSTH data corrupted with t−distributed noise with 5 degrees

of freedom, as illustrated in Figure 5.21. The detection ability of the metric is inves-

tigated for the same types and magnitude of faults as in Section 5.5.2.1. In this case

also, 6 PCs were retained for v = 95% of the original variance captured. A moving

window of m = 50 samples was used. The fault detection results for KD, as well

as Q and T 2 statistics are illustrated in Figures 5.22 - 5.24. From the results, it is

observed that the KD metric does indeed perform better than the Q and T 2 statistics

for fault detection, irrespective of the nature of noise present in the signal. It is to be

noted that the KD statistic detects the drift fault with a delay of approximately 400

samples.
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Figure 5.21: CSTH reference data (blue) vs testing data with incipient anomaly (red)

Figure 5.22: Detection results for data with a sustained bias of +1.25 0C in T1 (cor-
rupted with t−distributed noise)
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Figure 5.23: Detection results for data with an incipient anomaly of slope 0.002 in T2

(corrupted with t−distributed noise)

Figure 5.24: Detection results for data with multiple intermittent faults of +1.25 0C,
+2 0C and +0.02 m in T1, T2 and h2 (corrupted with t−distributed noise)
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5.5.3 Tennessee Eastman process

The performance of the proposed fault detection algorithm using the KD metric with

PCA model residuals is illustrated on the Tennessee Eastman process (TEP) simula-

tion, a benchmark setup in the process control and monitoring research community.

The TEP simulation is modelled on an actual process under the Eastman Chemical

Company at Kingsport, Tennessee, U.S.A and the problem was formulated originally

by Downs and Vogel (1993). In this process, four gaseous reactants are utilized to

produce two products and one by-product through four irreversible and exothermic

(approximately) first-order reactions with respect to reactant concentration, which

include the presence of an inert compound. In total, the process involves eight chem-

ical compounds and all products are obtained in the liquid phase.

The process comprises five major units – a reactor, a product condenser, a vapour-

liquid separator, a recycle compressor and a product stripper. A complete description

of the process can be found at Downs and Vogel (1993). The process comprises 41

measured variables (XMEAS), 22 of which are sampled continuously and the rest sam-

pled at different intervals, and 12 manipulated variables (XMV). The bases case val-

ues, nominal operating conditions and steady state information is recorded in Downs

and Vogel (1993).

The fault detection performance of the proposed algorithm in Section 5.4 is illus-

trated on four examples of faults: Fault 1 (step in A/C feed ratio in Stream 4), Fault

2 (random variation in condenser cooling water inlet temperature), Fault 3 (slow drift

in reaction kinetics) and Fault 4 (sticking reactor cooling water valve). For all four

cases, 36 PCs were retained from the 52, for v = 95% of the variance captured. A

moving window of m = 50 samples was used. The fault detection results using KD

are contrasted with those of the Q and T 2 statistics, and are illustrated in Figures
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5.25 - 5.28. From the results, the following observations can be made. In all fault

cases explored, it is noted that the KD metric offers a smoother time evolution. Ad-

ditionally, the evolution of the KD metric does not seem to be dependent on the

extremely fault-ridden profile of the faulty variable itself, as in the case of the Q and

T 2 statistics in Figure 5.28. The KD metric, while containing some detection delay,

offers a profile with no false alarms prior to the fault, and no false positives after the

fault is introduced. In this context, the detection delay of the KD metric is found

to be approximately 20 samples for Faults 1 and 2, 60 samples for Fault 3, and 15

samples for Fault 4. Furthermore, from the results, it is clear that the KD metric

offers a large detection magnitude, that is, the KD when fault is detected is well above

the threshold; comparing the KD profiles with those of the Q and T 2 statistics, it is

observed that the latter statistics do not possess a large detection magnitude in this

case study. Therefore, we infer that the KD metric would be more sensitive than the

Q and T 2 statistics, and offer better detection for smaller magnitude faults also.

Figure 5.25: TEP with step in A/C feed ratio in Stream 4 (Fault 1)
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Figure 5.26: TEP with random variation in condenser cooling water inlet temperature
(Fault 2)

Figure 5.27: TEP with slow drift in reaction kinetics (Fault 3)
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Figure 5.28: TEP with sticking reactor cooling water valve (Fault 4)

5.6 Conclusions

In this chapter, a novel change and fault detection scheme using the Kantorovich Dis-

tance metric has been proposed. The change detection capability of the metric has

been evaluated for data sampled from different probability measures. The proposed

algorithm has been tested on several case studies: synthetic data, simulated stirred

tank heater system simulation data, and the Tennessee Eastman Process benchmark

setup, in the on-line monitoring mode. The performance of the algorithm was eval-

uated on its ability to detect three types of faults: a sustained bias, an incipient

change, and intermittent faults, in contrast with the detection capability of tradi-

tional PCA-based metrics such as the Q and Hotelling’s T 2 statistics. Furthermore,

the performance of the metric was tested for data corrupted by noise from Gaussian

as well as non-Gaussian measures. From the results, it was inferred that the proposed

PCA model-based fault detection scheme using the KD metric, offers superior per-

formance, as compared to the discussed conventional scheme. The KD metric offers
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reliable fault detection performance irrespective of the type of noise present in the

measurements, and the distribution of the noise itself. Hence, we conclude that the

automation of fault detection in practical industrial applications with the KD metric,

could prove useful in a variety of areas.

In this chapter, we demonstrated the applicability of the optimal transport dis-

tance as a metric for abnormality/fault detection. The process monitoring problem

may also be studied under the optimal fault detection system design setting, wherein

a fault detection metric, and/or threshold is optimally designed for a system under

uncertainty. In Chapter 6, we pivot to this optimal fault detection threshold design

problem accounting for ambiguity in the knowledge of a probability distribution de-

scribing a multimodal process that is to be monitored for abnormalities; here, we

use the formulation presented in Chapter 3 in order to evaluate the worst-case ex-

pected performance of a fault detection system for a multimodal process subject to

distributional ambiguity.
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Chapter 6

Performance Evaluation of a
Multimodal Process Fault
Detection System using Gaussian
Mixture-based Ambiguity Sets

Abstract : Process monitoring of complex, multivariate systems presents a significant

challenge in process systems engineering literature. The problem is made further

complex when the process is typically operated at multiple operating conditions. In

such cases, distinguishing a valid change in operating conditions from abnormal pro-

cess deviations may be treated as a multimodal process fault detection problem; some

methods to address this problem model the process using a multimodal probability

distribution. In practical applications, the true distribution, or indeed a good estimate

of the same, may not be readily available to the user. Such inexact information on the

process’ probability distribution lead to poor fault detection performance that may

further lead to process operations degradation. To this end, a distributionally robust

design of fault detection systems is preferable in the face of ambiguous uncertainty.

Recent contributions to process monitoring literature explore the distributionally ro-

bust design of fault detection systems that utilize white- or grey-box quantitative

models for residual generation and evaluation. In this work, we propose a distribu-

tionally robust data-driven approach to fault detection system design that leverages

a Bayesian inference-based detection metric in literature for multimodal processes.
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6.1 Introduction

Process monitoring forms a significant component in process systems engineering

literature, as well as in daily industrial operations to ensure safe and sustainable pro-

cess operation. Process monitoring, also referred to as abnormal event management

(Venkatasubramanian et al. 2003c), comprises the main tasks of fault detection, and

fault diagnosis, as well as decision-making for mitigation of these faults. The de-

sign of fault detection and diagnosis systems may be broadly classified into process

model-based (Venkatasubramanian et al. 2003c; Venkatasubramanian et al. 2003a),

and process history-based methods (Venkatasubramanian et al. 2003b). While a

number of methods from these classes may overlap in their formulations, in essence,

process model-based methods use the developed quantitative or qualitative models

from process knowledge, while process history-based methods leverage the abundance

of data on the process variables to “model” the normal operation. Some examples

of quantitative model-based methods include observer-based and parity space-based

residual generators, while causal models such as fault trees are classified as qualitative

model-based methods. In process history-based methods, a large number of works

have used statistical techniques such as principal component analysis (PCA), par-

tial least squares (PLS), and independent component analysis (ICA) to accomplish

fault detection (Qin 2012); in particular, a number of variants of these methods have

also been proposed for different use cases. A review of work available on process

history/data-driven process monitoring is provided in Chapter 5. It may be noted

that in recent years, an abundance of machine learning-based techniques have also

been leveraged for process monitoring.

The fault detection system may be viewed as a combination of a residual generator,

and residual evaluation mechanism (Shang et al. 2021). The “residuals” of a process

may be generated using a mathematical model, which may be first principles-based or
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data-driven, describing the normal operating condition(s) and test data from process

operation. The residual evaluation step involves designing or choosing an appro-

priate fault detection metric-threshold combination. Specifically, when the residual

evaluation function returns a value larger than a specified threshold, a fault alarm

is triggered, and a fault is “detected”. In Chapter 4 of this thesis, we addressed the

residual evaluation aspect of the fault detection problem through the lens of optimal

transport.

The performance of a fault detection (FD) system is heavily influenced by the

presence of stochastic disturbances or uncertainties, that may not necessarily be cap-

tured by the process model used. The effect of these uncertainties may be observed

in practice as a high false alarm rate, wherein data from normal operation incorrectly

triggers a fault alarm, or as a reduced fault detection rate, wherein a significant

number of abnormal data points are not flagged as faults. Therefore, the optimal

design of an FD system for practical use may be posed as an optimization problem

under uncertainty, wherein the probability distribution of the uncertainty may be

incorporated into the design step (Prékopa 2003). Yet another layer of complexity

is added in practical design settings, wherein perfect information is unavailable on

the probability distribution of the uncertainty inherent in the process. Therefore,

the optimal FD system design under uncertainty is better approached under distribu-

tional ambiguity. Such an optimal design problem may be tackled through the lens

of distributionally robust optimization (DRO) (Delage and Ye 2010; Wiesemann et

al. 2014; Abadeh et al. 2015; Esfahani and Kuhn 2018). DRO assumes imperfect or

“ambiguous” information on the probability distribution of parametric uncertainty

in the form of a nominal distribution, and optimizes the problem for the worst-case

expected performance of the model over an ambiguity set of candidate distributions

constructed around the nominal distribution.

172



Shang et al. (2021) treat the optimal fault detection (FD) system design prob-

lem under distributional ambiguity as a distributionally robust chance-constrained

problem (DRCCP); here, the authors provide formulations for the optimal design of

the FD system with an integrated trade-off between the FAR and FDR performance

indices. In their work, Shang et al. (2021) aim to maximize the worst-case expected

FDR while constraining the worst-case expected FAR in the form of a distributionally

robust probabilistic constraint. They presented tractable convex formulations using

both moment-based, and the Wasserstein metric-based ambiguity sets. These formu-

lations were built using model-based residual generators from state-space models of

the system. It may be noted that this work does not account for FD in multimodal

processes. Another work that deals with the optimal FD system design under distribu-

tional ambiguity was conduced by Wan et al. (2021) that uses a parity relation-based

residual generator.

In this work, we consider the fault detection (FD) problem in the context of multi-

modal processes. A significant challenge in multimodal FD is encountered in distin-

guishing normal operating condition changes from abnormal operation; this problem

is further complicated when distributional ambiguity is accounted for. A number of

works in literature have dealt with multimodal FD. In this work, we build upon a

Bayesian inference-based probability index developed by Yu and Qin (2008) for mul-

timodal process detection in the context of distributional ambiguity of the process.

Other works that have similarly proposed FD schemes (not under distributional am-

biguity) include works by Choi et al. (2004) and Zhang et al. (2021).

In this work, we seek to bridge the gap in a distributionally robust optimal fault

detection (FD) system design, using data-driven models developed for multimodal

processes. Section 6.2 contains an overview of fault detection theory, and the Bayesian

inference-based method chosen from literature (Yu and Qin 2008). Section 6.3 it fur-
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ther presents the proposed optimization models for worst-case performance evaluation

of the FD system. Section 6.4 presents an application of the proposed formulations

on a synthetic multimodal process case study; here, we demonstrate the effect of

ambiguous distributional information on the FD performance, and proceed to quan-

titatively evaluate the worst-case expected performance based on the FAR and FDR

indices. Finally, Section 6.5 summarizes the results of this work, and outlines the

future directions.

6.2 Theory

6.2.1 Preliminaries on fault detection

In general process monitoring literature, an anomaly or fault detection (FD) sys-

tem defined for a process generally comprises two key elements, namely, a residual

generator, and a residual evaluator. A residual generator usually comprises known in-

formation about the normal operation of a process, generally through first-principles

models (such as state-space models), and seeks to give residual information about

the data being monitored. When the monitored data is fault-free, the residuals are

typically of small magnitude provided that a good process model is used; on the other

hand, when the monitored data contains faults, the magnitude of the residuals tends

to be large. The residual evaluator is typically given as a fault detection threshold,

and is set by the user. When the residual is of a large enough magnitude to exceed

this threshold, an alarm is triggered indicating that a fault has been detected. It

may be noted that a fault detection system is only as good as the residual generator,

and therefore, the process model used. To this end, any uncertainties or ambiguities

that have not been accounted for in the design of this residual generator, and/or the

detection threshold, may negatively impact the fault detection performance of the

system.
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In this work, we aim to account for ambiguous information regarding the process

model, and evaluate the effect of this ambiguity on fault detection, using a distribu-

tionally robust approach, specifically focusing on multimodal processes. In Section

6.2.2, we introduce the residual generator-threshold combination used in this work,

and in Section 6.3, we apply the distributionally robust methodology developed in

Chapter 3 to evaluate the worst-case expected performance of the fault detection

system.

6.2.2 Bayesian inference-based multimodal process fault de-
tection

In this work, we focus on a data-driven approach to fault detection (FD) system

design; specifically, we build upon the work of Yu and Qin (2008) wherein the authors

propose a Bayesian inference-based probability (BIP) index as a fault detection metric

for multimodal processes. In their work, Yu and Qin (2008) model a multimodal

process as a Gaussian mixture model (GMM) as follows,

P0 =
L

∑
l=1

w0
l g(ξ∣µ

0
l ,Σ

0
l )

Here, w0
l denotes the prior probability or weighting proportion of the lth component

in the GMM, while g(ξ∣µ0
l ,Σ

0
l ) denotes the Gaussian probability density of the vector

ξ subject to the lth component. For m−dimensional data, the multivariate Gaussian

probability density function is given as,

g(ξ∣µ0
l ,Σ

0
l ) =

1

(2π)m/2∣Σ0
l ∣
1/2

exp( −
1

2
(ξ − µ0

l )
T (Σ0

l )
−1(ξ − µ0

l )) (6.1)

The posterior probability of any monitored sample ξt, ∀1 ≤ t ≤ N may be computed

as,

p(θ0l ∣ξt) =
w0

l g(ξt∣µ
0
l ,Σ

0
l )

∑
L
l=1w

0
l g(ξt∣µ

0
l ,Σ

0
l )

(6.2)

Yu and Qin (2008) define a “local probability index” for each sample ξt, ∀1 ≤ t ≤ N ,
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denoted by P local
l (ξt) as,

P
(l)
local(ξt) = Pr

⎧⎪⎪
⎨
⎪⎪⎩

DM((ξ, µ
0
l )∣ξ ∈ N(µ0

l ,Σ
0
l )) ≤DM((ξt, µ

0
l )∣ξt ∈ N(µ0

l ,Σ
0
l ))

⎫⎪⎪
⎬
⎪⎪⎭

(6.3)

Here, DM(ξt, µ denotes the Mahalanobis distance between ξt and µ0
l computed as,

DM(ξt, µ
0
l ) = (ξt − µ

0
l )

TΣ−1l (ξt − µ
0
l ) (6.4)

It may be observed that the local probability index P
(l)
local(ξt), as proposed by Yu

and Qin (2008), is an extension to the already-established Mahalanobis distance-

based outlier detection scheme. For m−dimensional data belonging to a multivariate

Gaussian distribution, the Mahalanobis distance between the datapoints and its mean

follows a χ2
m distribution. In such a case, a datapoint may be treated as an outlier

with a confidence level of (1 − α) if its Mahalanobis distance with respect to the

population mean is greater than the χ2
m cumulative distribution value evaluated at

(1 − α). Yu and Qin (2008) extended this idea to that of a multivariate Gaussian

mixture distribution, by computing the local probability index for each lth component,

which denotes whether or not the datapoint ξt is considered an outlier with respect

to the lth Gaussian component. The authors further combine these local probability

indices (P local
l (ξt)) into a single Bayesian inference-based probability (BIP) index

using the posterior probabilities of each component as follows,

BIP (ξt) =
L

∑
l=1

p(θ0l ∣ξt)P
local
l (ξt) (6.5)

In this FD scheme, a datapoint ξt is treated as “faulty” if BIP (ξt) > 1 − α, where

1 − α is the fault detection threshold. It may be further observed that BIP (ξt) is

directly dependent on the weights of the GMM (w0
l ) through the posterior probability

term; therefore, this FD scheme does not account for any ambiguity in the knowledge

of the distribution P0 (more specifically, the weights w0
l ).

In this chapter, we focus on accounting for ambiguity in P0 as a result of a poor

knowledge of the weights w0
l by leveraging the distributionally robust optimization
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(DRO) framework proposed in Chapter 3 that hedges against an ambiguity set of

candidate distributions built around a nominal Gaussian mixture distribution.

6.3 Distributionally robust fault detection system

design

In this section, we develop a distributionally robust formulation to evaluate the worst-

case performance of the BIP index-based fault detection (FD) system (Yu and Qin

2008) detailed in Section 6.2.2.

We start by considering a “nominal” Gaussian mixture model (GMM) fitted to

available multimodal process history data as,

P0 =
L

∑
l=1

w0
l g(ξ∣µ

0
l ,Σ

0
l )

The performance quality of a fault detection system is typically addressed through

two criteria, namely, the false alarm rate (FAR) and the fault detection rate (FDR)

(Zhang 2016). For a process described by P0, both FAR and FDR may be defined in

a probabilistic form using the BIP index as,

FAR = Prξ∼P0{BIP (ξ) > 1 − α∣f = 0} (6.6a)

FDR = Prξ∼P0{BIP (ξ) > 1 − α∣f = 1} (6.6b)

Here, f refers to the “fault label” for a given datapoint, where f = 0 denotes “true

normal” data and f = 1 denotes “true fault” data. Specifically, FAR seeks to find how

many normal data points are misclassified as faults, and FDR seeks to find how many

faulty data points are correctly classified as faults, using the BIP index for a process

described by P0. A good fault detection system is characterized by a high FDR

that also exhibits a low FAR. However, in the face of ambiguity on the knowledge

of P0, it is valuable in practice to find the “worst-case” expected values of FAR and

FDR, over an ambiguity set of distributions. This ambiguity set may be defined
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as a set of candidate distributions constructed around the nominal distribution (P0)

obtained from sampled data; here, we use the Wd metric to characterize the size

of this ambiguity set (through the radius ϵd). Therefore, the worst-case expected

performance problems associated with the FAR and FDR performance indices for a

FD system are given as,

max
Pξ∈P

FAR ∶=max
Pξ∈P

Prξ∼P{BIP (ξ) > 1 − α∣f = 0} (6.7a)

min
Pξ∈P

FDR ∶=min
Pξ∈P

Prξ∼P{BIP (ξ) > 1 − α∣f = 1} (6.7b)

For a general worst-case expectation maximization of a loss function L(ξ), the

DRO problem using the Wd metric may be written as,

max EP(ξ)[L(ξ)] (6.8a)

s.t. Wd(P,P0) ≤ ϵd (6.8b)

The Wd metric is computed as the square root of the optimal objective value of the

optimal transport problem between the nominal GMM (P0) and a candidate GMM

(P) (Chen et al. 2018) defined on the same Gaussian components,

P0 ∶= w0
1N(µ0

1,Σ
0
1) +w

0
2N(µ0

2,Σ
0
2) + ... +w

0
LN(µ0

L,Σ
0
L) (6.9a)

P ∶= w1N(µ0
1,Σ

0
1) +w2N(µ0

2,Σ
0
2) + ... +wLN(µ0

L,Σ
0
L) (6.9b)

as,

W 2
d (P0,P) ∶=min

π∈R+

L

∑
l=1

L

∑
l′=1

πl,l′cl,l′ (6.10a)

s.t.
L

∑
l′=1

πl,l′ = w
0
l , ∀1 ≤ l ≤ L (6.10b)

L

∑
l=1

πl,l′ = wl′ , ∀1 ≤ l
′ ≤ L (6.10c)

Here, cl,l′ refers to the cost of transport between the Gaussian components N(µ0
l ,Σ

0
l )

and N(µ0
l′ ,Σ

0
l′), and is computed using the closed-form expression for the squared 2-

Wasserstein distance (Takatsu 2011) as,

cl,l′ ∶= ∣∣µ
0
l − µ

0
l′ ∣∣

2 +Tr[Σ0
l +Σ

0
l′ − 2([Σ

0
l ]

1
2

Σ0
l′[Σ

0
l ]

1
2

)

1
2

] (6.11)
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Then, the worst-case expectation maximization of L(ξ) using the Wd ambiguity

set may be written as,

max EP(ξ)[L(ξ)] (6.12a)

s.t. min
π∈R+

L

∑
l=1

L

∑
l′=1

πl,l′cl,l′ ≤ ϵ
2
d (6.12b)

s.t.
L

∑
l′=1

πl,l′ = w
0
l , ∀1 ≤ l ≤ L (6.12c)

L

∑
l=1

πl,l′ = wl′ , ∀1 ≤ l
′ ≤ L (6.12d)

The “min” operator in Constraint 6.12b may be neglected. When L(ξ) is replaced

by the probabilistic formulations of FAR and FDR in Equations 6.6a and 6.6b, respec-

tively, the worst-case FAR and FDR formulations are obtained. For computational

tractability, we choose to replace the probabilistic function by its equivalent expecta-

tion operator taken over the indicator function as,

Prξ∼P0{L(ξ)} ∶= EP[I(L(ξ))] (6.13)

The expectation operator may be empirically estimated for ξt, 1 ≤ t ≤ N , with

corresponding fault labels (ft), wherein ft = 0 indicates a normal point, and ft = 1

indicates a faulty point. Then, the empirical estimates for the expected values of

FAR and FDR are given as,

EP[FAR] = EP[I(BIP (ξ) > 1 − α∣f = 0)] ∶=
∑

N
t=1((1 − ft)I(BIP (ξt) > 1 − α)

∑
N
t=1 1 − ft

(6.14a)

EP[FDR] = EP[I(BIP (ξ) > 1 − α∣f = 1)] ∶=
∑

N
t=1((ft)I(BIP (ξt) > 1 − α)

∑
N
t=1 ft

(6.14b)

Finally, the worst-case expected FAR problem is given as,

max
w,π∈R+

∑
N
t=1((1 − ft)I(BIP (ξt) > 1 − α)

∑
N
t=1 1 − ft

(6.15a)

s.t.
L

∑
l=1

L

∑
l′=1

πl,l′cl,l′ ≤ ϵ
2
d (6.15b)
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L

∑
l′=1

πl,l′ = w
0
l , ∀1 ≤ l ≤ L (6.15c)

L

∑
l=1

πl,l′ = wl′ , ∀1 ≤ l
′ ≤ L (6.15d)

BIP (ξt) =
L

∑
l=1

p(θ0l ∣ξt)P
local
l (ξt), ∀1 ≤ t ≤ N (6.15e)

p(θ0l ∣ξt) =
w0

l g(ξt∣µ
0
l ,Σ

0
l )

∑
L
l=1w

0
l g(ξt∣µ

0
l ,Σ

0
l )
, ∀1 ≤ t ≤ N (6.15f)

g(ξt∣µ
0
l ,Σ

0
l ) =

1

(2π)m/2∣Σ0
l ∣
1/2

exp( −
1

2
(ξt − µ

0
l )

T (Σ0
l )
−1(ξt − µ

0
l )), ∀1 ≤ t ≤ N

(6.15g)

P local
l (ξt) = chi2cdf (DM(ξt, µ

0
l ),m), ∀1 ≤ t ≤ N, 1 ≤ l ≤ L (6.15h)

and the worst-case expected FDR problem as,

min
w,π∈R+

∑
N
t=1(ftI(BIP (ξt) > 1 − α)

∑
N
t=1 ft

(6.16a)

s.t.
L

∑
l=1

L

∑
l′=1

πl,l′cl,l′ ≤ ϵ
2
d (6.16b)

L

∑
l′=1

πl,l′ = w
0
l , ∀1 ≤ l ≤ L (6.16c)

L

∑
l=1

πl,l′ = wl′ , ∀1 ≤ l
′ ≤ L (6.16d)

BIP (ξt) =
L

∑
l=1

p(θ0l ∣ξt)P
local
l (ξt), ∀1 ≤ t ≤ N (6.16e)

p(θ0l ∣ξt) =
w0

l g(ξt∣µ
0
l ,Σ

0
l )

∑
L
l=1w

0
l g(ξt∣µ

0
l ,Σ

0
l )
, ∀1 ≤ t ≤ N (6.16f)

g(ξt∣µ
0
l ,Σ

0
l ) =

1

(2π)m/2∣Σ0
l ∣
1/2

exp( −
1

2
(ξt − µ

0
l )

T (Σ0
l )
−1(ξt − µ

0
l )), ∀1 ≤ t ≤ N

(6.16g)

P local
l (ξt) = chi2cdf (DM(ξt, µ

0
l ),m), ∀1 ≤ t ≤ N, 1 ≤ l ≤ L (6.16h)

Here, m refers to the dimensionality of the multimodal process. It may be noted

that the presence of the indicator function (taken over a nonlinear function of w) in the

objective functions of Models 6.15 and 6.16 gives rise to a non-convex formulation. In
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this work, we solve these models using the surrogateopt heuristic solver in MATLAB

(Wang and Shoemaker 2014; Regis and Shoemaker 2007).

6.4 Worst-case performance evaluation of a multi-

modal process fault detection system - a case

study

In this section, we illustrate how the worst-case performance of a fault detection

(FD) system may be evaluated under distributional ambiguity regarding the Gaussian

mixture distribution that describes a multimodal process on a synthetic case study.

Section 6.4.1 contains an overview of the dataset generation process, while Section

6.4.2 discusses the effect that ambiguity of the process distribution has over the fault

detection performance using the BIP criterion (Yu and Qin 2008). Sections 6.4.3 and

6.4.4 illustrate the worst-case performance criteria of the FD system, namely the false

alarm rate (FAR) and fault detection rate (FDR), respectively.

6.4.1 Dataset generation

In this study, we generated a synthetic dataset to simulate a two-dimensional, three-

operating-mode process from the (true) Gaussian mixture distribution,

Ptrue ∶= 0.45N(µ1,Σ1) + 0.35N(µ2,Σ2) + 0.2N(µ3,Σ3) (6.17)

where,

µ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

10.3

10.3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,Σ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.05 0

0 0.05

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, µ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

9.9

9.9

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,Σ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.05 0

0 0.05

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, µ3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

10.4

9.9

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

Σ3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.03 0

0 0.03

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The “process” data that is generated by the GMM in 6.17 is illustrated in Figure

6.1a; from this figure, it is evident that the data points are not well-separated into
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distinct clusters, and there is significant overlap of data from different operating

modes.

(a) (b)

Figure 6.1: (a) A single dataset of sampled data from the synthetic three-operating-
mode process described by Ptrue in 6.17, (b) Classification of points generated from
Ptrue into “true normal” and “true fault” datapoints

In order to evaluate the fault detection (FD) performance of the BIP index-based

scheme, as proposed by Yu and Qin (2008), we use the following performance metrics

- false alarm rate (FAR), and fault detection rate (FDR) - as described in Section

6.3. The evaluation of FAR requires a set of “true normal” data in order to evaluate

how many datapoints are being misclassified as faults, while the evaluation of FDR

requires a set of “true fault” data to evaluate their misclassification as datapoints

from normal operation. To this end, we generated a set of 10000 datapoints from

Ptrue and classified all points whose Mahalanobis distance from any of the three com-

ponent means (µ1, µ2, µ3) was larger than that of the inverse χ2
2 distribution value for

a confidence interval of 95% as “true faults”, and the rest as “true normal”. These

datasets are illustrated in Figure 6.1b. It may be noted that, out of 10000 points gen-

erated from Ptrue, 9721 points were classified as true normal data, and the remaining

279 as true fault data.
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6.4.2 Effect of inexactness of probability distribution infor-
mation on performance

The fault detection (FD) scheme put forth by Yu and Qin (2008) models a multimodal

process as a Gaussian mixture model (GMM). From the scheme explained in Section

6.2.2, it may be seen that the FD metric (BIP index) is affected by the posterior

probability of the components in this GMM, which is further affected by the prior

probabilities of the GMM components. Therefore, the efficacy of the BIP index as

an FD metric may be seen as significantly dependent on the quality of information

available on the GMM. In practical applications, the GMM is obtained from process

history data, and thus, the accuracy of the fitted GMM is sensitive to sampling. To

illustrate the effect of the fitted GMM (P0) on the FD performance, we generated

100 trial datasets from Ptrue, and evaluated the false alarm rate (FAR) and fault

detection rate (FDR) using the BIP index. Here, we calculated FAR and FDR using

the indicator function-based formulations presented in Equations 6.14a - 6.14b.

Figure 6.2: An illustration of the effect of ambiguity in the multimodal process dis-
tribution knowledge on fault detection performance for α = [0.01,0.05,0.2].

Figure 6.2 highlights the effect of ambiguity of knowledge about Ptrue that is inher-

ent when P0 is obtained from process history data. It is evident that the performance

of the BIP index-based FD system is significantly affected by goodness-of-fit of P0
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to the sampled data. This result motivates the need for quantifying the worst-case

performance that may be expected from an FD system using a fitted GMM (P0),

for different levels of ambiguity (quantified by the ambiguity set size/radius). In

addition, this figure also provides context for the need to choose the fault detection

threshold (α) carefully. We observe that the performance of the BIP index-based

FD scheme is significantly affected by α even for perfect information (Ptrue) on the

process distribution.

6.4.3 Worst-case FAR performance evaluation using distri-
butionally robust optimization

Having illustrated the motivation for evaluating the worst-case performance of the

BIP index-based fault detection (FD) system (Yu and Qin 2008) in Section 6.4.2, we

now consider the FD problem under distributional ambiguity (the DRO-FD problem).

Specifically, we assume ambiguity in the knowledge of the weights of the components

of the Gaussian mixture model (GMM) fitted to a sample dataset of 300 points from

Ptrue. In this section, we aim to quantify the worst-case FD performance using the

false alarm rate (FAR) criterion under the DRO setting, and solve for the worst-case

expected FAR using Model 6.15.

Figure 6.3 illustrates the evolution of the worst-case FAR with increasing levels

of ambiguity, characterized by the Wd ambiguity set radius (ϵd), for various fault

detection thresholds (1−α). We see that, as we consider increasing levels of ambiguity

regarding the weighting proportions of the fitted GMM (P0), the worst-case FAR also

increases. Furthermore, we see that for a specific ϵd, the worst-case FAR is higher for

larger α (that is, for a lower fault detection threshold).

184



Figure 6.3: Evolution of the worst-case false alarm rate (FAR) with increasing ambi-
guity, characterized by ϵd, for various fault detection thresholds (1 − α)

The worst-case FAR for a given ambiguity set radius (ϵd) is obtained when the

optimization problem in Model 6.15 hedges against that candidate distribution, de-

noted by Pwc that gives the maximum value. Figure 6.4 illustrates some worst-case

distributions; Figures 6.4a - 6.4b depict the Pwc for ϵd = 0.2 for x1 and x2, respec-

tively, while Figures 6.4c - 6.4d, and Figures 6.4e - 6.4f depict Pwc
ϵd=0.3

, and Pwc
ϵd=0.4

,

respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: An illustration of the worst-case GMMs, for various α, associated with
the worst-case FAR problem for ϵd = 0.2 [(a) - (b)], ϵd = 0.3 [(c) - (d)], and ϵd = 0.4
[(e) - (f)]
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6.4.4 Worst-case FDR performance evaluation using distri-
butionally robust optimization

Having illustrated the worst-case performance of the BIP index-based fault detection

(FD) system under distributional ambiguity, using the false alarm rate (FAR) criterion

in Section 6.4.3, we now move on to an illustration of the same using the fault detection

rate (FDR) criterion. In contrast to the worst-case FAR problem, wherein the goal

is to evaluate what the maximum value of FAR is for a given ambiguity level, in the

worst-case FDR problem, the goal is to evaluate the minimum value of FDR. We

solved for the worst-case expected FDR using Model 6.16.

Figure 6.5: Evolution of the worst-case fault detection rate (FDR) with increasing
ambiguity, characterized by ϵd, for various fault detection thresholds (1 − α)

Figure 6.5 illustrates the evolution of the worst-case FDR for increasing ϵd, for var-

ious fault detection thresholds (1−α). We see that, for increasing levels of ambiguity

regarding the fitted P0, the worst-case FDR shows little to no variation. Further-

more, for a specific ϵd, the worst-case FDR is higher for larger α (that is, for lower

detection thresholds). In contrast to the worst-case FAR results, we see that the

worst-case FDR is less sensitive to the level of ambiguity surrounding the fitted P0,

and that the FDR is generally more dependent on the fault detection threshold (1−α).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: An illustration of the worst-case GMMs, for various α, associated with
the worst-case FDR problem for ϵd = 0.2 [(a) - (b)], ϵd = 0.3 [(c) - (d)], and ϵd = 0.4
[(e) - (f)]

Figure 6.6 illustrates worst-case distributions (Pwc) for the ambiguity set radii of

ϵd = [0.2,0.3,0.4]. Comparing with the Pwc obtained for the same ϵd values for the
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worst-case FAR problem, we see that the Pwc associated with the worst-case FDR

problem are markedly different. It may be noted that the worst-case distribution, as

defined in the distributionally robust optimization setting, is dependent not only on

the ambiguity set radius, but also on the objective function being optimized. Since

the objectives of the worst-case FAR and worst-case FDR problems are different, it

is expected to obtain different Pwc in each case.

6.5 Summary and future directions

In this work, we aimed to evaluate the worst-case fault detection (FD) performance

for a multimodal process under distributional ambiguity. We chose a data-driven mul-

timodal process fault detection method available in literature that treats the process

as a Gaussian mixture, and derived distributionally robust formulations to evaluate

the worst case expected FD performance in terms of two indices, namely the false

alarm rate (FAR) and the fault detection rate (FDR). We developed these formula-

tions using the Wd DRO method proposed in Chapter 3, that uses optimal transport

between Gaussian mixtures to construct the ambiguity set involved in the problem.

We demonstrated the effect of ambiguity on the FD performance, and illustrated the

use of these models on a synthetic case study, wherein we studied the worst-case

expected FD performance for a 3-operating-mode process, as well as the worst-case

distributions corresponding to different levels of ambiguity and fault detection thresh-

olds. In the future, we aim to extend this study to a worst-case expected (combined)

FAR-FDR performance study, that will enable the user to choose the appropriate

fault detection threshold for their choice of FAR-FDR, and specified level of ambigu-

ity regarding the process distribution. We also aim to demonstrate the performance

of the proposed methodology on simulation case studies and benchmark datasets to

generalize applicability.
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Chapter 7

Summary and Future Directions

This thesis presents contributions to the process systems engineering literature in the

areas of process optimization and process monitoring. The proposed algorithms, for-

mulations, and mathematical studies conducted are unified by the common theme of

optimal transport theory. Under process optimization, this thesis presents contribu-

tions to the fields of stochastic optimization (Chapter 2), and distributionally robust

optimization (Chapters 3 and 4). In the area of process monitoring, works and stud-

ies presented in this thesis contribute to the areas of on-line change-point and fault

detection (Chapter 5), as well as optimal design of process monitoring systems under

uncertainty (Chapter 6). This chapter summarizes the problem statements tackled

in this thesis, the knowledge gaps addressed by each body of work, and potential

directions for future contributions.

7.1 Improvements to stochastic programming

Chapter 2 of this thesis focuses on the field of scenario-based stochastic program-

ming, which is a well-established and well-utilized method in optimization to solve

problems under uncertainty. Under this setting, the parametric uncertainty present

in the problem is approximated using discrete realizations, also termed as scenarios.

The resulting solution quality is found to be dependent significantly on the quality

of scenarios chosen that well approximate the true probability distribution, as well
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as the number of scenarios considered. However, performing stochastic optimization

with a large scenario superset proves computationally difficult, and therefore, the task

of optimally reducing this superset to a smaller subset while preserving information

is a key task explored in optimization literature.

This thesis proposes a method for optimal scenario reduction using an entropy-

regularized variant of the optimal transport problem. While the conventional op-

timal transport problem has been used in literature previously to accomplish this

task, large-dimensional supersets are known to cause memory bottlenecks in linear

programming. In such cases, the availability of an analytical solution to the entropy-

regularized variant offers an advantageous numerical iterative scheme through the

use of the Sinkhorn-Knopp algorithm (Sinkhorn 1964; Sinkhorn 1967; Sinkhorn and

Knopp 1967; Cuturi 2013) which this thesis leverages for optimal scenario reduction.

This algorithm was further extended in order to obtain multistage scenario trees from

large scenario fans for multistage stochastic optimization. The use of these algorithms

was demonstrated on two case studies, namely a two-stage problem, and a multi-stage

problem. In both cases, it was seen that the use of entropy-regularized optimal trans-

port for scenario reduction decreases the computational time while providing solutions

with good accuracy with respect to those obtained using the original superset. It may

be noted that this work considers the stochastic programming “input”-matching prob-

lem, which seeks to generate a smaller subset of scenarios from a large superset whose

probability distributions are as similar as possible. One possible future direction for

this work would be to consider the “performance”-matching problem, wherein an op-

timal subset is generated whose worst-case expected performance matches that of the

superset. Another future direction may be to address the scenario reduction problem

wherein the data contains a mix of continuous, as well as categorical dimensions.
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7.2 Novel formulations for distributionally robust

optimization

Chapters 3 and 4 of this thesis contribute to the field of distributionally robust op-

timization. This method of optimization under uncertainty retains favorable aspects

of both stochastic and robust optimization frameworks, and gives solutions robust

to distributional ambiguity. Chapter 3 proposes a mathematical formulation for the

worst-case expectation maximization problem associated with the distributionally ro-

bust optimization problem. This work assumed that the probability distribution of

the multimodal uncertainty inherent in a problem may be modeled as a Gaussian

mixture, whose probability distribution is ambiguous. Subsequently, an ambiguity

set containing candidate distributions was built around a nominal (estimated) distri-

bution using an optimal transport metric for Gaussian mixtures (Chen et al. 2018).

Therefore, this work combines elements of both moment-based, as well as metric-

based ambiguity set construction methods, by retaining first- and second-order mo-

ments observed in the sampled data in an optimal transport metric-based setting.

The efficacy of the proposed model was demonstrated on an illustrative case study,

as well as a financial portfolio optimization study. Chapter 4 extends this proposed

model to a distributionally robust chance-constrained setting, wherein the worst-case

expected violation of constraints under the ambiguity set was constrained to a user-

defined threshold. The use of this tractable formulation was demonstrated on two

case studies, a blending problem, as well as a chemical process design study. In both

chapters, the performance of the proposed formulations were compared to that of the

conventional Wasserstein distance-based approach, and it was seen that the proposed

formulation exhibits superior performance. Furthermore, a study on the worst-case

distribution, that is, the extremal distribution for a given ambiguity set radius against

which the solution hedges, is presented in both chapters. Through this study, Chapter

3 also presents a method to calculate an upper bound on the radius of the ambiguity
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set, which is a hyperparameter that significantly affects the performance of a distri-

butionally robust optimization problem.

In the formulations proposed in Chapters 3 and 4, it is assumed that uncertainty

involved in the optimization problem exhibits multiple modes. It is further noted that

the efficiency of Gaussian mixture models in approximating arbitrary distributions

has been reported in literature. One possible future direction for this work would be

to extend the formulations to generic mixture models for which an optimal transport-

type metric has been recently proposed (Dusson et al. 2023).

7.3 Optimal transport for process monitoring

Chapters 5 and 6 of this thesis apply the optimal transport problem to problems in

process monitoring. This thesis tackles the fault detection problem under two settings.

Chapter 5 explores the use of the optimal transport distance as a metric for change-

point detection, and fault detection. In this work, a moving window scheme was

utilized on residual signals from a data-driven principal component analysis model,

and solve the optimal transport problem between signals to find the level of similarity

between them. The efficiency of the optimal transport distance was demonstrated in

identifying changes to process operations, as well as detecting faults relative to normal

process behavior even for smaller magnitude faults. The use of the proposed fault

detection algorithm was illustrated on a synthetic dataset, a simulated stirred tank

heater setup, as well as on the benchmark Tennessee Eastman process. In all three

cases, the fault detection capability of the optimal transport distance was found to

be superior to that of conventional PCA indices such as the squared prediction error

(or the Q statistic), and the Hotelling’s T 2 statistic.

Chapter 6 of this thesis approaches the fault detection problem through the lens

of optimal design. This work considered the effect of uncertainty on fault detection
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performance of a system through distributional ambiguity, specifically for processes

operating at multiple modes. In this context, the existing literature gap on distri-

butionally robust fault detection system design is bridged in two ways. Firstly, a

formulation for multimodal processes was developed, while a majority of current lit-

erature does not focus on the same. Secondly, a data-driven approach was applied

for fault detection system design under ambiguity; currently, the literature on this

topic utilizes first principle-based models, such as state space models (Shang et al.

2021), to address this issue. This work considered a Bayesian inference-based index

for multimodal process fault detection proposed in literature that models the pro-

cess as a Gaussian mixture (Yu and Qin 2008), and extended the same accounting

for uncertainty in the fitting of this mixture model to process history data. To this

end, the distributionally robust optimization framework proposed in Chapter 3 was

applied in the fault detection framework to evaluate the worst-case performance of

a fault detection system, using the indices of fault detection rate, and false alarm

rate. The worst-case expected performance models pertaining to these indices were

formulated, and their use was demonstrated on a synthetic multimodal case study.

The evolution of the worst-case expected performance of a fault detection system was

tracked for varying levels of ambiguity quantified by the ambiguity set radius. Using

these results, recommendations may be made for an appropriate choice of the fault

detection threshold magnitude for acceptable worst-case performance under a defined

ambiguity level.

The worst-case expected performance models in Chapter 6 were formulated sepa-

rately for the fault detection rate, and false alarm rate. A possible future direction

for this work is to combine both indices and solve for a unified worst-case evalua-

tion of the fault detection system performance under distributional ambiguity of the

multimodal process. Additional experiments on benchmarks setups and process data

would also be beneficial to assess the applicability of the proposed formulations for
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practical decision-making under uncertainty.
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Appendix A: Wasserstein
ambiguity set-based DRCCP

In this section, we give the derivation of a tractable formulation for distributionally

robust chance-constrained programming problem (DRCCP) using the 1-Wasserstein

distance-based ambiguity set. The derivation procedure is similar to that of Yang

and Li (2022), and we include an overview of the same to ensure completeness of this

work. We start from the worst-case expectation problem in the constraint of DRCCP

Model 4.16.

max
P∈P

EP(max
1≤i≤m

gi(x, ξ) − η)
+

Under the 1-Wasserstein metric-based ambiguity set of radius ϵW , computed through

the discrete optimal transport problem (Model 4.8), wherein the expectation operator

is empirically estimated over a candidate distribution supported on H points, the

model may be further formulated as,

max
πj,h≥0,ρh≥0

H

∑
h=1

ρh(max
1≤i≤m

gi(x, ξ) − η)
+

(A.1a)

s.t. min
πj,h,ρh

N

∑
j=1

H

∑
h=1

∣∣ξh − ξj ∣∣πj,h ≤ ϵW (A.1b)

H

∑
h=1

πj,h =
1

N
, 1 ≤ j ≤ N (A.1c)

N

∑
j=1

πj,h = ρh, 1 ≤ h ≤H (A.1d)

Since this worst-case expectation problem forms the inner maximization problem in

the overall DRCCP minimization problem, we can denote L(x, ξ) ∶= (max
1≤i≤m

gi(x, ξ) −
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η)
+
. Model A.1 may be further written in terms of the transportation variable π only

as follows, while dropping the “min” operator,

max
πj,h≥0,ρh≥0

N

∑
j=1

H

∑
h=1

ρhL(x, ξh) (A.2a)

s.t.
N

∑
j=1

H

∑
h=1

∣∣ξh − ξj ∣∣πj,h ≤ ϵW (A.2b)

H

∑
h=1

πj,h =
1

N
, 1 ≤ j ≤ N (A.2c)

The dual problem for this model may be obtained by introducing the dual variables

κ and zj, 1 ≤ j ≤ N as follows,

min
κ≥0,zj

κϵW +
1

N

N

∑
j=1

zj (A.3a)

s.t. zj ≥ L(x, ξh) − κ∣∣ξh − ξj ∣∣, 1 ≤ j ≤ N,1 ≤ h ≤H (A.3b)

In practice, the candidate distributions themselves as well as their supports are

unknown to the user, and therefore, an infinite continuous support ξ ∈ Ξ is established

as follows,

min
κ≥0,zj

κϵW +
1

N

N

∑
j=1

zj (A.4a)

s.t. zj ≥max
ξ∈Ξ

L(x, ξ) − κ∣∣ξ − ξj ∣∣, 1 ≤ j ≤ N (A.4b)

This model may be further reformulated using the dual norm as −κ∣∣ξ − ξ0j ∣∣ =

−min∣∣Vj ∣∣∗≤κ V T
j (ξ − ξj) and dropping the “min” operator,

min
κ,zj

κϵW +
1

N

N

∑
j=1

zj (A.5a)

s.t. zj ≥max
ξ∈Ξ

L(x, ξ) − V T
j (ξ − ξj), 1 ≤ j ≤ N (A.5b)

∣∣Vj ∣∣∗ ≤ κ, 1 ≤ j ≤ N (A.5c)

For a piece-wise linear loss function that may be written as L(x, ξ) ∶= max
1≤i≤m

aiξ+bi,

the model may be reformulated as,

min
κ,zj

κϵW +
1

N

N

∑
j=1

zj (A.6a)
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s.t. zj ≥max
ξ∈Ξ
(aiξ − V

T
j ξ) + bi + V

T
j ξj, 1 ≤ j ≤ N,1 ≤ i ≤m (A.6b)

∣∣Vj ∣∣∗ ≤ κ, 1 ≤ j ≤ N (A.6c)

The inner maximization problem in A.6b may be written as maxξ∈Ξ (ai − Vj)
T ξ

for each i, j. If Ξ is the real space, then the inner maximization problem is an

unbounded linear programming problem unless ai = Vj, ∀i, j. Therefore, the model

may be reformulated as,

min
κ,zj

κϵW +
1

N

N

∑
j=1

zj (A.7a)

s.t. zj ≥ bi + a
T
i ξ

0
j , 1 ≤ j ≤ N,1 ≤ i ≤m (A.7b)

∣∣ai∣∣∗ ≤ κ, 1 ≤ i ≤m (A.7c)

If the constraint function in the joint chance constraint is affine: gi(x, ξ) ∶= hi(x)ξ+

hi(x) ∀i, then L(x, ξ) ∶= (max
1≤i≤m

gi(x, ξ)−η)
+
∶= (max

1≤i≤m
hi(x)ξ+hi(x)−η)

+
, Model A.7

may be reformulated with ai = hi(x), bi = hi(x) − η, 1 ≤ i ≤m and am+1 = 0, bm+1 = 0.

Substitute it into Model 4.16 and drop the “min” operator, we have

min
x∈X,η,κ,zj

f(x) (A.8a)

s.t. η +
1

δ
[κϵW +

1

N

N

∑
j=1

zj] ≤ 0 (A.8b)

zj ≥ hi(x) − η + hi(x)
T ξ0j , 1 ≤ j ≤ N,1 ≤ i ≤m (A.8c)

zj ≥ 0, 1 ≤ j ≤ N (A.8d)

∣∣hi(x)∣∣∗ ≤ κ, 1 ≤ i ≤m (A.8e)
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