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Abstract

This thesis considers the task  of building world models from uncertain range data . 

We study the occupancy approach, which is one of the most popular approaches used 

for this task. We identify three problems of this approach which prevent it from being 

used for building 3D world models. The thesis aims to resolve these problems.

The first problem concerns the design of sensor models which assign the  values 

of uncertainty to  registered range data . Vision-based sensors are the most affordable 

sensors capable of registering 3D range data. However, their sensor models axe not 

known or are very difficult to  calculate using probability theory. In the thesis we 

propose a  new approach for building visual sensor models which uses evidence theory. 

This approach allows one to efficiently build sensor models of unreliable, inexpensive 

video systems by employing stereo error analysis. We present the  design of an  inex­

pensive visual range sensor which consists of a single off-the-shelf video camera. This 

visual sensor is shown to be very suitable for world exploration problems.

The second problem deals with the combination rule, which combines uncer­

tain ty  values obtained from different range data. Approximations of the Bayesian 

and Dempster-Shafer rules, which are the common rules used in the occupancy ap­

proach, in m any cases assume the independence of range data, contrary to the usual 

situation. In the  thesis, we develop a new technique for combining range data which is 

based on regression. This technique does not make independence assumptions about 

the  data  and can therefore be applied to combining such dependent range d a ta  as 

those obtained by a single-camera range sensor.

Finally, the th ird  problem concerns the redundancy of stored and processed data , 

which results from using the grid representation of the occupancy function. In  the 

thesis we establish a new framework for representing the occupancy function in a 

param etric way using piecewise linear surfaces. This framework, which is the m ajor
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th rust of the thesis, uses the techniques we have developed for registering and com­

bining visual range data, and is tested on both simulated and real range data . The 

advantages and th e  limitations of the proposed framework are studied. Besides being 

closer to optim al space-wise, this framework is also shown to be more efficient for 

map extraction and world exploration.

While much remains to be done in the area we believe tha t the proposed strategies 

for building sensor models, combining uncertain range data, and using param etrically 

represented occupancy functions provide the basis for new applications of the  occu­

pancy approach and will promote the development of this approach in bo th  world 

modeling and robot navigation.
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Resume

Dans la presente these, nous considerons la tache de construire des modeles de l’espace 

a partir de donnees telemetriques incertaines. Nous etudions l ’approche d ’occupation, 

qui est 1’approche la plus populaire pour cette tache. Nous identifions trois problemes 

propres a cette approche qui l’empechent de pouvoir etre utilisee pour construire 

des modeles de 1'espace tridimensionels. Le bu t de cette  these est de resoudre ces 

problemes.

Le premier probleme est relie a la conception de modeles de capteur qui determi- 

nent les valeurs d ’incertitude au donnees telemetriques registries. Les capteurs qui 

sont bases sur les signaux optiques sont les capteurs les plus accessibles capables du 

registre des donnees telemetriques tridimensionelles. Cependant, leurs modeles de 

capteur ne sont pas connus ou sont tres difficiles a calculer en utilisant la theorie des 

probabilites. Dans cette these, nous proposons une nouvelle approche pour construire 

des modeles de capteur optique basee sur la theorie de l’evidence. Cette approche 

perm et de construire efficacement des modeles de capteur de systemes optiques peux 

couteux et peux fideles en utilisant l’analyse de 1’erreur du systeme stereo. Nous 

presentons la conception d ’un capteur telemetrique fait a partir d ’une videocamera 

generique. On fait la demonstration de l’adequation de ce capteur optique pour des 

problemes d’exploration de 1’espace.

Le deuxieme probleme a rapport avec la regie qui combine des incertitudes ob- 

tenues a partir de differentes donnees telemetriques. Des approximations aux regies 

bayesienne et de Dempster-Shafer, qui sont les regies generales utilisees dans l’approche 

d ’occupation, assument souvent l’independence des donnees telemetriques, contraire- 

ment a la situation habituelle. Dans cette these, nous developpons une nouvelle 

technique basee sur la regression pour combiner des donnees telemetriques. Cette 

technique n’assume pas l’independance des donnees et peu t done etre appliquee pour
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combiner des donnees telemetriques telles que celles obtenues pax le capteur fait a 

p a rtir d ’une videocamera.

Finalement, le troisieme probleme est relie a la redondance des donnees enreg- 

istrees et traitees, qui resulte de 1’utilisation de la representation de grille de la fonction 

d ’occu- pation. Dans cette these nous etablissons un nouveau cadre pour representer 

la fonction d ’occupation d ’une voie parametrique en utilisant les surfaces lineaires. 

Ce cadre, qui est la principale contribution du present travail, utilise les techniques 

developpees pour registrar et combiner des donnees telemetriques optiques, et est 

teste sur des donnees telemetriques simulees et reelles. E n  plus d ’utiliser beaucoup 

moins de memoire, on demontre aussi que ce cadre est plus efficace pour l’extraction 

de la carte de navigation.

Si bien il reste beaucoup a faire dans ce domain, nous pensons que les strategies 

presentees pour construire des modeles de capteur, tou t en combinant des donnes 

telemetriques incertaines, et en utilisant des fonctions d ’occupation a representation 

parametrique, fournissent la base pour de nouvelles applications de l’approche d ’occu­

pation et stimuleront le developpement de cette approche dans la modelisation de 

l’espace et la navigation robotique.
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A H H O T a m if l

B anccepxanaa paccMaxpaBaeTca 3aaana nocxpoenaa npocxpaHcxBeHHBix Moaeaeir 

Ha ocHOBe HexoHHBix xeaeMexpanecxax HaHHBDc. Kayaaexca ooth  H3 Han6ojiee yno- 

xpeSaaeMBix noaxoaoB aaa aaimoa 3aaaHa — oxxynanaoHHBia noaxoa- Mbi noxa3Bi- 

BaeM, nxo aaHHHH noaxoa nMeex xpa npoSaeMBi, npenaxcxByioimie ero npaMeHeHaio 

aaa nocxpoeHHa xpexMepHBix Moaeaea Mapa. Haccepxaaaa nocBameHa pa3pemeHaio 

3xhx npo6aeM.

IlepBaa npoSaeMa xacaexca nocxpoeHaa ceHCopHBix Moaeaea, 3aaaK>mnx ypoBHa 

HexoHHOCXH peracxpapyeMBiM xeaeMexpanecxaM ceHCopHBiM aaHHBiM. OnxaaecKae 

ceHCOpBi aBaaioxca HaaSoaee aocxyniiBiMB xeaeMexpHHecxaMa ceHCopaMa, cnoco6- 

hbimb perncxpapoBaxB xpexMepHBie aaHHBie. OaHaxo Moaeaa axax ceHcopoB aa6o He- 

H3BecxHti, aa6o oaeHB xpyaHBi aaa BBraacaeHaa, ecaa aaa ax BBraacaeHaa acnoas- 

3yexca xeopaa BepoaxHocxH. B aaccepxanaa apeaaaraexca hobbih noaxoa aaa no- 

cxpoeHsca Moaeaea onxaaecxax ceHcopoB. 3xox noaxoa no3Bonaex acJxJjeKTHBHO pac- 

CHHXBiBaxB Moaeaa neHaaeacHBix Heaoporax BHaeocncxeM, acnoai>3ya aHaaH3 cxepeo 

norpeiHHOCxea. Mbi apeaaaraeM aa3aaH xeaeMexpaaecKoro ceHCopa, cocxoamero 

H3 oaHofi Heaoporoa: BHaeoxaMepBi, a noKa3BEBaeM, axo aaHHBia BaaeoceHcop oaeHB 

noaxoanx aaa 3aaaa accaeaoBaHaa oxpyacaiomero npocxpaHCXBa.

Bxopaa npoSaeMa xacaexca cpopMya, acnoaB3yioiiiaxca aaa oGBeaaHeHaa 3Haae- 

hbh HexoaHOCxa xeaeMexpaaecxax aaHHux. npaSaaacesaa Haa6oaee acnoab3yeMBix 

b OKKynaaaoHHOM noaxoae (|)opMya Baeca a HeMncxepa-HIeiJiepa npeanoaaraiox, axo 

ceHcopHBie aaHHBie aBaaioxca He3aBHCHMBiMH apyr ox apyra, Bonpexa xoMy, axo 

Ha caMOM aeae axa aaHHBie aame Bcero aBaaioxca 3aBacaMBiMH. B aaccepxanaa 

npeaaaraexca hobbih noaxoa aaa oSBeaaHeHaa 3HaaeHaa HexoaHOCxa, Gasapyiomaaca 

Ha aaHeaHoa perpeccaa. 3xox noaxoa He aeaaex npeanoaoaceHaa oxHOcaxeaHO He3a- 

bhchmocxh aaHHBix a noxoMy Moacex ynoxpe6aaxBca aaa oGBeaaHeHaa xaxax 3aBa-
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chmbdc npyra ot apyra jaHHbix, Kan Te, hto perncTpupyiOTca ceHCopoM, cocxoaniHM 

H3 OHHOH BHJieOKaMeptI

HaKOHen, xpexta npo6neMa Kacaexca hsGbixohhocxh 3anoMHHaeMBix h o6pa6ax&r- 

BaeMux aaHHux. 9xa  npoSjieMa aBJiaexca cjiencxBHeM ncnojn>30BaHna MaxpiraHoro 

npeacxaBneHHa OKKynanHOHHOH (JjyHKHKH. B ,nnccepxaiiHH npenjiaraexca HOBaa cxpa- 

xerna nna npencxaBJieHHa OKKynarmoHHOii 4>yHKiinH c noMoim>io Kyco^mo-jiHHefiHBix 

noBepxHOcxea:. flaHHaa cxpaxerna aBJiaexca ochobhum BKJiajroM jzclhhoU nnccepxa- 

ixhh. OHa 6a3Hpyexca Ha ripen jiaraeMtix b nuccepxaiiHH no.nxo.nax no perncxpanHH 

h oSteuHHeHHio xejieMexpHHecKHx BaneonaHHBix. TecxnpoBaHHe ztaHHofi cxpaxerma: 

nponejiaHO Kajc Ha CHMyitHpoBaHHBix, xaK h Ha Hacxoanxnx ceHCopHux jjaHHHX. Ilpe- 

HMymecxBa h HenocxaxKH npeanaraeMOH cxpaxemH H3ynaioxca. IIomhmo xoro, hxo 

jraHHaa cxpaxeraa noxpeGjiaex 3HaHnxejn>HO MeHtme naMaxH, OHa xaicace aBJiaexca 

Gojiee yuoSHOH mia BtraHCJieHHa HaBHxaunoHHBix Kapx.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



You ask me, how old am I?
I  tell you, it  depends how do you count —
I f  age is defined
By the years from  birth, I ’m  younger than you no doubt.

But i f  by the years, which left to death ...
I  am much older than you, I  guess.

D.O. Gorodnichy (from “He and Shd’ album)
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Notations

C h a p te r  3:
(*'. J) the coordinates of a  pixel in the image plane
F focal length of the camera measured in rasters
tti \i, j ,  F \unn unit vector of a  feature
r = m r =  (X, Y, Z) 3D vector of a po in t in space
T the distance to a po in t r
Sr the range error
h the baseline
h the baseline vector, which is the translation vector of the

camera
$ the angle of the cam era tilt rotation
Q the angle of the cam era support
R the rotation m atrix
N the dimension of th e  vector obtained by scanning an im­

age with a 5 by 5 window
V TV-dimensional vector, the elements of which are the in­

tensities of the pixels in the scanning window
E m atch error used in  tracking
TS a 3D point registered by a sensor
m the occupancy value of a point
m occ(r) the evidence th a t a. point is occupied
771emp (0 the evidence th a t a  point is empty
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C h a p te r  4:
m
r
o
e
m(o)
m(e)
Bel(o) =  m(o)
Pl(o) =  1 — m(e)
E
a
h
e
L

the occupancy value of a point
a range measurement; also the distance to a point
event that the point in question is occupied
event that the point in question is empty
the evidence th a t a point is occupied
the evidence th a t a point is empty
the amount of belief tha t a point is occupied
the amount of plausibility th a t a point is occupied
error of approximation of the function
the pan angle of a point
the height of a  point
acceptable error level
the number of hyperplanes used in regression

C h a p te r  5:
st
n
7T
V{s)

the system of the  robot a t tim e t  
reinforcement obtained by the  robot at time t 
navigation policy of the robot
to ta l discounted reinforcement, aka the value function
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Chapter 1

Introduction

1.1 Presentation of The Problem

1.1.1 The Challenge of World Modeling in Robotics

T he era of computers and robots has come. Robots are replacing humans in many 

aspects of life, and first in environments which are hazardous for a human or where 

a  human cannot be physically present. Such environments unclude mine fields, high- 

voltage workspaces, highly polluted and radioactive environments, sea bottom s, war 

ba ttle  frontiers, surfaces of other planets, and other environments in space missions.

In order to operate successfully in an unknown environment, a  robot may need 

to  learn a model of the environment. Robots however are not humans and they do 

not perceive the world as precisely as we humans do. Let us name the main practical 

lim itations on a robot’s ability to acquire accurate models of the world.

First, sensors are never perfect. They have limited resolution, they provide data 

corrupted by noise, and above ail, they provide only a limited amount of data. More 

expensive sensors are able to register d a ta  more precisely than  cheaper ones. Nev­

ertheless, as we understand, there always will be an issue of tim e and costs involved 

in obtaining the data. There might be situations when we cannot afford expensive 

sensors, as, for example, in the case of using robots in hazardous places where the 

chance of breakage is high.

Second, in most applications a  robot should operate in real time. T hat is, in

1
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addition to  hardware lim itations imposed by the cost of the sensor, there is also a 

time constraint which does not allow a robot to obtain enough or more precise data.

Third, the  environment around a robot is complex and dynamic. This can result 

in contradictory sensor readings.

Finally, robot’s motion is inaccurate due to the drift and slippage, which results 

in incorrectness in object location estimation. These odometric errors however can 

be reduced by limiting the mobility of the robot and in this work we do not consider 

them, focusing our m ain attention on treating the other limitations mentioned.

The m ajor challenge of the research comes from the desire to build adequate world 

models from  inaccurate and incomplete range data, where the adequacy of the model 

is judged from its suitability to a given task.

1.1.2 Occupancy Approach and Grids

The occupancy approach was formulated at the CMU Robotics institute in 1983 to 

turn  wide angle range measurements from cheap sonar sensors into a 2D spatial map 

[MM96]. Since then, it has become one of the main approaches used in robotics for 

building world models from uncertain range data, especially in situations

a) when there is no a-priori knowledge of the geometry of the environment, and

b) when low-cost and not very reliable range sensors are used.

The founders of the occupancy approach believed tha t the approach had a great 

future, if applied to building 3D models from 3D range data  [MM96]. The approach 

however has an intrinsic problem which prevents it from being used for constructing 

3D and large scale models. This problem is the grid representation of the world used 

in the approach. Everything in the approach: sensor models, which assign the degree 

of uncertainty to registered data; combination rules, which are used to combine the 

data; map extraction methods, is based on this representation. This is even why 

the occupancy approach is mainly known under the name of the occupancy grids 

approach. The grid representation however may result in storing and processing

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hundreds of millions o f  voxels, which makes constructing and using models of 3D 

environments in real tim e  practically impossible. And this is not the only problem  

incurred by using grids. Grid models are not suitable for radial range data, which is 

the most frequent case, and they are very inefficient for map extraction.

1.1.3 Vision-based Range Sensors

In addition to the representation problem mentioned above, there is also a problem  

of designing low-cost a n d  fast 3D range sensors. Vision-based sensors appear to  be 

the most suitable candidates for that, since sonar sensors do not provide accuracy 

sufficient for 3D m odeling, while laser-based range finders are expensive and /o r slow. 

Sensors th a t are not based  on vision are also indescriptive of registered data, m eaning 

that they do not have control over the strategy of selecting the features, whereas 

vision-based sensors allow  one to choose features depending on the picture observed.

The development a n d  application of vision-based range sensors however is greatly  

impeded by the unavailability  of video camera sensor models which assign values of 

uncertainly to uncerta in  visual data. Using expensive highly calibrated or digital 

stereo system resolves th is problem by making all observed visual da ta  certain. B ut 

then these stereo system s are no longer low-cost an d /o r fast.

1.2 Statement of The Thesis 

Objectives of the work

The goal of the d issertation  is to provide solutions to  the problems of vision-based 

occupancy world m odeling described above. This includes two main objectives. The 

first objective is re la ted  to  computer vision and is

to design an affordable 3D range sensor based on an inexpensive off-the- 

shelf video cam era, which will be capable of registering 3D range data  in 

real time, and th e n  to provide an approach for building sensor models of

3
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unreliable visual sensors.

The second objective is related to world modeling and is

to develop a new framework for combining, representing and using oc­

cupancy data using a param etric piecewise linear representation of the 

occupancy function which represents the occupancy model of the world.

Importance of the work

The techniques proposed in the thesis for building sensor models, combining uncer­

tain  range data, and using param etrically represented occupancy functions provide 

solutions to the problems occurring in building 3D occupancy world models, thereby 

providing the basis for new applications of the occupancy approach and prom oting 

the development of this approach in  bo th  world modeling and robot navigation.

Contents of the work

The dissertation contains the results of the author which appeared previously in 

six publications of the author: five appeared in proceedings of refereed conferences 

[Gor99, GA99b, GA99a, ACG99, GAOOc] and one appeared in a journal [GAOOa]. 

These results have been reported and discussed a t various computer science forums, 

including International Symposium on Robotics (ISR/PRECA RN ’2000), Montreal, 

14-17 May 2000 (planned); International Joint Conference on Neural Networks, Wash­

ington DC, July 21-23, 1999; Vision Interface conference, Trois-Rivieres, Canada, May 

18-21, 1999; Quality Control by Artificial Vision Conference, Trois-Rivieres, Canada, 

May 18-21, 1999 Canadian Conference on Electrical and Computer Engineering, Ed­

monton, Canada, May 9-12, 1999.

1.3 Organization

The problems covered in the  thesis belong to different areas of computing science, and 

in the literature, in m any cases, they are studied by different research communities.

4
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For example,

•  The design of a stereo rig and stereo error analysis are studied by researchers 

in Image Processing and Computer Vision;

•  Manipulations with evidence and probability values are of interest to researchers 

in Uncertainty in AI and Belief Networks. This includes assigning values of 

evidence to  uncertain data, as well as rules used to  combine these data.

•  Learning from data is a forte of scientists from Machine Learning and Neural 

Network community as well as statisticians who deal with regression or other 

estimation and induction methods.

•  A new approach for world modeling is of interest to  World Modeling and Virtual 

Environment research community.

•  Finally, most of the work presented in the thesis has applications in Robotics, 

where one finds the greatest number of publications dealing with occupancy 

grids, map extraction and world exploration.

The organization of the thesis in chapters is done according to the areas the 

problems in question belong to.

First, in Chapter 2 we describe the world exploration problem, which is the main 

problem the occupancy approach is applied to, and which is the problem we make use 

of throughout the thesis. In this chapter we describe the occupancy approach, and 

focus our attention on the problems of this approach. In particular, we identify the 

following problems. The first problem concerns the visual range sensor, the sensor 

model of which has to be developed in order to be used in fusing. The second problem 

deals with the combination rule which in m any cases assumes the independence of 

range data, contrary to the usual situation. Finally, the third problem concerns the 

redundancy of stored and processed data, which results from using the grid represen-

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tation of the  occupancy function. The outline of the solutions proposed in the thesis 

to the above problems concludes the chapter.

Then, in C hapter 3 we concentrate on the vision p a rt of the research. We describe 

the concept of a sensor model and explain why it is difficult to build a  sensor model 

of a vision-based sensor. We introduce a single cam era 3D range sensor and show the 

advantages of it, the m ajor of which are the following: it is fast and  inexpensive, and 

it is convenient for building a sensor model. We describe the design of the sensor, 

present the  stereo error analysis, build the sensor model of it and show the application 

of it to mobile robot world exploration. It is also in this chapter when we first argue 

in favor of evidence theory over probability theory. We show how evidence theory 

allows one to efficiently build sensor models of vision-based sensors using the error 

analysis of the vision system.

C hapter 4 studies the issue of combining uncertain range d a ta  in the occupancy 

approach. We show the deficiencies of the existing combination rules. In particular, 

we show th a t Bayesian and Dempster-Shafer-based rules, which axe the m ain rules 

used in the  approach, may produce non-sensical results when applied to fusing data  

obtained by a single-camera stereo. We then propose a new technique for combining 

uncertain range d a ta  which is based on regression. In order to  apply regression 

to sample points, which are range measurements along with their evidence values, 

we draw upon the evidence approach, thereby showing one more advantage of this 

approach over the probabilistic approach. We describe the proposed technique for a 

general case of using an arbitrary regression technique, and then we show how it can 

be efficiently implemented using Adaptive Logic Networks as a regression tool.

In C hapter 5, we demonstrate tha t occupancy models can be represented param et­

rically and show the advantages of representing the occupancy function using piece- 

wise linear surfaces. These advantages are 1) efficiency in representing the model; 

2) high speed of constructing the occupancy function; 3) efficiency for m ap extrac­

tion. This chapter is dedicated to showing how to  use param etrically represented

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



occupancy models for the  world exploration problem, which is the problem the  oc­

cupancy approach is commonly applied to. In particular, we describe an approach 

which uses the  information extracted from the constructed occupancy models in order 

to make navigation decisions. This approach uses a reinforcement learning technique 

where the reinforcements are obtained from the knowledge of the goal location as 

well as from the  knowledge of unexplored area and the likelihood of obstacles in the 

exploration area, which is extracted from the occupancy models.

A framework for building occupancy models using visual range d a ta  and param et­

rically represented occupancy functions is presented in Chapter 6 . This framework 

makes use of the  techniques described in the preceding chapters and consists of a  set 

of stages which lead from the  first step of grabbing a video-frame to  the final step 

of making a  navigation decision based on the constructed models. Special a ttention 

is given to the  im plem entation of the proposed framework. We describe the software 

and hardware architectures of robot Boticelli designed for purpose of dem onstrating 

the approaches proposed in the  thesis. The data obtained from running the robot are 

presented.

The last chapter summarizes the contributions of the dissertation, lists directions 

for further improvement of the  techniques proposed and presents our vision for future 

work in the area of vision-based world modeling using occupancy functions.

7
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Chapter 2 

Occupancy Approach

2.1 Introduction

The occupancy approach was proposed as a  solution to the world exploration problem. 

This problem, which deals with the making navigation decisions from small, noise- 

prone quantities of sensor data, has been of interest to the researchers in mobile 

robotics for almost two decades. As early as 1980, it was realized that direct sensor 

measurements should not be used in planning navigation [Mor81]. Instead, multiple 

sensor measurements should be taken into account and world models should be built 

in order to be used in making intelligent navigation decisions.

In this chapter, we describe the world exploration problem and overview the work 

done by various robotics labs on this problem. The focus of our attention is vision- 

based mobile robotics and applications of the occupancy approach, which are the 

areas of our contribution. The occupancy approach is introduced and the properties 

of this approach which make it indispensable for mobile robotics are described. The 

applications of the occupancy approach for world modeling problems are presented.

The emphasis of the  chapter is on the problems of the occupancy approach. In 

order to resolve these problems, a new paradigm has to be proposed. The outline of 

this paradigm concludes the  chapter.

8
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2.2 World Exploration Task

The world exploration task, in a general form, is described as follows.

An agent equipped with range sensors is put in an absolutely unknown 

environment. The agent tries to understand what is around it, by building 

a model of the environment, in order to accomplish a given task.

As understood, the quality of the world models th a t an agent wants to build is 

governed by two factors:

1. the tasks the agent has to  fulfill, and

2. the quality of the available range sensors.

For example, precise 1 mm resolution models, such as the ones used for building 

virtual environments [EHBR98, GMB98] or surgical applications [Gri99], cannot be 

built from unreliable data registered by inexpensive range sensors. On the other hand, 

there might be no need of very precise models, as, for example, in the case when the 

models are used for guiding a robot to a goal or in exploring large-scale environments. 

Thus, when designing a world modeling technique, it is im portant to know how the 

models will be used and what the properties of the registered range data  are.

2.2.1 Two Types of World Modeling

Along the lines written above, we can distinguish two types of modeling. The first 

type is concerned with building as precise a model of the world as possible. The 

issue of time is not a concern for this type of modeling. The range data are obtained 

by expensive and reliable range sensors, which are well calibrated and which operate 

in a calibrated environments using turn-tables [RGEZ99] or predefined positions of 

cam era [GMB98]. This type of modeling is used in building virtual representations 

of real environments.

9
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T he object of investigation of this dissertation however is another type of modeling, 

which we m ay refer as fast-but-crude modeling as opposed to the precise-but-slow 

modeling described above. This type of modeling is the  one used in mobile robotics, 

where the  issue of tim e efficiency is of prime concern and where it is com m on to 

use inexpensive range sensors, which in many cases axe not very reliable. Table 2.1 

summarizes th e  features of two types of modeling.

In  the next section, we present an overview of the reliability characteristics of 

different range sensors used in robotics and next we present the testbed problem for 

fast-yet-crude modeling.

Table 2.1: Two types o f world modeling.

Type 1: precise-but-slow Type 2: fast-but-crude
N ature of 
range data

localized in one area, dense distributed over large range, col­
lected all around

Tim e require­
ment

may take days to calculate real-time

Required pre­
cision

as precise as possible, 1mm resolu­
tion

precise enough to navigate, 1dm - 
lm  resolution

Applications virtual environments, cyber-cities, 
surgeries

exploring unknown environments, 
finding objects, collecting new data

Sensors used laser scanners, multiple-cameras 
calibrated video system

sonars, cameras, laser range find­
ers, infrared sensors

2.2.2 “Find an Object” Problem

Consider the following world exploration problem. A robot is put in an absolutely 

unknown environment. The objective of the robot is to find a  predefined target object 

as fast as possible, using d a ta  registered by its sensors. We will refer to this problem 

throughout th e  thesis and make of use it to test the approaches proposed in the thesis. 

Let us show w hat are the  main challenges of this problem.

F irst, the fact th a t the  environment is absolutely unknown means th a t there is 

no a-priori information about the environment, such as m aps of the environment or

10
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any assum ptions made about the environment concerning its scale, its shape, or its 

dynamics. Thus, the model of the world is built from scratch and w ithout resorting 

to geometry-based techniques.

Second, the  objective of finding an object fast implies two things. On one hand, 

the robot has to make intelligent navigation decisions based on the world models 

built from the  acquired range data, where range da ta  can be partia l or unreliable. 

On the o ther hand, the robot has to build these models fast, preferably in real tim e, 

and it has to  extract the  information needed for navigation from these models also 

fast, where this information includes the knowledge of already explored areas and the 

areas where exploration is still required.

The tim e constraint of this exploration problem requires fast-but-crude modeling 

of the environment A nother reason for fast-but-crude modeling comes from using 

unreliable range sensors and the desire to make robots affordable.

The efficiency and the  quality of modeling in this problem is defined by the tim e 

needed for the  robot to  find the target and also by the costs incurred in doing the 

job.

2.3 Range Sensors

Range sensors are non-contact sensors th a t measure the distance to  a point in space. 

Depending on the technique used to calculate the distance to a point, they have 

different ranges, depth and  angular resolution, measuring rates and prices.

It should be mentioned th a t all range sensors have limited accuracy and ra te  of 

acquisition, though some are more accurate and faster than  others; and as a rule, the 

more reliable a  sensor is, the more expensive it is.

In the  current dissertation we use an inexpensive single videocamera range sensor. 

We develop a  sensor model of it and we use it in our experiments. However, the 

techniques proposed in the  dissertation can as well be applied to  other unreliable 

range sensors. So, let us review those sensors.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The most popular in robotics sensors are ultrasonic sensors [TFB98, BEFW97], 

time-of-flight lasers [For98], range cameras [RGEZ99, PHLG97] and videocamera- 

based sensors [JD97, YSA98, Mor96]. O ther types of sensors include radax sensors 

[Mul98] and infrared cameras [Pol99, Mal93]. They however are not com m only used 

in robotics a t the present moment.

Ultrasonic sensors are the most affordable range sensors. However, they have low 

measuring rates due to the low speed of sound and short measuring range (5—10 me­

ters). They are also very susceptible to  the angle of incidence and the reflectance 

properties of the objects. Range resolution of ultrasonic sensors is about 1 centime­

ter. Their angular resolution however is very low: 50—200 mrad, which makes them 

unsuitable for high-precision modeling.

Time-of-flight lasers have maximum range of 10-30 meters and high range resolu­

tion (1-5 centimeters) and angular resolution (1-20 mrad). Their acquisition rate is 

about 1 frame per second. They have very few spurious measurements. They have 

however many drop-outs. They are usually expensive. They also register depth data 

in one plane only or according to a predefined pattern  [Lau99].

Range cameras are faster and cheaper than  scanning time-of-flight lasers. Their 

range resolution is 0.01-10 millimeters and angular resolution is 0.2-02 mrad. They 

have limited useful range however (less than  5 meters) and are expensive.

Finally, vision-based sensors can register 3D range data  with a wide range. They 

are generally fast and have high angular resolution. Rate of acquisition and range 

resolution of vision-based sensors depend upon the quality of the videocamera, stereo 

setup and depth acquisition algorithms. Tradeoffs between the quality of range mea­

surements, the  cost of the stereo setup and the complexity of depth acquisition algo­

rithm s are very apparent. The main source of unreliability of video-data comes from 

the limited resolution of the camera and the correspondence error.

12
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2.4 Occupancy Approach

2.4.1 Definition

The occupancy approach was proposed in order to facilitate fusing of uncertain range 

measurements. A ccording to this approach, each point in space is associated with 

what is called an occupancy value o f the point Mathematically, occupancy modeling 

can be written as m apping from 3D or 2D space into real values:

m =  m(r), r 6  3ft3 (2-1)

Usually, occupancy values designate the likelihood th a t a point in space is occupied: 

the higher the value 5s, the more likely it is that the point is occupied. However, they 

can also designate th e  likelihood th a t a point in space is empty, in which case they 

are sometimes called, emptiness values and the models are called emptiness models. 

Figure 2.1 shows an  example of an occupancy model of a simple 2D environment 

consisting of two perpendicular walls.

Figure 2.1: Two dim-ensional occupancy model of the world. The higher the value o f 
the point is, the m ore likely it is that the point is occupied.

Though simply defined, the occupancy approach poses a lot of questions and 

problems.
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2.4.2 Difficult Questions

The occupancy approach consists in calculating the occupancy values of all points in  

the explored space, according to the range da ta  measured by a range sensor. In the  

original work of Elfes and Moravec [ME85], who are considered to be the founders 

of the occupancy approach, as well as in most follow-on works [Elf86, ME88, Elf89, 

MM96, Mor96, JD97, TFB98], the occupancy values are calculated as probabilities 

tha t a point in space is occupied, conditioned on all available range measurements. 

Designating the event th a t a point A  is occupied as Oa  and range measurements as 

n . ,r2, —j r Mi this can be w ritten as

This formulation allows one to use the probabilistic framework for fusing uncertain 

range data, and in particular, to use conditional probability tables to represent range 

data. The following example illustrates the concept.

F irs t  q u e s tio n

Let’s say, according to the  r- th  measurement of a sensor, point A  is occupied w ith 

probability 0.7, i.e. PA =  Pr(0 A) =  0.7. Then, for each point a  different from 

point A, the probability th a t the point is occupied P£ is expressed as the conditional 

probability

A couple of obvious questions arise.

Q la : How should we assign a probability of occupancy to  a registered point (e.g. the 

value of 0.7 to a point A  in the example above)?

Q lb :  How does one calculate and store conditional probability tables needed to cal­

culate the occupancy probabilities of all points in space after an individual 

measurement is taken (i.e. all points a  around point A)?

m A =  P 2~™  = P ( 0 A\r\ , r 2, ..., rM) (2 .2 )

m a = p r  =  Pr (Oa \P Z = 0 .7 ) (2.3)

14
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As can be seen, these conditional probability tables can be quite big, if there are 

many points in space and there are many possible occupancy values.

These two questions describe w hat is called the  sensor model design problem. 

This problem deals with the assignment of occupancy values to the  points in space 

after each individual measurement. Occupancy values are sometimes also called con­

fidence, evidence, or uncertainty values and in this dissertation we use these notions 

interchangeably.

Assuming that this problem is resolved, there is yet another problem.

Second question

Let’s say, there are M  range measurements, according to  which the  probabilities that 

point A  is occupied are P \, P \ , ..., P ^f, respectively.

Q 2a: How should these M  values of occupancy obtained from different measurements 

be combined to give the to ta l occupancy value Pa  =  /(-P 4, —> ^ a ) ° f  a

point?

In reality, this problem is aggravated by the fact that, in most cases, M  dif­

ferent range measurements describe not the same point A, but M  different points 

Ai, A2, ..., A m , which lie close to each other, yet are not the same. Then the ques­

tion is

Q 2b: How should one combine the occupancy values Va^V a^  ■—>Pa m °f closely lo­

cated points?

These questions refer to  what is called as the combination rule problem.

Third question

Now, assuming that all points a  in space have their occupancy values calculated, i.e. 

Pa have been calculated, the question is how to use them.

Q 3a: How should occupancy models be used?

15
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Q 3b: Should all points w ith the probability higher than  0.5 be considered as oc­

cupied? W hat is the most appropriate way of using them? How should one 

extract maps needed for navigation, if occupancy models are used for world 

exploration?

These questions address the application problem.

F o u r th  q u e s tio n

When dealing with world modeling, one may wish to visualize the constructed world 

models either for the purpose of analyzing the quality of the models or for the purpose 

of computer-human interfacing. One m ajor question is

Q 4: How should occupancy models, which are four-dimensional (x , y, z, m) models, 

be visualized on a 2D screen?

This is the visualization problem. Finally, comes the main problem.

F if th  q u e s tio n

Q 5a: How many points a  in space should be used when modeling an environment? 

How one should store the occupancy model?

In the original work of Elfes [Elf86], as well as in all subsequent work, the environment 

is represented as a two- or three- dimensional grid. The resolution of the grid defines 

the number of points used to represent the environment. The occupancy values are 

stored as elements of a multidimensional array. A natural question one may ask is

Q 5b : If one does not know anything about an environment, how can one tessellate 

it into a grid? How can one decide what the resolution of the  grid should be? 

Should the resolution be the same on the whole environment?

It is understood, for example, tha t some parts of the environment, which contain 

elaborate details, may require a finer resolution, whereas others parts of the environ-
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Table 2.2: Advantages and deficiencies o f the occupancy approach.

Advantages Deficiencies
Easy to understand Requires a lot of memory and computa­

tion power
Doesn’t require any extra  knowledge 
about the environment

Inconvenient for map extraction

Easy to m aintain Requires simplification assumption for 
combination

Good for unreliable sensors Difficult to visualize
Fast for small-scale models Slow for large-scale models
Uses the knowledge of sensor models Requires the knowledge of sensor models

ment, which contain nothing or big bulky objects, for example, can be modeled using 

large scale grids.

This is the  nature of the problem which impedes significantly the development of 

the occupancy approach — the so called representation problem.

The last question

As can be seen, the occupancy approach has many problems. These problems will be 

reviewed once again later in the chapter when presenting the outline of the solutions 

to these problems. A question one may wish to ask now is

Q 6 : If there are so many problems w ith the  occupancy approach, w hat makes it so 

valuable for world exploration?

Let us consider the  advantages of the occupancy approach.

2.5 Advantages of Occupancy Modeling

The choice of the model to be used in th e  description of the world depends on three 

factors: 1) environment, 2) sensors and 3) task goals.

Recent research has produced three fundam ental paradigms for world modeling 

for mobile robots: a geometrical (beacon recognition and tracking based) paradigm,

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a topological (graph-based) paradigm, and a m etric (occupancy-based) paradigm  

[TB96].

The geometrical approach is based on extracting geometrical features of the  envi­

ronment. In most cases, the environment is assumed to consist of planar objects: 

planes and lines, which are then extracted from the range measurements. Such 

techniques as Hough transform, Gabor or K alm an filtering are the most common 

techniques used to extract lines and planes. T he uncertainty of a range sensor is 

propagated to the model using the first two moments of the probability distribution 

of the spatial variables of the environment. The geometrical approach is well su ited  to 

modeling indoor and human made environments and it has found many applications 

in vision guided robots [UD95]. The geometrical nature of the  approach makes th e  ex­

traction of navigation maps easy. It can be seen however th a t, due to multiple m atrix  

multiplications involved in updating covariance matrices, the geometrical approach 

is rather time-consuming and therefore cannot be used to model complex environ­

ments in real time. T he assumption about the geometry of the  explored environment 

required by the approach also makes it impossible to use the  approach for arb itrary  

environments, especially for outdoor and dynamically changing environments.

The topological approach is often used for robot navigation planning. Its advan­

tages are low space complexity, which is due to the fact th a t the resolution of the 

model in the topological approach depends on the complexity of the environment. It 

is convenient for problem solvers and natural language interfaces. Topological models 

however are difficult to  construct and maintain, especially for large environments. 

They require recognition of places used as landm arks and are sensitive to the point 

of view and therefore cannot be used in arb itrary  environments.

The occupancy approach, as can be now seen, has the m ajor advantage over o ther 

approaches in th a t it can be used for modeling absolutely unknown environments. 

It does not require any assumptions about the shape of the environment. A nother 

m ajor advantage is its ability to deal with unreliable range data . It is also superior to
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Table 2.3: The conditions under which the occupancy approach is commonly used.

1. When no geometric constraints can be imposed on the environment
2. When the environment is changing
3. When range sensors are not reliable
4. When computation time is critical (e.g. as in mobile robotics)_____

others for its simplicity in building, representing and m aintaining the world model.

Table 2.2 summaries the advantages and deficiencies of the occupancy approach 

and Table 2.3 recapitulates the conditions under which the occupancy approach is 

commonly preferred to other approaches.

2.6 Problems and Solutions: Overview

The occupancy approach does not have as long a history as the geometrical approach, 

and many aspects of it still need to be developed and investigated.

In the current thesis we bring forward four main problems of the occupancy ap­

proach, which need more investigation. Some of these problems have already been 

identified and solved by other researchers, others have not. Let us review the problems 

and outline the solutions we propose in the thesis.

2.6.1 Sensor Model Design Problem

The sensor model design problem does not arise if range sensors are considered flaw­

less. In this case, a registered point gets the probability of occupancy equal to one, 

and all points between the sensor and the point get their occupancy probabilities 

assigned to zero. This situation is idealistic since, as mentioned in Section 2.3, the 

more affordable the sensors, the less accurate are their measurements.

The sensor model design problem also does not arise if sensor models are given 

by a manufacturer of the sensor, as in the case of Polaroid sonars [PNDW95]. This 

explains why in occupancy approaches the most commonly used sensors are laser
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scanners, highly calibrated trinocular stereo systems and sonar sensors.

Video cameras provide an inexpensive and accurate source of 3D range data. 

However, because their sensor models are not known, it is difficult to use them for 

occupancy-based modeling.

In Chapter 3, which is based on our paper [GA99b], we present a single-camera- 

based 3D range sensor and show a way of calculating the m odel of this sensor. The 

design of this visual sensor is governed by the objective to provide in real time range 

data  which will be sufficient for building 3D occupancy m odels of the required quality. 

The advantages of the single-camera sensor include a) acquisition of range data all 

around the sensor, b) high angular resolution (outliers lie on th e  ray of view only), c) 

possibility of using the camera for surveillance purposes concurrently with acquiring 

depth data, d) control over the number of selected features, e) high speed of da ta  

acquisition, and which is the most im portant h) its convenience for designing a sensor 

model (levels of uncertainty are associated w ith the registered data  using stereo error 

analysis in accordance with evidence theory).

2.6.2 Combining Range Data

The rules used to combine uncertain d a ta  depend on the way the uncertainty is 

represented. There exist two paradigms for representing uncertainty. The first one 

is based on probability theory and the second one is based on  evidence theory. Both 

paradigms are intensively used in robotics, and the question of which paradigm is 

better is widely discussed in the AI community.

In Chapter 4, which is based on papers [Gor99, GAOOb, GAOOa], we contribute 

to this discussion, arguing in the favour of evidence theory when applied to fusion of 

range data. We showed that in certain cases commonly used rules cannot be applied 

they way they usually are, because of the assumptions made. These include the cases 

when the registered range da ta  are not independent. An example of this is when the 

data  are registered by a single-camera stereo. Thus, we proceed to the proposal of a
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new range d a ta  fusion technique based on regression. This technique uses evidence 

theory in assigning occupancy values and builds the occupancy function by fitting 

the sample d a ta  provided by a  sensor w ith a piecewise linear function.

2.6.3 Representation and Application Problems

The most difficu lt problem of the occupancy approach for world modeling deals with 

the grid representation of the world required by the approach. We consider this 

problem to be the  most difficult, because grid representation is believed to  be the basis 

of the occupancy approach and nobody ever seemed to challenge this representation 

because of th a t.

This representation results in storing and processing huge arrays of data. In 

robotics, this is the reason for building two dimensional models instead of three 

dimensional ones [MM96, BEFW97, JD97, YSA98, BBC+95, PNDW95]. In other 

areas of world modeling because of this problem, only models of small objects are 

constructed using the  occupancy approach [EHBB+97, RGEZ99, PHLG97].

Octrees have been suggested to replace the uniform grid representation of space 

[PHLG97]. This however does not resolve the problem, since the construction of 

octrees is still based on grids, and, while final representation of the world takes less 

space, the am ount of computations required only increases.

The solution to  this problem is seen in replacing the grid representation of the 

world with another one. This however would require reconsideration of all stages 

of the occupancy approach, since everything in the approach: from assigning the 

values of uncertainty to combining and using these uncertainty values, is based on 

th is representation. This is what we propose in Chapter 5, which is based on papers 

[GA99a, GAOOa, ACG99], where we show how occupancy models can be represented 

using a min-max tree of combining linear functions. While being rather crude, para­

m etrically represented occupancy models require little space, are fast to build and 

can easily be applied to navigation problems
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2.6.4 Applying Occupancy Models

Grid-based occupancy models are very inconvenient for m ap extraction [TB96]. This 

is because in order to  get the boundary of the area available for navigation, the models, 

which are 3D arrays of data , have to be ray-traced, then line extraction algorithms 

have to be applied to  obtain a 2D boundary. This consumes a lot of com putational 

power.

However, as we show in Chapter 5, param etrically represented occupancy mod­

els are efficient for m ap extraction and navigation planning. The validity and the 

promise of our techniques are demonstrated by implementing them on the mobile 

robot Boticelli, which searches for objects in an unknown environment using a single 

camera stereo range sensor. The implementation issues of building and using the 

occupancy models are covered in Chapter 6, which puts together the results obtained 

in the previous sections and which is based on papers [GAOOc, GAOOa].

2.6.5 A Historical Remark

The work under this dissertation started with only two objectives: 1) to design an 

affordable 3D range sensor, and 2) to attem pt to introduce a new param etric repre­

sentation for the occupancy models. It was then realized th a t in order to achieve this 

we had to reconsider the  occupancy approach from its very origin. And this how we 

started exposing all problems of the occupancy approach and started asking difficult 

questions about the  approach. We saw that there were no good answers to  any of the 

described questions, “good answers” meaning answers th a t do not make fallacious 

assumptions and do not require unrealistic simplifications.

It became clear th a t the representation problem cannot be considered separately 

from other problems; th a t it cannot be resolved w ithout other problems being re­

solved; th a t a completely new framework should be established for the occupancy 

approach — a framework fo r  1) registering, 2) combining, 3) representing and 4) 

applying the occupancy values.
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Chapter 3

Visual Sensor for Mobile Robot 
World Exploration

3.1 Introduction

This chapter addresses two im portant issues related to the vision-based world mod­

eling. The first issue belongs to the Image Processing and Computer Vision area of 

Computing science and deals with the hardware and software implementation of the 

visual range sensor. The second issue, on the o ther hand, is more of an Uncertainty 

in Artificial Intelligence nature and studies the  problem of calculating the levels of 

uncertainty of the range da ta  registered by unreliable sensors.

We sta rt with the presentation of a new single-camera-based 3D range sensor. 

The design of the visual sensor is governed by the  objective to  provide in real time 

range da ta  which will be sufficient for building 3D occupancy models of the required 

quality. The advantages of the sensor for mobile robot world exploration are shown.

We then proceed to the study of the reliability characteristics of the sensor and 

propose a new approach based on evidence theory which allows one to calculate the 

levels of uncertainty of registered data  using the stereo error analysis of the  sensor. 

The advantages of the proposed approach will be clearly seen in the next chapter 

where the uncertainty values of registered d a ta  are fused to build a plausibilistic 

occupancy model of an environment.

In this chapter we show the applications of the  proposed techniques for mobile
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robot navigation. D ata  obtained by running a single camera mobile robot are pre­

sented. Directions for further improvements of the proposed visual sensor conclude 

the chapter.

3.2 Previous Work

3.2.1 Reasons for This Research

In world exploration, the occupancy model of the world is one of the most commonly 

used [FBE94, TFB98, JD97, YSA98]. Originally developed for building 2D maps 

[MM96], the  occupancy approach has recently been extended to build 3D models of 

the world [Mor96, PHLG97], which provide much more information about the envi­

ronment. However, as discussed in the previous chapter, there are serious problems 

with building 3D occupancy models, and one of them  concerns range sensors.

Sonar sensors are not expensive and their models are known [FBE94, PNDW95]. 

T hat is, usually a m anufacturer of the sonar sensor provides all information needed 

for calculation of the reliability of the registered data. However, because of their wide 

angular resolution, sonar sensors are not suited for 3D modeling [Mor96].

On the  other hand, laser range sensors and highly calibrated stereo system s have 

resolution which makes them  suitable for building 3D models. These sensors can 

calculate depth very precisely, which makes it easy to build their models. This is 

however also w hat makes them  so expensive and why they cannot be used in many 

situations because of the costs involved. Another problem with laser and stereo-based 

range sensors is th a t they axe too slow, either because of too many calculations being 

involved or because they provide too much data.

Thus, there is a need for an inexpensive 3D range sensor which would be capable 

of acquiring depth data  around a robot in real time. An off-the-shelf video camera 

can be used for the design of such a sensor, as soon as the model of this sensor can 

be calculated.
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3.2.2 Vision Based Mobile Robot Projects

Video cameras are used intensively in mobile robot navigation [JD97, BBS+97, MS97, 

UD94, WW94]. However, as applied to occupancy-based robot navigation, the  best 

known visual sensors are the ones designed a t UBC (Spinoza robot) [JD97], a t the 

University of Bonn (Rhino robot) [BBC+95, TFB98], CMU CS (Xavier and Amelia 

robots) [Thr98], CMU R I by Moravec [MM96], and by Yamauchi (Ariel Project) 

[YSA98],

The sensors in the  above mentioned robot projects are designed in such a way th a t 

the  visual da ta  they provide are considered to be precise and correct. In o ther words, 

there is no uncertainty associated with registered visual data. This precision of da ta  

is achieved either by using a trinocular stereo as in [JD97], which eliminates outliers 

or by rectifying each image according to a precalculated rectification m atrix  w ith 12 

param eters as in [SRG99, Mor96], by using Hough or Gabor transforms [BBC+95]. 

These techniques result in extra cost of the stereo setup and an extra am ount of 

com putations needed in calculating the depth of a point.

I t should be noted th a t in other world modeling approaches, like geometrically 

based ones, uncertainty of the video da ta  is often used in computation, where it 

is gradually refined by using Kalman-filter-based approaches. For occupancy-based 

approaches however, uncertainty of visual range d a ta  is not calculated, nor it  is used.

Moravec was the first who used the occupancy approach to realize th a t even in 

highly calibrated stereo systems there is a chance of registering spurious points. He 

suggested associating a level of confidence with the range date registered by a  video 

camera. This idea however has not been developed, because of the problems involved 

in building a sensor model of video systems. This dissertation offers a way to  resolve 

these problems.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 Exploration Task and Goals of Sensor Design

Let us make it clear w hat we want to achieve. I t is understood, the design of a visual 

sensor depends on tasks the sensor is used for. In this research tha t range sensors 

are considered for the purpose of building occupancy models of the environments 

surrounding a robot. This implies two things:

•  first, th a t the sensor has to register range data all around the robot, and

•  second, it should do it fast, so that a robot can operate in real time.

This guides the design of the visual range sensor. In order to decide what the  precision 

of the registered d a ta  should be, we have to ask ourselves: What are the world models 

built on the basis o f the visual data going to be used for? To answer this question, 

let us consider an example of the problem the proposed visual sensor will be applied 

to.

Figure 3.1: A n  environment to explore (a) and a single videocamera range sensor used 
in exploration (b).

We consider the task of exploring an environment for the purpose of locating a 

hidden target, as described in Section 2.2.2. Figure 3.l.a  shows the room which is 

used as a testbed environment in the project. S tarting from an arbitrary position, a 

robot has to  find a target, which is chosen to be a corner of a green triangle glued to
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white paper seen on the back wall in the figure. The figure also app-roximately shows 

the field of view of the cam era and the moves of the robot on its way to the target.

The decision how to explore is determined by 1) the knowledge of already ob­

served obstacle points, 2) the  knowledge of exploration points, i.e. points where no 

information is obtained yet, and 3) the knowledge of the target location, if available. 

This determines a three-module architecture of the robot, which we refer to as the 

“Look-Think-Drive” architecture. The entire architecture of this robot, which we 

call the robot Boticelli, is presented later in Chapter 6 and here we consider the first 

module of the architecture which is the vision module.

During the operation of the vision module, the robot tries to locate  the target and 

collects range data  around itself. The am ount of these data  should n o t be very large 

so as not to impede the m obility of the robot. On the other hand, it should suffice 

to build a precise enough 3D occupancy model of the world, where the precision is 

measured by the ability to  navigate using the maps extracted from the model.

3.4 Stereo Rig Design

Many problems in world exploration by mobile robots are attributed to the odometric 

errors of the robot. Therefore, it is desirable to get as much inform ation around the 

robot without having the robot move. This is achieved with a cam era which has 

enough degrees of freedom to  capture the entire environment.

While the idea of getting depth data  w ith one camera seems straightforward: grab 

images from two different camera positions and triangulate, — it takes quite a few 

steps to design a good stereo rig. The problem is tha t there are a lot of ad-hoc 

parameters involved in such a design, such as the position of the cam era, the angle 

and the direction of camera rotation, the  resolution and the quality  of the image 

and image preprocessing techniques used. These parameters frequently constitute 

the know-how parts of commercial products [Mar97], as they play a crucial role in 

the success of the design.
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Figure 3.1.b shows the configuration, of the  camera-arm setup which has been 

selected by us as th e  most optim al for acquisition of depth d a ta  in the desired range. 

We describe it in more detail now.

In order to achieve stereo w ith one camera, we mounted it on an L-shaped support 

on a Direct Perception pan-tilt unit (PT U ). This shape of the support was chosen to 

maximize the base line of the stereo, while making the stereo system compact, and 

allowing the robot to  see close to  itself. The angle and the length of the support are 

chosen in such a way tha t the camera can observe completely the part of the  world 

from the floor to the height of the robot, within a range from one decimeter to  infinity.

A grabber grabs 640x480 colour (RGB) images, which are then preprocessed with 

an averaging filter to  produce 160x120 pixel images. The M atrox Imaging Library 

(MIL) is used as an image grabbing and processing tool. The resolution of the image is 

one of the im portant factors contributing to the success of the range data acquisition. 

The size of 160x120 of an image has been found optimal not only by us, bu t other 

researchers [JD97]: lower resolution results in losing too much visual information, 

while higher resolutions produce images which are very susceptible to changing light 

conditions and imperfections of the camera, and result in more calculations. Depth 

acquisition is done on these low 160x120 resolution images.

1. Select features (-500 per frame) : ■__________
2. Track along the epipolar line and filter outliers i Frame l
3. Calculate depth and evidence value using the match error

v ’eR2 5  ■ '[3 ...................... r

Frame 2

Figure 3.2: Three-step depth registration procedure.
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3.4.1 3D Data Registration

T he readings from  a single camera stereo, which are 3D depth data, are obtained by 

th e  following three-step procedure (see Figure 3.2).

S te p  1: A set of features is selected in the first frame;

S te p  2: Each feature is tracked along the epipolar line in the second frame, which is 

grabbed after the cam era has moved, and the best m atch is obtained;

S te p  3: The dep th  to those features which are selected and successfully tracked is 

calculated on the basis of the disparity of the features in two frames.

We describe each of these steps in more detail now.

According to  the  objective to build a world model ju st good enough for exploration 

and  in order to  make fusion and world modeling faster, we select only about 500 

features per image. The features are chosen so th a t it will be easy to track them. 

In  particular, the  pixels w ith a  high intensity derivative in the  vertical direction are 

selected as features. This choice of features is explained by the vertical motion of the 

camera.

The second frame is grabbed after the cam era moves down. The angle of the 

cam era tilt ro ta tion  (see Figure 3.2) is chosen as <£ =  7.7° and the lever length 

L  =  21 cm, which results in the baseline h ~  3 cm. This produces the range of 

visibility of abou t four and a  half meters, which is the same as in [JD97]. In the 

second frame, each feature is tracked along the epipolar fine, which is chosen 3 pixels 

wide to account for warping of the image, using a  5 by 5 scanning window centered 

on a pixel. The equation of the  epipolar line is derived in the Appendix.

The match error E  is calculated as the Euclidean distance between the normalized 

iV-dimensional vectors (N  =  25) obtained by using the scanning window:

E  = \ \ V -  V'\\2 =  £ ; (y [ n ]  -  V '{n])\ (3.1)
7 1 =  I
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which is a  standard approach in feature tracking [GAL97]. The values V\n\ in the 

above formula are the intensities of pixels in the scanning 5 by 5 window minus the 

intensity of the pixel the window is centered on.

A feature is considered successfully tracked if error E  between the best m atch 

and the original feature is lower than  a certain threshold Ethresh- By lowering the 

threshold Ethresh-, we can reduce the amount of uncertain data. This filters away 

approximately 60% of features.

Finally, the depth r  to those features which are selected and tracked is calculated, 

using triangulation based on the projective camera model [Kan93]:

Rrh'r' =  m r — h  (3-2)

where rh =  [i,j,F ]unit and fh' =  [i', j ' , F]unit designate unit vectors determined by 

the positions of a feature in the first and the second frame respectively. F  is the 

focal length of the camera measured in rasters, which is known from the camera 

specifications or calculated in advance using the vanishing point technique described 

in [Kan93]. The focal length of the camera used in the experiments F  =  150, and 

i €  [—53,53] and j  G [—40,40]. R  is the rotation m atrix  and h is the translation 

vector of the camera. Both are known, since only the  pan-tilt unit moves and not the 

robot during depth acquisition.

Using the coordinate m ethod (see Figure 3.3) and the fact that motion of features

is close to  vertical, formula Eq. 3.2 can be approximated by

f r' sin(<3? +  ft — 9') =  Z  tan(Q — 6) — h cos \  . .
{ r 'c o s ($  +  f t - 0') =  Z  +  h s in f

where ta n (0') =  tan(0) =  ^  and Q is the angle of the camera support.

Dividing the first equation by the second one yields the formula for (X, Y, Z )  

coordinates of a feature in the coordinate system centered on the first location of the 

camera:
ry  ftcos *+/isin * tan($+n—5')

— tan(n—0)—tan($+n—0')
< X  =  Z ta n 0  (3-4)

Y  =  Z  tan#*, where tan  9X = j;
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m =  Unit Vectorf i.j. F]

Figure 3.3: A single camera range sensor: depth calculation procedure.

To obtain the coordinates (x, y 1 z) of a feature in the PTU-centered coordinate 

system, vector m r  =  (X, Y, Z ) is multiplied by a  homogeneous m atrix  describing the 

current position of the camera, which is a function of camera pan and tilt angles.

A fter depths are calculated for the  current pan  angle of the camera, the camera 

is panned on the PTU  clockwise and  the procedure is repeated for the new angle of 

view, until finally all parts of the world around th e  robot are observed.

A thing to be mentioned about the  single cam era vision system  is the parallelism  of 

its operations — the depth is calculated, while th e  camera is moving. Because of that, 

the tim e needed to  acquire depth information abou t the surrounding environm ent is 

just equal to the tim e needed to complete the full rotation of the camera. I t takes 

15 different pan positions of the cam era to observe the whole environment and the 

whole process of a  building a sparse depth map of the entire environment takes about 

one minute.

3.4.2 Searching for A Target

As opposed to a  stereo setup w ith a  fixed cam era configuration [Mor96], a  single 

cam era stereo allows arbitrary m otion of the cam era. This gives more flexibility not 

only in tracking the features but also in searching for a target.

In th is project, we are not concerned with the  issue of target recognition. In our 

experiments we choose the target to  be invariant to the distance so th a t it  can be
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detected at any distance from the cam era as soon as it is the field of view of the 

camera. This explains why we chose a comer of a  green triangle on a white paper 

background (indicated in Figure 3.1.a w ith an arrow) as a target goal.

The target is sought by checking each image frame for the existence of a pa ttern  

previously stored in memory. MIL has a  function which can do this operation effi­

ciently. If the target is found, the sam e depth calculation routine which is used for 

features is used again to  produce the location of the target with respect to the current 

position of the robot. This location of the target will later be used in making the 

navigation decision. This is described in more detail in Chapter 5 and here we just 

want to emphasize th a t single-camera stereo sensor allowed us to search for an object 

concurrently with acquiring range da ta , which we see as another advantage of this 

visual sensor.

3.5 Building Sensor Models

In sensor fusion, the concept of the sensor model is of prime importance. Using a 

probabilistic framework [vDKG95, MM96] the sensor model can be defined as the 

conditional probability

P (O r  |?,) (3.5)

that a point r in space is occupied, given a  range sensor measurement rs .

It has been argued however that the  probabilistic framework is not valid in building 

a  sensor model when a sensor is not reliable [Voo95, PNDW95, MSG91]. For example, 

if a sensor works properly only three tim es out four (because of power failures or other 

problems), then a measurement r s, which, we may say, is 75% reliable, provides some 

information about the  occupancy of a point, but it does not give any data  about the 

negation, i.e. about the  emptiness of th is point.

Also, as described in  Chapter 2, calculating conditional probabilities in Eq. 3.5 

may result in calculating and storing huge conditional probability tables.
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Therefore, another way of defining sensor model which uses the evidential theory 

has been suggested to circumvent these problems [Voo95, Wan94, PNDW95]. Rather 

than  dealing with the probability th a t a point is occupied, the evidential approach 

considers two values of evidence: the evidence m occ(f) th a t a point is occupied and 

the evidence m emp(r) that a point is empty, which it calculates using the parame­

ters describing the reliability of the measurement. These parameters are usually the 

functions of the intrinsic characteristics of the sensor.

The evidential approach has other advantages over the probabilistic approach 

which we will talk  about later in Chapter 4. Below we show how this approach can 

be used for building visual sensor models.

a) .. . 1

i (i t-riffli
■ ■ ■ ■ > 9 8 3
[■■asanas
SSSHSSi:ss!!5s;-iaagBCsn ■assssras ■■■n*aa ■ n a a

1 t e J » I I .J

Figure 3.4: Sonar sensor model according to probabilistic (a) and evidential (b) ap­
proaches.

3.5.1 Sonar Sensor Model

In building a sensor model for a single camera stereo we utilize an approach which is 

similar to the approaches used by other authors for building sonar sensor models.

Let us see how sensor models are built for a  sonar sensor. Figure 3.4 shows 

sensor models of a Polaroid sonar sensor built according to probabilistic and evidential 

approaches. These models are taken from [MM96] and [PNDW95], respectively.

In the first approach, the occupancy values are obtained using the Gaussian prob­

ability density distribution. In the second approach, the occupancy and the emptiness
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values are calculated as

m occ(f)  =  1/n, m emp(f) =  0, Vcells 6  axe, n  is the number of cells in the arc 
moccir) =  0, m ernv(f)  =  1/S , Vcells G sector where S  is the area of the sector (3.6) 

=  0, m ernp(f) = 0 ,  V other cells

As can be seen, the evidential approach provides much simpler way of calculating

the evidence values.

Figure 3.5: The corruption o f an image by a camera: Monochrome green rectangles 
as observed by a camera.

3.6 Reasons for Uncertainty

As a result of camera warping, changing light conditions and incorrect registration of 

features, the 3D information obtained is n o t certain.

The best way to understand where th e  uncertainty comes from is to look at the 

Figure 3.5. It shows an image of monochrome constant-colour green rectangles as 

observed by our camera. The warping of th e  picture and different intensities of the 

same uniformly green colour can be clearly" seen.

In addition to the imperfections of the camera, the observed objects themselves 

are a source of uncertainty. Figure 3.6 shows a 160x120 image of a camouflage cloth,
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the distance to which is going to be calculated, ju s t before the  tracking stage of 

the depth acquisition procedure. Many visual features look very much alike, when 

scanned by the scanning window, along the same epipolar line. This increases the 

chance of misregistration.

Figure 3.6: A regular image observed by a camera - the one to be used fo r  depth 
registration.

These are two main reasons for imperfect tracking and matching of features, which, 

in turn , results in under- or over-estimating of depth  values corresponding to the 

features. This is illustrated in Figure 3.7. The figure also shows another m ajor 

reason for uncertainty in depth estim ation — lim ited resolution of the camera. All 

these sources of uncertainty have to be taken into account when building a visual 

sensor model.

At the same time, in order to decrease the depth estim ation error, we resort to the 

following two techniques. First, we disregard the m arginal features (as in [YSA98, 

JD97]), since they introduce high error not only because of the image quantization 

but also because of the warping of the image. Second, when the  robot views the 

surrounding world, we make sure tha t each selected feature is observed a t least twice, 

so th a t it appears a t least once in the middle of the image, where its error is low. 

This is achieved by adjusting the angle of pan rotation.
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Figure 3.7: Building a sensor model fo r  a single camera stereo.

3.7 Visual Sensor Model

Industrially manufactured sonar sensors [FBE94] and laser range finders [PHLG97] 

have well defined sensor models which are provided by a manufacturer. However, 

there is no general sensor model of a visual range sensor, which is due to the diversity 

of the visual system setups. Thus, we have to  design our own model of the single 

camera range sensor.

3.7.1 Taking into Account Quantization Error

As mentioned above, the depth da ta  obtained by a vision system is not certain for 

many reasons.

Due to  the finite resolution of the image, the  angle 9' in the Eq. 3.4 is known only 

with the  precision 69' =  ^  (see Figure 3.7). This results in the range error 6r, which 

can be estim ated by taking a derivative of r  =  (X , Y, Z)  with respect to 9' in Eq. 3.4. 

A nother way of estimating the range error is to  use the results obtained for non-
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convergent dual cam era stereo systems. T he analysis of the uncertainty due to  image 

quantization has been done in [BH87, MS87, RA90] and using the result obtained in 

[RA90], we get th e  following estim ate of the  range error:

S r = h F T ~ r ' ^

where F  is the focal length in raster units and  h  is the baseline of the stereo system.

3.7.2 Taking into Account Match Error

Calculation of the  evidence values assigned to  the  registered range data is based on 

the following idea. If we are 100% confident in the range data, then the range data 

should get the evidence value one. On the  other hand, if the sensor is completely 

unreliable, then the  range data should get th e  evidence value zero.

In the case of the  single camera stereo, the measure of confidence of registered 

depth data  r  is provided by the match error E  obtained during the depth calculation 

procedure (Eq. 3.1). In particular, we obtain  the evidence of a  3D point m occ(f), by 

applying the Tuckey by-weight to the error E:

/  ( l - ( ^ ) 2) if E K E raax  /o o\moccvn =  s \  max , (3.8)v ' ( 0, otherwise v '

which is a common approach in robust estim ation [MMRK91, RL87]. Emax is a 

constant which is chosen in agreement with the  threshold value E thresh used in filtering 

the outliers in Section 3.4.1

This approach is different from that of [MS97] and resembles that of [Mor96]. It 

produces the value of evidence in range [0,1], which can be used in fusing the range 

data.

3.7.3 Linear Representation

In the case of the ideal visual sensor, all points between the camera and the observed 

point will be given the evidence values m ernp(r) and m occ(r), as illustrated in Figure
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Figure 3.8: Visual sensor model fo r  ideal (a) and real (b) sensor.

3.8.a. Figure 3.8.b shows the  visual sensor model for a real visual sensor which is 

built according to the ideas described above.

The maximum value of evidence is determ ined by Eq. 3.8. The width of the 

range error 5r is approxim ated using th e  Eq. 3.7 as Sr =  O.lr. We also make the 

evidence grow gradually from zero to its m axim um  value, using the range error Sr as 

a  guide in determining the steepness of th e  slope, so as not to  have infinite derivatives 

of the occupancy function. The evidence behind the observed point is zero for bo th  

occupancy and emptiness evidence values.

The piece-wise linear representation o f the sensor model is chosen for two reasons. 

First, it facilitates the approximation of th e  occupancy function with linear surfaces. 

Second, it significantly reduces the am ount of sample data  used in fusion. In partic­

ular, the sensor model can be represented with only a few sample points on the ray 

of view, providing that there are certain constraints imposed on the function, which 

is described in more detail in the next chapter.

3.8 Experiments

The single cam era stereo vision system described in the paper was tested using a 

mobile autonomous robot, Boticelli. The robot is placed in an approximately 5 by 6 

by 2 meter room  surrounded by walls. T h e  robot has to explore the room in order to
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find a target which, is hidden behind one of the  walls. Figure 3.1.a shows the room and 

the target. S tarting from an arb itrary  location, the robot explores the environment 

until it finds a target. T he exploration policy of the robot is determined by the 

knowledge of obstacle and navigation points, which are extracted from m ultiple 3D 

local occupancy models built on the basis of the range d a ta  registered by the single 

camera visual sensor, and also by the knowledge of the target location, which is 

acquired by the same sensor.

Figures 3.9.a and 3.9.b show the range da ta  which are acquired by the robot 

with an aid of the single cam era visual sensor by looking around from two different 

locations. Each figure consists of three windows. The window in left top com er shows 

an image observed by the single-camera sensor after it has been already preprocessed 

with an averaging filter. In th is window we can see the environment being explored as 

observed by the robot. The window in left bottom  corner shows pairs of 2D features 

used in dep th  calculation: shown in white are the features which were selected in 

the previous image (grabbed before the cam era moved), while shown in black are 

the features which were successfully tracked in the current image (grabbed after the 

camera moved). Finally, the  window a t right shows registered 3D features projected 

on the floor (Oxy plane), w ith  the  robot located in the center. The evidence of the 

features is shown using colour: the brighter the feature, the closer its evidence to 

unity.

In order to ensure th a t there are enough visual features in the environment, we 

put camouflage cloths on the  walls. These can be seen in Figures 3.9.a  and 3.9.b. 

Other visible objects inside the exploration area include a small artificial tree (seen 

at left from the camouflage cloth in Figure 3.9.b), a couple of boxes (seen in Figure

3.9.a) and  extension cords lying on the floor.

As can be seen from the figures, the dep th  maps obtained do not follow exactly 

the contour of the room, which is natural given the quality of the image and the 

complexity of the environment. However, these 3D range d a ta  are sufficient for world
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exploration purposes, and in particular for the  problem of making intelligent naviga­

tion decisions on the way of finding an object in an unknown environment. In our 

experiments, the robot successfully locates the  target while avoiding obstacles and 

the areas already explored, based on the 3D range data provided by the single cam­

era range sensor. More on how visual range da ta  are combined and used for world 

modeling is described in further chapters.

3.9 Conclusion

We introduced a single camera 3D range sensor, which allows one to register in real­

tim e range data  in all directions with the help of an inexpensive off-the-shelf video 

camera. We conclude that the proposed visual range sensor, which is able to  register 

visual features around the robot in real time, is very suitable for mobile robot explo­

ration. The advantages of the sensor are summarized below.

-  It is inexpensive. Almost any camera, even if its images are not of high quality, can 

be used. This is because even unreliable features contribute to building an occupancy 

model though with less evidence value.

-  It allows acquisition of range data  in all directions around the sensor. This elimi­

nates unnecessary motion of the robot which may result in odometric errors;

-  It is fast. The time needed to  build the depth map of the entire room is just equal 

to the tim e needed to make a full rotation of the camera;

-  It has high angular resolution (outliers lie on the ray of view only), which, first, 

allows one to register data a t any range and, second, is convenient for building a 

sensor model of the sensor;

-  It can be concurrently used for surveillance purposes and range data  acquisition;

-  It has control over the number of registered range data. T hat is, instead of mea­

suring depth to each point, which is done in sonar and laser-based range scanners, 

a  selection technique can be used to  select only a number of features which provide 

significant information about the  occupancy of the environment. This not only speeds
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up range d a ta  acquisition, but is also beneficial for world modeling;

-  It is convenient for designing a sensor model. Levels of uncertainty are associated 

with the registered data  using the stereo error analysis in accordance w ith  evidence 

theory.

We showed how sensor models of visual sensors can be built using the e rro r analysis 

of the stereo system. We presented the stereo error analysis of the single cam era sensor 

and built the sensor model of this visual sensor. The application of the v isual sensor 

to mobile robot world exploration was shown. O ur first argument in favour of using 

the evidence approach in vision-based world modeling has been used.

3.9.1 Further Improvements

The technique we use for feature selection and tracking, while simple and not time 

consuming, suffices for applications like the one described above. However, if there 

is a need for a more precise depth d a ta  registration, then the following steps can be 

undertaken to improve the performance of a single camera stereo: using b e tte r  quality 

cameras; calibrating the camera and using all intrinsic parameters of the cam era in 

depth calculation [BSG99]; rectifying images [Mor96]; using an interest opera to r to 

select features [Mor96]; using the epipolar constraint in filtering the outliers; using 

robust tracking approaches, e.g. like those described in [ML97, MMRK91].

As for the visual sensor model, a be tter approximation of the range erro r should 

be used for large scale environments. In addition, other approaches in assigning the 

evidence values to registered range data  can also be tried. However, since the final 

map of an area available for navigation is determined by a threshold on an occupancy 

function, this assignment seems not to affect much the navigation planning process.
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Figure 3.9: Depth data obtained by a single camera stereo (a,b) obtained at two dif­
ferent locations o f the robot. The image grabbed, the features extracted and the depth 
map calculated are shown.
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Chapter 4

Combining Uncertain Range Data 
Using Regression

4.1 Introduction

In the previous chapter we addressed the problem of assigning the value of uncertain­

ties to registered range data. Using the techniques proposed in tha t chapter, one can 

obtain 3D range d a ta  as a set of pairs: a  3D vector and a num ber describing the level 

of confidence associated with the vector. In th is chapter, we expose another problem 

of the occupancy approach —  the problem which comes next after range d a ta  have 

been collected. This problem deals with the combination of uncertain range data.

The rules used to  combine uncertain d a ta  depend on the way the uncertainty is 

represented. There exist two paradigms for representing uncertainty. The first one 

is based on probability theory and the second one is based on evidence theory. Both 

paradigms are intensively used in robotics, and the question which one is better is 

widely discussed in the AI community [New99]. This chapter contributes to  this 

discussion, as we argue in the favour of evidence theory when applied to fusion of 

range data.

After overviewing the previous work and describing the rules commonly used to 

combine range data , we show tha t, in certain cases, these rules can not be applied as 

they are, because of the assumptions made. These are the cases when the registered 

range d a ta  are not independent, one example of which is when the data  are registered
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by a single-camera stereo.

We proceed to the proposal of a new range da ta  fusion technique based on re­

gression. This technique uses evidence theory in assigning occupancy values and 

builds the occupancy function by fitting the sample d a ta  provided by a sensor with 

a piecewise linear function.

Having developed a general framework for our approach, we apply it to building 

3D occupancy models from visual range data. Both sim ulated and real visual da ta  

are used, where real da ta  are obtained by using a single camera 3D sensor described 

in the previous chapter. The advantages of thus constructed piecewise linear models 

for robot navigation will be shown later in Chapter 5.

4.1.1 Previous Work

Each 3D point, which is detected either correctly or incorrectly by a sensor, provides 

a continuum of da ta  for world modeling. In case of the  visual sensor, it provides 

information about an occupied point -  the detected 3D point itself, and unoccupied 

(empty) points -  between the camera and the occupied point.

As was shown in Chapter 3, a visual sensor provides uncertain and sometimes 

contradictory data. The occupancy model of the world can be built by fusing these 

uncertain da ta  in such a way tha t uncertainty is decreased by using data  which over­

determined the result.

As related to  range d a ta  fusion, the problem of fusing uncertain data can be 

formulated as follows.

F usion  P ro b le m : A sensor reading at tim e t  =  0 shows that “point A  is very

likely non-occupied” . On the other hand, according to  the sensor reading at 

time t  =  1, “point A  seems to be occupied” . And the questions are:

Is point A  occupied or not? and How sure are we in asserting that?

This problem can be referred to as the one-point-two-measurements problem. It is
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the simplest version of a  general fusion problem which can be referred to as the 

multiple-points-multiple-measurements problem and which is the  following :

Given a  set of N  sensor readings describing M  different points A a, tell 

which of points A a are occupied and which are not.

The fusion problem is characterized as a multiple-agent two-state problem. T hat 

is, there are only two hypotheses in the domain of hypothesis: a point is either 

occupied or not, and there are many agents: as many as there are sensor readings in 

the domain of agents expressing their opinions about a two-state event. The solution 

to this problem is a combination rule.

There are several approaches dealing with combining uncertainties. These in­

clude Bayesian causal networks [Pea88, BS97], Markov fields [ACFM97], high-order 

probability theory and other probabilistic approaches [BCS97], fuzzy logic [Bal81], 

Kalman filtering [HM99], modal logic [HC96], epistemic logic [Voo95], partial proba­

bility [Voo97], connectionist networks [SD97], non-axiomatic reasoning [Wan94], non­

monotonic reasoning [Voo95], Dempster-Shafer calculus [HM99] and other evidence- 

based and logic-based approaches [Yen89, BGHK92, FH95, GH97].

We focus our attention below on two types of approaches which are most com­

monly used for a multiple-agent two-state problem: probability-based (probabilistic) 

approaches and evidence-based (possibilistic) approaches.

4.2 Probabilistic Approaches

The most straightforward way of assigning the values of the occupancy function con­

sists in assigning the value of 1 to an occupied point and the value of 0 to an empty 

point. Then, the closer th e  occupancy value of a point is to one, the more likely it is 

th a t the point is occupied. This approach is inspired by probability theory and this 

is the one originally considered by the founders of the approach [Elf86].
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4.2.1 Bayesian Rule

Using the probabilistic framework, the one-point-two-measurements fusion problem 

can be reformulated as follows. A sensor reading gives the uncertainty of a  registered 

point in term s of conditional probability th a t a point is occupied, given a  range 

measurement r:

m  =  P(o\r) (4.1)

The values of uncertainty therefore satisfy the main probability axioms, such as:

0 <  m  < 1 and (4.2)

P (p \r) +  P (-io |r)  =  1, (4.3)

where P (—>o\r) =  P(e\r) is the  probability th a t a point is empty, given a range

measurement r , and ’o’ and ’e ’ designate the  events tha t a  point is occupied and

em pty respectively.

T he fusion problem then becomes a problem of finding the probability of the event 

th a t a  point is occupied conditioned on two range measurements r x and r 2:

m 1+2 =  P ( o |r i , r 2) =  f ( r n l ,m 2). (4.4)

Since the probability axioms hold for the occupancy values, this probability can 

be found using the  Bayesian rule as

( i x P (r2\o,ri)P(o\ri)m l+2 =  P(p\ru  r 2) =  --- ---------  ■ —   (4.5)
P ( r 2|o, r i)P (o |r i)  +  P ( r 2|e, r 1)P (e\rl )

In this formula, P (o |ri) =  m i  and P{e\ri) =  1 — P (o |ri) =  1 — m x are known — 

they  are simply the  measurements of the first sensor reading. However, the values 

P ( r 2|o, 7~i) and P ( r 2|e ,r!) are not easy to calculate and this is where the  problem 

comes.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.2 Simplifications: Making Assumptions

Applying the combination rule 4.5 requires the knowledge of conditional probability 

tables: P{o\r) and P ( r2|o, 7*1 ) ,  which have to be computed for all possible range 

values r-i and r x. In general case, this is practically impossible. Therefore, simplifying 

assumptions have to be made.

Independence of noise assumption

The most commonly made assumption is the independence o f noise in different sensor 

readings. In terms of conditional probabilities this assumption can be written as

P (r2\ru  o) =  P{r2\o). (4.6)

or as

P ( r ls r2\o) =  P {rx\o)P(r2\o). (4.7)

W ith this assumption made, one can rewrite formula 4.5 as

rnl+2 = P(0|n, r2) = P{rMp^f{fl%)P(eVl) (4.8)

This formula became well-established in  data  fusion [ME88]. However, we can see 

tha t it is still not ready to be used until conditional probabilities P (r |e )  and P(e|o) 

have been calculated.

In a probabilistic framework, conditional probabilities P{r\e) are P(e|o) have to 

be calculated from the sensor model. T his is difficult and time-consuming. Special 

techniques using neural networks, which are applied in advance in the predefined 

environments, have been proposed to do th a t [vDKG95, TB96]. This is why further 

simplifications of the combination rule have been proposed.

In the original work [Elf86, ME88], Elfes assumes P (r |e )  =  1 — P (r |o ), and uses 

the following combination rule:

7711+2 =  P ( o | r i ’ T 2 )  =  PfrjIoJPMn) +  t l ’-^(rjloJK l -  -P(o|n)) (4'9)
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Another popular combination rule is the independent opinion rule, which is written 

as follows:

1711+2 = --------  rairag ---------m im 2 +  (1 — m\){± — m 2)
As opposed to the linear opinion rule, which can be written, as

m 1+2 =  Wimi +  w2m 2, wheretui +  w2 =  1 (4-11)

the independent opinion rule reinforces the confidence and is closer to the original rules 

of Elfes and Moravec [Elf86, ME88, ME85]. At the present moment, this rule is the 

most commonly used in range data  fusion. In particular, Payeur and D. Laurendeau 

[PHLG97] use this rule for building their 3D occupancy models.

Variations

Formulas 4.9 and 4.10 are computationally expensive. Therefore, a number of varia­

tions have been proposed.

A modification to the Bayesian approach described above was suggested by Kono- 

lige in 1995 [EEC98], who suggested to use oddsAikelihood posterior as a  measure of 

uncertainty:

"* =  I £ t T H-12)P (e  |r)
rather then posterior probability P(o |r) only. In this case, the values of occupancy 

range from 0 (absolutely impossible) to +00  (absolutely true) and the combination 

rule is the following:

_  P ( r2|o, r\)P[p\ri)
^ ^ 1 + 2  r - y f  I \  I )  ( 4 - l O jP{r2\e, r 1)P (e |r1)

which after making the independence from noise assumption becomes

P ( r 2|o ,)
mi+2 =  ~ P M e ) m i (4'U )

A similar approach was used later by Moravec [MM96, Mor96], who considered

the occupancy defined as
. , P (o |r)  m  = log r 

P (e |r )
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and who derived the combination rule from the independent opinion rule as

P ( o\t{) P (o |r2) ,
m ' + 2 = l o g T W T ) m ^ = m i + m 2  ( 4 - 1 5 )

It is this combination rule which is used by Moravec in his latest reseaxch in 

building 3D evidence grids [Mor96].

4.2.3 Extended Kalman Filter

The above described approaches use only the first moments of an unknown variable,

which are occupancy values of the points. Estim ating second moments (i.e. deviation

and the  covariance m atrix) of the variables would lead us to the Extended Kalman 

Filter [May79].

In Kalm an filtering the uncertainty about the environment is propagated by means 

of estim ating the first two moments of probability distribution of the spatial variables 

of the environment.

Whereas the Extended Kalman Filter has been intensively used for beacon-based 

world modeling approaches [Mit94, Fau93, Aya91, WHA92], it is not used in building 

occupancy models of the world. This is explained by a huge dimension th a t would 

be required to update the state vector of the world which is m ade by concatenating 

vectors associated w ith each voxel of the world.

4.2.4 “Unknown v s  Contradictory” Problem

In the case of the Bayesian approach presented above, if the probability of point 

A  to be occupied P (o ) =  1/2, then  it is not clear whether this is because there is 

no enough information about the point (and hence more exploration in th is area is 

required) or because the  data  obtained about the point are contradictory (meaning 

tha t the environment is to complex there and extra  exploration in this area most 

likely will not help). This is called the “unknown vs contradictory” problem [Voo95].

Calculating second moments of the occupancy values of the points would elucidate 

an ambiguity and resolve the problem. However, com putational expenses incurred by
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such, calculations would make the  probabilistic approach unsuitable for robotics, and 

this is why the second moments are not used so far in building the occupancy models.

The “unknown vs contradictory” problem is a reason to consider evidence-based 

approaches as an alternative to  probability-based approaches.

4.3 Evidential Approach

As described in Chapter 3, a  way of simplifying the assignment of evidence levels to 

range da ta  is to  use the evidential approach, which operates w ith evidence masses, also 

called basic probability assignments in assigning occupancy values [Voo95, PNDW95]. 

Instead of computing probabilities P (r\o) and P (r |e ), required by probabilistic ap­

proach, this approach assigns evidence masses to a point using sensor param eters tha t 

describe the  robustness of the  sensor. This assignment is more efficient than  sum m ing 

conditional probabilities required by the  probabilistic approach.

According to the evidential theory [Voo95], the likelihood of a  point A to  be 

occupied is determined by two functions, called belief and plausibility functions. These 

functions can be considered as a pessimistic and an optimistic estim ate of a  point to 

be occupied and are related to evidence masses by

B e l(o )= m (o ) ,  and (4-16)

Pl{o) =  1 — (4-17)

The evidence masses satisfy the condition

m(o) +  m (e) +  m(o, e) =  1, (4.18)

and are determined by a sensor model. The value m(o, e) =  1 — m(e) — m{o) =

Pl{o) — Bel{o) defines the interval of uncertainty and shows our level of confidence

in asserting th a t an event is true. It is an advantage of the evidential approach th a t 

it provides this interval of uncertainty within which the occupancy value lies.
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4.3.1 Dempster-Shafer Rule

Assume that the reading of a  sensor tells us: “The point A is occupied” . Does this 

sensor reading decrease the probability of point A to be empty? According to the 

Bayesian approach — yes. According to the  Dempster-Shafer theory of evidence — 

no. This is because the sensor reading provides no evidence for point being empty (it 

has only the evidence for point being occupied).

In the evidence theory, the  evidence masses of two different measurements m \ 

and m 2 are combined using the  Dempster-Shafer rule of combination, which can be 

considered as an extension of the Bayesian rule [HM99, Voo95]:

, . _  m i(o)m 2(o, e) -F m 2(o)mi(o, e) +  m2(o)roi(o)
1711+2 0 l  — m i(o)m 2(e) — m2(o)mi(e)

In this formula, values m ^o) =  m(o\ri) and rrii(e) — m(e|r,') are the values of evidence 

th a t a point is occupied and th a t a  point is empty respectively and bo th  are provided 

by a  visual sensor.

To apply the Dempster-Shafer combination rule one has to assume the DS-independence 

of the evidence d a ta  [Voo95, Wan94], which, roughly speaking, can be defined as prob­

abilistic independence of sources of these data . This is not realistic in many cases; 

yet because of the convenience of using evidence theory in designing sensor models 

and because of the “unknown vs contradictory” problem, this rule is extensively used 

in mobile robotics [MSG91, WSSB93, PNDW95].

It should be mentioned th a t in the above references, the Dempster-Shafer combi­

nation rule is applied to fuse d a ta  obtained from sonar sensors. This is due to the 

fact that, in the case of sonar sensors, basic probability assignments m (x)  are easy 

to calculate, which is not true for other types of sensors. This explains also why the 

Dempster-Shafer rule has been applied for building two-dimensional occupancy grids 

only.
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4.3.2 T h e Problem

As will be shown later, because of the DS-independence assumption, which does not 

hold in m any cases, the evidential approach m ay produce nonsensical results when 

the Dempster-Shafer rule or any of its approxim ations is used to fuse range data. 

Therefore, it is desirable to suggest another rule for combining evidential range data 

which, while using the advantages of evidential approach, would handle dependent 

data.

4.4 The Assumption of Independence Problem

As shown in  the previous section, the assum ption th a t  range d a ta  are independent 

needs to  be  made in all of the described above approaches in order to simplify the 

combination rules and to make the approaches com putationally tractable.

Let us show now why this assumption can sometimes lead to  very undesirable 

results. For this we are going to use a  vision-based world modeling example and a 

single-camera visual range sensor described in C hapter 3.

4.4.1 Vision-based World Modeling Example

In Chapter 3 we introduced a single-camera sensor, which is an affordable tool for 

registering 3D  range data. This visual sensor allows one to register 3D range data  of 

the  surrounding environment in real time. This makes a single-camera visual sensor 

very useful for autonomous robot world exploration. The way th is sensor is used for 

this task is the following.

The single camera visual sensor is m ounted on the  top of a robot as shown in 

Figure 4.1 allowing the robot to “see” what is around it. Along with a 3D vector r\- 

of a feature measured in the robot-centered system  of coordinates (see Figure 4.1), 

the sensor also provides the evidence value rat- of the feature. This evidence value 

is determ ined by the match error obtained during stereo acquisition and is a value
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between zero and one.
Model of Empty space

Boticelft

3D features
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Figure 4.1: Vision-based, world modeling.

4.4.2 When Features Are Not Good

In vision based world modeling, the observed features are not perfect due to the 

absence of any constraints on the environment and the low quality of the image. 

Because of th a t, most of evidence values of the features lie in a range between 0.5 

and 0.8 (0.5 <  m  <  0.8). At the same time, the same scenery is observed repeatedly 

by a camera. W hat it means is the following.

If a feature is not good, which is likely a result of an indistinct visual pattern or 

poor lighting condition in the observed area, and its confidence level is low when ob­

served the first time, then it is obvious th a t the feature will also have a low confidence 

level when observed the second and the th ird  times. Let us see now w hat it means 

for world modeling based on these visual data.

Consider the  combination rule 4.10 which is the one most commonly used in the 

situation. If the  same point in space is observed twice by the same sensor (or by two 

sim ilar sensors) from the same position (or from very close positions), it means that 

we will have two identical (or almost identical) evidence values:

m  i =  m2- (4.20)
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Substituting Eq. 4.20 into combination rule 4.10, results in increasing of the total 

evidence value of that point:

For example, if m \  =  =  0.6, which is a typical situation in our experiments, then

m i+2 — 0.7.

This result is nonsensical, as no extra evidence has been acquired, yet our con­

fidence in data , which is in  fact bad data, increased. This happens because of the 

assumption th a t range d a ta  are independent, which is not true, and this may have 

very bad consequences on navigation decision making.

We could have considered any other combination rule of those described above 

(Eqs. 4.8, 4.19, 4.13 or 4.15), but it does not m atter which rule we use to illustrate 

the point, since all of them  assume the independence of range da ta  from noise.

Thus, there is a need for another combination rule which would handle dependent 

data.

4.5 Fusion As Regression

Though applied in many other areas [RL87], regression techniques have not been used 

yet for range d a ta  fusion. This is a ttributed  to some unresolved questions which we 

address below. Let us first formulate the problem of building the occupancy function 

according the regression paradigm.

Problem:

Given a set of sample points {m ^, r*} provided by a sensor, find a smooth 

approximation of the function m  =  F{f)  on the whole input domain.

The fact th a t regression is used for fusion means that the approximating function 

F{r)  is calculated by minimizing the error

m-L+2 > mi. (4.21)

(4.22)
k
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where the weighting function tu(-) and the form of the function F(r)  depend on the 

regression technique used. Before deciding which regression technique to use, some 

questions should be answered, the main one of which is the following:

What are the sample points {m^, r^} to be used in regression?

4.5.1 Generating Samples

Besides an observed feature i , the  sensor provides occupancy information about points 

in the vicinity of the feature {m^, f? } according to the sensor model The sensor model 

of the single cam era stereo was described in C hapter 3.

The conventional range d a ta  fusion approaches described in the previous sections 

do not make use of the fact th a t many sample points are dependent on each other. 

In particular, all points {m l , r -} induced by a feature i are functions of the feature 

values {mi , f i } .  In those approaches, the sensor model is incorporated into the fusion 

process by using sample points generated according to the grid resolution (Figure 

4.2.a). This results not only in redundancy of processed data, but also in an inability 

to deal with range data  distributed over a large range.

We show now how this can be efficiently done in the regression-based fusion ap­

proaches using the dependencies between sample points. In order to make fusion fast, 

we want to use as few sample points as possible. This can be achieved by applying 

the following two rules.

R u le  1: Impose constraints on the occupancy function using

1. the knowledge of a  sensor model;

2. the knowledge of the  task the occupancy model will be applied to.

For this to  be efficient, choose the system of coordinates which best suits the 

sensor model and the navigation task.

R u le  2: Consider sample points as additional constraints on the occupancy function
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Figure 4.2: The visual sensor model sampled according to (a) grid-based and (b)
regression-based techniques.

and generate just as many of them  as needed to  preserve the shape of the sensor 

model.

4.5.2 Choosing Coordinate System and Constraints

Which coordinate system to use for building an occupancy function depends, first, 

on the nature  of range data , and second, on the way the occupancy function is going 

to be used. Let us illustrate this.

If range d a ta  is radially-based and the  occupancy monotonically increases away 

from the origin, then spherical coordinate system (a , ip, r) is the most appropriate 

one. This is the case when time-of-flight, laser-based or infrared sensors located at 

the origin are used. This can also be considered the case, when a single-camera visual 

sensor is used, if the scale of the environment is much bigger than the length of the 

camera arm .

The spherical coordinate system provides an easy way of constraining the function 

along the r-axis:

>  0. (4.23)
or

This constraint allows one to reduce significantly the number of sample points 

used in regression, while not adversely affecting the  quality of the modeling. This is 

illustrated in Figure 4.2, which shows the sample points used in building the plausi­

bility occupancy function according to  grid-based and regression-based approaches. 

Drastic reduction in the number of sample points needed in regression can be seen. In 

particular, as illustrated in the figure, using the monotonicity constraint (Eq. 4.23),
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th e  sensor model can be expressed w ith as few as five sample points per feature (see 

Figure 4.2.b): two with evidence mt- to  account for error in depth calculation, two 

w ith evidence less than  rat to correspond to decreasing occupancy values along the 

ray  towards the camera, and one in the center o f the robot w ith the evidence value 

equal to zero. The specific locations of these points are defined by the param eters 

of the sensor model. For comparison, by ignoring the fact th a t  many sample points 

used in regression are functions of other points, conventional approaches generate as 

m any sample points as there are grid cells between an observed point and the camera 

as shown in Figure 4.2.a.

The spherical coordinate system is best suited for building precise 3D occupancy 

models. However, it is inconvenient for planar m ap extraction and straight line navi­

gation, for which the cylindrical coordinate system  (a, h, p) is more appropriate. The 

monotonicity constraint d.F<p£'P) >  o can also be imposed in the  cylindrical coordinate 

system, where p is the distance from the vertical axis of the robot. In this coordinate 

system  however it implies that it is not possible to  go past the obstacle.

The cylindrical coordinate system is suited the  m ost for such navigation commands 

as “go in direction or, p meters” . It also allows one to  easily examine navigation maps 

a t  different heights.

The coordinate system we use in this dissertation is yet another one, which can 

be considered as a hybrid between spherical and cylindrical coordinate systems. This 

coordinate system, which we refer to as the quasi-cylindrical coordinate system, is 

illustrated in Figure 4.1 and uses the pan angle a  (radians), the height h (decimeters), 

and  the distance r  from the robot (decimeters).

The choice of this system is determined by the  desire to  suit the single camera 

sensor models while making it easy to extract horizontal surfaces needed for naviga­

tion.
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In addition to the monotonicity constraint, which can be written now as

>  0, (4.24)

and which makes the construction and the inversion of the occupancy function easier, 

a  set of other constraints can also be imposed. For example, we also impose constraints

d F  dF
—1 <  -r— < 1 and — 1 <  -tt- <  1, (4.25)d a  oh

in order to  prevent abrupt changes of occupancy values along the h- and a -  axes.

4.6 Choosing a Regression Technique

The choice of the regression technique to be used for fusing range data  depends on 

two factors: 1) the use of the constructed model, and 2) the  quality of range data. 

The considerations to be taken into account are the following

Time Efficiency Consideration

From the efficiency point of view, piecewise linear regression techniques are preferable 

to others: they are fast and it is easy to impose the constraints of Eq. 4.24, 4.25 on

piecewise linear functions. Piecewise linear functions are also easy to invert, providing 

they are monotonic in one of the variables.

The Issue of Outliers

Robust regression techniques, like Least Median of Squares, Least Trimmed Squares, 

Weighted Least Squares or M -estimators [RL87, CT94, BW88] can handle da ta  which 

have many outliers. However, they are usually slow, as they do not allow an on-line 

calculation of error E  in Eq.4.22. On the other hand, Least Squares techniques are 

fast [RT95]. They however are very susceptible to outliers, and  because of th a t extra 

care has to  be taken to get rid of outliers in the preprocessing stages if Least Squares 

regression techniques are used to fuse range data.
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Key idea:
Approximating a function using 

piecewise linear surfaces
How this is achieved:

0.6
7 C

• - sample points □  - is a linear function

Figure 4.3: The idea o f ALN: Approximating a function with linear surfaces.

4.7 Adaptive Learning Network Regression

4.7.1 Semantics of Adaptive Logic Networks

The Adaptive Logic Network (ALN) originally proposed in 1974 an d  subsequently 

improved [AT96a] is a  tool for approxim ation of any continuous, real-valued function 

y  =  f {x )  on iV-dimensional space given a  set of its sample points x771 6 y m €  

3 m =  1 ..M  (see Figure 4.3.a).

The m ain difference and advantage of the ALN over other approxim ation tech­

niques is th a t it utilizes piecewise linear surfaces. Because only a few pieces are 

involved in computing a  particular ou tpu t, as may be determined using a  decision 

tree on the components of the input, a considerable speed-up in processing is obtained. 

Control over the weights of the pieces can also lead to good generalization [AT96a]. 

The way the  pieces are put together is determined by a logic tree which classifies 

(x, y) pairs according to whether they are below a function graph or not, or by an 

equivalent tree of maximum and minimum operators (Figure 4.3.b) acting on linear 

functions, which computes a y  given x . To smooth out the corners a t  the junctions 

of linear pieces, quadratic fillets are used.

T h e  t r a in in g  of an ALN consists of many multiple linear regressions working 

in concert w ith the goal of fitting the training data  with low error, where error is 

computed by summing the squares of the distances between the approx im ating surface
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and ou tpu t values. Formally it can be described as follows, where L  is the num ber of 

hyperplanes.

Given M  sample points (aT71, y m), x"1 €  3 y™ G 3J,m =  1..M, and acceptable error 

level e find coefficients W p, W p .., Wpjsr such th a t hyperplanes

y =  Wp +  Wpi * x x 4 -... +  WpN * x N, p  =  I..L

pieced together according to the tree of maxima and minima, approximate the train ing 

samples with the root mean square (RMS) error less than  e.

T h e  ex am in a tio n , of the ALN then  is:

Given a  new pattern  vector x new, find y  =  F {x new), where F{x)  is the result of 

evaluating the tree of maximum and minimum operations on the linear functions 

given by the hyperplanes.

The most distinctive feature of the  ALN is the way it combines hyperplanes. T he 

ALN combines hyperplanes by introducing maximum and minimum operators (MAX 

and MIN) as shown in Figure 4.3.b. D irect application of MIN (MAX) to half-spaces 

produces convex-up (down) surfaces. There can be any number of these operators 

and they can be nested.

The MIN operators and MAX operators th a t take inputs from linear functions 

or other operators make up an A L N  logic tree. There are two ways of building a 

logic tree. The first way consists in m anual setting of its depth. In the second way 

however the logic tree is built autom atically by the  ALN, the depth and complexity 

of it being determined by the acceptable error level e, which defines how precisely 

we want a function to be approximated. One sta rts  w ith one linear piece, and only 

breaks pieces if, after adjustm ent of weights, the RMS error is greater than  e. This 

is a greedy approach to minimizing the  number of linear pieces in the  ALN.

The structure of the  ALN can be represented as shown in Figure 4.4. In such a 

representation, an ALN looks very sim ilar to a multilayered neural network, such as 

a feed-forward multilayer perceptron, for example. The main difference is only th a t
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Figure 4.4: A L N  from  the Neural Network paradigm point o f view.

logical comparisons are used instead of threshold functions and weighted connections. 

This is the reason why ALNs are often considered as a type of neural network.

4.7.2 Advantages of ALN

Many of the currently used neural networks are treated as “black boxes” , which 

are trained and then used. Because of this, the solutions these neural networks 

yield are often far from optim al and they cannot be guaranteed to obey common 

sense constraints. However, this is not the case for ALNs, because they provide a 

clear understanding of what is being computed and how. This may allow ALNs to 

perform better than  other neural networks on certain types of problems where direct 

geometrical constraints on linear pieces are useful. For example, placing bounds on 

the slopes of pieces helps the ALN to solve the “two spirals” problem with good 

generalization in a few seconds on a Pentium  PC, while back-propagation has great 

difficulty in obtaining any solution [AT96a] in real-time.

Comparing to more advanced neural networks like attractor-based networks [GR97] 

or GMDH [MI94] networks, ALNs are considerably faster than the former in exam­

ination and considerably faster than the la tte r in training, which makes them very 

suitable for real-time applications.

A summary of the main features of the ALN follows.

•  It possible to  integrate into the training procedure qualitative knowledge about 

the desired function, e.g. slope bounds and convexity constraints; this may aid
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generalization and prevent a learned function from having nonsensical proper­

ties. It also tends to  reduce the amount of t r a ining data  required;

•  It is easier to understand the function tha t ALN is computing compared to 

other neural networks since it is made up of linear pieces put together in a 

simple way.

•  Generalization cam be aided by using jitter, whereby additional training da ta  is 

generated by adding random amounts to the components of the rzr-vector.

•  ALNs are very fast in evaluation. In fact, the decision tree approach enables 

the system to narrow the computation to about i\T +  1 linear pieces, where N  

is the dimension of the input space. ALNs are rapidly trained too by using 

a  — pruning as in game playing.

•  in cases where the inverse of a function exists, it  is possible to extract it directly 

from the ALN using the same linear pieces combined differently as another ALN 

decision tree.

As can be seen ALNs can be applied to any problem where the da ta  have some 

regularities, or in other words, are determined by some function. So far the ALN 

has been successfully applied in predicting financial and economic events, machine 

failure, and real-time control including rehabilitation of patients with spinal cord 

injury [ACT95, AKST95] and face recognition [GAL97].

Let us describe now how these advantages of the ALN can be used to compute 

the occupancy function from range data.

4.7.3 Applying ALN to Fusion 
Function representation

As described above, the ALN uses a Least Squares linear regression technique and 

produces a binary tree of minimums and maxi mums of linear functions as a result
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of the fitting process. T hat is, in  the  chosen system of coordinates (see Section 3.3), 

the form of the function approxim ating the occupancy function m  = F (a , h, r ) can 

be w ritten  as

m  =  t r e e ^ i  ^£MAX^{aia + bih +  c/r -f- dL}, (4.26)

where L  is the num ber of linear pieces used in regression. It determines how close 

we want the occupancy function to  be to sample points and can be either set in 

advance or obtained during the  regression process. In the latter case, the ALN grows 

and linear pieces w ith greater th a n  the specified error are split in two, until either 

the allowable error E  in Eq. 4.22 is achieved or a predefined num ber of iterations is 

completed.

By setting the num ber of iterations or the number linear pieces used in regression, 

we determine how close the approxim ating function F(r)  lies to  sample points.

The min-max tree structure of the  ALN allows also very efficient inversion of the 

occupancy function, which is beneficial for map extraction and navigation planning, 

as will be shown in the next chapter.

Constraints

As follows from Eq. 4.26, the constraints on function F( f )  described in Section 3.1 

(Eqs. 4.24,4.25) become simply th e  constraints on param eters a;, b[ and q:

Ci > 0, and (4-27)

- 1  <  at <  1, - 1  < bi <  1. (4.28)

This is one of the advantages o f the ALN that it provides a very efficient way of 

constraining the function being learnt.

Getting rid. of outliers

Since ALN uses Least Squares error in fitting the function, extra measures have to 

be undertaken to eliminate outliers.
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As described in Chapter 3, visual d a ta  contain a  lot of outliers. Therefore, we 

first try  to eliminate as many of them  as we can during the image processing stage, 

by increasing the threshold used in tracking the features (see Section 3.). Second, we 

use regression w ith a fixed num ber of iterations so th a t outliers do not cause spurious 

over-fitting of the function.

Now, as all steps for combining visual range data w ith the adaptive logic network 

have been described, we can proceed to the  implementation of the proposed technique. 

One way of reducing the effect of outliers is to use bagging [Bre96], bu t we have not 

yet tried this.

4.8 Experimental Results

A regression-based fusion technique is proposed to fuse range data in situations when 

other fusion techniques cannot be applied for various reasons. This includes a sit­

uation when range data are obtained by the same sensor and are therefore highly 

correlated, and also a situation when range data are used to build large-scale en­

vironments, m aintaining 3D occupancy models of which is problematic because of 

the amount of memory and calculation required by conventional range data fusion 

techniques.

The experiments of this chapter are aimed to show, first, the validity and the 

promise of applying the proposed regression-based fusion technique in the situations 

described above, and second, to expose the  problems occurring when applying this 

new fusion technique.

Let us answer the main questions concerning the experiments.

4.8.1 Questions About Experiments 
What we are going to do?

These experiments treat a specific problem of vision-based world exploration which is 

tackled using a linear regression tool. Therefore, in the experiments we deal with the
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following: first, a specific type of regression —  the least-squares regression which is 

the basis of the ALN; second, a specific type of range data —  visual data  sensed from 

the same location; and third, a  specific type of environment — large, full of visual 

features.

What can we change?

W ithin the setup of the experiment described above, we can vary the following. We 

can change data: a) their amount, b) their distribution, e.g. the complexity of the 

environment, and c) the number of outliers. We can use different numbers of sample 

points generated per feature in training. We can tune the parameters of ALN learning, 

such as “jitte r” control, fan-in and fan-out factors etc [AT96b]. Whereas it is the 

influence of various range data  on regression-based fusion th a t is of prime importance 

for our research, it is also desirable to know how other issues affect the performance 

of regression.

How are we going to judge the quality of fusion?

Because of the plausibilistic nature of 3D occupancy models, their visualization is 

difficult, which was first noted by Moravec [Mor96]. Because of this, we examine the 

quality of fusion, from the point of view of a) its efficiency in computation and space 

consumption, and b) the applicability of the constructed models.

The former is measured in terms of linear pieces involved in constructing the 

occupancy function and can be examined for both  simulated data  and actual visual 

data. The la tte r however depends on how the models are used. This way of examining 

the quality of fusion is applied to  actual visual d a ta  which are used for a specific task.

4.8.2 Simulations

The purpose of the simulations is to analyze how a regression-based fusion technique 

reconstructs different commonly used environments. There are two main questions 

needing to be investigated. First, how can a radially-based coordinate system, which
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is good for a visual sensor and which we use in regression, represent planar objects, 

which are the most common objects in man-made environments? Second, how can  

regression reconstruct parts of the world th a t are not covered by features? In o rder to 

answer these questions, we build models of geometrically simple environments w hich 

are easy to visualize.

Empty environments

The first environments to simulate are empty rooms with vertical walls and no ob jec ts 

inside. These environments are shown Figures 4.5 -  4.6. They are a cylindrical 

room observed from its center (Figures 4.5.a and 4.5.b) and from an arbitrary  p o in t 

(Figures 4.5.e and 4.5.d); a  rectangular room, where a sensor is surrounded by fou r 

walls (Figure 4.6.a); and a corridor, in which two walls are close to each o ther amd 

one wall is far from the sensor or may not be seen (Figure 4.6.b).

Environments are approximately five by five in size. They are simulated as if 

they were observed by a single-camera range sensor described in the previous section  

located a t the origin. The walls are two meters high and are assumed to  be full 

of features. Features are picked randomly with evidence m  =  0.9. The num ber of 

features varies from 500 to 50000. The floor is considered featureless.

Cylindrical rooms are first simulated as if they were observed without outliers amd 

then as if they were observed with 5% of outliers, in which case features appear tw ice 

as close to the camera than  they actually are (see Figures 4.5.b and 4.5.d). T he sens o r 

model is incorporated using 5 sample points per feature according to the visual sensor 

model as described in Section 4.5.2, which results in 2500-10000 sample points used  

in regression. The allowable error of fitting is set to 0.15.

The even rows of Figures 4.5 -  4.6 show the results of combining the occupancy 

data  shown in the odd rows of the figures. 3D occupancy models of the environm ents 

constructed by ALNs are shown as projections on the floor. The values of occupancy 

are shown using the intensity of the pixel: the darker the point, the closer its occmi-
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pancy value to  unity. T he circular appearance of the  d a ta  is due to  uniform sampling 

in the  coordinate system  we use.

It takes only one iteration  and one linear surface to  model a  cylindrical room cen­

tered a t the origin for the  given allowable fitting error (see Figure 4.5.c). However, 

as the num ber of outliers increases, it takes more iterations to model the room and 

more linear surfaces used in modeling. For example, the model shown in Figure 4.5.d 

was built w ith 7 linear surfaces w ithin three iterations. The model shown in Fig­

ure 4.5.h was built w ith  57 linear surfaces, whereas the  same environment without 

outliers (shown in Figure 4.5.g) took 16 linear surfaces to  model. A rectangular room 

and a corridor shown in Figures 4.6.d  and 4.6.e took 45 and 6 pieces to approximate, 

respectively.

At this point it should be emphasized that the constructed world models are 

occupancy models and they should not be confused w ith geometry-based models, 

which are very common in 3D reconstruction and which, in m any cases, are also 

built by fitting piece-wise linear surfaces. As seen in the figure, the constructed 

occupancy model does not follow exactly the contour of the range d a ta  in the depth 

map. However, while using only few parameters, it is able to show clearly the areas of 

high evidence of occupancy as well as the areas of insufficient occupancy information.

Environments with an object inside

The more complex an environment, the more linear pieces required to approximate 

it w ith a given allowable error. Figure 4.7 shows the results of building occupancy 

models of environments which contain objects. In  Figures 4.7.a and 4.7.b a small 

box, half a meter high, is observed from the center of a cylindrical room. In Figures 

4.7.e and 4.7.d a small box is put in an rectangular room. The allowable precision of 

fitting is set to 0.15 for all environments.

The results of combining these occupancy d a ta  are shown in the even rows of 

the figure. For the given precision of fitting, it took 59 and 65 linear pieces to build
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the occupancy models of the cylindrical rooms shown in Figures 4.7.a and 4.7.b, 

respectively, and  151 and 252 linear pieces to build the occupancy models of the 

rectangular rooms shown in Figures 4.7.e and 4.7.f, respectively.

The problem in fitting the planar objects with radial-based function can be seen.

4.8.3 Real Data

W hen dealing -with range da ta  obtained from real environments, which are very diverse 

and complex, the  tradeoff between precision of the model and computational efficiency 

becomes an issue of concern. The ALN-based approach however allows us to  control 

this tradeoff by setting the number of linear pieces L  used to model the world. If 

we are interested in a fast but crude approximation of the world, then we choose L  

small by setting the allowable error of fitting high. The need for approximate and 

fast-to-calculate models of the world arises in mobile robotics, where a robot has to 

navigate in an unknown environment in real time.

In our experiments we used a single camera visual sensor described in C hapter 3. 

The acquired visual range da ta  are used by the robot Boticelli. In our application, 

a robot explores a  room by building models of the observed environment. The con­

structed occupancy models are used as an input to the thinker module of the  robot 

which decides where to  go. The decision where to navigate is determined by the 

knowledge of obstacle and exploration points. This knowledge is extracted from the 

occupancy models the robot builds.

The way th is knowledge is extracted from the regression-built occupancy models 

is described in the next chapter. Here we present the results of regression-based 

occupancy modeling from real da ta  in order to analyze them from the efficiency point 

of view and also from the point of view of potential problems which may arise.

The environment used for modeling is the same as the  one described in the previous 

chapter (see Section 3.8 and Figure 3.1.a). It consists of an approximately 4 by 5 by 

2 m eter room, th e  walls of which are full of visual features. An example of the range
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data  acquired by the robot which observes the room is given in Figure 4.8.a. The 

presence of features in all directions can be noted.

Figures 4.8.b and 4.8.C  show the occupancy models which were built from these 

range d a ta  using the regression based technique with eight (L = 8) and sixteen 

( L  =  1 6 ) linear pieces. These 3D models are used in navigation planning. For this 

application, the quality of the constructed models was found to be sufficient. In 

general, we found th a t for the considered environment and task, using up to 3 2  linear 

pieces was enough. This means that a  4  by 5 by 2 meter room was represented with 

32 linear equations only, i.e. with 1 2 8  real values and 31 boolean conditions only. In 

contrast, a grid model would require several thousands of stored values for tha t, even 

if grid resolution is as low as one decimeter.

The time needed for the robot to build an occupancy model of this quality was 

approximately one minute on a Pentium Pro 200 MHz computer, which enables the 

robot to navigate in an unknown environment in almost real time while constantly 

m aintaining a 3D occupancy model of this environment.

4.9 Analysis

In our research, we strive to avoid using ad-hoc parameters and techniques in promot­

ing our new approaches, which is extremely difficult, due to the nature o f the tasks 

involved. Instead, we try to obtain results, which, while based on a particular set of 

parameters, will serve as a “basis” in the “space o f possible solutions”, and will pro­

vide insights into the nature of the problems considered, thereby setting the ground for  

further investigation of these problems.

Thinking this way, one realizes tha t it does not m atter what shapes of environ­

ments are used in the experiment, how many and what type of simulated outliers 

are generated or what the particular number of generated sample points is. W hat 

is im portant is th a t all those experimental examples should serve not as a proof of 

an advantage of the approach but rather be an illustration of the problems and the
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advantages of the approach. They should be like bricks from which anybody later 

can build a house. The analysis of the results below is done with th is in mind.

4.9.1 Nature of The Problems 
Choice of simulated environments

There is no need to  simulate many environments in our experiments, for three reasons. 

First, in a radially-based coordinate system modeling is isotropic, i.e. orientation of 

the sim ulated rooms does not m atter. Second, the scale and translation param eters 

of the environment do not m atter either, as their changes result in numerical changes 

in the solution but not in semantic changes. Finally, the complexity of the sim ulated 

environment is also believed not to m atter much in studying the approaches proposed, 

for it would change the size and the complexity of the  solution but not its nature.

LS and outliers

There is no need to have many and different types of outliers to show the bottleneck 

of using the LS regression technique. We consider only 5% of outliers. The results 

obtained for higher percentage of outliers can be extrapolated from the results ob­

tained. In particular, having 10% of outliers in the experiments of Figures 4.5.b and 

4.5.f would require to increase the allowable fitting error from 0.15 to  0.2 and to 0.25 

when dealing more complex environments.

Discontinuity of the models

Param etric modeling encompasses a problem which is clearly seen in the simulation 

results presented in Figure 4.6. Since the  model is represented using radially-based 

coordinates, there is a discontinuity of the model a t the pan angle of 27t. In all of 

the presented figures, pan angle is measured from the bottom  side of the Oy axis, 

where discontinuity can be seen. This problem can be partially resolved however by 

generating extra “copies” of all sample points beyond the [0, 27r] interval. This is 

what we do in our experiments. This does not elim inate discontinuity completely, it
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makes it only less significant. This problem however does not prevent one from using 

the  param etrically built models.

Lack of features

The lack of features in a part of the environment may result in undesirably high occu­

pancy values of th a t part. Moreover, this problem is aggravated by the  discontinuity 

problem mentioned above. Figure 4.9 illustrates this problem. Figure 4.9.b shows the 

results of fusing of range d a ta  corresponding to a comer of the room (shown Figure 

4.9.a), where only two walls are observed by the video-camera, and one quarter of the 

environment is featureless.

However, this problem can be handled by generating a few samples points all 

over the  space w ith occupancy values equal to zero. Figure 4.9.C shows the result of 

fusion with 1000 extra sample points generated randomly all over the space to  pull 

the occupancy function down to zero.

Visualization problem

As mentioned by Moravec [Mor96], visualization of 3D occupancy d a ta  is a prob­

lem in itself, requiring extra investigation from researchers in the Com puter Graphics 

community. This makes judging the quality of the occupancy models by visual resem­

blance to the real world very difficult. In our case however, the visualization problem 

is made even worse by not using grids in representing the  models. In particular, un­

derstanding the results plotted in Figures 4.5 — 4.9 is obscured by the quasi-cylindrical 

system of coordinates we use.

Therefore, the best way to analyze the results is from the point of view of their 

u tility  to  a particular application. This can be done w ith real data only.

Other

At the present moment we do not see any other semantic problems of the regression 

based range data  fusion approach.
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4.10 Conclusion

We developed a regression-based technique for fusing uncertain range data . This 

technique was shown to have several semantical advantages over conventional rule- 

based range data fusion techniques. F irst, it does not assume range d a ta  to be 

independent and is therefore more suitable for combining highly correlated range 

data  like those obtained by the same range sensor.

Second, as opposed to  other techniques, the regression-based technique autom at­

ically finds the number of param eters needed to model an environment. These pa­

rameters are the parameters of linear equations which suit best a given environment. 

This is beneficial for modeling large-scale environments, and is also useful for rapidly 

building crude models of an environment.

Finally, the regression-based technique provides the basis for building paramet­

rically represented occupancy models, which as will be shown in the next chapter 

are seen as a solution to the “curse of dimensionality problem” which occurs when 

building 3D occupancy models of large scale environments.

Thus, we can conclude th a t the proposed regression-based range data fusion tech­

nique is very promising for constructing 3D occupancy models of unknown large-scale 

environments. Further development of the technique is required however.

This dissertation provides the basis for the new framework in range da ta  fusion, 

and now this framework can be used and further improved. We see main directions 

for the development of the  framework in, first, studying other neural network and 

regression techniques for fitting the occupancy data, and second, investigating the 

possibility of combining several occupancy models. The concluding chapter gives 

more details on our vision for further research in the area.
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Figure 4.5: A simulated cylindrical room observed from its center (first tuio rows) and 
from  an arbitrary position (last two rows), with 5% o f outliers (right column) and 
with no outliers (left column): simulated range data (odd rows) and the constructed 
occupancy models built (even rows) are shown.
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Figure 4.6: Rectangular room and corridor: simulated range data (first row) and the 
constructed occupancy models (second row).
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Figure 4.8: The occupancy models constructed fo r  real range data.
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F i g u r e  4 . 9 : Dealing with the lack of features.
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Chapter 5

Using Piecewise Linear 
Representation for World 
Exploration

5.1 Introduction

In the  previous two sections we introduced a technique for building piece-wise lin­

ear models of visual sensors and a regression-based technique for fusing range data. 

W hile resolving the visual sensor design problem and the problem of combining de­

pendent range data, these techniques also provide the basis for resolving another 

m ajor problem of the occupancy approach —  the representation problem.

The representation problem deals w ith the redundancy and inconvenience of the 

grid representation of the occupancy models for world exploration. It is the one 

th a t impedes most the development of the  occupancy approach. In particular, it 

is because of this problem th a t the 3D occupancy approach was applied so far for 

modeling of small objects only. This is also why up till now in mobile robotics, where 

environments axe big, only 2D occupancy models are used to  model the  environment.

In this chapter a new approach for representing the  occupancy function using 

piecewise linear surfaces is proposed. F irst, we show the disadvantages of the grid 

representation of the occupancy function and dem onstrate the idea of the new ap­

proach on a simple example. Then, we show how the occupancy model of the world
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can be efficiently represented using a  min-max tree of combining linear functions.

T hen  we show how param etrically represented occupancy models can be used 

for the world exploration problem, which is the problem the occupancy approach is 

commonly used for. In particular, we describe an approach which uses the informa­

tion extracted from the constructed occupancy models in order to make navigation 

decisions. This approach uses a reinforcement learning technique where the rein­

forcements are obtained from the knowledge of the goal location as well as from the  

knowledge of unexplored area and the  likelihood of obstacles in  the exploration area, 

which is extracted from the occupancy models. We dem onstrate the validity and 

the promise of our approach by implementing it on the mobile robot BoticeUi, which 

searches for objects in an unknown environment using a single camera stereo range 

sensor.

5.2 Problems With The Grid Representation

Let us illustrate the problem with the  grid representation on a concrete example. We 

use an  example from [Mor96] slightly modified to the  robot and environment we use 

in our experiments.

Consider a 10 m eter by 10 meter by 3 meter hall where a  robot equipped w ith 

a cam era has to  navigate (see Figure 5.1). In order to  decide where to navigate the  

robot has to build a model of this hall.

Figure 5.1: Robot in a hall.
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5.2.1 Memory Requirements

First, since the environment is considered to  be unknown, we do not know what the 

resolution of the grid should be.

A common approach in this case would be to choose the resolution of the grid 

according to the resolution of the sensor [Mor96]. For vision based sensors, the 

resolution of one decimeter can be used [MS87, GA99b]. This results in storing a 

3D array with 300,000 real values. That is, the grid approach requires megabytes of 

memory to the given task.

5.2.2 Amount of Calculations

For each of registered features, ray tracing should be done in order to update the 

occupancy values of all voxels lying in the ray of view. This results in update of 

several millions voxels for each of about 2000 evidence rays obtained from one image 

frame. For this to be executed in real-time, one needs an extra powerful computer 

with at least 100 MIPS speed [Mor96] .

5.2.3 Occupancy Models for Navigation

In the occupancy approach [MM96, BEFW97, JD97, YSA98, BBC+95, PNDW95, 

vDKG95], the exploration policy is usually determined by the following information 

which is extracted from the  occupancy model: the observed obstacles, the navigation 

area, which is the area free of obstacles, and the unexplored area, which is area where 

insufficient range data  has been acquired.

When this information is obtained, it is processed in order to produce the com­

mand for the robot. Such methods as potential fields [JD97], value iteration [Thr95] 

and other reinforcement learning techniques [SB98, ACG99] are most common a t this 

stage.

As understood, no m atter what a technique is used at later stages, the success 

of the occupancy-based world exploration depends on the quality of the occupancy
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model and also its suitability for extraction of the information required for navigation.

As demonstrated above, because of the grid representation, which results in storing 

a huge amount of data and performing very time-consuming calculations, modeling 

of 3D, and large-scale environments in real tim e is practically impossible. Because 

of the this, in mobile robotics, where the issue of tim e is critical, only 2D occupancy 

models have been used. T h a t is, instead of treating a world the way it is, a robot has 

to consider only a 2D shadow of it in making a navigation decision. And this is not 

the only problem encountered using the grids.

Grid models are not suitable for radial range da ta  and they are very inefficient for 

map extraction. This can illustrated by the fact th a t in order to get the boundary of 

the area available for navigation, the  robot has to  ray-trace a 3D array of d a ta  and 

then to use line extraction algorithm s to  obtain a 2D boundary. This consumes a lot 

of computational power.

5.2.4 Concluding the Example

Let us return to the example of a robot navigating in a hall which we alluded to  in 

the beginning of the section. We know now how much memory and computational 

power it requires for the robot to build the model of a hall. Now assume that the hall 

is completely unfurnished and empty.

It is quite striking to realize th a t all com putational effort was spent to built a 

model of an empty space! This is when one realizes th a t there should be another 

way of building and representing the occupancy function. Unfortunately, however 

there seem to be no other approaches known in occupancy world modeling except 

grid-based ones, and this work seems to be the first to suggest a way of building 

occupancy models without using grids.
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5.3 Parametric Representation

5.3.1 Empty Room Example

Let us recall tha t the occupancy m odel of a room is defined by an occupancy function

which m aps 3D points of the world into a real interval so th a t higher values of the

function indicate points th a t are m ore likely to  be occupied:

m  = F ( f ), [0,1], r e  3ft3. (5.1)

It is obvious tha t in certain cases, for certain room shapes and coordinate systems, 

the occupancy function of the room can be represented very simply using equations. 

For example, the occupancy function of a cylindrical room with radius R  =  5 meters, 

which is observed by a robot from the  center of the room (see Figure 5.2.a), can be 

expressed as simply as

m  = M I N ^ ,  l ) ,  where r  = y jx2 + y 2 (5-2)

Here the sensor model along the ray  of view is approximated as m  =  ( ^ ) n and n is 

determ ined by the resolution of the sensor.

5m

a)

m

-YH-
5mb)

Figure 5.2: A robot in a cylindrical room (a) and an approximation o f the occupancy 
function using linear equations (b).

5.3.2 Linear Representation

It is clear th a t any continuous function can be approximated using piece-wise linear 

surfaces. For example, using the cylindrical system of coordinates and piece-wise
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linear representation, the occupancy function of Eq. 5.2 can be represented as a 

system of linear equations (see Figure 5.2.b):

m -{
Oi r,
a2r  — 62,

if r < ri 
if r > T i (5.3)

For a more complicated environment, like the one illustrated at Figure 5.3, for 

instance, where there is an object between a wall and the robot, the occupancy 

function would look like the following

m

<X\T H- 61 a . -F C \ h  -F d \  

fl27* ”1" b%cx. -b  c 2/i +  d 2 
a3r  +  b3a  -F c3h  +  d3

if h < 1, 0.00 <  a  < 0.10, r  <  4.5
if h < 1, 0.00 <  ct <  0.10, r  >  4.5
if h < 1, 0.10 <  a  < 3.14, r < 6 (5.4)

Figure 5.3: Illustration of piece-wise linear representation o f the occupancy model.

Thus, it is clear tha t the occupancy function of an arbitrary environment can 

be represented as a system of linear equations, where the number of equations is 

determined by the complexity of the environment. The simpler an environment is, 

the  less memory and calculation are required to build the model of the environment. 

This is exactly what we strive to achieve.

The two m ain questions which arise regarding building parametric models are the 

following.

1. How should surface equations be calculated using a set of registered range data? 

and

2. How can these equations be converted to 2D navigation maps?

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The solution to the first problem has been already presented in the previous 

chapter. I t is the regression-based range data fusion technique, which computes 

the occupancy function by fitting range data with piece-wise linear surfaces. The 

occupancy functions which axe constructed using this technique are represented using 

the Adaptive Logic Network (ALN) as a binary logic tree over linear functions.

The solution to the second problem is presented in this chapter. I t is the technique 

which, given a param etrically represented occupancy function, extracts the informa­

tion needed for making the navigation decision and then uses this information to 

decide where to navigate.

Before presenting the  technique for map extraction from the regression-built oc­

cupancy functions, we first explaine the ALN representation of a function.

5.3.3 ALN Representation

Figure 5.3.3 shows the contents of a  file created by the ALN learning program. It 

contains linear equations and MAX,MIN relationships of linear pieces used in fitting 

sample data. This set of equations and minimum (MIN) and maximum (MAX) 

operators over the equations comprise the ALN representation of the function.

The function presented in the figure is a  2D occupancy function built by the ALN 

for the 2D environment which consists of two walls. The same data  as those shown 

in Chapter 2 in Figure 2.1 are used. The system of coordinate is Cartesian. Linear 

equations are written in the form

clo(xq +  Co) +  a i(x i 4- Ci) 4- a2(x2 + c2) =  0, (5.5)

where x 2 is the output value and x Q and x \  are the input values, where (0, 01, 03) is 

roughly the centroid of the piece.

In the case of 3D occupancy modeling of more complex environments, there are 

many linear pieces involved in building the model, and, in general, understanding 

the relationships among those linear pieces is very diffucult, which is due to both the

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



extra (4th) dimension and a  different coordinate system  used in modeling. However, 

the idea is still the same.

VARIABLES = 3; 
xO : [0 , 100]; 
x l  : CO, 100];
x 2  : c - o .  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 , 1 .1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ] ;
OUTPUT = x2;

LINEARFORMS = 8;
0 : -0.0025775417471730249 (xO -  68.406933942514058) +

0.00097339244428427496 Cxi -  5.2084780444034102) -  1 Cx2 -  0.0091314141451077861);
1 : -3.473863743550066e-013 (xO -  47.251255792582434) +

4 . 1563576567829662o-013 ( x l  -  13.160881035134665) -  1 Cx2 -  4.9063554368901343e-012);
2 : 0.00016062073088807331 CxO -  39.786671388398872) +

0.27508702928044448 (x l  -  28.655593772023508) -  1 (x2 -  0.62594933920327589);
3 : - 5 .4931402340175244e-019 (xO -  44.432716144393254) -

1 -3666804381996871O-017 (x l  -  38.450723277018646) -  1 (x2 -  0.99999999999999978);
4 : -1.6221746004891314O-031 (xO -  14.634643492882514) -  

3.359150903932276O-032 ( x l  -  40.880839341599732) -  1 (x2 -  7.9796233328002509e-032) ;
5 : 7.2701086463233145O-064 (xO -  6.7833882297211661) +

1.9110809581926726O-063 (x l  -  24.723279572639708) -  1 (x2 -  3.1360567225957893e-062) ;
6 : 0.37157500203172533 CxO -  17.657355731337013)

0.0011219898249259102 Cxi -  34.622157550187197) -  1 (x2 -  0.62070213711450717);
7 : 0.3752589541124618 CxO -  17.546701092500417) +

0.00012452206178189317 (x l  -  41.886512024589692) -  1 (x2 -  0.57993755330086338);

BLOCKS = 1;
0 : MIN (MAX (MIN (0 , 1 ) , MIN (2 , 3 ) ) ,  MAX(MIN(4, 5 ) ,  MIN (6 , 7 ) ) ) ;

Figure 5.4: The A L N  representation o f a 2D occupancy function.

5.4 Extracting Maps

Once a 3D occupancy model o f the world is constructed as a tree of minima and m ax­

ima of linear functions of th ree  variables as described in Chapter 4, th a t is function

m  =  F (a , h , r )  =  tr e e ^ i ^£MAX^{aia -f- b[h -f- q r  + d[}

is calculated, it is possible to  determine a 2D polygon within which it is safe for the 

robot to navigate.

5.4.1 Occupancy Function Inversion

The volume with occupancy less than a certain threshold (e.g. 0.6), is considered 

unoccupied and therefore available for navigation. In order to find this volume, the
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first step is to invert the occupancy function. The inverse function returns a distance 

within which it is safe to  move as a  function of pan angle, height and occupancy. This 

can be done theoretically due to the  strong monotonicity condition imposed on the 

occupancy function (Eq. 4.24) during ALN training.

The ALN max-min tree representation of the occupancy function allows the in­

version to  be done very efficiently. The inverted ALN is constructed as follows: in 

the original ALN tree, each maximum node is replaced by a  minimum node, and each 

minimum node by a maximum. T hen the weights on variables are normalized in such 

a way th a t the weight on the new ou tpu t variable (occupancy) is -1 . The simplicity 

and speed of this inversion is another advantage of using ALNs for robot navigation.

5.4.2 Computing Navigation Polygons

The inverse occupancy function, which can be now w ritten as

r  =  F ~ 1(a 1 h, m), (5.6)

where the  occupancy is fixed a t some level, say m  =  0 .6 , is now applied at several 

values of height h. The r  values are converted to a horizontal distance by taking 

y/r2 — h2. The result of this com putation is a set of polygons obtained at different 

heights centered a t the robot’s current position. In addition to the monotonicity 

constraint imposed in the regression (Eq. 4.24), we also impose upper and lower 

bounds on the weights for pan angle and height (Eq. 4.25). This allows us to use a  

finite set of height values and yet be sure th a t no point on the robot at any height 

will collide with any point of the environment exceeding a  certain value of occupancy.

The final step in calculation of the  polygon of the 2D local map of the area available 

for navigation consists in shrinking all polygons by the radius of the cylindrical robot 

and taking the intersection of their areas. This ensures th a t the whole body of the 

robot can go in a straight line to any point inside the intersection polygon.
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5.4.3 Experimental Results

Figures 5.5 show examples of polygons extracted from the occupancy models using 

the described techniques. The polygons shown in the figure are extracted using a 

threshold of m  =  0.6 on the maximum occupancy considered safe for navigation.

5.4.4 Obstacle and Exploration Points

The polygon boundary far from the robot is most susceptible to  error. This could 

result from absence of depth d a ta  or errors in depth estimation. This led us to 

upper-bound the distance to the periphery of the polygon from the robot position. 

The points of the navigation polygon which lie inside the bounding circle represent 

obstacles. Obstacle points are defined for evenly spaced angles in angular sectors 

where obstacles occur. When making a decision where to navigate, these points will 

be given negative reinforcement values to keep the robot from hitting the obstacles.

Points of the navigation polygon on the periphery represent points where the 

knowledge of the environment becomes undependable, so further data  must be col­

lected near them. A collection of exploration points is defined a t evenly spaced angles 

in sectors where the navigation polygon lies on the circle. The density of exploration 

points is chosen to be adequate to find channels through which the  robot could pass, 

but which may not be observable from the current robot position. Exploration points 

have positive reinforcement values, thus encouraging the robot to  move near to ex­

ploration points.

5.5 Planning Navigation

5.5.1 Reinforcement Learning in Planning

Reinforcement learning occurs when a system learns, from environmental feedback, 

to w hat degree its past actions have been satisfactory. It uses this information to 

determine future actions. A book [SB98] provides an introduction to reinforcement
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Figure 5.5: Occupancy models (b) and the navigation polygons (c) extracted from  
these models.
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learning. The model is as follows. If the system is in s ta te  s t at tim e £, and a certain 

action at is taken, then it enters state s£+1 and receives reinforcement r £+1. We shall 

model the next sta te  and th e  reinforcement as determ inistic functions of the current 

state  and action.

A policy 7r specifies w hat action to take in any given state. A policy must be 

developed taking into account how much reinforcement is received a t t  +  1 as a result 

of an action a t time £, and how much will be received for all subsequent actions under 

the policy. In this way, a policy can determine an action which is likely to increase 

reinforcement over the sequence of all future actions. The value of the present and 

all future reinforcements is the  discounted reinforcement defined as

OO
V'W = £  7 "r1+t+„ (5.7)

71=0

where actions are taken according to k  and 0 <  j  < 1. This is referred to as the state- 

value function or simply the  value function for policy 7r. For the optim al policy V*, 

which produces the greatest discounted reinforcement th a t the system can achieve 

over all possible future actions starting from state s, Bellm an’s equation [Bel57] is 

satisfied:

K*(s) =  m ax(r(s, a) + 7  V* (s')) (5.8)

where s' is the sta te  resulting from applying action a to  sta te  s.

5.5.2 Application to Navigation

The way we have applied reinforcement learning to navigation is similar to the work of 

others [JD97, Thr95, TB96], where the states of the system are positions of the robot. 

The reinforcement resulting from an action is determined by whether the new sta te  

is close to the goal or close to  a point th a t requires further exploration, or whether 

it is close to  an obstacle. T he former situations give rise to  positive reinforcements, 

while being close to an obstacle leads to negative reinforcement. Solving Bellman’s
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equation gives rise to a state-value function th a t represents a  potential field, where 

the robot is attracted  to exploration points and the goal, and repelled from obstacles.

The function r(s , a) in Eqs. 5.7 and 5.8 which gives the local reward is defined 

using the  sum of rewards a t the arrival state  s' derived from all obstacle points, 

exploration points and the goal, if already known. Each obstacle point was given a 

reward function zero everywhere except in the neighborhood of the obstacle point, 

where the  graph was in the shape of a negative-pointing cone centered at the obstacle 

point.

Various cone radii were tried, but the idea was to give a gentle repulsion to the 

robot if it  came close to an obstacle point p. Thus the contribution of the obstacle to 

the reward function is

r0bs,P(s i a ) =  m in { 0, {Vobs +  S e l l s '  - p ||)}~ (5.9)

Here and in the following, Vtype is a fixed value a t the apex of the cone, and S tyve

is the “slope” , i. e. the rate of change from tha t value as distance from p increases.

These two parameters determine the height and the shape of the cone. We recall that 

s' is a function of r  and a.

Each exploration point p is given a reward

7~exp,p(s, fl) =  TTICLX̂ O, VeXp *^exp||  ̂ P ||} ‘ (o.lO)

which is an upward-pointing cone, where it is not constant 0.

The goal point was given a sim ilar reward

’̂poa£,s(5, u) =  m ax{0 , (Vgoal ‘Spoaill^ f?!!)}- (5-11)

Thus r(s , a) is the sum of all the contributions from obstacle points p), exploration 

points qj and the goal g that are currently known to the planner.

W ith this reward function, the next step was to solve Bellman’s equation.
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5.5.3 Calculating Value Function Using ALN

An Adaptive Logic Network is used to calculate the value function in Eq. 5.8. The 

properties of the  ALN that make it suitable for approximating the value function are 

discussed in [KR96]. An ALN learns to approximate V* by growing a tree of maximum 

and minimum operators acting upon linear functions. The training algorithm adapts 

the weights of the  linear functions and splits linear pieces into two if the error of a piece 

is too great, so th a t the tree grows. At a given input s, generally only one linear piece 

is responsible for forming the function value. It is found by searching the ALN tree, 

whereby the branch of the lesser input is chosen if the node is a  minimum node and 

the branch of the  greater input is chosen if the node is a  maximum node. Training 

of the ALN is done by adapting the weights of th a t one responsible linear piece. 

A refinement of the procedure joins linear pieces by quadratic fillets and splits the 

responsibility among a few linear pieces. The occupancy function is a  mapping from 

a box in three dimensional space to real values, and the function is linear on pieces of 

the space which are abutting polyhedra. The state-value function for reinforcement 

learning has two inputs, namely the coordinates of the robot.

To perform reinforcement learning, the value function being learned by the ALN 

is used to compute training values for itself: values of the expression on the right of 

Bellman’s equation are used to define the target value for the function at the state  

on the left. The control policy after training is complete is

7r*(s) =  arg m ax(r(s, a) -F 7 V*(s')) (5.12)

where s' results from action a.

A significant speedup of computation is achieved using a piecewise linear value 

function approximant because many of the linear pieces that do not influence the 

ALN com putation for a given input point do not have to be evaluated. (Finding 

out the exact set of pieces th a t have to be evaluated is a  computationally intractable 

problem; but a good heuristic solution is achievable.) This makes the ALN approach
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to reinforcement learning a promising candidate for real-time applications.

To dem onstrate th a t ALNs can learn complicated functions, the Q-function for 

basketball balancing was learned [Arm98, AL98]. In this task, a basketball m ust be 

balanced on a  “finger” that moves in a horizontal plane only.

5.5.4 Experimental results

In the experiments, states s are random ly chosen in the area opened to  navigation. 

The robot is given only a fixed number of actions to apply in each sta te  s. In the 

simulation, there were four possible directions of motion. For the real robot, eight 

possible directions were sampled a t a constant distance, although it would have been 

better to do more sampling to get a better value of the maximum. The value function 

V (s) currently represented by an ALN was trained using the estimates V(s') a t the  

states s ' accessible through this finite num ber of applicable actions a t s. This gave 

rise to a function approximating the value of each state under an optim al policy.

Figure 5.6 shows the value function V (s)  constructed by the ALN at two dif­

ferent locations of the robot. After reinforcement learning, the robot can be sent an 

appropriate direction to  move so as to obtain maximal gradient of the Value function.

5.6 Conclusion

As can be seen from the way the occupancy models are used, high precision of these 

models is not required. W hat is required is obtaining fast a rough idea of what is 

around the robot. If there is a need for more precise information about a partic­

ular part of the environment, then other exploration techniques can be employed, 

including, for example, conventional grid-based occupancy techniques to  model small 

parts of an environment or telepresence techniques [BBZ98], which use the help of a 

teleoperator in order to  guide the robot using the information from the video-camera.
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Figure 5.6: The value functions built by the reinforcement learning technique at two 
different locations o f the robot.
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Chapter 6

The Framework and Robot 
Boticelli: Implementation of the 
Ideas

6.1 Introduction

This chapter puts together all techniques presented in the previous chapters into a 

one framework —  a framework for building occupancy models using unreliable visual 

range da ta  and parametrically represented occupancy functions. The first ha lf of the 

chapter presents all stages which lead from the first step of grabbing a video-frame to 

the  final step of making a navigation decision based on the constructed models. The 

stages are described in a sequence to be used in implementation of the framework.

The implementation of the framework is presented in the second half of th e  chap­

ter. We describe the software and hardware architectures of robot Boticelli which 

was designed for the purpose of demonstrating the approaches proposed in th e  thesis. 

The da ta  obtained from running the robot axe presented.

6.2 Framework for Vision-based World Modeling

Let us recall w hat task we want a  robot to accomplish. This task is to 

“Explore an environment with a videocamera”
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How much is hidden in this simply-stated six-word problem description! How many 

stages are there in between the very first stage of grabbing a 640 by 480 image and 

the very last stage of making a move in a  certain direction!

This dissertation attem pts to cover all of these stages: from Image Processing 

to Navigation Planning, by studying the lim itations of the current approaches and 

proposing new techniques. We can now summarize all these stages and present the 

entire framework for vision-based occupancy modeling which uses techniques proposed 

in the dissertation for a) registering, b) combining, c) representing and d) applying 

the occupancy values.

Below we summarize all steps on the way from grabbing an image to  making a 

navigation decision. First, we describe each step stressing the im portance of doing it 

and then we illustrate each step using an example from an experiment.

6.2.1 From Image Processing to Navigation Planning

The stages of the vision-based world exploration using occupancy models as proposed 

in the dissertation are the following.

Image Processing and Computer Vision

1. Decrease the resolution of the grabbed image. There is no need for high reso­

lution, as we deal with uncertain data. The smaller the image, the faster range 

data  acquisition.

2. Select visual 2D features. The number of selected features should be large 

enough (enough for building models of a desired precision), but not very large 

(to make registration fast). The features should be selected in such a  way that 

it will be easy to track them. The higher the derivative of the feature intensity 

in the direction of camera motion, the more robust the feature in tracking.

3. Move camera so th a t to make baseline as large as possible while keeping features 

in the field of view and track features along the epipolar line which should be
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made wide enough to account for image warping. Calculate feature match error.

4. Calculate the distance to  the  successfully tracked features. A feature is consid­

ered successfully tracked, if its m atch error is lower th an  a certain threshold. 

The lower the threshold, the  more robust the feature.

5. Calculate levels of evidence m t- of registered 3D features f i  using the feature 

match error as a measure of uncertainty.

6 . Move camera around and register 3D features in all directions, generating a set 

of range da ta  {m,-, fi} to  be used in fusion.

Range Data Fusion and Modeling

1. Choose the coordinate system  which suits best the sensor model and the  en­

vironmental constraints, such as the shape of the robot or obstacle geometry 

if known. Appropriate choices include spherical (a ,ip ,r), cylindrical (a , h, r^y) 

and quasi-cylindrical (a , h, r ) coordinate systems.

2. In the chosen coordinate system, impose constraints on the  occupancy function 

according to the sensor m odel and the task for which the occupancy model will 

be used. The main one is the  monotonicity constraint

d F (a , h, r) 
dr

Other constraints may prevent abrupt changes of occupancy values (e.g. — Ci < 

§£ <  Ci and -C-i < § £ < ( 7 2  for some constants C\ and C^).

3. For each registered 3D point, generate a few additional range data  on the ray of 

view with the plausibility values calculated according to the  sensor model. The 

number of generated points should be as small as possible to make modeling 

fast, yet it should be large enough to represent the shape of the sensor model.
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4. Given range d a ta  about the surrounding environment, which is encoded in terms 

of registered and generated sample points {m*,, f*}, find an occupancy function 

m  =  F (r) which fits these range d a ta  with the given precision subject to  the 

imposed constraints. For this purpose use m ultiple linear regression tools, such 

as ALNs, which are fast and which yield a piece-wise linear representation for 

constructed functions. O ther regression or neural network techniques such as 

GMDH [MI94], ALB [Hoo99], MARS [Fri91] or P P R  [FS81] can also be applied 

at this stage.

5. The level of th e  fitting precision should be set according to a) the technique used 

in fitting, b) percentage of outliers in the range data  and c) tim e constraints. 

If, as a result of using non-robust range sensors, the percentage of outliers is 

high, then the  level of the allowable error in fitting should be not very small 

to avoid spurious overfitting of the function. In the case of ALNs, overfitting 

can be avoided by either setting in advance the number of linear pieces used in 

regression or by keeping the allowable error above the level of noise.

Using Occupancy Models

1. As a result of fitting, ALN builds an occupancy function represented as a binary 

tree of minima and maxima of linear functions:

m  = tree\=™£MAX'* {aicx. -F b\_h +  civ +  d/},

2. From the constructed 3D occupancy model, ex tract a 2D navigation polygon 

within which it is safe to navigate. This is done by inverting the occupancy 

function and se tting  the occupancy level considered to be safe for navigation

r  =  F ~ l (a,h,rri).

Due to the m onotonicity condition imposed on the occupancy function, this 

inversion is possible, and due the linear representation of the function, it is fast.
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3. O btain the lists of obstacle and exploration points from the extracted 2D nav­

igation polygon. Exploration points are those which lie far from the robot. 

Another way of extracting exploration points would be a) to build the belief 

occupancy function in addition to the plausibility occupancy function, and b) to 

consider the points which have high uncertainty interval defined as a difference 

between the belief and plausibility values.

4. Assign negative reinforcement values to the obstacle points and positive rein­

forcement values to  the exploration points and to  the goal location, if the goal 

is observed.

5. Use reinforcement learning to calculate the value function. After the function 

is calculated, move into the direction of the m axim al gradient of the calculated 

value function.

6.2.2 Illustrations of The Ideas

Figure 6.5 illustrates the described framework at work, as applied to a concrete world 

exploration problem. In this problem, a robot has to  find a predefined target in an 

unknown environment, using a single-camera range sensor (Figure 6.5.II). The target 

is a green triangle glued to a white paper background as seen in Figure 6.5.1. An 

approximate plan of the room used in the experiments is shown in Figure 6.5.III. 

Figure 6.5.III also shows approximately the moves of the robot on its way to the 

goal. The moves of the robot are guided by the framework described in the previous 

section.

Figure 6.5.1 shows a 640x480 image of monochrome green rectangles as observed 

by a camera. The first reason for the uncertainty in d a ta  -  imperfection of the camera 

— is clearly seen.

Figure 6.5.2 shows a preprocessed 160x120 image to  be used for depth calculation. 

Selected 2D features are shown in white. There are about 500 of them per image.
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The second reason for the uncertainty —  the complexity of the environm ent and the 

undistinctiveness of visual features, -  is also clearly seen.

Figure 6.5.3 illustrates the  depth calculation technique based on projection ge­

ometry, which is applied to  the selected 2D features which have been successfully 

tracked.

Figure 6.5.4 shows how uncertainty of feature registration is incorporated into the 

sensor model. Tuckey byweight [RL87] is applied to the feature m atch error to obtain 

the value of evidence. D epth error due to  the limited resolution is approximated 

as 10% of the distance. The range da ta  collected by observing the environment are 

shown in Figure 6.5.5. The search for the goal is done concurrently w ith registering 

3D features.

Figure 6.5.6 shows the occupancy model built from these range data. The quasi- 

cylindrical system of coordinates used in regression is shown in Figure 6.5.7. The 

number of generated sample points per feature is five, as shown in Figure 6.5.8. The 

number of iterations used in the  ALN training is ten. This results in fast calculations 

(less than  two minutes) and less than fifty linear pieces needed to represent the 

environment. The idea behind ALN fitting is illustrated in Figure 6.5.9.

Finally, Figure 6.5.10 shows the 2D navigation m ap extracted from the 3D oc­

cupancy model with the level of safe occupancy set to  0.6. The figure also shows 

obstacle points (in black) and exploration points (in white) to  be used in making the 

navigation decision. The value function which is calculated for these points is shown 

in Figure 6.5.11. This value function determines the next move of the  robot, until 

finally the robot reaches the goal.

6.3 Robot Boticelli

Boticelli is a prototype mobile robot, built for the purpose of dem onstrating the ideas 

presented in the thesis: new techniques for vision-based range da ta  registration and 

new paradigms in range da ta  fusion and world modeling.
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Figure 6.1: Boticelli (a) and its architecture (b).

6.3.1 Robot Architecture

Boticelli, shown in Figure 6.1, consists of an RWI B12 mobile base with, a  video 

camera m ounted on a Direct Perception pan-tilt unit. Boticelli communicates with 

two external computers by a tether link. One Pentium Pro 200MHz computer is used 

for image processing and d a ta  fusion and a Dual Pentium  II 333MHz com puter is 

used for reinforcement learning and navigation planning.

It is designed for navigation in an  unknown environment. Navigation decisions 

are determ ined by the following information:

1) observed “obstacle points” which are likely to block motion,

2) “exploration points” a t which further observation will be required, and

3) the goal location (if known).

Until the  goal is reached, the robot is required to continually look for the goal while 

watching for obstacles, determining where to move and moving. This suggested a 

software architecture of the robot, which we call the “Look-Think-Drive” architecture 

(see Figure 6.1). The robot repeats a  cycle of looking (vision), thinking (planning), 

and driving (motion). The architecture consists of three main modules.

The first module is the Vision m odule, which executes all image processing and 

vision tasks. Using this module, the  robot scans its environment and calculates the 

depth to features around it. The location of the goal, if observed, is obtained as well.
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This module captures images with the video-camera via a M atrox Meteor video card. 

Use of the Matrox Imaging Library (MIL) augmented custom-developed imaging code.

Due to camera lim itations and the complexity of the environment, the range data  

obtained by the robot are uncertain. The level of evidence of being occupied m z- of 

each registered 3D point f i is calculated according to the visual sensor model presented 

in Chapter 3. The acquired range da ta  are then fused in the second module.

The second module is the T hinker module. It consists of two sub-modules: vision 

understanding and m ap extraction. For vision understanding, range data {rj-, m z-} are 

fused and a 3D occupancy model of the world represented by the occupancy function 

m  =  F(r)  is is built. This function is built using the regression-based fusing technique 

introduced in Chapter 4 and is represented as a binary tree of minima and maxima 

of linear functions. As described in Section 5, this representation is not only optim al 

space-wise, but it also allows efficient extraction of a 2D polygon of the area available 

for navigation.

In the map extraction submodule, a 2D polygon of the area available for navigation 

is extracted from the occupancy model. Lists of obstacle points and exploration points 

are derived using the polygon. These two lists are then added to previous lists and 

are used, along with the location of the goal, if known, to perform path planning.

The third module, the Driver, also consists of two sub-modules. The first sub- 

module is the path planner. It uses a reinforcement learning technique to build the 

value function to be used in making the navigation decision, using the reinforcement 

rewards obtained in the previous module. It computes a suggested direction for the 

robot to move and is implemented as a separate piece of software to perm it it to 

function in a simulation mode to test reinforcement learning technique described in 

Chapter 5 on simulated data. The second submodule sends motion commands to the 

robot and performs some consistency checking on the output of the planner.

All three modules are active in each cycle of a robot’s navigation. Cycles are 

repeated until the robot manoeuvres close to the goal.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 6.2 shows the GUI which runs on the Vision and  Thinker modules of the 

robot a t the end of the work of the  T hinker module in one of the cycles of robot’s 

navigation. It consists of four windows. The first window shows the range data 

acquired by the robot projected onto the floor. It also shows a part of the  environment 

observed by a camera at any moment. The second window shows the 3D occupancy 

model of the world built by the robot. The circular appearance of the d a ta  is due to 

the uniform sampling in the coordinate system we use. T he third window shows the 

navigation polygon extracted from the 3D occupancy function and the  fourth window 

is a log window, showing a number of iterations and linear pieces required to build a 

model.
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Figure 6.2: GUI of the robot running on Vision and Thinker modules.
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Figure 6.3: Robot Boticelli exploring the room.

6.4 Experimental Results

T he results of executing each individual module of Boticelli were presented in the 

previous chapters. Figures 3.9, 4.8, 5.5, 5.6 and 6.2 show d a ta  obtained from the runs 

of the robot. In th is  section we summarize the results.

In our application, the robot explores a  room shown in Figure 6.3 in order to  find 

a  goal hidden behind a wall, which is a green triangle glued on white paper seen on 

the  back wall in the  figure. An approximate plan of the room used in the experiments 

is shown in Figure 6.4. The figure also shows approximately the moves of the robot 

on its way to the goal.

During the course of exploration, in each of its locations, the robot acquires range 

data , which are then  converted to a 3D occupancy world model. The constructed 

model is then used to provide the robot w ith a navigation map consisting of the list 

of obstacle and exploration points, which is used by the robot to decide where to go. 

A reinforcement learning m ethod is applied a t this stage.

W ith the technique described in the paper the robot was able to find the goal, 

while m aintaining the world model. We used less than 32 linear pieces in the occu-
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Q -robot

A - goal

Figure 6.4: Approximate plan o f the room.

pancy function representation. T his appeared to  be sufficient for the problem and did 

not take much tim e to  evaluate. More specifically, it takes approximately the same 

amount of time to  build a model as it  takes to collect the range data  in the vision 

stage, tha t is, less than  two m inutes on a  Pentium Pro 200 MHz computer.

I t has been observed th a t in m ost cases a single camera range sensor provides 

adequate range da ta  for 3D modeling. In the cases, when visual features did not 

have a prominent change of the  intensity derivative in the vertical direction (e.g. 

leaves of the tree which was pu t in the comer of the room, vertical edges of chairs 

etc.), the camera ignored them. This resulted in some parts of the environment not 

being covered w ith features, which, in turn, resulted in deterioration of the quality of 

modeling. This can be considered as a drawback of the visual sensor.

When there were enough 3D features present all around the  robot, fusion based 

regression of those features yielded adequate occupancy models of the world, where by 

“adequate” we m ean th a t prom inent occupied and empty areas were clearly observed 

in all directions around the robot. The drawback of the fusion technique was noticed 

in the fact that if there were a lo t of outliers present, they would be fused as actual 

range data, narrowing the em pty area around the  robot. However, this drawback 

can be controlled by changing th e  allowable precision of fitting. For example, by
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setting the allowable precision of fitting high (between 0.2 and 0.25) we insure that 

the occupancy function will not be overfitted. This, of course, results in using fewer 

linear pieces in fitting, and this is why in Figures 4.8, 5.5, 6.2 we can. clearly see the 

circular shapes of empty areas.

As for param etric representation of the occupancy function, as soon as the function 

is built, no problems have been observed in extracting 2D navigation polygons. It was 

quite interesting to observe how by slicing the occupancy model a t different heights, 

we could clearly see different sizes and shapes of navigation polygons. This is when the 

advantage of building 3D and not 2D models became the most apparent. By making 

use of the knowledge of the height of the  robot, we could easily determine where the 

robot can go and where it cannot. This knowledge was used by the reinforcement- 

leaming-based navigation policy.

As for choosing the navigation policy, it was noticed that the robot never went 

very close to  the goal. This can be explained by the ad-hoc choice of positive and 

negative reinforcements given to the goal and obstacle points. — The goal, being also 

an observed obstacle, repelled the robot a t close range.

6.4.1 Assumptions Made

There was an assumption made about the environments the robot was exploring that 

there were visual features present all around the robot. In our experiments this was 

achieved by putting camouflage cloths on otherwise featureless walls, which can be 

seen in Figure 6.3. If there are no features available in a part of the environment, 

then, because of the linear regression fitting, this could result in undesirably high 

occupancy values in that part. This situation however can be handled by generating 

a few samples points all over the space w ith occupancy values equal zero.

Another thing to be mentioned is th a t the visual range data we used in the exper­

iments contain a  lot of imprecise data. Approximately 5% of the d a ta  are estimated 

to  be outliers. This is another reason why we build a coarse model of the world,
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i.e. w ith  only few linear pieces. However, if range da ta  are obtained by m ore robust 

range sensors like laser range finders [EHBR98, PHLG97], for instance, then there is 

reason to  believe th a t the  proposed piece-wise linear representation of the occupancy 

function would yield a  better approximation of the world, if  more linear pieces are 

used in regression.

Since the number of sample points used in building the occupancy model of an 

environment does not depend on the scale of the environment, it can be assumed that 

the proposed technique of representing occupancy models can be used equally well 

for representing environments at different scales.

6.5 Conclusion and Future Work

We proposed a framework for building 3D occupancy world models from uncertain 

visual range data. The framework yields the reduction in space consumption and the 

amount of calculations a t the expense of model precision, allowing one to build crude 

3D occupancy worlds of large scale environm ents in real-time. The new framework 

opens new areas for research concerning occupancy world modeling. Directions for 

further research are presented in the next chapter.
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How this is achieved:Approximating a function using 
piecewise linear surfaces

I . .F(x)

| | - is a linear functionsample points

Figure 6.5: From Image Processing to Navigation Planning: The Framework for 
Vision-based World Exploration Using Occupancy models.
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Chapter 7 

Conclusion

7.1 Contributions

We are standing on the edge of the new millennium. A millennium is a long tim e in 

the history of humankind. If we consider the advance of science during in the last 

millennium, we might as well be able to foresee the magnitude of the changes still to 

come in the next millennium. For those changes to happen we have to create a basis 

to build on. We have to look for new open-minded ideas. We have to challenge the 

conventional approaches.

This dissertation challenges one of these approaches — the occupancy approach 

used for world modeling from uncertain range data. We expose the problems of this 

approach. This can be considered as the first main contribution of the thesis. The 

problems we have identified are the following.

1. Vision-based range sensors are very attractive for world modeling. However, 

building sensor models of unreliable video system is computationally intractable, 

if conventional probability-based approaches are used. Because of that up till 

now only highly calibrated visual range sensors are used for the problem, which 

are usually expensive an d /o r slow.

2. Rules used to combine uncertain range data assume independence of noise in 

data, contrary to the usual situation. This results in non-sensical results when
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applied to repetitive range data.

3. The grid representation, which is the foundation of the occupancy approach, 

requires storing and processing tremendous amounts of data , which makes mod­

eling of large scale 3D environments practically impossible. It is also unsuitable 

for efficient map extraction and navigation planning.

The dissertation showed the ways to  resolve these problems, trying not to leave 

any of them  without attention. This set of solutions is the second m ajor contribution 

of the thesis. Each of these solutions can be considered independently from each other 

or they can be combined in a one framework. Let us review these solutions.

7.1.1 Evidence-based Visual Range Sensor

We developed an evidence-based sensor model design technique which allows one to 

build a 3D range sensor using an inexpensive off-the-shelf video camera. We showed 

how to design such a single camera range sensor which registers 3D range data  around 

a robot in real time, where range data  consists of bo th  a 3D vector of a visual feature 

and the value of evidence which shows the  amount of uncertainty associated with the 

depth measurement.

We resolved the hardware problems associated w ith the design of the single camera 

range sensor, which includes the problem of the stereo rig design, as well as the 

software problems such as the problem of the stereo error analysis of the sensor. We 

also demonstrated the advantages of the  proposed single camera range sensor for 

world exploration problems.

7.1.2 Regression-based Range Data Fusion Technique

We developed a new regression-based technique for fusing uncertain range data. The 

technique has the semantical advantage over other range data  fusion techniques in 

th a t it does not assume range data to be independent and can therefore be applied 

on repetitive range data, including those obtained by a single-camera visual sensor.
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This technique has also two other m ajor advantages over conventional rule-based 

d a ta  fusion techniques. F irst, it autom atically finds a  number of param eters needed 

for modeling an environment. These param eters are the  parameters of linear equa­

tions, which fit best the occupancy function of the environment. Second, it can 

be used for building parametrically represented occupancy models which have many 

advantages over grid-based occupancy models.

7.1.3 Parametrically Represented Occupancy Models

We developed methods for building and using param etrically represented occupancy 

models. In particular, we showed that occupancy models of the world can be param et­

rically represented using a min-max tree combining linear functions and showed how 

to build parametrically represented occupancy functions from uncertain range data 

using the regression-based fusion technique. We developed a technique for extract­

ing 2D navigation maps from param etrically represented occupancy models. This 

technique uses the inverse of the occupancy function and is much more efficient than 

conventional ray tracing techniques.

The m ajor drawback of param etrically represented occupancy models is seen in the 

fact th a t they are rather crude; their precision may not suffice for such application 

as building virtual environm ents. However, they consume little memory and are 

convenient for world exploration problems.

7.1.4 Putting The Methods Together

In the dissertation we put all the described above solutions together, establishing 

thereby a new framework for building 3D occupancy world models from uncertain 

visual range data. The framework yields the reduction in space consumption and the 

am ount of calculations at the  expense of model precision, allowing one to  build crude 

3D occupancy worlds of large scale environments in real-time. The new framework 

also opens new areas for research in occupancy world modeling.
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7.2 Future Work

W hat is the future of the ideas and results presented? Will they be used by other 

generations of scientists or will they lie on a library shelf covered w ith dust?

I will not be as optim istic (or should I say “pessimistic”?) as Hans Moravec about 

the future of robots. He asserts in his recent book [Mor98] th a t by the  middle of this 

century robots will “run  companies and do the research” . Robots still have a long 

way to go to  approach a  hum an’s ability of world comprehension. There is still a  lot 

of work and research to  be done in many areas of Com puting Science to  make robots 

more sophisticated than  they presently are. This also concerns the  area of vision- 

based occupancy world modeling which we considered in the dissertation. Much 

remains to be done in the area. However, we believe th a t the strategies proposed 

in the dissertation for building sensor models, combining uncertain range data, and 

representing and using occupancy functions provide the basis for new applications of 

the occupancy approach and will promote the development of the approach in both 

world modeling and robot navigation.

Below we present an overview of further improvements of the solutions and tech­

niques proposed in the dissertation. Our vision of further research in all areas of 

Computing Science as related to the vision-based occupancy modeling problem is 

outlined.

7.2.1 In Computer Vision and Range Sensoring

The technique we use for feature selection and tracking, while simple and not time 

consuming, suffices for applications like the one described above. However, if there 

is a need for a more precise depth data registration, then  the following steps can be 

undertaken to improve the performance of a single cam era stereo:

•  Using better quality cameras;

•  Calibrating the camera and using all intrinsic param eters of the camera in depth

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



calculation [BSG99]

•  Rectifying the images [Mor96];

•  Using an interest operator to select features [Mor96];

•  Using the epipolar constraint in filtering the outliers;

•  Using robust tracking approaches, e.g. like those described in [ML97, MMRK91],

O ther promising directions for further improvement of the vision based range 

sensors include:

•  Designing of a “sm art” visual sensor, which selects features according to the

knowledge of explored and unexplored areas thus avoiding the redundancy of

computation.

•  Using active light w ith a single camera stereo creating thereby more visual 

features.

As for the visual sensor model design, a better approximation of the range error 

should be used for large scale environments. In addition, other approaches in assigning 

the evidence values to registered range da ta  can also be tried. However, since the final 

map of an area available for navigation is determined by a threshold on an occupancy 

function, this assignment seems not to affect much the navigation planning process.

It would be also interesting to apply evidence-based assignment of confidence 

values in designing sensor models of other types of range sensors.

7.2.2 In Range Data Fusion for World Modeling

It would be very interesting to apply the proposed regression-based fusion technique 

to different types of range data. In particular, range da ta  obtained by laser-based 

scanners should be tried, as they do not have many outliers and are therefore more 

suitable for least squares regression techniques.
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Different sensor models should also be tried. In the cases when the monotonicity 

constraint cannot be imposed on the  sensor model, regression, should be applied with­

out constraining the occupancy function. In this case the quality  of modeling should 

be examined as a  function of the num ber of generated sam ple points.

As for using regression for occupancy modeling in general, we see three main 

directions for further research. We describe them  below.

Using Other Neural Network and Regression Techniques

Since imprecision in modeling is m ainly a ttributed to the inability of the regression 

technique to deal with outliers, o ther than ALN based regression techniques should 

be tried  for the problem. This includes such robust regression techniques like Least 

Median of Squares, Least Trimmed Squares, Weighted Least Squares or M-estimators 

[RL87, CT94, BW88].

Using the Ly norm instead the  L 2 norm in error estim ation (Eq. 4.22) is another 

way to  improve the performance when dealing w ith outliers. I t should be considered 

too.

Neural network techniques can be considered for fusing range data as well. For 

example, GMDH networks [MI94], which approximate functions using Volterra func­

tional series, would be a very promising choice to try. Another network of the similar 

type, which uses different set of basis functions, is ALB [Hoo99]. These techniques 

can also be tried.

Outliers can be eliminated using the Hat m atrix, which is the projection m atrix 

on the  subspace spanned on the vectors-features. The H at m atrix  can be calculated 

on line using the techniques proposed in [Gor97] for example. This however is quite 

computationally expensive.
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Using Belief Occupancy

In  th is dissertation we considered plausibility evidence assignments in building the 

occupancy models. A way to improve the m odeling is to build the belief occupancy 

m odel of the world in addition to its plausibility occupancy model. This is the same as 

building bo th  occupancy and emptiness models done by other researchers [PNDW95]. 

T he combination of two models is more descriptive of the environment.

For the  belief occupancy function to  be built, the  belief sensor model has to be 

incorporated into sensor fusion. The belief m odel of most sensors however is not 

monotonic. There are two ways then to incorporate it into fusion. The first, the 

m ost straightforward, way of achieving th a t is no t to  impose any constraints on the 

occupancy function and to generate sample point bo th  in front of and behind an 

observed point. Another way would be to  use ex tra  postprocessing of the occupancy 

function after it has been built. This postprocessing will consist of finding all points 

in space which have occupancy higher than  one and then clipping their occupancy 

values to  zero.

Combining Several Models

Occupancy models are often used for dead-reckoning problems, tha t is for the purpose 

of finding the location of an agent w ith respect to  the  known environment. Then the 

question of combining local occupancy models into one global model will arise.

In th is work we build local occupancy models, th a t is, models th a t are centered at 

the location of the robot. These models can be used for localization problems. How­

ever a technique for combining two occupancy m odel built a t two different locations 

should be investigated. Param etric representation of the occupancy function makes it 

easy to transla te  and ro tate  the model. Yet, how to  fuse two already built occupancy 

functions is still an open question.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.2.3 In A pplications of Occupancy M odels

For world exploration, high precision of occupancy models is not required. Yet, 

w hat is required is obtaining as fast as possible a rough idea of w hat is around the 

robot. If there is a need for more precise information about a particular p a rt of 

the  environment, then other exploration techniques can be employed, including, for 

example, conventional grid-based occupancy techniques to model small parts of an 

environment or telepresence techniques [BBZ98], which use the help of a teleoperator 

in order to guide the robot using the information coming from the video-camera.

We see two m ajor directions for future work in using param etrically represented 

occupancy models. First, another way of extracting exploration points should be 

developed. A better way to do it would be to use the belief occupancy function 

in addition to  the plausibility occupancy function, and then to consider the points 

which have high uncertainty interval defined as a difference between the belief and 

plausibility values. Second, other ways of assigning reinforcements should be inves­

tigated. Perhaps, a  better way would be to assign a reinforcement to  the entire line 

segment included in the boundary, as the current way of extracting exploration and 

obstacle points deviates from our primary goal of using the advantages of param etric 

representation of the occupancy function.

Concluding, we would like to add that, being a multi-disciplinary problem, vision- 

based occupancy modeling would benefit the most from the collaboration of scientists 

of different scientific backgrounds. We believe that this collaboration, which is the key 

to the  success of the projects like those considered in the dissertation, will inevitably 

happen.
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Appendix A 

Epipolar Lines of Single-Camera 
Stereo

The calculation of the equation of the epipolar line of the  single-camera stereo pre­

sented in Chapter 3 follows below.

A point observed a t pixel ( i , j )  in the first image of the stereo pair can be ob­

served in the second image a t any pixel (£', j ')  which satisfies the following epipolar 

constraint:

(m, h * Rrn'r') =  0, (A .l)

where (see Figure 3.3)

I ■ i' ■
. — t •/

— 3 , m  = 3
F F

and
'  1 0 0 ' '  0 ‘ 0

R  = 0 cos<3> sm $ h = hz = —LsinQ
0 —sin<& cos<& . hy . L  — LcosQ

This yields the equation of the epipolar line: i' = K  * f  +  B, w ith  slope K  and 

displacement B  given by

K  = i / F  * (hz * cos $  +  hy * sin <$)/( j / F  * hz — hy) (A.4)

B  = i / F  * (hz * sin $  — hy * cos <3>)/ ( j / F  * h z — hy) (A.5)

In our setup the lever length L  = 21 cm and the angle of the cam era tilt rotation

$  =  7.7°. This results in the slope K  varying from -0.0242 to 0.0242 for i E [—53,53]
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and j  €  [—40,40]. Figure A shows epipolar lines for some m arginal points {i, j )  shown 

in circles.

Epipolar line (Psi=7.7)

20

-80 >60 -40 -20

1-------- 1---------1------- 1--------- 1--------- 1-------- T

20 40 60 80

Figure A .l: Epipolar lines of single-camera stereo.
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