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Abstract

This thesis specializes in statistical issues involving crossover designs, a very

popular design in clinical trials for comparing non-curative treatments for their

efficacy. The popularity stems from the fact that each experimental subject

receives a sequence of trial treatments rather than one single treatment as in

parallel designs, and thereby requires fewer experimental subjects. Further, it

reduces variability in treatment comparisons because subjects serve as their

own controls and between-subject variations are eliminated.

One distinct feature in crossover designs is that the treatment assigned to

subjects may have lasting effects, called carryover effects, on their responses to

treatments in subsequent applications. Crossover designs are well-deliberated

for its controversy involving the non-orthogonal key parameters of direct and

carryover treatments, which leads to completely different experimental designs

depending on which is the primary interest. There are several issues that we

address in this thesis.

First, when building optimal designs, there are often competing objectives

that the investigator desires to optimize. These multiple objectives can include

two or more parameters or some functionals, ultimately requiring simultaneous

considerations. We revisit the controversy from the point of view of constrained

and compound designs for better understanding.

Second, we focus on the construction of optimal designs to that of individual-

based designs. Typically, designs were constructed to optimize the average

subjects and not ideal in clinical and medical applications. N-of-1 trials are

randomized multi-crossover experiments using two or more treatments on a
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single patient. They provide evidence and information on an individual pa-

tient, thus optimizing the management of the individual’s chronic illness. We

build one sequence N-of-1 universally optimal designs. We also construct op-

timal N-of-1 designs for two treatments. Then, we discuss the extension to

optimal aggregated N-of-1 designs, which will be optimal for an overall treat-

ment effect.

Third, we extend the response adaptive allocation strategy for continuous

responses to construct those for binary responses with the goal of allocating

more patients to better treatment sequences without sacrificing much estima-

tion precision. Although design efficiency in terms of mean squared error may

drop sharply, increase in allocated patients to the treatment with beneficial ef-

fect is evident. We show a balance can be achieved between various competing

multiple objectives.

Fourth, we advocate the convex optimization techniques to construct op-

timal crossover designs where analytic solutions are not feasible. Upon identi-

fying the unique problems and conditions for constructing optimal designs to

that of convex optimization problem, we apply them to find optimal designs

relatively simply.
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Chapter 1

Introduction

1.1 Crossover designs

Designs in which each experimental subject receives a sequence of different

exposures or treatments are called crossover designs (CODs) or change-over

designs. The use of crossover designs is popular in clinical trials for comparing

non-curative treatments for their efficacy.

CODs are composed of several treatment sequences and each subject re-

ceives one treatment in each period. For example, in a two-treatment (A and

B) two-period crossover design, a subject who is assigned a treatment sequence

of AB receives treatment A in the first period and crosses over to treatment

B in the second period.

For the designs discussed in this thesis, it is assumed that each subject is

treated in the same number of periods, generally denoted by p. The class of all

CODs that compares t treatment over p period with a total of n experiment

subjects is denoted by COD(t,n,p).

In CODs, the impact of a treatment assigned in a period for a subject’s
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response is called a treatment effect or a direct treatment effect. The typical

objective of crossover studies in clinical trials is estimating the treatment ef-

fects. The optimality of the designs has been studied by many researchers in

constructing designs which optimize the statistical precision of the estimations

(Kiefer 1975; Cheng and Wu 1980; Kershner and Federer 1981; Kunert 1984;

Laska and Meisner 1985; Carriere and Reinsel 1992; Kunert and Stufken 2002,

2008).

One advantage of CODs is that as each subject is measured on p (> 1)

periods, it requires fewer experiment subjects than designs which only use each

experiment unit for one observation in a parallel design. For this reason, CODs

have been popular when experiment units are scarce or expensive. The major

statistical reason for its popularity is that such designs reduce the variability

in treatment comparisons, because subjects serve as their own controls and

between-subject variations are eliminated.

There are drawbacks in using CODs as well. The treatments assigned to

subjects may have lasting effects on their responses to treatments in subsequent

periods. These effects which are carried over from the treatments in previous

periods are called carryover or residual treatment effects. It is often assumed

that the carryover effects last for only one period. In this case, they are called

the first-order carryover effects.

In many cases, one can attempt to remove the carryover effects by includ-

ing ‘washout’ periods between the experimental periods. However, including

washout periods usually require a longer study duration for the experiments

and may raise the risk of subject loss to follow-up. Also, there is no guaran-

tee that washout periods will completely remove the carryover effect, and in

certain medical applications there may be ethical issues in the use of washout
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periods.

In this thesis, we assume that carryover effects exist and consider statis-

tical models to adjust and remove their effects and to obtain unbiased direct

treatment effects.

1.2 Statistical Models

Suppose that d is a design in COD(t,n,p), and the treatment assigned to

subject j in the period i is denoted by d(i,j ). The response variable is assumed

to be continuous. Let Yij denote the response variable in the ith period from

the jth subject. A linear model that is most widely used for these observations

is:

Yij = µ+ αi + βj + τd(i,j) + γd(i−1,j) + εij. (1.1)

In the model, µ denotes the general mean, αi denotes the ith period effect,

βj denotes the jth fixed subject effect, τd(i,j) and γd(i−1,j) denote, respectively,

the direct treatment effect due to the treatment on the ith period and the

first-order carryover effect due to the treatment on the (i − 1)th period. To

account for the absence of carryover effects in the first period, γd(0,j) is assigned

as 0, for all j. The ε
′
ijs are assumed to be independent, have zero mean and

constant variance σ2. This model has traditionally been considered in the

literature and is commonly referred to as the traditional model.

The traditional model assumes that the carryover effects last for only one

period. In the literature, more complex models have also been considered,

incorporating higher-order carryover effects (Bose and Mukherjee, 2003). The
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subject effects are considered fixed in the traditional model. Models with ran-

dom subject effects are considered in Saha (1983), Laska and Meisner (1985),

Jones, Kunert and Wynn (1992) and Carriere and Reinsel (1993). Also, the

traditional model assumes no carryover effects for the observations in the first

period. An alternative model which has carryover effects in the first period as

well is built by giving subjects a pre-period or baseline period (Kunert, 1984;

Afsarinejad, 1988).

It should also be noted that the traditional model assumes that the car-

ryover effects only depend on the treatment assigned for the previous period.

This is unrealistic when carryover effects depend on the treatment contribut-

ing the direct effect. Taking this into account, Kunert and Stufken (2002)

presented a model with self and mixed carryover effects. The self carryover

effect occurs when the treatment administered in the current and the previous

period are the same; otherwise, we have a mixed carryover effect.

The model with the self and mixed carryover effects is:

Yij =

µ+ αi + βj + τd(i,j) + γs,d(i−1,j) + εij, if d(i,j)=d(i-1,j)

µ+ αi + βj + τd(i,j) + γm,d(i−1,j) + εij, if d(i,j) 6=d(i-1,j),
(1.2)

where αi, βj, d(i, j) and τd(i,j), are defined as in model (1.1); γs,d(i−1,j) and

γm,d(i−1,j) represent the self and mixed carryover effects of the treatment as-

signed to the (i − 1)th period, respectively. In our further discussion, this

model is referred to as the self and mixed carryover model.

There are other modifications of the traditional model. One among them

considers if carryover effects are proportional to the direct treatment effects

(Kempton et al., 2001). Another model includes the interaction effects between
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the treatment contributing the direct treatment effect and the treatment con-

tributing the carryover effect (Sen and Mukerjee, 1987).

In the traditional model, the assumption on the variances of error terms

is that they are independent identically distributed with mean 0 and variance

σ2. This assumption is however not always reasonable. It is sometimes more

appropriate to introduce dependence among the error terms. In our discussion,

three possible covariance structures are considered for the error terms.

A general form of the covariance structure is:

Σ =



1 ρ ρ1+K ρ1+2K · · · ρ1+(p−2)K

ρ 1 ρ ρ1+K · · · ρ1+(p−3)K

ρ1+K ρ 1 ρ · · · ρ1+(p−4)K

...
...

...
. . .

...

ρ1+(p−2)K ρ1+(p−3)K ρ1+(p−4)K ρ1+(p−5)K · · · 1


.

For 0 ≤ ρ < 1 and K = 0, 1. Three types of dependency are:

• Uncorrelated covariance: ρ = 0;

• Equal-correlated covariance: ρ 6= 0 and K = 0;

• Auto-regressive covariance: ρ 6= 0 and K = 1.

1.3 Information matrix

Fisher information measures the amount of information carried by an observ-

able random variable Y for the parameters, which the distribution of the Y is

dependent on. Let θ denote the vector of the parameters and f(Y ; θ) denote
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the probability density function. Then, the fisher information is defined as,

I(θ) = E

[
(
∂

∂θ
logf(Y ; θ))2

∣∣∣∣ θ] , (1.3)

or equivalently, when the second derivative of logf(Y ; θ) exists, as

I(θ) = E

[
− ∂2

∂θ2
logf(Y ; θ)

∣∣∣∣ θ] . (1.4)

The Fisher information is widely used in optimal experiment designs. Since

it is reciprocal to estimator-variance, maximizing the information corresponds

to minimizing the variance.

Both of the traditional model and the self and mixed carryover effect model

belong to a class of models which can be written in a general form:

y = Xθ + ε, (1.5)

where y denotes the vector of random variables that are assumed with normal

distribution, X denotes the design matrix, and ε denotes the vector of errors

that have zero means and a general variance matrix σ2Σ. The variance matrix

Σ is positive definite, so that Σ−
1
2 exists. Applying Σ−

1
2 to the both side of

the model (1.5), we have

Σ−
1
2y = Σ−

1
2Xθ + Σ−

1
2 ε. (1.6)

Since E(Σ−
1
2 ε) = 0 and V ar(Σ−

1
2 ε) = Σ−

1
2 ΣΣ−

1
2 = σ2I, the elements of

Σ−
1
2y are independently, identically distributed with mean zero and a constant

variance, σ2.
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Let w = Σ−
1
2y and Z = Σ−

1
2X, then the log likelihood function can be

written as,

l(θ|y) = −1

2
log(2πσ2)− 1

2σ2
(w − Zθ)T (w − Zθ) (1.7)

According to the second definition of the Fisher information (1.3), we have

I(θ) = E

[
− ∂2

∂θ2
[−1

2
log(2πσ2)− 1

2σ2
(w − Zθ)T (w − Zθ)]

∣∣∣∣ θ]
= E

[
− ∂2

∂θ2
[− 1

2σ2
(wTw − θTZTw − wZθT + θTZTZθ)]

∣∣∣∣ θ]
= E

[
− ∂2

∂θ2
[− 1

2σ2
θTZTZθ]

∣∣∣∣ θ]
=

1

σ2
ZTZ

=
1

σ2
XTΣ−1X.

When independent errors are assumed, i.e. Σ = I, the information matrix

for estimating the parameter θ is reduced to XTX.

In order to minimize the estimator-variance, one can maximize the infor-

mation matrix I(θ) by applying optimality criteria. Taking some commonly

applied optimality criteria for examples, A-optimality seeks to minimize the

trace of I−1(θ); D-optimality seeks to maximize the determinant: |I(θ)|; and

E-optimality maximizes the minimum eigenvalue of I(θ). In the next section,

we show some optimality results in crossover designs.
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1.4 Some optimality results in crossover de-

signs

Kiefer (1975) conducted a systematic study of various optimality criteria (in-

cluding A-, D- and E-optimality criteria) and related optimal designs. Kiefer

introduced the notion of universal optimality. If a design is universally opti-

mal, then it also satisfies the three criteria of A-, D- and E-optimality. Then

sufficient conditions were provided on the information matrix, C, of the pa-

rameters of interest, which ensure the design to be universally optimal. The

conditions are: (i) C is completely symmetric, which requires that all diago-

nal elements are equal, all off-diagonal elements are equal and all row sums

are zero; (ii) trace of C which is the sum of diagonal elements (often denoted

by trace(C)) is maximal on the class of designs over which the universal op-

timality is claimed. The conditions have been used by many researchers in

determining the universal optimality of their crossover designs (Carriere and

Reinsel, 1993).

Hedayat and Afsarinejad (1978) used the conditions to derive the universal

optimality over uniform designs (also see Kunert 1984).

A uniform design is defined as a design in which each treatment is as-

signed equally often (uniform on periods) and each treatment appears in the

same number of periods (uniform on subjects). Therefore, the uniform design

requires that n = λ1t and p = λ2t for some integers λ1,λ2.

In the study of Hedayat and Afsarinejad (1978), λ2 was set to 1 and the

subclass of the designs could be denoted by COD(t,λt,t), for some integer λ.

Their main result was that balanced uniform designs are universally optimal

for estimation of direct treatment effects, and also for the estimation of first-

8



order carryover effects, over the uniform designs in COD(t,λt,t).

A balanced design is defined as a design in which each treatment is

preceded equally often by every other treatment, but never by itself. Balanced

uniform designs were found to exist in COD(t,t,t) when t is even, and in

COD(t,2t,t) when t is odd. Cheng and Wu (1980) produced some extensions

of Hedayat and Afsarinejad’s work. The findings include:

1. If a design is constructed from a balanced uniform design in COD(t,λt,t)

by repeating the last period to obtain an extra period, then it is uni-

versally optimal for the estimation of direct and carryover effects, over

COD(t,λt,t+ 1);

2. Strongly balanced designs are universally optimal for the estimation of

direct and carryover effects, over COD(t,n,p).

A strongly balanced design is defined as a design in which each treat-

ment is preceded equally often by every treatment, including itself.

The existence of strongly balanced designs requires n = λ1t
2 for integer λ1

and p = λ2t for integer λ2 > 1. If λ2 is even, then such designs must exist.

Other authors continued the study of balanced uniform designs and more

optimality results can be found in Hedayat and Yang (2003, 2004), Bate and

Jones (2008).

There also is literature which generates the optimality results for COD

with just two treatments (say A and B). A universally optimal design for

the estimation of direct treatment effects over COD(2,n,p) is the design that

minimizes the variance of the direct treatment effect contrast (often defined

as (τA − τB)/2). Similarly, if carryover effects are of interest, a universally
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optimal design would minimize the variance of the carryover effect contrast

(often defined as (γA − γB)/2).

Laska et al. (1983) pointed out that optimal designs for the estimation

of the direct or carryover effects can be found immediately. If p is even,

a strongly balanced uniform design is optimal; if p is odd, an extra-period

design is optimal. Under model (1.1), the optimal designs for p = 2, 3 and

4 are respectively, (i) AB, BA, AA, BB ; (ii) ABB, BAA; and (iii) AABB,

BBAA, ABBA, BAAB.

The optimality and efficiency of two-treatment CODs have also been stud-

ied under various modifications of the traditional model. Kershner and Federer

(1981) studied a model with sequence effects instead of subject effects. The

authors calculated the variance of estimators for direct and carryover effect

contrasts in a number of two-treatment CODs. Laska and Meisner (1985) as-

sumed random subject effects and generated optimal designs. The model in

their study was with equal-correlated covariance structure for general p and

with auto-regressive covariance structure for p = 2,3 and 4. Matthews (1987)

studied optimal and efficient designs in models with auto-regressive covari-

ance structure. Results for general p were given by Matthews (1990) under

the uncorrelated errors, and by Kunert (1991) under the autoregressive errors.

Carriere and Reinsel (1992) assumed a model with sequence effects and

random subject effects to obtain optimal and efficient two-treatment CODs.

The generalized least square estimator for both direct treatment effect and

carryover effect was calculated and design efficiency was discussed in two-

period four-sequence designs with unequal allocation. The authors remarked

that with or without baseline measurements, the use of the two-period four-

sequence design with 80% of the subjects assigned to AB and BA treatment
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sequence and the rest of subjects to AA and BB treatment sequences was

recommended.

Other optimality results can be found in Laska, Meisner and Kushner

(1983), Ebbutt (1984) and Carriere and Huang (2000).

1.5 Thesis Overview

In chapter 2, we discuss the use of two equivalent approaches in construct-

ing multiple objectives crossover designs. We apply the approaches to obtain

optimal and efficient designs in two-treatment two-period crossover designs,

in which both the efficiency of estimating the direct treatment effect and the

carryover effect are the objectives of the design construction. Assuming the

traditional model with an equal-correlated covariance, the four-sequence de-

sign with equal allocation is optimal for estimating the treatment effects, yet

is not optimal for estimating carryover effects. In this scenario, there would

be no single design that is optimal for both types of effects. Two common

options in constructing an optimal design for this two-objective crossover ex-

periment are constrained optimal designs and compound optimal designs. A

constrained optimal design is a design, which optimizes the secondary objec-

tive while satisfying a constraint on the primary objective. In this scenario,

the constraint on the primary objective can be a minimum precision require-

ment in estimating the treatment effects and the secondary objective can be

the precision in estimating the carryover effects. A compound optimal design

is a design optimizing an objective, which is compound from the two orig-

inal objectives. One such example of this kind of objectives can be found

in attempting to improve the estimation efficiency of a linear combination of
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treatment and carryover effects. Optimal designs constructed from each of the

two approaches are presented in this chapter and the equivalence of the two

approaches is also discussed.

Chapter 3 is the first of two chapters that focus on building optimal designs

for N-of-1 trials. In patient based or evidence based clinical medicine, N-of-1

trials, also known as multi-crossover single-patient trials, are often employed

when there are concerns about making the best possible treatment decision

for an individual patient. Most randomized controlled trials are focused on

optimizing the treatment effect for an average patient. However, individuals

enrolled in a trial may be better or worse than the average patient, and the

available optimal designs are not capable of offering such individual-based

treatment decisions. The simplest two-treatment N-of-1 trial uses the AB (or

BA) sequence as a within-patient comparison. With the rising cost of patient

care, N-of-1 trials have the potential to be extremely useful, as it can minimize

clinic visits and time spent on suboptimal treatments. In this chapter, we

present universal optimality results in N-of-1 trials with t ≥ 2 treatments. A

sufficient condition of universally optimal designs is given for N-of-1 trials with

general t and the design results are presented.

Continued discussion in optimal 2-treatment N-of-1 trials is in chapter

4. Straight application of the two-treatment optimal designs in literature

with A to AB and B to BA suggests that optimal N-of-1 trials would need

to use ABBA, ABAB and their duals for two within-patient comparisons,

ABBABA and its dual for three within-patient comparisons, and the se-

quences ABBABAAB, ABABBABA and their duals for four within-patient

comparisons. It is not yet known whether all of these sequences are indeed

optimal and required for 4, 6 and 8-period N-of-1 trials. Further, it would
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require at least 2 patients to utilize these existing designs. In this section,

we prove that these designs are not optimal for N-of-1 trials for estimating

individual-based treatment effects. Optimal N-of-1 designs are constructed

for two treatments under a variety of conditions about the carryover effects,

the covariance structure, and the number of planned periods. Extension to

optimal aggregated N-of-1 designs is also discussed.

In chapter 5, we investigate the applicability of the adaptive allocation

strategy for two-treatment RMDs with binary responses. The utility of the

proposed multiple-objective response-adaptive repeated measurement designs

will be demonstrated on several practically useful designs with two, three, and

four periods. There are various types of response-adaptive designs, depending

on the goals of a particular study. In a typical case, the adaptive treatment

allocation is used to fulfill a single objective such as increasing the number of

patients assigned to the better treatment group, reducing the sample size in a

trial, or increasing the estimation precision of a treatment effect.

Recently, Liang and Carriere (2009) developed a new treatment allocation

scheme to construct multiple-objective response-adaptive repeated measure-

ment designs (RMD) for continuous responses, where study subjects can re-

ceive two or more treatments (not necessarily the same treatments) over a

period of time. Their adaptive allocation strategy can simultaneously achieve

two objectives: potentially preventing patients from being exposed to inferior

treatments and enhancing the precision of the estimates of parameters. In this

chapter, we investigate the applicability of the same adaptive allocation strat-

egy for two-treatment RMDs with binary responses. Through simulations, the

utility of the new proposed multiple-objective response-adaptive RMDs will be

demonstrated on several practically useful designs with two, three, and four
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periods.

In Chapters 2-5, we experienced that in many situations, a closed form

of optimal designs was often not possible. In Chapter 6, we investigate an

alternate strategy advocating the convex optimization solutions for possible

resolution in such cases. We show that upon specifying certain conditions,

we could represent the problem of constructing optimal designs to that of

optimizing convex functions. We give examples of selected problems where

we could not analytically determine the optimal designs in earlier chapters,

and show how easily the convex optimization strategy we outlined could give

solutions relatively quickly and simply.

In Chapter 7, we give the summary of the main contribution of the thesis

and suggestions for future research.
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Chapter 2

Constrained and compound

optimal designs in

two-treatment two-period

crossover trials
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Abstract

When building optimal designs, there are often competing objectives that

the investigator desires to optimize. These multiple objectives can include

two or more parameters or some functionals, ultimately involving simultane-

ous considerations. Crossover designs are well known for their controversy

involving non-orthogonal key parameters of direct and residual or crossover

treatment effects, which can lead to completely different experimental designs

depending on the primary parameter. We revisit this controversy from the

point of view of constrained and compound designs. Cook and Wong (1994)

showed that constrained and compound optimal designs are basically equiv-

alent. In this chapter, we provide an alternate simpler proof for crossover

designs.

2.1 Introduction

In crossover trials, two-treatment two-period designs are popular by clinicians.

With A and B denoting the two treatments (or a treatment and a placebo),

the possible treatment sequences in a two-period design are AB, BA, AA and

BB.

When carryover effects are absent, the optimal design for estimating direct

treatment effects is the two-sequence design AB and BA with equal allocation

(Laska, Meisner and Kushner 1983). As considered to be optimal, this design

provides unbiased estimators for direct treatment effects with the minimum

variance. When carryover effects are present, the two-sequence design cannot
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provide an unbiased estimation of direct treatment effects. Instead, the four-

sequence design AB, BA, AA and BB with equal allocation is the optimal

design for direct treatment effects (Laska and Meisner 1985; Laska, Meisner,

and Kushner 1983; Kershner and Federer 1981).

The traditional model assumes that the variances of error terms are in-

dependent identically distributed. Under the traditional model, the four-

sequence design is also optimal for carryover effects (Laska and Meisner 1985).

However, in many situations it is realistic to introduce dependence among the

error terms. We shall assume the error terms are equal-correlated.

It can be shown that the optimal design for the direct treatment effects

and that for the carryover treatment effects are different. In other words, the

efficiencies of estimating these two type of effects cannot always be optimized

using the same design.

Assuming the precision of estimation of carryover effects is considered

equally important as the direct treatment effects, we aim to obtain optimal de-

signs to improve both the estimation of direct treatment effects and carryover

effects. Accordingly, we investigate the issues of constrained and compound

designs.

2.2 Optimal two-treatment two-period crossover

design

In this chapter, the traditional model with random subject effects is used

in constructing the optimal two-treatment crossover designs. We define the

contrast of treatment effects as τ = (τA − τB)/2 and the contrast of carryover
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effects as γ = (γA − γB)/2. Then the traditional model can be written as

Yij = µ+ αi + Φd(i,j) · τ + Φd(i−1,j) · γ + ξj + εij, (2.1)

where

Φd(i,j) =

 1, if d(i, j) = A

−1, if d(i, j) = B

and

Φd(i−1,j) =


0, if i = 1

1, if i 6= 1 and d(i, j) = A

−1, if i 6= 1 and d(i, j) = B.

The term ξj denotes the random subject effect with zero mean and constant

variance σ2
ξ and εij denotes the random error with zero mean and constant

variance σ2
ε . The covariance matrix of the vector Yj = (Y1j, Y2j, · · ·Ypj)′ is

C = σ2
ε Ip + σ2

ξ1p1
T
p

and the correlation between yi,j and yi′ ,j with i 6= i
′
, called the within-subject

correlation, is

ρ =
σ2
ξ

σ2
ε + σ2

ξ

.

For two sequences assigned to j and j′, if Φd(i,j) = −Φd(i,j′) holds for all

i = 1, · · · , p, then the two sequences are called dual sequences. The designs are

defined as dual-balanced if the designs allocate equal numbers of subjects

to the sequences and their dual sequences. In finding the optimal designs in
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two-treatment crossover trials, duality is a useful concept. Laska and Meisner

(1985) applied the Lagrange Multiplier solution to the two-treatment optimal

design problem. Optimal designs under various situations were presented and

the variances of the Best Linear Unbiased Estimators (BLUE) were calculated

for the direct treatment effect contrast and carryover effect contrast. The

authors also proved that if an optimal design exists then a dual-balanced

design can be constructed upon it and will not be worse. This finding halved

the number of sequences to determine optimality upon the BLUE, as any two

dual sequences have the same weights and only one of them is needed to be

considered.

Consider a dual-balanced design d in COD(2,n,2), which assigns m subjects

to the treatment sequence AB. The number of subjects assigned to BA, AA

and BB are m, n
2
−m, and n

2
−m, respectively. Using the Lagrange multiplier

approach, Laska and Meisner (1985) obtained the variance of the BLUE of τ

and γ in a two-treatment two-period design.

var(τ̂d) = n(ρ+1)
n2(2−ρ2)−(n−4m)2

,

var(γ̂d) = 2(4mρ+n−nρ)(ρ+1)
n2(2−ρ2)−(n−4m)2

It can be shown that the minimum of var(τ̂d) equals to (1 + ρ)/[n(2− ρ2)]

and the optimal design for τ is the design AB, BA, AA and BB with equal

allocation (n/4) to each sequence. The minimum of var(γ̂d) equals to (1+ρ)/n

and is achieved at m = (1−ρ)n/4. It can be seen that the optimal design for γ

depends on the value of ρ. When ρ = 0, which implies independent errors, the

optimal design is the sequences AB, BA, AA and BB with equal allocation

(n/4) to each sequence. When ρ → 1, the optimal design for estimation of γ

is AA, BB with n/2 subjects allocated to each sequence (also see Kershner
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and Federer 1981).

The efficiency of a design d can be defined, in terms of the variance of

estimation of a parameter of interest compared to the optimal design, as

Effθ(d) = var(θ̂d∗θ)/var(θ̂d),

where d∗ denotes the optimal design for estimation of θ. The value of the

efficiency is between 0 and 1. For an optimal design d, the efficiency equals to

1.

For a design d, the efficiency of the estimation of τ and the efficiency of

the estimation of γ are given as

Effτ (d) =
n2(2− ρ2)− (n− 4m)2

n2(2− ρ2)
(2.2)

Effγ(d) =
n2(2− ρ2)− (n− 4m)2

2n(4mρ+ n− nρ)(ρ+ 1)
(2.3)

One can directly show that the optimal design for estimating τ has an

efficiency of (2− ρ2)/2 for estimation of γ, and conversely the optimal design

for estimating γ has an efficiency of (2 − 2ρ2)/(2 − ρ2) for estimation of τ .

Therefore, when ρ is large, the optimal designs for estimating τ and γ can be

different. When ρ gets close to 1, the optimal design for τ can only estimate

γ with 50% efficiency.

In situations when estimating both direct treatment effects and carryover

treatment effects is of interest, a design balancing the efficiencies of estimation

of τ and γ is appropriate. In the next two sections, we will use two approaches

to resolve the design issues, which aim to optimize for 2 parameters simulta-
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neously.

2.3 Constrained optimal designs in COD(2,n,2)

Consider the primary interest or objective is to find a design optimizing the

estimation of direct treatment effect contrast τ and the secondary interest is

to optimize the estimation of the carryover effect contrast γ. A constrained

optimal design is a design, which optimizes the secondary objective while sat-

isfying a constraint on the primary objective (Clyde and Chaloner, 1996; Lee,

1988; Mandal, Torsney and Carriere, 2005).

The Constrained Optimal Design Problem:

Maximize Effγ(d) , while satisfying the constraint Effτ (d) ≥ c, c ∈

[0, 1].

Theorem 2.3.1: Under model (2.1), the optimal design for the constrained

optimal design problem is d with

m = 1
4
n(1− ρ), if c ≤ 1− ρ2

2−ρ2 ;

m = n
4
− n

4

√
(1− c)(2− ρ2), if c > 1− ρ2

2−ρ2 .

Proof:

Let x = 1− 4m/n for the convenience of the proof. As m can take values

in [0, n/2], the range of x is [−1, 1]. The efficiencies of the estimation of τ and

γ are functions of x. The constraint on the efficiency of the estimation of τ

can be written as,

Effτ (d) =
n2(2− ρ2)− n2x2

n2(2− ρ2)
≥ c (2.4)
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By solving the inequality (2.4), the condition on x can be obtained to satisfy

the about constraint,

−
√

(1− c)(2− ρ2) ≤ x ≤
√

(1− c)(2− ρ2).

Then we optimize Effγ(d) with the above condition. The efficiency of the

estimation of γ can be written as

Effγ(d) =
(1 + ρ)/n · [n2(2− ρ2)− n2x2]

2(n− nρx))(ρ+ 1)

=
2− ρ2 − x2

2(1− ρx)

To find the maximum of Effγ(d), we note its derivatives with respect to x are

(Effγ(d))′x =
(x− ρ)(ρx− 2 + ρ2)

(1− ρx)2
(2.5)

(Effγ(d))′′x = −2(ρ2 − 1)2

(1− ρx)3
(2.6)

Letting the first derivative in (2.5) equal to zero, we can find that the maximum

of Effγ(d) is obtained when x = ρ or x = (2 − ρ2)/ρ. Recall that the value

of x is within the range (-1, 1) and that of ρ is within (0, 1). Therefore,

x = (2− ρ2)/ρ holds and be valid only when x = ρ.

It is easy to verify that the second derivative in (2.6) is negative for any

ρ ∈ (0, 1), indicating the Effγ(d) has a maximum value and it is monotonically

increasing on x ∈ (0, ρ). Therefore, when the value of ρ is within the interval

(−
√

(1− c)(2− ρ2),
√

(1− c)(2− ρ2)),
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the optimal design for γ, with the constraint on the estimation of τ , is ob-

tained at x = ρ. When the value of ρ is outside the interval, the optimal

constrained design for γ is obtained at the positive boundary of the interval

x =
√

(1− c)(2− ρ2). That is,

x = ρ, if c ≤ 1− ρ2

2−ρ2 ; (2.7)

x =
√

(1− c)(2− ρ2), if c > 1− ρ2

2−ρ2 . (2.8)

By replacing x by 1 − 4m/n, we obtain the results as given in Theorem

2.3.1.

Figure 2.1: Efficiency of estimation of direct and carryover effects for the
constrained optimal design problem. Note that k = m/n, the within-subject
correlation is set to ρ = 0.5 and the constraint is set to c = 0.93.

Figure (2.1) shows the efficiencies in estimating of the direct and carryover

effects with respect to k = m/n. The horizontal line Eff = c joins the curve

of Effτ (d) and the interval bounded by the two intersections contains all the

values for k satisfying the constraint. By maximizing the Effγ(d) within this

interval, the optimal constrained design is determined.

Table (2.1) shows the results of the constrained optimal designs under
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Table 2.1: Efficiencies of the estimation of the direct treatment effects and the
carryover effects for the constrained optimal design.

ρ c 1−ρ2
2−ρ2 x Effτ (d) Effγ(d) AB (%) AA(%)

0.3 0.7 0.953 0.300 95.3% 100% 17.5% 32.5%
0.3 0.8 0.953 0.300 95.3% 100% 17.5% 32.5%
0.3 0.9 0.953 0.300 95.3% 100% 17.5% 32.5%
0.3 0.95 0.953 0.300 95.3% 100% 17.5% 32.5%
0.3 0.99 0.953 0.138 99% 0.986% 17.5% 32.5%
0.5 0.7 0.857 0.500 85.7% 100% 12.5% 37.5%
0.5 0.8 0.857 0.500 85.7% 100% 12.5% 37.5%
0.5 0.9 0.857 0.418 90.0% 99.6% 14.5% 35.5%
0.5 0.95 0.857 0.296 95.0% 97.6% 17.6% 32.4%
0.5 0.99 0.857 0.132 99.0% 92.8% 14.5% 35.5%
0.7 0.7 0.675 0.673 70.0% 99.9% 8.2% 41.8%
0.7 0.8 0.675 0.550 80.0% 98.2% 11.3% 38.7%
0.7 0.9 0.675 0.389 90.0% 93.3% 15.3% 34.7%
0.7 0.95 0.675 0.275 95.0% 88.9% 18.1% 31.9%
0.7 0.99 0.675 0.123 99.0% 81.8% 21.9% 28.1%
0.9 0.7 0.319 0.597 70.0% 90.1% 10.1% 39.9%
0.9 0.8 0.319 0.488 80.0% 84.9% 12.8% 37.2%
0.9 0.9 0.319 0.345 90.0% 77.7% 16.4% 33.6%
0.9 0.95 0.319 0.244 95.0% 72.4% 18.9% 31.1%
0.9 0.99 0.319 0.109 99.0% 65.3% 22.3% 27.7%

various settings of ρ and c. For each setting, the value of x is calculated and

so are the efficiencies of the estimation of both of the effects. Proportions of

the sequences AB and AA are provided according to the value of x. It can be

observed that when ρ = 0.3 or 0.5, the designs are efficient on the estimation

of both of the effects. When ρ = 0.7 or 0.9, the efficiency of the estimation of

the carryover effects would decline dramatically when the constraint requires

higher efficiency of the estimation of the direct treatment effects. This result is

particularly useful, when there is evidence of large within-subject correlation,

to prevent potentially poor estimation of the carryover effects.

2.4 Compound optimal designs in COD(2,n,2)

A compound optimal design is a design optimizing an objective, which is

compound from the two original objectives. The compound objective can be
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a linear combination of the efficiency in estimating treatment effects and the

efficiency in estimating carryover effects.

The Compound Optimal Design Problem:

Maximize ηEffτ (d) + (1− η)Effγ(d) , where η ∈ [0, 1].

Theorem 2.4.1: Under model 2.1, the optimal design for the compound op-

timal problem is d with x = 1− 4m/n and x is the real root of the following

equation,

x3−(
4

ρ
+

2− ρ2

2ρ

1− η
η

)x2+(
4

ρ2
+

4− 2ρ2

ρ2

1− η
η

)x− (2− ρ2)2

2ρ

1− η
η

= 0 (2.9)

Proof:

Replacing (1 − 4m/n) by x in (2.2) and (2.3), the linear combination of

the efficiencies in the compound optimal design problem can be written as

ηEffτ (d) + (1− η)Effγ(d) = η(1− x2

2− ρ2
) + (1− η)

2− ρ2 − x2

2(1− ρx)
. (2.10)

To find the maximum of the linear combination of efficiencies, we set the

first derivative of the right-hand side of (2.10) with respect to x to zero. The

result is equation (2.9) and solving the equation generates the design max-

imizing the combination of the efficiencies in the compound optimal design

problem.

As an example, suppose the within-subject correlation is set to ρ = 0.5

and the weight in the linear combination of the efficiencies is set to η = 0.5.

The optimal design can be obtained by solving (2.9), and the optimal design

is x = 0.19, which implies m ≈ 0.20n.
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2.5 Equivalence of the two approaches

To discuss equivalence of the constrained and compound optimal crossover

designs in our example, we can compare the optimal designs discussed in pre-

vious sections. It can be seen from Figures 1 and 2 that all optimal designs

for either of the problems have k in [1−ρ
4
, 1

4
]; and each k within the interval is

an optimal design for a certain case of the constrained optimal design problem

and a certain case of the compound optimal design problem.

In fact, for any k ∈ (1−ρ
4
, 1

4
], we observe that there is a unique c in the

constrained optimal design problem that corresponds to a unique η in the

compound optimal design, and conversely. For k = 1−ρ
4

, we have c ≤ 1− ρ2

2−ρ2

in the constrained optimal design problem and η = 0 in the compound optimal

design problem. In other words, for every compound optimal design problem,

there is a constrained optimal design problem with the same solution, and

conversely.

A proof of the equivalence of the constraint optimal design and the com-

pound optimal design was given by Cook and Wong (1994) when the criteria

are convex and the design regression problem is defined on a compact convex

design space. In this section, we provided a simpler proof for the equivalence

of the constrained optimal design problem and the compound optimal design

problem defined in this chapter.

Theorem 2.5.1: Under model 2.1, the constrained optimal design problem

and the compound optimal design problem are equivalent. That is, for any

design d which is optimal in the constrained optimal design problem, there

exists a compound optimal design problem in which the optimum is achieved

with the same design, and vice versa.
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Proof:

We recall that we let x = 1− 4m/n. First, we prove that for any x within

(0, ρ) is a solution to the constrained optimal design problem for some c and

a solution in the compound optimal design problem for some η.

Consider x∗ ∈ (0, ρ). According to 2.8, x∗ is the solution in a con-

strained optimal design with a certain c∗ where c∗ > 1 − ρ2

2−ρ2 and x∗ =√
(1− c∗)(2− ρ2).

Now, let Lx(η) denote the first derivative of the linear combination of the

efficiencies in the compound optimal design problem, with respect to η for any

x. We have,

Lx(η) = [ηEffτ (d) + (1− η)Effγ(d)]′x (2.11)

= [η(1− x2

2− ρ2
) + (1− η)

2− ρ2 − x2

2(1− ρx)
]′x (2.12)

= η
−2x

2− ρ2
+ (1− η)

ρx2 − 2x+ 2ρ− ρ3

2(1− ρx)2
. (2.13)

Let x = x∗, then Lx=x∗(η) is a continuous function of η on [0,1]. It can be

written as

Lx∗(η) = η
−2x∗
2− ρ2

+ (1− η)
ρx2
∗ − 2x∗ + 2ρ− ρ3

2(1− ρx∗)2
. (2.14)

It is easy to verify that Lx∗(0) > 0, as

Lx∗(0) =
ρx2 − 2x+ 2ρ− ρ3

2(1− ρx)2
=

(1− ρx)2 − (1− ρ2)2

2ρ(1− ρx)2
(2.15)
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and Lx∗(1) < 0, as

Lx∗(1) =
−2x∗
2− ρ2

. (2.16)

So, there exists an η∗ ∈ (0, 1) such that Lx∗(η∗) = 0, meaning the x∗ is a

solution in the compound optimal design problem when η = η∗.

Therefore, we proved that any x∗ ∈ (0, ρ) is the solution in the constrained

optimal design problem with c = c∗ and is, at the same time, the solution in

the compound optimal design problem with η = η∗.

Next, we prove that for x ≤ 0 and x ≥ ρ, the theorem also holds. Actually,

when x ≤ 0, it is the constrained optimal design when c = 1 and the compound

optimal design when η = 1; when x ≥ ρ, it is the constrained optimal design

when c ≤ 1− ρ2

2−ρ2 and the compound optimal design when η = 0.

2.6 Discussion

In two-treatment two-period crossover designs, it is known that the four-

sequence design AB, BA, AA and BB with equal allocation is optimal for

the estimation of the direct treatment effects. When the carryover effect is

present, this design is also optimal for the estimation of the carryover effect

under the assumption of independent errors. However, in cases where the

equal-correlated errors are assumed, the optimality of the estimation of the

carryover effects depends on the within-subject correlation, which is defined

as ρ =
σ2
ξ

σ2
ε+σ2

ξ
. It is found that the optimal design for the estimation of the

carryover effects is the four sequence design which assigns n(1− ρ)/4 subjects

to each of AB and BA and n(1 + ρ)/4 subjects to each of AA and BB.
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In applications when the estimation for both of the direct treatment effects

and the carryover effects are of interest, the design can be chosen with consid-

eration of the efficiency of both types of the effects. With small within-subject

correlation (e.g. 0.3 and 0.5), the optimal design for the direct treatment ef-

fects can produce high efficiency for estimating the carryover effects When the

within-subject correlation is large (e.g. 0.7 and 0.9), the optimal design for

the direct treatment effects can perform poorly in estimating the carryover

effects, and an alternative design which balances the efficiencies of estimating

both of the effects are suggested.

In recent survey of the articles in Cochran’s database (which is the leading

resource for systematic reviews in health care) that utilized crossover trials, we

observed 59 out of 198 studies still analyzed the data, discarding the data from

the second periods mainly because the investigator planned the trial without

regard to the possible carryover effects but found the data contaminated with

lingering residual effects from the previous treatment effects.

Carriere (1992, 1993, 1994) discussed extensions including having more

periods and also allocating an unequal number of subjects to each sequence (i.e.

less to clinically undesirable sequences). However, the gap between clinicians

and statisticians in deciding optimal clinical designs has not narrowed and

merged to date.

In this chapter, we applied two methods to find a design that is optimal

for the combined objectives of estimating both effects. We defined the con-

strained optimal design problem and the compound optimal design problem,

and showed the produced designs for the two problems. A proof was provided

to show that the two methods are equivalent.

The results proposed in this chapter provide some guidance of clinical trials
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for designing in two-treatment two-period crossover experiments. When there

is evidence of large within-subject correlation, the conventional four-sequence

design with equal allocation may not be appropriate as it is deficient in the

estimation of the carryover effects. Planning with a constrained or compound

optimal design could reduce the risk of failure in clinical crossover experiments

due to a potentially poor estimation on the carryover effects.
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Chapter 3

Universally optimal N-of-1

designs
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Abstract

The purpose of this chapter is to build universally optimal N-of-1 designs.

Originally, Kiefer (1975) proposed the concept of universal optimality with

zero row and column sums in the information matrices. We examine special

conditions when such universally optimal designs exist. We construct uni-

versally optimal N-of-1 designs for t ≥ 2. Special consideration is given to

situations when the universal optimal designs do not exist, which occurs when

t > 2. The one sequence N-of-1 universal optimal designs would have the num-

ber of periods to be a multiple of t when t = 2, while it would be a multiple of

t plus 1 when t > 2. Recognizing possible practical difficulty in adopting the

designs constructed, we also suggest N-of-1 designs with block sizes less than

t.

3.1 Introduction

Multi-crossover single-patient trials, known as N-of-1 trials, are often employed

when there are concerns about making the best possible treatment decision

for an individual patient. Most randomized controlled trials are focused on

optimizing the treatment effect for an average patient. However, individu-

als enrolled in a trial may be better or worse than the average patient, and

the available optimal designs built to optimize treatment on average are not

capable of offering such individual-based treatment effects. The simplest two-

treatment N-of-1 trial uses the AB (or BA) sequence for treatments A and B.

The sequence has one crossover pair over two periods. As the patient becomes
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his or her own control, the N-of-1 trials provide an individual-based clinical

evidence for the treatment effect, free of between-patient variations. With

rising cost of patient care, N-of-1 trials have the potential to be extremely

useful, as it can minimize clinic visits and time on suboptimal treatments

(Greenfield et al., 2007; Kravitz, Duan and Braslow, 2004; Kravitz and Duan,

2014; Larson, 1990; Guyatt et al., 1986, 1990). When suitably planned, N-of-1

trials can improve health outcomes, cut clinical costs for certain drugs and

significantly reduce health care costs (Nikles et al., 2005; Edgington, 1984;

Cochrane, 1972). However, the literature is lacking in providing guidelines for

optimal N-of-1 trials.

These repeated measurement designs, although practically appealing, suffer

from a long-standing controversy regarding residual treatment effects. N-of-

1 trials are no exception. Sometimes referred to as the carryover effect, the

residual effect is the effect of a previous treatment that carries over into the

subsequent treatment periods. A washout period placed between treatment

periods could reduce the carryover effects, but a long washout period may

increase the risk of subject loss to follow-up among other issues. Also, there is

no guarantee that it completely removes the residual effects. Therefore, careful

planning is important (Bose and Mukherjee, 2003; Kunert and Stufken, 2002;

Rupp et al., 2008).

For two-treatment experiments, a general N-of-1 trial can have multiple

AB or BA crossover pairs in a sequence of treatments for within-patient com-

parisons. Hence, the number of periods is a multiple of 2 and it is desirable to

have more than two of these pairs for a stable estimate of a treatment effect

or its contrast. Possible sequences to consider rapidly increase with the in-

creasing p for multi-periods. For example, three pair N-of-1 trials with p = 6
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would require considering 2p=64 treatment sequences before we could deter-

mine the optimal treatment sequence(s). Since it is only feasible to use a small

set of sequences, we aim to determine the optimal sequences, while ensuring

that each pair of periods consists of two distinct treatments. Therefore, such

sequences as AAABBA or AAAABA are unlikely to be used in N-of-1 trials.

Eliminating unsuitable sequences among 2p for N-of-1 trials, we are left with

2p/2 distinct sequences to consider for p-period two treatment N-of-1 trials.

In the N-of-1 trials with t ≥ 2 treatments, the sequences consist of treat-

ments in blocks of the same size t. Every block contains each of the t treat-

ments exactly once. Constructing N-of-1 designs in this way, treatments are

compared fairly and poor balance can be prevented when early termination

of the experiments happens. For example, in a 3-treatment N-of-1 trial, a

six-period design could be ABC|BCA, where the sign ‘|’ divides them into

blocks. This class of designs is denoted in our study as No1(t,t), representing

N-of-1 trial that compares t (first t in the notation) treatments and consists

of treatments in blocks of size t. Therefore, a six-period design in the above

example is No1(3,3).

A design is universally optimal if (i) its information matrix is completely

symmetric, and (ii) it maximizes the trace of the information matrix. Such a

design is universally optimal, as it satisfies all three of A-, D-, or E-optimality

criteria. To study the universal optimality of treatment effects in the t treat-

ments N-of-1 designs, we consider the traditional model and obtain the infor-

mation matrix for the parameters of interest. Then the universally optimal

designs could be constructed as long as the conditions given by Kiefer (1975)

are satisfied, as specified above.

We show that Kiefer’s conditions could not be satisfied with the designs in
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the class No1(t,t). However, if we consider a slightly different class of designs,

then we can obtain universally optimal designs. We use No1(t,t+) to denote

the new class of designs, which consist of designs with one extra treatment

to the last period in No1(t,t). For instance, a design in No1(3,3+) could be

ABC|BCA|A, ABC|BCA|B, or ABC|BCA|C, and similarly, some possibility

in No1(2,2+) are AB|BA|A, AB|BA|B, etc.

In this chapter, we present universal optimality results in N-of-1 trials with

t ≥ 2 treatments. In section 2, we introduce the traditional model, which is

typically considered in crossover trials. Upon constructing the information

matrix for the parameters of interest under the traditional model, a sufficient

condition of universally optimal designs is given for N-of-1 trials with t treat-

ments in Section 3. In section 4, we build the universally optimal N-of-1

designs for t = 2. In section 4.1, we discuss the universally optimal properties

in No1(t,t) and No1(t,t+). In section 4.2, we consider the designs in a relaxed

condition where the block size can be smaller than the number of treatments,

e.g., in No1(t,s) with t > s. By allowing the block size to be smaller than t, we

can make universally optimal designs smaller than previously, thereby reduce

the risk of early dropouts and the burden of treatment administration.

3.2 Model and information matrices

Crossover design models have typically assumed that the treatments assigned

to subjects have lasting effects on their responses to treatments in subsequent

periods. When it is assumed that the carryover effects last for only one period,

they are known as a first-order residual effect model. In such a model, no

interaction is assumed between the treatment administered during the current
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period and the carryover effects from the previous period.

Further, the period effects cannot be accommodated as there are p re-

sponses in total in one patient trials. The traditional model with a first-order

residual effect reduced for a single N-of-1 trial is written as:

Yi = µ+ τd(i) + γd(i−1) + εi. (3.1)

for i = 1, · · · , p, where Yi is the outcome in the ith period from the subject; τ

and γ are, respectively, the treatment and the carryover effect contrasts; d(i)

in1, 2, · · · , t is the treatment assigned to the patient in period i. Note γd(0) =

0, εi is the error term for the i period. If we define Σ as the covariance

matrix of the measurement errors, we have Σ = σ2I for the uncorrelated error

assumption and Σ = σ2[I + ρ
1−ρ11′] for the equal-correlated error assumption.

Typically, we are interested in estimating the direct and carryover treat-

ment effects, while all others are treated as nuisance parameters. We shall

construct a design for such a typical situation. To proceed, we define the

design matrix under a particular model into [X1,X2], where X1 contains the

columns of the design matrix pertaining to nuisance parameters and X2 con-

tains those for parameters of interest, θ = (τ ′, γ′)′ with τ = (τ1, τ2, · · · , τt) and

γ = (γ1, γ2, · · · , γt). Then the information matrix for θ can be written as

Id(θ) = X ′2Σ−1X2 −X ′2Σ−1X1(X ′1Σ−1X1)−X ′1Σ−1X2 (3.2)

First, we show a lemma in the joint information matrix of τ and γ in N-of-1

trials, which makes the later discussion simpler.

Lemma 3.2.1: With uncorrelated errors or equal-correlated errors, the joint
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information matrix for τ and γ in the N-of-1 design can be written as

Id(θ) = X ′2X2 −
1

p
X ′211′X2 (3.3)

Proof: When uncorrelated errors are assumed, it is trivial that the Lemma

3.2.1 holds. Now we derive the joint information matrix for the traditional

model with equal-correlated errors.

Under this case, we have X1 = 1 and Σ−1 = I − b11′, where b = ρ/((p −

2)ρ+ 1). Then according to (3.2),

Id(θ) = X ′2(I − b11′)X2 −X ′2(I − b11′)1(1′(I − b11′)1)−1′(I − b11′)X2

= X ′2X2 − bX ′211′X2 − (1− bp)X ′21 (
1

p− bp2
) (1− bp)1′X2

= X ′2X2 − (b+
(1− bp)2

p− bp2
)X ′211′X2

= X ′2X2 −
1

p
X ′211′X2

Thus, the Lemma 3.2.1 holds.

Therefore, the optimal designs are the same under the model in N-of-1

trials with uncorrelated and equi-correlated covariance structures.

In N-of-1 trials comparing t treatments, A1, A2, · · · , At, there can be p-1

subsequences with treatments in 2 concessive periods, such as AiAj, which has

the ith treatment in its first period and jth treatment in its second period, We

define mij as the total number of subsequences of AiAj, in a p-period N-of-1

trial. Since there are p − 1 subsequences of length 2, we have 1′M1 = p − 1,

where M = (mij)1≤i,j≤t. Let d = (m1,m2, · · · ,mt)
′, where mi is the number

of assignments for the ith treatment. Define d1 = M1, in which the ith
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entry is the number of subsequences beginning with the ith treatment. Define

d2 = M ′1, in which the jth entry is the number of subsequences ending with

the jth treatment. Therefore, d−d1 = (0, · · · , 0, 1, 0, · · · , 0)′ where the position

of ’1’ represent the treatment in the pth period; d− d2 = (0, · · · , 0, 1, 0, · · · , 0)′

where the position of ’1’ represent the treatment in the 1st period. Denote

D = diag(d), D1 = diag(d1) and D2 = diag(d2). We then represent 3.3 as

follows using these notations.

Lemma 3.2.2: The information matrix of the joint direct and carryover treat-

ment effects is given by Id(θ).

Id(θ) =

 D − 1
p
dd′ M ′ − 1

p
dd′1

M − 1
p
d1d
′ D1 − 1

p
d1d
′
1


Based on Lemma 3.2.1, we have the following result.

Lemma 3.2.3: The information matrix I(τ) of the direct treatment effect τ ,

adjusted for the other effects in the model, is given by

Id(τ) = D2 −M ′D−1
1 M (3.4)

Proof:

If we denote the information matrix Id(θ) in partitioned matrices,

Id(θ) =

 I11 I12

I21 I22


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the information matrix Id(τ) can be obtained by I(τ) = I11−I12I
−1
22 I21. There-

fore, from Lemma 3.2.3, we have

I(τ) = D − 1

p
dd′ − (N ′ − 1

p
dd′1)(D1 −

1

p
d1d
′
1)−1)(N − 1

p
d1d
′)

.

Since (D1 − 1
p
d1d
′
1)(D1−1 + 11′) = I, we can write

I(τ) = D − 1

p
dd′ − (M ′ − 1

p
dd′1)(D−1

1 + 11′)(M − 1

p
d1d
′)

= D − dd′ −M ′D−1
1 M +M ′1d′ + d1′M −M ′11′M

= D −M ′D−1
1 M − (d− d2)(d− d2)′

= D2 −M ′D−1
1 M

3.3 A general condition for universal optimal-

ity in N-of-1 trials

For a p-period N-of-1 trial, mij is the number of subsequences with the ith

treatment in its first period and jth treatment in its second period. Therefore,∑
1≤i,j≤t nij = p− 1.

Theorem 3.3.1: Under model 3.1, if an N-of-1 design is balanced on all sub-

sequence AiAj, which leads to nij = (p − 1)/t2 for any 1 ≤ i, j ≤ t, then

it is universally optimal for estimating the direct treatment effects with ad-

justment of carryover effects among all t-treatment N-of-1 designs.

Proof:

We can rewrite the terms in equation (3.4) with mij, mi· =
∑t

j=1 mij and
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m·j =
∑t

i=1 mij. We have D2 = diag(m·1,m·2, · · · , m·t), and the element of

row i and column j from M ′D−1
1 M is

m1im1j

m1·
+
m2im2j

m2·
+ · · ·+ mtimtj

mt·

.

Therefore, the trace of the information matrix for treatment effects can be

written as,

tr(Id(τ)) = p− 1− tr(M ′D−1
1 M) (3.5)

where M ′D−1
1 M =

∑t
i=1

∑t
j=1m

2
ij

mi·
.

The trace is maximized by minimizing M ′D−1
1 M =

∑t
i=1

∑t
j=1m

2
ij

mi·
subject

to
∑

1≤i,j≤tmij = p− 1. The minimization is achieved by mij = mij′ for each

i and any j 6= j′. A special case in the solutions is when mij are equal for all

1 ≤ i, j ≤ t, which results in that the information matrix I(τ) is completely

symmetric. Therefore, by the universal optimality proposed by Kiefer (1975),

the design which is balanced on all subsequences AiAj is universally optimal

among all t-treatment N-of-1 designs.

3.4 Examples

3.4.1 Universally optimal designs in No1(2,2)

We first apply the theorem 3.3.1 to construct universally optimal designs for

No1(2,2). To compare two treatments A and B in an N-of-1 trial, we consider

design sequences with AB or BA crossover pairs. From the Lemma 3.2.3, the
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information matrix for treatment effects can be written as,

Id(τ) = D2 −M ′D−1
1 M

=

 m11m12

m11+m12
+ m21m22

m21+m22
− m11m12

m11+m12
+ m21m22

m21+m22

− m12m11

m11+m12
+ m22m21

m21+m22

m12m11

m11+m12
+ m22m21

m21+m22

 (3.6)

Theorem 3.4.1: A treatment sequence that alternates the two crossover pairs

is universally optimal for No1(2,2).

Proof:

It is trivial to see that the information matrix 3.6 is completely symmetric.

Therefore, a design is universally optimal if it maximizes the trace.

For convenience, we consider the sequences starting with A. The solution

of the maximization is

m11 = p
4
, m12 = p

4
, m21 = p

4
, m22 = p

4
− 1

for p = 4k, and

m11 = p
4
− 1

2
, m12 = p

4
+ 1

2
, m21 = p

4
− 1

2
, m22 = p

4
− 1

2

for p = 4k + 2, with any positive integer k.

For the sequences starting with B, we can switch the two indices of mij in

the above results to get the universally optimal designs.

In both cases, we have that m11 + m22 = m12 + m21 − 1. It only occurs

when all the crossover pairs AB are followed by BA and all crossover pairs

BA are followed by AB. Therefore, we can construct the universally optimal
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N-of-1 in No1(2,2) by alternating crossover pairs, such as ABBA, ABBAAB

and ABBAABBA for 4, 6, and 8 periods designs, respectively. One could

switch A and B to obtain a dual sequence with the same effect.

3.4.2 Universally optimal designs in No1(t,t+) with t≥3

In this section, we discuss the universal optimality in No1(t,t). As mentioned,

a sequence in No1(t,t) have kt periods, which can be divided into k blocks

of length t. Each of the k blocks in the sequence is a permutation of the t

treatments. In the implementation of N-of-1 trials, clinicians may prefer a

design in No1(t,t), in which t treatments are assigned in a block of size t for

obvious reasons.

Unfortunately, we can not construct universally optimal designs in No1(t,t)

from Theorem 3.3.1 except when t = 2. We devise a new class of N-of-1 designs,

denoted as No1(t,t+), where the first p − 1 periods construct a sequence in

No1(t,t) and the last period is treated with the same treatment used as in the

beginning period. Then we construct universally optimal designs as follows.

Theorem 3.4.2: If a t-treatment N-of-1 design

1. uses all possible permutations of the t treatments once,

2. connects them into a sequence in a way that the last treatment in the

previous permutation is the same as the first treatment in the following

permutation, and

3. adds one more period to the end with the treatment used in the first

period,
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then the design is universally optimal.

Proof:

The described design in 3.4.2 uses all possible permutations of the t treat-

ments once. The number of all possible permutations of the t treatments is t!.

Denote the t treatments by A1, A2, · · · , At. Then, for any subsequence AiAj

with i 6= j, the number of the permutations containing AiAj is (t− 1)!. This

can be derived by multiplying the number of all permutations with the other

t− 2 treatments ((t− 2)!) and the number of possible spot to place AiAj into

the t− 2 treatment permutations ((t− 1)).

The permutations of the t treatments are then connected into a sequence.

For any two connected permutations, the last treatment in the previous permu-

tation is the same as the first treatment in the following permutation. There-

fore, subsequences AiAi for some i can be observed at the connection so that

the first Ai is from the last period in the previous permutation and the second

Ai is from the first period in the following permutation. Since there are (t−1)!

permutations starting with Ai and (t − 1)! permutations ending with Ai, the

number of AiAi is (t− 1)!, when all the permutations are connected.

There is one exception with the subsequence AiAi when Ai is the starting

treatment in the first permutation. Suppose the first permutation is chosen as

the first treatment is Ai. Then among all of the other permutations, there are

(t− 1)!−1 permutations starting with Ai but there are (t− 1)! permutations

ending with Ai. As a result, the number of AiAi is (t − 1)!−1 and there is

one extra permutation ending with Ai that is not able to connect with any

permutation starting with Ai. Actually, the extra permutation must be the

last permutation when all the permutations are combined.
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Finally, by adding one more period to the end with the treatment Ai which

is used in the first period, the number of AiAi is (t − 1)!. Therefore, the

constructed N-of-1 sequence is balanced on all AiAj for any i, j = 1, · · · , t.

According to Theorem 3.3.1, the design is universally optimal.

Now we use the three-treatment N-of-1 trials as an example in constructing

the universally optimal design in No1(3,3+). Denoting the treatments as A,B

and C, the possible three-treatment permutations are

ABC, BAC, CAB, ACB, BCA, CBA.

The universally optimal design can be constructed, for example, as

ABC| CAB| BCA| ACB| BAC| CBA| A , or

ABC| CBA| ACB| BAC| CAB| BCA| A

requiring the number of periods to be p = t · t! +1 = 19.

3.4.3 Universally optimal designs in No1(t,2) with block

size < t

One disadvantage of the universally optimal designs for t treatments is that

the length of the sequence can be unmanageable. As discussed in the previous

section, a universally optimal design in No1(t,t+) requires the length of the

sequence equal to (t − 1)! t2 + 1, which is 5 for t = 2, 19 for t = 3 and 97

for t = 4. It may be infeasible in practice because the longer the period of

the experiment, the more expensive the experiment and the higher the risk of

drop-outs. To shorten the length of the experiment without losing the balance
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in the comparison of treatments, we now consider the design in No1(t,s) or

No1(t,s+) for some s < t, especially when s = 2. To do so, we relax the

restriction that the block size must be equal to the number of the treatments

being compared.

In this section, we provide universally optimal designs for three-, four- and

five-treatment in blocks of size 2. In each block, 2 different treatments are

assigned such as a crossover pair. For t-treatment designs, there are t(t − 1)

different kinds of crossover pairs. To construct the universally optimal design,

the crossover pairs are selected such that each subsequence of AiAj, 1 ≤ i, j ≤

t, appears only once. Therefore, in the universally optimal designs, the number

of periods is p = t2 + 1, for example, p is 10 for three-treatment designs, 17

for four-treatment designs and 26 for five-treatment designs.

When t = 3, the universally optimal design in No1(3,2) can be, for exam-

ples,

AB| BC| CA| AC| BA or

BC| AB| BA| AC| CB.

When t = 4, the universally optimal design in No1(4,2+) can be, for ex-

amples,

AB| BC| CD| DA| CB| DC| AD| BA| A or

BC| CD| DA| AB| BD| CA| DB| AC| B.
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When t = 5, the universally optimal design in No1(5,2) can be, for exam-

ples,

AB| BC| CD| DE| EA| AC| BD| CE| DA| EB| AD| BE| CA or

CD| DE| EA| AB| BC| CE| BD| AC| BE| DB| AE| CA| DC.

3.5 Discussion

N-of-1 trials are extremely useful in subject-focused investigations, for exam-

ple, medical experiments. As far as we are aware, no guidelines are available in

the literature on how to plan such a trial optimally. In this paper, we present

a sufficient condition of universally optimal N-of-1 designs under a traditional

model accommodating the carryover effects. We propose universally optimal

sequences for general t ≥ 2.

We investigated a sufficient condition for universal optimality in t treat-

ments N-of-1 designs. However, we did not find the universally optimal designs

in the general class No1(t,t). The condition requires the number of periods of

the designs to be kt + 1. For some k = t!, we consider a sequence of length

kt+1 that allows the first (p−1)th periods are assigned in blocks of size t, but

end with an additional period of treatment, which is the same as the treatment

that was given in the 1st period of the sequence. We denoted such class of

designs as No1(t,t+). Then, universally optimal designs can be constructed in

No1(t,t+). In order to shorten the number of periods in N-of-1 trials, we also

considered universally optimal designs in No1(t,2) and No1(t,2+).
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Chapter 4

Optimal two-treatment N-of-1

trial designs
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Abstract

N-of-1 trials are randomized multi-crossover experiments using two or more

treatments on a single patient. They provide evidence-based information on

an individual patient, thus optimizing the management of the individual’s

chronic disease. This approach is preferred in many medical experiments, as

opposed to the more common statistical designs constructed to optimize treat-

ing the average patient. N-of-1 trials are also popular when the sample size is

too small to adopt traditional optimal designs. However, there are very few

guidelines available in the literature. We constructed optimal N-of-1 designs

for two treatments under a variety of conditions about the carryover effects,

the covariance structure, and the number of planned periods. Extension to

optimal aggregated N-of-1 designs is also discussed.

4.1 Introduction

N-of-1 trials are single-patient crossover designs which aim to provide the

best possible treatment decisions for an individual patient. When suitably

designed, they can be extremely useful to minimize patients’ clinic visits and

time on suboptimal treatments. However, the literature is lacking in providing

guidelines for optimal N-of-1 trials.

In Chapter 3, we constructed universally optimal designs, which are A-,

D- and E-optimal designs under rather restricted models. In this chapter, we

relax the universal optimality condition to find practically optimal designs for

fixed p, as often the choice of p is not random.
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The majority of clinical studies employ randomized controlled trials (RCTs)

(Armitage, 1975; Kenword and Jones, 1987; Wei and Durham, 1978). One ap-

proach to designing an RCT is the use of optimal experimental designs. An

optimal design is a technique designed to assist a decision maker in identifying

a preferable choice among many possible alternatives. Among the many RCT

designs available, the most useful and popular design is the crossover design.

To illustrate the logistics of choosing a particular design, we first note

that there are a number of excellent articles on optimal designs in the RCT

literature (Cheng and Wu, 1980; Carriere, 1994; Carriere Huang, 2000; Liang

and Carriere, 2009; Laska and Meisner, 1985; Afsarinejed and Hedayat, 2002;

Kunert and Stufken, 2002). However, most of these designs, if not all, focus

on optimizing the treatment effect for an average patient. The average patient

is a construct - a virtual person who responds to the intervention by the mean

of population’s responses. Individuals enrolled in a trial will respond better

or worse than, or simply differently from the average patient. The available

optimal designs are not adequate when studying individual-based treatment

effects is desired.

Multi-crossover single-patient trials are often employed when the focus is

to make the best possible treatment decision for an individual patient. From a

clinician’s perspective, having clear evidence of the value of one treatment over

another (or no treatment) is far more useful than knowing the average response.

The average response gives the clinician the probability that a treatment will

be effective, whereas N-of-1 trials give far more certainty about whether the

treatment for the patient sitting in front of them will work or not.

It is known that the two-treatment design AB, AA and their duals BA,

BB is found to be universally optimal for two-period experiments, with the
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duality defined as the sequence that switches A and B with the same effect.

Similarly, it is known that the two-sequence design ABB and its dual BAA and

the four-sequence design ABBA, AABB and their duals BAAB, BBAA are

optimal for three- and four-period experiments, respectively (Carriere, 1994;

Laska and Meisner, 1985).

Straight application of this two-treatment optimal design literature with A

to AB and B to BA would suggest that optimal N-of-1 trials can use the four-

sequence design with ABBA, ABAB and their duals for two within-patient

comparisons, the two-sequence design with ABBABA and its dual for three

within-patient comparisons, and the four-sequence design with ABBABAAB,

ABABBABA and their duals for four within-patient comparisons. It is not

yet known whether all of these sequences are equivalent so that each sequence is

optimal for each individual patient for 4, 6 and 8-period N-of-1 trials. Further,

applying the results from the literature would require at least two patients to

utilize these existing designs, as the optimal design uses at least two sequences

and is unsuitable for N-of-1 trials. In this chapter, we show that not all

sequences in these repeated measurement designs are optimal for N-of-1 trials

for estimating individual-based treatment effects.

Ideally, when aggregated, the series of N-of-1 trials that are optimal for

individual patients can also provide an optimal estimate of the treatment ef-

fects for the average patient. For example, in a multi-clinic setting in three

AB pair six-period N-of-1 studies, all eight possible sequences (26/2 = 8) have

been used, i.e., ABABAB, ABABBA, ABBAAB, ABBABA and their du-

als to estimate both individual-based and average treatment effects (Guyatt et

al., 1990). However, it is not known whether each of these eight sequences is

optimal for individual patients. Further, it is not known whether a collection
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of the optimal and not-so-optimal n-of-1 trials will lead to optimal designs

for estimating the average treatment effects. In the next sections, we discuss

how these do not lead to optimal aggregated N-of-1 trials for estimating the

treatment effects for the average patient. We first discuss issues arising due to

the repeated nature of these experiments.

4.2 Models and information matrix

We consider the following model, frequently employed by repeated measures

crossover data.

Yij = µ+ αi + βj + τd(i,j) + γd(i−1,j) + εij, (4.1)

for i = 1, · · · , p and j = 1, · · · , N , where Yij denotes the outcome in the ith

period from the jth subject;αi denotes the ith period effect and βj denotes

the jth subject effect; d(i, j) represents the treatment assigned to the patient

in period i of subject j, and τd(i,j) and γd(i−1,j) are, respectively, the treat-

ment effect of the treatment on the ith period and the carryover effect of the

treatment on the i− 1th period.

The model assumes that the carryover effects only depend on the treat-

ment assigned on the previous period but not on the treatment on the current

period, which may be unrealistic. Taking the interaction into account with-

out introducing too many parameters, Kunert and Stufken (2002) presented a

model with self and mixed carryover effects. The self carryover effect occurs

when the treatments administered in the current and the previous period are

the same; otherwise we have a mixed carryover effect. The model with the self
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and mixed carryover effects is written as,

Yij =

µ+ αi + βj + τd(i,j) + γs,d(i−1,j) + εij, if d(i,j)=d(i-1,j);

µ+ αi + βj + τd(i,j) + γm,d(i−1,j) + εij, if d(i,j) 6=d(i-1,j).
(4.2)

where αi, βj, d(i, j) and τd(i,j), are defined as in model (1.1); γs,d(i−1,j) and

γm,d(i−1,j) represent the self and mixed carryover effects of the treatment as-

signed on the i− 1th period, respectively.

In an N-of-1 trial with N = 1, the j index can be omitted. Here, as there

is one subject and p responses in total, the period effects and subject effects

cannot be accommodated. Therefore, we need to reduce the models for the

case of N = 1. However, a full model can be used for N > 1, and aggregated

optimal N-of-1 sequences can make the estimation on an average level possible.

For model (4.1) and (4.2), we define the contrast of the direct treatment

effects as τ = (τA − τB)/2, the contrast of the first-order carryover effects as

γ = (γA−γB)/2 , the contrast of the self carryover effects as γs = (γs,A−γs,B)/2

and the contrast of the mixed carryover effects as γm = (γm,A − γm,B)/2. We

also define Φd(i) as the indicator of the treatment assigned to the ith period.

For i = 1, ·, p, Φd(i) = 1 if d(i) = A, Φd(i) = −1 if d(i) = B. When i = 0,

Φd(i) = 0.

Then, the model (4.1) and (4.2) can be reduced to

Yi = µ+ τ · Φd(i) + γ · Φd(i−1) + εi, (4.3)

and

Yi =

µ+ τ · Φd(i) + γs · Φd(i−1) + εi, if d(i)=d(i-1);

µ+ τ · Φd(i) + γm · Φd(i−1) + εi, if d(i) 6=d(i-1).
(4.4)

52



In the following discussion, we simply refer model (4.1) and (4.3) as the tra-

ditional model, and refer model (4.2) and (4.4) as the self and mixed carryover

effect model.

One common assumption on the variances of the error terms is that they are

independently identically distributed with mean 0 and variance σ2
ε . However,

because Yi are measures from the same subject, it is appropriate to introduce

dependence among the Y ′i s. In our discussion of optimal 2-treatment N-of-1

trials, we consider 3 different covariance structures for the responses from a

subject.

To construct the optimal design, we often devise an optimality criterion.

We define a design to be optimal based on A-, D-, or E-optimality criteria,

maximizing either the trace, the determinant, or the eigenvalue of the infor-

mation matrix among a class of all competing designs. To do so, we would first

obtain an information matrix for the parameters of interest. To proceed, we

define the design matrix under a particular model into [X1,X2], where X1 con-

tains the columns of the design matrix pertaining to nuisance parameters and

X2 contains those for parameters of interest, θ = (τ ,γ)′ or (τ, γs, γm)′, which

denote the direct treatment effects and carryover effects. Then the information

matrix can be written as

Id(θ) = X ′2Σ−1X2 −X ′2Σ−1X1(X ′1Σ−1X1)−1X ′1Σ−1X2 (4.5)

By partitioning the information matrix into a 2-by-2 matrix according to

dimensions of τ and γ̃=γ or (γs, γm)′, we have,

53



Id(τ , γ̃) =

Id11 Id12

Id21 Id22

 (4.6)

Then the information matrix of direct treatment effects adjusted by the

carryover effects can be written as,

Id(τ) = Id11 − Id12I
−1
d22Id21. (4.7)

54



4.3 Cycles and Sequences

We focus on the N-of-1 designs, which compare only two treatments. The

main interest is the estimation of the direct treatment effect contrast, τ . We

present the optimal designs in 2-treatment N-of-1 trials under model (4.3) and

(4.4).

First, we define some sequence feature parameters and show the association

between the feature parameters and the sequences in N-of-1 designs.

In our discussion of N-of-1 trials for two treatments, the design sequences

consist of crossover pairs, AB and BA. Within each crossover pair, the two

treatments are distinct. For two consecutive crossover pairs, the treatments

assigned to the second period in the previous pair and the first period in the

latter pair can be different or the same.

If an AB pair is followed by a BA pair, as in ABBA (or BAAB), we define

the design as having alternating pairs in the sequence. The performance of an

N-of-1 trial sequence is related to how the pairs AB and BA alternate. The

following feature parameters define how AB and BA alternate in a sequence.

• s: the number of subsequences of AA and BB;

• m: the number of subsequences of AB and BA;

• h = s−m .

When we define s and m, the subsequences can be constructed by either the

treatments from a crossover pair, or be the treatments assigned to the second

period in the previous pair and the first period in the latter pair. Therefore, in

a p-period sequence, there are p− 1 such subsequences with a length of 2. By

the definition of feature parameters, we have s + m = p − 1. Determined by
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how a sequence is constructed, the h can only be negative and takes the values

in −1,−3,· · ·,−(p− 1). Table (4.1) demonstrates the relationship among h, s

and m.

Table 4.1: Feature parameters of a sequence in a 2-treatment N-of-1 design

h s m
−(p− 1) 0 p-1
−(p− 3) 1 p-2
−(p− 5) 2 p-3

...
...

...
-1 p

2
− 1 p

2

For a particular h, we can calculate s and m by s = (p − 1 + h)/2 and

m = (p−1−h)/2. Further, for any given p, the N-of-1 designs can be classified

by h. As an example, for p = 8, Table (4.2) shows the relationship between

the design sequences and the feature parameters.

Table 4.2: Sequences for p = 8 with corresponding design parameter values

h Sequence Alternation s m
-7 ABABABAB 0 0 7
-5 ABABABBA 1 1 6

ABABBABA 1 6
ABBABABA 1 6

-3 ABABBAAB 2 2 5
ABBAABAB 2 5
ABBABAAB 2 5

-1 ABBAABBA 3 3 4
Note: s = the number of AA and BB and m = the number of AB
and BA in a treatment sequence, and h = s−m

In the next section, we show that the information matrix of the parameters

of interest are only dependent on the feature parameters. That is, sequences

with the same h values have the same information matrix. For instance, when

h = −3, the three sequences ABABBAAB, ABBAABAB, ABBABAAB

56



and their dual sequences share the same information matrix. If this h is the

optimum value, the 8 period N-of-1 trials can use any of these three sequences

and their duals.

4.4 Optimal 2-treatment N-of-1 designs

We denote xτ , xγ, xs and xm as the design vector for the parameter τ , γ, γs

and γm, respectively. Then under the traditional model, the design matrix

is [1p, xτ , xγ] for the parameters [µ, τ , γ] and we let X1 = 1p and X2=[xτ ,

xγ], while under the self and mixed effect model, we have [1p xτ , xs, xm] for

parameters [µ, τ , γs, γm] and we let X1 = 1p and X2=[xτ , xs, xm].

In 2-treatment N-of-1 trials, the Id(τ, γ) is a function of the following quan-

tities:

x′τxτ = p, x′γxγ = p− 1, x′τxγ = h (4.8)

under model (4.3) for θ = (τ, γ), or

x′τxs = s, x′sxs = s, x′mxs = 0, x′τxm = −m, x′mxm = m (4.9)

under model (4.4) for θ = (τ, γs, γm). Hence, the information matrix can be

expressed in terms of p, s, m and h or simply by h and p only.

Since the information matrices can be expressed in terms of h and p only,

for a given p, the optimal p−period N-of-1 trial is completely determined by

h, and much simpler to construct than previously. We proceeded by defining

Id(τ) and found the design that maximizes the information.

If the estimation of carryover effects is the main interest under some cir-

cumstances, we can similarly define Id(γ) and determine the optimal design
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for carryover effects. One could also find the optimal design that simultane-

ously optimizes τ and γ or the one that optimizes the carryover effects under

the constraint that it optimizes for the direct treatment effects. We note that

the approach can also apply to find optimal designs for estimating some linear

combinations of the parameters of interest, such as τ + γ (See also Carriere

1993). Since we are primarily interested in the optimal estimation of the direct

treatment effects, we do not consider these cases here.

Under the traditional model

When we assume an independent error structure, the joint information of

τ and γ is,

Id(τ, γ) =
1

σ2
ε

 p h

h p− 1− 1
p


Then,

Id(τ) ∝ p− h2

p− 1− 1/p
.

Maximization of the information of τ is achieved by minimizing h2 =

(x′τxγ)
2. When h equals −1, the information attains its maximum. This

results in the optimal sequence consisting of pairs of AB and BA appearing

alternatively throughout the trial. Therefore, we have the following result.

Result 1. Under an independent error assumption, the optimal N-of-1 trial

for τ and γ is the one sequence design that consists of pairs of AB and BA

appearing alternatively.
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For example, the optimal N-of-1 trials for 4, 6, and 8 periods are the one

sequence design, ABBA, ABBAAB and ABBAABBA, respectively.

When we assume an equi-correlated error structure, we have,

Id(τ, γ) =
1

σ2
ε (1− ρ)

 p h

h p− 1− 1
p


Again, the maximum of the information matrix of τ is achieved by h = −1.

Therefore, the optimal N-of-1 design for τ is still the one treatment sequence,

which alternates treatment pairs as above for each level ρ of within-subject

correlation.

Result 2. Under an equi-correlated error assumption, the optimal N-of-1 trial

for τ and γ is the one sequence design that consists of pairs of AB and BA

appearing alternatively, regardless of ρ.

Hence, similarly to the case of independent errors, the optimal N-of-1 trials

for 4, 6, and 8 periods are the one sequence design, ABBA, ABBAAB and

ABBAABBA, respectively. One could switch A and B to obtain a dual

sequence with the same effect.

When we assume an autoregressive error structure, we can also compute

the joint information of τ and γ.

If we write,

Id(τ, γ) =
(1− ρ2)

σ2
ε

I11 I12

I21 I22

 ,
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then,

I11 = ρ2(p− 2) + p− 2ρh− (1− ρ)ρ2(s1 + sp)
2

p− pρ+ 2ρ
(4.10a)

I12 = I21 = ρ+ ρ2 + (1 + ρ)2h+
(1− ρ)ρsp(s1 + sp)

p− pρ+ 2ρ
(4.10b)

I22 = (1 + ρ2)(p− 2) + 1− 2ρh− 2ρ− 1− ρ
p− pρ+ 2ρ

(4.10c)

where s1 and sp are the 1st and pth entry of xτ , and s1 + sp takes values +2

or -2 or 0 depending upon the treatments given in the first and last periods

in the sequence. In a sequence that starts and ends with a distinct treatment,

we have s1 + sp = 0; otherwise, we have s1 + sp
2 = 4. This is determined by h

and p. Specifically, the sum is 0 if and only if h takes values in −(p−1),−(p−

1) + 4,· · ·,−(p− 1) + 4k. The k is a greatest integer that makes −(p− 1) + 4k

equal to −1 or −3, depending on whether the number of crossover pairs of the

design is odd or even. Therefore, optimal design for τ is determined by the

value of h and ρ.

The information for τ can be derived by (4.7). However, a closed form

for the optimal h is complicated. To find the optimal h, we assume that h is

continuous and seek a numerical solution. The optimal design can be found for

possible integer values of h, which is closest to the solution. Optimal results

for p = 4 to 12 are shown in the top portion of Table (4.3).

Under the model with self and mixed carryover effects

The joint information matrices are obtainable from (4.5) but have different
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forms depending on whether the value of s is odd or even in the design.

When we assume an independent error structure, the joint information

matrix is as following.

When s is odd,

Id(τ, γs, γm) =
1

σ2
ε


p s -m

s s− 1
p

0

-m 0 m

 ; (4.11)

and when s is even

Id(τ, γs, γm) =
1

σ2
ε


p s -m

s s 0

-m 0 m− 1
p

 . (4.12)

The information of τ is,

Id(τ) ∝

1− s
ps−1

, when s is odd;

1− m
pm−1

, when s is even.

The maximum information for τ is obtained when s = 0, or h = −(p− 1),

which means the sequence has only AB (or BA) pairs, as summarized in the

Result 3.

Result 3. Under the independent errors, the optimal N-of-1 trial for estimat-

ing the direct treatment contrasts under self and mixed model is the sequence

with only AB (BA) pairs with no alternation.

Therefore, the optimal design for estimating the treatment effect contrast is

the sequence with only AB or BA pairs, such as BABABA and ABABABAB.
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However, based on such sequences, the self carryover effect cannot be esti-

mated.

When we assume an equi-correlated error structure, the information matrix

is 1
1−ρ times the matrix under independent error assumption.

When s is odd,

Id(τ, γs, γm) =
1

σ2
ε (1− ρ)


p s -m

s s− 1
p

0

-m 0 m

 (4.13)

and when s is even,

Id(τ, γs, γm) =
1

σ2
ε (1− ρ)


p s -m

s s 0

-m 0 m− 1
p

 (4.14)

Again, the maximum of the information matrix of τ is achieved by s = 0,

or h = −(p− 1).

Result 4. Under the equi-correlated errors, the optimal N-of-1 trial for esti-

mating the direct treatment contrast is the sequence with only AB (BA) pairs

with no alternation.

The optimal design for estimating the treatment effect contrast is the same

as the design given by Result 3, such as BABABA and ABABABAB.

When we assume autoregressive error structure, the joint information can
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be written as,

Id(τ, γs, γm) =
(1− ρ2)

σ2
ε


Id11 Id12 Id13

Id21 Id22 Id23

Id31 Id32 Id33

 ,
where, when s is odd,

Id11 = ρ2(p− 2) + p− 2ρh− ρ2(s1 + sp)
2

Id12 = Id21 = (1 + ρ2)s± (s1 + sp)(−ρ+ ρ2)

Id13 = Id31 = −ρ(4m− 2p+ 1)− (1 + ρ2)m+ (s1 + sp)ρ
2sp

Id22 = (1 + ρ2)s− (1− ρ)2

Id23 = Id32 = ±sp(ρ− ρ2)

Id33 = (1 + ρ2)m+ 1 + 2ρ(p− 2)− ρ2

and when s is even,

Id11 = ρ2(p− 2) + p− 2ρh− ρ2(s1 + sp)
2

Id12 = Id21 = (1 + ρ2)s

Id13 = Id31 = −ρ(4m− 2p+ 1)− (1 + ρ2)m+ (s1 + sp)ρsp

Id22 = (1 + ρ2)s

Id23 = Id32 = 0

Id33 = (1 + ρ2)m+ 2ρ(p− 2)

The information for τ can be derived by (4.7). Similar as in the case

under the traditional model, a closed form for the optimal h is complicated

and numerical solution was sought. We present selected optimal results in the
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bottom portion of Table (4.3), as a function of h.

Table 4.3: The value of h determining the optimal N-of-1 trials for p =
4, 6, 8, 10, 12.

Model p Indep.
Equal-correlation Auto-correlation
ρ = 0.3 ρ = 0.7 ρ = 0.3 ρ = 0.7

Traditional

4 -1 -1 -1 -1 -1
6 -1 -1 -1 -1 -1
8 -1 -1 -1 -1 -1
10 -1 -1 -1 -1 -1
12 -1 -1 -1 -1 -3

Self and
mixed

4 -3 -3 -3 -1 -1
6 -5 -5 -5 -1 -1
8 -7 -7 -7 -1 -3
10 -9 -9 -9 -1 -1
12 -11 -11 -11 -3 -3

To summarize, the optimal N-of-1 trials for estimating direct treatment

effects are determined by the three feature parameters h, s, and m. How-

ever, specifying one of these along with p determines the design sequence, as

illustrated in Table (4.2). In this section, we use h to summarize the optimal

designs under both the traditional and self and mixed models for 4,6,8,10 and

12-period N-of-1 trials. As the designs are dependent on the level of corre-

lation coefficient, we consider a low (0.3) and a high (0.7) value for ρ . The

optimal trials for estimating τ are summarized in Table (4.3) in terms of the

corresponding h values.

Table (4.3) shows that the optimal N-of-1 trials for the direct treatment

effects depend on the assumed models and the covariance structures. Under

the traditional model, the optimal trial for the direct treatment effect uses the

sequence with h = −1 for all covariance structures. Therefore, the optimal

N-of-1 trial for estimating the direct treatment effect is to alternate between
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AB and BA pairs. In case that the carryover effect is of interest, it can be

easily shown that these designs are also optimal for estimating the carryover

effect, which can be obtained using the same technique for optimal designs in

treatment effects.

Under the self and mixed effects model, the optimal N-of-1 trial for the

direct treatment effect uses a sequence with h = −(p−1) for both uncorrelated

and equal-correlated covariances. Therefore, the optimal N-of-1 trial is to use

only AB pairs throughout.

Under the auto-regressive covariance structure, however, the optimal de-

signs depend on the value of p and the auto-regressive correlation ρ. Generally,

the optimal design uses AB and BA pairs alternately, but as ρ or p increases,

some abnormalities are observed.

4.5 Optimal Aggregated N-of-1 Trial Designs

with N > 1

In addition to the interest in the patient-based evidence of a treatment con-

trast, it may also be desirable to obtain a population average effect of treat-

ments. Aggregating the series of N-of-1 trials can give such an estimate of

average effect (Zucker 2010). Using the one sequence that was found optimal

for N-of-1 trial to all patients seems to be an obvious choice. However, it

might not optimize the trial for estimating the effects on the average patient

and therefore, using the one sequence that is optimal for a single individual

patient to all patients might not serve this purpose.

The optimal designs for aggregated N-of-1 trials can also be derived from
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the information matrices we obtained, similarly as for N-of-1 trials for one

patient, by allowing j = 1, ..., N with N > 1. We approach the problem

in two steps; first we optimize single N-of-1 trials, as the primary goal is to

optimize estimating the effects for each patient. Next, we optimize the overall

N-of-1 trials in aggregation.

To find the optimal design, we typically choose Nk for k = 1, ..., s to allocate

subjects to a sequence s. The sufficient condition on Nk was given by Laska and

Meisner (1985) for a design to be optimal. The condition is called a duality

in the design matrices, as defined earlier. Among other things, it permits

simplification of the search for the optimal choice for Nk (see also Carriere

1992).

In previous sections, we constructed the optimal N-of-1 trial for N = 1

patient, which is a one-sequence design for all p periods. As noted earlier for

Table 1, designs with the same value of h perform equally in estimation preci-

sion. Although all or only one of those with an equally optimal h can be used

in a trial, practical consideration will lead to using the least necessary number

of sequences for ease of treatment administration. Further, in Section 4, we

found that there is a unique N-of-1 trial sequence in all p-period experiments.

Since the designation of A and B is arbitrary, the optimal N-of-1 trial can

be obtained by reversing the order of treatment administration. For example,

the optimal 6-period N-of-1 trial is ABBAAB under the traditional model

for N = 1. Its dual, BAABBA also has the same value of h = −1 and is

optimal. Hence, when N = 1, either of these two sequences will provide the

maximum amount of information. When N > 1, we can adopt both of these

sequences, as they maximize the information, and this approach also simplifies

the search for the optimal design for estimating the treatment effect for the
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average patient, satisfying the duality condition in Laska and Meisner (1985)

. Based on this rationale, we make the following two propositions.

Proposition 1 The optimal design for aggregated N-of-1 trials under the

traditional model is to allocate the same number of subjects to the optimal

sequence with AB and BA alternating and its dual.

For example, the optimal design for aggregated six-period N-of-1 trials is

the two-sequence design using sequences ABBAAB and BAABBA, allocat-

ing the same number of subjects to each. For a balanced design, N must be a

multiple of 2.

Proposition 2 The optimal design for aggregated N-of-1 trials under the self

and mixed model is to allocate the same number of subjects to the optimal se-

quence with no alternation between AB and BA pairs and its dual. However,

under the autocorrelation errors, the optimal design is to allocate the same

number of subjects to the optimal sequence that alternates between AB and

BA pairs subsequently and its dual.

For example, the optimal aggregated 6-period N-of-1 trials for multi-clinic

setting is to use the two-sequence design ABABAB and BABABA under the

equal or uncorrelated errors, and to use the two-sequence design ABBAAB

and BAABBA under the autocorrelated errors, allocating the same number

of subjects to each sequence.

From each sequence, we can obtain individual patient specific treatment
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effects and by aggregating these one sequence N-of-1 trials, we can quantify

the average treatment effects.

4.6 Numerical Comparisons

To appreciate the practical performance of the optimal N-of-1 trials we con-

structed, we compare the efficiencies of some selected designs in estimating the

treatment and carryover effects under the two models. We also investigate their

performance in some aggregation for estimating the average treatment effect.

We limit the comparison to the cases with independent and equi-correlation

errors.

Recall that the optimal N-of-1 trials are either to alternate between AB and

BA pairs or simply to repeat the AB pair in a sequence. Under the traditional

model, the optimal N-of-1 trial uses ABBAAB and ABBAABBA for 6 and

8 period experiments, respectively. We refer them to S63 and S83. Under the

self and mixed effects model, the optimal N-of-1 trial is to use ABABAB and

ABABABAB for 6 and 8 period experiments, respectively, which we refer to

S61 and S81. Some other mixtures are also considered, as defined in Table

4.4. Table 4.4 shows that the optimal individual-based N-of-1 trials are S63

and S81 under the respective models, as expected. However, there are no

real practical differences among various N-of-1 trials under the self and mixed

model. Further, S61 and S81 cannot estimate self carryover effects, making

S63 and S83 preferable. Therefore, recommendation for robust and optimal

N-of-1 trials is to use a sequence alternating between AB and BA pairs, such

as S63 and S83, under all models.

Based on these single sequence trials, we also consider aggregated N-of-1
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trials to numerically prove Propositions 1 and 2. We constructed 5 aggre-

gated N-of-1 trials for p = 6, 8 with N = 32 and compare their efficiencies in

estimating the average treatment effects, as follows.

• A61. ABABAB and its dual with 16 subjects in each sequence

• A62. ABABBA and its dual with 16 subjects in each sequence

• A63. ABBAAB and its dual with 16 subjects in each sequence

• A64. ABBAAB,ABABBA and their duals with 8 subjects in each

sequence

• A65. All 8 sequences, S61–S64 and their duals with 4 subjects in each

sequence

• A81. ABABABAB and its dual with 16 subjects in each sequence

• A82. ABABBABA and its dual with 16 subjects in each sequence

• A83. ABBAABBA and its dual with 16 subjects in each sequence

• A84. ABABBABA,ABBABAAB and their duals with 8 subjects in

each sequence

• A85. All 8 sequences, S81–S84 and their duals with 4 subjects in each

sequence

The design A63 uses the optimal sequence S63 under the traditional model;

the design A61 uses the optimal sequence S61 under the self and mixed model

although the self carryover effect is not estimable; the design A62 is a slight

rearrangement of designs A61 and A63; the design A64 is a combination of

designs A62 and A63; the design A65 contains all 8 possible sequences of a
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6-period design. Designs A81–A85 are also similarly constructed from various

N-of-1 trials. We compare these designs under the traditional model and the

self and mixed model as discussed in Section 4.3. These are also summarized

in Table 4.4, in terms of the variances for estimating τ , γ, γs and γm, divided

by their leading constants σ2/N (under an independence error) or σ2(1−ρ)/N

(under an equi-correlated error).

Table 4.4: Variances of the estimators of treatment and carryover effects in
six- and eight-period designs

Design h
Traditional model Self and mixed model
var(τ̂) var(γ̂) var(τ̂) var(γ̂s) var(γ̂m)

S61: ABABAB -5 1.208 1.500 1.208 NE 1.500
S62: ABABBA -3 0.242 0.300 1.250 3.000 1.500
S63: ABBAAB -1 0.173 0.214 1.214 1.714 1.714
S64: ABBABA -3 0.242 0.300 1.250 3.000 1.500
A61=S61+dual 1.208 1.500 1.208 NE 1.500
A62=S62+dual 0.242 0.300 1.250 3.000 1.500
A63=S63+dual 0.173 0.214 1.214 1.714 1.714
A64=S63+S62+duals 0.193 0.240 1.210 2.063 1.563
A65=S61:S64+duals 0.242 0.300 1.214 2.535 1.521
S81: ABABABAB -7 1.146 1.333 1.146 NE 1.333
S82: ABABBABA -5 0.229 0.267 1.167 2.667 1.333
S83: ABBAABBA -1 0.127 0.148 1.150 1.600 1.400
S84: ABBABAAB -3 0.150 0.174 1.147 1.647 1.412
A81=S81+dual 1.146 1.333 1.146 NE 1.333
A82=S82+dual 0.229 0.267 1.167 2.667 1.333
A83=S83+dual 0.127 0.148 1.150 1.600 1.400
A84=S82+S84+dual 0.176 0.205 1.147 1.945 1.358
A85=S81:84+dual 0.176 0.205 1.147 1.945 1.358
Note: NE means ’Not estimable’. For N = 1, a six-period N-of-1 trial may
consider any one of S61,· · ·, S64. For N > 1, aggregated six-period N-of-1 trials
may use a combination of these, A61,· · ·, A65. Similarly, an eight-period N-of-
1 trial may consider any one of S81,· · ·, S84. For N > 1, aggregated six-period
N-of-1 trials may use a combination of these, A81,· · ·, A85. The variances
reported are divided by σ2

ε /N (under an independence error) or σ2
ε (1− ρ)/N

(under an equi-correlated error).

Table 4.4 shows that under the traditional model, the design D63 with the
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optimal sequence ABBAAB and its dual provides the best precision for esti-

mating both the direct treatment effect and the carryover effect for the average

patient. Each of the sequences optimally estimates the individual-based treat-

ment effect. The least efficient choice would be the design A61. Design A65,

which has been used in a recent multi-clinical trial (Zucker 2010), is rather

inefficient as well, not to mention the unnecessarily lengthy administration

time and cost required to manage many treatment groups, which requires the

number of patients to be a multiple of 8.

When using the self and mixed effects model, Design A61 provides the best

precision for estimating the direct treatment effect and the mixed carryover

effect. However, the self carryover effect is not estimable. Overall, A63 is

the optimal choice even in this case. However, all designs performed rather

similarly with over 95% relative efficiency under the self and mixed effects

model, as observed earlier for single N-of-1 trials.

A similar observation is possible for 8-period designs and their sequences.

In summary, it appears that there is no discernable advantage to distinguish

among the two models and various error structures.

Overall, S63 and S83 for single N-of-1 trials or designs A63 and A83 in

aggregation of S63, S83 and their duals seem to be the best under both models.

They are optimal for estimating direct treatment and mixed carryover effects.

Further, they are optimal for estimating both the treatment and carryover

effects under the traditional model. Hence, we conclude that the optimal six-

period aggregated N-of-1 trials is ABBAAB and its dual BAABBA, while

the optimal eight-period aggregated N-of-1 trials is ABBAABBA and its dual

BAABBAAB. For an N-of-1 trial, using one of these sequences will optimize

the treatment for an individual patient.
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In general, we suggest that alternating AB and BA pairs in sequence will

result in a nearly optimal p−period design, if not the optimal one, under all

models we considered, for estimating both individual effects in N-of-1 trials

and average effects in aggregated N-of-1 trials.

4.7 Discussion

N-of-1 trials are extremely useful in individual patient-focused medical exper-

iments. As far as we are aware, no guidelines are available in the literature

on how to plan such a trial optimally. We propose 2-treatment practically

optimal N-of-1 designs, which consist of AB and BA pairs.

A straight application of the two-treatment optimal design in the liter-

ature with A to AB and B to BA can result in a design suitable only for

aggregated N-of-1 trials, as it requires more than one sequence (and hence

more than one patient) to be used. We demonstrated that not all of the

suggested sequences are optimal in N-of-1 trials nor they are optimal for esti-

mating effects at the average level. For example, when p = 4, the literature

gives ABBA/AABB and their duals as the optimal design. Applying this result

to 8-period N-of-1 trials, we would need to consider at least four sequences,

ABBABAAB/ABABBABA and their duals. However, none of these four

sequences are optimal for N-of-1 trials for p = 8. Also, these sequences, when

aggregated, are not optimal for estimating effects for the average patient.

For the first-order residual effect model with uncorrelated or equal-correlated

errors, the optimal N-of-1 trial is to use the sequence consisting of alternating

AB and BA pairs. We can use its dual sequence with the same effect. For

the self and mixed effect model, the optimal N-of-1 trial is to use the sequence
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consisting of only AB pairs. Also, its dual can be used with the same effect.

However, numerical calculation of the estimation precision using several

six- and eight-period designs revealed the actual performance of a particular

design, giving us practical guidelines. Overall, we conclude that alternating

between AB and BA pairs in sequence will result in practically optimal N-of-1

trial for a single patient, if not the optimal, under all the models we considered

without the need to guess or conduct a pilot study to conform at the correlation

structure. Alternating between AB and BA pairs in a single trial is nearly

robust to misspecified error structures. When an experiment has been carried

out with the optimal N-of-1 trial and additional patients are accrued in the

trial, we can aggregate these N-of-1 trials optimally by allocating the same

number of patients to its dual sequence, thereby optimizing the trial for both

the individual and average patients.
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Chapter 5

Multiple objective response

adaptive crossover designs with

binary outcomes
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Abstract

A multiple-objective allocation strategy was recently proposed for con-

structing response-adaptive repeated measurement designs for continuous re-

sponses. We extend the allocation strategy to constructing response-adaptive

repeated measurement designs for binary responses. The approach with bi-

nary responses is quite different from the continuous case, as the information

matrix is a function of responses, and it involves non-linear modeling. To

deal with these problems, we first build the design based on success proba-

bilities. Then we illustrate how various models can accommodate carryover

effects based on logits of response profiles as well as any correlation structure.

Through computer simulations, we find that the allocation strategy developed

for continuous responses also works well for binary responses. As expected, de-

sign efficiency in terms of mean squared error drops sharply, as more emphasis

is placed on increasing treatment benefit than estimation precision. However,

we find that it can successfully allocate more patients to better treatment

sequences without sacrificing much estimation precision.

5.1 Introduction

Standard randomized designs, such as completely randomized controlled tri-

als or crossover designs, usually employ a simple randomization scheme that

equally allocates study subjects to each treatment group or treatment se-

quence. Equal randomization often allows statistically efficient and powerful

comparisons of treatment effects. However, equal treatment allocation may
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pose ethical concerns, especially in clinical settings where a treatment begins

to show clearly inferior or superior. It is unethical when the needs of pa-

tients in the study come second to a quest for balanced statistically optimal

data. To cope with such situations, alternative designs with adaptive alloca-

tion schemes have been advocated (Hu and Rosenberger, 2006). For example,

in a play-the-winner rule design, using a type of response-adaptive design, we

can modify the treatment allocation rule based on patients’ responses already

accrued in the trial. This approach allows assigning more patients to bene-

ficial treatment groups (Zelen, 1969; Wei and Durham, 1978). In addition,

a response-adaptive randomization procedure can be easily implemented by

adding a loop to a standard randomization routine, and the procedure can be

simulated under various parameterizations to determine the appropriateness

for use in clinical trials (Hu and Rosenberger, 2006).

There are various types of response-adaptive designs, depending on the

goals of a particular study. Adaptive treatment allocation is typically used

to fulfill a single objective such as increasing the number of patients assigned

to the eventual beneficial treatment group (Zelen, 1969; Wei and Durham,

1978; Armitage, 1975; Kushner, 2003; Liang and Carriere, 2009), reducing the

sample size in a trial (Liang and Carriere, 2012), or increasing the estima-

tion precision of a treatment effect (Kunert and Stufken, 2008). One could

incorporate covariates into single-objective response-adaptive designs (Kunert

and Stufken, 2002). To conduct optimal designs satisfying multiple objec-

tives, two standard approaches have been used: constrained and compound

optimal designs. These designs are essentially equivalent (Afsarinejad and

Hedayat, 2002; Mehtala, Auranen and Kulathinal, 2011). Some investiga-

tors have developed methods of obtaining multiple objective designs for non-
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longitudinal settings (Bandyopadhyay, Biswas and Mukherjee, 2011; Biswas

and Dewanji, 2004; Biswas, Park and Bhattacharya, 2010). Recently, Liang

and Carriere (2009) developed a new treatment allocation scheme to construct

multiple-objective response-adaptive repeated measurement designs (RMD),

where study subjects can receive two or more treatments (not necessarily the

same treatments) over a time period. Their adaptive allocation strategy can

simultaneously achieve two objectives: potentially preventing patients from

being exposed to inferior treatments and enhancing the precision of the esti-

mates of parameters. They extensively discussed the new adaptive allocation

rule for multiple-objective response-adaptive designs, and constructed practi-

cal applications for two- and three-period RMDs with continuous responses

(Liang and Carriere, 2009).

The primary goal of this chapter is to investigate the applicability of the

same adaptive allocation strategy for two-treatment RMDs with binary re-

sponses, and to deliberate if the same strategy would work well for binary out-

comes. The utility of the new proposed multiple-objective response-adaptive

RMDs will be demonstrated on several practically useful designs with two,

three, and four periods.

This chapter is organized as follows. Section 2 briefly reviews recent work

on multiple-objective response-adaptive RMDs with continuous responses. Sec-

tion 3 illustrates the allocation approach with binary responses and the as-

sumptions we employ. Section 4 assumes equal carryover effects model and

constructs the two-treatment two-, three- and four-period multiple-objective

response-adaptive designs in computer simulations. Section 5 assumes un-

equal carryover effects model and constructs the multiple-objective response-

adaptive designs in computer simulation for two treatments, two and three
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periods. A numerical example is given in Section 6. Finally, we give our

conclusions and suggestions for future work in Section 7.

5.2 Multiple-Objective Response-Adaptive RMD

This section briefly introduces methodologies and assumptions used in con-

structing multiple-objective response-adaptive RMDs for continuous outcomes

under the self- and mixed-carryover effects model with random subject effects

(Liang and Carriere 2009). In a clinical trial, we desire a randomized allocation

scheme to simultaneously achieve a dual objective: increasing the precision of

estimation and decreasing the number of patients allocated to unfavorable

treatments. We use the information matrix and an evaluation function, re-

spectively, to assess and evaluate the two goals.

Given the assignment history and the responses of the first j patients, a

treatment sequence k will be assigned to the (j + 1)th patient such that it

maximizes the following assignment criterion:

Φj,k = λ
∆(̂Ikj+1(θ))

∆(̂Ik
′
j+1(θ))

+ (1− λ)
fj,k
fj,k′′

, (5.1)

where Îkj+1(θ) represents the estimated information matrix for θ, a vector of

parameters of interest, given the information of the first j patients’ responses,

and the assumption that the (j + 1)th patient will be assigned to a treatment

sequence k (Liang and Carriere, 2009). The ∆(.) can be any optimality crite-

rion, for instance, the determinant (D-optimality), the trace (A-optimality),

or the maximum eigenvalue (E-optimality) of a matrix. The fj,k is an evalu-
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ation function for treatment sequence k based on the responses of the first j

patients. Here, k
′

denotes the treatment sequence that maximizes ∆(.), and

k
′′

denotes the treatment sequence that maximizes fj,k. These k
′

and k
′′

are

not necessarily the same.

In Equation (5.1), the first term is to find a treatment sequence that could

maximize the information matrix, while the second term is to detect a treat-

ment sequence that performs best clinically given the first j patients’ responses.

Thus, the coefficient λ, a constant between zero and one, can weigh and bal-

ance the two objectives. For example, if λ takes the value of one, the resulting

treatment sequence will achieve the most precise estimation but ignore any

treatment advantages (Kushner, 2003). If λ is set to zero, we are only con-

cerned with the efficacy of the treatments as measured by a pre-selected eval-

uation function (Liang and Carriere, 2009). Therefore, by choosing a suitable

value of λ prior to the trial, we can find a treatment sequence that balances

the two objectives and maximizes the value of Φ, as the best treatment se-

quence for the new (j + 1)th patient. This procedure will continue until all

subjects are allocated. Liang and Carriere (2012) recently expanded the al-

location approach to allocate multiple subjects at the same time. We will

consider allocating one patient at a time to achieve the two objectives.

5.3 Allocation Scheme with Binary Responses

We begin by assuming that the patients’ dichotomous responses (success or

failure) are independently distributed with a Bernoulli distribution. With

repeated measurements within subjects, the chances of success or failure are

likely to be correlated from one period to the next. Further, some residual
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treatment effects may still remain in subsequent periods. We shall describe

how we deal with these two issues - correlation in repeated measures and

carryover effects.

With binary responses, the approach is quite different from the continuous

case. First, we recognize that the eventual data analysis involves non-linear

models. Second, due to the special structure of binary data, designs for bi-

nary responses depend on the outcomes, unlike those for continuous responses.

Hence, rather than trying to capture the expected mean responses by devising

a suitable crossover design model, we separate the two issues of building a de-

sign and data analysis, and work with the success probabilities of treatments

measured by the binary outcomes. Then any carryover effects can be accom-

modated in a model for the data analysis as well as any correlations among

repeated measures. Basically, our approach to building an adaptive design for

binary responses follows the modeling strategies illustrated in Kenward and

Jones (1987).

5.3.1 Adaptive Design Construction

Let δti = (δti1, δti2, ..., δtij, ..., δtiJ)′ be a vector of treatment indicators given

in period i for all J subjects who have been treated in the study. t is the

treatment index, where t = A or B in a two-treatment design, i is the period

index with i = 1, 2, ...p, where p is the number of periods, j is the subject

index with j = 1, 2, ...J , where J is the total number of subjects treated. Let

δtij=1 if the jth patient receiving treatment t in period i and δtij=0 otherwise.

Let ytij be 1 if the treatment given in period i for subject j is a success and 0

otherwise. Let mti = ΣJ
j=1δtij be the number of patients receiving treatment
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t in period i, and let Sti = ΣJ
j=1ytijδtij be the number of successes in period i

for treatment t.

Let νti be the maximum likelihood estimator of the probability of success

for treatment t in period i. In a two-treatment p-period design, νti would be

νA1, νA2, ..., νAp, νB1, ..., or νBp. In our model, the success probability of a given

treatment in one period may differ from that in a different period because of

treatment-by-period interaction effect or carryover effect, which is similar to

the model that was considered by Bandyopadhyay et al.(2009) in their two-

period two-treatment repeated measurement designs. Assume that νtis are

independent. The likelihood function based on all responses after the first J

patients have been treated in the trial is:

LJ = ΠtΠ
p
i=1ΠJ

j=1[ν
ytij
ti (1− νti)1−ytij ]δtij

= ΠtΠ
p
i=1[νStiti (1− νti)mti−Sti ].

The log-likelihood function is written as:

log(LJ) =
∑
t

p∑
i=1

[Stilog(νti) + (mti − Sti)log(1− νti)].

Equivalently, in a two-treatment p-period design, if we let l = 1, 2, ..., 2p,

the log-likelihood can be rewritten as:

log(LJ) =

2p∑
l=1

[Sllog(νl) + (ml − Sl)log(1− νl)],

where Sl denotes the lth element of S = (SA1, ..., SAp, SB1, ..., SBp)
′, the set of

number of successes with treatment A and B in each period. For l ≤ p, Sl
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denotes the number of successes for treatment A in period l, and for l > p,

Sl denotes the number of successes for treatment B in period (l − p). For

instance, when l = p + 1, Sl = SB1 represents the number of successes for

treatment B in period 1. The νl and ml are the corresponding success prob-

ability and the number of patients, respectively, that is, the lth element from

ν = (νA1, ..., νAp, νB1, ..., νBp)
′ and m = (mA1, ...,mAp,mB1, ...,mBp)

′, respec-

tively.

Let ν (a vector of successes probabilities) be the vector of the parameters

of interest. Then the expected information matrix for ν, based on the first J

patients, is a 2p× 2p diagonal matrix:

IJ(ν) = Diag[E(
Sl
ν2
l

+
ml − Sl
(1− νl)2

)], 1 ≤ l ≤ 2p.

Under the assumption that the (J + 1)th patient will be given treatment

sequence k, the estimated information matrix conditionally on the first J pa-

tients then becomes:

ÎJ+1(ν̂) = Diag[
Skl
ν̂2
l

+
mk
l − Skl

(1− ν̂l)2
], 1 ≤ l ≤ 2p, (5.2)

where Skl =Sl + ν̂ldl
k, ml

k = ml +dl
k, ν̂=(ν̂A1, ...ν̂Bp), and dl

k is the lth element

from dk, a set of indicator variables of length 2p for treatment sequence k. As

an example, dk = (1, 0, 1, 0, 1, 0)′ corresponds to treatment sequence k = ABA

in a two-treatment three-period RMD with treatment A applied in periods 1

and 3 and treatment B applied in period 2.

In our setup, an evaluation function fJ,k for a treatment sequence k based

on the first J patients, is defined as the average total number of successes
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over all subjects receiving treatment sequence k, as in Example 1 of Liang

and Carriere (2009). For example, in a two-period design, the range of the

evaluation function is 0 (no success over both periods for all subjects receiving a

particular treatment sequence) to 2 (two successive successes over both periods

for all subjects receiving a particular treatment sequence). That is:

fJ,k =
dk
′ × S

nk
, (5.3)

where nk=dk
′ ×m is the number of patients receiving treatment sequence k.

We are now ready to propose and define the optimal adaptive allocation,

which will be demonstrated in simulation.

Proposition 1. With the information matrix (5.2) and the evaluation func-

tion (5.3) for binary responses, the (J + 1)th patient will be allocated to a

treatment sequence that maximizes the selection criterion (5.1), while accom-

plishing the two objectives.

Without loss of generality, the criterion of D-optimality is used in Equation

(5.1). Similar to the case of continuous responses, this procedure will continue

until all subjects are allocated. Note that how we incorporate carryover effects

is completely determined by νti for i = 2, ....p in ν = (νA1, ..., νAp, νB1, ..., νBp)
′.

For example, in a two-period design, if νA2 6= νB2, it corresponds to the model

with unequal carryover effects. If νA2 = νB2, carryover effects are expected to

be equal or ignorable in the data analysis from the resulting design (Bandy-

opadhyay, Biswas and Bhattacharya 2009). Therefore, our strategy builds

the desired design flexibly based on what is expected of carryover effects in

the experiments. This is unlike the continuous responses, where the design is
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completely dependent on a chosen model.

5.3.2 Design Efficiency

There are various ways to assess the efficiency of a constructed design. As we

are concerned with the error and possible bias in the estimation of parameters

of interests, θ , we compute a matrix of mean squared error (MSE) for θ as:

MSE = E[(θ̂ − θ)(θ̂ − θ)T ]

where θ̂ is an estimator of θ. In simulation studies, it is often estimated from

results of repeated B runs as:

M̂SE =

∑B
b=1(θ̂b − θ)(θ̂b − θ)T

B
, (5.4)

where θ̂b is the maximum likelihood estimate of θ obtained in the bth simulation.

The relative efficiency (RE) of a design is defined relatively to a reference

design by comparing their respective MSEs. By denoting MSE1 and MSE0

as the matrix of MSE for a proposed adaptive design and the reference design,

we compare their RE in terms of A-, D-, or E-optimality criteria based on

Kiefer (1975), respectively:

REA =
trace(MSE0)

trace(MSE1)
, RED =

|MSE0|
|MSE1|

, or REE =
maxeigenvalue(MSE0)

maxeigenvalue(MSE1)
,

When RE < 1, the adaptive design is less efficient than the reference design

in terms of the MSE, but we note that this measure ignores the treatment

benefit for the patients. Further, reference designs are not necessarily the
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optimal designs. We do not yet know what the optimal designs are for binary

responses. In this paper, we shall use the D-optimality criteria for estimating

θ = ν, the success probabilities, and use the designs that are known to be

optimal as the reference designs, although they were constructed for continuous

responses.

5.4 Response-Adaptive RMD for Binary Re-

sponses with equal carryover effects

5.4.1 Models

In this subsection, we briefly discuss how carryover treatment effects can be

accommodated in the analysis. In our adaptive design construction with bi-

nary responses, the designs are built based on the success probability spec-

ified for each period, νti, i = 1, ..., p and t = 1(A), 2(B), as we specify

ν = (νA1, ..., νAp, νB1, ..., νBp)
′. Below, we will give an example of possible

models based on an AB/BA design.

Specifically, let Yijk represent the response from the jth subject in group

k in period i, where k = 1(AB), 2(BA), i = 1, 2, j = 1, ..., nk, and nk is the

number of subjects in group k. Then, we can build the logit of the probabilities

of a success as logitP (Y1j1 = 1) = µ+π1+τ1, logitP (Y2i1 = 1) = µ+π2+τ2+γ1,

logitP (Y1j2 = 1) = µ + π1 + τ2, and logitP (Y2j2 = 1) = µ + π2 + τ1 + γ2 for

the general mean µ, the ith period effect πi, the direct and residual treatment

effects due to treatment t, τt and γt. This results in 2×4 response profiles of

(y1jk, y2jk) ∈ ((0,0), (0,1), (1,0), (1,1)) for all j from each treatment sequence
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group and the overall likelihood becomes:

L =
∏
j=1

nk∏
k=1

2
P (Y1jk = y1jk, Y2jk = y2jk). (5.5)

Kenward and Jones (1987) assume an independence model for data from

two periods, while Ezzet and Whitehead (1992) consider a random effects

model to accommodate correlated binary responses over two periods. Hence,

various forms of carryover effects and possible dependence structures can be

considered for data analysis. In this section, we shall focus on constructing

adaptive designs.

5.4.2 Constructing Response-Adaptive RMD

We construct two-, three-, and four-period response-adaptive designs to com-

pare two treatments. We simulate various response-adaptive RMDs with bi-

nary responses (1=success, 0=failure) under different parameterizations. For

each parameter setting, we perform 5,000 simulations to smooth out random-

ness. We consider λ=1, 0.9, 0.7, 0.3, and 0, and the total number of patients

in a trial, N=40, 80, and 100. Table (5.1) gives the detailed parameter set-

tings in the presence of a treatment difference between treatments A and B.

When the treatment difference is absent, we assume all νtis, the probability

of success for treatment t in period i, are equal to 0.5. The D-optimality of

a matrix of mean squared error for a vector of success probabilities is used to

assess the efficiency of an adaptive design. A relative efficiency is computed

to compare an adaptive design with a fixed reference design with a relative

efficiency greater than 1, indicating that the adaptive design is more efficient

than the reference design (Liang and Carriere 2009).
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Table 5.1: Parameter setting for constructing adaptive designs

Design Success Treatment Expected responses Expected sum of Order of
Probabilities sequence of success probability performance

Two-treatment νA1 = 0.5 AA (0.5, 0.6)′ 1.1 1
two-period νA2 = 0.6 AB (0.5, 0.3)′ 0.8 3

νB1 = 0.4 BB (0.4, 0.3)′ 0.7 4
νB2 = 0.3 BA (0.4, 0.6)′ 1.0 2

Two-treatment νA1 = 0.5 AAA (0.5, 0.6, 0.7)′ 1.8 1
three-period νA2 = 0.6 AAB (0.5, 0.6, 0.2)′ 1.3 5

νA3 = 0.7 ABA (0.5, 0.3, 0.7)′ 1.5 3
νB1 = 0.4 ABB (0.5, 0.3, 0.2)′ 1.0 7
νB2 = 0.3 BBB (0.4, 0.3, 0.2)′ 0.9 8
νB3 = 0.2 BBA (0.4, 0.3, 0.7)′ 1.4 4

BAB (0.4, 0.6, 0.2)′ 1.2 6
BAA (0.4, 0.6, 0.7)′ 1.7 2

Two-treatment νA1 = 0.5 ABAA (0.5, 0.3, 0.7, 0.8)′ 2.3 1
four-period νA2 = 0.6 ABBA (0.5, 0.3, 0.2, 0.8)′ 1.8 4

νA3 = 0.7 AABA (0.5, 0.6, 0.2, 0.8)′ 2.1 3
νA4 = 0.8 AABB (0.5, 0.6, 0.2, 0.1)′ 1.4 7
νB1 = 0.4 BABB (0.4, 0.6, 0.2, 0.1)′ 1.3 8
νB2 = 0.3 BAAB (0.4, 0.6, 0.7, 0.1)′ 1.8 4
νB3 = 0.2 BBAB (0.4, 0.3, 0.7, 0.1)′ 1.5 6
νB4 = 0.1 BBAA (0.4, 0.3, 0.7, 0.8)′ 2.2 2

Note: The νti denotes the probability of success (favorable outcome) for treatment t given
in period i. According to Equation (3), the value of evaluation function increases by in-
creasing the sum of successes, equivalently the sum of success probabilities. Consequently,
the performance of each treatment sequence is ordered according to the second last column.

In our simulation, an evaluation function for a treatment sequence is de-

fined as the average total number of successes over all subjects receiving a

particular treatment sequence, as described in Section 3. Table (5.1) (last

column) summarizes the order of the performance of each treatment sequence

(with 1 being the best) under the given evaluation function for each param-

eter setting with unequal treatment effects. For example, in the simulated

two-period design, treatment sequence AA is the best of the four treatment

sequences, followed by BA, AB and BB in that order. When there are no

treatment differences, the allocation is uniform to all sequences and identical

to the case of λ = 1, as expected. Therefore, in this section, we present the de-

tailed simulation results for the case of unequal treatment parameter settings
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only.

5.4.3 Two-Period Designs

In two-period two-treatment designs, four different treatment sequences are

available for assignment. In the simulation, the first four subjects are ran-

domly assigned, one for each treatment sequence. The rest of the subjects

are allocated adaptively. Table (5.2) shows the average number of subjects

assigned to each of the four treatment sequences. When the treatment differ-

ence is absent, the strategies with all λ assign an approximately equal number

of subjects to each of the four treatment sequences. Even when the treatment

difference is present, the patterns for λ = 1 are similar to the equal success

probability case, with equal numbers of subjects assigned to a dual block,

as expected. However, with λ < 1, adaptive designs successfully recognize

and assign more subjects to the best treatment sequence AA and fewer sub-

jects to the worst treatment sequence BB. As λ approaches 0 and decreases,

the proportion of subjects receiving the best treatment increases; whereas the

proportion of subjects receiving the worst treatment decreases.

The estimated success probabilities of treatments in different periods, ν̂tis,

and the estimation precision are also calculated for both absence and pres-

ence of a treatment difference. The results indicate that the spread of the

estimates of νtis decreases when the total number of patients increases, consis-

tent with the setting (results not shown). Figure (5.1) (first plot) illustrates

the relative efficiency of an adaptive design to a reference design, the four-

treatment-sequence design with AA/AB and their duals, which is optimal for

continuous responses. It shows that adaptive designs with a large λ are almost
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Table 5.2: Results of the adaptive allocation of subjects for each treatment
sequence for p=2

N λ NAA NAB NBB NBA

40 1 10.04 9.96 10.04 9.96
0.9 12.93 8.41 8.12 10.54
0.7 15.76 6.87 5.25 12.12
0.3 16.9 6.17 4.56 12.37

0 17.5 5.9 4.39 12.22

80 1 20.47 19.53 20.47 19.53
0.9 29.29 14.83 12.63 23.25
0.7 38.17 10.13 6.63 25.06
0.3 38.66 10.03 6.24 25.07

0 38.64 9.96 6.29 25.11

100 1 25.43 24.57 25.43 24.57
0.9 39.36 17.09 14.47 29.08
0.7 49.01 10.82 7.09 33.08
0.3 49.59 11.61 7.17 31.63

0 49.99 11.15 7.3 31.56

Note: Entries are the average number of patients allocated to each sequence at the end of

the trial for the situation given in Table (5.1).

as efficient as the reference design, but they allocate more subjects to better

treatment sequences. As expected, adaptive designs with a small value of λ

are not efficient according to the purely statistically measure of conventional

efficiency based on the D-optimality of a matrix of mean squared error for

ν = (νA1, νA2, νB1, νB2)′, but they recognize the favorable performance of a

treatment sequence.

5.4.4 Three-Period Designs

In two-treatment three-period RMDs, eight different treatment sequences are

available. At the initial stage, eight subjects are assumed to enter in the study,

one for each treatment sequence. As with the two-period designs, we also
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Figure 5.1: Relative efficiencies of adaptive designs to the fixed designs

Note: The solid lines (relative efficiency=1) indicate the reference design, which are fixed

optimal designs for continuous responses with AA/AB and their duals for p=2; ABB/BAA

for p=3, and ABBA/AABB and their duals for p=4.

consider two situations - treatments A and B have an equal success probability

in all periods, i.e. νti = 0.5, for t = A or B and i = 1, 2, and 3; and there

are treatment differences between the two treatments. According to the given

parameter setting in Table (5.1), the treatment sequence AAA has the largest

total number of successes, followed by BAA, ABA, BBA, AAB, BAB, ABB,

and BBB. Therefore, we expect that our adaptive allocation approach would

allocate most subjects to the best treatment sequence AAA , and the least

number of subjects to the worst treatment sequence BBB.

Table (5.3) summarizes the allocation results for the situation given in Ta-

ble (5.1). We note that, when λ = 0, the allocation results are consistent

with the order of treatment performances as defined by the given evaluation

function, as expected. In general, the allocation is successful with an ap-

proximately equal number of subjects assigned to each of the eight treatment
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sequences in the absence of treatment differences and the most subjects to the

best treatment sequence AAA and the least to the worst treatment sequence

BBB in the presence of treatment difference. When λ = 1, the allocation

pays no attention to differential treatment effects even if there were any, and

it treats all sequences equally, as expected. As λ decreases, more and more

subjects are assigned to the best treatment sequence AAA. The choice of λ

will depend on how much the investigator is willing to sacrifice one of the study

objectives (Liang and Carriere 2009). The results become more pronounced

as the sample size increases.

Table 5.3: Results of the adaptive allocation of subjects for each treatment
sequence for p=3

N λ NAAA NAAB NABA NABB NBBB NBBA NBAB NBAA

40 1 5.00 5.01 4.97 5.02 5.01 5.00 4.97 5.03
0.9 7.11 4.59 5.24 3.88 3.71 4.84 4.32 6.32
0.7 9.71 4.00 5.54 2.61 2.40 4.25 3.37 8.13
0.3 11.82 3.41 5.36 1.92 1.72 4.10 2.76 8.91

0 12.60 3.20 5.42 1.68 1.47 4.00 2.38 9.25

80 1 10.66 9.66 9.65 10.03 10.65 9.67 9.66 10.02
0.9 17.90 8.17 10.67 5.99 5.69 9.35 7.09 15.13
0.7 25.91 5.94 10.63 3.19 2.73 7.56 4.58 19.46
0.3 28.85 5.26 10.12 2.10 1.82 6.98 3.27 21.60

0 30.02 4.65 10.27 1.83 1.54 7.01 3.27 21.40

100 1 13.16 12.17 12.06 12.61 13.13 12.19 12.09 12.59
0.9 24.34 9.63 13.44 6.67 6.38 11.32 8.23 19.99
0.7 35.83 6.40 12.89 3.15 2.94 8.81 4.70 25.28
0.3 38.45 5.80 12.61 2.14 1.77 8.43 3.98 26.82

0 38.39 5.46 12.19 1.90 1.58 8.32 3.90 28.25

Note: See notes for Table (5.2).

Figure (5.1) (second plot) illustrates the relative efficiency of an adaptive

design to the fixed reference design ABB/BAA, the optimal design for con-

91



tinuous responses. Note that when there are no treatment differences, the

adaptive design uses all available treatment sequences equally. However, the

adaptive design is not better or worse than the fixed optimal design using just

two sequences ABB/BAA in terms of MSE, because there are no treatment

differences anyway. When there are treatment differences, a clinically benefi-

cial approach is to allocate more subjects to the best sequence, which is AAA.

Similar to the two-period designs, the adaptive designs with λ < 1 have low

efficiency compared to the reference design. However, the reference design

is not necessarily the optimal choice in the presence of treatment difference.

Nonetheless, adaptive designs with a large λ < 1 achieves a high enough effi-

ciency for n = 40. For ethical reasons, we recommend adaptive designs with

a large λ(< 1).

5.4.5 Four-Period Designs

As the number of periods increases, so does the number of possible treatment

sequences to consider for inclusion in the study. However, multiple-period

designs could quickly become impractical and having too many treatment se-

quences could become difficult to administer. For two-treatment four-period

designs, there are 16 (=24) possible different treatment sequences to compose a

RMD. To demonstrate the utility of the strategy, we considered eight of these

16 sequences (ABAA/ABBA/AABA/AABB and their duals). The ratio-

nal is that these eight treatment sequences have been identified and included

in the optimal designs in a variety of settings. Kunert and Stufken (2002,

2008) noted that, for continuous responses, the design ABBA/AABB and

their duals is the optimal design under the traditional model with a simple

92



first-order carryover effect, and the design AABB/AABA and their duals, the

design ABAA/ABBA and their duals, and the design ABBA/AABA and

their duals are optimal designs under the self- and mixed-carryover effects

model (Afsarinejad and Hedayat 2002).

As in previous simulations, we consider two scenarios (absence and pres-

ence of the treatment difference). The values of success probabilities are chosen

arbitrarily to distinguish the effectiveness of the treatment sequences included.

Based on Table (5.1), we would expect ABAA to perform the best followed

by BBAA,AABA,ABBA/BAAB,BBAB,AABB and BABB. The perfor-

mance of treatment sequences ABBA and BAAB is indistinguishable because

they have the same value as the evaluation function.

Table 5.4: Results of the adaptive allocation of subjects for each treatment
sequence for p=4

N λ NABAA NABBA NAABA NAABB NBABB NBAAB NBBAB NBBAA

40 1 4.42 4.51 5.16 5.91 4.47 4.43 6.05 5.05
0.9 5.77 3.89 5.95 5.08 3.60 4.98 4.89 5.84
0.7 7.74 3.57 6.38 3.79 2.88 5.08 3.81 6.75
0.3 10.32 3.27 6.75 2.28 2.01 4.59 2.47 8.31

0 12.71 3.12 6.95 1.51 1.39 3.23 1.76 9.33
80 1 9.33 9.22 10.77 10.88 9.12 9.22 10.93 10.72

0.9 15.06 6.02 14.73 7.32 5.84 9.87 6.92 14.24
0.7 22.25 5.42 14.49 4.45 3.36 7.98 4.52 17.53
0.3 26.91 4.68 14.59 2.45 2.11 6.16 2.66 20.45

0 29.88 4.42 14.72 1.71 1.49 4.66 1.98 21.12
100 1 11.67 11.63 13.35 13.3 11.67 11.63 13.39 13.31

0.9 19.99 7.27 19.10 8.24 6.55 12.36 7.52 18.97
0.7 29.71 6.21 19.03 4.55 3.49 8.81 4.75 23.45
0.3 35.93 5.43 17.74 2.52 2.09 7.01 2.79 26.48

0 37.74 5.07 18.42 1.68 1.47 4.73 2.02 28.88

Note: See notes for Table (5.2).

Table (5.4) summarizes the average allocation results. Similar to the two-
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and three-period designs, when λ = 0, the allocation results are consistent

with the order of treatment performances as indicated in Table (5.1). When

λ = 1 or in the absence of treatment effect differences, it allocates an approx-

imately equal number of subjects to each of the eight treatment sequences,

as it would not matter anyway which sequences are used. When λ < 1, the

allocation recognizes the treatment differences and allocates the most to the

best treatment sequence ABAA, and the least to the worst treatment sequence

BABB. As λ < 1 and decreases, more and more subjects are assigned to the

best treatment sequence ABAA in the presence of treatment difference, as

expected.

Figure (5.1) (third plot) illustrates the relative efficiency of an adaptive

design and the fixed reference design ABBA/AABB and their duals under

the D-optimality. Similar to the two- and three-period designs, the adaptive

design with λ < 1 has low statistical efficiency compared to the reference

design. However, adaptive designs with a large λ < 1 can be almost as efficient

as the fixed reference design, but it allocates more patients to the beneficial

treatment sequences.

5.5 Response-Adaptive RMD with unequal car-

ryover effects

5.5.1 Models

In Section 5.4, we construct the adaptive design under a model with success

probabilities ν = (νA1, νA2, · · · , νAp, νB1, νB2, · · · , νBp), where νti is the proba-

bility of success for treatment t in period i. Consider the model in a two-period
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design, then ν = (νA1, νA2, νB1, νB2). As νt2 does not rely on the treatment

assigned in the first period, the model assumes no carryover effects or as-

sumes only identical carryover effects of treatment A and B. To extend the

model so that the carryover effects can be accommodated, we consider the

model ν = (νA1, νA2|A1, νA2|B1, νB1, νB2|A1, νB2|B1) in a two-period design. In

the model, νti|t′(i−1) is defined so that the probability of success relies on the

treatment assigned in the previous period, except the probability in the first

period. The index ti|t′(i− 1) indicates that treatment t= A or B is assign at

ith period with t′=A or B assigned at (i− 1)th period.

The carryover effect contrast between treatment A and B can be evaluated by

(νA2|A1 − νA2|B1 + νB2|A1 − νB2|B1)/4. In a special case where νA2|A1 = νA2|B1

and νB2|A1 = νB2|B1, the carryover effect contrast is 0 and the model is reduced

to ν = (νA1, νA2, νB1, νB2).

In the adaptive design construction, we need to redefine S and m to ac-

commodate new parameters in the model. In a two-treatment p-period design,

there are p∗ = 2p − 1 parameters considered for each treatment in ν. E.g.,

for treatment A, we have νA1, νA2|A1, νA2|B1, · · · , νAp|A(p−1), νAp|B(p−1). We can

have S and m with the same index in ν, so that accordingly, we define SA1

and SAi|t(i−1) as the number of successes for treatment A at period 1 and for

treatment A at period i which is also in a subsequence of tA at periods i−1, i;

we define mA1 and mAi|t(i−1) as the number of patients assigned with treatment

A at period 1 and assigned with tA at period i− 1, i.

Let νl, Sl and ml are the lth elements in ν, S and m, where l = 1, 2, · · · , 2p∗.

Similar as in Section 5.4, we can construct the log-likelihood function for ν

95



based on the first J patients, which can be written as:

log(LJ) =

2p∗∑
l=1

[Sllogνl + (ml − Sl)log(1− νl)],

and the expected information matrix for ν, based on the first J patients, is a

2p∗ × 2p∗ diagonal matrix:

IJ(ν) = Diag[E(
Sl
ν2
l

+
ml − Sl
(1− νl)2

)]

= Diag[
ml

νl(1− νl)
]. (5.6)

With the same evaluation function fJ,k, the optimal adaptive allocation can be

achieved by maximizing the selection criterion (5.1), while the two objectives

are accomplished.

The procedure will continue until all subjects are allocated. Note that how we

incorporate carryover effects is completely determined by ν. For example, in a

two-period design, if νA2|A1 = νA2|B1 and νB2|A1 = νB2|B1, carryover effects are

expected to be equal or ignorable in the data analysis from the resulting design

(Bandyopadhyay, Biswas and Bhattacharya 2009). Therefore, our strategy

builds the desired design flexibly based on what is expected of carryover effects

in the experiments. This is unlike the continuous responses, where the design

is completely dependent on a chosen model.

5.5.2 Constructing Response-Adaptive RMD

In this section, we construct two-, three-period response-adaptive designs

to compare two treatments under the success probability model considering

treatment-specific carryover effects. Similarly as in Section 5.4, we simulate
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response-adaptive RMDs with binary responses in which the total number of

patients considered is N=40, 80, and 100. Table (5.5) gives the detailed pa-

rameter settings. We still construct the design for λ=1, 0.9, 0.7, 0.3, and

0. Since the adaptive design in the case when λ = 1 puts all weight on the

estimation but no weight on performance, the design would achieve the best

estimation among the five cases. A relative efficiency is computed to compare

the adaptive designs with different λ’s to the case when λ = 1.

An evaluation function for a treatment sequence is defined as the same

as in Section 5.4. Table (5.5) (last column) summarizes the performance of

each treatment sequence with the average success probability per period. For

example, in the simulated two-period design, treatment sequence AA has νA1 =

0.6 and νA2|A1 = 0.7 for the success probabilities of the two periods. The

success rate for AA is 0.65 per period. An average success rate is calculated

for all the sequences in each adaptive design in order to compare them in the

performance of design.

5.5.3 Two-Period Designs

Similar to the simulations in Section 5.4, the first four subjects are randomly

assigned, one for each treatment sequence. The rest of the subjects are al-

located adaptively according to (5.1). A slight change has been made in the

calculation of IJ(ν), where we use the expected information 5.6. This change

removes the randomness in the construction of the adaptive designs.

Table (5.6) shows the expect number of subjects assigned to the four treatment

sequences. As λ decreases, adaptive designs successfully recognize and assign

more subjects to the best treatment sequence AA and fewer subjects to the
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Table 5.5: Parameter setting for constructing adaptive designs when carryover
effect is considered

Design Success Treatment Expected responses Expected success
Probabilities sequence rate per period

Two-treatment νA1 = 0.6, νB1 = 0.3 AA (0.6, 0.7)′ 0.65
two-period νA2|A1 = 0.7, νB2|A1 = 0.4 AB (0.6, 0.4)′ 0.5

νA2|B1 = 0.5, νB2|B1 = 0.2 BA (0.3, 0.5)′ 0.4
BB (0.3, 0.2)′ 0.25

Two-treatment νA1 = 0.6, νB1 = 0.3 AAA (0.6, 0.7, 0.65)′ 0.975
three-period νA2|A1 = 0.7, νB2|A1 = 0.4 AAB (0.6, 0.7, 0.35)′ 0.825

νA2|B1 = 0.5, νB2|B1 = 0.2 ABA (0.6, 0.4, 0.55)′ 0.775
νA3|A2 = 0.65, νB3|A2 = 0.35 ABB (0.6, 0.4, 0.25)′ 0.625
νA3|B2 = 0.55, νB3|B2 = 0.25 BAA (0.3, 0.5, 0.65)′ 0.725

BAB (0.3, 0.5, 0.35)′ 0.575
BBA (0.3, 0.2, 0.55)′ 0.525
BBB (0.3, 0.2, 0.25)′ 0.375

Note: The νt1 denotes the probability of success (favorable outcome) for treatment t given
in period 1. The νti|t′(i−1) denotes the probability of success for treatment t given in period
i when treatment t′ is assigned in period i − 1. According to Equation 5.3, the value of
the evaluation function increases with the sum of successes, equivalently the sum of success
probabilities.

worst treatment sequence BB.

For each N, the column ’Relative efficiency’ in the table illustrates the relative

estimation precision of an adaptive design to the design in the case of λ = 1,

where the estimation precision achieves its maximum among the 5 designs.

The column ’Success rate’ shows the average success probability per period

for all the sequences in each design. We can see that adaptive designs with

λ = 0.9 increase the success rate considerably without losing too much in the

estimation efficiency. As expected, adaptive designs with a small value of λ

are not efficient especially when N is large.

5.5.4 Three-Period Designs

According to the parameter settings for the success probabilities shown in

Table (5.5), the treatment sequence AAA has the largest success rate, followed
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Table 5.6: Results of the adaptive allocation of subjects for each treatment
sequence for p=2

N λ NAA NAB NBA NBB Relative efficiency Success rate
40 1 10 10 10 10 1.000 0.450

0.9 13 10 8 9 0.962 0.476
0.7 22 8 4 6 0.402 0.543
0.3 36 2 1 1 0.004 0.626

0 37 1 1 1 0.002 0.630
80 1 20 20 20 20 1.000 0.450

0.9 32 20 12 16 0.745 0.503
0.7 57 12 4 7 0.075 0.586
0.3 76 2 1 1 0.000 0.638

0 77 1 1 1 0.000 0.640
100 1 25 25 25 25 1.000 0.450

0.9 43 25 14 18 0.642 0.512
0.7 76 13 4 7 0.037 0.597
0.3 96 2 1 1 0.000 0.641

0 97 1 1 1 0.000 0.642

Note: Entries are the average number of patients allocated to each sequence at the end of
the trial for the situation given in Table (5.5).

by AAB, ABA, BAA, ABB, BAB, BBA, and BBB. Therefore, we expect

that our adaptive allocation approach would allocate most subjects to the

best treatment sequence AAA, and the least number of subjects to the worst

treatment sequence BBB.

The simulated allocation results are shown in Table (5.7). We note that, as λ

decreases, increasingly subjects are assigned to the better treatment sequences.

When λ = 0, the design allocates all the sequences to the best performance

sequence AAA and ends up with a very low efficiency in estimation. The

choice of λ will depend on how much the investigator is willing to sacrifice the

estimation for the ethical improvement of the design.
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Table 5.7: Results of the adaptive allocation of subjects for each treatment
sequence for p=3

N λ NAAA NAAB NABA NABB NBAA NBAB NBBA NBBB Relative efficiency Success rate
40 1 5 5 5 5 5 5 5 5 1.000 0.450

0.9 7 5 7 4 4 5 3 5 0.961 0.468
0.7 10 7 6 5 5 2 3 2 0.589 0.507
0.3 27 4 2 2 2 1 1 1 0.009 0.589

0 33 1 1 1 1 1 1 1 0.001 0.610
80 1 10 10 10 10 10 10 10 10 1.000 0.450

0.9 13 14 11 11 12 5 9 5 0.848 0.482
0.7 29 14 10 8 10 2 5 2 0.213 0.536
0.3 62 6 3 2 4 1 1 1 0.001 0.611

0 73 1 1 1 1 1 1 1 0.000 0.630
100 1 12 13 13 12 13 12 12 13 1.000 0.450

0.9 17 19 12 15 15 5 12 5 0.779 0.486
0.7 39 18 11 10 13 2 5 2 0.135 0.544
0.3 80 7 3 2 5 1 1 1 0.000 0.616

0 93 1 1 1 1 1 1 1 0.000 0.634

Note: See notes for Table (5.6).

5.6 Numerical Examples

In this section, we demonstrate our strategy in an example that Bandyopad-

hyay et al. (2009) considered based on the data from a three-period crossover

trial of two anti-hypertensive agents. In the crossover trial, the two-treatment

design with sequences ABB, BAA, ABA, and BAB were used with 17 pa-

tients in each sequence, using metroprolol (A) or metroprolol with chlorthali-

done (B). We demonstrate how our strategy utilizes the responses adaptively

to allocate the total of 68 patients accomplishing multiple objectives, using

the data from the last two time periods of the three-period design for the

purpose of comparison with Bandyopadhyay et al.’s (2009) design. Since

the data are continuous, we dichotomize it so that a response >135 is a

failure according to Bandyopadhyay et al. (2009). Inputting the estimates

(ν̂A1, ν̂A2, ν̂B1, ν̂B2)=(.24, .24, .24, .35), we would expect the treatment se-

quences AB/BB to be the best with the most allocation of patients, and
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AA/BA the worst with the least number of patients. Our adaptive design is

to allocate (13.13, 21.03, 13.03, 20.80) when only the treatment benefit is to

be considered (λ = 0), or (14.69, 19.06, 13.64, 20.62) with λ = .9 while enjoy-

ing much of estimation precision based on the D-optimality to AA,AB,BA,

and BB sequences respectively. This is an improvement to Bandyopadhyay et

al. (2009) where their ethically appropriate two-period design was to allocate

(15.75, 16.92, 17.01, 18.32) to AA,AB,BA, and BB sequences, respectively.

We also considered dichotomizing the responses so that a systolic blood

pressure >140 is a failure to compare with the second adaptive design in

Bandyopadhyay et al. (2009). Based on this cutoff, the estimated success

probabilities are obtained as ν̂ =(.35, .5, .35, .53), and their strategy was to

allocate (13.00, 16.42, 16.46, 22.12) to AA,AB,BA, and BB sequences respec-

tively (Bandyopadhyay et al. 2009). Clearly, their adaptive design recognized

BB sequence to be the best, followed by BA/AB, and AA. In contrast, our

strategy allocates (7.32, 16.35, 14.88, 29.46) when λ = 0 or (12.38, 16.71,

15.80, 23.11) when λ = .9, that is, a considerably larger allocation to the BB

sequence and less to the AA sequence than designs in Bandyopadhyay et al.

(2009). Our strategy also recognizes that the sequence AB is slightly better

than the sequence BA and can accomplish multiple objectives.

5.7 Discussion

The literature on RMDs for binary responses is limited (Mehtala, Auranen

and Kulathinal 2011), and there are few studies of response-adaptive alloca-

tion designs for repeated binary responses (Biswas and Dewanji 2004). In this

paper, we extended the multiple-objective allocation strategy of construct-
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ing response-adaptive RMDs with continuous responses to those with binary

responses. With binary responses, the strategy is quite different from the con-

tinuous case where the optimal design is completely model dependent (Liang

and Carriere 2009, 2012; Kunert and Stufken 2002, 2008; Afsarinejad and

Hedayat 2002). Further, unlike continuous responses, the designs for binary

responses are dependent on the responses.

Initially, we built the adaptive design assuming independent binary re-

sponses, and then discussed ways to accommodate the dependence structure

in a crossover model. Because the eventual data analysis will involve non-

linear models, rather than trying to capture the expected mean responses by

devising a crossover design model, we separated the two issues of design and

analysis. By specifying the success probabilities of treatments for binary out-

comes, the first-order carryover effects are accommodated in a model for data

analysis. For multi-period designs, a second order carryover effect can also be

accommodated, as well as the self- and mixed-carryover effects. Therefore, our

strategy is flexible, based on what form of carryover effects is expected in the

experiments.

We provided a detailed allocation rule for constructing practically use-

ful RMDs with two, three, and four periods for comparing two treatments

with binary responses. Our goal was to adaptively allocate a new patient to

a treatment sequence in a way that would maximize selection criteria while

balancing estimation precision with treatment advantage. Through computer

simulations, we demonstrated that adaptive designs may not be as efficient as

fixed RMDs in terms of the MSE. However, the MSE only captures statistical

optimality. We find that our strategy successfully allocates more patients to

better treatment sequences, which is often the best strategy depending on the
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study goals.

Similar to the continuous response case, the investigator can predetermine

the value of λ to balance the two objectives of increasing estimation preci-

sion and decreasing the proportion of patients receiving inferior treatments.

Design efficiency is a skewed function of λ that decreases sharply as λ de-

creases. As Figure (5.1) indicates, as λ decreases, the ethical benefit of the

proposed adaptive designs becomes more pronounced, especially as the sam-

ple size gets larger, but the design efficiency based on the conventional mea-

sure of MSE drops sharply. Similar results were observed for constructing

multiple-objective response-adaptive RMDs with continuous responses (Liang

and Carriere 2009).

As evident in Tables (5.2), (5.3), (5.4), (5.6) and (5.7), when λ = 1, the

presence or absence of treatment effects has no bearing on the adaptive design.

However, as λ moves away from 1 and even at 0.9 with only a 10% of atten-

tion given to treatment benefit quantified by a given evaluation function, the

allocation favors effective treatment sequences without compromising much

statistical efficiency.
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Chapter 6

Convex optimization and its

applications to optimal

crossover designs
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Abstract

This Chapter builds optimal crossover designs via convex optimization

techniques. Upon identifying the unique problems and conditions for con-

structing optimal designs to that of convex optimization problem, it can be

shown that finding optimal designs is relatively quick and simple. The ap-

proach is especially useful when constructing some designs is not possible an-

alytically. We first show that the technique produces identical results where

analytical solution was possible. Then, we apply it to obtain numerical solu-

tions for 6 and 8 N-of-1 trial designs under autocorrelated error structure. A

number of other areas that convex optimization technique can be applicable

are suggested as future work.

6.1 Introduction

Crossover designs in clinical trials are popular for comparing non-curative

treatments for their efficacy. We denote a crossover design with t treatments

and p periods as COD(t,p). In COD(t,p), each subject receives a treatment

sequence with p periods. And for each period, any of the t treatment can be

assigned. Let N denote the number of distinct sequences involved in a design.

Then the maximum value that N can achieve is tp where all possible distinct

sequences are considered in the trial. We consider a linear model for analyzing

the crossover design, which can be written as,

yi = Xiβ + εi,
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where yi ∈ Rp is the vector of responses from a subject assigned the ith

sequence; Xi ∈ Rp×k is the design matrix for the ith sequence under the

model with the parameter vector β ∈ Rk. Assuming the error terms have the

covariance matrix Σ, then the information matrix is proportional to,

I(ξ) =
N∑
i=1

ξiXiΣ
−1XT

i ,

where ξi = mi/M ; M denotes the number of subjects in the experiment and

mi denotes the number of the ith sequence assigned. Normally, there is a

constraint on the values of ξi so that mi = Mξi must be non-negative integers.

When M is large enough, the constraint can be relaxed to ξ ∈ RN
+ and 1T ξi =

1. This relaxed design problem is often called the approximate experimental

design problem.

Finding the optimal designs concern with the optimization, with respect

to ξ, of certain measurement defined on the information matrix I(ξ). For

example, a design is D-optimal (ξD) if it maximizes the determinant of I(ξ),

i.e.,

ξD = argmaxξ det I(ξ).

A design is A-optimal (ξA ) if it minimizes the trace of the inverse of the

information matrix, i.e.,

ξA = argminξtr(I(ξ)−1).

Optimization problems have been studied for centuries. Some special

classes of optimization problems, such as least square and linear programming

problems, can be solved numerically quite efficiently. Convex optimization is a
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wider class of optimization problems than linear programming problems. After

interior-point methods were developed in the 1980s to solve linear program-

ming problems, researches realized these methods could be used for convex op-

timization problems as well. Some classes of convex optimization problems can

be solved numerically efficiently, as the linear programming problems are(Boyd

and Vandenberghe, 2004).

In this chapter, we will show that convex optimization can be applied to

finding the optimal approximate crossover designs, especially when a closed

form of solutions is not found. In fact, building optimal designs is an optimiza-

tion problem, in which the objective function is a defined measurement on I(ξ)

in terms of ξ subject to 1T ξi = 1. As long as the objective function and the

constraint functions are convex (or concave) functions, the optimization prob-

lem can be numerically solved efficiently, just like estimating parameters in

linear regression. Therefore, we approach optimal crossover design problems

as convex optimization problems, and use software to generate the optimal

designs numerically efficiently.

In Section 2, we introduce concepts and properties in convex optimization.

In Section 3, we construct a convex optimization problem to find the A-optimal

crossover designs. In Section 4, we demonstrate its utility using the Matlab

package ’CVX’. Section 5 provides additional potential work in the future.
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6.2 Convex optimization

6.2.1 Convex sets

A set C is convex if for any two points x, y ∈ C and any α ∈ [0, 1], we have

αx + (1 − α)y ∈ C. We use the notation Sn to denote the set of symmetric

n× n matrices, i.e.,

Sn = {X ∈ Rn×n|X = XT}.

We use the notation Sn+ to denote the set of symmetric positive semidefinite

matrices, i.e.,

Sn+ = {X ∈ Sn|X � 0},

where X � 0 denotes X is positive semidefinite. Similarly, we denote the set

of symmetric positive definite matrices as,

Sn++ = {X ∈ Sn|X � 0},

where X � 0 denotes X is positive definite. It is trivial to see that Sn, Sn+

and Sn++ are all convex sets.

6.2.2 Convex functions

A function f : Rn → R is convex if the domain, domf , is a convex set and if

for all x, y ∈ domf and any α ∈ [0, 1], we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).
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We say f is concave if −f is convex. If f is convex and also concave, then f

is an affine function.

Some examples of convex or concave functions defined on Sn++ are,

• f(X) = tr(X−1) is convex on Sn++;

• f(X) = log detX is concave on Sn++.

A function f : Rm → Sn is matrix convex if for any x, y ∈ domf and any

α ∈ [0, 1], we have

f(αx+ (1− α)y) � αf(x) + (1− α)f(y),

where the matrix inequality X � Y means Y −X � 0 or Y −X ∈ Sn+.

6.2.3 Conditions on composition functions to preserve

convexity

Consider the function f is a composition of h and g, i.e. f(x) = h◦g(x), where

g, h : R → R. According to the second derivative rule, a function is convex if

and only if its second derivative is non-negative, and a function is concave if

and only if its second derivative is non-positive. Taking the second derivative

of f(x), we have,

f ′′(x) = h′′(g(x))(g′(x))2 + h′(g(x))g′′(x),

which gives the conditions on h and g, such that the composition preserves

the convexity.

• If h is convex and nondecreasing, and g is convex, then f is convex.
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• If h is convex and nonincreasing, and g is concave, then f is convex.

• If h is concave and nondecreasing, and g is concave, then f is concave.

• If h is concave and nonincreasing, and g is convex, then f is concave.

The results can be generalized to more complicated composition, such as when

h : Rk → R and g : Rn → Rk (S. Boyd and L. Vandenberghe 2004).

6.3 Convex optimization problem and construct-

ing A-optimal repeated measurement de-

signs

Now we consider crossover designs, application to in COD(t,p), to solve finding

the optimal design problems. Under a certain linear model with k parameters,

the design matrix Xi ∈ Rp×k, i = 1, 2, · · · , N are fixed. The information

matrix is proportional to,

I(ξ) =
N∑
i=1

ξiXiΣ
−1XT

i ,

It can be shown that I(ξ) � 0. In this chapter, we assume I(ξ) � 0, and the

case with singular information matrix is discussed in section 5.

Suppose β can be partitioned as (θ′, ψ′)′, where θ is the vector of parameters

of interest and ψ is the vector of nuisance parameters. Then , we can partition
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the information matrix I(ξ) accordingly into the following form,

I(ξ) =

 I1 I2

IT2 I3


where I1 ∈ Rk′×k′ , I3 ∈ R(k−k′)×(k−k′). Since I(ξ) � 0, we have I1 � 0 and

I3 � 0.

The information matrix for θ adjusted by ψ can be written as,

Iθ = I1 − IT2 I−1
3 I2.

Iθ is called the Schur complement of I1 in I(ξ). Since I(ξ) � 0, the property

of Schur complement gives that Iθ � 0.

Finding the A-optimal design for θ can be expressed as an optimization

problem as in the following,

(i) minimize tr I−1
θ

(ii) subject to ξ � 0, 1T ξ = 1.

In the following, we show that the above is a convex optimization problem.

Let I ∈ Sk++ partitioned as,

I =

 I1 I2

IT2 I3


where I1 ∈ Sk

′
. Define a function SC(I) : Sk++ → Sk

′
++,

SC(I) = I1 − IT2 I−1
3 I2.
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Lemma 1. The function SC(I) is matrix concave in Sk++.

Proof:

S. Boyd and L. Vandenberghe (2004) provided a convex function called

matrix fractional function. The function f : Rn × Sn → R, defined as

f(x, Y ) = xTY −1x

is convex on domf = Rn × Sn++. We prove lemma 1 based on this result.

For any ν ∈ Rk′ , define a function g : Sk
′

++ ×Rk′×(k−k′) × Sk−k′++ as

g(I1, I2, I3) = νT (I1 − IT2 I−1
3 I2)ν

= νT I1ν − (I2ν)T I−1
3 (I2ν)

= νT I1ν − f(I2ν, I3)

Since −f is concave, we have g is a concave function of I2, I3 plus an affine

function of I1. Therefore, g is concave function of I1, I2, I3.

That is, for any Ia, Ib ∈ Sn++, with their partitions (Ia1, Ia2, Ia3), (Ib1, Ib2, Ib3) ∈

domg and any α ∈ [0, 1], we have,

g(αIa1+(1−α)Ib1, αIa2+(1−α)Ib2, αIa3+(1−α)Ib3) ≥ αg(Ia1, Ia2, Ia3)+(1−α)g(Ib1, Ib2, Ib3)

νTSC(αIa + (1− α)Ib)ν ≥ νT (αSC(Ia) + (1− αSC(Ib)))ν

SC(αIa + (1− α)Ib) � αSC(Ia) + (1− αSC(Ib))

Hence, SC(I) is matrix concave of I on Sk++. Lemma 1 follows.
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The information matrix I(ξ) can be considered as an affine function of ξ,

I : RN → Sk++.

Lemma 2. The composition SC ◦ I is a concave function of ξ.

Proof:

I : RN → Sn++ is an affine function. So, for any ξ1, ξ2 ∈ RN and any

α ∈ [0, 1], we have

I(αξ1 + (1− α)ξ2) = αI(ξ1) + (1− α)I(ξ2).

Therefore,

SC ◦ I(αξ1 + (1− α)ξ2) = SC(I(αξ1 + (1− α)ξ2))

= SC(αI(ξ1) + (1− α)I(ξ2))

≥ αSC ◦ I(ξ1) + (1− α)SC ◦ I(ξ2)

The Lemma 2 holds.

Lemma 3. h(Iθ) = tr(I−1
θ ) : Sk

′
++ → R is convex and decreasing.

Lemma 4. The composition h ◦ SC ◦ I is a convex function of ξ.

According to the conditions preserves the convexity introduced in section 2.3

and Lemma 3, Lemma 4 holds.

From Lemma 4, it follows that the A-optimal design is a convex optimiza-

tion problem. We next discuss how such problems can be solved numerically

efficiently.
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6.4 Application to two-treatment optimal crossover

problem using CVX package in Matlab

In this section, we show how we can solve the two-treatment optimal crossover

designs by applications of convex optimization. The programs are written in

Matlab with CVX, which is a package specifying and solving convex programs

(Byod and Vandenberghe, 2004). The model considered is the traditional

model with a first-order residual effect.

In a two-treatment crossover design, the parameters of interest can be

constructed as the contrast of the two treatment effects and the contrast of

the two carryover effects. Since the information matrix for treatment effect

contrast or carryover effect contrast is a scaler, if a design is A-optimal, it is

also D-optimal and E-optimal.

6.4.1 Optimal two-treatment two-, three- and four-period

design for treatment effect

Optimal results have been well developed in two-treatment p-period crossover

trials (Laska and Meisner, 1985). It is known that if p = 2, the design

AA,AB,BB,BA with M/4 subjects per sequence is an optimal design for

treatment effect. When p = 3, the design built up of the sequence ABB and

its dual is optimal. For p = 4, according to Cheng and Wu (1980), the strongly

balanced designs are universally optimal.

Using CVX, we obtain the following results for the optimal two-treatment

two-, three- and four-period design. Tables (6.1), (6.2) and (6.3) show that the

obtained optimal design sequences and their weights in the design for two-,
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three- and four-period crossover trials. The numerical solutions confirm the

theoretical results.

Table 6.1: Optimal design for treatment effect in COD(2,2)

AA AB BA BB
0.2500 0.2500 0.2500 0.2500

Table 6.2: Optimal design for treatment effect in COD(2,3)

ABB BAA
0.5000 0.5000

Table 6.3: Optimal design for treatment effect in COD(2,4)

ABBA ABAB AABB BBAA BABA BAAB
0.1042 0.0729 0.3229 0.3229 0.0729 0.1042

Note that for two- and three-period cases, CVX produced the optimal

designs expected by the theories. When p = 4, CVX produced a strongly

balanced design which is optimal according to the theories.

6.4.2 Optimal two-objective design in COD(2,2)

In this section, we consider optimal two-treatment two-period CODs under

the traditional model with equal-correlated measurement errors. When within-

subject correlation is not equal to zero, the optimal design for direct treatment

effect and the optimal design for carryover effect are not identical.

The optimal design for the direct treatment effect is known as the design

AA,AB,BB,BA with equal allocation. The result obtained using CVX is the

same as the one in Table (6.1).

The optimal design for carryover effect obtained by CVX is shown in Table

(6.4).
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Table 6.4: Optimal design for carryover effect in COD(2,2)

AA AB BA BB
0.3750 0.1250 0.1250 0.3750

When both treatment effect and carryover effect are of interest, we find

the optimal two-objective design by applying a weighted sum to the objective

functions for the direct treatment effect and the carryover effect to form a new

objective function. A tuning parameter is used to form a convex combination

of the two objectives. Specifically, we want to

(i) minimize αtrI−1
θ1

+ (1− α)trI−1
θ2

(ii) subject to ξ � 0, 1T ξ = 1

Since a combination of convex functions is a convex function, we apply the

same technique for finding a single objective optimal design to find the two-

objective optimal design.

In Table (6.5), we show the optimal result for the compound optimal design

for estimating the direct treatment effect and the carryover effect.

Table 6.5: Compound optimal design for treatment and carryover effect in
COD(2,2), ρ = 0.5 and α = 0.5

AA AB BA BB
0.2914 0.2086 0.2086 0.2914

6.4.3 Optimal N-of-1 trial designs

For two-treatment multi-crossover single-patient trials, a general N-of-1 design

can have multiple AB or BA crossover pairs in a sequence of treatments for

within-patient comparisons.
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In addition to within patient-based evidence of a treatment contrast, it

may also be desirable to obtain a population average effect of treatments.

Aggregating the series of N-of-1 trials can give such an estimate of the average

effect. In the following, we apply convex optimization to optimal six-, eight-

period design in N -of-1 trials for treatment effect under the traditional model.

The CVX solution is shown in Table (6.6) and (6.7).

Table 6.6: Optimal six-period N-of-1 trials with uncorrelated errors

ABBAAB BAABBA
0.5000 0.5000

Table 6.7: Optimal eight-period N-of-1 trials with equal-correlated errors

ABBAABBA BAABBAAB
0.5000 0.5000

Table 6.8: Optimal eight-period N-of-1 trials with auto-correlated errors ρ =
0.5

ABABABAB 0.0029
ABABABBA 0.0044
ABABBAAB 0.0087
ABABBABA 0.0044
ABBAABAB 0.0087

ABBAABBA 0.4579
ABBABAAB 0.0087
ABBABABA 0.0044
BAABABAB 0.0044
BAABABBA 0.0087

BAABBAAB 0.4579
BAABBABA 0.0087
BABAABAB 0.0044
BABAABBA 0.0087
BABABAAB 0.0044
BABABABA 0.0029

From Table (6.6) and (6.7), we can see the optimal design in N-of-1 trials
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under the traditional model consists of sequences with alternating crossover

pairs AB and BA, which is consistent with the theoretical results of the opti-

mal two-treatment N-of-1 trials.

Table (6.8) gives the optimal N-of-1 design under the traditional model with

auto-correlated errors. As discussed in the optimal two-treatment N-of-1 trials,

constructing the optimal N-of-1 design with auto-correlated errors is analyti-

cally complicated. But the optimal design can be obtained using CVX easily.

The results in the Table (6.8) suggest that ABBAABBA and BAABBAAB

are the options for a single N-of-1 sequence. The weights for other sequences

are not zero implying that the sequences other than ABBAABBA andBAABBAAB

may also be included to obtain an optimal aggregate N-of-1 design where

N > 1. Extended multi-period N-of-1 designs over eight periods can be simi-

larly constructed efficiently via convex optimization strategy.

6.5 Discussion

We have shown how convex optimization can solve the optimal design problems

upon properly defining the objective functions. The alternate solution via

convex optimization has been verified to be identical to what were obtained

analytically in the literature. In this section, we propose a number of other

areas that this approach could provide uncomplicated solutions to.

1. Generating the matrix fractional function on Rn × Sn+.

Consider the cases where information matrix is singular. If we could

prove that the convexity holds for the matrix fractional function on Rn×

Sn+, i.e., f(x, Y ) = xTY −x is convex, then we can have more general
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results and establish the optimality problem with positive semidefinite

information matrix, instead of positive definite information matrix.

2. Constructing convex optimization with other criteria.

The function h : Sn → R defined by h(X) = − log det(−X) is convex

and increasing on domh = −Sn++. Therefore, D-optimal design could

also be constructed.

3. Under generalized linear models.

The approach mentioned above concerns with the information matrix

under a linear model. We can extend the above to solve discrete response

experimental design problems. The task would involve defining a proper

objective function, which must be shown to be convex or concave.

4. Response adaptive multiple objective optimal designs.

The approach can be used in a response adaptive design. Given the

history of previous k subjects, it could not only find the best sequence

assigned to the next subject, but also provide the optimal design for the

rest of subjects based on the information given.

5. When the number of subjects is not large enough and the assignment on

the sequences is not even.

Suppose in a certain class of crossover designs, the optimal design is dual

balanced with an equal assignment on two dual sequences, as in chapter

3. When the total number of subjects (M) is odd, the assignment of the

subjects to dual sequences are not always even. Then, it is not trivial

to determine the optimal design. In this situation, the convexity of the

119



objective function implies that the optimal design should be among the

closest support points to M · (ξ1, · · · , ξN). The optimal design can be

found upon a quick check with the neighboring support points.
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Chapter 7

Concluding Remarks

We highlight the major contributions of the thesis in this chapter, and propose

further research.

1. Constrained and compound optimal designs in two-treatment two-period

crossover trials.

When building optimal designs, there are often competing objectives that

the investigator desires to optimize. These multiple objectives can include

two or more parameters or some functionals, ultimately involving simultane-

ous considerations. Crossover designs are well known for controversy involving

non-orthogonal key parameters of direct and residual or crossover treatment

effects, which can lead to completely different experimental designs depending

on the primary parameter. Under the traditional model with equal-correlated

measurement errors, it is known that the optimal two-treatment two-period

crossover designs for the direct treatment effect and for the carryover effect are

competing objectives that cannot be achieved at the same time. We revisit

this controversy from the point of view of constrained and compound designs.

We applied each of the two methods to find the design that is optimal with a
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combined objective of estimating both of the effects. The optimal design prob-

lems and objectives were defined and the optimal designs were produced for

each of the defined problem. Cook and Wong (1994) showed that constrained

and compound optimal designs are basically equivalent. In this chapter, we

provided an alternate simpler proof for crossover designs.

2. Universally optimal designs for N-of-1 trials.

We considered universally optimal N-of-1 designs. Originally, Kiefer (1975)

proposed the concept of universal optimality with zero row and column sums

in the information matrices. We examine special conditions when such uni-

versally optimal designs exist with special application to N-of-1 trial designs

that will make optimal no matter what criteria are applied.

We presented a sufficient condition of universally optimal N-of-1 designs

under a traditional model accommodating the carryover effects. We proposed

universally optimal sequences for general t ≥ 2. When t = 2, the one sequence

N-of-1 universal optimal designs exist if the number of periods is a multiple

of t; when t > 2, the one sequence N-of-1 universal optimal designs exist if

the number of periods is a multiple of t plus 1. Recognizing possible practical

difficulty in adopting the designs constructed, we also obtained optimal N-of-1

designs with block size less than t.

When a self and mixed carryover effects model is employed, it would be of

interest to further research what the universal optimal N-of-1 designs would

be.

3. Optimal two-treatment N-of-1 trial designs.

In this chapter, we closely examined N-of-1 trials to construct optimal designs

for two treatments under a variety of conditions about the carryover effects,
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the covariance structure, and the number of planned periods. Extension to

optimal aggregated N-of-1 designs is also discussed.

It is known that the design AB/AA and their duals is optimal for two-

period experiments, with the duality of a sequence defined as the sequence that

switches A and B with the same effect. Similarly, it is known that the two-

sequence design ABB and its dual and the four-sequence design ABBA/AABB

and their duals are optimal for three- and four-period experiments (Carriere

1994; Laska and Meisner 1985). Straight application of the two-treatment

optimal designs in literature with A to AB and B to BA suggests that opti-

mal N-of-1 trials would need to use ABBA, ABAB and their duals for two

within-patient comparisons, ABBABA and its dual for three within-patient

comparisons, and the sequences ABBABAAB, ABABBABA and their duals

for four within-patient comparisons.

In this chapter, we proved that these designs were not optimal for N-of-1

trials for estimating individual-based treatment effects. We then constructed

optimal designs for two treatments under a variety of conditions about the

carryover effects, the covariance structure, and the number of planned periods.

Extension to optimal aggregated N-of-1 designs is also discussed.

Numerical consideration of the estimated precision of using several six- and

eight-period designs revealed the practical performance of particular designs,

giving us realistic guidelines. Overall, we conclude that alternating between

AB and BA pairs in sequence will result in a nearly optimal N-of-1 trial

for a single patient, if not the optimal, under all the models we considered

without the need to guess or conduct a pilot study to confirm the correlation

structure. Alternating between AB and BA pairs in a single trial is nearly

robust to misspecified error structures of the repeated measurements. This
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is identical to the universally optimal designs built in previous chapter under

rather restricted conditions of a traditional model.

When an experiment has been carried out with the optimal N-of-1 trial

and additional patients are accrued in the trial, we can aggregate these N-of-1

trials optimally by allocating the same number of patients to its dual sequence,

thereby optimizing the trial for both the individual and average patients.

4. Multiple objective response adaptive crossover designs with binary out-

comes.

In this chapter, we extended the allocation strategy for continuous re-

sponses to constructing response-adaptive repeated measurement designs for

binary responses.

We built the adaptive design assuming independent binary responses, and

then discussed ways to accommodate the dependence structure in a crossover

model.

We provided a detailed allocation rule for constructing practically useful

RMDs with two, three, and four periods for comparing two treatments with

binary responses. We concluded that the allocation strategy developed for

continuous responses also worked well for binary responses. As expected, de-

sign efficiency in terms of mean squared error drops sharply, as more emphasis

is placed on increasing treatment benefit than estimation precision. However,

we showed that the design could successfully allocate more patients to better

treatment sequences without sacrificing much estimation precision.

Similar to the continuous response case, the investigator can predetermine

the value of weight (λ) to balance the two objectives of increasing estimation

precision and decreasing the proportion of patients receiving inferior treat-
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ments. Design efficiency is a skewed function of λ that decreases sharply as λ

decreases. As λ decreases, the ethical benefit of the proposed adaptive designs

becomes more pronounced, especially as the sample size gets larger, but the

design efficiency based on the conventional measure of MSE drops sharply,

as observed in multiple-objective response-adaptive RMDs with continuous

responses.

5. Convex optimization and its applications in optimal crossover designs.

This Chapter proposed constructing optimal crossover designs via convex

optimization techniques. Upon identifying the unique problems and condi-

tions for constructing optimal designs to that of convex optimization problem,

it can be shown that finding optimal designs is relatively quick and simple.

The approach is especially useful in cases where constructing designs is not

possible analytically. We first showed that the technique produced identical

results where an analytical solution was possible. Then, we applied it to ob-

tain numerical solutions for 6 and 8 N-of-1 trial designs under autocorrelated

error structure. Some of other areas that convex optimization technique can

be applicable are suggested as future work.
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Matlab codes are presented for constructing A-optimal crossover designs via

CVX package.

A.1 (Setting up parameters for obtaining Table (6.1))

t=2;

p=2;

Blocksize=1;

[xcand,pooldesign,tauindex,gammaindex] =

designmatgen(t,p,Blocksize,’traditional’,’uncorrelated’,’true’,’false’)

rho=0;

K=0;

A.2 (Setting up parameters for obtaining Table (6.2))

t=2;

p=3;

Blocksize=1;

[xcand,pooldesign,tauindex,gammaindex] =

designmatgen(t,p,Blocksize,’traditional’,’uncorrelated’,’true’,’false’)

rho=0;

K=0;

A.3 (Setting up parameters for obtaining Table (6.3))

t=2;

p=4;

Blocksize=1;

[xcand,pooldesign,tauindex,gammaindex] =

designmatgen(t,p,Blocksize,’traditional’,’uncorrelated’,’true’,’false’)
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rho=0;

K=0;

A.4 (Setting up parameters for obtaining Table (6.4) and (6.5))

t=2;

p=2;

Blocksize=1;

[xcand,pooldesign,tauindex,gammaindex] =

designmatgen(t,p,Blocksize,’traditional’,’uncorrelated’,’true’,’false’)

rho=0.5;

K=0;

A.5 (Setting up parameters for obtaining Table (6.6))

t=2;

p=6;

Blocksize=2;

[xcand,pooldesign,tauindex,gammaindex] =

designmatgen(t,p,Blocksize,’traditional’,’uncorrelated’,’true’,’false’)

rho=0;

K=0;

A.6(Setting up parameters for obtaining Table (6.7))

t=2;

p=8;

Blocksize=2;

[xcand,pooldesign,tauindex,gammaindex] =

designmatgen(t,p,Blocksize,’traditional’,’uncorrelated’,’true’,’false’)
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rho=0;

K=0;

A.7 (Setting up parameters for obtaining Table (6.8))

t=2;

p=8;

Blocksize=2;

[xcand,pooldesign,tauindex,gammaindex] =

designmatgen(t,p,Blocksize,’traditional’,’uncorrelated’,’true’,’false’)

rho=0.5;

K=1;

B.1 (Applying CVX for obtaining Table (6.1), (6.2), (6.3), (6.6), (6.6) and

(6.8))

sigma=eye(p);

for s_i=1:p

for s_j=1:p

if s_i~=s_j

if abs(s_i-s_j)==1

sigma(s_i,s_j)= rho;

else

sigma(s_i,s_j)=rho * rho ^( (abs(s_i-s_j)-1)*K);

end

end

end

end
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if Blocksize==1

poolsize=t^p;

end

if Blocksize>1

poolsize=t^(p/Blocksize);

end

Sigma=kron(eye(poolsize),sigma);

Sinv=inv(Sigma);

Sinvhalf=sqrtm(Sinv);

1/rho*(eye(p)-rho/((p-1)*rho+1)*ones(p,1)*ones(1,p))

V=xcand;

n=length(V(:,1));

tauid=[tauindex(1):tauindex(2)];

if tauindex(1)>1

taucomplement=[1:(tauindex(1)-1)];

if tauindex(2)<n

taucomplement=[taucomplement,(tauindex(2)+1) : n];

end

else

if tauindex(2)<n

taucomplement=[taucomplement,(tauindex(2)+1) : n];

end

end

gammaid=[gammaindex(1):gammaindex(2)];

if gammaindex(1)>1

gammacomplement=[1:(gammaindex(1)-1)];
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if gammaindex(2)<n

gammacomplement=[gammacomplement,(gammaindex(2)+1) : n];

end

else

if gammaindex(2)<n

gammacomplement=[gammacomplement,(gammaindex(2)+1) : n];

end

end

% for direct treatment effects (tau)

cvx_begin

variable m(poolsize)

r=repmat(m,1,p)’;

r=r(:);

M=diag(r);

Xd=V*Sinvhalf*M*Sinvhalf*V’;

A=Xd(tauid,tauid);

B=Xd(tauid,taucomplement)’;

C=Xd(taucomplement,taucomplement);

Schur=A-matrix_frac(B,C);

% maximize(Schur + min(m))

maximize(Schur)

subject to

m>=0;

sum(m)==1;

cvx_end

m
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epsilon=10^(-4);

count=0;

clear L

for mi=1:length(m)

if m(mi)>epsilon

count=count+1;

L(count,:)=pooldesign(mi,:);

end

end

char(’A’+L-1)

B.2 (Applying CVX for obtaining Table (6.4))

% Replace the CVX definition in Part B.1 with the

% following codes between ’cvx_begin’ and ’cvx_end’.

cvx_begin

variable m(poolsize)

r=repmat(m,1,p)’;

r=r(:);

M=diag(r);

Xd=V*Sinvhalf*M*Sinvhalf*V’;

A=Xd(gammaid,gammaid);

B=Xd(gammaid,gammacomplement)’;

C=Xd(gammacomplement,gammacomplement);

Schur=A-matrix_frac(B,C);

% maximize(Schur + min(m))

maximize(Schur)
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subject to

m>=0;

sum(m)==1;

cvx_end

B.3 (Applying CVX for obtaining Table (6.5))

%Replace the CVX definition in Part B.1 with the

%following codes between ’cvx_begin’ and ’cvx_end’.

cvx_begin

variable m(poolsize)

r=repmat(m,1,p)’;

r=r(:);

M=diag(r);

Xd=V*Sinvhalf*M*Sinvhalf*V’;

A=Xd(tauid,tauid);

B=Xd(tauid,taucomplement)’;

C=Xd(taucomplement,taucomplement);

Schur_tau=A-matrix_frac(B,C);

A=Xd(gammaid,gammaid);

B=Xd(gammaid,gammacomplement)’;

C=Xd(gammacomplement,gammacomplement);

Schur_gamma=A-matrix_frac(B,C);

% maximize(Schur + min(m))

maximize(Schur_tau + Schur_gamma)

subject to
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m>=0;

sum(m)==1;

cvx_end

C.1 (Function: designmatgen.m)

%Revised function of ’designmatgen.m’ in CVX package

% so that it can also be applied to N-of-1 trials

function [xcand,pooldesign,tauindex,gammaindex] =

designmatgen(T,P,Blocksize,model,error,Periodeff,SubjectRNDeff,varargin)

% This function is revised from ’designmatgen’ function in CVX package

% so that it can also be applied to N-of-1 trials.

% CANDGEN Generate candidate set for D-optimal design.

% XCAND = CANDGEN(NFACTORS,MODEL) generates a candidate set

% appropriate for a D-optimal design with NFACTORS factors and

% the model MODEL. The output matrix XCAND is N-by-NFACTORS,

% with each row representing the coordinates of one of the N

% candidate points. MODEL can be any of the following strings:

%

% ’linear’ constant and linear terms (the default)

% ’interaction’ constant, linear, and cross product terms

% ’quadratic’ interactions plus squared terms

% ’purequadratic’ constant, linear, and squared terms

%

% Alternatively MODEL can be a matrix of term definitions as

% accepted by the X2FX function.

%
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% [XCAND,FXCAND] = CANDGEN(NFACTORS,MODEL) returns both the

% matrix of factor values XCAND and the matrix of term values

% FXCAND. The latter can be input to CANDEXCH to generate the

% D-optimal design.

%

% [...] = CANDGEN(NFACTORS,MODEL,’PARAM1’,VALUE1,’PARAM2’,VALUE2,...)

% provides more control over the candidate set generation through a set

% of parameter/value pairs. Valid parameters are the following:

%

% Parameter Value

% ’bounds’ Lower and upper bounds for each factor, specified

% as a 2-by-NFACTORS matrix. Alternatively, this value

% can be a cell array containing NFACTORS elements, each

% element specifying the vector of allowable values for

% the corresponding factor.

% ’levels’ Vector of number of levels for each factor.

% ’categorical’ Indices of categorical predictors.

%

% The ROWEXCH automatically generates a candidate set using the

% CANDGEN function, and creates a D-optimal design from it using

% the CANDEXCH function. You may prefer to call these functions

% separately if you want to modify the default candidate set.

%

% See also ROWEXCH, CANDEXCH, X2FX.

% Copyright 1993-2005 The MathWorks, Inc.
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% $Revision: 1.2.2.2 $ $Date: 2005/11/18 14:27:48 $

% Get default values for optional arguments

% if nargin < 3 || isempty(model)

% model = ’traditional’;

% end

t=T;

p=P;

if isempty(model)

model = ’traditional’;

end

if ischar(model)

nchars = length(model);

istraditional = strncmpi(model,’traditional’,nchars);

isselfmixed = strncmpi(model,’selfmixed’,nchars);

end

if isempty(error)

error = ’uncorrelated’;

end

if ischar(error)

nchars=length(error);

isun = strncmpi(error,’uncorrelated’,nchars);
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isequi=strncmpi(error,’equicorrelated’,nchars);

isauto=strncmpi(error,’autocorrelated’,nchars);

end

if isempty(Periodeff)

Periodeff = ’false’;

end

if ischar(Periodeff)

nchars=length(Periodeff);

isPeriodeff = strncmpi(Periodeff,’true’,nchars);

end

if isempty(SubjectRNDeff)

SubjectRNDeff = ’false’;

end

if ischar(SubjectRNDeff)

nchars=length(SubjectRNDeff);

isSubjectRNDeff = strncmpi(SubjectRNDeff,’true’,nchars);

end

if isempty(Blocksize)

Blocksize = 1;

end

%ly if Blocksize==1 and traditional model
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if Blocksize==1

%ly generating design matrix for direct and carryover effect

poolsize=t^p;

poolid=repmat((1:p)’,[poolsize,1]);

pooldesign=poolgen(t,p);

periodmat=periodmatgen(t,p);

mumat=ones(t^p*p,1);

taumat=taumatgen(pooldesign);

if istraditional

gammamat=gammamatgen(pooldesign,t);

end

if isselfmixed

[gammamat_s,gammamat_m]=gammamatgen_sm(pooldesign,t);

end

end

if Blocksize>1

%ly generating design matrix for direct and carryover effect

poolsize=t^(p/2);

poolid=repmat((1:p)’,[poolsize,1]);

pooldesign=zeros(poolsize,p);

pooldesign_temp=poolgen(t,p/2);
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for i=1:length(pooldesign_temp(1,:))

pooldesign(:,(2*i-1))= pooldesign_temp(:,i);

pooldesign(:,(2*i))= 3-pooldesign_temp(:,i);

end

periodmat=periodmatgen_no1(t,p,Blocksize);

mumat=ones(t^(p/2)*p,1);

taumat=taumatgen_no1(pooldesign,t);

if istraditional

gammamat=gammamatgen_no1(pooldesign,t);

end

if isselfmixed

[gammamat_s,gammamat_m]=gammamatgen_no1sm(pooldesign,t);

end

end

V=[mumat];

if isPeriodeff

V=[V, periodmat(:,(2:p))-repmat(periodmat(:,1),[1,p-1])];

end

beforetau=length(V(1,:));

V=[V,taumat(:,(1:(t-1)))-repmat(taumat(:,t),[1,t-1])];
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aftertau=length(V(1,:));

if istraditional

V=[V,gammamat(:,(1:(t-1)))-repmat(gammamat(:,t),[1,t-1])];

end

if isselfmixed

V=[V,gammamat_s(:,(1:(t-1)))-repmat(gammamat_s(:,t),[1,t-1])];

V=[V,gammamat_m(:,(1:(t-1)))-repmat(gammamat_m(:,t),[1,t-1])];

end

aftergamma=length(V(1,:));

V=V’;

tauindex=[beforetau+1,aftertau];

gammaindex=[aftertau+1,aftergamma];

%output

%xcand=[T,P,model,error,Periodeff,SubjectRNDeff,Blocksize];

sprintf(’poolsize=%d’,poolsize)

xcand=V;

end
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