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Abstract 

 

Fire weather indices are used by fire management agencies around the world to estimate 

potential wildfire danger. This allows for resources to be allocated effectively and to warn 

communities of potential wildfire hazards. Currently, monitoring and short-term forecasting of 

fire weather depends on the use of observed surface and upper air weather and numerical 

weather prediction systems. Fire weather forecasting at the subseasonal and seasonal time scale 

has been largely reliant on continued improvements to global circulation models. However, such 

models may lead to large uncertainties in the prediction of surface meteorology at timescales 

greater than five to seven days, which may result in low predictive skill for fire weather indices. 

To resolve this, large scale atmospheric patterns (teleconnections) are frequently used to predict 

seasonal variations in weather. Here we consider a deep learning data-centric approach to predict 

fire weather indices on a sub-seasonal time scale (1-5 weeks). This approach uses 

teleconnections such as the El Niño‐Southern Oscillation (ENSO) and the Atlantic Multidecadal 

(AMO) as covariates. We apply a long short term memory (LSTM) recurrent neural network for 

time series forecasting of the Build-Up Index (BUI), an output of the Canadian Fire Weather 

Index System. Weekly averages of BUI are calculated using the fifth version of the European 

Centre for Medium-Range Weather Forecasts Reanalysis (ERA5) data. The ERA5 data is 

aggregated onto 4.87 x 105 m2 hexels across Canada. Active fire season data from April to 

October is split into training and testing datasets which span 80% (1981 - 2012) and 20% (2013 - 

2020) of the total time period respectively. After, hyperparameter tuning the LSTM model 

showed improved results in 1-3 week forecasts in the western half of Canada when compared to 
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baseline forecasts of climatology and persistence. These model results may assist provincial fire 

management agencies in long range planning.  
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Chapter 1 Introduction 

 

1.1 Research Context  

 

Wildland fire can have adverse effects on communities and human assets, yet it is a critical 

process of the Earth’s system (Bond and Keeley, 2005). Despite the necessity of wildland fire for 

global processes and healthy ecosystems, studies have shown that Canada has experienced 

frequent extreme fire weather (Wang et al., 2015) and severe fire seasons (Kirchmeier-Young et 

al., 2017) in recent years. The frequency of large wildfires has increased in Canada over the last 

few decades (Hanes et al., 2019) which may be attributed to increased fuel on the landscape 

(Wang et al., 2015), hotter and drier weather (Flannigan and Harrington, 1988; Van Wagner, 

1977), and longer fire seasons (Albert-Green et al., 2013). As wildfires are projected to increase 

in Canada (Flannigan et al., 2005; Coogan et al., 2019), the negative impacts are shown through 

community devastation, loss of life, air quality, and number of evacuations. Hundreds of millions 

of dollars are spent on fire suppression, mitigation and prevention every season, therefore, 

understanding and better predicting wildfires is crucial for emergency responses (Stocks and 

Martell, 2016). In predicting wildfire activity, the weather plays an essential role as hot, dry, and 

windy weather increase fuel drying rates which drive fire ignition and growth. Surface weather 

variables are indispensable in predicting wildfire danger and fire season severity (Stocks et al. 

1989) and are necessary inputs to the Canadian Forest Fire Weather Index System (CFWIS). The 

CFWIS is heavily relied upon by fire management agencies across Canada for estimating fuel 

moisture and potential fire behavior.  
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Currently, forecasting short-term fire weather depends on the use of observed surface and upper 

air weather to run numerical weather prediction systems. In Canada, short-range and medium-

range weather prediction systems including the Global Environmental Multiscale Model (GEM) 

and the North American Ensemble Forecast System (NAEFS) are most often used for 1-14 day 

forecasts (Environment and Climate Change Canada, 2022). Fire weather forecasting at the sub-

seasonal (i.e. two weeks to two months. Vitart and Robertson, 2018) and seasonal time scale (i.e. 

several months) have been largely reliant on continued improvements to global circulation 

models such as the Canadian Seasonal to Inter-annual Prediction System (CanSIPS). However, 

such forecasts may lead to large uncertainties in the prediction of small-scale surface 

meteorology as they resolve various global weather patterns and atmospheric conditions. The 

CFWIS uses consecutive daily observations of temperature, relative humidity, windspeed, and 

24-hour precipitation to calculate six variables that provide numeric ratings of relative potential 

for fuel moisture and fire behavior. Therefore, the accuracy of numerical weather prediction 

systems can have a large impact on the CFWIS outputs. Moreover, CanSIPS does not include 

relative humidity as a forecast variable which may limit forecasting skill with respect to CFWIS.  

 

While the complexities of surface meteorology can make forecasting fire weather challenging, 

Machine Learning (ML) may offer a solution. Significant advances in ML have allowed it to 

perform well in environmental science applications (Tahmasebi et al., 2020). ML techniques can 

‘detect patterns in data…and…use the uncovered patterns to predict future data’ (Murphy, 2012). 

These advancements may be particularly advantageous when forecasting fire weather using 

Recurrent Neural Networks (RNN). More specifically, Long Short Term Memory (LSTM) 

networks are variants of RNNs that are known to reduce computation time and improve model 
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outputs (Hochreiter and Schmidhuber, 1997). In combination with readily available weather 

datasets, ML may help to improve the current FWI system forecasting approach. With improved 

methods for predicting spatial fire risk, fire management agencies can allocate resources more 

effectively. Fire fighters and government officials can be deployed in high fire danger zones to 

apply preventative fuel treatments or to give early warning to communities.  

 

1.2 Canadian Fire Regime and Weather 

 

Wildland fire is a dominant disturbance regime to Canadian forests, particularly in the boreal 

region which spans 75% of Canada’s 362 million hectares of forest (Natural Resources Canada, 

2022). It is a critical process necessary to propagate various tree species, encourage landscape 

diversity, and direct energy flows (Stocks et al., 2002). While fire is an essential process in 

boreal forests, four main factors have influence on its activity: weather, fuels, ignition agents, 

and people (Flannigan et al., 2005). Specifically, wildfire ignition and spread usually occurs 

under hot, dry and windy weather (Flannigan et al., 2009). 

 

It has been suggested in various studies that increasing temperatures have had the largest effect 

on changing wildland fire regimes (Gillett et al., 2004). The positive correlation between 

wildland fire and temperature can be explained by increased evapotranspiration and lightning 

activity, and lengthening of fire seasons (Flannigan et al., 2009). First, as temperatures increase, 

the rate of evapotranspiration increases since there is a larger amount of energy available to 

convert liquid water to water vapor. In turn, the increase of water vapor pressure deficit will 

decrease fuel moisture, thereby creating an environment conducive to fire. Increases in 
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temperature lead to frequent thunderstorm events as a result of increased convective energy. As a 

result, lightning-ignited wildfires could potentially increase in a warming climate (Price and 

Rind, 1994; Romps et al., 2014; Hessilt et al., 2022). However, Cary et al. (2006) and Flannigan 

et al. (2016) found that increasing precipitation is not enough to compensate for the rise in 

temperature with respect to fuel moisture. Therefore, fire danger is anticipated to increase due to 

the effects of climate change. Finally, increases in fire season length and summer drought may 

result in heighted frequency of large wildfires (Westerling et al., 2006).  

 

Surface meteorology is strongly tied to high level atmospheric conditions. Temperature, 

precipitation, wind, and atmospheric moisture depend on both the vertical and horizontal state of 

the atmosphere. Blocking ridges in the upper atmosphere have been linked to fire outbreaks 

(Flannigan and Harrington, 1988; Jain and Flannigan, 2021). Westerly upper flows (evident in 

the upper troposphere) prevail and divert precipitation to the north or south of the ridge. As these 

precipitation-bearing systems are blocked, warm and dry weather dominate at the surface level 

and can last a few days or longer. Various studies have suggested that dry spells induced by 

blocking ridges are strongly related to increased fire activity (Sharma et al., 2022). Johnson and 

Wowchuk (1993) studied this process in the southern Canadian Rocky Mountains and suggested 

that positive anomalies were linked with more active fire seasons. Flannigan and Harrington 

(1988) suggested that the 700-hPa geopotential height anomaly was the predictor most often 

selected to relate meteorological variables to monthly provincial area burned in Canada from 

1953-1980. As well, Skinner et al. (1999) found that the 500-hPa geopotential height anomalies 

were linked to large burned area over Canada and Alaska.  
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On a larger scale, teleconnections are characterized by reoccurring patterns of varying pressure 

and circulation in the atmosphere and sea surface temperatures in oceans. These oscillations 

occur on multiannual to multidecadal timescales and cover large geographical areas which result 

in weather variations across the globe. Teleconnections are an important element of atmospheric 

circulation, as proven in various studies by Troup (1965), Zhang and Battisti (1997), and Diaz et 

al., (2001). Several sea surface temperature (SST) and atmospheric pressure patterns have been 

discovered around the world, including the El Niño Southern Oscillation (ENSO), Atlantic 

Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Arctic Oscillation 

(AO). More specifically, teleconnections like ENSO are characterized by two phases of 

alternating warm and cold events of sea surface temperatures in regions of the Pacific Ocean, 

called El Niño and La Niña, respectively. Immediate and time-lagged atmospheric variations 

throughout the world can often be attributed to teleconnections, as they have influence on surface 

weather over long timescales (Domeisen et al., 2019; Diaz et al., 2001). Variables such as 

temperature, precipitation, air pressure, humidity, wind patterns, and dry lightning have been 

systematically linked to teleconnections (Girardin et al., 2006). Therefore, teleconnections can 

also have an effect on fire weather. Blocking ridges that result in high fire activity seasons are 

linked to upper-level troughs in eastern North America and the North Pacific Ocean. The upper-

level troughs often occur during the positive phase of the Pacific North American (PNA) pattern 

(Johnson and Wowchuk, 1993). Schoennagle (2005) found that the interaction between phases of 

ENSO and PDO were statistically significant and associated with large-fire occurrences across 

the Rocky Mountains. Skinner et al. (2006) found that the warm phase of ENSO and the positive 

phase of PDO leads to dry conditions and higher fire severity in western, northwestern, and 

northeastern Canada. Moreover, various studies have discovered relationships between fire 
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frequency, extent, area burned and atmospheric teleconnections in North America (Simard et al. 

1985; Chu et al. 2002; Westerling and Swetnam 2003; Kitzberger et al. 2007; Trouet et al. 2009) 

and other parts of the world (González and Veblen 2006; Verdon et al. 2004; Cardil et al. 2023). 

 

Although wildfires are recognized as natural and critical events on the boreal landscape, most 

provinces in Canada aim to contain their spread as soon as possible, particularly when values are 

at risk. The risk of wildfire spread during episodes of fire conducive weather and while 

unsuppressed can be high, and there is potential for loss of life, community devastation, 

destruction of infrastructure, and huge economic loss (Martell, 2001; Moritz et al., 2014). 

Therefore, using weather to predict wildfire danger has become an integral part in fire prevention 

and mitigation in Canada (Flannigan and Harrington, 1988; Turner and Lawson, 1978; Stocks et 

al. 1989).   

 

1.3 Weather Forecasts and the CFWIS  

 

Surface meteorology is a key factor in estimating future fire risk and behavior. In Canada, the 

Canadian Forest Fire Danger Rating System (CFFDRS) and its subsystem, the Canadian Forest 

Fire Weather Index System (CFWIS shortened to FWI) are used to estimate fire weather 

variables from surface meteorology (Van Wagner 1987; Stocks et al., 1989). The CFFDRS and 

the CWFIS rely on surface meteorology variables from several short-term weather prediction 

systems including the Global Environmental Multiscale Model (GEM) and the North American 

Ensemble Forecast System (NAEFS). These models are most often used for 1-14 day forecasts 

of relative potential for fire. GEM was developed primarily for weather forecasting, but is used 
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to address climate issues and air quality issues in Canada using a variable-resolution strategy 

(Côté et al., 1998). NAEFS is a collaborative product between North American governments that 

combines ensemble forecasts into a seamless grand ensemble that provides operational forecast 

guidance (Toth et al., 2006).  

 

The CFWIS utilizes four weather variables: noon local standard time 2m temperature, 24-hour 

precipitation, 2m relative humidity, and 10m wind speeds, daily forecasts of six standard 

numeric ratings of relative potential for wildland fire are produced. These indices provide 

information on fuel moisture and expected fire behavior if an ignition occurs. The first three 

indices calculated are fuel moisture codes, which estimate the moisture content of fuels located 

at top (0-1.2cm), middle (1.2-7cm), and lower  (7-18cm) layers of the forest floor (Lawson and 

Armitage, 2008). The Fine Fuel Moisture Code (FFMC) is the numeric rating of moisture 

content of litter and provides a general indication to the relative ease of ignition or flammability 

of fine fuels. The Duff Moisture Code (DMC) is the numeric rating of the average moisture at 

moderate depth and provides a general indication of fuel consumption or mid-sized debris. In 

addition to this, Flannigan and Wotton (1991) found that DMC functions as the most important 

predictor variable for estimating lightning-ignited wildfires in Ontario. The Drought Code (DC) 

is the numeric rating of the average moisture of deep layers and provides a general indication of 

the effects of seasonal drought. Both DMC and DC show a clear seasonal pattern, with higher 

values during the fire season months of April to September (Amiro et al., 2004). The second tier 

of standard numeric ratings are called fire behavior indices, which are used to provide an 

estimate of potential fire behavior based on the calculated fuel moisture codes. The Initial Spread 

Index (ISI) is a numeric rating of the expected rate of fire spread. The Fire Weather Index (FWI) 
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is a numeric rating of fire intensity. Finally, the Buildup Index (BUI) is a numeric rating of the 

total amount of fuel available for combustion and is calculated using the DMC and the DC which 

have strong correlation on seasonal timescales (Van Wagner, 1987). As a result, BUI is a useful 

metric for long term planning and provides a relative rating on accumulated moderate to deep 

layer fuels that are available for combustion. By using BUI as the main predictor in this study, 

forecast results may capture the effects of both the DC and DMC.  

 

Extended forecasts can also be used by fire management operations for calculating FWI System 

ratings. Reaching estimates beyond fourteen days can provide even earlier warning signs to 

relative potential for fire. Forecasting fire weather indices at the sub-seasonal and seasonal time 

scale have been largely reliant on continued improvements to global circulation models such as 

the Canadian Seasonal to Inter-annual Prediction System (CanSIPS). However, forecast accuracy 

diminishes as the lead time increases for both probabilistic and deterministic forecasts (McCollor 

and Roland, 2009; Anderson et al., 2007). Decreasing forecast accuracy also limits the accuracy 

of FWI system ratings, which have become deeply ingrained into fire management decision 

processes (Stocks et al., 1989). Machine Learning (ML) has the potential to improve weather 

predictions, as shown in several studied (Hochreiter and Schmidhuber, 1997; Bauer et al., 2015; 

McGovern et al., 2017; Sanabria et al., 2013). However, ML has thus far been underutilized in 

the forecasting of fire weather (Jain et al., 2020).  
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1.4 Introduction to Machine Learning  

 

Artificial intelligence (AI) is a data-centric approach that employs computer science and large 

data sets for efficient problem solving. The field of AI is further divided into subcategories, one 

being Machine Learning (ML). Within Machine Learning, lives the category of Deep Learning 

(DL). These terms are used to describe the process of computer algorithms and their ability to 

make predictions, classifications, and improve automatically through experience (Mitchell, 1997; 

Poole and Mackworth, 2010). A well-performing ML model is dependent on accurate datasets 

that allow the algorithm to learn patterns and relationships; however, ML methods are capable of 

accounting for underlying uncertainty in the data. As ML is still an emerging technology, major 

advancements have been made in recent years. The applications of ML span various fields 

including medicine (Rajkomar, 2019), law (Surden, 2014), engineering (Reich and Barai, 1999), 

business (Bose, 2001), and physical and environmental sciences (Carleo et al., 2019; Schmoldt, 

2001; Olden et al., 2008). More specifically, Schmoldt (2001) discusses the motivation for using 

AI for ecosystem disturbances research such as wildfire, disease, and insects. Furthermore, 

various studies review the use of ML in environmental sciences such as forest ecology (Crisci et 

al., 2012; Liu et al., 2018), weather prediction (Krasnopolsky and Fox-Rabinovitz, 2006; 

McGovern et al., 2019), flood forecasting (Mosavi et al., 2018), remote sensing (Maxwell et al., 

2018), geology (Rodriguez-Galiano et al., 2015), and geophysics (Jia and Ma, 2017). Although 

ML has been used extensively in various environmental fields, including wildfire research and 

management, many gaps remain (Jain et al., 2020). This presents a new opportunity to extend the 

typical forecasting period of fire weather indices. 
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ML involves developing algorithms that learn automatically from data, which eliminates some of 

the need for expert rules and human supervision. This enables the model to perform on larger 

unstructured datasets as ML algorithms create their own set of rules for determining data 

distributions and patterns. ML involves three different types of learning: supervised learning, 

unsupervised learning, and agent based learning. Supervised ML uses labeled datasets to train 

algorithms to predict outcomes. ML algorithms cross-validate and adjust weights until the model 

has been optimized. Several popular regression methods including linear and logistic regression 

are supervised ML algorithms. Whereas, unsupervised ML exposes patterns and clusters in data. 

For example, clustering is a common unsupervised learning technique that locates the natural 

groupings in data based on similarities or dissimilarities of features. Lastly, Agent Based ML can 

learn by interacting with the environment to extract information from incomplete or unknown 

datasets. Currently in wildfire science, weather prediction systems may result in reduced 

accuracy as they require user defined inputs. Therefore, these models, may be biased towards 

areas of interest, and require complex data formats (Jain et al., 2020). Moreover, the use of ML 

and data-centric models may help to improve the precision of current fire weather prediction 

systems as they reduce steps with human intervention through self-learning.  

 

As well, Jain et al. (2020) suggest that ML has been under-utilized in fire management with 

respect to predictive analytics. Few studies have employed ML in fire weather predictions for 

various regions globally (Van Wagner, 1987; San-Miguel-Ayanz et al., 2012; Sanabria et al., 

2013), yet it has been largely unexplored as a tool in Canadian fire regimes. By addressing this 

research gap, fire weather lead times may potentially be extended beyond the 1-14 day forecast 

offered by traditional numerical weather prediction systems like GEM and NAEFS.  
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1.5 Research Objectives 

 

This thesis explores the use of ML to forecast BUI at the sub-seasonal timescale in Canada. 

Several research questions are addressed, including: (1) Is ML a viable option for forecasting 

FWI system values, such as BUI? (2) What is the influence of teleconnections such as ENSO and 

AMO on ML model performance? (3) Does ML outperform climatology or persistence forecasts, 

and where and at what lead time does it perform better? In this thesis, Chapter Two will discuss 

the data sources and methods used. Chapter Three presents the results of the ML model. Chapter 

Four is a discussion of results, potential sources of error, and suggestions for future work. 

Chapter Five summarizes results and concludes this research.  
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Chapter 2 Data and Methods 

 

The purpose of this study was to use ML to extend the forecasting lead time of BUI and to assess 

the potential of large scale teleconnections as covariates in model training. This chapter 

introduces the data and methods used in this thesis in the order of: study area, data and model 

covariates, Long Short-Term Memory (LSTM) networks, model development and training, and 

model performance and evaluation. 

 

2.1 Study Area  

 

This study was focused on forecasting fire weather indices for areas of Canada impacted by 

wildland fires. Wildland fire is prevalent in three of Canada’s major biomes: the boreal forests, 

the temperate coniferous forests (west coast), and the temperate broadleaf and mixed forests 

(around the Great Lakes and east coast; Stocks et al., 2002 Hanes et al., 2019). These biomes are 

further divided into the ecozones as shown in Figure 2.1. Ecozones are large ecological units 

representing areas of similar climate, topography, and vegetation (Ecological Stratification 

Working Group, 1995). However, some areas of historically low fire activity and areas lacking 

robust data were excluded. The areas that were excluded from this study include portions of the 

ecozones: Arctic Cordillera, High Arctic, Low Arctic, Mixedwood Plains, Prairies, and the 

northern extents of the Hudson Plains, Taiga Cordillera, and Taiga Plains. 

 

Although ecozones are typically representative of various forested regions in Canada, the study 

area was further aggregated into smaller regions consisting of tiling 17 hexagons, with each hexel 
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spanning an area of 4.87 × 1011 𝑚2 or 4.87 × 105 𝑘𝑚2 (Figure 2.2). A hexagonal grid captures 

finer variability in fire weather data as opposed to the larger ecozone units. In addition to this, 

Birch et al. (2007) notes many reasons for choosing hexagonal grids over square grids in 

ecological studies. Of the various shapes that can be tiled together across the landscape, 

hexagons are ideal because they have a lower perimeter-to-area ratio, which lessens the sampling 

bias from edge effects. As well, points near the borders of hexagons are closer to the centroid 

than grids. The size of the hexels was chosen as a compromise between two important 

considerations: the scale of fire weather and number of individual models required. This means 

that the hexel size must capture the variations of fire weather at a scale that is most useful for fire 

management while keeping the number of models and model runs low to limit computation time. 

Finally, hexels one and fifteen were removed from the study due to the lack of fire activity 

within these regions, leaving a total of 15 hexels which were modeled individually. 
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Figure 2.1 Modified Ecozones of Canada as outlined by Ecological Stratification Working Group 

(1995). The Boreal Shield and Taiga Shield are split into East and West.  
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Figure 2.2 The study area of interest was divided into 4.87 × 1011 𝑚2 or 4.87 × 105 𝑘𝑚2 hexels 

across Canada. Hexels one and fifteen are outlined in blue and were removed from the study due 

to the lack of fire activity within these regions.  
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2.2 Fire Weather Data and Covariates      

 

Reanalysis Data 

 

The European Centre for Medium-Range Weather Forecasts (ECMWF) produces ERA5-Land 

data which is the fifth generation product of an atmospheric reanalysis of the global climate from 

1981 to present (Copernicus Climate Change Service (C3S), 2017). Various weather 

observations from World Meteorological Organization (WMO) satellites and stations are 

integrated into the global ensemble (Hennerman and Berrisford, 2021). The data is generated at a 

0.1 degree resolution which covers the Earth on an approximately 9 km grid and resolves the 

atmosphere surface level variables. ERA5-Land is dynamically downscaled from the ERA5 

reanalysis which is generated at 0.25 degrees resolution. ERA5 produces hourly estimates of 

various atmospheric climate variables including noon local standard time temperature, 24-hour 

precipitation, relative humidity, and 10 m wind speeds. Compared to ERA5-interim and other 

global reanalysis products, ERA5 has shown great improvement to weather observations 

(Hennerman and Guillory, 2021). The research suggests that advancements in data quality, 

tropospheric representation, soil moisture accuracy, sea surface temperatures, sea ice detection, 

and precipitation have led to impressive correlations with observed data. Beck et al. (2019) found 

that ERA5 performed best when compared with 15 other (non-gauge corrected) precipitation 

datasets over the contiguous United States. As well, Tarek et al. (2020) found that ERA5 

produced significantly lower precipitation and temperature biases in North America than its 

predecessor. McElhinny et al. (2020) used the available data to calculate FWI System indices 

from 1979 to 2018 for Canada and validated the results against historical calculations from 
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Canadian weather stations as provided by Environment and Climate Change Canada (ECCC). 

Results from the study showed strong agreement with Canadian weather station data (McElhinny 

et al., 2020). With the advancements made by the ERA5 and ERA5-Land reanalysis models, 

ERA5-Land was selected as a viable data source for producing Canadian fire weather indices 

including BUI.  

 

Build-Up Index 

 

As mentioned earlier, FWI indices provide information on fuel moisture and expected fire 

behavior if an ignition occurs. This study uses ERA5-land data from 1981 to 2020 on a 0.1° ×

0.1° grid to calculate BUI values according to the same procedure outlined by McElhinny et al. 

(2020). Weekly BUI values were averaged from the available daily BUI data and aggregated to 

each hexel by area weighting. Each year is assumed to be 364 days by removing February 29th 

from leap years and December 31st from remaining years to produce 52 weeks of averaged BUI 

data. In other words, each year was aggregated into an integer number of weeks for model input. 

The days that are removed lie outside of the typical fire season and have no impact on forecast 

results. However, overwintered DC impacts the availability of BUI throughout the year, as DC is 

used to calculate BUI. Overwintering means that DC calculations begin when the fire season is 

considered to be active, which is on the third day after the snow has disappeared, and concluded 

when the fire season is considered to be over, which is when snow covers the ground (Wotton 

and Flannigan, 1993; Lawson and Armitage, 2008). Consequently, the period for which BUI is 

calculated at a given location varies each year for regions with winter snow cover. At the 

beginning of each season, DC is adjusted at startup according to overwinter precipitation values. 
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Finally, when there is no available data in the winter months, the value is set to zero as the ML 

algorithm requires the previous 12 weeks of values which are numerical values.         

 

Teleconnections  

 

Large scale patterns of ocean-atmosphere pressure and circulation anomalies are called 

teleconnections. As studied by Byrne and O’Gorman (2018), there is remarkable correlation 

between ocean and land variables as there is strong evidence that trends in continental 

temperature and humidity are associated with neighboring ocean regions. Five major 

teleconnections are known to impact weather patterns in Canada, including El Niño Southern 

Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation 

(PDO), Pacific-North American Pattern (PNA), and Arctic Oscillation (AO; Bonsal and Shabbar, 

2011). However, it has been suggested that two teleconnections, ENSO and AMO, have a greater 

impact on Canadian fire weather (Shabbar and Skinner, 2004). Therefore, this study will focus 

on the influence of these particular teleconnections. ENSO is characterized by two prominent 

phases: warm El Niño events and cool La Niña events. The phases oscillate every two to seven 

years and are measured by differences in SSTs and pressure in the equatorial Pacific (McPhaden 

et al., 2006). Bonsal and Lawford (1999) found El Niño events tend to extend summer drought 

conditions in the Prairies. As well, Shabbar and Skinner (2004) found that warm El Niño events 

create a summer moisture deficit in western Canada. Not only did they suggest dry conditions 

from ENSO, they also determined that the positive phase of AMO is associated with summer 

dry-spells in the Prairies, lower Great Lakes, and the west coast of Canada. The phases of AMO 
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modulate over periods of 20-40 years and are characterized by cooling and warming North 

Atlantic SSTs (Knight et al., 2006).  

 

ENSO is realized by indices that combine oceanic and atmospheric variables from each 

oscillation. The MEI.v2 index is used to measure ENSO and is calculated for overlapping bi-

monthly seasons from 1979 to present, which is useful for understanding intraseasonal variability 

(Wolter and Timlin, 1993). Monthly ENSO indices are available as tabular datasets through the 

National Oceanic and Atmospheric Administration (NOAA2, 2022). Moreover, AMO is 

produced from oceanic SSTs. Similar to ENSO, AMO is described by a single index which is 

estimated from North Atlantic SSTs and is available through NOAA from 1856 to present. AMO 

indices are available as raw or detrended datasets through NOAA1 (2022). For this study, raw 

monthly data was selected for each teleconnection. As weekly averaged forecasts of BUI are the 

main objective, ENSO and AMO indices were decomposed to the frequency domain using the 

Fast Fourier Transform (FFT) analysis (Nussbaumer, 1981). In doing this, we are able to 

interpolate monthly values to 52 weekly values by padding the spectrum in the frequency domain 

and transforming back to the temporal domain. This serves as a method for resampling data at 

smaller timesteps, namely weekly values, and to act as a low-pass filter for denoising. While we 

assume that each year is composed of 52 weeks, data leakage remains minimal because the 

original data uses a monthly timescale. Often used in geophysical studies as a tool for spectral 

analysis (Schwarz and Sideris, 1990), the FFT is abundant in various climate- related studies 

including teleconnections, drought variability, and vegetation and soil (Torrence and Webster, 

1999; Dabanl et al., 2017; Azzali and Menenti, 2000).  

 



 

20 

2.3 Long Short-Term Memory Networks  

 

A commonly used method of ML are Artificial Neural Networks (ANN), which are inspired by 

the human brain and the biological signals that are passed between one neuron to another 

(McCulloch and Pitts, 1943). ANNs are comprised of node layers including an input layer, one 

or more hidden layers, and an output layer. Each neuron computes a linear weighted sum of the 

inputs and applies an activation function to produce an output. As information flows through the 

network, each node must reach a certain weighted sum threshold for that node to activate and 

pass information on to the next node. This functions as a cutoff to signals below the threshold 

and allows for signals above the threshold to pass through. The weights on the connections 

represent the function parameters, which are fit by optimizing the threshold value. In general, 

non-linear activation functions such as sigmoid, tanh, and Rectified Linear Unit (ReLU) are 

used. Two important variants of ANNs are Recurrent Neural Networks (RNNs) and Convolution 

Neural Networks (CNNs). RNNs are specifically used in solving complex problems involving 

sequential data or time series data, while CNNs are feedforward networks that do not form a 

cycle or loop. In CNNs, adjacent nodes convolve to extract spatial information from data. Both 

networks use training data to learn patterns, but RNNs are suited to temporal problems as they 

take information from past inputs to influence outputs. In addition, ANNs are an example of a 

universal function approximator (Hornik et al., 1989) and can be configured to fit the task at 

hand through adjustments in number of hidden layers, choice of activation function, number of 

epochs, learning rate, and various other hyperparameters.  
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Traditional RNNs are well suited to studies involving temporal data as they use back-

propagation through time (BPTT; Williams and Zipser, 1995) or real-time recurrent learning 

(RTRL; Robinson and Fallside, 1987) to store and learn patterns from past inputs. However, 

these methods have extreme limitations as errors can propagate and grow exponentially. To 

address this issue, Hochreiter and Schmidhuber (1997) developed the Long Short-Term Memory 

(LSTM) network, which has become the most common variant of RNNs. LSTMs are designed to 

drop signals that are not useful and only retain important information. Although, LSTMs are not 

used extensively in wildland fire research, some advances have been made using LSTMs in 

combination with CNNs for smoke detection (Cao et al., 2019) and LSTMs in area burned 

predictions (Liang et al., 2019).  

 

As mentioned earlier, feedforward neural networks and RNNs are variants of DNNs which 

contain an input layer, hidden layers, and an output layer. In a feedforward neural network, 

information moves in one direction – from the input layer, through the hidden layers, and to the 

output layer (Figure 2.3). These networks only consider the immediate and current inputs and 

cannot remember what was done in past iterations. In an RNN, the information cycles through a 

loop allowing the network to recall past and present inputs (Figure 2.4). The architecture of 

LSTMs are similar to RNNs, but contain additional neural network layers to limit error 

propagation. LSTMs contain three gates that optionally allow information through and are 

composed of a pointwise multiplication operation and a sigmoid activation function which is 

shown as: 

𝑆(𝑥) =  
1

1 − 𝑒𝑥
 ,     [𝐸𝑞. 1] 
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where 𝑒 is Euler’s constant and 𝑥 is the threshold value. The sigmoid layer outputs a value 

between zero and one which describes the level to which each new input should influence the 

cell state. The LSTM forget gate offers protection to the cell state while allowing useful signals 

through and forgetting signals that do not meet the minimum threshold value (Figure 2.5). 

 

 

Figure 2.3 Feedforward neural network with an input layer (𝑥𝑛), hidden layer, and output layer 

(�̂�). The arrows show connections between nodes in each of the layers. A simple or shallow 

neural network contains one hidden layer, while DNNs typically contain more than one hidden 

layer.  
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Figure 2.4 RNN architecture with an input layer (𝑥𝑛), hidden layers, and an output layer (�̂�). 

The arrows show connections between nodes in each of the layers and between cycles within the 

hidden layers. The information travels through a loop allowing the network to recall past and 

present inputs.  

 

 

 

 



 

24 

 

Figure 2.5 Architecture of a simplified LSTM neuron from the hidden layer showing three gates: 

forget gate, input gate, and output gate. The forget gate forgets irrelevant information, the input 

gate adds and updates new information, and the output gate passes updated information to the 

next neuron in the network.  

 

2.4 Model Development 

 

Statistical models, including ML models, are designed to relate outcome variables with several 

independent or dependent variables and define the strength of association (Heinze et al., 2018). 

ML models may provide insight to relationships between variables and help to gain greater 

understanding of environmental mechanisms. ML is advantageous since it is able to represent 

nonlinear relationships and can extract temporal patterns from data.  In keeping with these 

realizations, this study utilizes ML to create weekly BUI forecasts using several covariates 

including: 12 weeks of past BUI inputs, climatological BUI, and teleconnections.  
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Data Preparation and Model Architecture  

 

This study utilized Keras (Chollet et al., 2015), a deep learning application programming 

interface (API) that integrates with TensorFlow, which is an infrastructure layer for 

differentiable programming (Ketkar, 2017). A multivariate, multi-step LSTM model was created 

using the Python programming language. Four models were created, each followed the same 

architecture but with differing covariates (see Table 2.1). First, data was separated into training 

and testing datasets using the “80/20 rule”, respectively. Data from 1981 to 2012 was used for 

training and data from 2013 to 2020 was used for testing. Weekly averaged data from each hexel 

was compiled into training and testing data frames then normalized by scaling the data to lie 

between the range of zero to one using Scikit-Learn’s preprocessing package (Pedregosa et al., 

2011). The first model used the variables: week of the year, previous 12 months of BUI values 

and BUI climatology. The second model used the variables: week of the year, historical BUI, 

BUI climatology, and ENSO MEIv2 index. The third model used the variables: week of the year, 

historical BUI, BUI climatology, and AMO index. Finally, the fourth model used the variables: 

week of the year, historical BUI, BUI climatology, ENSO MEIv2 index, and AMO index. As the 

LSTM model learns from past and current inputs to forecast the next values, data must be fed 

into the model through a moving-window approach. An additional function is created to split the 

training data into two sequences: model input and expected next values. This function iterates 

through the training data and uses 12 weeks of inputs to determine the output at a single week. 

The same moving-window split is applied to the testing data.       
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Hyperparameters  

 

Model optimization and hyperparameter tuning can use one of four basic methodologies: manual 

tuning, gridded search, randomized search (Bergstra and Bengio, 2012), and Bayesian 

optimization (Snoek and Larochelle, 2012; Shahriari et al., 2015). Bergstra and Bengio (2012) 

noted that manual and gridded searches are the most commonly used strategies for hyper-

parameter optimization. While random and Bayesian optimization techniques are becoming 

increasingly popular, this study uses a combination of heuristic and exhaustive manual tuning to 

minimize training and validation loss curves. Multiple trials of various model hyper-parameter 

combinations were tested to evaluate and enhance performance for each hexel. Each of the four 

models used the same final hyper-parameters and general model architecture (Table 2.1). 

 

Model assembly can be very efficient as the Keras library allows for flexible parameter tuning 

and layer addition. After evaluation of various model architectures, a sequential model with an 

LSTM layer, dropout layer, and dense layer was selected for this study as it produced the best 

outcomes in early testing. Each layer is carefully tuned to optimize model results, with a dropout 

rate of 0.20 which was selected as it prevented overfitting. A dropout rate prevents an RNN from 

overfitting by randomly dropping out units during training. The LSTM layer has several 

parameters including 150 LSTM units or LSTM neurons, Rectified Linear Units (ReLU) 

function activation, and the input shape. The input shape is determined by the number of weeks 

used for inputs (12 weeks) and number of covariates in the model. ReLU and its derivative are 

both monotonic (Nair and Hinton, 2010), meaning the function has an output range of zero to 

infinity and trains much faster than alternative activation functions. This is due to the fact that 



 

27 

the ReLU function is non-saturating as it prunes the negative portion of the function to zero and 

keeps the positive portion (Jiang et al., 2018). Following the LSTM layer, two dense layers are 

used to adjust dimensionality of the output to the desired target. Additionally, the model is 

compiled by defining the loss function using the Root Mean Square Error (RMSE) and the Adam 

optimizer. Adam optimization is a variant of stochastic gradient descent adapted for ML 

(Kingma and Ba, 2014). Next, the model is fit to the training data and validated against the 

testing data with 25 epochs to minimize the training and validation loss. More specifically, the 

LSTM will use the training data for 25 cycles. Finally, the model is used to predict the next 

values in the sequence using the testing data set as inputs. 

 

Table 2.1 Hyper-parameter combinations used in the development of four different LSTM 

models with Keras API.  

 Model 1 Model 2 Model 3 Model 4 

Covariates Week of year, 

Historical BUI, 

BUI Climato- 

logy 

Week of Year, 

Historical BUI, 

BUI Climato-

logy, ENSO 

MEIv2 Index 

Week of Year, 

Historical BUI, 

BUI Climato-

logy, AMO 

Index 

Week of Year, 

Historical BUI, 

BUI Climato-

logy, ENSO 

MEIv2 Index, 

AMO Index 

Model Layers Dropout  

(rate = 0.20), 

LSTM  

(nodes = 150),  

Dense  

(nodes = 5), 

Dense  

(nodes = 5) 

Dropout  

(rate = 0.20), 

LSTM  

(nodes = 150),  

Dense  

(nodes = 5), 

Dense  

(nodes = 5) 

Dropout  

(rate = 0.20), 

LSTM  

(nodes = 150),  

Dense  

(nodes = 5), 

Dense  

(nodes = 5) 

Dropout  

(rate = 0.20), 

LSTM  

(nodes = 150),  

Dense  

(nodes = 5), 

Dense  

(nodes = 5) 

Dropout Rate 0.20 0.20 0.20 0.20 

LSTM Hidden 

Layer Neurons 

 

150 

 

150 

 

150 

 

150 

Activation 

Function 

 

ReLU 

 

ReLU 

 

ReLU 

 

ReLU 

Optimizer Adam Adam Adam Adam 

Loss Function MSE MSE MSE MSE 
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Epochs 25 25 25 25 

Learning Rate 0.00005 0.00005 0.00005 0.00005 

 

2.5 Model Performance and Evaluation 

 

The performance of each model was evaluated with mean absolute error (MAE) and F1-scores 

compared to climatology and persistence forecasts for each hexel. MAE is used as a metric to 

evaluate continuous data, whereas F1-scores are used to evaluate categorical data. Climatology 

and persistence provide baseline forecasts for which to compare our ML model against. A 

climatology forecast is defined by using the mean seasonal values for each week of the year from 

1981 to 2020 to forecast future values. A persistence forecast assumes the forecast value of the 

current week is the same as the previous weekly observed value. The MAE is the magnitude of 

error, which takes the absolute value of the difference between the measured value and the 

observed value and is calculated as: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑥𝑖 − 𝑥|

𝑛

𝑖=1

 ,     [𝐸𝑞. 2]  

 

where 𝑛 is the number of evaluation data points, 𝑥𝑖 is the observed value, 𝑥 is the measured 

value, and |𝑥𝑖 − 𝑥| is the absolute error. A confusion matrix was used to calculate the F1-score 

for each hexel and model by assigning BUI values above the 90th percentile to a value of one and 

BUI values below the 90th percentile to zero. The 90th percentile was chosen to differentiate 

between BUI values well above the average values. As well, it is used to evaluate the forecast 

results of extreme BUI values. More generally, the F1-score is used as a measure of model 

accuracy by taking the harmonic mean of model precision and recall. Precision is the fraction of 

true positive values that the model classified as positive values and is calculated as:  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + # 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 ,     [𝐸𝑞. 3] 

 

where true positive is defined as correct model prediction of the value, true negative is correct 

model prediction of the value, false positive is incorrect model prediction of the value, and false 

negative is the incorrect model prediction of the value. Recall is the fraction of values classified 

as positive among the total number of positive values and is calculated as:  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + # 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 ,     [𝐸𝑞. 4] 

 

and, in other words, states the percentage of total relevant results correctly classified by the 

model forecast. Therefore, the F1-score is given by  

 

𝐹1 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 ,     [𝐸𝑞. 5] 

 

where a perfect model has an F1-score of one and a model with no skill has an F1-score of zero.  

 

As previously mentioned, one of the most commonly used metrics for evaluating model fit is the 

consideration of training and validation loss over time. The training loss indicates how well the 

model fits the training data, while the validation loss indicates how well the model fits testing 

data. Underfitting is characterized by divergence of both curves in time, overfitting is 

characterized by coinciding curves to a point then diverging curves following that point, and a 

good fit is characterized by two decreasing curves that coincide and stabilize over time. As well, 
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when the training data error loss values are much smaller than the test data error loss, it may be 

under fitting. In this study, the training and testing curves of each of the LSTM models were 

evaluated for acceptable fit. Training and testing curves were assessed to minimize instances of 

overfitting and overtraining.  
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Chapter 3 Results 

 

This chapter presents one to five week forecasts of BUI produced by the four LSTM models and 

for the 15 selected hexels as outlined in the previous chapter. However, to avoid repetition, we 

initially focus on the results from hexel 8 in great detail. These results are presented in sections 

3.1 and 3.2. Hexel 8 is selected as the initial area of focus as it is covers a large portion of the 

Boreal Plains in Alberta. Following this, the remaining results for all hexels are summarized in 

section 3.3. All results are compared with climatology and persistence forecasts. The models 

were produced using four combinations of week of year, historical BUI, BUI climatology, ENSO 

MEI.v2 index, and AMO index (see Table 2.1). The forecast results are displayed by weeks of 

the year of BUI, MAE, and F1-score comparisons.   

 

3.1 Training and Validation Loss Curves 

 

Training and validation loss curves are used to evaluate model fit to training data. Figure 3.1 

presents model training and validation loss curves for hexel 8 as MSE loss versus model training 

epochs. Four sub-figures are produced to show typical training and validation loss curves for 25 

epochs for each model which are calculated from training data (31 years, from 1981 to 2012). 

Both curves show a decreasing MSE loss that begin to coincide and stabilize at approximately 15 

epochs with a learning rate of 0.00005 for all models, which suggests good model fit to training 

data.  
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(a) 

 

(b) 

 
(c) (d)  

  
Figure 3.1 Hexel 8 training and validation loss curves shown for each of the four models. Each 

sub-figure shows MSE loss versus 25 epochs. Green indicates training loss and blue indicates 

validation loss. Both curves are calculated from model training data from 1981-2012 (31 years).  
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3.2 Build-Up Index Forecast 

 

The 1-5 week forecasts for each of the LSTM models are compared with the seasonal 

climatology and observed BUI values in Figures 3.2 (Model 1), 3.4 (Model 2), 3.6 (Model 3), 

and 3.8 (Model 4) for hexel 8. Each year is composed of 52 weekly averaged BUI values, 

therefore, the hold out data used for testing from 2013 to 2020 is composed of 416 weeks (ie. 52 

times 8). Panels (a through e) show 1 to 5 week lead time forecasts of BUI for hexel 8. Due to 

overwintering of the drought code, specifically inter-annual variability of the spring startup 

values, zero values start between weeks 39 and 52 and end at the spring startup which begins 

between weeks 13 and 22. In other words, weekly BUI predictions span the fire season months 

which begins between March to May and ends between the months of September to October. 

Blue indicates observed BUI values, red indicates LSTM model forecast of BUI values, and 

green indicates climatology forecast of BUI values. 

 

Figures 3.3, 3.5, 3.7, and 3.9 show corresponding scatter plots with forecast and observed BUI 

values; these plots are used as a method of visual inspection to compare differences between 

predictions and observations. Model BUI, climatology, and persistence forecasts of hexel 8 are 

compared against observed BUI values for each model. Observed BUI is plotted with the identity 

line shown by 𝑦 = 𝑥. Under perfect conditions, the model forecast and climatology/persistence 

forecast are expected to be equal and exactly follow the 1:1 identity line. Panels a and b 

respectively show climatology and persistence compared to the model dataset.  
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Hexel 8, Model 1: 1-5 Week Forecasts  

 

Figure 3.2 Hexel 8 Model 1 comparisons of weekly forecasts for 1 to 5 week lead times (a to e, respectively) for Model 1. Forecasts show weekly 

averaged BUI values from 2013 to 2020. Each year is composed of 52 weekly averaged values. Blue indicates observed BUI values, red indicates 

LSTM model forecast of BUI values, and green indicates climatology forecast of BUI values.  
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Hexel 8, Model 1: Identity Line  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Hexel 8 results for weekly forecasts: (a) scatter plot of climatology and Model 1 forecast results, (b) 

scatter plot of persistence and Model 1 forecast results. Each row (i to v) shows increasing forecast lead times of 

1 to 5 weeks. Solid line shows 1:1 relationship denoting perfect model fit. The model forecast is represented by 

red data points, climatology and persistence are shown in green.   

(a) Climatology Comparison (b) Persistence Comparison 

(i)  (i)  

(ii)  (ii)  

(iii)  (iii)  

(iv)  (iv)  

(v)  (v)  
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Hexel 8, Model 2: 1-5 Week Forecasts 
 

Figure 3.4 Hexel 8 Model 2 comparisons of weekly forecasts for 1 to 5 week lead times (a to e, respectively) for Model 2. Forecasts show weekly 

averaged BUI values from 2013 to 2020. Each year is composed of 52 weekly averaged values. Blue indicates observed BUI values, red indicates 

LSTM model forecast of BUI values, and green indicates climatology forecast of BUI values. 
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Hexel 8, Model 2: Identity Line 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Hexel 8 results for weekly forecasts: (a) scatter plot of climatology and Model 2 forecast results, (b) 

scatter plot of persistence and Model 2 forecast results. Each row (i to v) shows increasing forecast lead times of 

1 to 5 weeks. Solid line shows 1:1 relationship denoting perfect model fit. The model forecast is represented by 

red data points, climatology and persistence are shown in green.

(a) Climatology Comparison (b) Persistence Comparison 

(i)  (i)  

(ii)  (ii)  

(iii)  (iii)  

(iv)  (iv)  

(v)  (v)  
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Hexel 8, Model 3: 1-5 Week Forecasts  

 

(a) 

 
 

(b) 

 

(c) 

 

(d) 

 
 

 

(e) 

 
 

 

 

 

Figure 3.6 Hexel 8 Model 3 comparisons of weekly forecasts for 1 to 5 week lead times (a to e, respectively) for Model 3. Forecasts show weekly 

averaged BUI values from 2013 to 2020. Each year is composed of 52 weekly averaged values. Blue indicates observed BUI values, red indicates 

LSTM model forecast of BUI values, and green indicates climatology forecast of BUI values. 
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Hexel 8, Model 3: Identity Line 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Hexel 8 results for weekly forecasts: (a) scatter plot of climatology and Model 3 forecast results, (b) 

scatter plot of persistence and Model 3 forecast results. Each row (i to v) shows increasing forecast lead times of 

1 to 5 weeks. Solid line shows 1:1 relationship denoting perfect model fit. The model forecast is represented by 

red data points, climatology and persistence are shown in green. 

(a) Climatology Comparison (b) Persistence Comparison 

(i)  (i)  

(ii)  (ii)  

(iii)  (iii)  

(iv)  (iv)  

(v)  (v)  
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Hexel 8, Model 4: 1-5 Week Forecasts 

 

(a) 

 
 

(b) 

 

(c) 

 

(d) 

 
 

 

(e) 

 

 

Figure 3.8 Hexel 8 Model 4 comparisons of weekly forecasts for 1 to 5 week lead times (a to e, respectively) for Model 4. Forecasts show weekly 

averaged BUI values from 2013 to 2020. Each year is composed of 52 weekly averaged values. Blue indicates observed BUI values, red indicates 

LSTM model forecast of BUI values, and green indicates climatology forecast of BUI values. 
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Hexel 8, Model 4: Identity Line 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Hexel 8 results for weekly forecasts: (a) scatter plot of climatology and Model 4 forecast results, (b) 

scatter plot of persistence and Model 4 forecast results. Each row (i to v) shows increasing forecast lead times of 

1 to 5 weeks. Solid line shows 1:1 relationship denoting perfect model fit. The model forecast is represented by 

red data points, climatology and persistence are shown in green. 

(a) Climatology Comparison (b) Persistence Comparison 

(i)  (i)  

(ii)  (ii)  

(iii)  (iii)  

(iv)  (iv)  

(v)  (v)  
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3.3 Error Statistics  

 

Hexel 8 MAE results are summarized in Table 3.1. The LSTM model, climatology, and 

persistence forecast MAE values are shown in columns one to three, respectively. As mentioned 

previously, the MAE is the absolute value of error in predicted values. Lower MAE values 

indicate better performing forecast results. In addition, Figure 3.10 shows MAE values for each 

model as a function of forecast lead time from one to five weeks. In all four instances, 

persistence outperforms the model and climatology forecasts at a lead time of one week. 

Similarly, all model forecasts outperform the climatology at a one week lead time. At lead times 

of two and three weeks, the model forecasts perform better than both the persistence and 

climatology forecasts. The fourth and fifth week lead time results show climatology performs 

better than all four models. Full results of MAE scores for all hexels are presented as Figures 

6.1-6.15 in Appendix A.  

 

Moreover, MAE for the LSTM model, climatology, and persistence forecasts were calculated for 

each hexel for one to five week forecast lead times. To summarize these results, the differences 

between the observed MAE and forecast MAE were plotted as hexel maps for each model (1 to 

4) and each forecast lead time (1-5 weeks) as shown in Figures 3.11, 3.12, 3.13, and 3.14. Sub-

figures show: (a) the difference between model MAE and climatology MAE (∆𝑀𝐴𝐸𝑀𝐶), (b) the 

difference between model MAE and persistence MAE (∆𝑀𝐴𝐸𝑀𝑃), and (c) the accuracy of model 

predictions using F1-score. The difference from MAE results gives an indication to which 

forecast performed best at each lead time for each hexel, and is defined as:   
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∆𝑀𝐴𝐸𝑀𝐶 = 𝑀𝐴𝐸𝑀𝑜𝑑𝑒𝑙 − 𝑀𝐴𝐸𝐶𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦          [𝐸𝑞. 6] 

∆𝑀𝐴𝐸𝑀𝑃 = 𝑀𝐴𝐸𝑀𝑜𝑑𝑒𝑙 − 𝑀𝐴𝐸𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒           [𝐸𝑞. 7] 

 

where a positive ∆𝑀𝐴𝐸 indicates that the model forecast has larger error and a negative ∆𝑀𝐴𝐸 

indicates that the climatology or persistence forecast has larger error. In subplots a and b, a blue-

red colormap is used to show whether the LSTM model forecast or the climatology/persistence 

forecast perform better. Blue shows a negative ∆𝑀𝐴𝐸, which indicates that the LSTM model 

forecast is better performing. Red shows a positive ∆𝑀𝐴𝐸, which indicates that the climatology 

or persistence forecast is better performing. In subplot c, F1-scores from the LSTM model 

forecast is shown across all of the hexels. A higher F1-score, as shown in darker green, indicates 

better model accuracy. Full results for all LSTM model F1-scores are presented in Appendix 

Table A1. As well, full results of the F1-scores for the persistence and climatology models are 

presented in Appendix Table A2 and A3, respectively.   

 

For Models 1 (Figure 3.11a), 2 (Figure 3.12a), and 4 (Figure 3.14a) a negative ∆𝑀𝐴𝐸𝑀𝐶  is 

shown in some hexels up to a four week lead time. For Model 3 (Figure 3.13a), a negative 

∆𝑀𝐴𝐸𝑀𝐶  is shown in some hexels up to a three week lead time. In other words, the model 

forecasts perform better than the climatology forecast up to a lead time of three or four weeks for 

some hexels. More specifically, the Model 1 forecast outperformed climatology in hexel 13 up to 

a lead time of four weeks, in hexels 2, 3, 7, and 8 up to a lead time of three weeks, and in hexels 

4, 5, 9, 16, and 17 up to lead time of two weeks. The Model 2 forecast outperformed climatology 

in hexels 7 and 13 up to a lead time of four weeks, in hexels 2, 3, and 8 up to lead time of three 

weeks, and in hexels 4, 9, 16, and 17 up to lead time of two weeks. The Model 3 forecast 
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outperformed climatology in hexels 2, 3, 7, 8, and 13 up to lead time of three weeks and in 

hexels 4, 5, 9, 16, and 17 up to lead time of two weeks. Finally, the Model 4 forecast 

outperformed climatology in hexel 7 up to a lead time of four weeks, in hexels 2, 3, 7, 8, and 13 

up to lead time of three weeks, and in hexels 4, 9, 16, and 17 up to lead time of two weeks. In 

general, we find that all models provide improved forecasts for hexels towards the west and 

west-central regions up to a lead time of three weeks. However, there is some variation in model 

performance beyond a three week lead time, with Models 1, 2, and 4 showing skill up to four 

weeks of lead time in few hexels.  

 

The ∆𝑀𝐴𝐸𝑀𝐶  results can be compared to the ∆𝑀𝐴𝐸𝑀𝑃 counterpart. For Models 2 (Figure 3.12b) 

and 4 (Figure 3.14b), a positive ∆𝑀𝐴𝐸𝑀𝑃 is produced in some hexels up to a lead time of two 

weeks. In other words, the persistence forecast performs better than the model forecasts up to a 

lead time of two weeks for some hexels. Beyond a two week lead time, the model forecasts 

perform better than the persistence forecast in all hexels. For Models 1 (Figure 3.11b) and 3 

(Figure 3.13b), a positive ∆𝑀𝐴𝐸𝑀𝑃 is produced in some hexels up to a lead time of one week. 

Beyond a one week lead time, the model forecasts perform better than the persistence forecast in 

all hexels.  

 

More specifically, hexels 2, 8, and 9 show a positive ∆𝑀𝐴𝐸𝑀𝑃 and indicate that persistence 

performed better than Model 1 up to a lead time of one week. However, beyond a lead time of 

one week, Model 1 performed better than persistence across the country. Persistence performed 

better than Model 2 up to a lead time of one week in hexels 6, 8, 9, 10, and 12. Beyond a lead 

time of one week, Model 2 performed better than persistence in all hexels except for hexel 2 
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which retains skills up to a lead time of two weeks. Persistence performed better than Model 3 up 

to a lead time of one week in hexels 2, 8, 9, 10, and 12. Beyond a lead time of one week, Model 

3 performed better than persistence across the country. Finally, persistence performed better than 

Model 4 up to a lead time of one week in hexels 6, 8, 9, 10, 11, and 12. Beyond a lead time of 

one week, Model 4 performed better than persistence in all hexels except for hexel 2 which 

retains skills up to a lead time of two weeks. In general, we find that all model forecasts perform 

better than persistence forecasts beyond a two week lead time. Nevertheless, the persistence 

forecast shows skill in some hexels at a lead time of one week.  

 

Across all four models, the accuracy tends to decreases incrementally in all hexels with 

increasing lead time (Figure 3.11c, Figure 3.12c, Figure 3.13c, and Figure 3.14c). Similarly, the 

persistence and climatology forecast accuracy declines with increasing lead time (Table A2 and 

A3). In general, the model accuracy of west and west-central hexels is slightly higher than 

eastern hexels.  

 

Table 3.1 Hexel 8 LSTM Model, Climatology, and Persistence MAE for each of the four models 

at one to five week lead times.   

 

Week Model 1 

MAE 

Model 2 

MAE 

Model 3 

MAE 

Model 4 

MAE 

Climatology 

MAE 

Persistence 

MAE 

1 4.409 4.473 4.398 4.361 6.737 4.272 

2 5.812 5.985 5.836 6.017 6.737 6.657 

3 6.275 6.366 6.254 6.344 6.737 8.214 

4 6.766 7.032 6.844 6.939 6.737 9.399 

5 7.341 7.757 7.378 7.649 6.737 10.359 
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Hexel 8: Model MAE Comparisons 
 

Figure 3.10 Plotted MAE values for Hexel 8 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models at 1 to 5 week lead times.   
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Model 1: Hexel Maps of MAE and Accuracy 

 

(a) Model Forecast Vs. Climatology (b) Model Forecast Vs. Persistence (c) Accuracy 
 

(i) 

 

(i) 

 

(i) 

   
 

(ii) 

 

(ii) 

 

(ii) 
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(iii) 

 

 

(iii) 

 

 

(iii) 

 
 

(iv) (iv) (iv) 
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(v) 

 

(v) 

 

(v) 

   
Figure 3.11 Model 1 MAE comparisons of testing data (2013-2020) for LSTM model, climatology, and persistence forecasts for each hexel: (a) the 

difference between model MAE and climatology MAE, (b) the difference between model MAE and persistence MAE, and (c) the accuracy of model 

predictions. Blue indicates a negative MAE difference, where the LSTM model forecast is improved. Red indicates a positive MAE difference, where 

the climatology or persistence forecast is improved. Tones of green represent F1-scores, with darker shades showing higher accuracies.  
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Model 2: Hexel Maps of MAE and Accuracy 

 

(a) Model Forecast Vs. Climatology (b) Model Forecast Vs. Persistence (c) Accuracy 
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Figure 3.12 Model 2 MAE comparisons of testing data (2013-2020) for LSTM model, climatology, and persistence forecasts for each hexel: (a) the 

difference between model MAE and climatology MAE, (b) the difference between model MAE and persistence MAE, and (c) the accuracy of model 

predictions. Blue indicates a negative MAE difference, where the LSTM model forecast is improved. Red indicates a positive MAE difference, where 

the climatology or persistence forecast is improved. Tones of green represent F1-scores, with darker shades showing higher accuracies. 
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Model 3: Hexel Maps of MAE and Accuracy 

 

(a) Model Forecast Vs. Climatology (b) Model Forecast Vs. Persistence (c) Accuracy 

 

(i) 

 

 

(i) 

 

 

(i) 

 
 

(ii) 

 

 

(ii) 

 

 

(ii) 

 



 

54 

  

 

(iii) 
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(v) 

 

 

(v) 

 

 

(v) 

 
Figure 3.13 Model 3 MAE comparisons of testing data (2013-2020) for LSTM model, climatology, and persistence forecasts for each hexel: (a) the 

difference between model MAE and climatology MAE, (b) the difference between model MAE and persistence MAE, and (c) the accuracy of model 

predictions. Blue indicates a negative MAE difference, where the LSTM model forecast is improved. Red indicates a positive MAE difference, where 

the climatology or persistence forecast is improved. Tones of green represent F1-scores, with darker shades showing higher accuracies. 
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Model 4: Hexel Maps of MAE and Accuracy 

 

(a) Model Forecast Vs. Climatology (b) Model Forecast Vs. Persistence (c) Accuracy 
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(v) 

 

 

(v) 

 

 

(v) 

 
Figure 3.14 Model 4 MAE comparisons of testing data (2013-2020) for LSTM model, climatology, and persistence forecasts for each hexel: (a) the 

difference between model MAE and climatology MAE, (b) the difference between model MAE and persistence MAE, and (c) the accuracy of model 

predictions. Blue indicates a negative MAE difference, where the LSTM model forecast is improved. Red indicates a positive MAE difference, where 

the climatology or persistence forecast is improved. Tones of green represent F1-scores, with darker shades showing higher accuracies. 
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Chapter 4 Discussion 

 

In this chapter, the predictive power of using LSTM models to forecast weekly averaged BUI at 

lead times of one to five weeks is examined in detail. As well, the results from each of the four 

models considered here is analyzed. Finally, model limitations (including possible sources of 

error) and suggestions for future research are discussed. Results from this study suggest that ML 

models used to forecast FWI values may help to extend the time period for skillful forecasts 

when compared with climatology and persistence. Four LSTM models produced one to five 

week forecasts of BUI for 15 hexels across Canada. Each model used a different combination of 

predictive variables which included: week of year, historical BUI, BUI climatology, ENSO 

MEI.v2 index, and AMO index (see Table 2.1). Each model produced improved forecasting 

results when compared to climatology and persistence for two to three week forecasting in 

western Canada. Historically, long term weather prediction and forecasted derivatives of weather 

(including FWI system indices) has been a significant challenge as modelling at a long-range 

timescale is very challenging at both small and large scales. Geostationary, polar-orbiting, and 

deep space satellites monitor and collect global atmospheric data that is used in physics-based 

forecasting models. More specifically, numerical weather predictions models use atmospheric 

data, but the forecasts produced have limited success at longer lead times as weather is a chaotic 

system. Despite major advances made in the field of ML, predicting future weather trends 

requires identification of both the input and response variables that are appropriate for long range 

forecasting. Using covariate combinations of historical BUI and teleconnections shows potential 

for improved FWI forecasts, however, some hexels perform better than others. More specifically, 
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some hexels show improved predicted BUI when compared with climatology and persistence, 

while others showed a similar error to those estimates.  

 

4.1 Model Performance 

 

Results from this study are compared with the findings of Shabbar and Skinner (2004) who 

reported that ENSO events usually lead to a summer moisture deficit in western Canada as there 

is less winter precipitation. In addition, they determined that warm AMO phases tends to be 

associated with drier conditions in the Prairies, lower Great Lakes, and the west coast of Canada. 

The extreme BUI values caused by ENSO events in the western extent of Canada may be better 

forecasted by Model 2 and Model 4 which use ENSO indices as covariate predictors. Whereas 

drier summer conditions in the Praries, lower Great Lakes, and west coast may be better 

predicted by Model 3 and Model 4 which use AMO indices as covariate predictors.  

 

As shown in Models 2, 3, and 4, hexels in the west show better results from the LSTM models 

than climatology and persistence up to three weeks of lead time (Figures 3.15a, 3.16a, and 

3.17a). However, the Model 1 forecast at a three week lead time (Figure 3.14a) performs 

similarly since the same western hexels show improved results when compared to climatology 

and persistence forecasts. Where Models 2 and 4 differ from Model 1 is demonstrated in hexel 7 

at a four week lead time. The addition of ENSO as a covariate gives the models a slight 

advantage at forecasting BUI in this western hexel. Although Model 2 and 4 show improvements 

over Model 1 in hexel 7, Model 1 shows similar skill in a neighboring hexel. The Model 1 

forecast in hexel 13 shows skill over climatology up to a lead time of four weeks as well. 
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Moreover, the Model 3 forecast does not show any improvements over the Model 1 forecast up 

to a lead time of four weeks. In general, all model forecasts perform better than climatology in 

hexels 2, 3, 7, 8, and 13 up to a lead time of three weeks. As well, all model forecasts perform 

better than persistence in all hexels beyond two weeks of lead time. These results suggest that the 

addition of teleconnections as covariates is useful to a certain degree. The efficacy of additional 

teleconnection covariates on model forecasting skill is not clear without additional research.  

 

Although relationships between teleconnections and FWI values have been explored in this 

research, there may be limitations in this approach. As stated by Hofman et al. (2017) and 

Ribeiro et al. (2016), causal features can improve the interpretability of predictive models while 

correlations only capture the co-occurrence of features (Yu et al., 2020). While Models 2, 3, and 

4 contain teleconnections as covariate predictors, the forecasting ability of Model 1 remains on 

par with these models for up to three weeks of lead time. This suggests that the relationship 

between BUI, ENSO, and AMO should be explored in further detail to determine whether 

teleconnections are truly causal predictors and not just correlations.  

    

Despite the uncertainty of teleconnections as casual covariates; week of year, historical BUI, and 

climatological BUI proved to be useful predictors in the LSTM models. As shown in the identity 

line plots (Figures 3.3a, 3.6a, 3.9a, and 3.11a), the model forecasts progressively learned the 

seasonal climatology. At a lead time of five weeks, each model forecast showed similar results to 

the climatology forecast. Although the models trend towards climatology, the model forecast 

results outperform the climatology forecast in many western hexels up to a lead time of three 

weeks. It is important to note that the LSTM models use twelve weeks or three months of 
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observed covariate values as inputs to forecast up to a five week lead time. This suggests that 

model skill may be attributed to teleconnection values from up to three months previous, but the 

most important predictor is observed BUI. This offers an opportunity to improve traditional long 

term BUI forecasts that rely solely on climatology and short term forecasts that rely on 

persistence. ML models and teleconnections as covariates may be used as additional predictive 

tools to validate the climatological BUI forecast and improve forecasting at around three weeks 

of lead time.  

 

Finally, there is a need for long range forecasts in resource management within fire management 

zones and between agencies. Fire management operations may use long range forecasts of BUI 

to provide even earlier warning signs to relative potential for fire, as the BUI gives an indication 

of how much fuel is available for combustion. In addition to this, using BUI as the main 

predictor may capture the effects of both the DC and DMC in forecasts result. Both DC and 

DMC have been used to forecast several fire related events, including lightning-ignited wildfires 

(Flannigan and Wotton, 1991). As well, with improved methods for long range fire weather 

forecasts, fire management agencies can allocate resources and anticipate provincial and 

territorial firefighting needs. Fire fighters and government officials can be deployed in high fire 

danger zones to apply mitigation techniques, preventative treatments, or to give early warning to 

communities. This research presents an opportunity for improved early warning systems that 

have the potential to prevent the spread of unwanted fires.  
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4.2 Limitations and Sources of Error 

 

There are a number of limitations and possible sources of errors within this study. Firstly, ML 

models require robust input data to produce accurate results. Missing data or inconsistent records 

may reduce learning and pattern detection of the LSTM model. Namely, overwintered DC values 

result in various start and end points for BUI data throughout the record. The interannual 

variability in the fire season startup may provide valuable information to the model. As well, 

prediction and interpretation of hexel 2 climate is limited by extremely high BUI values. Most of 

hexel 2 lies within the Canadian Prairies which can be described as a semi-arid grassland and 

agricultural farmland during the fire season.  

 

While data quality and consistency is important to consider, choice of model variables and 

hyperparameters can largely dictate the success of an ML model. As mentioned earlier, covariate 

selection based on casual inference is commonly used in ML forecasting models (eg. Guyon et 

al., 2007). In this study, it was assumed that ENSO and AMO have a causal influence on BUI as 

teleconnections have a demonstrated effect on global weather systems up to a 3 month lead time 

(Bonsal and Shabbar, 2011; Girardin et al., 2006; Johnson and Wowchuk, 1993; Schoennagle, 

2005; Skinner et al., 2006; Simard et al. 1985; Chu et al. 2002; Westerling and Swetnam 2003). 

In other words, teleconnections may increase model predictive power for up to 3 months of lead 

time. However, despite this assumption, the explicit relationship between teleconnections and 

FWI system indices in Canada have not been fully explored. Current research has focused on the 

effect of teleconnections on temperature and precipitation separately, however, it would be 

beneficial to examine the relationship specifically to fire weather. This presents a limitation to 



 

64 

this study, but offers an opportunity to study the influence of teleconnections on the FWI system 

in future research. As well, the model presented in this research uses teleconnections data from 

the previous 12 weeks (approximately 3 months), however, longer timescales may allow for 

increased predictive power.  

 

Moreover, hyperparameter selection used a combination of heuristic and exhaustive manual 

tuning to minimize training and validation loss curves. While an extensive combination of 

hyperparameters were tested to optimize model results, automation of this process may offer 

alternate configurations that produce better results. As stated previously, hyperparameter tuning 

can be done using manual tuning, gridded searches, randomized searches (Bergstra and Bengio, 

2012), or Bayesian optimization (Snoek and Larochelle, 2012; Shahriari et al., 2015). Exploring 

these methods may expose optimal hyperparameters that were previously overlooked.  

 

Potential covariates were omitted from this study to preserve a simplistic model architecture. 

Potential covariates included FWI system indices and weather variables that are used to produce 

BUI and other teleconnections that impact North American weather. For example, Jain and 

Flannigan (2021) study the relationship between variability of the polar jet stream with extreme 

wildfire activity, showing jet stream patterns correlated with observed wildfires in North 

America. This suggests that the use of synoptic weather patterns at the scale of the polar jet 

stream may provide further predictive power for days up to weeks in advance. This is important 

as numerical weather prediction (NWP) models are better at forecasting upper air patterns when 

compared to surface variables. As well, Skinner et al. (2006) state that the PDO results in drier 

conditions in western, northwestern, and areas of northeastern Canada. Johnson and Wowchuk 
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(1993) suggest that PNA is associated with blocking ridges in eastern North America that lead to 

increased fire severity. Finally, Macias Fauria and Johnson (2006) suggest that interactions of 

PDO, ENSO, and AO with Canadian fire weather can explain the increase of fire frequency in 

the early twentieth century. Although some weather variables, like wind speed, were not 

considered in this study, they play a factor in Canadian fire weather and present an opportunity 

for further research.  

 

Another potential avenue for further work is to vary the spatial resolution of the study area. 

While this study focuses on time-series forecasting of set hexel sizes, each hexel individually 

represents a non-spatial model. The size of the modeling unit may have implications on model 

accuracy and forecast lead times as atmosphere-land dynamics are coupled and exhibit spatial 

and temporal covariance. In future work, it may be beneficial to reduce the size of the hexels to 

produce more models. Alternatively, Liu et al. (2017) combined the ML architectures, CNN and 

LSTM to extract spatial-temporal data through one deep learning model, called Conv-LSTM. A 

full spatiotemporal model using Conv-LSTM or similar models may be considered for future 

research. 

 

Finally, the results of this study are compared with climatology and persistence forecasts only. 

Although comparisons to NWP model forecasts are out of the scope of this study, analyzing the 

results of an ML model forecast against NWP models would be an integral part of any future 

work. As completed in a study by Boychuk et al. (2020), forecasts of FWI are quantitatively 

verified against results from the NAEFS forecast. More generally, NWP forecasts of fire weather 

could also provide valuable covariates to further improve LSTM model forecasts. 
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Chapter 5 Conclusion 

 

Weather plays in integral role in determining wildfire risk and it can be used as part of an early 

warning system for fire management agencies. Currently, fire weather can be forecasted using 

observed surface and upper air weather and numerical weather prediction systems. However, 

such models may lead to uncertainties at large lead times which can cause low predictive skill for 

FWI system indices. With the development of recurrent neural networks, BUI – a measure of 

available fuels for combustion - can be forecasted on a sub-seasonal time scale of one to five 

weeks. This study provides an opportunity to use ML models as an additional predictive tool to 

validate the climatological BUI forecast and to improve forecasting around three weeks of lead 

time.  

 

Four LSTM model variations were evaluated to determine whether ML is a viable tool for 

forecasting BUI. Weekly averages of BUI were calculated using the fifth version of the 

European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5-Land) data. The 

ERA5 data was aggregated onto 4.87 × 105 𝑚2 hexels across Canada and active fire season data 

from April to October was split into training and testing datasets which span 80% of the data 

(1981 – 2012) and 20% (2013 - 2020) respectively. Moreover, the climate teleconnections ENSO 

and AMO were used as covariates in the models to enhance model predictive ability.  

 

The results presented here indicate that ML models are suitable as additional tools for forecasting 

BUI values. ML models may be used in conjunction with climatological and persistence 

forecasts to provide insight at longer time periods. In particular, this study finds that ML models 
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outperform climatology in the western half of the country including areas of the Pacific 

Maritime, Montane Cordillera, Boreal Plains, Boreal Shield West, Boreal Cordillera, Taiga 

Plains, and the Prairies and for up to a three week lead time. The results of BUI forecasts at four 

and five week lead times are model dependent and spatially dependent. In addition, the use of 

ENSO and AMO as covariates shows limited improvement to LSTM forecasting ability, as 

Model 1 forecast skill remains on par with Model 2, 3, and 4. This suggests an opportunity to 

further explore the causality between fire weather and various teleconnections.  

 

The methods presented in this research provide an opportunity to assist fire management 

agencies and operations across the country and internationally. As this study shows improved 

forecasting ability up to 3 weeks in advance, this may offer additional time for provincial fire 

management agencies to assemble firefighting resources that typically require weeks to months 

of planning. As well, having prior knowledge of regions that are more susceptible to fire 

conducive conditions may allow agencies to allocate resources more efficiently. This is due to 

the limited supply of firefighting equipment, trained personnel, and government funding. 

Additionally, the provinces that are predicted to have less active fire seasons may share resources 

more effectively with high fire risk areas. In Canada, national preparedness levels are used to 

dictate the state of emergency. At levels of 4 and 5, fire management agencies may organize 

large-scale resource sharing to assist with wildfire mitigation domestically or internationally. 

High level planning is needed to coordinate these efforts and can be done efficiently with longer 

range forecasts that allow for more time.   
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Appendix A 

 

Table A.1) LSTM Model F1-Scores for each of the four models at one to five week lead times for all hexels.   

 

Week Model 1 Model 2 Model 3 Model 4 

Hexel 2     

1 0.947115 0.947115 0.944712 0.942308 
2 0.918269 0.939904 0.923077 0.935096 
3 0.927885 0.932692 0.927885 0.935096 
4 0.906259 0.906250 0.903846 0.894231 
5 0.901442 0.894231 0.899038 0.887019 

Hexel 3     

1 0.939904 0.944712 0.93750 0.944712 
2 0.923077 0.923077 0.925481 0.920673 
3 0.915865 0.915865 0.918269 0.920673 
4 0.906250 0.899038 0.906250 0.906250 
5 0.901442 0.906250 0.901442 0.906250 

Hexel 4     

1 0.932692 0.932692 0.927885 0.932692 
2 0.903846 0.903846 0.903846 0.899038 
3 0.894231 0.894231 0.899038 0.891827 
4 0.903846 0.887019 0.884615 0.884615 
5 0.894231 0.894231 0.879808 0.870192 

Hexel 5     

1 0.915865 0.911058 0.913462 0.908654 

2 0.891827 0.867788 0.887019 0.870192 

3 0.877404 0.867788 0.865385 0.850962 

4 0.870192 0.858173 0.870192 0.858173 

5 0.870192 0.858173 0.867788 0.843750 

Hexel 6     

1 0.923077 0.920673 0.923077 0.923077 

2 0.896635 0.896635 0.899038 0.899038 

3 0.899038 0.899038 0.899038 0.899038 

4 0.899038 0.899038 0.901442 0.899038 

5 0.899038 0.899038 0.899038 0.899038 

Hexel 7     

1 0.951923 0.944712 0.954327 0.947115 

2 0.947115 0.949519 0.949519 0.947115 

3 0.939904 0.942308 0.939904 0.944712 

4 0.918269 0.925481 0.913462 0.923077 

5 0.920673 0.925481 0.918269 0.923077 

Hexel 8     

1 0.923077 0.925481 0.925481 0.932692 

2 0.894231 0.894231 0.894231 0.884615 

3 0.887019 0.882212 0.884615 0.882212 

4 0.870192 0.860577 0.872596 0.858173 

5 0.865385 0.838942 0.860577 0.831731 

Hexel 9     

1 0.925481 0.927885 0.927885 0.930288 

2 0.894231 0.894231 0.894231 0.896635 
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3 0.901442 0.906250 0.903846 0.903846 

4 0.882212 0.884615 0.887019 0.887019 

5 0.891827 0.891827 0.891827 0.889423 

Hexel 10     

1 0.903846 0.901442 0.903846 0.901442 

2 0.891827 0.887019 0.882212 0.884615 

3 0.884615 0.877404 0.879808 0.882212 

4 0.870192 0.872596 0.862981 0.870192 

5 0.867788 0.867788 0.862981 0.865385 

Hexel 11     

1 0.896635 0.899038 0.891827 0.896635 

2 0.891827 0.877404 0.884615 0.882212 

3 0.884615 0.879808 0.884615 0.882212 

4 0.882212 0.877404 0.8750 0.872596 

5 0.882212 0.879808 0.882212 0.877404 

Hexel 12     

1 0.939904 0.935096 0.939904 0.935096 

2 0.911058 0.911058 0.911058 0.915865 

3 0.913462 0.906250 0.913462 0.913462 

4 0.896635 0.899038 0.894231 0.894231 

5 0.901442 0.903846 0.896635 0.899038 

Hexel 13     

1 0.932692 0.93750 0.925481 0.935096 

2 0.896635 0.899038 0.896635 0.901442 

3 0.899038 0.906250 0.899038 0.906250 

4 0.894231 0.896635 0.894231 0.896635 

5 0.901442 0.899038 0.899038 0.901442 

Hexel 14     

1 0.942308 0.93750 0.93750 0.93750 

2 0.925481 0.925481 0.920673 0.920673 

3 0.918269 0.913462 0.915865 0.913462 

4 0.908654 0.911058 0.911058 0.915865 

5 0.911058 0.913462 0.908654 0.913462 

Hexel 16     

1 0.911058 0.913462 0.911058 0.918269 

2 0.884615 0.889423 0.887019 0.896635 

3 0.877404 0.882212 0.877404 0.884615 

4 0.877404 0.877404 0.882212 0.8750 

5 0.872596 0.8750 0.882212 0.879808 

Hexel 17     

1 0.959135 0.959135 0.959135 0.959135 
2 0.932692 0.930288 0.930288 0.927885 
3 0.913462 0.913462 0.911058 0.903846 
4 0.908654 0.908654 0.908654 0.908654 
5 0.901442 0.903846 0.901442 0.903846 
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Table A.2) Persistence Model F1-Scores for each of the four models at one to five week lead times for all 

hexels.   

 

Week Persistence F1-Scores 

Hexel 2  

1 0.961538 

2 0.927885 

3 0.903846 

4 0.889423 

5 0.876545 

Hexel 3  

1 0.932692 

2 0.899038 

3 0.889423 

4 0.884615 

5 0.875423 

Hexel 4  

1 0.918269 

2 0.879808 

3 0.860577 

4 0.860577 

5 0.855413 

Hexel 5  

1 0.913462 

2 0.879808 

3 0.855769 

4 0.831731 

5 0.830561 

Hexel 6  

1 0.923077 

2 0.8750 

3 0.846154 

4 0.841346 

5 0.836543 

Hexel 7  

1 0.93750 

2 0.913462 

3 0.903846 

4 0.879808 

5 0.862456 

Hexel 8  

1 0.927885 

2 0.894231 

3 0.865385 

4 0.841346 

5 0.834623 

Hexel 9  

1 0.942308 

2 0.913462 

3 0.889423 
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4 0.889423 

5 0.876212 

Hexel 10  

1 0.894231 

2 0.879808 

3 0.879808 

4 0.870192 

5 0.865973 

Hexel 11  

1 0.918269 

2 0.884615 

3 0.889423 

4 0.870192 

5 0.863543 

Hexel 12  

1 0.927885 

2 0.894231 

3 0.8750 

4 0.850962 

5 0.846543 

Hexel 13  

1 0.93750 

2 0.903846 

3 0.889423 

4 0.870192 

5 0.861354 

Hexel 14  

1 0.942308 

2 0.913462 

3 0.889423 

4 0.870192 

5 0.864328 

Hexel 16  

1 0.918269 

2 0.8750 

3 0.8750 

4 0.860577 

5 0.854326 

Hexel 17  

1 0.956731 

2 0.923077 

3 0.899038 

4 0.879808 

5 0.871354 
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Table A.3) Climatology Model F1-Scores for each of the four models at one to five week lead times for all 

hexels.   

 

Week Climatology F1-Scores 

Hexel 2  

1 0.899038 

2 0.899038 

3 0.899038 

4 0.899038 

5 0.899038 

Hexel 3  

1 0.899038 

2 0.899038 

3 0.899038 

4 0.899038 

5 0.899038 

Hexel 4  

1 0.879807 

2 0.879807 

3 0.879807 

4 0.879807 

5 0.879807 

Hexel 5  

1 0.884615 

2 0.884615 

3 0.884615 

4 0.884615 

5 0.884615 

Hexel 6  

1 0.899038 

2 0.899038 

3 0.899038 

4 0.899038 

5 0.899038 

Hexel 7  

1 0.918269 

2 0.918269 

3 0.918269 

4 0.918269 

5 0.918269 

Hexel 8  

1 0.899038 

2 0.899038 

3 0.899038 

4 0.899038 

5 0.899038 

Hexel 9  

1 0.899038 

2 0.899038 

3 0.899038 
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4 0.899038 

5 0.899038 

Hexel 10  

1 0.870192 

2 0.870192 

3 0.870192 

4 0.870192 

5 0.870192 

Hexel 11  

1 0.884615 

2 0.884615 

3 0.884615 

4 0.884615 

5 0.884615 

Hexel 12  

1 0.889423 

2 0.889423 

3 0.889423 

4 0.889423 

5 0.889423 

Hexel 13  

1 0.899038 

2 0.899038 

3 0.899038 

4 0.899038 

5 0.899038 

Hexel 14  

1 0.913461 

2 0.913461 

3 0.913461 

4 0.913461 

5 0.913461 

Hexel 16  

1 0.8750 

2 0.8750 

3 0.8750 

4 0.8750 

5 0.8750 

Hexel 17  

1 0.899038 

2 0.899038 

3 0.899038 

4 0.899038 

5 0.899038 
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Hexel 2: Model MAE Comparisons 

Figure A.1) Plotted MAE values for Hexel 2 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.   
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Hexel 3: Model MAE Comparisons 

 

Figure A.2) Plotted MAE values for Hexel 3 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.   
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Hexel 4: Model MAE Comparisons 

Figure A.3) Plotted MAE values for Hexel 4 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.   
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Hexel 5: Model MAE Comparisons 

Figure A.4) Plotted MAE values for Hexel 5 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.     
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Hexel 6: Model MAE Comparisons 

 

Figure A.5) Plotted MAE values for Hexel 6 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.     
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Hexel 7: Model MAE Comparisons 

Figure A.6) Plotted MAE values for Hexel 7 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.     
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Hexel 8: Model MAE Comparisons 

 

Figure A.7) Plotted MAE values for Hexel 8 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.   
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Hexel 9: Model MAE Comparisons 
 

Figure A.8) Plotted MAE values for Hexel 9 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.     
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Hexel 10: Model MAE Comparisons 

 

Figure A.9) Plotted MAE values for Hexel 10 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.    
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Hexel 11: Model MAE Comparisons 

 

Figure A.10) Plotted MAE values for Hexel 11 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.     
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Hexel 12: Model MAE Comparisons 

 

Figure A.11) Plotted MAE values for Hexel 12 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.     
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Hexel 13: Model MAE Comparisons 

 

Figure A.12) Plotted MAE values for Hexel 13 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.     
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Hexel 14: Model MAE Comparisons 

 

Figure A.13) Plotted MAE values for Hexel 14 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.   
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Hexel 16: Model MAE Comparisons 

 

Figure A.14) Plotted MAE values for Hexel 16 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.   
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Hexel 17: Model MAE Comparisons 

 

Figure A.15) Plotted MAE values for Hexel 17 showing Model MAE, Climatology MAE, and Persistence MAE 

for each of the four models (a to d) at one to five week lead times.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 
(c) 

 

(d) 

 



 

99 

 

 
Figure A.16) Example of overfit training and validation loss curves using 100 epochs for Model 1, Hexel 8.  
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Appendix B 

 

# Split a multivariate sequence into samples 

def split_sequences_multi(sequences, n_steps_in, n_steps_out): 

 X, y = list(), list() 

 for i in range(len(sequences)): 

 

  # Find the end of this pattern 

  end_ix = i + n_steps_in 

  out_end_ix = end_ix + n_steps_out 

 

  # Check if we are beyond the dataset 

  if out_end_ix > len(sequences): 

   break 

  # Gather input and output parts of the pattern 

  seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix:out_end_ix, -1] 

  X.append(seq_x) 

  y.append(seq_y) 

 return np.array(X), np.array(y) 

Figure B.1) Python code used for data pre-processing which creates two vectors of n timesteps.  

# Pre-processed data division using Split_Sequences_Multi 

# Split the training data 

X, y = ss.split_sequences_multi(dataset_train, n_steps_in, n_steps_out) 

 

# Split the testing data 

Xtest, ytest = ss.split_sequences_multi(dataset_test, n_steps_in, n_steps_out) 

 

# Build the LSTM Model 

model = Sequential() 

model.add(Dropout(0.20)) 

model.add(LSTM(150, activation='relu', input_shape=(n_steps_in, n_features))) 

model.add(Dense(n_steps_out)) 

model.add(Dense(n_steps_out,activation='relu')) 

optimizer = tf.keras.optimizers.Adam(0.00005) 

model.compile(optimizer=optimizer, loss='mse') 

 

# Run the LSTM model prediction  

yhat_bui = model.predict(Xtest, verbose=0) 

Figure B.2) Python code using Keras and TensorFlow libraries to create the LSTM model which 

includes various hidden layers. These layers are a dropout layer, two dense layers, and an LSTM 

layer. For the LSTM layer and the second dense layer, ReLU activation is used. As well, an 

Adam optimizer is included in the model architecture.  


