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Abstract

Preserving privacy of individuals when data are shared for clustering is a complex problem. The
challenge is how to protect the underlying attribute values subjected to clustering without jeopardiz-
ing the similarity between data objects under analysis. To address this problem, data owners must
not only meet privacy requirements but also guarantee valid clustering results. To achieve this dual
goal, we propose a novel spatial data transformation method called Rotation-Based Transformation
(RBT). The major features of our data transformation are: a) it is independent of any clustering
algorithm, b) it has a sound mathematical foundation; c) it is efficient and accurate; and d) it does
not rely on intractability hypotheses from algebra and does not require CPU-intensive operations.
We show analytically that although the data are transformed to achieve privacy, we can also get

accurate clustering results by the safeguard of the global distances between data points.

1 Introduction

Achieving privacy preservation when sharing data for clustering is a challenging problem. To address
this problem, data owners must not only meet privacy requirements but also guarantee valid clustering
results. The fundamental question addressed in this paper is: how can organizations protect personal
data subjected to clustering and meet their needs to support decision making or to promote social
benefits?

Clearly, sharing data for clustering poses new challenges for novel uses of data mining technology.
Let us consider two real-life motivating examples where the sharing of data for clustering poses different

constraints.

e Suppose that a hospital shares some data for research purposes (e.g. group patients who have a
similar disease). The hospital’s security administrator may suppress some identifiers (e.g. name,
address, phone number, etc) from patient records to meet privacy requirements. However, the
released data may not be fully protected. A patient record may contain other information that

can be linked with other datasets to re-identify individuals or entities [10]. How can we identify



groups of patients with a similar disease without revealing the values of the attributes associated
with them?

e Two organizations, an Internet marketing company and an on-line retail company, have datasets
with different attributes for a common set of individuals. These organizations decide to share their
data for clustering to find the optimal customer targets so as to maximize return on investments.
How can these organizations learn about their clusters using each other’s data without learning

anything about the attribute values of each other?

Note that the above scenarios describe two different problems of privacy-preserving clustering (PPC).
We refer to the former as PPC over centralized data, and the latter as PPC over vertically partitioned
data. The problem of PPC over vertically and horizontally partitioned data has been addressed in the
literature [12, 6], while the problem of PPC over centralized data has not been significantly tackled. In
this paper, we focus on PPC over centralized data.

There is very little literature regarding the problem of PPC over centralized data. A notable ex-
ception is the work presented in [9]. The key finding of this study was that adding noise to data would
meet privacy requirements, but may compromise the clustering analysis. The main problem is that
by distorting the data, many data points would move from one cluster to another jeopardizing the
notion of similarity between points in the global space. Consequently, this introduces the problem of
misclassification

One limitation with the above solution is the trade-off between privacy and accuracy of the clustering
results. We claim that a challenging solution must do better than a trade-off, otherwise the transformed
data would be useless. A desirable solution must consider not only privacy safeguards, but also accurate
clustering results.

To support our claim, we propose a novel spatial data transformation method called Rotation-Based
Transformation (RBT). The major features of our data transformation are: a) it is independent of any
clustering algorithm, which represents a significant improvement over our previous work [9]; b) it has a
sound mathematical foundation; ¢) it is efficient and accurate since the distances between data points
are preserved; and d) it does not rely on intractability hypotheses from algebra and does not require
CPU-intensive operations.

This paper is organized as follows. Related work is reviewed in Section 2. The basic concepts of data
clustering and geometric data transformations are discussed in Section 3. In Section 4, we introduce
our RBT method. In Section 5, we discuss and prove some important issues of security and accuracy

pertained to our method.

2 Related Work

Some effort has been made to address the problem of privacy preservation in data clustering. The class
of solutions has been restricted basically to data partitioning [12, 6] and data distortion [9]. The work

in [12] addresses clustering vertically partitioned data, whereas the work in [6] focuses on clustering



horizontally partitioned data. In a horizontal partition, different objects are described with the same
schema in all partitions, while in a vertical partition the attributes of the same objects are split across
the partitions.

The work in [12] introduces a solution based on security multi-part computation. Specifically, the
authors proposed a method for k-means clustering when different sites contain different attributes for
a common set of entities. In this solution, each site learns the cluster of each entity, but learns nothing
about the attributes at other sites. This work ensures reasonable privacy while limiting communication
cost.

The feasibility of achieving PPC through geometric data transformation was studied in [9]. This
investigation revealed that geometric data transformations, such as translation, scaling, and arbitrary
rotation are unfeasible for privacy-preserving clustering if we do not consider the normalization of the
data before transformation. The reason is that the data transformed through these methods would
change the similarity between data points. As a result, the data shared for clustering would be useless.
This work also revealed that the distortion methods adopted to successfully balance privacy and security
in statistical databases are limited when the perturbed attributes are considered as a vector in the
n-dimensional space. Such methods would exacerbate the problem of misclassification. A promising
direction of the work in [9] was that PPC through data transformation should be to some extent possible
by isometric transformations, which preserve distances of objects in the process of moving them in the
Euclidean space.

More recently, a new method, based on generative models, was proposed to address privacy pre-
serving distributed clustering [6]. In this approach, rather than sharing parts of the original data or
perturbed data, the parameters of suitable generative models are built at each local site. Then such
parameters are transmitted to a central location. The best representative of all data is a certain “mean”
model. It was empirically shown that such a model can be approximated by generating artificial samples
from the underlying distributions using Markov Chain Monte Carlo techniques. This approach achieves
high quality distributed clustering with acceptable privacy loss and low communication cost.

The work presented here is orthogonal to that one presented in [12, 6] and differs in some aspects
from the work in [9]. In particular, we build on our previous work. First, instead of distorting data
for clustering using translations, scaling, rotations or even some combinations of these transformations,
we distort attribute pairs using rotations only to avoid misclassification of data points. Second, our
transformation presented here advocates the normalization of data before transformation. We show that
successive rotations on normalized data will protect the underlying attribute values and get accurate
clustering results. Third, we provide an analysis of the complexity of RBT and discuss a relevant feature
of our method - the independence of clustering algorithm, which represents a significant improvement
over the existing solutions in the literature. In addition, we verify the evidence of attacks against RBT.
To our best knowledge, this line of work has not been considered in the context of PPC over centralized

data in this level of detail so far.



3 Basic Concepts

3.1 Isometric Transformations

An isometry (also called congruence) is a special class of geometric transformations [11, 3]. The essential
characteristic of an isometry is that distances between objects are preserved in the process of moving
them in a m-dimensional Euclidean space. In other words, distance must be an invariant property.

Formally, an isometric transformation can be defined as follows [3]:

Definition 1 (Isometric Transformation) Let T be a transformation in the n-dimensional space,
i.e., T : R™ = R". T is said to be an isometric transformation if it preserves distances satisfying the

following constraint: |T'(p) —T(q)| = |p — q| for all p, ¢ € R".

Isometries also preserves angles and transform sets of points into congruent ones. Special cases of
isometries include: (1) translations, which shift points a constant distance in parallel directions; (2)
Rotations, which have a center a such that |T'(p) — a| = |p — a| for all p; and (3) Reflections, which map
all points to their mirror images in a fixed (d — 1)-dimensional plane.

In this work, we focus primarily on rotations. For the sake of simplicity, we describe the basics
of such a transformation in a 2D discrete space. In its simplest form, this transformation is for the
rotation of a point about the coordinate axes. Rotation of a point in a 2D discrete space by an angle
6 is achieved by using the transformation matrix in Equation (1). The rotation angle 6 is measured
clockwise and this transformation affects the values of X and Y coordinates. Thus, the rotation of a
point in a 2D discrete space could be seen as a matrix representation v/ = Rv, where R is a 2 x 2
rotation matrix, v is the vector column containing the original coordinates, and v’ is a column vector

whose coordinates are the rotated coordinates.

= (1)

cos 0 sin 6 ]

—sin 0 cos 0

3.2 Data Matrix

Objects (e.g. individuals, patterns, events) are usually represented as points (vectors) in a multi-
dimensional space. Each dimension represents a distinct attribute describing the object. Thus, an
object is represented as an m X n matrix D, where there are m rows, one for each object, and n

columns, one for each attribute. This matrix is referred to as a data matrix, represented as follows:

ail L. Qg e QA1p
ani e A2k ... Q2p

D=1 . . . (2)
Aml -+ Qmkg .- Qmn

The attributes in a data matrix are sometimes normalized before being used. The main reason is

that different attributes may be measured on different scales (e.g. centimeters and kilograms). For this



reason, it is common to standardize the data so that all attributes are on the same scale. There are many
methods for data normalization [5]. We review two of them in this section: min-maz normalization and
z-score normalization.

Min-max normalization performs a linear transformation on the original data. Each attribute is
normalized by scaling its values so that they fall within a small specific range, such as 0.0 and 1.0.

When the actual minimum and maximum of an attribute are unknown, or when there are outliers
that dominate the min-max normalization, z-score normalization (aka. zero-mean normalization) should
be used. In this case, the normalization is performed by subtracting the mean from each attribute value

and then dividing the result by the standard deviation of this attribute.

3.3 Dissimilarity Matrix

A dissimilarity matrix stores a collection of proximities that are available for all pairs of objects. This
matrix is often represented by an m x m table. In (3), we can see the dissimilarity matrix Dj; corre-
sponding to the data matrix D in (2), where each element d(, j) represents the difference or dissimilarity

between objects ¢ and j.

S _
2,1 0

Dy = | d3,1) d3,2) 0 (3)
_d(n.,l) d(@) 0 |

In general, d(7,j) is a nonnegative number that is close to zero when the objects 7 and j are very
similar to each other, and becomes larger the more they differ.

To calculate the dissimilarity between objects 7 and j one could use either the distance measure in
Equation (4) or in Equation (5), or others, where i = (21,242, ....,2i) and j = (zj1,%j2,...,j,) are

n-dimensional data objects.

d(i, j) =Y (zi — =)'/ (4)
k=1

n

d(i,§) = |ws — ] (5)
k=1

The metric in Equation (4) is the most popular distance measure called Euclidean distance, while
the metric in Equation (5) is known as Manhattan or city block distance. Both Euclidean distance and

Manhattan distance satisfy the following constraints:

e d(i,7) > 0: distance is a nonnegative number.

e d(i,7) = 0: the distance of an object to itself.



e d(i,j) = d(j,4): distance is a symmetric function.

e d(i,7) <d(i,k) +d(k,7): distance satisfies the triangular inequality.

4 Rotation-Based Transformation

In this Section, we introduce our method Rotation-Based Transformation (RBT). This method is de-

signed to protect the underlying attribute values by rotating the values of two attributes at a time.

4.1 General Assumptions

Our approach to distort data points in the n-dimensional space draws the following assumptions:

e The data matrix D, subjected to clustering, contains only confidential numerical attributes that

must be transformed to protect individual data values before clustering.

e The existence of an object (e.g. ID) may be revealed but it could be also anonymized by sup-
pression. However, the values of the attributes associated with an object are private and must be

protected.

e The transformation method RBT when applied to a database D must preserve the distances

between the data points.
We also assume that the raw data is pre-processed as follows:

e Suppressing Identifiers. Attributes that are not subjected to clustering (e.g. address, phone, etc)
are suppressed. Again, the existence of a particular object, say ID, could be revealed depending
on the application (e.g. our real-life example), but it could be suppressed when data is made

public (e.g. census, social benefits).

e Normalizing Numerical Attributes. Normalization helps prevent attributes with large ranges (e.g.
salary) from outweighing attributes with smaller ranges (e.g. age). Either min-maz or z-score can

be used for normalization.

The major steps of the data transformation, before clustering analysis, are: In the first step, the
raw data is normalized to give all the variables an equal weight. Then, the data are distorted by using
our RBT method. In doing so, the underlying data values would be protected, and miners would be
able to cluster the transformed data. There is no need for normalizing after the transformation process

occurs.



4.2 General Approach

Now that we have described the assumptions associated with our method, we move on to defining a
function that distorts the attribute values of a given data matrix to preserve privacy of individuals. We

refer to such a function as rotation-based data perturbation function, defined as follows:

Definition 2 (Rotation-Based Perturbation Function) Let D, «, be a data matriz, where each
of the m rows represents an object, and each object contains values for each of the n numerical attributes.
We define o Rotation-Based Data Perturbation function f,. as a bijection of n-dimensional space into

itself that transforms D into D' satisfying the following conditions:

o Pairwise-Attribute Distortion: Vi, j, such that 1 <i,j < mn and i # j, the vector V. = (A;, A;) is
transformed into V' = (Aj, A}) using the matriz representation V' = R x V, where A;; Aj € D,

A, A% € D', and R is the transformation matriz for rotation.

o Pairwise-Security Threshold: the transformation of V into V' is performed based on the Pairwise-
Security Threshold PST (pl,p2), such that the constraints must hold: Variance(A; — A}) > p;
and Variance(A; — A;) > p2, with p1 > 0 and py > 0.

The first condition of Definition 2 states that the transformation applied to a data matrix D distorts
a pair of attributes at a time. In case of an odd number of attributes in D, the last attribute can be
distorted along with any other already distorted attribute, as long as the second condition is satisfied.

The second condition (Pairwise-Security Threshold) is the fundamental requirement of a data per-
turbation method. It quantifies the security of a method based on how closely the original values of a
modified attribute can be estimated.

Traditionally, the security provided by a perturbation method has been measured as the variance
between the actual and the perturbed values [1, 8]. This measure is given by Var(X —Y) where X
represents a single original attribute and Y the distorted attribute. This measure can be made scale
invariant with respect to the variance of X by expressing security as Sec = Var(X —Y)/Var(X).

In particular, RBT adopts the traditional way to verify the security of a perturbation method.
However, the security offered by RBT is more challenging. We impose a pairwise-security threshold
for every two distorted attributes. The challenge is how to strategically select an angle 6 for a pair
of attributes to be distorted so that the second condition is satisfied. In Section 4.3, we introduce the
algorithm that strategically computes the value of 6.

Based on the definition of the rotation-based data perturbation function, now we define our RBT

method as follows:

Definition 3 (RBT Method) Let D,,x, be a data matriz, where each of the m rows represents an
object, and each object contains values for each of the n numerical attributes. The Rotation-Based Data

Perturbation method of dimension n is an ordered pair, defined as RBT = (D, f,), where:

e D e R™*" js a normalized data matriz of objects to be clustered.

e f. is a rotation-based data transformation function, f, : R" — R"



4.3 The Algorithm for the RBT Method

The procedure to distort the attributes of a data matrix has essentially 2 major steps, as follows:

Step 1. Selecting the attribute pairs: We select k pairs of attributes A; and A; in D, where i # j.
If the number of attributes n in D is even, then £ = n/2. Otherwise, k¥ = (n + 1)/2. The
pairs are not selected sequentially. A security administrator could select the pairs of attributes
in any order of his choice. If n is odd, the last attribute selected is distorted along with any
other attribute already distorted. We could try all the possible combinations of attribute pairs to
maximize the variance between the original and the distorted attributes. However, given that we
ditort normalized attributes, the variance of any attribute pairs tends to lie in the same range.

We illustrate this idea in our example presented in Section 5.1.

Step 2. Distorting the attribute pairs: The pairs of attributes selected previously are distorted as

follows:

e (a) Computing the distorted attribute pairs as a function of 8: We compute V(A;,A;-) =
R x V(A;, A;) as a function of 0, where R is the rotation matrix, defined in (1).

e (b) Meeting the pairwise-security threshold: We derive two inequations for each attribute
pairs based on the constraints: Variance(A; — A}) > p1 and Variance(A; — A;) > po, with
p1 > 0 and p2 > 0.

e (c¢) Choosing the proper value for : Based on the inequations found previously, we identify
a range for 6 that satisfies the pairwise-security threshold PST(p1,p2). We refer to such a
range as security range. Then, we randomly select a real number in this range and assign it
to 6.

e (d) Outputting the distorted attribute pairs: Given that 0 is already determined, we now
recompute the substep (a), i.e., V(A A;) = RxV(A;, A;), and output the distorted attribute

pairs.

Each inequation in substep (b) is solved by computing the variance of the matrix subtraction [4; — A}].

In [4], it is shown that the sample variance of N values z1,z9, ...,z is calculated by:

N
x> (o~ o) ()

=1

1
Var(zi,z2,...,xN) = N
where 7 is the arithmetic mean of the values z1, s, ..., zN.

The inputs for the RBT algorithm are a normalized data matrix D and a set of k pairwise-security
thresholds 7). We assume that there are k£ pairs of attributes to be distorted. The output is the trans-
formed data matrix D’ which is shared for clustering analysis. The sketch of the RBT algorithm is

given as follows:



RBT _Algorithm
Input: D, xp, Tk
Output: D], .,
1. k « [n/2]
2. Py < k Pairs(4;, A;) in D such that 1 <4,j <n and i # j
3. For each selected pair Py in Pairs(D) do

3.1 V(A], A}) < Ry x V(A;,A;) //V is computed as a function of ¢

3.2 Compute(Var(4; — A}) > p1,Var(4; — A}) > p2)

3.3 O + SecurityRange(Var(A; — A}) > p1,Var(A; — A}) > pa)

3.4 V(A;, A}) < Ry, x V(A;, Aj) //Output the distorted attributes of D’
End_for
End_Algorithm

Theorem 1 The running time of the RBT_Algorithm is O(m X n), where m is the number of objects

and n is the number of attributes in a data matriz D.

Proof. Let D be a data matrix composed of m rows (objects) and n numerical attributes, and & the
number of attribute pairs in d to be distorted.

Line 1 is a straightforward computation that takes O(1). In line 2, the algorithm does not select all
the possible combinations of pairs. The selection of the attribute pairs is performed by simply grouping
the attributes in pairs. In general, this computation takes n/2 when n is even and (n + 1)/2 when n is
odd. Thus, the running time for Step 1 (lines 1 and 2) is O(n).

The matrix product in line 3.1 takes 2 x 2 x m. When m is large, line 3.1 takes O(m). Line
3.2 encompasses two vector subtractions, each one taking m x 1, resulting in 2 x m iterations. After
computing the vector subtractions, we compute the variance of these vectors. We scan both vectors
once to compute their mean since they have the same order. Then we scan these vectors again to
compute their variance. Each scan takes m x 1. Thus, the running time of line 3.2 is O(m). Line 3.3
is a straightforward computation that takes O(1) since one value for € is selected randomly. Line 3.4 is
similar to line 3.1 and takes O(m). Recall that the whole loop is performed at most n times. Thus, the
running time for line 3 is O(n x (m 4+ m + 1+ m)), which can be simplified to O(n x m).

The running time of the RBT _algorithm is the sum of running times for each step, i.e, O(n+n xm).
Thus, the running time of the RBT _algorithm takes O(m x n).

5 Accuracy versus Security

5.1 RBT Method: Accuracy

We illustrate the accuracy of the RBT method through one example and we show analytically that the

accuracy is independent of the database size.



Let us consider the sample relational database in Table 1 and the corresponding normalized database
in Table 2, using z-score normalization. This sample contains real data of the Cardiac Arrhythmia
Database available at the UCI Repository of Machine Learning Databases [2]. We purposely selected
only three numerical attributes of this database: age, weight, and heart_rate (number of heart beats per

minute).

| ID [ age | weight | heart_rate |

1237 || 75 80 63
3420 || 56 64 53
2543 || 40 92 70
4461 || 28 58 76
2863 || 44 90 68

Table 1: A sample of the cardiac arrhythmia.

| ID || age | weight | heartrate |

1237 || 1.4809 | 0.7095 -0.3476
3420 | 0.4151 | -0.3041 -1.5061
2543 || -0.4824 | -1.0642 0.4634
4461 || -1.1556 | -0.6841 1.1586
2863 || -0.2580 | 1.3430 0.2317

Table 2: Corresponding normalized database.

First, we select the pairs of attributes to distort. Let us assume that the pairs selected are: pairl =
[age; heart_rate], and pair2 = [weight, age]. Then, we set a pairwise-security threshold for each pair of
attributes selected: PST; = (0.30,0.55) and PST, = (2.30,2.30).

After setting the pairwise-security thresholds, we start the transformation process for the first at-
tribute pair by computing V'(age’, heart_rate’) = R x V(age, heart_rate). V is from the normalized
database.

Note that the vector V'(age’, heart_rate’) is computed as a function of §. Therefore, the following
constraints are function of 8 as well:

(1) Variance(age — age') > 0.30; and
(2) Variance(heart_rate — heart_rate') > 0.55.

Recall that the values for age and heart_rate are available in the normalized data matrix in Table 2.
Our goal is to find the proper angle 6 to rotate the attributes age and heart_rate satisfying the above
constraints. The rotated attributes are age’ and heart_rate’. To accomplish that, we plot the above
inequations and identify the security range, as can be seen in Figure 1. In this Figure, there are two
lines representing the pairwise-security threshold PST; = (0.30,0.55). We identify the security range
for 0 that satisfies both thresholds at the same time. As can be seen, this interval ranges from 48.03 to

314.97 degrees. Then we randomly choose one angle € in this interval, say # = 312.47. For this choice,

10



the values of Variance(age — age') = 0.318 and Variance(heart_rate — heart_rate’) = 0.9805, which
satisfies the pairwise-security threshold PST; = (0.30,0.55).

6

— — - Var(age - age’)

Var (heart_rate - heart_rate’)

i4 ~ //'7 \
S N
, ,

Figure 1: The security range for Var(age — age') and Var(heart_rate — heart_rate’).

— = = Var (weight - weight')

Var (age - age’)

0, =p,=23

Figure 2: The security range for Var(weight — weight') and Var(age — age').

After distorting the attributes age and heart_rate, we now repeat the steps performed previously
to distort the attributes weight and age. We combine weight with age because we need exactly two
attributes to be distorted at a time. We could combine weight with heart_rate as well. The values of
the attribute age have been distorted in the previous steps.

We plot the inequations and identify the security range, as can be seen in Figure 2. This interval
ranges from 118.74 to 258.70 degrees. Then we randomly choose one angle @ in this interval, say
6 = 147.29. For this choice, the values of Variance(weight — weight') = 2.9714 and Variance(age —

age') = 6.9274, which satisfies the pairwise-security threshold PST, = (2.30,2.30).
The cardiac arrhythmia database after transformation is showed in Table 3, while Table 4 shows the

dissimilarity matrix corresponding to Table 3.
Here we highlight an interesting outcome yielded by our method: the dissimilarity matrix corre-

sponding to the normalized database in Table 2 is exactly the dissimilarity matrix in Table 4. This

result suggests that RBT method is one isometry in the n-dimensional space.

Theorem 2 The RBT method is one isometric transformation in the n-dimensional space.

11



| ID || age | weight | heartrate |
1237 || -1.4405 | 0.0819 0.8577
3420 || -1.0063 | 1.0077 -0.7108
2543 1.1368 | 0.5347 -0.0429
4461 1.7453 | -0.3078 -0.0701
2863 || -0.4353 | -1.3165 -0.0339

Table 3: The cardiac arrhythmia database after transformation.

0
1.8723 0
27674  2.2940 0
3.3409 3.1164 1.0396 0
1.9393 2.4872 24287 2.4029 0

Table 4: The dissimilarity matrix corresponding to Table 3.

Proof. By using the concept of distance between objects.
Let D,,x, be a data matrix where m is the number of objects and n is the number of attributes.
Without loss of generality, the rotation of any two attributes A; and A; in D, where i # j, will
maintain the distance between the m objects invariant. The preservation of such distances is assured
because rotations are isometric transformations [3, 7]. Applying the RBT method to D will result in a
transformed data matrix D’ where all the attributes in D’ are transformed by successive rotations of an
attribute pair at a time. Hence, the RBT method is one isometric transformation in the n-dimensional
space.

A natural consequence of Theorem 2 is that our transformation method is independent of the
clustering algorithm. After applying the RBT method to a data matrix D, the clusters mined from
the released data matrix D’ will be exactly the same as those mined in D, given the same clustering

algorithm:

Corollary 1 Given a data matriz D and a transformed data matriz D' by using the RBT method, the

clusters mined from D and D' are exactly the same for any clustering algorithm.

Proof. By using the concept of dissimilarity matrix.
From Theorem 2 we know that the distances between the objects in a data matrix D is exactly the
same as the distances between the corresponding objects in the transformed data matrix D’. Hence,

applying any distance-based clustering algorithm to D and D’ will result in the same clusters.

5.2 RBT Method: Security

The process of protecting privacy of objects is accomplished in two major steps as follows:

12



Step 1: Data disguising. First, we try to obscure the raw data by normalization. Clearly, normal-
ization is not secure at all, even though it is one way to obfuscate attribute values subjected to
clustering. However, data normalization brings two important benefits to PPC: a) it gives an
equal weight to all attributes; and most importantly, b) it makes difficult the re-identification of
objects with other datasets since in general public data are not normalized. In addition, we could
anonymize the released database in Table 3 by removing the attribute ID from the data. In doing

S0, the privacy of individuals would be ensured.

Step 2: Attribute Distortion. Disguising the data by normalization is not enough. So we distort
attribute values by rotating two attributes at a time. Note that RBT follows the security re-
quirements of traditional methods for data distortion. The fundamental basis of such methods is
that the security provided after data perturbation is measured as the variance between the actual
and the perturbed values. RBT is more flexible than the traditional methods in the sense that a
security administrator can impose a security threshold for each attribute pair before the distortion

process.

Now we show the security of our method against attacks. Let us assume that the mean and the standard
deviation of the sample cardiac arrhythmia database in Table 1 is made public. For this example, the
means for the three attributes are [48.60; 68.80; 66.00] and the standard deviations are [17.8269; 15.7861;
8.6313]. Given that the distorted data matrix in Table 3 is shared for clustering and the means and the
standard deviations of the attributes are known, we try to reverse the transformation process and get
the raw data. Table 5 shows the data generated by an attempt attack against the cardiac arrhythmia
database. Note that, the data in Table 5 are completely different from those in Table 1. These results
emphasize the security offered by RBT.

| ID || age | weight | heart_rate |

1237 || 23 70 73
3420 || 31 85 60
2543 || 69 77 66
4461 || 80 64 65
2863 || 41 48 66

Table 5: An attempt attack against the database in Table 1.

6 Conclusions

In this paper, we have introduced a novel spatial data transformation method for Privacy-Preserving
Clustering, called Rotation-Based Transformation (RBT). Our method was designed to protect the
underlying attribute values subjected to clustering without jeopardizing the similarity between data
objects under analysis. Releasing a database transformed by RBT, a database owner meets privacy
requirements and guarantees valid clustering results. The data shared after the transformation to

preserve privacy do not need to be normalized again.
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The highlights of our method are as follows: a) it is independent of any clustering algorithm, which
represents a significant improvement over the existing methods in the literature; b) it has a sound
mathematical foundation; ¢) it is efficient, accurate and provides security safeguard to protect privacy
of individuals; and d) it does not rely on intractability hypotheses from algebra and does not require

CPU-intensive operations.
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