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Abstract

We bridge the localization techniques that are based on proximity (near/far)

information with those based on Received Signal Strength Indication (RSSI)

information. An RSSI-based scheme can be mapped to proximity-based scheme

by quantizing the RSSI values such they are represented by a single bit. Ex-

tending the quantization to multiple bits per RSSI value, we observe dimin-

ishing improvement of localization accuracy with more bits used. Quantiza-

tion of RSSI also enables the offline construction of lookup tables mapping

quantized RSSI to coordinates, enabling applications such as: (a) passive lo-

calization performed by devices performing table lookups without transmit-

ting, and (b) scalable simultaneous localization of many devices without per-

forming per-device computation. We treat the underlying localization algo-

rithm as a black box and we develop a search process to determine the opti-

mal quantization given a training data set. For our evaluation we use a data

set of RSSI measurements in an environment where a vehicle was placed at

various positions (or was absent) in order to capture a dynamically changing

environment. We evaluate how training and optimizing the quantization on

a given data set fares when tested in a modified environment. Our black box

localization schemes are taken from the family of k–Nearest Neighbor (k-NN)

schemes. Despite their similar results in terms of average accuracy, different

members of the k-NN family demonstrate drastically different coverage be-

havior, i.e., ability for the quantized RSSI values to represent a larger set of

distinct locations in space.
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Chapter 1

Introduction

One of the success stories of recent decades has been the introduction, and

extensive use, of the Global Positioning System (GPS) as the ubiquitous sys-

tem to determine one’s location. Yet, GPS is not helpful in terms of accuracy,

or, even, availability, in indoor environments despite the fact that many ac-

tivities requiring localization are held indoors. The unreliable nature of GPS-

based location in indoor environments is rooted in the poor (or completely

absent) indoor reception of GPS satellite transmissions. On the other hand,

indoor spaces are often awash with wireless transmissions, in particular from

wireless access points (APs), wireless Internet-of-Things (IoT) devices etc. A

common thread in indoor localization research, followed also in the present

thesis, is to perform localization by exploiting transmissions of pre-existing

indoor APs/devices.

1.1 Passive GNSS-Denied Localization

Indoor environments are not the only setting where a localization alternative

to GPS is needed. An important, possibly alarming, facet of GPS, as well as

any other Global Navigation Satellite System (GNSS), is that they represent

high value assets and hence candidates for various attacks. Due to the po-

tential devastating impact, attackers can expend significant resources to jam

GPS receivers, as well as interfere with, or, even, destroy the operation of

GNSS satellites. Hence, being able to operate localization outside of GNSS
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infrastructure is a form of resilience under GNSS-denial threats, leading us

to the first motivating observation:

Observation 1: Localization without reliance on GNSS adds resilience to

location-dependent services.

One valuable lesson from the use of GPS is that it enabled devices to local-

ize passively, i.e., just by listening to satellite-transmitted signals, and more

importantly, without generating transmissions of their own. When looking

for alternatives to GNSS, we need to consider as an important property, the

ability to perform passive, autonomous, localization. The immediate benefit

of passive localization is that the device that is performing localization does

not need to expend energy in transmitting for the purpose of localization. As

well, by not transmitting, it evades detection insofar Radio Frequency (RF)

activity detection is concerned.

Observation 2: Autonomous, passive, localization offers energy efficiency

and undetectability benefits.

1.2 Localization Using Limited Resources

GNSS-based localization benefited from the design of special purpose hard-

ware, namely, chipsets custom made for GNSS reception and processing. The

specialized chips include very precise RF receiver characteristics coupled with

extensive signal processing computation. Effectively, GNSS-based localiza-

tion requires a hardware investment (the addition of GNSS chipsets) which

in recent years has become entrenched and ubiquitous, e.g., in smartphones.

Expecting the addition of new specialized hardware to support a second, ex-

perimental and evolving, form of localization is an unlikely scenario. Hence,

we are led to the following observation:
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Observation 3: Non-GNSS localization, is expected to utilize hardware

resources already present in devices for other, productive, purposes.

Proposals for non-GNSS localization strategies assume that the devices

possess adequate resources (computational, storage, and possibly other hard-

ware resources) to promptly perform localization. The question of whether

such resources exist in embedded devices and/or whether the localization can

occur in real-time are usually left outside the scope of research studies. This

thesis addresses questions related to such embedded implementations of lo-

calization.

We will consider solutions involving computation vs. storage tradeoff. That

is, can we trade storage, e.g., in the form of lookup tables, to reduce the

amount of processing necessary for localization? Ideally, the localization de-

scribed in this thesis is one that can be reduced to a single table lookup, in a

potentially very large table, but storage is plentiful and inexpensive. Given

that storage is a commodity and invariably exists already in embedded plat-

forms, we argue that it is not a demand for any “special” hardware. Moreover,

the generation of those tables will be performed using an upfront one-time

offline computation, followed by a one-time imprinting of those tables on each

embedded device as part of their deployment.

A side-effect of exploring how to perform passive localization by trading

space for computation is that it involves the broader question of runtime com-

plexity of localization. Despite the deluge of papers on localization, their em-

phasis is placed on how a, single, device can determine its location. To the best

of our knowledge there is no work on how myriads of nodes can be simultane-

ously localized in real-time. The literature accepts unquestionably that when

many devices are involved, each can independently perform its localization,

and to do so promptly.

By accepting the independent localization assumption, the literature indi-

rectly accepts that (a) we are not interested in the aggregate computational ef-
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fort (and energy) expended across all devices for localization, or, (b), we antic-

ipate that, if the total computational burden is unsuitable for real-time local-

ization on some of the those devices (that are usually resource-constrained),

they have to recruit some other devices in performing their localization. Note

that (a) implies that even devices that localize to points close to each other, ide-

ally because they are indeed physically near each other, they independently

compute a similar result, i.e., in principle wastefully repeating almost the

same computation (judging the “sameness” as producing the same result). As

for (b), recruiting resources external to the node defeats the purpose of passive

localization – the node ends up initiating communication with other, more ca-

pable nodes. By the same logic, if localization is performed at scale, extensive

aggregate computational resources are expected from the “helper” nodes to

serve the under-resourced nodes. The particular mode of operation whereby

helper (“server”) nodes assist the less resourced ones, is a typical use case

of edge computing and comes with its own opportunities and complications,

but, importantly, if edge nodes need to be recruited, the property of passive

autonomous localization is lost. We will attempt to avoid the need for edge

computing during the on-line localization phase, to retain the passive local-

ization requirement. In summary:

Observation 4: To achieve passive, scalable, energy-efficient, instanta-

neous localization in resource-limited devices, a promising approach is to

utilize pre-computed lookup tables.

1.3 Quantized RSSI-Based Localization

One can reasonably suspect that any pre-computed lookup tables which are

claimed to provide the localization results via a simple lookup operation are

either unrealistically large or they may be inaccurate. Such concerns however

should be seen under the light of what is the expected accuracy of localization

given the particular kind of measurements the devices will use as input to
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their localization. As it turns out, and as discussed at length in the main body

of the thesis, the measurements we consider are very noisy and convey only a

few bits of information as far as their impact on localization is concerned.

Observe that, so far, the motivation behind this thesis has been a scala-

bility argument: reduce computation on devices and localize simultaneously

myriads of nodes, e.g., numerous pieces of equipment in a large warehouse.

That is, the problem description is indifferent to the particular localization al-

gorithm used, as long as it is an algorithm which depends on receiving trans-

missions from a number of Radio Frequency (RF) emitters in a, usually indoor,

setting. We now narrow the scope, leaving the potential for some strategies

laid out here to be applicable to a wider setting of localization algorithms and

emitter scenarios, to be revisited in the concluding chapter of the thesis.

For now, let us assume that the emitters whose signals we receive are

static and at known locations (in the literature called “anchor,” “peg,” or “ref-

erence” nodes), and we will rely somehow on their known locations to localize

unknown points. A companion assumption which can be relaxed as part of

the localization algorithms outlined next, is that the anchor emissions are,

for the lack of any specific antenna radiation pattern, assumed to be uniform

unidirectional. Here we also sneak in an assumption that the localization con-

siders only 2-dimensional space. As long as the unidirectionality on the plane

is an acceptable approximation, we do not revisit the issue of emission pat-

terns. While we do not consider the 3-dimensional case, we also do not take

any steps that would disallow the generalization of our work to 3-dimensional

space. More comments about 3-dimensional extensions are provided in the

conclusions section.

An important decision is the choice of emission-related measurement to be

used, if no special hardware can be employed. The dilemma here is as follows:

recent work has relied on collecting Channel State Information (CSI) but CSI

measurements are not widely accessible from commodity transceivers and un-

likely to be readily available in the future. CSI-based work reported in the
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literature [4,26,27] relied on a happy coincidence; a coincidence that allowed

the collection of CSI from two commodity IEEE 802.11 (WiFi) device families

(Intel 5300 and Atheros 9390), both of which are now obsolete and likely to

become unavailable in the near future. There is limited interest from manu-

facturers to make CSI information available for user-accessible programmatic

manipulation. This is because CSI data acquisition requires more resources

than the strictly needed resources for the product’s primary function – that

of being a WiFi transceiver. Failing to collect CSI, the only reasonable alter-

native available almost universally and exposed via programmatic interfaces

is the Received Signal Strenth Indicator (RSSI). RSSI is a scalar, typically

expressed in units of dBm, representing the approximate signal strength of

the current (or most recent) transmission received by a transceiver. Since the

signal strength is impacted by distance, so is the RSSI.

RSSI measurements are ubiquitous, that is regardless of the transceiver

technology used. They are also notoriously noisy and have been criticized as

being unreliable for localization purposes [12]. Yet, RSSI measurements do

convey some information of value to localization, as several research results

have suggested. The approach taken in this thesis is that we reduce the RSSI

measurements to a few bits (a single bit in the most extreme case). This

transformation is to be performed through a quantization process which splits

the range of RSSI values into a few bins, each representing a range of RSSI

values. However, as we will later describe, the quantization is informed by

how it would impact localization results, allowing us to define a search process

to determine the optimal quantization for a given set of measurements and an

accompanying localization algorithm. Effectively, by representing the bin in

which an RSSI value belongs, rather than the entire RSSI value, it is hoped

that, coarser, but sufficient information is preserved out of the RSSI values,

to achieve good localization.
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Observation 5: Access to RSSI measurements is ubiquitous across

transceivers technologies, and given their noisy nature, quantizing them

is likely to preserve information useful to localization.

1.4 The Family of k–NN Localization Schemes

Notice that we do not elaborate on identifying the source of the noise on RSSI

measurements. In doing so, we accept that the measurements are influenced

by a multitude of factors, including the impact of the relative orientation of

antennae, the quality variations in the manufacturing of the nodes, the differ-

ences due to placement with respect to the environment (which could be dy-

namically changing) etc. Rather than identifying, isolating and compensating

for each source of “noise” in the measurements, we treat the measurements as

unreliable and only providing a rough indication based on the quantization.

However, the choice of how to quantize is not arbitrary – it is a quantization

that optimizes a performance metric that captures the accuracy of the local-

ization using quantized values.

Given the plethora of localization schemes, we approach the localization

scheme as a “black box”. That is, we do not care about the internals of the

localization algorithm as long as it operates on the basis that, when given a

vector of RSSI values (ostensibly quantized) it produces a 2-dimensional co-

ordinate. It is through this use that, as we will describe in this thesis, the

localization scheme is invoked as a subroutine for the process of optimizing

the quantization. Once the optimal quantization intervals have been estab-

lished, we can generate a lookup table as promised and install it on all the

devices who wish to passively perform localization.

For the sake of demonstration, we considered the k–Nearest Neighbor

(k–NN) variety of localization algorithms in our experiments, although oth-

ers could have been used as well. The “neighbor” in k–NN is defined over

signal space, i.e., over the RSSI measurement vectors at known locations
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(the “fingerprint” database collected in a prior survey step). The reasons for

choosing k–NN are twofold. First, the k–NN schemes exhibit variety, i.e.,

there is no single k–NN localization scheme, but rather a family of similar

schemes [2, 9, 10, 21] (detailed in the related work section), differing in the

way they combine the coordinates corresponding to the k found neighboring

vectors. Different members of this family exhibit different degree of perfor-

mance in response to the RSSI quantization. A second reason is that k–NN is

still a computationally non-trivial task (details are provided in Section 2.1.7),

hence a good candidate to replace it, for the sake of scalability, with simple

table lookup.

Observation 6: The family of k–NN localization schemes is a diverse

family, expected to exhibit variety of performance behavior under quan-

tized RSSI, and it stands to scale from RSSI quantization by replacing

linear time computation with lookup in pre-computed tables.

Given an optimal quantization for a given localization scheme, we will

need to inspect how the localization error behaves compared to the non-

quantized case. A further impact of quantization is that by performing it,

we are restricted on how many distinct points in the 2-dimensional space con-

tinuum we can localize to. Hence, the localization has to be assessed both in

terms of localization error as well as in terms of localization coverage over a

given area.

1.5 Thesis Structure and Contributions

The remainder of this thesis is organized as follows: Chapter 2 introduces

related work on the topic of RSSI-based localization and k-NN localization

in particular by providing three members of the k–NN family of schemes.

We provide a brief introduction to quantization as the method to build the

storage-based approach for localization using lookup tables. Search strate-

gies for the relevant optimization problems are also reviewed here and used
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in subsequent chapters. In Chapter 3 we introduce the datasets used in this

thesis and what is the typical performance of the k-NN localization schemes

for the datasets considered. We thus establish a baseline localization perfor-

mance when no quantization is used and determine a k value for k–NN to use

in the subsequent chapters. In Chapter 4 we present the 1-bit quantization

localization and coverage performance are presented. We explain the method-

ology used to determine the best quantization based on a fingerprint database

and an ensemble of points to localize and how we subsequently use potentially

different sets of unknown points to test the quantization performance. We find

the benefits to localization error when using local, i.e., per-peg quantization

thresholds, and the poor performance when the quantization is attempted on

RSSI values that were acquired in a modified environment. In Chapter 5

we move into multiple-bit quantization. The search strategy for the optimal

quantization switches from genetic algorithms to Tabu search to deal with

the increased search space. The multi-bit localization results are presented,

primarily using 2-bit results. A comparison of 2-bit vs one-bit localization

coverage reveals that the different members in the k–NN class of localiza-

tion schemes exhibit different coverage improvement as more bits are added.

Also, while the localization error is reduced with more bits used, it reaches

a point of diminishing returns. Chapter 6 concludes the thesis summarizing

the results in comprehensive plots and provides a review of shortcomings and

threats to the generality of the reported results. Future extensions and re-

search directions, including 3-dimensional cases and non-k–NN localization

schemes are outlined. Some early results of the research described in this

thesis were published in the 2019 IEEE International Conference on Commu-

nications (ICC 2019) [29].

In summary, the contributions of this thesis are:

• a process, facilitated by appropriate search techniques, to determine

dataset-specific quantization of RSSI data for fingerpint-based localiza-

tion schemes based on a fitness maximization objective,
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• a study of the behavior of exemplars from the class of k-NN based lo-

calization algorithms, treated as a “black box” for the purposes of the

fitness maximization objective,

• a study of the comparative advantages of different degrees of quantiza-

tion across all considered k–NN schemes, with different datasets used

for the optimization step and different ones for testing,

• the introduction of a coverage metric to describe the relative ability of

combinations of quantization strategies, along with localization algo-

rithms, to cover the area on which localization is to be performed,

• a comparison of the localization performance of the presented dataset-

specific quantization against fixed quantization strategies.

Data and related code are available at: www.github.com/uofanetdev/quantRSSI

10

www.github.com/uofanetdev/quantRSSI


Chapter 2

Related Work

In this chapter we review the most relevant topics to the current thesis. First

is the topic of localization and, specifically, data-driven approaches to local-

ization, i.e., using schemes such as those based on k–Nearest Neighbor, that

do not involve an intermediate step of producing a model/function to trans-

late signal measurements to distances. Second is the topic of quantization,

introduced in its general form, and then applied to the case of localization.

We also describe the benefits, first introduced in Chapter 1, of having a quan-

tized representation of received signal strength values. Finally, we briefly

introduce techniques related to the search over large search spaces for opti-

mization problems for which no efficient algorithms are known. Because those

search schemes are “textbook” material, and used as a tool in the thesis, we

provide only a limited discussion about them.

2.1 Indoor Localization

Although GPS does not work well in indoor environments, there are still com-

pelling use cases for accurate indoor localization. One canonical example is

a large storeroom where each item is tagged with a wireless sensor tag. As

items may be moved around, and effort is expended in locating them, auto-

mated localization is beneficial. Another example is assisting the navigation

of individuals, ostensibly equipped with smartphones where each smartphone

can be assumed to be a tag. In the latter example, navigation is inside an, un-
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known to the user, building and hence accuracy is an important attribute. In

the first example, what is localized are the tags affixed to each item in the

storeroom. Consequently, one is concerned both with issues of cost, as the

storeroom example implies that each item has attached to it its own device.

Equally, cost concerns may also limit the particular dedicated circuitry even

in the case of smartphones. As such, the Received Signal Indicator (RSSI) is

the most widely available measurement since it involves no cost because it

is already possible to measure using the smartphone’s WiFi (and other radio

frequency technologies present on the smartphone). Note that, as with the

case of the storeroom where many thousands of items need to be localized,

a large indoor space is also possible to involve thousands of users and their

smartphones. We are interested in localizing, efficiently and at little to no ad-

ditional cost, large populations of items/users. A general comment applicable

to the reviewed literature about localization techniques is that it, quite natu-

rally, defines the localization from the point of view of a single to-be-localized

tag/device. That is, to our knowledge, there is no literature that addresses the

question of how to scale localization to concurrently localizing large number of

devices. We therefore adopt a critical view of localization through the lens of

not only limited cost vis-a-vis hardware requirements but also the ability to

perform it at scale.

2.1.1 Localization Techniques

Localization techniques take a variety of forms. A recent survey [3] of lo-

calization techniques groups existing schemes to range-based and range-free

as well as anchor-based and anchor-free. Anchors refers to the existence of

nodeswhose coordinates are known a-priori. Note that anchor-free localiza-

tion techniques provide relative node locations that, generally, do not possess

a unique mapping to the physical space coordinates.

Another separation is between range-based and range-free localization.

Range-based methods attempt to map signal strength values to specific dis-
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tances, via a function – usually based on a path loss model of wireless trans-

missions. Subsequently, they apply a variety of multilateration approaches

to provide a location for the tag that satisfies the distances derived from the

first step. Due to multipath fading and shadowing inherent to the indoor en-

vironment, the parameters used in range-based models are site specific, i.e.,

not general, and are also often fragile, i.e., they assume that the model is

insensitive to noisy measurements although there is evidence that the mea-

surements used are often too noisy. Angle-of-arrival and time-of-arrival based

approaches [17] can be lumped in the range-based schemes, but additionally

require special hardware, usually in the form of antenna arrays and/or extra

timing synchronization capabilities.

Range-free methods do not attempt to map signal strength to distance via

any specific function, since it is well known that signal strength is a very noisy

measurement and not necessarily monotonic with respect to distance due to

the propagation environment complexities. There is also a growing use of the

term model-free vs. model-based localization where model-free means that no

explicit attempt is made to construct an underlying model for how the signal

strength vary or relate across space. Model-based are the opposite and they

include the range-based techniques, but may be also based on more advanced

machine learning models.

The focus of this thesis are model-free, range-free, anchor-based schemes.

The latter (anchor-based) is necessary because we are interested in mapping

the locations of tags to absolute coordinates, rather than relative ones. This is

a reasonable assumption since we consider the existence of RF emitters, like

WiFi access points (APs), placed in advance at known locations. Because the

transceiver hardware used for an anchor can be, technically, identical to that

of the device we wish to localize, we use the term pegs for the anchor nodes

and the term tags for the devices we wish to localize.
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Profiling Techniques

A set of localization techniques that satisfy the model-free, range-free, anchor-

based requirements are, the so-called, profiling techniques, also known as

fingerprinting techniques [11]. Profiling techniques employ an a-priori data

gathering phase, to associate with (known) locations in space, signal strength

measurements from a number of known pegs, e.g., WiFi APs. Profiling

schemes make no attempt to build an underlying model of how signal strength

varies across space.

For instance, we can attempt to map the wireless indoor environment by

collecting wireless fingerprints across the environment. Generally, these fin-

gerprints are then stored in a database that maps a wireless fingerprint to

a specific location. Devices can then be localized by comparing their received

wireless signals to those in the database to estimate a likely location [11]. Per-

haps the simplest technique in this category is based on proximity detection.

Here, pegs/beacons are deployed in the environment in a dense pattern. Then,

the location of any given tag is estimated to be the same as the location of the

peg whose transmissions are received with the strongest signal (assuming the

tag receives transmissions from more than one peg) [5]. Generally, the pegs

used in this approach rely on a short-range transmission technology, such as

infrared (IR) or radio-frequency identification (RFID).

Fingerprint collection requires significant effort and this is often seen as

a strong disadvantage compared to, e.g., range-based techniques. As of now,

most proposals on fingerprinting techniques, silently assume that the collec-

tion of the fingerprints in a database requires manual effort to map out the

entire space of interest. Furthermore, the quality of the fingerprint database

will affect the quality of localization. For example, the resolution of the

database (i.e., the distance between two adjacent fingerprints in the database)

will directly affect how accurate the localization can be. Figure 2.1 illustrates

the process of fingerprint localization. Fingerprints are collected and placed

in a database offline. In the online phase, a wireless tag sends its received
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RSSI values to a central server which performs localization. The estimated

location is optionally returned to the wireless device.

Online phase

Offline phase

Server

RSSI
vector

Wireless Device

Estimated location

Localization
algorithmRSSI

vector

Collect fingerprints
at reference

locations
Fingerprint
database

Estimated location

Figure 2.1: A generic fingerprint-based localization.

2.1.2 Received Signal Strength (RSS)

One easily obtainable metric influenced by the distance between transmitter

and receivers is the (wireless) received signal strength. There is an abundance

of devices fixed at specific and known locations, namely WiFi APs, whose

transmissions, received by a receiver at some point in space will depend on

the distance to the APs. RSS measurements do not require any specialized

hardware to produce. The signal strength versus distance, d, relationship is

often described through path-loss models relating the received power to be

proportional to 1/da where a is the path loss exponent. There exists no single

universal path loss exponent for all indoor environments, and it is influenced

by the exact pair of transmitter/receiver and the nature of the obstacles in the

environment, e.g., see the work carried out in [15]. It is for this reason that the
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derivation of a model from RSS measurements is considered as error-prone.

This leaves fingerprinting techniques as a viable alternative. Note also that

RSS measurements are referred to as RSS Indications (RSSI) by the various

device manufacturers and we will conflate the two (RSS and RSSI) in the rest

of this thesis as they mean, from the operational point of view, the same thing.

RSS-fingerprinting techniques rely on collecting a database of RSS values

at known locations. That is, a set of (known) locations are mapped to their

corresponding RSS vectors. We will often use the term signal space to refer

to the RSS measurements at a location in physical space. Conceptually, it

is assumed that there exists a one–to–one correspondence between the two

types of spaces. Mapping from the signal space to physical space is the task

of the localization technique. From now on, we use the term “space” for the

physical space and qualify it as “signal space” when referring to the RSSI

values corresponding to a (possibly unknown) position in physical space. Note

also that the one-to-one correspondence between the two spaces is a desirable

property, but not necessarily attainable using any specific localization scheme.

While we do not endorse the generation of a model out of the RSS finger-

prints, one can think of the profiling stage, i.e., the fingerprint collection, as a

collection of a “training” set. When localization of a tag at an unknown loca-

tion is attempted, it does so by presenting the vector of RSSI values it sees at

that point and we are asked to determine the location in the physical space.

This, latter, part can be thought of as a “testing” phase of the localization.

The degree of noise present in RSSI values and the perpetually chang-

ing RF propagation environment discourage any hope that the localization

scheme is able to tease out the noise as well as to model the RF propagation

adequately to account accurately for the impact of the physical environment.

Even if this were to be the case at one instant in time, changes to the RF

propagation environment might mean that the same physical location can

correspond to a different signal space measurement at the next instant. Thus

any deterministic localization scheme, to produce a new localization result for
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the same signal space vector would need to be explicitly informed that the RF

environment has changed (and how it has changed), and have its database of

fingerprints updated.

A final comment about profiling schemes in general, but outside the scope

of the current thesis, is the “normalization” of RSSI measurements carried

out, by a heterogeneous set of devices. There exist proposals, such as one

based on the Procrustes method outlined in [31] to map measurements of

heterogeneous devices to a common “standardized” form. In this thesis, the

datasets we consider involve homogeneous devices, and therefore we do not

consider an intermediate standardization step. However, in a real deploy-

ment, the use of measurements in a common fingerprint database coming

from a heterogeneous set of devices can lead to poor results if not properly

pre-processed to a common standardized/normalized form.

2.1.3 k-Nearest Neighbours (k-NN)

One of the earliest group of techniques using fingerprint databases involves

k-nearest neighbours (k-NN). The common feature of those algorithms is that

an RSSI vector from a tag at an unknown location is compared to entries in

the fingerprint database and the k closest entries in signal space are returned.

The distance between signal space vectors is defined to be their Euclidean

distance. That is, assuming there are n pegs, and a tag measuring an RSSI

vector r(u) at an unknown location, its distance to a fingerprint RSSI vector,

r, is defined as:

d =
√√√√ n∑

j=1
(r(u)

j − r j) (2.1)

Notice that: (a) it is tacitly assumed that the vectors have (meaningful) values

for each of their elements, while in a real setting some pegs’ signals may not

be received at all, and hence there could be missing values (an issue we will

address in subsequent chapters), and (b) the precise units, like e.g., dBm, for
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the RSSI values are irrelevant, since a distance can be defined no matter what

units we chose. The k fingerprint entries for k–NN based schemes correspond

to k known locations, and their coordinates in physical space are used to esti-

mate the unknown location. In this thesis we consider three representatives

of the k-NN family of localization schemes. The three schemes differ in the

way they combine the coordinates of the k-NN.

2.1.4 RADAR

The RADAR algorithm was one of the first techniques used as an improve-

ment over limited-ranged simple proximity sensors using IR [2]. Experimen-

tally, RADAR involved setting up 802.11 APs throughout a large space. As is

typical of a range-free localization technique, localization involves two phases.

In the offline phase, a host moves about the space of interest, continuously

sending UDP packets. The base stations then record the signal strength and

timestamp of received packets. This data is then merged in a database, as-

sociating the 2-D physical location of the host (in terms of x and y) with the

mean of the signal strengths from each base station for that location. Con-

cretely, the database table contains entries with tuples <(x, y), r> where r is

the vector with n elements (as many as the APs/pegs). In the online phase, de-

vices are localized. Given a tuple containing signal strength from an unknown

location, the k nearest neighbours are found using the Euclidean distance in

signal space introduced previously. If we index the k neighbors with smallest

distances with i, and denote with di the signal space distance between the un-

known location’s r(u), and the location of the i–th neighbor, then the location

estimation produced by RADAR is:

(x, y)= 1
k

(
k∑

i=1
(xi, yi)) (2.2)

Notice that RADAR does not take the magnitude of di into consideration. In

the experimental study [2] it was reported that RADAR achieved a median
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localization error between two and three meters, using three base stations

spread throughout the floor of a building.

2.1.5 LANDMARC

LANDMARC was developed in an effort to localize using RFID technology

[21]. Despite using a different wireless technology, the experimental setup

closely parallels that of RADAR. RFID readers are installed throughout a

space, acting as the “base stations” that receive RF signals from RFID tags.

However, instead of having a discrete offline data-collecting phase with a mo-

bile host in RADAR, so-called “reference tags” are placed at fixed locations

throughout the space. These reference tags can thus act as neighbours in the

online phase. The advantage of this approach is that the system is more ro-

bust to changes in the environment, as any changes that affect the localization

of unknown devices should similarly affect the signal strengths received from

the reference tags. As opposed to the simple average of location that RADAR

used, LANDMARC uses a weighted average of k neighbours based on the

signal space di distances. The smaller the distance the higher the weight.

Additionally, the weights are all normalized, to ensure that the weights sum

up to 1. In summary the location estimate in LANDMARC is as follows:

(x, y)=
k∑

i=1
wi · (xi, yi) (2.3)

where each w j is given by:

w j =
1/d2

j∑k
i=1 1/d2

i

(2.4)

and where di stands for the Euclidean distance in signal space between the

measurement to localize and the i–th of the k neighbors. It was reported

in [21] that with 4 RF readers in a roughly 40 m2 environment, the average

localization error was one meter.
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2.1.6 LEMON

Another weighted-average k-NN technique, LEMON, has been shown to work

well with low-cost, low-power wireless sensors [9, 10]. The offline phase is

similar to RADAR. The study in which LEMON was proposed deployed 915

MHz ISM band wireless sensors instead of WiFi APs. In the online phase, the

location is estimated using a weighted average, with w j calculated by:

w j =
dmax −d j

k∗dmax −∑k
i=1 di

(2.5)

Here, dmax is the largest signal space distance across the k neighbors. The

weight of the furthest neighbour is therefore 0. Effectively, only (k−1) neigh-

bours are used in the weighted average calculation of the location. The fur-

thest neighbour is used to calibrate and normalize the weights of the remain-

ing, neighbors. In various studies LEMON has been shown to have a small

average localization error [9,10] although one could argue that to achieve such

result, the pegs need to be densely deployed across the environment.

2.1.7 The Complexity of k-NN Techniques

While, trivially, the search for the k-NN neighbours of a given vector can be

carried out sequentially, the option is unappealing for large database of fin-

gerprints, and more efficient algorithms are available. A well-known algo-

rithm for k-NN in expected logarithmic time is due to Friedman, Bentley, and

Finkel [6] making use of k-d trees. However, its worst case execution is still

linear, corresponding to “pathological“ cases of data point distributions. It

has been argued that pathological cases are rare in practical data sets. Sim-

ilar is also the expected time complexity of the “vantage point” tree (vp-tree)

algorithm by Yianilos [28] which is claimed to be suitable when the distribu-

tion of the data is from a lower dimensional space but embedded in a high-

dimensional space. The lower dimension (physical) space mapping to high-

dimensional (signal) space fits our localization use case. Other algorithms
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have also been proposed for approximate results to k-NN queries but we do

not consider them, as any approximate answer may have an additional neg-

ative impact on the, already approximate, localization results. In any event,

our interest is in selecting a representative time complexity for k–NN queries,

and this will be assumed to be O(log(N)) in keeping with existing literature.

We consider as unimportant the computational cost for pre-processing (build-

ing), or the space cost for storing the database, as those are one-time (or rarely

recurring) costs and their corresponding storage is plentiful.

2.1.8 Localization Coverage of k-NN Techniques

A common characteristic of all k-NN localization techniques is that, they are

weighted summation of known coordinate pairs of the k profiling points se-

lected. While not studying k-NN schemes specifically, Zanca et al. [30] noted

that the best scheme of the ones they considered “weighs the RSSI from the

anchor nodes according with the reliability of such a reading, which decreases

with the received power” which is a statement on the need to consider the

signal space distance when producing the weights for the determination of

the location given known emitter locations (anchor nodes in their cases). We

therefore expect that the weights used by LANDMARC and LEMON will pro-

duce better results compared to RADAR. This observation is confirmed later

in this thesis.

Additionally, the k-NN based schemes produce localization results en-

closed within the convex hull of the profiling point (xi, yi) coordinates. In-

terestingly, in all studies we encountered the profiling points are also “inside”

the convex hull defined by the pegs. Some techniques include, in their profil-

ing set, locations at are adjacent to, if not exactly at, the locations of the pegs.

As a result, the possible localizations using weighted k-NN are within the

convex hull of the pegs. By the same token, locations outside the convex hull

of the pegs (or of the profiling points, as the case may be) cannot be localized

using such schemes.

21



In the relevant literature an, often unstated, assumption is that the eval-

uation of the techniques is limited to localizing points within this convex “lo-

calizable” area, leaving outside the discussion, how can a device determine

whether it is inside or outside the area. A conceivable answer to this tech-

nical requirement is that larger areas are split into “regions” and some form

of gross localization takes place (even possibly as direct user input) to select

which area the device is currently inside. Subsequently, area-specific local-

ization can be performed. We will also follow the same assumption, by not

considering as candidates for localization any points outside the convex hull.

Additionally, the placement of APs, is such that APs are often placed at the

corners of a large space, such that the resulting convex hull is a rectangular

area.

Except for unlikely and unnatural cases of AP deployment, e.g. all being

co-linear, any point of the convex hull can be expressed as the weighted sum

of AP coordinates by solving to determine the specific weights. Conversely,

the weights computed by any particular localization algorithm may not have

sufficient variety to be able to produce the coordinates of any arbitrary point

within the convex hull. It is therefore of interest, and addressed in the thesis,

to also inspect how well a k-NN localization algorithm, together with a given

fingerprint database, covers the convex area.

2.2 RSS Quantization

As RSS data are noisy due to myriad physical aspects, Gao et al. [7] demon-

strated an attempt to reduce the amount of data transferred to convey the

RSS information, while preserving a high localization accuracy. The benefit

of their approach is the reduction of the data needed to be conveyed to an

“edge” node responsible for the localization of tags. Thus, the tag measures

the RSS from various pegs/APs, reduces the size to represent this information

to a few bits, transmit those to the edge node, and the edge node executes the

localization computation which, ostensibly, would have been too onerous for
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the computational resources of the tag. Whether the tag is to be informed of

its (estimated) location or whether this information is of value to some other

application running at the backbone of the network, well-connected to the

edge node, is irrelevant to the process of reducing the RSS values from all the

pegs to a few bits. Note that the above view of the process involves at least a

unidirectional communication between tag and edge node, and possibly bidi-

rectional if the tag needs to know the localization result as well.

The reduction of the volume of data suggested by Gao et al. [7] employs

quantization. In quantization, the RSS range is divided into n intervals, us-

ing n−1 boundaries. The corresponding intervals have mid-points, that are

the representative RSS values for the interval. For each measured RSS value,

the tag identifies in which interval it corresponds and replaces it with the rep-

resentative RSS of the interval. However, since the quantization is known to

the receiver (e.g., the edge node) as well, what is needed to convey the repre-

sentative RSS is just an index value indicating which interval the measured

RSS falls on.

What was argued in [7] is that since the distribution of RSS measurements

is non-uniform, higher granularity might be desired in certain regions of the

RSS range, and less granularity in other regions. If, for example, the bound-

aries are concentrated in one narrow range, then, once quantized, the RSSI

values in that range will be more finely represented. Note that the quantiza-

tion step is agnostic to what localization algorithm is used, so the localization

scheme can be treated as a black box, even though Gao et al. [7] examined the

performance of the quantized representation just for LEMON [9]. The notable

result is that they find four intervals (2 bits to index them) is sufficient.

2.2.1 Pre-computed Quantization Intervals

Some more recent work into RSS quantization has also been performed on

pre-computed quantized levels. That is, instead of using an elaborate process

to determine the best quantization, the quantizer formulas used are fixed
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and indifferent to the distribution of measured RSS. Specifically, Khandker

et al. [16], evaluate four different quantizer formulas which operate over an

arbitrary number of bits. Assume Emax and Emin are the maximum and min-

imum of the range of values to be quantized. The following pre-computed

quantization schemes are defined:

(linear quantizer) f1 = (Emax −Emin)/(2n −1) (2.6)

(square root quantizer) f2(i) = (Emax −Emin)×
∑i

j=1

p
2 j−1∑2n

j=1

p
2 j−1

(2.7)

(cubic root quantizer) f3(i) = (Emax −Emin)×
∑i

j=1
3p2 j−1∑2n

j=1
3p2 j−1

(2.8)

(logarithmic quantizer) f4(i) = (Emax −Emin)×
∑i

j=1 log2 j−1∑2n
j=1 log2 j−1

(2.9)

f1 describes a linear quantizer. In this case, the quantizer divides the sig-

nal space between Emax and Emin into 2n equal areas. The other 3 formulas

divide the signal space more finely towards Emax with fewer divisions towards

Emin. They found that 4 bits was enough to achieve a localization accuracy ap-

proaching that of full-resolution data, with f1 and f4, the two formulas closest

to a linear quantizer, providing slightly better localization performance than

the other two.

Mizmizi and Reggiani [19] attempt to quantize RSSI values that are re-

sulting from simulations using a path loss formula and they consider a con-

trived 2-dimensional grid. They do not attempt to determine an optimal quan-

tization, but rather the relation between the tags (“beacons” in their nomen-

clature) and the number of quantization levels to achieve a given mean square
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error. What is notable is that they seem to reach the best number of beacons

for a given MSE at a quantization of between 6 and 10 levels (roughly between

2.5 and 3.2 bits). Earlier, Patwari and Hero [22] were probably the first to link

the quantization and the proximity (really, single-bit quantization) to funda-

mental limitations due to the Cramer-Rao bound, and provided evidence that

3 bits (8 levels) may be sufficient, but their results are based on simulations

employing a path loss model.

2.2.2 Data-driven Quantization

The quantization options described in the previous subsection do not adapt to

the actual fingerprints collected. Yet, the work in [7] suggests that the quanti-

zation should be driven by the actual fingerprint set. We are therefore posing

the question as follows: for a given set of fingerprint data, what is the optimal

quantization of those values (and hence of any unknown measurements we

will subsequently wish to localize)?

The thrust of the research described in this thesis is the determination of

the optimal boundaries of a set of RSSI values (the “training set”) which pro-

duces the optimal values for the boundaries. We consider b-bit quantizations,

which is equivalent to determining 2b −1 boundaries. Given that the original

domain of the RSSI measurements is also limited in terms of the bits, say m-

bits large, the determining a best boundary for a 1-bit quantization of those

values is computationally simple, since the boundary we are after is one of

the 2m values. However, the search for the boundaries becomes exponentially

more difficult as more boundaries have to be determined. Even for a single

boundary value, we need to capture whether a chosen value is better or worse

option than another value via a metric which captures how it would result

in the localization not for a single unknown point but for the localization of

an ensemble of points. The search process has to be generic enough that the

entire localization algorithm can be treated as a black box. We address this

need in Section 2.4.
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2.2.3 Global vs. Local Quantization

A crucial step in the quantization process is whether the boundaries that de-

fine the quantized levels should be global, i.e., the same values across all

pegs or local, i.e., different boundary values for each peg. Given the vagaries

of the wireless propagation environment, it might be beneficial to define per-

peg, i.e., local, boundaries. The time invested in searching for the best bound-

aries would then be increased. For example, for a 1-bit quantization across

n pegs, there are n local boundaries instead of only 1. This means that fur-

ther attention needs to be paid to the optimization technique (really search

techniques) employed during the determination of the optimal quantization.

2.3 Applications of RSSI Quantization

Peg 1 2 3

Near/Far Near Near Far

Representatitve RSS -65 dBm -65 dBm -90 dBm

1-bit representation 1 1 0

Quantized RSS vector

Location estimate:
(2,6)

Entry Estimated
Location

...

101 (2, 5)

110 (2, 6)

111 (4, 3)

Lookup Table

Localization

Figure 2.2: Populating location estimates in a lookup table using 1-bit localization.

One benefit of quantization is the ease in which estimated locations can

be pre-computed and stored in a lookup table, for offline access. This can be

illustrated using a 1-bit quantization example as shown in Figures 2.2 and

2.3. The example threshold/boundary is assumed to be global and equal to

-80 dBm. The two bins (zero for lower values, one for higher values) have

representative RSSI values equal to -90 and -65 dBm correspondingly. Figure
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2.2 captures the offline lookup table creation. Since the signal from each peg

is represented by a single bit1, the concatenation, in a fixed order, of the n bit

values (for n pegs) can represent, collectively, all the signals to n pegs. There

are 2n possible such bit vectors and each value can be thought of as an index

to a lookup table. The table is populated with localization outputs using the

given (e.g., a k-NN) localization algorithm. This can be done once using 2n

invocations to the localization algorithm. Since each of the intervals has a

representative value, there are actual RSSI values that can be used by the

localization algorithm to produce those location estimates.

Peg 1 2 3

1-bit representation 1 1 0

Quantized RSS vector

Entry Estimated
Location

...

101 (2, 5)

110 (2, 6)

111 (4, 3)

Lookup Table

Global threshold: -80 dBm

Peg 1 2 3

RSS -75 dBm -60 dBm -95 dBm

Received RSS vector

Estimated location:
(2, 6)

Figure 2.3: Retrieving 1-bit quantized location estimate from a lookup table.

The table produced as shown in Figure 2.2 is used in Figure 2.3. An un-

quantized (“full resolution”) RSSI vector is measured by a tag device, whose

location is unknown. Using the quantization threshold(s) it computed in ad-
1In the special case of 1-bit localization the value of a zero is a “far” reading (lower than

quantization threshold) and the value of one is the “near” reading.
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vance, it can convert each RSSI value into a 1-bit value. If a given RSSI value

is below the threshold, then 0 is used, else 1. Given a fixed a-priori order

of the pegs, and hence of the bits produced by this quantization, a bitvector

is produced which acts as an index to the table calculated as in Figure 2.2,

retrieving the estimated location of the tag. Note that the tag can just lis-

ten to the peg transmissions, and assuming it is equipped with the table and

with knowledge of the threshold(s) to perform quantization, it does not need

to transmit anything to determine its location.

With a larger number of bits, b, used for quantization a total of 2bn lo-

cations will need to be stored in a pre-computed lookup table. Ideally, this

number will be small enough that a tag device can store it in its own onboard

memory. This way, the tag device can estimate its own location offline, in con-

stant time, without the need to store the fingerprint database. However, for

large 2bn the necessary storage for the lookup table can become comparable

to the contents of the entire fingerprint database.

2.4 Optimization Techniques

The challenge with quantization comes from the search for the boundaries

that results in the optimum quantization. The optimality is judged by means

of maximization of the fitness function. By way of example, if the RSSI values

are 7-bit values, there are 128 distinct values for a single boundary. Thus, the

search space for boundaries increases rapidly with the number of bits used for

quantization. With 2-bit quantization, there are
(128

3

) = 341376 combinations

of three boundaries. With 3-bit quantization, there are 94 million different

combinations, and so on. Thus, an efficient search method is needed. In this

thesis we have employed two search techniques whose operation is summa-

rized here: a Genetic Algorithm (GA) for 1-bit quantization, and a Tabu search

scheme for multiple-bit quantization.
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2.4.1 Genetic Algorithms (GAs)

An elitist genetic algorithm (EGA) [24], as used in [7], can be used to de-

termine an optimal threshold when quantization into two values (1-bit) is

desired, i.e., to determine a threshold value to separate “near” and ”far” val-

ues. GAs are a set of evolution-inspired algorithms that produce solutions to

optimization problems. Candidate solutions, which in our case are quantiza-

tion boundaries, are encoded as chromosomes. Then, for each generation the

following happens:

1. Selection. Choose two parents. These can be chosen from roulette se-

lection, where more “fit” chromosomes, as per the fitness function, have

a higher probability of being chosen, through there are other selection

methods such as tournament selection.

2. Crossover. With some probability, a crossover event may occur. In the

simplest case, a single point of crossover is used. That is, some part of

the chromosome is chosen to be the crossover point. Up to that point, for

one child chromosome, the “genes”, or boundary values are chosen from

parent 1. After that point, the genes from parent 2 are used. The com-

plementary child chromosome (parent 2 then parent 1) is also created.

If no crossover point is used, then both parents are used as-is.

3. Mutation. With some probability, each gene has a chance of mutating

to some random value. This mechanism forces the algorithm to try new

solutions, i.e., new boundary values in our case.

The choice of fitness function is important. Intuitively, at each generation,

chromosomes which are more “fit”, that is, a better solution to the problem at

hand – are more likely to carry forward to the next generation. We use the

fitness function described by Equation 3.1. An EGA preserves the most fit

individual across each generation. This prevents the most fit individual from

being altered by crossover and mutation. Note that to derive the fitness func-

tion value, we have to try to process (localize) an ensemble of points to derive
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their, collective, mean and standard deviation of localization error. That is,

each candidate quantization, requires that we run the black box localization

for each point from a given set of testing points. Thus, we will be distinguish-

ing between a testing set and a “training” set – the latter being the set of

fingerprints and their associated, known, locations.

The initial population of chromosomes is randomly generated. Namely,

for each boundary in each chromosome (of a set of chromosomes, which is a

parameter), a random value from the set of all possible boundaries is chosen.

The set of possible boundaries is informed by the RSSI values contained in

the fingerprint dataset. First, all unique RSSI values from the dataset are

ordered in terms of increasing value. Then, a possible threshold value is cal-

culated using the midpoint of any two successive RSSI values present in the

fingerprint database. Thus, if there are N unique RSSI values in the finger-

print dataset, there will be N −1 possible threshold values.

2.4.2 Tabu Search

EGA is, computationally, convenient for local 1-bit local quantization but its

performance deteriorates particularly when performing local multi-bit quan-

tization as it has the tendency to become trapped in local minima. Compared

to 1-bit quantization, there appear to exist too many local minima in multi-

bit quantization, from which GA can only escape very slowly. Thus, we also

employ Tabu (or Taboo) search [8], a local search method that forces the ex-

ploration of new solutions by performing occasional “jumps” across the search

space.

At its core, Tabu search is an elitist greedy local search algorithm. How-

ever, it escapes the trap of local minima by using the, so called, Tabu list, of

candidate solutions. In simple local search algorithms, such as simple hill

climbing, a list of “neighbours” is generated at each iteration2. A neighbour to

2Not to be confused with neighbours in signal space or physical space, this is a third possi-
ble meaning for neighbour. Here, neighbour means a numerically similar candidate solution,
i.e., one with slightly different values for some (possibly even one) boundary.
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a particular (current) solution is created by altering a single boundary value

for any particular peg, resulting in a new candidate solution that is different

from the current solution in only one boundary value. A high-level pseudocode

for the generation of the neighbour candidates is presented in Algorithm 2.

MAX_NEIGHBOURS is a parameter to limit the size of the number of neigh-

bours considered. Consistently with the GA case, the fitness function provides

a direction for which solution to explore next. Specifically, the neighbour with

the highest score is explored. However, this approach has the tendency to be-

come stuck in local maxima, or in regions where many neighbours are equally

suitable. Tabu search avoids this situation by forcing the algorithm to delib-

erately check “worse” neighbours.

The high-level pseudocode for the Tabu search as we used in Chapter 5

is shown in Algorithm 1. It utilizes a so-called short-term memory struc-

ture, the eponymous Tabu list. This structure holds a list of recently checked

neighbours, and prohibits the algorithm from analyzing them again. This list

holds each item only temporarily, so at a later time during the execution of the

search, these neighbours may be checked again, hence the short-term nature

of the memory structure. By exploring the neighbours of these weaker solu-

tions, the hope is that globally better solutions can be found. Generally, this

Tabu list is implemented using a fixed size, and old entries are evicted from

the list when the structure is full. In addition, longer-term memory structures

can be used, such as more lists with different expiration schemes. The goal for

short-term memory is to encourage exploration of the immediate local area,

while longer-term memory structures are used to force exploration of more

distant areas in the search space. Traditionally, the Tabu search approach

has found success in combinatorial optimization problems like scheduling, as

well as more classical problems such as the travelling salesman problem and

graph colouring.

Note that the size of the Tabu memory structure will necessarily increase

if local quantization is used instead of global quantization, and it if more than
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Algorithm 1 Tabu search algorithm using Tabu list for short term memory
and random restarts for long term exploration

1: nbest ← Initialize best neighbour with random values
2: last_fitness ← fitness(nbest)
3: last_change ← 0
4: while runs - best_found < min_runs do
5: while i < maxIter do
6: Increment i
7: if i - last_change > long_term_threshold then
8: nbest ← Initialize best neighbour with random values
9: last_change ← i

10: end if
11: N ← generate_neighbours(nbest)
12: bestNeighbour ← n0
13: for n ∈N do
14: Quantize (local or global) the testing set according to n
15: Localize quantized training set
16: Evaluate fitness(n) for the quantized training set
17: if fitness(n) > last_fitness then
18: last_fitness ← fitness(n)
19: last_change ← i
20: add n to tabu list
21: if fitness(n) > fitness(nbest) then
22: nbest ← n
23: best_found ← i
24: end if
25: end if
26: end for
27: end while
28: end while
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Algorithm 2 generate_neighbours(nbest)
1: i ← 1
2: bound_order ← shuffle(0, 1, ..., num_bounds)
3: neighbours ← empty list
4: neighbours[0] ← nbest
5: while i < MAX_NEIGHBOURS do
6: for b ∈ bound_order do
7: neighbours[numNeighbours] ← nbest
8: neighbours[numNeighbours][b] ← random_bound
9: i ← i + 1

10: if i > MAX_NEIGHBOURS then
11: return
12: end if
13: end for
14: end while

one, say b, bits are used by the quantized representation. Each of the n pegs

would require the determination of 2b−1 boundaries, hence a candidate solu-

tion involves n(2b−1) variables. The canonical approach for short-term mem-

ory is to use a Tabu list, and we implement this list using a ring buffer, where

older values are continually evicted as new neighbours are entered. For long-

term memory, however, there can be a variety of approaches used. As stated

previously, the goal for long-term memory is to force the algorithm to explore

distant areas. In our case, we chose to implement the long-term memory as

a simple reset rule, similar to what is done with local search techniques that

utilize random restarts. This approach appeared to work well in practice.
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Chapter 3

Datasets & Baseline Results

In this chapter, we describe the used datasets and provide baseline localiza-

tion performance results under no quantization. The two datasets we examine

are: one in a carpark, and one in a library.

3.1 Carpark Dataset

The carpark dataset, was previously used in [7] to examine how few bits are

needed to achieve a similar level of localization accuracy as with full resolu-

tion for the RSSI measurements. In that study, they found that two bits was

sufficient.

The dataset was collected in a 12× 8 m2 space in the lower floor (un-

derground) carpark, a relatively quiet RF environment. Using CC1100 de-

vices [25] in the 915 ISM MHz band, 10 peg devices were laid out surrounding

the rectangular area in a grid (see Figure 3.1. Within the grid, RSSI measure-

ments were collected roughly every 1 meter apart in both directions. The side

of each grid cell is 2 meters, pegs are represented by black squares. Mea-

surements in the fingerprint database are taken from the locations with solid

black stars. The to-be-localized measurements are collected by a tag placed

at the locations indicated by circles. When a car is present, to play the role of

the obstacle, we indicate, in the same figure, the three alternative placements

that were used. Note that Figure 3.1 exaggerates the size of the placed car and

does not properly reflect the scale of the car relative to the space. Thus, for the
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Figure 3.1: Layout of the carpark environment (not to scale).

same placement of pegs, there are three subsets of measurements: one with

no car, and three with a car present in the left, center, or right of the space.

For each of the subsets, we have a set of fingerprint (star) measurements and

a set of tag to-be-localized measurements (circles). In all cases, despite the

presence of the car, it was possible to have 25 fingerprint measurements and

24 tag to-be-localized measurements, with the exception of when the car was

placed to the right where the tag measurements were 23 instead of 24 due to

the obstruction caused by the car.

3.1.1 Post-Processing

With the exception of a few1 of RSSI vectors that had missing values (peg too

far for a measurement to be possible) the carpark dataset had complete RSSI

vectors across the fingerprint and the tag datasets. This is a side-effect of the

dense peg deployment. The vectors with missing values were eliminated from

the dataset because it was deemed that, due to being just a few, their removal

would not impact the localization results in any notable way.

1Five RSSI vectors, all in “Car to the Left” (CL) layout, have missing peg measurements.
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pegs received RSSI vectors
1 908
2 415
3 84
4 12
5 1

6-13 0

Table 3.1: Simultaneous peg measurements in RSSI vectors (library dataset).

3.2 Library Dataset

The second data set was created using 13 iBeacon devices connected by the

Bluetooth Low Energy (BLE) protocol, with data being collected using an

iPhone 6S in the Waldo Library of Western Michigan University [18,20]. The

library areas considered measures 200 x 180 feet (60.96 x 54.86 m), with each

“cell” of the map in Figure 3.2 corresponding to a square of size 10 x 10 feet

(3.04 x 3.04 m). iBeacon devices, which are used as the “pegs,” are deployed in

the 13 numbered circles, and the signal strength of each iBeacon is collected

using a mobile device by a person standing in the cell.

As in the car park dataset, the area is divided into a grid. However, the

iBeacons are not at the edge of the area, but interspersed throughout the

library. In addition, due to the low range of the BLE devices, at many areas

in the library, not all iBeacons can be seen. As such, the dataset is relatively

sparse. Using this dataset will allow us to examine the effect of quantization

when the peg density is smaller, and the effect of many missing values from

the RSSI vector collected by the tag/phone due to the distance from the pegs.

Indeed, the tag was never able to receive signals from all 13 pegs at once.

At most locations, only one of the tags could be received, with a maximum

simultaneously received being just five. Table 3.1 shows this distribution.

Across the fingerprint data points, the RSSI from the received pegs ranges

between -88 to -55 dBm. The histogram of their values is shown in Figure 3.3.
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Figure 3.2: The library area, from [18,20].

3.2.1 Post-Processing

Contrary to the carpark dataset, the library set is limited in two ways. First,

there are no dynamics in the environment that we know of, i.e. information

about obstacles being present and or being moved during the data collection.

A more important concern was the need to produce imputed values for the

missing measurements. Since all vectors had some peg measurement missing,

it would not have been possible to just drop them from the dataset.

The imputed value should be a small RSSI value to indicate that the point

is “distant” from a peg, and smaller than any received RSSI signals. At the

same time it should not be much smaller than needed because it could, under

a k–NN setting, severely influence the weights used in combining the k fin-

gerprint locations. Across all points (fingerprint or tag locations) the weakest

signal recorded was -111 dBm. With this in mind, we use -120 dBm as the

imputed value. The value of -120 dBm is also very likely close to the noise

floor.
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Figure 3.3: Histogram of fingerprint RSSIs across all pegs (library dataset).

3.3 Other Datasets

Additional datasets existed at the time this thesis was undertaken but were

eliminated from consideration for the correspondingly stated reasons.

3.3.1 UJIIndoorLoc

The UJIIndoorLoc dataset [14] is comprised of over 21,000 samples covering

3 buildings of Universitat Jaime I with 4 or more floors each. The localization

area is almost 110,000 m2. Within this dataset, location is described using

longitude and latitude, while floors are described using an integer for floor

number. Each data point consists of a vector of RSSI values from 520 possible

WiFi access points, collected using a variety of Android devices. The actual

RSSI value varies from -104 dBm to 0 dBm. The dataset is further classified

into room type (e.g., office, classroom), the user collecting the data, as well

as the type of device. UJIIndoorLoc was eliminated as the dataset is just as

“sparse” as that of the library. That is, at most of the measurement locations,
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only a small number of signals from pegs can be received. Many of those

points would have to, again be imputed RSSI values, again suggesting that it

would not add anything more than what the library dataset alredy provides.

3.3.2 AmbiLoc

The AmbiLoc dataset [23] represents a lengthy period of observations of signal

strengths based on various RF emissions. It is a collection of 23 fingerprinting

"sessions" taken around 3 floors of an office building, 2 floors of a university

building, and an apartment unit across a year of time. Instead of having fixed

"peg" devices, they use ambient signals in the FM, GSM-900, or DVB-T bands

and measure signal strength every 10 Hz within that band. While rich in

terms of duration, it lacks information as to when changes were happening in

the environment which could allow us to determine points in time when the

propagation environment would, for a fact, have changed (which we can do

in the carpark dataset). For those reasons, i.e., that it is multimodal and no

information about the changes occurring during the measurement period are

available, it was not used

3.4 k-NN Localization Tuning

With k-NN localization algorithms, as described in Section 2.1.3, the most

salient (and only) parameter that needs to be chosen is k. The larger the

value of k, the more neighbours that are chosen from the fingerprint database

to estimate the location of any particular unknown location of a tag. If the

value of k is too small, then the algorithm lacks enough information for an

accurate estimate. In the extreme case of k = 1, then the algorithm simply

uses only the closest profiling RSSI vector for its estimate. On the other hand,

if k is too large, then the algorithm may be forced to use distant neighbours

in the average calculation, introducing additional error into to the estimate.

Thus, a balance needs to be struck.

To find a good value of k, we work empirically using full resolution (not
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quantized) datasets. The "best" value is chosen using an exhaustive search,

from k = 1 to the value where all possible neighbours are chosen. It is also

likely that a k value that works for one k–NN algorithm might not work as

well for another. Yet, to master the complexity behind the optimization of the

quantization we would like to fix a “universal” k. We are therefore going to

come up with a single k that is a good compromise across k–NN localization

algorithms and will be used in subsequent chapers.

We can evaluate the localization performance based on its performance

across a set (an ensemble) of tag measurements for which we know their

ground truth location and hence can estimate their average error magnitude,

E(x). Similarly we can derive the standard deviation statistics, σ(x), of the

ensemble error. Rather than rely solely on E(x) we will use a metric (fitness

metric) which combines both E(x) and σ(x). The fitness function is as follows:

F = 1
E(x2)

= 1
[E(x)]2 + [σ(x)]2 (3.1)

This is the same fitness function used by [7]. It is also the fitness function

used for evaluating the results based on GA and Tabu search in following

chapters.

The results of this search for the carpark are seen in Figures 3.4 and

3.5. Localization error throughout this thesis is presented in meters. Note

that there is no data for k = 1 for LEMON, as the algorithm requires at least

k = 2 to function. The results are based on localization using the carpark

dataset without any car present, for both the fingerprint database and the tag

measurements we wish to localize. Here, we found that k = 4 marked a good

compromise across RADAR, LANDMARC, and LEMON. In addition, we also

examine k = 5 for LEMON, since LEMON is a special case where the weight

of the furthest neighbour is zero when computing the weighted average, so

essentially it appears as if k−1 neighbours are used.

We then compare the choice of k = 4 to other choices of k that would have
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Figure 3.4: E(x) vs. k (carpark dataset, no quantization).
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Figure 3.5: F vs. k (carpark dataset, no quantization).
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Scheme Layout k E(x) σ(x) F

RADAR

No car (NC)
3 1.07 0.52 0.71
4 1.21 0.45 0.60

Left (CL) 4 1.01 0.62 0.70

Middle (CM)
1 1.49 0.35 0.43
4 1.54 0.87 0.32

Right (CR)
3 1.17 0.62 0.57
4 1.24 0.61 0.52

All 4 1.24 0.66 0.51

LANDMARC

No car (NC)
4 1.11 0.50 0.68
5 1.10 0.50 0.68

Left (CL) 4 0.90 0.61 0.84

Middle (CM)
1 1.49 0.35 0.43
4 1.40 0.83 0.38

Right (CR)
4 1.15 0.58 0.61
5 1.16 0.50 0.63

All 4 1.26 0.64 0.50

LEMON

No car (NC)
4 1.13 0.64 0.59
5 1.10 0.58 0.65
6 1.07 0.53 0.70

Left (CL)
4 1.01 0.71 0.66
5 0.94 0.72 0.71
7 0.94 0.56 0.83

Middle (CM)
4 1.27 0.78 0.45
5 1.31 0.79 0.43

Right (CR)
4 1.13 0.53 0.65
5 1.08 0.54 0.68
6 1.09 0.46 0.71

All
4 1.44 0.72 0.38
5 1.38 0.71 0.42
6 1.30 0.71 0.45

Table 3.2: Baseline localization results (carpark dataset, no quantization).
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resulted in better fitness F or better E(x) to ascertain whether there are other

values of k that should, exceptionally explored as well. With the exception of

LEMON for k = 5 (making it effectively k = 4), the results in Table 3.2 do not

show any notable advantage to other values of k across the board, i.e., across

all subsets of the carpark dataset. The purpose of the table it so show how k =
4 would perform if the set used is coming from the modified environment. For

example, “Middle” means that both the fingerprint and the tags to be localized

are coming from the subset of the dataset that were collected with the car in

the middle of the space. Note that Table 3.2 introduces also the acronyms

NC, CL, CM, and CR, we will subsequently use to refer to the presence or

not, and the location, of the car obstacle. The layout “All” includes all the

four subsets in one big dataset used for both the fingerprint database and for

the localization of the tags. As such, it represents the most “tainted” dataset

– one where presumably measurements over the same space over periods it

was modified are placed in the same database and not distinguished and then

the evaluation of the localization happens in a similarly mixed manner.

Coincidentally, k = 4 was also found to provide good results for the library

dataset. The library dataset is much more sparse in comparison, with most of

the data points containing just one received signal. This suggests that the best

value of k should be quite small anyway. The results for the library dataset

are detailed in Table 3.3, In the library dataset, we see a similar trend, with

LANDMARC and LEMON achieving slightly lower mean errors. However,

unlike the carpark dataset, the standard deviation of error is larger but more

consistent among the localization schemes tested – the standard deviation

remains roughly 1.30m for each algorithm.

3.5 Summary

This section summarizes the results under no quantization. This provides a

baseline for how well each dataset can be localized using the full-resolution

data. We expect that once the tag RSSI vectors are quantized, the accuracy of
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k Scheme E(x) σ(x)

1
RADAR 1.90 1.58

LANDMARC 1.90 1.58
LEMON N/A N/A

2
RADAR 1.93 1.31

LANDMARC 1.88 1.41
LEMON 1.90 1.58

3
RADAR 1.96 1.31

LANDMARC 1.87 1.40
LEMON 1.82 1.36

4
RADAR 2.00 1.30

LANDMARC 1.88 1.36
LEMON 1.82 1.31

5
RADAR 2.07 1.35

LANDMARC 1.87 1.34
LEMON 1.81 1.26

6
RADAR 2.20 1.46

LANDMARC 1.87 1.33
LEMON 1.80 1.22

7
RADAR 2.29 1.59

LANDMARC 1.88 1.32
LEMON 1.80 1.19

Table 3.3: Baseline localization results (library dataset, no quantization).

their localization will be reduced.

For each of the following datasets (the carpark and the library), three k-

NN algorithms are applied (RADAR, LANDMARC and LEMON), using the

value of k = 4 for each algorithm, while examining also k = 5 for LEMON.

In every case, full-resolution data is used for both the fingerprint database

and the tag measurements to be localized. We summarize the reference per-

formance for the carpark dataset in Table 3.4 and for the library dataset in

Table 3.5. They will form the basis of comparisons in subsequent chapters.
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Scheme E(x) (σ(x))
RADAR 1.21 (0.45)

LANDMARC 1.11 (0.50)
LEMON 1.13 (0.64)

LEMON (k = 5) 1.10 (0.58)

Table 3.4: Reference performance for k = 4 (carpark dataset, no quantization).

Scheme E(x) (σ(x))
RADAR 2.00 (1.30)

LANDMARC 1.88 (1.36)
LEMON 1.82 (1.31)

LEMON (k = 5) 1.81 (1.26)

Table 3.5: Reference performance for k = 4 (library dataset, no quantization).
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Chapter 4

1-bit Quantization

In this chapter, we explore the simplest case involving quantization: 1-bit

quantization. If we take RSSI to be a proxy for physical distance, then this

special case treats each peg as if it was a proximity sensor. That is, if the sig-

nal strength is higher than a certain value, then we consider that the tag is

"near" to the tag. Otherwise, it is “far” and doesn’t "trigger" the proximity sen-

sor. As there are only 2 possible values for quantized RSSI, each fingerprint

can be expressed in 2n bits, assuming n pegs.

The main question, then, is what the threshold/boundary value should be

to separate the “near” from the “far” readings. In this chapter, we first con-

sider the case where every peg shares the same threshold (global threshold).

Subsequently, we expand the problem to consider the case where every peg

has its own threshold value (local thresholds). In both cases, we compare the

localization accuracy of 1-bit quantization across the three k–NN based algo-

rithms when 1-bit quantization is applied, and when no quantization is used.

4.1 Methodology

We consider two types of thresholds: global and local. For global thresholds,

the same value of r thr is used for the RSSI values received from any peg. With

local thresholds, the RSSI values from each peg are quantized in a different

way, using a different r thr for each. If there are n pegs, there are n threshold

values, r thr1 , r thr2 , ..., r thrn .
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For global thresholds, finding r thr is relatively trivial. RSSI values at

full resolution are typically 7 or 8 bits, so there are at most 28 = 256 val-

ues through which to search and this is done exhaustively. Local thresholds

have an added layer of complexity. If there are m pegs, then the search space

is now 27m or 28m wide, which necessitates more sophisticated search tech-

niques. Here, we use the elitist genetic algorithm (EGA) with tournament

selection. The EGA algorithm is described in Section 2.4.1 and the runtime

parameters used are summarized in Table 4.1.

Parameter Value
Population size (chromosomes) 500

Number of generations 10000
Crossover probability 0.90
Mutation probability 0.15

Table 4.1: EGA parameters.

In evaluating these quantization thresholds, we compute the localization

of the set of RSSI samples after quantizing. The computed locations are com-

pared to their known locations using the Euclidean distance between the two

points. This distance is referred to as the "error" for that particular sample.

Across all samples in a dataset, the average of all sample errors is reported as

mean error. The sample standard deviation is also calculated. The effective-

ness of these quantization thresholds is evaluated using the fitness function,

which takes into account both the mean error and standard deviation of the

error (Equation 3.1).

We will need to represent these "near" and "far" values with a represen-

tative RSSI value, as the k-NN algorithms require actual RSSI values to es-

timate the location of a tag. Suppose the collected RSSI values range from

rmin to rmax with r thr lying between the two. This creates two RSSI ranges,

one from rmin to r thr and another from r thr to rmax.We use the midpoint of

each RSSI range as the representative RSSI value of the corresponding bin.

Concretely, R0 = rmin + r thr+rmin
2 and R1 = r thr + r thr+rmax

2 are the representa-

47



tive values for the “far” and “near” (0 and 1 respectively). For example, if the

RSSI vector1 for a given tag is (131, 104, 88), and rmin = 50, rmax = 150, and

r thr = 100, then the quantized form of that vector is (125, 125, 75) which is

also representable as (1, 1, 0). Note that the fingerprint database still con-

tains the non-quantized RSSI values and only the RSSI values for the tag

RSSI vectors that need to be localized will be quantized.

Another detail to note is that even in the local thresholds case, the global

rmin and rmax values are common across all pegs and corresponding to the

minimum and maximum recorded RSSI value present in the fingerprint

database. Only the threshold value, r thri differs across pegs.

In the results for this chapter, we will compare the localization error E(x)

and σ(x) across: no quantization, "global 1-bit" quantization, and "local 1-

bit" quantization, each for a number of configurations of the carpark dataset,

as well as for the library dataset. As quantization inherently reduces the

quantity of data available to perform localization, we expect that error and

standard deviation will be larger for the quantized configurations compared

to the results for no quantization. For the same reason, we expect that the lo-

calization error for "local 1-bit" quantization will be lower than that of "global

1-bit" quantization. The hope is that by having a local threshold for each peg,

any differences between pegs – whether they are differences in environment,

configuration, or equipment – will be mitigated.

4.1.1 High-Level Flowchart

Figure 4.1 presents the overall process for searching for quantization thresh-

olds (solid red arrows), as well as their subsequent testing (dashed green ar-

rows). In all cases, the localization scheme chosen is treated as a black box

parameterized by k. There is a distinction of a “training” set, and a “testing”

set. The training set is the set of the fingerprint measurements as well as

1As explained in the related work chapter, the choice of units for representing RSSI value
is of no consequence to the definition of the k neighbors. Here the values used are in units
used during the RSSI collection with the CC1100 chipset for the carpark dataset.
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Figure 4.1: Flowchart of the optimal quantization search and subsequent testing.

the RSSI tag measurements collected under the same conditions as the fin-

gerprint measurements. The latter are used in the process of determining

the optimal quantization boundaries. The testing set is a set of RSSI mea-

surements for tags to be localized that may have been collected under entirely

different conditions. For example, one can train on the NC dataset and test in

the CR dataset. The process outlined in red is involved in the optimal quan-

tization search process, regardless of whether it is GA or, in the next chapter,

Tabu search. Once a good set of quantization boundaries is found, it can be

evaluated using the testing data set following the green path in the flowchart.
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Intuitively, one can think of the separation between training and testing as

an opportunity to expore whether quantization determined from an original

set of fingerprints can be reliably used to localize points in the same space,

after a change in the environment has occured (like the presence of the car in

the case of our carpark dataset).

4.2 Results

4.2.1 Carpark Dataset

The carpark dataset is not large. For instance, in the most complete arrange-

ment, that with no car, there are only 496 data points across 25 positions in

the training set.

As our methodology requires this dataset to also train for the thresholds,

this leads to the situation where it is very difficult to split these 96 data points

between a training and an evaluation dataset. Therefore, where the car ar-

rangement is the same for both the training and testing (i.e., not testing for

a "change in environment"), the same tag data points are also used to both

in the training and in testing, which could produce favorable results; the real

error is likely worse than reported. However, we also examine cases where

the quantization thresholds are tested using a different environment than

the training environment. For example, after obtaining the optimal set of

quantization thresholds for an environment with no car (NC), the resulting

quantization can be tested using the tag measurements in the environment

with a car placed in the middle (CM) of the space. In this fashion, we are able

to capture a change in environment between the training phase and when the

quantized localization system is used. Our results are summarized in Tables

4.3 and 4.4, where the "train" and the "test" refer to the separate training

(optimization) and testing setting. The results in the non-quantized case are

also brought in from Table 4.2.

A general observation is that, compared to no quantization, using global 1-
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k = 5)

NC

NC 1.21 (0.45) 1.11 (0.50) 1.14 (0.64) 1.10 (0.58)
CL 0.99 (0.54) 0.92 (0.53) 0.97 (0.63) 0.91 (0.58)
CM 1.42 (0.91) 1.42 (0.94) 1.66 (1.22) 1.51 (1.08)
CR 1.31 (0.59) 1.20 (0.59) 1.21 (0.62) 1.15 (0.56)

CL

NC 1.14 (0.59) 0.95 (0.58) 0.99 (0.68) 0.93 (0.61)
CL 1.01 (0.62) 0.90 (0.61) 1.01 (0.71) 0.94 (0.72)
CM 1.44 (0.94) 1.36 (0.99) 1.47 (1.13) 1.38 (1.06)
CR 1.46 (0.71) 1.33 (0.71) 1.41 (0.97) 1.31 (0.84)

CM

NC 1.34 (0.85) 1.25 (0.80) 1.18 (0.78) 1.20 (0.77)
CL 1.18 (0.55) 1.15 (0.56) 1.36 (0.69) 1.26 (0.63)
CM 1.54 (0.87) 1.40 (0.83) 1.27 (0.77) 1.31 (0.79)
CR 1.29 (0.80) 1.26 (0.72) 1.30 (0.66) 1.28 (0.63)

CR

NC 1.36 (0.89) 1.25 (0.86) 1.23 (0.75) 1.15 (0.77)
CL 1.37 (0.78) 1.29 (0.84) 1.44 (0.97) 1.34 (0.97)
CM 1.79 (1.17) 1.67 (1.20) 1.57 (1.10) 1.54 (1.16)
CR 1.24 (0.61) 1.14 (0.58) 1.13 (0.53) 1.08 (0.54)

Table 4.2: Localization performance (carpark dataset, no quantization).

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k = 5)

NC

NC 1.25 (0.66) 1.23 (0.66) 1.44 (0.72) 1.36 (0.68)
CL 1.48 (0.63) 1.44 (0.66) 1.67 (0.83) 1.56 (0.74)
CM 1.76 (1.02) 1.74 (1.07) 2.22 (1.37) 2.02 (1.31)
CR 1.67 (0.89) 1.63 (0.89) 1.71 (0.95) 1.63 (0.92)

CL

NC 1.62 (0.73) 1.53 (0.71) 1.74 (1.27) 1.71 (1.21)
CL 1.47 (0.78) 1.41 (0.72) 1.41 (0.70) 1.40 (0.70)
CM 1.96 (1.22) 1.96 (1.27) 2.05 (1.24) 1.99 (1.11)
CR 1.87 (1.07) 1.88 (1.07) 2.12 (1.37) 2.05 (1.29)

CM

NC 1.58 (0.83) 1.71 (0.98) 1.71 (1.07) 1.69 (1.05)
CL 1.72 (0.76) 1.62 (0.84) 1.63 (0.94) 1.63 (0.87)
CM 1.69 (0.65) 1.67 (0.78) 1.58 (1.01) 1.60 (0.92)
CR 1.58 (0.73) 1.62 (0.89) 1.88 (1.07) 1.74 (0.98)

CR

NC 1.43 (0.86) 1.45 (0.88) 1.84 (1.03) 1.65 (0.95)
CL 1.67 (0.88) 1.77 (0.97) 2.08 (1.25) 2.00 (1.11)
CM 1.79 (1.37) 1.84 (1.38) 2.06 (1.26) 1.93 (1.45)
CR 1.49 (0.87) 1.50 (0.88) 1.95 (0.81) 1.66 (0.95)

Table 4.3: Localization performance (carpark dataset, global 1-bit quantization).
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k = 5)

NC

NC 0.96 (0.47) 0.95 (0.48) 0.92 (0.48) 0.84 (0.44)
CL 1.74 (0.76) 1.65 (0.70) 1.57 (0.97) 1.79 (1.28)
CM 1.90 (1.12) 1.68 (1.05) 2.16 (1.28) 1.90 (1.28)
CR 1.79 (0.95) 1.89 (0.90) 1.93 (0.94) 1.84 (0.88)

CL

NC 1.91 (0.93) 1.77 (0.88) 1.54 (1.05) 1.66 (0.88)
CL 0.89 (0.45) 0.92 (0.45) 0.97 (0.52) 1.00 (0.44)
CM 2.00 (1.52) 1.94 (1.34) 1.82 (1.10) 1.77 (1.11)
CR 2.36 (1.93) 1.96 (1.47) 2.39 (1.54) 1.96 (1.34)

CM

NC 1.85 (0.88) 1.70 (1.30) 2.11 (1.50) 1.75 (0.93)
CL 1.82 (1.13) 1.98 (0.84) 1.86 (1.11) 1.01 (1.04)
CM 1.01 (0.70) 1.06 (0.66) 1.16 (0.54) 1.13 (0.52)
CR 2.05 (1.26) 1.76 (0.95) 2.20 (0.93) 2.25 (1.55)

CR

NC 2.04 (1.04) 1.85 (1.11) 2.17 (1.39) 1.75 (0.93)
CL 2.26 (1.05) 1.85 (0.89) 2.06 (1.40) 1.85 (1.08)
CM 1.86 (1.20) 1.80 (1.33) 2.30 (1.69) 2.01 (1.23)
CR 1.00 (0.42) 1.06 (0.49) 0.96 (0.58) 0.99 (0.50)

Table 4.4: Localization performance (carpark dataset, local 1-bit quantization).

bit quantization with global thresholds typically results in slightly increased

errors in localization. For no quantization, while E(x) is rather low (generally

1 to 1.5m dependent on arrangement), σ(x) can be rather high (generally in

the 0.5m to 1.0m range). When transitioning to global 1-bit quantization,

we see an across the board increase for both E(x) and σ(x). Note that the

fitness function 3.1, F, is used to guide the search towards reducing both E(x)

and σ(x). It is therefore entirely possible to decrease E(x) further, but at the

cost of increasing σ(x). The goal of the fitness function is to balance both.

The boundary values for each localization algorithm were found to be almost

identical. Hence the performance differences stem from the individual logic

of each k–NN scheme rather than a different optimal quantization.

Comparing the local 1-bit quantization to the no quantization state, the

picture becomes more complicated. In some cases, E(x) is marginally higher

than without quantization, but in other cases, it can be even lower than with-

out quantization! This trend continues across both E(x) and σ(x).
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When quantization is applied, E(x) generally increases along with σ(x).

However, this is not the case across the board. For example, in the NC/NC

configuration for RADAR, E(x) is actually lower for local 1-bit quantization

than without quantization. This is perhaps due to the non-weighted nature

of RADAR. With k = 4 neighbouring fingerprints, each neighbour is given the

same weight when comparing the average location. However, a particular

neighbour may not be of the same “quality” as its other neighbours and skew

the average away from the actual location. Local quantization may suppress

that effect by injecting peg-dependent information in the quantization pro-

cess. For instance, if a particular peg’s transmissions are stronger or weaker

than another, the quantization boundaries applicable to the individual peg

are accordingly influenced.

Where the training and testing set differ, we see a marked increase in E(x).

The optimal boundaries found are suited for a particular environment, and

once this environment changes, these values are no longer ideal. For instance,

in the case of local 1-bit quantization, in the NC environment, we witness an

increase in E(x) which is close to doubling of the error when we test with

the car to the right (CR). With global 1-bit quantization, the corresponding

(train in NC; test in CR) increase of E(x) is proportionately modest, albeit it

starts from an already inflated E(x). Generally, as the environment changes,

local quantization performs worse than global quantization, and in each case,

localization accuracy in the changed environment is significantly worse than

under no quantization.

We find that quantization, whether global or local 1-bit quantization, re-

moves many of the performance differences between the three localization

schemes. While there might have been very slight differences without quanti-

zation, these differences do not exactly transfer when quantization is applied.

For instance, for the NC/NC configuration, RADAR performs slightly worse

than LEMON does without quantization. However, when either global or lo-

cal 1-bit quatnization is applied, RADAR pulls ahead.
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Figure 4.2: F vs. GA generation (carpark NC dataset, local 1-bit quantization).

Figure 4.2 shows the fitness curve for local 1-bit quantization using EGA

search. Note that the graph starts at generation 1000, as prior to this all four

schemes rapidly rise from a fitness of roughly 0.3 up to near the peak level.

Each curve consists of the mean fitness of 250 runs at the stated generation.

From here, we can see that fitness generally rapidly increases up to around

the 2000 generation mark, but quickly plateaus. The choice of localization

algorithm (RADAR vs LANDMARC) appears to have little effect on this rate.

4.2.2 Library Dataset

The library dataset, containing 105 data points in the fingerprint database

and 419 points to be localized, is for a space that is much more spread out

than the carpark. As seen in Table 3.1, for most locations, transmissions are

received from only one beacon. Only 7% of the RSSI vectors in the dataset

contain transmission strengths from more than two beacons (out of 13 bea-

cons in total). Therefore, almost all the the RSSI vectors in the dataset are
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Scheme E(x) (σ(x))
no quantization global 1-bit local 1-bit

RADAR 1.99 (1.30) 2.08 (1.27) 1.94 (1.21)
LANDMARC 1.89 (1.36) 2.02 (1.17) 1.91 (1.17)

LEMON 1.82 (1.31) 2.04 (1.23) 2.27 (1.63)
LEMON (k = 5) 1.81 (1.26) 1.94 (1.17) 1.86 (1.21)

Table 4.5: Localization performance (library dataset, 1-bit quantization)

incomplete. That is, there are many missing values in each RSSI vector. Each

k-NN algorithm requires a numerically complete RSSI vector, without any

missing values. This is because we need to know the distance in signal space

between any two samples (see (2.2)). Thus, we will need an imputed value for

these missing values. As discussed in Section 3.2.1, we chose a value of -120

dBm to be imputed when no measurement from a peg is present.

A major concern with any particular imputed value is how much sepa-

ration there is between the imputed value and "real" recorded values. As

described in Chapter 3, the RSSI values for the iBeacons ranged between -

88 and -55 dBm (with most of the values in the -80 to -75 dBm range). The

imputed value of -120 dBm is different enough from the real values and that

contributes to lessening the chances that, a peg that is present in one vector

and imputed in another vector, appear to be near each other.

As seen in Table 4.5, the trends are similar to that for the carpark data.

Namely, there is little difference between any of the schemes. More interest-

ingly, there is virtually no additional error caused by quantization. This is

very likely linked to the sparse nature of the dataset. The majority of the

RSSI vectors contain just one “heard” peg, with all the rest being imputed

values and its nearest neighbors are likely to be all that hear also just the

same peg. In other words, the exact RSSI value from the heard peg is of little

consequence.

RADAR, because of k = 4, is often forced to pick vectors with “not-heard”

(imputed) values as part of its k neighbours, despite these vectors expressing
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k = 5)

NC

NC 1.58 (0.89) 1.56 (0.87) 1.74 (1.04) 1.67 (0.90)
CL 1.84 (1.00) 1.80 (1.02) 1.93 (1.27) 1.81 (1.13)
CM 2.15 (1.16) 2.15 (1.20) 2.40 (1.61) 2.30 (1.48)
CR 1.70 (0.92) 1.69 (0.94) 1.96 (1.04) 1.85 (1.03)

CL

NC 1.63 (0.85) 1.56 (0.87) 1.69 (1.09) 1.61 (0.98)
CL 1.70 (0.84) 1.67 (0.83) 1.93 (0.99) 1.80 (0.92)
CM 1.99 (1.07) 2.03 (1.10) 2.41 (1.39) 2 .27 (1.34)
CR 1.88 (1.13) 1.91 (1.14) 2.33 (1.34) 2.12 (1.30)

CM

NC 1.73 (0.76) 1.66 (0.81) 1.75 (1.04) 1.68 (0.90)
CL 1.98 (0.95) 2.01 (0.97) 2.36 (1.23) 2.23 (1.17)
CM 2.30 (1.29) 2.33 (1.33) 2.65 (1.68) 2.55 (1.62)
CR 1.73 (1.11) 1.71 (1.09) 1.88 (0.98) 1.77 (1.01)

CR

NC 1.53 (0.88) 1.53 (0.88) 1.91 (1.06) 1.69 (0.91)
CL 1.90 (0.94) 1.90 (0.90) 2.15 (1.23) 2.01 (1.03)
CM 2.25 (1.24) 2.28 (1.28) 2.57 (1.55) 2.48 (1.46)
CR 1.71 (0.80) 1.72 (0.79) 2.15 (1.19) 1.97 (0.99)

Table 4.6: Localization performance (carpark dataset, linear 1-bit quantization)

locations that are being potentially very far away. Since RADAR does not

use a weighted average when computing location, under quantization, those

distant in physical space but neighbouring in signal space neighbors will be

treated the same as the closer ones.

4.2.3 Fixed Quantization

We also test localization accuracy using the fixed (i.e., not the product of a

search process) localization boundaries described in equations 2.6–2.9. These

equations are called the linear, square-root, cube-root, and log quantization

respectively. For these boundaries, only the minimum and maximum RSSI

values are used to compute these boundaries. However, using fixed bound-

aries allows us a glimpse into quantization without any kind of search for

the best boundaries. Thus, we expect that localization accuracy will be worse

when using fixed boundaries as opposed to boundaries we search for. After

all, these fixed boundaries are included in the search space, so a search can
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k = 5)

NC

NC 1.87 (1.14) 1.79 (1.14) 1.84 (1.11) 1.76 (1.09)
CL 1.41 (0.68) 1.39 (0.67) 1.70 (0.84) 1.60 (0.73)
CM 1.75 (1.03) 1.73 (1.07) 2.22 (1.37) 2.01 (1.32)
CR 1.69 (0.93) 1.66 (0.92) 1.75 (1.01) 1.66 (0.97)

CL

NC 1.78 (1.20) 1.79 (1.19) 1.83 (1.10) 1.84 (1.08)
CL 1.70 (0.79) 1.58 (0.73) 1.47 (0.78) 1.46 (0.74)
CM 1.88 (1.10) 1.87 (1.15) 2.06 (1.45) 2.01 (1.35)
CR 1.97 (0.99) 1.98 (0.99) 2.18 (1.27) 2.11 (1.13)

CM

NC 1.59 (0.88) 1.57 (0.89) 1.64 (1.00) 1.64 (0.97)
CL 1.57 (0.69) 1.57 (0.63) 1.74 (0.87) 1.66 (0.69)
CM 1.78 (0.99) 1.79 (1.01) 1.95 (1.21) 1.93 (1.11)
CR 1.65 (0.96) 1.67 (0.89) 1.80 (0.86) 1.71 (0.80)

CR

NC 2.07 (1.43) 2.00 (1.42) 1.99 (1.41) 1.96 (1.38)
CL 1.79 (0.83) 1.89 (1.94) 2.22 (1.17) 2.13 (1.09)
CM 1.69 (1.33) 1.73 (1.32) 2.17 (1.58) 1.90 (1.39)
CR 1.54 (0.90) 1.54 (0.90) 1.88 (1.19) 1.69 (0.97)

Table 4.7: Localization performance (carpark dataset, 2
p 1-bit quantization)

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k = 5)

NC

NC 1.74 (1.11) 1.70 (1.16) 1.86 (1.36) 1.74 (1.24)
CL 1.55 (0.68) 1.52 (0.71) 1.73 (0.87) 1.603 (0.81)
CM 2.02 (1.18) 2.01 (1.21) 2.27 (1.43) 2.17 (1.38)
CR 2.03 (1.11) 2.00 (1.12) 2.04 (1.11) 1.92 (1.08)

CL

NC 1.85 (1.17) 1.77 (1.23) 1.89 (1.37) 1.87 (1.31)
CL 1.53 (0.79) 1.47 (0.74) 1.57 (0.81) 1.49 (0.77)
CM 2.13 (1.33) 2.14 (1.36) 2.27 (1.68) 2.24 (1.58)
CR 2.20 (1.11) 2.20 (1.11) 2.37 (1.28) 2.26 (1.22)

CM

NC 1.92 (1.44) 1.86 (1.44) 1.89 (1.44) 1.89 (1.40)
CL 1.47 (0.75) 1.48 (0.72) 1.72 (0.86) 1.61 (0.82)
CM 2.07 (1.16) 2.06 (1.18) 2.17 (1.28) 2.16 (1.24)
CR 1.98 (1.03) 1.96 (0.96) 1.99 (1.02) 1.94 (0.95)

CR

NC 1.85 (1.25) 1.83 (1.27) 2.10 (1.42) 1.98 (1.37)
CL 1.67 (0.91) 1.79 (0.98) 2.28 (1.20) 2.11 (1.10)
CM 2.06 (1.43) 2.07 (01.43) 2.30 (1.60) 2.23 (1.46)
CR 1.78 (0.99) 1.82 (0.98) 2.13 (1.26) 1.92 (1.12)

Table 4.8: Localization performance (carpark dataset, 3
p 1-bit quantization)
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k = 5)

NC

NC 1.62 (0.79) 1.52 (0.80) 1.50 (0.81) 1.46 (0.80)
CL 1.74 (0.96) 1.65 (0.98) 1.55 (0.96) 1.58 (0.97)
CM 1.70 (0.89) 1.67 (0.98) 1.92 (1.23) 1.78 (1.09)
CR 1.78 (1.01) 1.74 (1.05) 1.97 (1.09) 1.89 (1.02)

CL

NC 1.75 (0.98) 1.73 (1.05) 1.90 (1.33) 1.80 (1.26)
CL 1.78 (1.10) 1.72 (1.14) 1.80 (1.34) 1.82 (1.31)
CM 1.94 (0.86) 1.87 (0.95) 2.05 (1.37) 2.00 (1.24)
CR 1.96 (1.04) 1.96 (1.09) 2.25 (1.48) 2.14 (1.39)

CM

NC 1.67 (0.82) 1.65 (0.82) 1.73 (0.93) 1.71 (0.89)
CL 1.65 (0.83) 1.62 (0.86) 1.66 (0.97) 1.65 (0.91)
CM 1.75 (0.91) 1.76 (0.97) 1.91 (1.14) 1.84 (1.06)
CR 1.80 (0.92) 1.85 (0.91) 2.13 (1.11) 2.03 (0.98)

CR

NC 1.77 (0.89) 1.84 (1.12) 1.84 (1.03) 1.83 (0.95)
CL 1.99 (1.08) 2.04 (1.31) 1.89 (1.35) 1.89 (1.30)
CM 1.74 (1.04) 1.72 (1.07) 1.91 (1.28) 1.78 (1.08)
CR 1.90 (1.08) 1.97 (1.08) 2.33 (1.22) 2.15 (1.13)

Table 4.9: Localization performance (carpark dataset, log 1-bit quantization)

only improve further what the fixed ones can achieve.

With 1 bit, the equations yield only a single value, which we use as a

global threshold for each of the pegs. We then quantize all data using the

same method, and localize them using our three k-NN localization schemes.

The localization results are summarized in Tables 4.6–4.9. Generally, the

localization accuracy using fixed boundaries with 1 bit is poor, with E(x) being

roughly double what we obtain using optimal global 1-bit thresholds.

4.3 Coverage

After quantization, the number of distinct RSSI vectors is drastically reduced.

In the case of 1-bit quantization, there are only 2n possible vectors for n pegs.

With the carpark dataset with 10 pegs, this means that there are only 512

possible vectors. This corresponds to 512 locations that can be produced as

output of the localization algorithm. Moreover, not all 512 locations are nec-

essarily distinct.
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As noted in Section 2.1.8, the possible localization points fall within the

convex hull of the profiling points, and oftentimes (as in our case) in the con-

vex hull of the pegs. The carpark layout shown in Figure 3.1 has pegs deployed

on the edges but not at the corners, hence there are four triangular areas at

the four corners where no localization is possible using any of the presented

k–NN schemes. The total area of 4(2m2) = 8m2 of those four corner triangles

represents a 8/(8×12)= 8.33% of the total rectangular area. Hence, the k–NN

schemes can, at most, cover 100−8.33= 91.67≃ 92% of the rectangular area.

The coverage diagrams in Figures 4.3, 4.4, 4.5 and 4.6 plot these localiza-

tion across the area for global (Figures 4.3 and 4.4) and local (Figures 4.5 and

4.6) 1-bit quantization. Furthermore Figures 4.3 and 4.5 show the quantiza-

tion for training without a car present while Figures 4.4 and 4.6 show results

with a car placed to the left part of the area. Placements other than in the left

(so, right and center) produced similar results to those of the left placement

shown in Figures 4.4 and 4.6. All Figures preserve the scale of the space used

in the carpark dataset, which is 8 meters by 12 meters in size.

One way to interpret the coverage diagrams is to appreciate how complete

is the coverage of the area given the quantization that has been performed.

Quantifying the coverage of an area requires that we put some “weight” to the

points (as points have a measure of zero). To this end, we approximate a lo-

calized point by a square of approximately 27×27mm2 area (equivalent to the

square size for the points in the coverage figures). This allows us to describe

the overall coverage for a given scheme and keep it equivalent to the visual

representation we have chosen. RADAR turns out to have a very uniform

and sparse coverage. The 1-bit quantization schemes appear to be sparse in

their coverage, as one would expect. Hence, numerically, their coverage as a

percentage of the overall area is unimpressive. Even then, the average cov-

erage of RADAR is far inferior at no more than 0.17% compared to all the

other schemes that achieve a coverage between a narrow range of 0.74 and

0.79% (a more than four-fold increase in coverage). Nevertheless, the cover-
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Scheme E(x) (σ(x))
none linear global local

RADAR 1.21 (0.45) 1.58 (0.89) 1.25 (0.66) 0.96 (0.47)
LANDMARC 1.11 (0.50) 1.56 (0.87) 1.23 (0.66) 0.95 (0.48)

LEMON 1.14 (0.64) 1.74 (1.04) 1.44 (0.72) 0.92 (0.48)
LEMON (k = 5) 1.10 (0.58) 1.67 (0.90) 1.38 (0.68) 0.84 (0.44)

Table 4.10: 1-bit quantization performance (carpark dataset, train:NC, test:NC).

age statistics become even more distinct when we present in the next chapter

2-bit quantization schemes.

Generally, RADAR has the poorest coverage. As the neighbours are used in

the localization calculation in an unweighted form, many of these vectors will

share the same location, as shown in Figure 4.3a. In contrast, the weighted-

average algorithms carry a much higher range of points, as seen in Figure

4.3d, which shows LEMON with k = 5 and a 1-bit global localization scheme.

Here, more distant neighbours are weighted less in the localization calcula-

tion, so a more spread out set of locations become possible as output of the

localization.

Figure 4.5 shows the coverage of a 1-bit local quantization scheme does not

differ notably from that with 1-bit global shown in Figure 4.3. More striking

is the difference when the training was limited because of the presence of the

obstacle (the car in the left) shown (for global) in Figure 4.4 and (for local)

in Figure 4.6. The obstacle’s presence impacts the measurements collected,

especially around it, and hence, the post-quantization coverage lack dense

points in the area where the obstacle is present. While LANDMARC seems to

fare better when local quantization is used, there appears to be the opposite

impact on LEMON which seems to further develop artifacts such co-linear

(and hence less random) localized points as shown at the top areas of Figures

4.6c and 4.6d.
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Scheme E(x) (σ(x))
none linear global local

RADAR 1.31 (0.59) 1.70 (0.92) 1.67 (0.89) 1.79 (0.95)
LANDMARC 1.20 (0.59) 1.69 (0.94) 1.63 (0.89) 1.89 (0.90)

LEMON 1.21 (0.62) 1.96 (1.04) 1.71 (0.95) 1.93 (0.94)
LEMON (k = 5) 1.15 (0.56) 1.85 (1.03) 1.63 (0.92) 1.84 (0.88)

Table 4.11: 1-bit quantization performance (carpark dataset, train:NC, test:CR).

4.4 Conclusions

In both the carpark and the library dataset, we see localization error decrease

from localization using full resolution data to localization using 1-bit quan-

tized values. However, the decrease in accuracy is often minimal, particularly

with the library dataset. It might be possible to improve on this by employing

more than 1 bit for the quantized representation – a task we pursue in the

next Chapter.

Since the library dataset involves much more sparse data, and in many

cases involves just one received peg signal for a particular data point, there

is little information to be lost in quantization. Thus, at least when data is

sparse, quantizing down to the bare minimum, a single threshold globally

turning each beacon into an on-off sensor seems adequate. This conclusion

does not apply to the car park dataset in its entirety. Here, the error can

increase substantially from no quantization to global 1-bit quantization since

there is high coverage of the region of interest by the pegs.

With the carpark dataset, we can also see that localization accuracy is

much better when using optimal quantization boundaries rather than fixed

boundaries. This difference is more pronounced for the datasets involving

vehicles.

By way of summary of this chapter, consider Tables 4.10 and 4.11. Table

4.10 summarizes the results where NC is used for both training and testing,

and Table 4.11 does the same for the case where NC is used for training and

CR is used for testing. The fixed boundary scheme used in both cases is the

linear quantizer, which separates the RSSI space into 2 equal regions.
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(a) RADAR

(b) LANDMARC
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(c) LEMON

(d) LEMON (k = 5)

Figure 4.3: Coverage for optimal global 1-bit quantization (carpark NC dataset).
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(a) RADAR

(b) LANDMARC
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(c) LEMON

(d) LEMON (k = 5)

Figure 4.4: Coverage for optimal global 1-bit quantization (carpark CL dataset).
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(a) RADAR

(b) LANDMARC
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(c) LEMON

(d) LEMON (k = 5)

Figure 4.5: Coverage for optimal local 1-bit quantization (carpark NC dataset).
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(a) RADAR

(b) LANDMARC
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(c) LEMON

(d) LEMON (k = 5)

Figure 4.6: Coverage for optimal local 1-bit quantization (carpark CL dataset).
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Chapter 5

Multiple Bit Quantization

From the results in Chapter 4, we can conclude that 1-bit quantization offers

a possibly acceptably tradeoff for the purpose of localization, especially if the

quantization is performed in a per-peg (“local”) basis. There are shortcom-

ings evident when the quantized data derived from training in a particular

environment are used in a different/modified environment. By expanding the

number of bits for the quantization, we wish to determine if there is a further

improvement insofar the localization accuracy is concerned, and what could

be deemed as an “adequate” number of bits to be, hopefully, as good in terms

of localization performance as without quantization. Furthermore, the com-

bination of more quantization bits might mitigate the shortcomings when the

testing environment is different from the training environment.

5.1 Methodology

While an exhaustive search algorithm is sufficient for 1-bit global quantiza-

tion, the search space quickly explodes when more bits are used. Assume

there are N possible threshold values for any particular peg. Then, while the

search space involves just N values for 1-bit global quantization and nN val-

ues with n pegs, that grows to N(N−1)/2 values for 2-bit global quantization,

and n ·N(N −1)/2 values for 2-bit local quantization. For b bits, global quan-

tization involves a search space of
∏b−1

i=0 (N − i) ·1/b!, with local quantization
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Figure 5.1: F vs. Tabu iteration (carpark NC dataset, local 2-bit quantization).

requiring a search space of n/b! ·∏b−1
i=0 (N − i). We expect that with a larger

number of bits, higher localization accuracy can be achieved, but the tradeoff

here is having to search through an increasing number of threshold combina-

tions. At some point, exhaustive search will no longer find a solution in an

acceptable timeframe, so more sophisticated search techniques are required.

As described in Chapter 2, we use Tabu search as expressed in the pseu-

docode of Algorithm 1 and 2 with MAX_NEIGHBOURS set to 2000. In all

other respects the methodology followed is the same as in Chapter 4, with ob-

vious generalization to have more quantization bits, and corresponding rep-

resentative values. In every case for 2-bit quantization we use a short-term

Tabu list of 500 entries, with a long_term_threshold value of 250, and 10000

runs at minimum. In every case for 3-bit quantization we use a short-term

Tabu list of 500 entries, with a long_term_threshold value of 250, and 20000

runs at minimum. In every case of 4-bit quantization, we use a Tabu list

of 1000 solutions, we create 5000 neighbours each iteration, and we let the
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search run for 40000 iterations at minimum.

Evidence to the effectiveness of Tabu search can be seen in Figure 5.1

showing the increase in fitness with increasing Tabu search iterations. Note

that in Figure 5.1 the first 1000 iterations of Tabu search have been removed

to better compare the improvement of later iterations. Each line represents

the mean fitness of 1000 runs of Tabu search.

5.2 Results

5.2.1 Carpark Dataset

For 2-, 3-, and 4-bit quantization performance is shown in Tables 5.1-5.6. A

first observation is that, in general, for all three k-NN localization schemes,

localization performance improves with the number of bits. The improvement

possible is reduced with the more bits used, i.e., a case of diminishing re-

turns. Also, while this improvement is evident for global quantization across

all combination of training and testing combinations, the improvement for lo-

cal quantization is conditioned on whether testing was performed in the same

environment with training. In short, our first main observation is that local

quantization strategies may be over-specializing the quantization boundaries

to the point that the “overfit” for the training data set, making them problem-

atic when subjected to a different testing set.

While a worse performance for testing different than when one trains is

evident in global quantization as well, it nevertheless improves with the num-

ber of quantization bits. The same cannot be said for local quantization. For

example for LEMON with k = 5 (a generally best performing scheme) the

CR/CM (train/test) pair for local quantization moves from 1.70 (1.19) for 2-

bit to 1.89 (1.41) for 4-bit. The same is not happening for global quantization

where we move from 2.16 (1.36) for 2-bit to 1.78 (1.31). Also while LEMON

(k = 5) manages to produce the best result of 0.29 (0.22) for CL/CL and 4-bits,

for testing under training it does not have any notable advantage over the

other schemes, where even RADAR is sometimes a competitive option!
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 0.94 (0.52) 0.91 (0.46) 0.94 (0.47) 0.94 (0.44)
CL 1.44 (0.58) 1.29 (0.58) 1.17 (0.67) 1.20 (0.63)
CM 1.39 (0.96) 1.33 (0.90) 1.76 (1.14) 1.69 (1.11)
CR 1.23 (0.60) 1.14 (0.61) 1.25 (0.64) 1.20 (0.59)

CL

NC 1.31 (0.62) 1.14 (0.47) 1.46 (0.99) 1.13 (0.58)
CL 0.97 (0.52) 0.95 (0.44) 1.05 (0.57) 1.01 (0.53)
CM 1.55 (0.97) 1.55 (1.07) 1.67 (1.30) 1.53 (1.20)
CR 1.57 (0.87) 1.49 (0.89) 1.54 (1.16) 1.56 (1.03)

CM

NC 1.38 (0.87) 1.37 (0.83) 1.43 (0.70) 1.38 (0.79)
CL 1.40 (0.89) 1.39 (0.85) 1.43 (0.85) 1.38 (0.83)
CM 1.31 (0.65) 1.29 (0.63) 1.17 (0.64) 1.23 (0.65)
CR 1.39 (0.76) 1.39 (0.73) 1.58 (0.70) 1.47 (0.68)

CR

NC 1.46 (0.82) 1.39 (0.83) 1.49 (0.84) 1.38 (0.79)
CL 1.66 (0.91) 1.60 (0.92) 1.67 (0.86) 1.61 (1.01)
CM 2.08 (1.20) 2.05 (1.24) 2.01 (1.46) 2.16 (1.36)
CR 1.14 (0.59) 1.08 (0.55) 1.00 (0.44) 1.05 (0.45)

Table 5.1: Localization performance (carpark dataset, global 2-bit quantization).

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 0.60 (0.42) 0.51 (0.28) 0.46 (0.39) 0.42 (0.34)
CL 1.32 (0.49) 1.44 (0.78) 1.18 (0.95) 1.27 (0.81)
CM 1.58 (0.93) 1.61 (1.00) 1.77 (1.17) 1.47 (1.13)
CR 1.26 (0.75) 1.42 (0.87) 1.43 (0.82) 1.29 (0.62)

CL

NC 1.39 (0.63) 1.25 (0.75) 1.33 (0.78) 1.22 (0.70)
CL 0.64 (0.38) 1.57 (0.27) 0.43 (0.22) 1.46 (0.23)
CM 1.65 (1.09) 1.83 (1.23) 1.73 (1.07) 1.58 (1.07)
CR 1.59 (0.88) 1.62 (0.75) 1.79 (1.20) 1.44 (0.77)

CM

NC 1.58 (0.73) 1.17 (0.66) 1.46 (0.98) 1.28 (0.66)
CL 1.43 (0.54) 1.40 (0.82) 1.59 (0.81) 1.53 (0.66)
CM 0.82 (0.54) 0.79 (0.48) 0.74 (0.43) 0.69 (0.43)
CR 1.61 (0.95) 1.29 (0.64) 1.33 (0.96) 1.33 (0.62)

CR

NC 1.50 (0.73) 1.47 (0.86) 1.81 (1.35) 1.62 (0.94)
CL 1.59 (0.96) 1.62 (0.83) 1.91 (1.26) 1.76 (0.84)
CM 1.64 (1.09) 1.87 (1.34) 1.89 (1.39) 1.70 (1.19)
CR 0.59 (0.40) 0.54 (0.34) 0.44 (0.25) 0.46 (0.27)

Table 5.2: Localization performance (carpark dataset, local 2-bit quantization).
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 0.80 (0.44) 0.76 (0.41) 0.80 (0.40) 0.76 (0.39)
CL 1.12 (0.49) 1.05 (0.52) 1.08 (0.58) 1.05 (0.57)
CM 1.40 (0.98) 1.31 (0.93) 1.61 (1.15) 1.54 (1.12)
CR 1.17 (0.48) 1.06 (0.52) 1.17 (0.63) 1.09 (0.58)

CL

NC 1.04 (0.56) 1.01 (0.55) 0.98 (0.71) 0.96 (0.63)
CL 0.86 (0.40) 0.76 (0.39) 0.79 (0.34) 0.77 (0.34)
CM 1.47 (0.96) 1.47 (0.99) 1.37 (1.05) 1.43 (1.06)
CR 1.19 (0.61) 1.28 (0.64) 1.35 (0.80) 1.31 (0.78)

CM

NC 1.12 (0.60) 1.09 (0.61) 1.15 (0.74) 1.03 (0.65)
CL 1.21 (0.67) 1.21 (0.75) 1.40 (0.82) 1.24 (0.77)
CM 1.14 (0.62) 1.07 (0.61) 1.06 (0.54) 1.02 (0.57)
CR 1.24 (0.55) 1.14 (0.54) 1.21 (0.64) 1.19 (0.57)

CR

NC 1.33 (0.82) 1.26 (0.86) 1.27 (0.77) 1.19 (0.79)
CL 1.29 (0.74) 1.29 (0.77) 1.44 (0.95) 1.38 (0.91)
CM 1.70 (1.10) 1.63 (1.11) 1.89 (1.33) 1.80 (1.26)
CR 0.91 (0.36) 0.90 (0.36) 0.86 (0.39) 0.87 (0.40)

Table 5.3: Localization performance (carpark dataset, global 3-bit quantization).

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 0.56 (0.42) 0.46 (0.31) 0.44 (0.39) 0.41 (0.31)
CL 1.25 (0.68) 0.99 (0.55) 1.21 (0.69) 1.03 (0.68)
CM 1.64 (1.02) 1.42 (0.81) 1.58 (1.20) 1.44 (1.07)
CR 1.15 (0.49) 1.12 (0.60) 1.32 (0.70) 1.20 (0.59)

CL

NC 1.20 (0.55) 1.17 (0.64) 1.26 (0.68) 1.14 (0.75)
CL 0.59 (0.39) 0.42 (0.27) 0.32 (0.26) 0.31 (0.23)
CM 1.53 (1.08) 1.60 (1.10) 1.76 (1.21) 1.56 (1.05)
CR 1.49 (0.76) 1.36 (0.80) 1.57 (0.99) 1.37 (0.55)

CM

NC 1.26 (0.70) 1.28 (0.61) 1.25 (0.81) 1.23 (0.73)
CL 1.36 (0.72) 1.41 (0.64) 1.51 (0.77) 1.44 (0.70)
CM 0.86 (0.53) 0.71 (0.46) 0.60 (0.44) 0.61 (0.44)
CR 1.27 (0.63) 1.23 (0.64) 1.30 (0.80) 1.21 (0.67)

CR

NC 1.65 (0.94) 1.15 (0.71) 1.23 (0.82) 1.40 (0.87)
CL 1.42 (0.85) 1.47 (0.85) 1.60 (1.11) 1.64 (1.10)
CM 1.98 (1.23) 1.75 (1.14) 1.80 (1.60) 1.99 (1.37)
CR 0.62 (0.38) 0.48 (0.33) 0.34 (0.26) 0.38 (0.25)

Table 5.4: Localization performance (carpark dataset, local 3-bit quantization).
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 0.78 (0.43) 0.73 (0.42) 0.79 (0.38) 0.74 (0.40)
CL 1.03 (0.55) 1.02 (0.50) 1.06 (0.75) 1.00 (0.50)
CM 1.38 (0.84) 1.25 (0.85) 1.52 (1.02) 1.47 (1.08)
CR 1.23 (0.54) 1.04 (0.57) 1.18 (0.59) 1.03 (0.55)

CL

NC 1.07 (0.56) 0.83 (0.59) 0.99 (0.69) 0.98 (0.67)
CL 0.81 (0.42) 0.72 (0.42) 0.77 (0.34) 0.75 (0.36)
CM 1.50 (1.00) 1.40 (1.04) 1.37 (1.04) 1.40 (1.04)
CR 1.28 (0.63) 1.22 (0.59) 1.37 (0.80) 1.29 (0.76)

CM

NC 1.15 (0.62) 1.12 (0.61) 1.17 (0.72) 1.05 (0.65)
CL 1.24 (0.69) 1.28 (0.73) 1.38 (0.80) 1.29 (0.77)
CM 1.14 (0.65) 1.06 (0.65) 1.02 (0.55) 1.00 (0.60)
CR 1.23 (0.55) 1.20 (0.51) 1.20 (0.61) 1.22 (0.55)

CR

NC 1.36 (0.88) 1.28 (0.92) 1.28 (0.84) 1.15 (0.74)
CL 1.16 (0.67) 1.11 (0.71) 1.43 (0.95) 1.26 (0.80)
CM 1.78 (1.11) 1.68 (1.15) 1.86 (1.30) 1.78 (1.31)
CR 0.87 (0.37) 0.83 (0.35) 0.83 (0.39) 0.84 (0.42)

Table 5.5: Localization performance (carpark dataset, global 4-bit quantization).

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 0.63 (0.41) 0.45 (0.34) 0.38 (0.43) 0.40 (0.33)
CL 1.08 (0.52) 0.97 (0.58) 1.35 (0.87) 1.00 (0.53)
CM 1.71 (0.80) 1.45 (0.94) 1.59 (1.25) 1.40 (1.01)
CR 1.12 (0.57) 1.22 (0.61) 1.26 (0.64) 1.11 (0.57)

CL

NC 1.20 (0.52) 0.99 (0.68) 1.04 (0.67) 1.09 (0.69)
CL 0.70 (0.48) 0.41 (0.27) 0.38 (0.22) 0.29 (0.22)
CM 1.54 (1.02) 1.54 (1.09) 1.53 (1.13) 1.52 (1.14)
CR 1.31 (0.63) 1.37 (0.81) 1.31 (0.67) 1.21 (0.53)

CM

NC 1.14 (0.69) 1.20 (0.82) 1.17 (0.79) 1.12 (0.67)
CL 1.34 (0.64) 1.37 (0.72) 1.43 (0.73) 1.35 (0.64)
CM 0.98 (0.58) 0.80 (0.54) 0.54 (0.43) 0.62 (0.47)
CR 1.27 (0.82) 1.34 (0.73) 1.26 (0.66) 1.09 (0.55)

CR

NC 1.32 (0.89) 1.16 (0.91) 1.18 (0.79) 1.13 (0.74)
CL 1.38 (0.76) 1.42 (0.96) 1.47 (1.02) 1.56 (1.05)
CM 1.80 (1.20) 1.83 (1.26) 1.64 (1.25) 1.89 (1.41)
CR 0.69 (0.38) 0.48 (0.36) 0.40 (0.31) 0.39 (0.28)

Table 5.6: Localization performance (carpark dataset, local 4-bit quantization).
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Another significant result is that when we compare the results here with

the case of no quantization (Table 4.2), we note that with increasing num-

ber of bits for quantization, multi-bit quantization can actually outperform

localization without quantization! Again this observation is conditional on

whether testing and training is on the same environment – yet when they

are different there seems to be notable advantage to having full resolution

measurements either. The improvement over full resolution RSSI measure-

ments may be partly explained in the “binning” done by quantization, and the

corresponding representative values of the bins, that remove minor fluctua-

tions in RSSI values, acting as a “filter” to noise present in the full resolution

measurements.

A less apparent trend is that as we move to 3-bit quantization, there is

a modest improvement compared to 2-bits, especially with the weighted k-

NN algorithms LANDMARC and LEMON. As with local 2-bit quantization,

LANDMARC and LEMON also better take advantage of the higher number

of bits compared to RADAR. Moving to 4-bits does not notably enhance this

difference, suggesting again a point of diminishing returns.

Given the above observations, one could start questioning whether it is

worth to derive specific quantization boundaries that fit a particular dataset.

To this end, we will see next how the fixed quantization boundaries fare.

5.2.2 Fixed Quantization

As in the 1-bit scenario, we also test localization accuracy using the fixed

quantization boundaries described in equations 2.6 – 2.9. For the sake of

completeness we provide the fixed quantization performance for all four fixed

quantizers (linear, square-root, cubic-root, log) and for 2-, 3-, and 4- bit quan-

tization. The results are shown in Tables 5.7–5.18. As a final observation, we

again find that the linear quantizer often results in good performance.

A general observation is that, even with increasing bits, the localization

performance may not demonstrate a trends of improving, and indeed it can

76



train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.13 (0.52) 1.05 (0.51) 1.03 (0.62) 1.04 (0.51)
CL 1.27 (0.64) 1.21 (0.63) 1.34 (0.92) 1.25 (0.78)
CM 1.69 (1.08) 1.69 (1.11) 1.78 (1.34) 1.74 (1.25)
CR 1.55 (0.66) 1.50 (0.61) 1.55 (0.66) 1.50 (0.58)

CL

NC 1.18 (0.52) 1.02 (0.59) 1.15 (0.75) 1.07 (0.69)
CL 1.34 (0.80) 1.28 (0.88) 1.56 (1.10) 1.43 (1.00)
CM 1.81 (0.97) 1.75 (0.99) 1.69 (1.08) 1.71 (1.04)
CR 1.58 (0.70) 1.54 (0.78) 1.76 (1.23) 1.60 (1.06)

CM

NC 1.27 (0.58) 1.16 (0.66) 1.31 (0.81) 1.17 (0.73)
CL 1.59 (1.00) 1.54 (1.03) 1.62 (1.09) 1.52 (1.06)
CM 1.69 (1.02) 1.62 (1.07) 1.62 (1.22) 1.61 (1.20)
CR 1.49 (0.82) 1.46 (0.81) 1.59 (0.84) 1.49 (0.77)

CR

NC 1.39 (0.74) 1.32 (0.74) 1.35 (0.80) 1.29 (0.79)
CL 1.33 (0.81) 1.30 (0.77) 1.43 (0.84) 1.32 (0.81)
CM 1.86 (1.10) 1.81 (1.15) 2.09 (1.73) 1.95 (1.52)
CR 1.44 (0.67) 1.39 (1.60) 1.32 (0.62) 1.31 (0.54)

Table 5.7: Localization performance (carpark dataset, linear 2-bit quantization)

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.25 (0.71) 1.21 (0.74) 1.40 (0.88) 1.29 (0.83)
CL 1.23 (0.70) 1.18 (0.67) 1.30 (0.84) 1.20 (0.77)
CM 1.73 (1.10) 1.69 (1.11) 1.94 (1.39) 1.76 (1.21)
CR 1.47 (0.89) 1.41 (0.89) 1.52 (0.95) 1.41 (0.87)

CL

NC 1.50 (0.70) 1.40 (0.75) 1.43 (0.91) 1.40 (0.88)
CL 1.35 (0.99) 1.31 (0.97) 1.36 (0.92) 1.28 (0.93)
CM 1.79 (1.14) 1.74 (1.14) 1.76 (1.17) 1.72 (1.14)
CR 1.52 (0.89) 1.47 (0.86) 1.63 (1.08) 1.48 (0.96)

CM

NC 1.51 (0.82) 1.44 (0.75) 1.31 (0.72) 1.35 (0.70)
CL 1.34 (0.65) 1.29 (0.61) 1.45 (0.74) 1.35 (0.64)
CM 1.70 (0.94) 1.59 (0.92) 1.56 (0.94) 1.53 (0.96)
CR 1.28 (0.70) 1.28 (0.67) 1.56 (0.76) 1.46 (0.67)

CR

NC 1.38 (0.81) 1.29 (0.83) 1.35 (0.90) 1.26 (0.88)
CL 1.51 (0.89) 1.40 (0.81) 1.64 (1.05) 1.39 (0.83)
CM 1.99 (1.17) 1.92 (1.17) 1.78 (1.06) 1.80 (1.09)
CR 1.57 (0.78) 1.47 (0.78) 1.35 (0.91) 1.32 (0.85)

Table 5.8: Localization performance (carpark dataset, 2
p 2-bit quantization)
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.54 (0.99) 1.48 (0.96) 1.53 (1.03) 1.48 (0.99)
CL 1.32 (0.72) 1.26 (0.67) 1.19 (0.67) 1.21 (0.63)
CM 1.71 (0.97) 1.65 (1.00) 1.74 (1.16) 1.61 (1.09)
CR 1.29 (0.63) 1.24 (0.58) 1.40 (0.68) 1.28 (0.61)

CL

NC 1.50 (0.96) 1.36 (1.02) 1.35 (0.99) 1.30 (1.03)
CL 1.23 (0.69) 1.20 (0.72) 1.36 (0.89) 1.30 (0.82)
CM 1.71 (0.87) 1.65 (0.90) 1.69 (1.13) 1.56 (1.02)
CR 1.42 (0.56) 1.36 (0.54) 1.53 (0.81) 1.42 (0.72)

CM

NC 1.38 (0.99) 1.26 (0.96) 0.24 (0.86) 1.18 (0.91)
CL 1.61 (0.64) 1.54 (0.65) 1.58 (0.79) 1.56 (0.75)
CM 1.53 (0.73) 1.46 (0.75) 1.48 (0.92) 1.50 (0.89)
CR 1.26 (0.58) 1.22 (0.53) 0.40 (0.76) 0.34 (0.62)

CR

NC 1.41 (0.95) 0.36 (0.97) 1.44 (1.12) 1.38 (1.08)
CL 1.58 (0.81) 1.54 (0.79) 1.60 (1.13) 1.54 (0.98)
CM 1.70 (1.02) 1.64 (1.03) 1.69 (1.04) 1.65 (1.00)
CR 1.61 (0.73) 1.50 (0.72) 1.40 (0.87) 1.42 (0.76)

Table 5.9: Localization performance (carpark dataset, 3
p 2-bit quantization)

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.52 (0.87) 1.45 (0.89) 1.51 (0.96) 1.43 (0.94)
CL 1.48 (0.72) 1.44 (0.73) 1.36 (0.78) 1.37 (0.72)
CM 1.90 (0.19) 1.88 (1.22) 1.91 (1.38) 1.87 (1.31)
CR 1.60 (0.86) 1.49 (0.90) 1.54 (1.20) 1.42 (0.92)

CL

NC 1.58 (0.90) 1.48 (0.97) 1.54 (1.11) 1.48 (1.05)
CL 1.46 (0.97) 0.39 (0.94) 1.51 (0.91) 1.41 (0.89)
CM 1.77 (1.07) 1.74 (1.08) 1.78 (1.25) 1.71 (1.17)
CR 1.68 (0.89) 1.62 (0.88) 1.60 (1.03) 1.58 (0.98)

CM

NC 1.67 (1.01) 1.60 (0.99) 1.50 (0.85) 1.54 (0.87)
CL 1.56 (0.58) 1.53 (0.58) 1.60 (0.73) 1.57 (0.68)
CM 1.72 (0.81) 1.62 (0.77) 1.52 (0.88) 1.52 (0.82)
CR 1.49 (0.71) 1.45 (0.72) 1.62 (0.84) 1.52 (0.73)

CR

NC 1.64 (0.83) 1.57 (0.88) 1.67 (0.95) 1.58 (0.94)
CL 1.49 (0.89) 1.45 (0.86) 1.60 (1.01) 1.48 (0.96)
CM 2.09 (1.27) 2.07 (1.26) 2.09 (1.34) 2.10 (1.27)
CR 1.54 (0.76) 1.47 (0.70) 1.42 (0.83) 1.40 (0.76)

Table 5.10: Localization performance (carpark dataset, log 2-bit quantization)
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.14 (0.64) 1.09 (0.60) 1.13 (0.61) 1.12 (0.56)
CL 1.08 (0.57) 1.00 (0.44) 1.10 (0.62) 1.04 (0.52)
CM 1.52 (0.81) 1.52 (0.85) 1.76 (1.21) 1.61 (1.05)
CR 1.33 (0.59) 1.26 (0.55) 1.34 (0.58) 1.28 (0.58)

CL

NC 1.15 (0.59) 0.99 (0.64) 1.03 (0.67) 0.98 (0.62)
CL 1.09 (0.65) 0.99 (0.63) 1.11 (0.64) 0.97 (0.63)
CM 1.51 (0.93) 1.41 (0.97) 1.49 (1.04) 1.43 (0.98)
CR 1.28 (0.59) 1.20 (0.66) 1.37 (0.91) 1.28 (0.79)

CM

NC 1.19 (0.74) 1.09 (0.71) 1.13 (0.76) 1.09 (0.77)
CL 1.16 (0.67) 1.11 (0.65) 1.42 (0.77) 1.26 (0.69)
CM 1.50 (0.82) 1.38 (0.84) 1.28 (0.83) 1.31 (0.82)
CR 1.26 (0.73) 1.22 (0.70) 1.39 (0.83) 1.24 (0.70)

CR

NC 1.27 (0.82) 1.19 (0.75) 1.19 (0.60) 1.14 (0.62)
CL 1.20 (0.76) 1.21 (0.80) 1.49 (1.09) 1.38 (0.98)
CM 1.83 (0.95) 1.73 (0.99) 1.70 (1.10) 1.63 (1.06)
CR 1.32 (0.66) 1.21 (0.62) 1.07 (0.55) 1.09 (0.57)

Table 5.11: Localization performance (carpark dataset, linear 3-bit quantization)

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.21 (0.69) 1.13 (0.63) 1.34 (0.67) 1.15 (0.65)
CL 1.28 (0.61) 1.29 (0.77) 1.26 (1.07) 1.24 (0.90)
CM 1.44 (0.94) 1.40 (0.96) 1.53 (1.08) 1.42 (1.03)
CR 1.24 (0.57) 1.19 (0.58) 1.41 (0.78) 1.30 (0.66)

CL

NC 1.17 (0.46) 1.04 (0.49) 1.07 (0.63) 1.02 (0.59)
CL 1.23 (0.79) 1.15 (0.82) 1.31 (0.84) 1.21 (0.78)
CM 1.58 (1.02) 1.48 (1.05) 1.53 (1.24) 1.44 (1.09)
CR 1.55 (0.74) 1.49 (0.83) 1.64 (1.21) 1.58 (1.07)

CM

NC 1.37 (0.70) 1.31 (0.67) 1.37 (0.71) 1.30 (0.70)
CL 1.46 (0.97) 1.36 (0.98) 1.50 (0.97) 1.41 (1.00)
CM 1.52 (0.88) 1.42 (0.87) 1.31 (0.83) 1.34 (0.84)
CR 1.44 (0.87) 1.42 (0.78) 1.46 (0.81) 1.41 (0.76)

CR

NC 1.62 (0.92) 1.53 (0.95) 1.46 (1.08) 1.45 (1.04)
CL 1.67 (0.93) 1.54 (1.01) 1.63 (1.13) 1.46 (1.05)
CM 1.82 (1.09) 1.71 (1.10) 1.67 (1.22) 1.66 (1.15)
CR 1.17 (0.60) 1.09 (0.58) 1.17 (0.68) 1.09 (0.59)

Table 5.12: Localization performance (carpark dataset, 2
p 3-bit quantization)
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.15 (0.39) 1.08 (0.49) 1.13 (0.74) 1.11 (0.69)
CL 1.07 (0.56) 1.05 (0.53) 1.13 (0.70) 1.03 (0.59)
CM 1.46 (0.85) 1.45 (0.89) 1.54 (1.09) 1.53 (1.03)
CR 1.41 (0.87) 1.31 (0.83) 1.28 (0.90) 1.29 (0.87)

CL

NC 1.21 (0.72) 1.02 (0.74) 1.18 (0.79) 1.00 (0.78)
CL 1.15 (0.59) 1.04 (0.63) 1.13 (0.74) 1.06 (0.69)
CM 1.42 (0.95) 1.35 (0.98) 1.47 (1.08) 1.39 (1.06)
CR 1.42 (0.75) 1.31 (0.79) 1.48 (1.00) 1.38 (0.98)

CM

NC 1.39 (0.76) 1.29 (0.73) 1.32 (0.92) 1.32 (0.83)
CL 1.41 (0.74) 1.31 (0.67) 1.35 (0.66) 1.26 (0.69)
CM 1.61 (0.74) 1.54 (1.72) 1.52 (0.90) 1.50 (0.82)
CR 1.32 (0.84) 1.29 (0.77) 1.31 (0.76) 1.31 (0.74)

CR

NC 1.24 (0.91) 1.16 (0.88) 1.22 (0.73) 1.08 (0.82)
CL 1.31 (0.76) 1.28 (0.79) 1.50 (1.05) 1.38 (0.99)
CM 1.60 (1.08) 1.57 (1.11) 1.74 (1.38) 1.62 (1.24)
CR 1.26 (0.54) 1.17 (0.52) 1.17 (0.54) 1.12 (0.52)

Table 5.13: Localization performance (carpark dataset, 3
p 3-bit quantization)

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.24 (0.49) 1.17 (0.59) 1.26 (0.72) 1.20 (0.65)
CL 1.17 (0.57) 1.02 (0.48) 1.05 (0.59) 0.97 (0.55)
CM 1.44 (0.86) 1.43 (0.91) 1.61 (1.16) 1.54 (1.08)
CR 1.28 (0.76) 1.17 (0.74) 1.21 (0.73) 1.11 (0.71)

CL

NC 1.20 (0.67) 1.05 (0.68) 1.24 (0.80) 1.11 (0.77)
CL 1.09 (0.48) 1.02 (0.48) 1.19 (0.73) 1.05 (0.57)
CM 1.48 (0.95) 1.41 (0.99) 1.63 (1.20) 1.43 (1.08)
CR 1.51 (1.78) 1.38 (0.76) 1.48 (0.85) 1.36 (0.73)

CM

NC 1.33 (0.73) 1.27 (0.68) 1.25 (0.85) 1.25 (0.76)
CL 1.40 (0.58) 1.36 (0.60) 1.52 (0.68) 1.37 (0.60)
CM 1.62 (0.73) 1.56 (0.72) 1.51 (0.81) 1.51 (0.73)
CR 0.35 (0.77) 1.26 (0.73) 1.32 (0.74) 1.25 (0.70)

CR

NC 1.25 (0.87) 1.18 (0.87) 1.21 (0.78) 1.15 (0.81)
CL 1.43 (0.85) 1.39 (0.86) 1.58 (1.08) 1.46 (1.00)
CM 1.72 (1.20) 1.64 (1.20) 1.68 (1.32) 1.59 (1.29)
CR 1.33 (0.65) 1.25 (0.60) 1.17 (0.57) 1.18 (0.54)

Table 5.14: Localization performance (carpark dataset, log 3-bit quantization)
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.20 (0.49) 1.14 (0.53) 1.17 (0.65) 1.12 (0.58)
CL 1.04 (0.60) 0.96 (0.59) 1.03 (0.63) 0.94 (0.58)
CM 1.54 (0.89) 1.53 (0.96) 1.72 (1.25) 1.61 (1.12)
CR 1.37 (0.63) 1.21 (0.57) 1.24 (0.69) 1.19 (0.63)

CL

NC 1.26 (0.55) 1.19 (0.57) 1.18 (0.67) 1.14 (0.63)
CL 1.02 (0.48) 0.93 (0.51) 1.00 (0.61) 0.95 (0.56)
CM 1.40 (0.81) 1.39 (0.91) 1.64 (1.27) 1.50 (1.11)
CR 1.30 (0.64) 1.18 (0.63) 1.23 (0.65) 1.15 (0.62)

CM

NC 1.22 (0.49) 1.13 (0.53) 1.12 (0.66) 1.10 (0.58)
CL 0.98 (0.46) 0.92 (0.45) 0.98 (0.61) 0.92 (0.56)
CM 1.46 (0.80) 1.45 (0.86) 1.65 (1.22) 1.55 (1.06)
CR 1.30 (0.62) 1.19 (0.60) 1.26 (0.63) 1.18 (0.55)

CR

NC 1.18 (0.48) 1.11 (0.49) 1.09 (0.63) 1.08 (0.54)
CL 1.04 (0.59) 0.97 (0.58) 0.96 (0.61) 0.94 (0.61)
CM 1.55 (0.85) 1.51 (0.93) 1.67 (1.22) 1.54 (1.04)
CR 1.24 (0.64) 1.16 (0.59) 1.18 (0.63) 1.16 (0.58)

Table 5.15: Localization performance (carpark dataset, linear 4-bit quantization)

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.19 (0.53) 1.09 (0.49) 1.11 (0.69) 1.07 (0.60)
CL 1.16 (0.59) 1.07 (0.56) 0.99 (0.64) 0.96 (0.55)
CM 1.55 (0.94) 1.51 (0.97) 1.66 (1.18) 1.56 (1.14)
CR 1.36 (0.95) 1.25 (0.91) 1.32 (0.84) 1.26 (0.85)

CL

NC 1.20 (0.51) 1.12 (0.59) 1.19 (0.78) 1.12 (0.69)
CL 1.21 (0.51) 1.23 (0.53) 1.07 (0.61) 1.05 (0.53)
CM 1.42 (0.90) 1.37 (0.94) 1.50 (1.06) 1.37 (1.01)
CR 1.27 (0.65) 1.20 (0.66) 1.28 (0.75) 1.23 (0.70)

CM

NC 1.20 (0.48) 1.14 (0.57) 1.19 (0.72) 1.13 (0.67)
CL 1.20 (0.51) 1.11 (0.52) 1.06 (0.56) 1.02 (0.53)
CM 1.47 (0.85) 1.40 (0.91) 1.50 (1.14) 1.42 (1.03)
CR 1.19 (0.50) 1.17 (0.52) 1.44 (0.80) 1.29 (0.63)

CR

NC 1.22 (0.47) 1.16 (0.54) 1.24 (0.70) 1.17 (0.63)
CL 1.16 (0.47) 1.07 (0.50) 1.14 (0.61) 1.07 (0.56)
CM 1.59 (0.94) 1.52 (1.00) 1.48 (1.05) 1.47 (1.04)
CR 1.36 (0.58) 1.32 (0.55) 1.46 (0.78) 1.44 (0.70)

Table 5.16: Localization performance (carpark dataset, 2
p 4-bit quantization)
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train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.15 (0.39) 1.08 (0.49) 1.13 (0.74) 1.11 (0.69)
CL 1.07 (0.56) 1.05 (0.53) 1.13 (0.70) 1.03 (0.59)
CM 1.46 (0.85) 1.45 (0.89) 1.54 (1.09) 1.53 (1.03)
CR 1.41 (0.87) 1.31 (0.83) 1.28 (0.90) 1.29 (0.87)

CL

NC 1.21 (0.72) 1.02 (0.74) 1.18 (0.79) 1.00 (0.78)
CL 1.15 (0.59) 1.04 (0.63) 1.13 (0.74) 1.06 (0.69)
CM 1.42 (0.95) 1.35 (0.98) 1.47 (1.08) 1.39 (1.06)
CR 1.42 (0.75) 1.31 (0.79) 1.48 (1.00) 1.38 (0.98)

CM

NC 1.39 (0.76) 1.29 (0.73) 1.32 (0.92) 1.32 (0.83)
CL 1.41 (0.74) 1.31 (0.67) 1.35 (0.66) 1.26 (0.69)
CM 1.61 (0.74) 1.54 (1.72) 1.52 (0.90) 1.50 (0.82)
CR 1.32 (0.84) 1.29 (0.77) 1.31 (0.76) 1.31 (0.74)

CR

NC 1.24 (0.91) 1.16 (0.88) 1.22 (0.73) 1.08 (0.82)
CL 1.31 (0.76) 1.28 (0.79) 1.50 (1.05) 1.38 (0.99)
CM 1.60 (1.08) 1.57 (1.11) 1.74 (1.38) 1.62 (1.24)
CR 1.26 (0.54) 1.17 (0.52) 1.17 (0.54) 1.12 (0.52)

Table 5.17: Localization performance (carpark dataset, 3
p 4-bit quantization)

train test E(x) (σ(x))
RADAR LANDMARC LEMON LEMON (k=5)

NC

NC 1.19 (0.64) 1.10 (0.65) 1.13 (0.77) 1.07 (0.71)
CL 1.13 (0.52) 1.05 (0.54) 1.10 (0.70) 1.02 (0.62)
CM 1.52 (0.94) 1.45 (0.98) 1.48 (1.17) 1.43 (1.11)
CR 1.33 (0.60) 1.25 (0.61) 1.41 (0.77) 1.29 (0.69)

CL

NC 1.34 (0.60) 1.26 (0.60) 1.29 (0.85) 1.24 (0.68)
CL 1.00 (0.44) 0.93 (0.43) 0.98 (0.64) 0.91 (0.53)
CM 1.64 (0.91) 1.60 (0.93) 1.76 (1.22) 1.68 (1.10)
CR 1.29 (0.71) 1.21 (0.70) 1.38 (0.76) 1.31 (0.75)

CM

NC 1.36 (0.64) 1.28 (0.65) 1.28 (0.86) 1.25 (0.76)
CL 1.07 (0.54) 0.98 (0.52) 0.96 (0.66) 0.91 (0.59)
CM 1.49 (0.91) 1.47 (0.92) 1.71 (1.24) 1.60 (1.12)
CR 1.32 (0.78) 1.23 (0.78) 1.36 (0.79) 1.29 (0.75)

CR

NC 1.28 (0.86) 1.21 (0.84) 1.29 (0.85) 1.25 (0.73)
CL 1.26 (0.73) 1.21 (0.80) 1.03 (0.60) 0.96 (0.55)
CM 1.75 (1.14) 1.61 (1.19) 1.63 (1.26) 1.57 (1.13)
CR 1.23 (0.59) 1.16 (0.52) 1.31 (0.67) 1.21 (0.68)

Table 5.18: Localization performance (carpark dataset, log 4-bit quantization)
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worsen. The performance has characteristics of almost being random and cir-

cumstantial. For example, one finds exceptionally good results like the 0.34

(0.62) for cubic root 2-bit quantization for LEMON (k = 5) in CM/CR, as well as

abysmal ones like 2.10 (1.27) for CR/CM for the same scheme using logarith-

mic 2-bit quantization. It appears though that such outliers become less likely

as the number of bits increases. A notable characteristic of fixed quantization

schemes is that they are in effect indifferent to the particular dataset, hence

their “training” is purely knowing what is the minimum and maximum value

of RSSI measurements from the fingerprint set to correspondingly produce

the bins. As such, fixed quantization includes cases where the performance

(especially for larger number of bits) can be the best when testing based on

‘training” that happened on a different dataset.

The real advantage of the fixed quantization is that it eschews the need

for search, and hence computation, to find an optimal quantization. Also, at

high number of bits, it partitions the range of RSSI values into adequately

short intervals, such that the representative values express more granular

information about their distance of a tag from the pegs. With a larger set

of representative values, the range of RSSI values is essentially resampled.

While the best case results of this fixed quantization at high number of bits

may not be the best when compared to the optimization-based results, it also

does not suffer from the testing producing poor results because of optimiza-

tion/training “overfitting” performed on a another dataset. Hence, depending

on use case, fixed quantization may be an adequate compromise, especially if

more than a few bits are used per RSSI sample.

5.2.3 Library Dataset

Recall that unlike the carpark dataset, the library dataset is very sparse. That

is, from any given location, only a small number of the pegs can be "heard"

over Bluetooth. As such, most of the RSSI vectors contain "null" values, or

placeholder values where data is missing. As with 1-bit quantization, we also
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Scheme E(x) (σ(x))
local 1-bit local 2-bit local 3-bit

RADAR 2.04 (1.31) 1.70 (1.07) 1.70 (1.07)
LANDMARC 2.17 (1.19) 1.64 (1.01) 1.64 (1.00)

LEMON 2.30 (1.15) 1.61 (1.09) 1.60 (1.11)
LEMON (k = 5) 2.27 (1.13) 1.61 (1.08) 1.61 (1.08)

Table 5.19: Localization performance (library dataset, 1-bit to 3-bit quantization)

use a placeholder value of -120 dBm.

Like with the carpark dataset, there is a modest improvement going from

local 1-bit to local 2-bit quantization, similar to the jump between global 1-

bit and local 1-bit quantization. However, this improvement does not carry

forward to local 3-bit quantization: there is no discernible change in this case.

5.3 Coverage (2-bit)

After quantization, there is a fixed number of distinct RSSI vectors. For in-

stance, with 1-bit quantization, we can represent the quantized RSSI value

for each peg using just 2 different values. In the garage car dataset, there are

10 pegs, yielding 210 distinct RSSI vectors. Concretely, for b-bit quantization

with n pegs, there are 2bn distinct vectors.

By performing localization on every single one of these vectors, we can

obtain a sort of coverage of the quantization scheme for that particular local-

ization algorithm. Note that for any particular set of quantization boundaries,

many of the RSSI vectors are practically impossible. For example, with 2-bit

quantization, we would likely not see “far” for every peg, or “near” for every

peg with a high-accuracy set of bounds. Still, we aim to see all the possibilities,

regardless of the likelihood of each vector appearing in real-world scenarios.

Figures 5.2, 5.3, 5.4, and 5.5 are provided as the 2-bit quantization rep-

resentatives corresponding to the 1-bit coverage ones shown in the previous

chapter (Figures 4.3, 4.4, 4.5, and 4.6), to which they can be compared to iden-

tify the increase in coverage with more bits used, with the notable exception
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of RADAR. Note also that, again, we pick the dataset with the car in the left

side (CL) of the carpark area to illustrate the coverage in the presence of an

obstacle (compared to no obstacle).

RADAR constructs a quadrilateral over k = 4 points, with the predicted

location of the tag at the centre of the quadrilateral. In the carpark dataset,

there are just 25 profiling points. With quantization boundaries obtained for

2-bit quantization, 238 distinct positions are possible. These are interspersed

throughout the space at regular intervals. While there are 12650 possible

quadrilaterals with 25 profiling points, most of these are not seen, likely be-

cause “neighbouring” profiling points are relatively close together, and distant

profiling points are not neighbours anyway. When adding a car in CL config-

uration, the coverage is not changed by much. In contrast to RADAR,

LANDMARC uses a weighted average for predicted location. Practi-

cally, this increases the number of possible locations, particularly because

the weights are not taken from a distinct set of values but are derived using

the signal space distances to their neighbors. Without a car/obstacle present,

the coverage shares some form of clustering around points such as the ones

demonstrated by RADAR, yielding multiple points, but grouped in diffused

clusters – this behavior can be witnessed, but with a less dense set of points

in the 1-bit localization coverage results. Once cars are added (here, CL), the

coverage shifts dramatically. Most of the coverage is distorted.

Like LANDMARC, LEMON uses a weighted average for localization.

Here, we examine both k = 4 (like the other two algorithms) and k = 5, as

LEMON uses k−1 neighbours for its calculation – the furthest neighbour is

used solely to calculate weights. With k = 4 the coverage is already remark-

ably dense with lighter coverage in the periphery, but moving to k = 5 results

in a remarkably wide and uniform coverage. The presence of a car in CL, ap-

pears to “attract” some of the density closer to the area of the vehicle, thinning

the coverage of the opposite (right) side. Still the coverage is quite good even

in CL.
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Scheme Coverage (%)
RADAR (1-bit), RADAR (2-bit) 0.15-0.18

LANDMARC (1-bit), LEMON (1-bit) 0.74-0.79
LANDMARC (2-bit) 51.33-67.12

LEMON (2-bit) 74.14-87.72

Table 5.20: Relative quantized RSSI coverage performance.

5.3.1 Comparison of Coverage Results

Finally, we summarize all the coverage results across 1-bit and 2-bit quan-

tization. The statistics across various schemes fall in clearly distinct ranges

that they can be summarized by grouping them accordingly in Table 5.20.

Given the maximum possible coverage due to the convex hull is 92%, the

2-bit LEMON gets close to that limit. The results of the specific variety of

2-bit LEMON were mixed within the 74.14−87.82% range. For example, the

largest coverage (87.72%) was attained by LEMON with k = 4, global thresh-

olds, with the car in the right part of the area. The lowest coverage (74.14%)

was attained by LEMON with k = 5, local thresholds, and no car present in

the area. Neither a higher k, nor a more “tuned” local threshold choice, nor

even the precise location of the obstacle (or the obstacle existence) appear to

impact the relative coverage performance between LEMON and LANDMARC,

and there is a clear advantage in favor of LEMON. RADAR’s coverage inher-

ently does not benefit from more bits, which is not the case for LANDMARC

and LEMON. Keeping in mind that the quantization process’s objective is to

minimize the localization error of an ensemble of points, it is interesting to

see that it also results in creating a (expected) more diverse coverage, and

(unexpectedly) separates the performance of LANDMARC and LEMON.

Figure 5.20 summarizes the coverage for multi-bit quantization. Note

that the impact of local versus global quantization and the location of car (if

present) was minimal and always within the given ranges. For RADAR and

LANDMARC, k = 4 while LEMON includes both the k = 4 and k = 5 results in

the quoted range.
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Scheme E(x) (σ(x))
none linear global local

RADAR 1.21 (0.45) 1.13 (0.52) 0.94 (0.52) 0.60 (0.42)
LANDMARC 1.11 (0.50) 1.05 (0.51) 0.91 (0.46) 0.51 (0.28)

LEMON 1.14 (0.64) 1.03 (0.62) 0.94 (0.47) 0.46 (0.39)
LEMON (k = 5) 1.10 (0.58) 1.04 (0.51) 0.94 (0.44) 0.42 (0.34)

Table 5.21: 2-bit quantization performance (carpark dataset, train:NC, test:NC).

5.4 Conclusions

We have seen the quantization produces improvement with increasing num-

ber of bits but also demonstrates diminishing returns as more bits are used.

While local quantization results can produce better results than global quan-

tization, when the training and testing environment are the same, they are

not as good when the testing happens in a modified environment, whereas the

global quantization appears to be more robust as it avoid this form of “overfit-

ting”. LEMON seems to perform, on balance, well, if not the best, across all

cases. Using fixed quantization may be a shortcut when one wishes to avoid

the computationally intense search for optimum quantization, but to get any

meaningful performance one has to use more quantization bits so more bins

exist, i.e., a finer grained representation of the RSSI range. Finally, LEMON

appears to be the scheme that best covers in a uniform and dense manner the

localizable space using as few as 2 bits per RSSI.

We offer here a summary of some the results, put together to compare

and contrast schemes under two situations for 2 and 3 bits: (a) training and

testing in the same set (NC), which is shown in Tables 5.21 and 5.23, and (b)

training in NC and testing in CR. which is shown in Tables 5.22 and 5.24. All

tables include linear quantization as the representative of fixed quantization

schemes.
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Scheme E(x) (σ(x))
none linear global local

RADAR 1.31 (0.59) 1.55 (0.66) 1.23 (0.60) 1.23 (0.60)
LANDMARC 1.20 (0.59) 1.50 (0.61) 1.14 (0.61) 1.14 (0.61)

LEMON 1.21 (0.62) 1.55 (0.66) 1.25 (0.64) 1.25 (0.64)
LEMON (k = 5) 1.15 (0.56) 1.50 (0.58) 1.20 (0.59) 1.20 (0.59)

Table 5.22: 2-bit quantization performance (carpark dataset, train:NC, test:CR).

Scheme E(x) (σ(x))
none linear global local

RADAR 1.21 (0.45) 1.14 (0.64) 0.80 (0.44) 0.56 (0.42)
LANDMARC 1.11 (0.50) 1.09 (0.60) 0.76 (0.41) 0.46 (0.31)

LEMON 1.14 (0.64) 1.13 (0.61) 0.80 (0.40) 0.44 (0.39)
LEMON (k = 5) 1.10 (0.58) 1.12 (0.56) 0.76 (0.39) 0.41 (0.31)

Table 5.23: 3-bit quantization performance (carpark dataset, train:NC, test:NC).

Scheme E(x) (σ(x))
none linear global local

RADAR 1.31 (0.59) 1.33 (0.59) 1.17 (0.48) 1.15 (0.49)
LANDMARC 1.20 (0.59) 1.26 (0.55) 1.06 (0.52) 1.12 (0.60)

LEMON 1.21 (0.62) 1.34 (0.58) 1.17 (0.63) 1.32 (0.70)
LEMON (k = 5) 1.15 (0.56) 1.28 (0.58) 1.09 (0.58) 1.20 (0.59)

Table 5.24: 3-bit quantization performance (carpark dataset, train:NC, test:CR).
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(a) RADAR

(b) LANDMARC
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(c) LEMON

(d) LEMON (k = 5)

Figure 5.2: Coverage for optimal global 2-bit quantization (no car present).
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(a) RADAR

(b) LANDMARC
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(c) LEMON

(d) LEMON (k = 5)

Figure 5.3: Coverage for optimal global 2-bit quantization (car present left).
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(a) RADAR

(b) LANDMARC
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(c) LEMON

(d) LEMON (k = 5)

Figure 5.4: Coverage for optimal local 2-bit quantization (no car present).
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(a) RADAR

(b) LANDMARC
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(c) LEMON

(d) LEMON (k = 5)

Figure 5.5: Coverage for optimal local 2-bit quantization (car present left).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Through the experiments performed in previous chapters, we found that

quantizing yields results on par with or sometimes better than full resolution

data. The results are summarized in Figure 6.1. This plot shows E(x) along

with its associated σ(x) for full-resolution data, 1-bit global and local quan-

tization, and 2-bit global and local quantization. For each vertical line, the

central dot depicts E(x), with the bar showing one σ(x) away from the mean

on either side. Here, we can see that 1-bit local and 2-bit global quantiza-

tion already perform similarly to full resolution data. The 1-bit quantization

thresholds were obtained using EGA when not possible to perform an exhaus-

tive search, and the 2-bit quantization thresholds were obtained using Tabu

search. In Figure 6.1, the training and testing sets are the same.

Figure 6.2 is similar to Figure 6.1 but for a larger number of bits for quan-

tization: 3-bit global and local quantization, along with 4-bit global and local

quantization, comparing them also to full resolution data. Here, we can see

that there is little benefit to increasing the number of bits beyond 2. While

3-bit quantization with global thresholds generally outperforms that of 2-bit

global quantization, there is virtually no further improvement when going

up to 4 bits. The same is true for local quantization, with 3- and 4-bit local

quantization performing very similarly to 2-bit quantization.

In addition to evaluating the localization accuracy of k-NN algorithms us-
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ing quantized data, we also assessed the coverage of each. Intuitively, the

coverage evaluates the "expressiveness" of each combination of quantization

level and localization scheme. That is, we answer the question: which points

can each localization scheme actually yield under quantization? As each al-

gorithm estimates localization differently, we expected a difference here as

well. As it uses a simple average, RADAR had the lowest expressiveness. It

could only yield location estimates where each estimate was the midpoint of

a polygon with points at each neighbour. As our carpark dataset fingerprints

were collected at specific points on a grid, the coverage diagram generated

by RADAR is similarly, points in a grid. LANDMARC and LEMON were

both much more expressive, each able to localize to an incredible assortment

of points. While LEMON’s coverage area generally covers the entire space

(bounded by the outer neighbours), LANDMARC’s coverage exhibits a more

clustered behavior around the points that RADAR generates, the centres of k-

sized polygons. Despite differences in coverage, these seem to play little role

in localization accuracy.

Lastly, we examined the effect of a sparse data with quantization.

Whereas almost every point in the localization area in the carpark can receive

signals from every possible peg device, this is not the case with the library,

where at any given point, only a small fraction of peg devices can be detected.

As with the much fuller dataset of the carpark, there is little difference across

localization algorithms, even after quantization is applied. In contrast, to the

carpark, however, there is little increase in mean error even with 1-bit global

quantization, and 1-bit local quantization also performs similarly to using full

resolution data.

6.2 Future Work

Two obvious directions for future work are (a) generalization of the perfor-

mance study to 3-dimensional localization and (b) use of different “black box”

localization schemes. The first is hindered by the relative paucity of datasets
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that also include modifications of the 3-dimensional environment (like we had

in the carpark dataset). The second option is easier to attack albeit the preva-

lence of machine learning schemes could result in the need to have larger

datasets to use for training and evaluation.

There are results, e.g., the survey by Ahmadi and Bouallegue [1] that sug-

gest machine learning alternatives to k-NN are capable of better performance.

It would make sense to consider different “black box” localization schemes

outside those of k-NN. For k-NN algorithms, the appeal of quantization lies in

the ability to memorize all the localization results, or store all the results in a

lookup table. This allows a given device to self-localize. However, other tech-

niques may also yield the same benefit. In particular, localization techniques

involving neural networks require very little storage as well. The output of

training a neural network is simply the coefficients of the neural connections

themselves; the structure of the neural network is fixed and known before-

hand. Combining the coefficients and the structure, location is estimated us-

ing a mathematical formula. The devices then can also hold this formula could

self-localize, as the computation is typically not complex.

We will examine three varieties of neural network-based algorithms. In

each case, the neural network is trained offline, using the profiling dataset.

To train each model, the profiling dataset is split into two chunks: one chunk

containing 80% of the points (used for training the weights themselves), and

one chunk containing the remaining 20% of the points (used to test the model

derived from the training phase). To assess the accuracy of the model, the

testing dataset is used, as in the other models. It is worth noting again that

in the carpark dataset the profiling dataset and the testing datasets contain

no overlap and could be merged into one set, and subsequently split in the

80%/20% manner suggested in random ways. Thus, the localization models

are tested on points they would have never seen before during training. Nev-

erhtless the overall carpark dataset is not particularly large and we may face

limitations due to the dataset size.

We attempted (not reported in this thesis) to use a simple neural network,
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using standard regression. The neural network has just one hidden layer,

and the number of nodes in that layer are determined experimentally. Using

profiling data set to train the neural network using back-propagation, the

number of nodes is increased until no further improvement in localization

accuracy is seen. The activation function for the hidden layer is ReLU, and a

linear function is used for the output layer. We also tried a sigmoid activation

function for the hidden layer, but the convergence time was much longer with

no improvement in localization accuracy.

There might be better prospects for deep belief networks (DBN), the rep-

resentatives of “deep learning” approaches that has seen good localization ac-

curacy compared to k–NN methods, at least in the non-quantized setting. For

example, Jiang et al. [13] find that the majority of points can be localized

within 0.5m. LANDMARC localizes within 2m in the same setting. We aim

to evaluate the DBN model using quantized RSSI vectors and determine if

similar localization improvements can be obtained even if the majority of bits

are dropped. Their neural network architecture is comprised of 4 hidden lay-

ers, each being a restrictive Boltzmann machine (RBM). Each layer/RBM is

trained using single-stop contrastive divergence (CD-1), and finally the archi-

tecture as a whole is fine-tuned using backpropagation to minimize errors.

Interestingly, this neural network is not used directly to localize, but to

“reconstruct” the fingerprint database. The idea here is to extract the most

relevant features of RSSI data, and reconstruct them in a new fingerprint

database. Therefore, the input and output of the network are both finger-

prints. The DBN approach inherently recognizes that not all information in

an RSSI vector is valuable.

In the online phase, the testing dataset is used as input to the DBN. The

output is then compared to the reconstructed fingerprint database, and the

closest matching fingerprint is used as the location. Here, the fact that our

training and testing datasets have no overlap becomes important: none of the

fingerprints in the database are close to the points in the evaluation dataset.
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We also know a-priori, what would be the minimum error due to the loca-

tions of the testing and fingerprinting points, which for the carpark dataset

is 1m. Thus, we could combine the DBN approach with our other localization

schemes. Can the reconstructed fingerprints from DBN be used for example,

in conjunction with k–NN or simple neural network algorithms to improve

their performance, particularly with a lower number of bits?
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