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Abstract: This study considers the dynamic state estimation of power systems with model uncertainties that might be caused by
the unknown noise statistics or unpredicted changes to the model parameters. To deal with these issues, an innovation-based
estimator that is able to dynamically revise the statistics of system and measurement noise is proposed firstly. Then, based on
the H∞ criteria for bounding the adverse influences on the estimation error of model uncertainties and unscented transform
technique, an adaptive strategy is developed to adjust the estimation error covariance matrix under various conditions. Finally,
by incorporating the proposed approaches and H∞ filter theory, a novel adaptive unscented H∞ filter is established to realise
dynamic state estimation of power system against model uncertainties. Extensive simulation results obtained from the IEEE-39
bus test system are presented to illustrate the effectiveness and robustness of the proposed method.

௑Nomenclature
δ rotor angle
ω rotor speed
eq′ transient voltage along q axes
ed′ transient voltage along d axes
Tm mechanical torque
Te electric air-gap torque
H inertia constant
KD damping factor
Efd internal field voltage
xd synchronous reactance at d axes
xq synchronous reactance at q axes
xd′ transient reactance at d axes
xq′ transient reactance at q axes
id stator current at d axes
iq stator current at q axes

1௑Introduction
1.1 Motivation

Reliable and accurate state estimation (SE) is of paramount
importance for power system monitoring, protection, and control
[1–4]. In general, SE methods of the power system can be grouped
into two categories: static and dynamic SE. Static SE assumes that
the power system operates under quasi-steady state, based on
which the voltage phase angles and magnitude of all buses can be
estimated by utilising the redundancy measurements from
supervisory control and data acquisition or phasor measurement
units (PMUs) [5]. Static SE plays an important role in the secure
and reliable operation of power systems, which can provide the
input data for some applications in the energy management system,
such as optimal power flow and automatic generation control.
However, it might not be competent for proper system monitoring
and situational awareness due to the dynamics of the system are
ignored. Therefore, accurate real-time dynamic states of the system
acquired from the dynamic SE facilitated by the wide-area
deployment of PMUs has become essential.

1.2 Literature review

To date, power system dynamic SE has been performed by various
types of Kalman filters, such as the extended Kalman filter (EKF),
unscented Kalman filter (UKF) and their variants [6–15]. In [6],
based on the EKF, a lateral two-level dynamic SE method was
proposed, which could deal with the increasing complexity and
large data set successfully. In [7], the EKF with unknown inputs
was developed for estimating the states and identifying the
unknown inputs of power system simultaneously. In [8], by
embedding the generalised maximum likelihood technique into the
traditional EKF, a robust approach that exhibits robustness to
observation and innovation outliers was acquired. In [9], a multi-
step adaptive interpolation method was proposed to mitigate the
adverse impact of non-linearity on the performance of EKF.
However, the first-order Taylor series approximation-based EKF
can only work well in a mild non-linear condition and easily lead
to divergence. To circumvent these issues, several derivative-free
filters were developed and applied to power system dynamic SE,
such as the UKF approach [10–14], the particle filter [15], and the
ensemble Kalman filter [16].

From the above literature review, it can be seen that Kalman-
type filters play a vital role in power system dynamic SE.
However, it should be noted that the aforementioned approaches
work well only under conditions where the full knowledge of the
power system dynamic SE model is available. To be specific, all
parameters of the model and the noise statistics of process noise
and measurement noise must be known accurately, which is
practically infeasible, particularly for the real-time
implementations [17–22]. Therefore, these methods are unable to
deal with the cases of parameter uncertainties as well as unknown
noise statistics of process and measurement. In practice, due to the
unknown changes and disturbances of system inputs, the actual
dynamic characteristics of a power system might not be predicted
properly by the assumed dynamic model. Specifically, the
measurement noise of PMUs may be unknown and does not follow
a Gaussian distribution strictly [23, 24]. In addition, due to the
aging process, magnetic saturation and changing temperature of the
machine windings, the transient reactance of the generator and
other parameters may be time-varying, leading to large model
uncertainties [25]. These model uncertainties inevitably degrade
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the performances of Kalman filter-based dynamic SE significantly,
resulting in unreliable SE.

In recent years, in order to handle various uncertainties of the
power system model, H∞ filter has received considerable attention
[18, 26–28]. Unlike the conventional Kalman filter that aims to
achieve the minimum mean-square estimate, the H∞ filter attempts
to minimise the effect of the worst possible disturbances on the
estimation error and consequently, it is more robust to model
uncertainties. Motivated by this idea, the extended H∞ filter was
developed in [26, 27], but it inherits the weakness associated with
EKF, which might not be suitable for the dynamic SE of power
system with strong non-linearity. In addition, there are another two
drawbacks in this method. First, the covariance matrices of system
and measurement noise are still assumed constant during the
process of dynamic SE, where their dynamic characteristics of
changing with time are ignored. Secondly, in these methods, the
finite upper bound of the model uncertainties need to be tuned
artificially, which might be difficult for choosing the appropriate
value in practical applications. Therefore, their practical
application would be hampered.

1.3 Contributions and organisation

To address these issues, in this study, based on the H∞ filter theory
and unscented transform technique, a novel adaptive unscented H∞

filter (AUHF) for power system dynamic SE against model
uncertainties is proposed. The main contribution of this study is
threefold.

• Based on the innovation information and the H∞ criteria in
robust control that bounds the influences of model uncertainties,
an adaptive strategy is proposed to calculate the estimation error
covariance matrix in a more appropriate way associated with the
varying conditions. By using this strategy, not only the difficulty
of choosing a suitable upper bound of estimation error is
avoided, but also the adverse impacts of model uncertainties can
be suppressed.

• An innovation-based estimator of noise statistics is also utilised
to adjust the covariance matrices of system and measurement
noise dynamically, which further enhances the robustness of
AUHF to uncertain noise statistics.

• Extensive comparative experiments under different operating
conditions have been implemented and it is confirmed that our
proposed method can achieve a much better performance than
the UKF [10], H∞ extended Kalman filter (HEKF) [20] and
unscented H∞ filter (UHF) [28] methods for power system
dynamic SE in the presence of model uncertainties.

The remainder of this paper is structured as follows. In Section 2,
the dynamic SE model of the power system is established and
analysed. In Section 3, the proposed AUHF approach is developed
and introduced in detail. In Section 4, results of extensive
simulations carried out on the IEEE-39 bus test system are
provided to validate the efficacy of the developed method, and
finally, conclusions are drawn in Section 5.

2௑Dynamic SE model of power system
In this section, first, the continuous transient stability model of a
synchronous generator is introduced. Then, by using a modified
Euler method, the discrete state-space model for dynamic SE of the
power system is acquired.

2.1 Continuous fourth-order transient model

In this study, the fourth-order transient stability model in a local d–
q reference frame is utilised to estimate the states [15, 29, 30],
which can be described by

δ˙ = ω − ω0,

ω̇ =
ω0

2H
Tm − Te −

KD

ω0

(ω − ω0) ,

ė′q =
1

Td0′
(Efd − e′q − (xd − x′d)id),

ė′d =
1

Tq0′
−e′d + (xq − x′q)iq ,

(1)

where δ represents the rotor angles in radian, ω is the rotor speeds
in per unit, and ω0 = 2π f 0 indicates the synchronous speed; eq′ and
ed′ represent the transient voltages along q and d axes; Te and Tm

denote the electric air-gap torque and the mechanical torque,
respectively; H represents the inertia constant, and KD denotes the
damping factor; Efd represents the internal field voltage; Td0′  and
Tq0′  denote the open circuit time constants in the d–q reference
frame; xd and xd′ are the synchronous reactance and the transient
reactance at d axes, respectively; xq and xq′ represent the
synchronous reactance and the transient reactance along q axes,
respectively; id and iq denote the stator currents along local d and q
axes.

To facilitate the notation, (1) can be further rewritten in a
general state-space model as presented in (2) and (3)–(5)

ẋ = Φc(x, u) + wc,

y = hc(x, u) + vc,
(2)

x = [δ ω e′q e′d]T, (3)

u = [Tm Efd iR iI]
T, (4)

y = [δ ω eR eI], (5)

where x represents the state vector, u denotes the known input
vector; y is the output vector, note that the rotor angle δ and rotor
speed ω can be directly measured by utilising the algorithms in
PMUs [31, 32]; Φc( ⋅ ) and hc( ⋅ ) represent the state transition
function and output function, respectively. The subscript c denotes
the continuous time model; wc and vc are the process and output
noise, respectively; eR and iR represent the stator voltage and
current at the R axes, respectively; eI and iI denote the stator
voltage and current at the I axes, respectively.

In order to transform (1) into the general state-space model in
(2) and acquire the state transition function Φc( ⋅ ), id, iq are written
as functions of x and u

id = iRsin(δ) − iIcos(δ), (6)

iq = iIsin(δ) + iRcos(δ) . (7)

Similarly, to obtain the output function hc( ⋅ ), eR and eI are written
as functions of x and u

eR = (ed′ + iqxq′)sin(δ) + (eq′ − idxq′)cos(δ), (8)

eI = (eq′ − idxd′)sin(δ) − (ed′ + iqxq′)cos(δ) . (9)

2.2 Discrete state-space model

To realise the dynamic SE utilising the discrete measurements, the
continuous time model in (2) needs to be further discretised into its
discrete form as

xk = Φ(xk − 1, uk − 1) + wk − 1,

yk = h(xk, uk) + vk,
(10)

where k represents the time instant at kΔt, Δt indicates the
sampling interval, wk and vk denote the process and measurement
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noise vectors that are supposed to be Gaussian with zero-mean,
follow the covariance matrices ξk and Rk, respectively. The discrete
state transition function Φ( ⋅ ) can be acquired by utilising the
modified Euler approach [33] as

x
~

k = xk − 1 + Φc(xk − 1, uk − 1)Δt, (11)

f
~

=
Φc(x

~
k, uk) + Φc(xk − 1, uk − 1)

2
, (12)

xk = xk − 1 + f
~
Δt . (13)

Also, the output function hc can be directly discretised by

yk = hc(xk, uk) + vk . (14)

The discrete state-space model in (10) can be utilised to implement
power system dynamic SE based on various methods.

3௑Proposed AUHF
In this section, based on the H∞ filter theory and the unscented
transform technique, by incorporating the proposed innovation-
based estimator of noise statistics and the estimation covariance
matrix adaptive update approach, a novel AUHF against various
model uncertainties is designed.

3.1 Derivation of the AUHF

According to the H∞ filter theory in [18], a robust filter that
effectively bounds the adverse influences of the model
uncertainties can be acquired by satisfying the following criteria:

sup
{x0, vk, wk}

∑k = 0

Nt − 1
∥ xk − x^k ∥

P
^

k − 1
−1

2

∥ x0 − x^ 0 ∥
P
^

0
−1

2
+ ∑k = 0

Nt − 1
∥ wk ∥

ξ
^
k

−1
2

+ ∥ vk ∥
R
^

k

−1
2 < γ,

(15)

where γ is a given positive scalar parameter that bounds the model
uncertainties; Nt indicates the maximum iteration time; xk and x^k

are the true state vector and its estimation results, respectively; x0

and P
^

0 represent the initial state vector and its covariance matrix,
respectively; P

^

k is the estimated covariance matrix; ξ
^

k and R
^

k are
the respective covariance matrices of process noise and
measurement noise at time instant k, which could be estimated by
the proposed approach in the next part of this Section.

In order to obtain a more accurate and reliable dynamic SE
result of the power system with model uncertainties, in this part, a
robust dynamic state estimator is developed. The proposed AUHF
method consists of three main steps: state prediction, state filtering,
and adaptive update of the estimation error covariance utilising the
criteria in (15).

Step 1: state prediction: By assuming the SE x^k − 1 ∈ ℝn × 1 and
the associated estimation error covariance P

^

x, k − 1 ∈ ℝn × n have been
acquired at time instant k − 1, the state prediction can proceed as
follows:

i. Sigma point generation: Based on the unscented
transformation technique [34], by utilising the SE information
at time instant k − 1, 2n + 1 sigma points can be generated
through

χk
l = x^k − 1, l = 0, (16)

χk
l = x^k − 1 ± (n + κ)P

^

x, k − 1
l
, l = 1, 2, …, 2n, (17)

where n represents the dimension of state variables, κ indicates
the scaling parameter defined as κ = α

2(n + k f ) − n, and α is a
constant usually chosen from [10−4, 1]; kf is a constant, which

is usually set as 0 for dynamic SE; ( ⋅ ) denotes the operation
of Cholesky decomposition.

ii. State prediction: The sigma points are propagated through the
state transition function, then the predicted state vector x~k and
the associated prediction error covariance matrix P

~
x, k can be

calculated by

χ
~

k
j = Φ χk

j , (18)

x
~

k = ∑
j = 0

2n

W j χ
~

k
j, (19)

P
~

x, k = ∑
j = 0

2n

W j χ
~

k
j − x

~
k χ

~
k
j − x

~
k

T
+ ξ

^

k, (20)

where j = 0, 1, 2, …, 2n, W j are the weights defined as

W0 =
κ

n + κ
, W j =

κ

2(n + κ)
, j = 1, 2, …, 2n . (21)

iii. Measurement prediction: The sigma points are instantiated
through the output function, and then the predicted
measurement y~k and its covariance P

~
y, k can be derived as

ηk
j = h( χ

~
k
j), (22)

y
~

k = ∑
j = 0

2n

W jηk
j, (23)

P
~

y, k = ∑
j = 0

2n

W j ηk
j − y

~
k ηk

j − y
~

k

T
+ R

^

k . (24)

iv. Cross-correlation covariance calculation: Calculate the cross-
covariance matrix Pxy, k between the predicted states and the
predicted measurements

Pxy, k = ∑
j = 0

2n

W j χ
~

k
j − x

~
k ηk

j − y
~

k

T
. (25)

Step 2: state filtering: Based on the predicted state, the filtered
state x^k can be achieved by utilising the available measurements yk

at time instant k

Kk = Pxy, kP
~

y, k

−1
, (26)

x^k = x
~

k + Kk(yk − y
~

k), (27)

where Kk denotes the Kalman gain at time instant k, ( ⋅ )−1

represents the inversion of a matrix.
Step 3: estimation error covariance update: By utilising the

statistical linear error propagation approach in [35], the
measurement covariance matrix P

~
y, k and the cross-correlation

covariance Pxy, k can be approximated by

P
~

y, k ≈ HkP
~

x, kHk
T + R

^

k, (28)

Pxy, k ≈ P
~

x, kHk
T, (29)

where Hk = (∂h(xk)/(∂xk)) xk = x
~

k
 represents the Jacobin matrix of

output function at time instant k.
Based on the extended H∞ filter in [20,26], by utilising

formulas (28) and (29), the estimation error covariance P
^

x, k that
satisfies criteria (15) can be derived as follows:

P
^

x, k = P
~

x, k − [Pxy, kP
~

x, k]Re, k
−1

Pxy, k
T

P
~

x, k
T

(30)
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and

Re, k =
P
~

y, k Pxy, k
T

Pxy, k −γ
2
LkLk

T + P
~

x, k

, (31)

where Lk ∈ ℝn × n represents a diagonal matrix to be designed and
the tuning parameter γ can be obtained by searching over γ > 0

such that P
^

x, k > 0.
Applying the matrix inversion lemma to (30) yields

P
^

x, k

−1

= P
~

x, k

−1
+ P

~
x, k

−1
Pxy, kR

^

k

−1

P
~

x, k

−1
Pxy, k

T
− γ

−2
LkLk

T −1

. (32)

Therefore, in order to avoid the difficulty in choosing an
appropriate value for γ in [20, 26] and achieving a better SE
performance, here, matrix Lk is designed as

Lk = γ P
~

x, k

−1
+ P

~
x, k

−1
Pxy, kR

^

k

−1

P
~

x, k

−1
Pxy, k

T
− φmax

−2
I

−1

, (33)

where ( ⋅ ) denotes the Cholesky decomposition, φmax
2

I indicates
the upper bound of the P

^

k, which is obtained by the physical
information of the practical systems.

Nevertheless, it should be noted that the use of the upper bound
φmax

2
I might be too conservative, where too much emphasis is

placed on accommodating the worst condition (largest model
uncertainties) at the expense of optimality. In order to improve the
robustness of the developed method without decreasing accuracy,
an adaptive strategy to adjust P

^

k in response to the dynamically
changing environment is given as follows:

P
^

x, k =

P
~

x, k − KkP
~

y, kKk
T if P

~
y, k > αP

~
ν, k,

P
~

x, k − [Pxy, kP
~

x, k]Re, k
−1

Pxy, k
T

P
~

x, k
T

otherwise,
(34)

where P¯ ν, k = E νkνk
T x

~
k − 1  denotes the real covariance matrix of

the innovation νk = yk − y
~

k at time instant k, α > 0 is a scalar
parameter that provides an extra degree of freedom to tune the
threshold during the implementation. Though P¯ ν, k is unknown in
practice, it can be estimated by

P¯ ν, k =

νkνk
T, if k = 0,

ρP¯ ν, k − 1 + νkνk
T

ρ + 1
, else k > 0,

(35)

where ρ represents a forgetting factor and usually set as ρ = 0.98
[36].
 

Remark 1: It is worth pointing out that the bound of x^k can be
controlled by enlarging the estimation error covariance matrix P

^

k

[37]. Therefore, in the design of an extended H∞ filter [20, 26], by
setting the Lk as an identity matrix I, P

^

k could be enlarged by
decreasing λ to acquire stronger robustness, but it is difficult to
choose a suitable λ to guarantee P

^

k is sufficiently large. This
problem can be solved by designing Lk as (27), where not only the
difficulty in tuning the parameter λ is avoided, but also the
requirements of P

^

k can be satisfied.
 

Remark 2: With the specific design in (34), when the innovation
is large, the estimation error covariance matrix P

^

k will be set as
P
~

x, k − [Pxy, kP
~

x, k]Re, k
−1 [Pxy, kP

~
x, k]

T, which can mitigate the adverse
effects of model uncertainties and avoid the proposed method
divergence; on the contrary, while the innovation is rather small, P

^

k

will be set as P
~

x, k − KkP
~

y, kKk
T, so that the SE results will not be

distorted.

3.2 Estimation of noise covariance matrices

For a practical power system, its system model is inevitable with
uncertainties and the statistics of measurement noise may change
from time to time, yielding unknown and time varying ξ and R

[22]. Therefore, in order to accommodate the changeable noise
environment of the power system and further enhance the
robustness of the proposed method, the covariance matrices of
process noise and measurement noise should be revised
dynamically.

Based on the work in [38], by utilising the innovation
information, a modified Sage–Husa noise estimator is introduced to
dynamically revise the covariance matrices of process noise and
measurement noise, which can be implemented by

ξ
^

k = (1 − dk − 1)ξ
^

k − 1 + dk − 1 Kkνkνk
TKk

T + P
^

k , (36)

R
^

k = R
^

k − 1 ⋅ diag exp− νk , (37)

where dk − 1 = (1 − b)/(1 − b
k) and b ∈ [0.95, 0.995] is a constant

parameter; ξ
^

k denotes the estimation covariance matrix of process
noise, R

^

k represents the estimation covariance matrix of
measurement noise at time instant k, exp is the exponential
function with the natural constant e as the base.
 

Remark 3: By using the proposed noise statistic estimator, the
covariance matrices of process noise and measurement noise can
be adjusted dynamically with the actual operating conditions of the
power system, which further enhances the robustness and stability
of the proposed method, and a much better estimation performance
can be achieved.

For convenience, the proposed AUHF approach for robust
dynamic SE of power systems with model uncertainties is fully
summarised as Algorithm 1 (see Fig. 1). 

4௑Numerical results
4.1 Test system and simulation studies

In this section, extensive simulations are conducted on the New
England test system model with ten machines and 39 buses to
demonstrate the performance of the designed approach against
various sources of uncertainties. The single-line diagram of this
test system is shown in Fig. 2 and its detailed parameters can be
found in [39]. To mimic the responses of a real power system, the
transient stability simulations are implemented to generate
measurements and true state variables utilising the software
PSCAD/EMTDC. In addition, in order to capture the dynamics and
reduce integration errors, the trapezoidal integration method is
adopted with a time step of 1/120 s to solve the differential and
algebraic equations. The simulations consist of the following steps:
a three-phase fault is applied to bus 16 at t = 0.5 s to simulate a
system disturbance, where the fault impedance is 0.001pu and the
fault is cleared at t = 0.7 s; the rotor angle, rotor speed and the
stator voltages along R and I axes of the generator are corrupted by
additive noise to simulate the realistic PMU measurements, noted
that the sampling rate for the measurements in all case studies is 50
frames per second [40–42]. The parameters α and forgetting factor
ρ are set to 10−3 and 0.98, respectively. For the state initialisation,
the steady-state values are utilised. Due to the space limitation,
only the estimated results of generator 9 are presented for
illustration purposes. 

Generally, while using the filtering-based methods to estimate
the dynamic states of the power system, the statistics of system and
measurement noise are usually assumed to be known exactly in
advance. However, for a practical power system, the real noise
statistics are usually difficult to acquire accurately [20]. In
addition, the process and measurement noise might change over
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time, yielding unknown non-Gaussian statistics [23]. On the other
hand, due to the aging process and variations of generator
operating temperature, some constant parameters that are not
changed by default may change with time [25]. Last but not least,
for a real-time application, the computational efficiency is another
paramount factor. Due to the estimation of the current time step
need to be completed before the measurements of the next time
instant arrive, therefore, in order to comprehensively assess the
performance of the AUHF method against model uncertainties and
the computational efficiency, based on the test system, the
following four comparative experiments are carried out:

Case study 1: The UKF [10], HEKF [20], UHF [28] and proposed
AUHF approach are considered and compared for the test system
with unknown Gaussian process and measurement noises.
Case study 2: The discussed methods are implemented for the test
system with the unknown non-Gaussian process and measurement
noises.
Case study 3: The robustness of UKF, HEKF, UHF, and AUHF to
uncertain parameters of the state-space model is analysed and
compared.
Case study 4: The computational efficiency of the four discussed
approaches under case studies 1–3 is investigated and compared.

In addition, in order to acquire more general and significant
simulation results, NMC = 200 Monte–Carlo simulations are run for
case studies 1–3. The notions of mean absolute error (MAE) and
average SE error index Ex are adopted to evaluate the estimation
accuracy and average estimation performance of the discussed
approaches, which are defined as follows:

MAE(k) =
1

NMC
∑
j = 1

NMC
1
Ns

∑
i = 1

Ns

xi, k
est − xi, k

true , (38)

Ex =
1

NMC
∑
j = 1

NMC

∑
k = 1

Nt

xi, k
est − xi, k

true 2
/Nt, (39)

where Ns is the number of states; xi, k denotes the types of states
that can be δ, ω, eq′ or ed′ at time instant k; xi, k

est indicates the
estimated state; xi, k

true indicates the associated true value; Nt

represents the number of total time steps.

4.2 Case study 1: unknown Gaussian process and
measurement noises

Generally, in the dynamic SE of the power system, the noise
statistics of process and measurement are usually assumed to be
normally distributed with zero means, their covariance matrices are
ξ = 10−6

I4 × 4 and R = 10−6
I4 × 4, respectively. However, for practical

power systems, the process noise and measurement noise may be
varied under the different operating conditions, yielding deviations
from nominal values. In such a scenario, the accurate information
of the noise statistics cannot be acquired. Thus, in this case study,
the noise statistics of process noise and measurement are assumed
unknown. The initial covariance matrices of process noise and
measurement noise are set as ξ = 10−5

I4 × 4 and R = 10−4
I4 × 4,

respectively.
In order to evaluate the performance of UKF, HEKF, UHF and

the proposed AUHF methods to this type of uncertainty, all of them
are utilised to estimate the dynamic states of generator 9 (G9).
Fig. 3 shows the estimated results of the components of the process
and measurement noise covariance matrices (due to the page
limitation, only the estimated results of q1 and r1 are presented,
where q1, r1 indicate the first element of system and measurement
noise covariance matrices, respectively). It can be observed that the
proposed innovation-based noise statistical estimator can revise the
covariance matrices timely, which is important for effectively
binding their adverse effects. The SE results of each discussed
method are displayed in Figs. 4 and 5. Fig. 6 further presents the
MAE results of each algorithm were calculated from 200 Monte–
Carlo simulations. The comparison of average estimation error Ex

results that were calculated from 200 Monte–Carlo simulations are
presented in Table 1. As can be seen from these SE results, the
performance of UKF is heavily affected by the mismatched
covariance matrices. The UHF and HEKF approaches outperform
UKF, as they can bind the estimation errors to some extent.
However, as UHF and HEKF cannot revise the mismatched initial
covariance matrices dynamically and adaptively update the
estimation covariance matrix responding under varying conditions;
thus their estimation errors are still large. In contrast, with the
utilisation of the dynamic correction technique, the proposed
AUHF achieves the best performance of the discussed methods,
which exhibits strong robustness to the noise uncertainties. 

4.3 Case study 2: unknown non-Gaussian process and
measurement noises

For a practical power system, the measurement noise associated
with PMUs may deviate from the Gaussian assumption, which has

Fig. 1௒ Algorithm 1: AUHF
 

Fig. 2௒ Single-line diagram of 10-machine 39-bus test system
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been demonstrated in [23, 43]. Therefore, in order to investigate
the robustness of each discussed method to the unknown non-
Gaussian process and measurement noises, the covariance matrices
of process noise and measurement noise are assumed to follow a
Gaussian mixture model with two mixture components, where the
2% data of the covariance matrices are contaminated by
ξ = 10−5

I4 × 4 and R = 10−5
I4 × 4 while the remaining 98% data are

set as the true covariance matrices ξ = 10−6
I4 × 4 and R = 10−6

I4 × 4.
The simulation results of this case are shown in Figs. 7–10. To

be specific, the estimated results of the components of process and
measurement noise covariance matrices are displayed in Fig. 7. It
is observed from this figure that the noise covariance matrices can
be tracked accurately. Figs. 8 and 9 display the comparison results
of the four discussed approaches in terms of estimating the states of
G9. In addition, the MAE results of each algorithm that were
calculated from 200 Monte–Carlo simulations is shown in Fig. 10.
Table 2 further provides the average estimation error Ex of each
method that was calculated from 200 Monte–Carlo simulations. As
can be seen from these test results, the performance of UKF is
degraded significantly, especially for the poor estimates of transient
voltage ed′. In contrast, the HEKF and UHF can achieve a slightly
better estimation result than UKF, due to their bounding the
uncertainties to a certain degree. However, due to HEKF and UHF
not being able to track the variations of noise covariance matrices
and the estimation error covariance matrix not being updated
corresponding to the different conditions, their estimation accuracy
is much lower than the proposed AUHF approach. 

To further demonstrate the performance of the proposed method
against non-Gaussian noises, the following scenario is considered:
where the covariance matrices of process noise are assumed to
follow a Gaussian mixture model with two mixture components,
where the 5% data of the covariance matrices are contaminated by
ξ = 10−5

I4 × 4 while the remaining 95% data are set as the true
covariance matrices ξ = 10−6

I4 × 4; a Laplace noise with zero mean
and scale 0.01 is added to the measurements. The average
estimation error Ex of the discussed approaches that were
calculated from 200 Monte–Carlo simulations is shown in Table 3.
It can be observed from these test results that due to the increased
degree of process noises deviate from nominal values and the
effects of Laplace measurement noises, the performance of UKF
degraded seriously and the average estimation error of it is very
large. HEKF and UHF can achieve slightly higher estimation
accuracy than UKF, which shows that the HEKF and UHF can
mitigate the adverse effects of non-Gaussian noises to some extent.
However, their incremental average estimation errors are still
significant. In contrast, the proposed AUHF method is still able to
effectively bind the estimation error caused by non-Gaussian noise,
yielding much better estimation results than the other approaches.

Fig. 3௒ Estimated results of the component of system noise covariance
matrix q1 and the component of measurement noise covariance matrix r1 for
case study 1

 

Fig. 4௒ Estimated results of δ, ω for G9 with unknown Gaussian process
and measurement noises

 

Fig. 5௒ Estimated results of eq′, ed′ for G9 with unknown Gaussian process
and measurement noises

 

Fig. 6௒ MAE results of each algorithm for G9 with unknown Gaussian
process and measurement noises

 
Table 1 Average estimation error Ex of G9 for case study 1
Methods δ ω eq′ ed′

UKF 0.0468 0.0151 0.0168 0.0278
HEKF 0.0410 0.0108 0.0118 0.0172
UHF 0.0313 0.0069 0.0079 0.0073
AUHF 0.0015 0.0018 0.0021 0.0020
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These comparisons further verify the superior performance of the
proposed method against unknown non-Gaussian noises. 

4.4 Case study 3: uncertain parameters of the state-space
model

Due to the aging processes, the changing machine temperature
during its operation and other reasons, some parameters that are not
changed by default may change over time, such as the reactance
and transient reactance [13]. Therefore, in order to assess the
robustness of the proposed AUHF method against the uncertain
parameters of state-space model, in this scenario, it is assumed that
there is 20% error in the d-axis and q-axis transient reactance,
which can be simulated by a Gaussian random variable with zero
mean and given error as standard deviation.

The simulation results of this scenario are displayed in
Figs. 11–13. To be specific, Fig. 11 shows the estimated results of δ
and ω for G9. Fig. 12 displays the estimated results of the
associated states eq′ and ed′. The MAE results of each discussed
method that were calculated from 200 Monte–Carlo simulations
are shown in Fig. 13. In addition, the average estimation error Ex of
each discussed approach was calculated from the 200 Monte–Carlo
simulations provided in Table 4. As is expected, due to UKF lack
of robustness, it cannot bind the uncertainties. Therefore, its
performance is degraded seriously, which has the largest average
SE error of all the discussed approaches. On the other hand, the
HEKF and UHF can mitigate the adverse impacts caused by the
uncertain parameters of the state-space model to a certain degree,

but their accuracy of SE is much lower than the proposed AUHF
method. In contrast, the AUHF method can effectively bound the
adverse effects of uncertainties and present reasonably good SE
results. For example, as can be seen in Fig. 12, it can be found that
the estimation errors of eq′ and ed′ by utilising the UKF, HEKF and
UHF approaches are increased significantly. However, the
estimation errors of the proposed AUHF are still much smaller than
the other three approaches. This is due to the fact that the proposed
AUHF method can adaptively update the estimation covariance
matrix to respond to the changing parameters. These comparison
results confirm the superior performance of the proposed AUHF
method against uncertain parameters of the state-space model. 

Fig. 7௒ Estimated results of the component of system noise covariance
matrix q1 and the component of measurement noise covariance matrix r1 for
case study 2

 

Fig. 8௒ Estimated results of δ, ω for G9 with the unknown non-Gaussian
process and measurement noises

 

Fig. 9௒ Estimated results of eq′, ed′ for G9 with the unknown non-Gaussian
process and measurement noises

 

Fig. 10௒ MAE results of each algorithm for G9 with the unknown non-
Gaussian process and measurement noises

 
Table 2 Average estimation error Ex of G9 for case study 2
Methods δ ω eq′ ed′

UKF 0.0117 0.0064 0.0054 0.0090
HEKF 0.0102 0.0067 0.0045 0.0072
UHF 0.0086 0.0048 0.0036 0.0052
AUHF 0.0010 0.0027 0.0023 0.0022

 

Table 3 Average estimation error Ex of G9 for case study 2
Methods δ ω eq′ ed′

UKF 0.1929 0.0249 0.0164 0.0892
HEKF 0.0317 0.0203 0.0140 0.0237
UHF 0.0237 0.0173 0.0107 0.0223
AUHF 0.0016 0.0015 0.0014 0.0028
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4.5 Case study 4: assessment of computational efficiency

For a real-time application, computing time is another paramount
factor of an algorithm. To estimate the states of power systems in
real time, estimation of the current time step needs to be completed
before the measurements of the next time instant arrive. In other
words, a dynamic SE approach must be enough fast to keep up
with the measurements data flow. Therefore, in order to validate
the applicability of the proposed AUHF approach for online
estimation with a PMU sampling rate of 50 samples per second, the
execution time of each discussed approach in the case studies 1–3
is investigated and compared. It has to be mentioned that all the
tests are implemented in the MATLAB environment using a
computer with Intel Core CPU i5-6500 @ 3.2 GHz and 8-GB
RAM.

The total computational time of all the discussed methods under
different cases is displayed in Fig. 14. It is worth pointing out that
the time reported here is implemented in Matlab and is not fully
optimised, which can be more efficient by C-based code and
further optimisation. From these comparisons, it can be observed
that the total execution time of AUHF is the largest under each case
study, followed by the HEKF, UHF, and UKF, which is expected
since it needs to dynamically revise the noise covariance matrices
and adaptively update the estimation covariance matrix.
Furthermore, the reason why the HEKF costs slightly more times is
that it involves the Jacobian computation. In addition, the UHF
method spends a little bit time than UKF, due to more equations.
More importantly, although the execution time of the AUHF is a
little bit longer, it is still much smaller than the PMU sampling

period (20 ms for 50 samples/s), which demonstrates that it can be
implemented in real-time.

5௑Conclusions
This study proposed an AUHF for power system dynamic SE
against various sources of uncertainties. It has the following
excellent features:

• the use of the innovation-based noise statistic estimator is able
to dynamically revise the covariance matrices of process noise
and measurement noise, which plays an important role in
bounding the adverse effects of the noise statistical
uncertainties;

• by utilising the H∞ criteria and unscented transform technique,
an innovation-based adaptive strategy was designed to
dynamically update the estimation error covariance matrix. As a
result, the estimation error caused by various uncertainties can
be bounded, and higher accuracy of SE can be achieved.

• extensive comparison results carried out on the IEEE 39-bus test
system under various operating conditions confirmed that the
proposed approach has much better robustness than other
alternatives, which is more suitable for practical
implementation.

Fig. 11௒ Estimated results of δ, ω for G9 with uncertain parameters of the
state-space model

 

Fig. 12௒ Estimated results of eq′, ed′ for G9 with uncertain parameters of the
state-space model

 

Fig. 13௒ MAE results of each algorithm for G9 with uncertain parameters
of the state-space model

 
Table 4 Average estimation error Ex of G9 for case study 3
Methods δ ω eq′ ed′

UKF 0.1658 0.0369 0.0579 0.0623
HEKF 0.1226 0.0241 0.0312 0.0567
UHF 0.0828 0.0189 0.0253 0.0486
AUHF 0.0097 0.0032 0.0117 0.0134

 

Fig. 14௒ Total execution time of each method in the case studies 1–3
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In addition, due to the excellent scalability of the proposed AUHF
method, it is convenient and meaningful to expand it to a more
generalised AUHF approach, which is left for our future work.
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