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Abstract

For nearly 20 years, techniques for animating the moton of a single object have been stu-
died. When this problem domain is extended 10 dynamic environments, which involve multiple
moving objects and unpredictable sccne events, the animation problem becomes more compli-
cated. There are three reasons for this increase in complexity. First, interactions between objects
and between objects and the environment increase the number of degrees of control in a motion.
Second, unpredictable environme:ai influences on the motion make ii impossible to pre-plan the
details of the motion, and the object must be able 1o rcact to these events when they occur. Third,

detailed control or pre-planning of a behavior makes it difficult to explore similar behaviors or

environments and makes the editing of the moton difficult.

Current animation research attempts to dal with the scene motion problem in the same way
that a single object’s motion is produced. This approach codes the motion in one predefined
sequence, which is hard to reuse for slightly different environments. Other approaches proposed
for this problem are the sensor-effector approach, rule-based approach, and predefined environ-

ment approach. These approaches, however, arc cither incomplete or iimited (o certain behaviors

or simple environments.

This thesis proposes a relation control model for the problems of animating motion in
dynamic environments. Using this approach, a scene is first decomposed into a set of relations,
each describing one environmental infiuence on the motion. These relations are modeled on a
one-source-one-responder basis. The relations are used as control primitives to build up a control
hierarchy that produces the desired behavior. Each ievel of the hierarchy represents one aspect of
behavior, starting from the selection of relations, and working up to relation interactions, elemen-

tary behavior patterns, and behavior sequences.

This thesis discusses relation definitions, analysis of relation classes, objects overlapping



among relations, and estimates of the minimum and maximum nuinber of relations required for
certain motions. The general modeling frame for relations and a four-level hierarchy for behaviors
is outlined in detail. Examples using both the frame modeling znd the hierarchical level structuring
are presented. Examples of using the system’s facilities have shown the potential of the relation

model for allowing the free expression of behaviors in an environment.

The relation model is an alternative and better approach for dealing with the special prob-
lems introduced by dynamic environmerts. It reduces the complexity of motion control by decom-
posing it into atomic units (relations) and providing a hierarchical mechanism for combining these
units. it directly links the environmental influences to the relations, each of which is only active
when a particular condition is sensed in the environment. The behavior hierarchy allows the sim-
ple editing of each level of the behavior, while exploring other similar behaviors and environ-
ments. As one of the first solutions to this problem, the relation model opens a new dimension for
the study of environmental issues, extending from the boundary of a single object’s motion to

dynamic environments.
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Chapter 1

Introduction

Computer animation is the study of natural computer models for representing the real and imaginary
dynamic world. Whether current computer technology can reproduce natural! objects and their motions has
been an open research problem and a great motivation for animation research. For a better view of anima-
tion research, the concept of computer animation and its potential applications in other closely related
fields, modeling and rendering, are first introduced. A brief discussion of the general problems in animation
and the research goals of this thesis are then prescnted. Following that, the chapters of the thesis are out-

lined.

1.1. What Is Computer Animation?

The initial fundamental theory of computer animation comes from a well known characteristic of
human vision called the persistence of vision. This refers to the retina’s ability to retain the image of an
object for a brief instant after the object has been moved. Thus, a series of still images presented in rapid
succession produces an illusion of motion. If the still images, alse called frames, depict the progressive
phases of a single movement, the eye will perceive them as one continuous flow of motion. Typically 24

frames/second are used in film, and 30 frames/second are used in video.

Computer animation uses computer based techniques 10 generate and manipulate sequences of mov-
ing images. A number of properties of a modeled object can be dynamically manipulated over a period of
time, and these variations are not merely restricted to physical movement. It could be a change of color,
light intensity, camera location, character emotion, or shape. For example, camera motion is manipulated
for flight simulation using a parameterized camera model. Moving scenery along a flight course is pro-
duced by changing the position and orientation of a viewer's eye. Another exampie involves the mouth
movement resulting from the process of shape deformation, based on the word being said and the continu-

ous transition between words. This deforming process requires more complicaied control than scaling or
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rotating the geometrical primitives of the mouth.

In practice, computer animation involves geometry, graphics rendering, motion control. video syn-
thesizers, image processing, computer assisted cartoon animation, special effects and three dimensipnal
image synthesis. Each part plays a role to complete or improve the quality of a motion sequence. The range
of operations can include camera projection, lighting effects, editing the pixels in an image, or gesmetric
subdivision of an object model. Thus, computer animation is the process of controlling a set of variable pro-
perties over time and the recording of the results of these changes as a sequence of visual images. The time

reference of animation, as the fourth control dimension, provides an essential clue to the understanding of

these changes.

Motivated by nature, some research in computer animation has focused on reproducing the motions
that occur in the real world. These include the swaying motion of a ree or trees in the wind, and the impact
effect of two cars colliding with each other. The motion can be naturally generated if it is fully understood.
In practice, the animation of natural motions has potential applications in the fields of education, scientific

visualization, spacecraft simulation, medical surgery, and others, where the realistic effects of motion is

essential.

In addition to the applications of realistic anis “i.32. compaer animation has been used in areas
where a sequence of moving images is required to illusraw the 2.4 .as of a dynamic process. Examples of
such applications are aigorithm animation and command animation in a graphical user interface. It can be
more intuitive to view the dynamic process of sorting an array or updating a tree structure by a sequence of
animated images. The semantics of a copy command can be identified from the icon of the copied material
moving towards its goal location, as animated in a graphical user interface. These examples show another

purpose of computer animation -- the illustration of dynamic control processes over time.



1.2. Principles and Techniques Used in Traditional Animation

From over 50 years of experience, the production of interesting motions has been reduced to a few
fundamental principles of animation. These include squash and stretch, overlapping action, ease in and ease
out, exaggeration, anticipation, and secondary action. These fundamentat principles have guided animators
to produce better motion over the past decades. Although more advanced animation techniques have since
been developed, these traditional principles are still suitable for producing better animation. Ore exampie
of using the basic principles in today’s computer animation is the Luxo Jr. animation [Lasseter87], pro-

duced by the afiimation group of Pixar in 1987.

The object (or person) being animated will undergo certain changes within its overall shape. For
example, squash and streich techniques [McQueen871, which represents the elasticity of an object, implies
a sense of weight, mass or other physical quantities. This motion effect can be easily supported by global
scales which keep the volume of the object constant throughout the scene. For example, if a sphere is scaled
by 0.5 unit along its height to imply a squashed ball smacking against the ground, an appropriate scale, say
1.5, units along its width would be necessary 1o keep the implied volume constant. An exampie of squash

and strewch is the motion sequence of a bouncing ball shown in Figure 1.1.

A

Figure 1.1 Squash and Stretch in Bouncing Ball




Overlapping action {McQueen87] is another traditional method to minimize the abrupt changes dur-
ing transitions between actions. A new action could start before the previous action is brought to a complete
stop. In effect, a continual flow and continuity between whole phases of actions are maintained by overlap-
ping. Consider a person falling down to the ground; it is natura! o keep the person’s arms and hair up for a

few frames while the falling action overlaps with the landing action.

Ease in and ease cut {[McQueen87] are usually used at the beginning or end of an acticn to "soften’
the transition between active and static states. A fluid action is greatly enhanced with a gradual speeding up
or slowing down of a motion. Also, ease in and ease out can visually simulate the internal physical state of

objects and external strength of a motion. A heavy object has a slower ease-in than a lighter one, and a ball

rolls much faster if it is pushed hard.

In addition, exaggeration, anticipation and secondary action [Lasseter87] refer to subte and natural
visual effects which help support the main action in a scene. For example, when the lamp, Luxo Jr., jumps
up for a hop, his whole body movement is exaggerated to give the feeling of realistic weight to his base.
When the lamp lands after a hop, the impact is shown in the exaggeraiion of his body movements. A zoom-
ing off action of a character is anticipated by its drawing back like a spring in the opposite direction of
motion. Someone sitting might have secondary actions such as tapping their tocs or drumming their fingers
against the arm of a chair. These classical principles used in 2D hand drawn animation are still used in

creating comprehensive computer generated animation in today’s systems.

In traditional animation, an animation sequence consists of a number of drawings, each of which is
produced by hand and recorded on film in the appropriate time order. The main parts of the motion are
prespecified in keyframes, and the rest of the frames are produced by linear or spline interpolation between
the keyframes. The key drawings do not make up an entire action, but they are sufficient to guide the
inbetweener from one position of the character or object being animated to anotiier. One example of shape

transition between two key positions is shown in Figure 1.2. Here a key-hole shape changes to a circle.



Figure 1.2 Shape Deformations
A color table has been used to produce limited animation through clever manipulation of colors on a
static display. Without actually moving any shapes (the shapes already exist ir the memory of the display
device), different versions of the object appear on each frame by changing the colors. Practically speaking,
color table animation is a low cost technique, but often completely satisfactory for many applications as
only the color content is changed over time. One example of color table animation is producing a sequence
of balls from the smallest one to the largest one, where the action is created by sequentially illuminating

shapes that are already defined.

Another technique used in traditional animation involves organizing an objcct’s_pans into layers
according to the dvnamic properties of the parts. For instance, 2 human figure can be divided into three
layers of head, body and arms, and background as shown in Figure 1.3. The division into layers can also be
applied between objects, for example using two layers, one for foreground and one for background. The
foreground separation from the complex and less movable background simplifies the description of the
motion. Two-dimensional animation with a three-dimensional background is a traditional approach that has
been used in producing Disney style cartoon animation. Decisions on inbetween keyframe interpolation at
different layers, such as using cubic spline interpolation for foreground and linear interpolation for back-
ground, increase production flexibility. On the other hand, layer animation restricts the motion dependency

between layers. For the previous example, a stong push on the shoulder may not only move the figure's



body and arms, but also pass the movement up to the head, or down to the legs, since the parts are con-

nected. If the head and body are on different layers as shown in Figure 1.3, this movement cannot be casily

propagated in a realistic way.

background

Figure 1.3 Multi-plane Animation

As the motion is mostly animated by hand, the use of conventional techniques cannot avoid several
drawbacks. First, the control of motion is limited to a very low level by hand drawing. Whether a realistic
motion can result or not depends on the animator’s drawing skills. In other words, the motion is only con-
trolled by detailed drawing of every frame. Second, motion is passively derived from an initial position to a
final goal. If a final condition is not met, the sequence of frames must be redrawn over and over again. Itis
painful to correct a final pose once the sequence has been completely drawn. Third, the range of motion is
bound by two dimensional hand drawing. This is the reason why early animation is dominated by 2D car-

toon motions using kinematic transformations.

The challenge to provide the animator with better tools in a flexible system environment has
motivated animation research from its beginning. Many advanced control techniques have been propesed
and developed in various systems. Among them, the detailed controls of motion are separated to multiple

levels of a control hierarchy. At the highest level, a motion can be issued by 2 command such as "walk to



the door” and the system fills in the control details required for such a motion. In contrast to forward driv-
ing, a motion can be inversely derived from a goal description to the initial control conditions. Not res-
tricted to 2D cartoon images as in waditional animation, realistic three dimensional images and motions arc
medeled using the techniques of dynamics, motion scripts, procedural description, and natural language. A
detailed discussion of the advanced research in this area is presented in Chapter 2, and some of the remain-

ing problems and research goals for this thesis are outlined in section 1.4.

1.3. The Roles of Modeling and Rendering in Animation

Computer generated motion sequences are basically processed by three consecutive steps: modeling,
motion control, and rendering. The modeling step builds the geomeical form of objects either by pro-
gramming or interactive modeling based on the primitive paris provided by the modeling system. Once
modeled, these objects are then manipulated to form a series of frames. one at each time step. Finally, the
sequential frames are rendered using light models and other visual effects and projected from the three

dimensional space to a two dimensional view plane.

The process of motion control relies on the other two parts: modeling and rendering. Motion control
manipulates the geometric form of objects defined by modeling, and the manipulated objects in each frame
are illuminated by rendering. However, modeling and rendering are not completely separate processes
from the motion control part; in many aspects, the concepts and techniques developed to control a motion
can be utilized in modeling and rendering. Examples of combined processes are the modeling of a fracial
mountain and the rendering of a camera model or color table. Since there is an overlap between these three
processes, an introduction 0 the basic models and well-known techniques used in modeling and rendering,

as well as their interaction with motion control, are briefly reviewed in the following subsections.



1.3.1. Modeling and Motion Control

Modeling techniques can be divided into a few classes: polygons, curves and <urfaces, fracuals, and
particles. These classes are identified by a set of common control properties, that determinc the possible
dynamic behavior produced by objects in the class. The polygon class is suitable for rcgularly shaped
objects such as bridges and buildings. Surface oriented objects like tori and teapots are best modeled by the

curve and surface class. Other natural phenomena like clouds, terrain, and fireworks are modeled by fractals

or particles, using stochastic processes.

Manipulations for polygon objects are restricted by the fact that the polygons must be flat. Usually
the motion of polygon objects is generated using a composition of scaling, rotating, translating, and shear-
ing transformation matrices. Two examples of polygon animation are Burtnyk's stickman figure and
Parke’s facial model. The stickman figure {Burtnyk76] is modeled by polygon segments which form parts
of the body, moving relative to each other at joints through a transformation hierarchy. The facial animation
by F. I. Parke, at the New York Institute of Technology [Lewis87, Parke75,Parke82], is based on a
hierarchical polygon network. Complex facial expressions such as smiling and frowning are controlled by
grouped parameters in the underlying polygon structures. However, generaily speaking, the possible mani-

pulations of polygon cbjects are very simple, predictable, and thus unsatisfactory in most realistic anima-

tions because of missing details.

A surface patch or a curve segment is essentially defined by a set of control points. When combining
several surfaces and curves, the first derivative continuity (and sometimes the second derivative), can be
adjusted at the common boundary in terms of a few related control points. The objects modeled in the curve
and surface class can be selectively modified either in a local area or at a global level. This property has
motivated research into providing flexible modeling control of curved objects using interactive modeling
systems. Among the various types, Bezier, Coons, and B-splines are the most commonly used curve and

surface types in practical models.



The particle and fractal modeling classes use stochastic processes to model random behavior. The
techniques developed in these two modeling classes can cover a broad range of nawral phenomena, such as
clouds, terrain, trees, and fire. Even though the two classes have very similar motivation for modeling

natural objects, the classes have different approaches to applying the stochastic process.

Particle systems, introduced by W. Reeves [Reeves83], is a method for modeling a class of fuzzy
objects such as fire, clouds, and water. These systems generate a cloud of primitive particles over a period
of time. These particles move and change form within the system, and eventally die from the system. All
changeable attributes of a particle, such as position, velocity, size, color, transparency, shape and lifetime,
are stochastically determined by mean values and maximum variations. One example of computing a
particle’s speed is

Speed = MeanSpeed + Rand() * VarSpeed
Particle systems build complex pictures from sets of simple, volume-filling primitives. For large numbers
of three-dimensional particles, a new rendering technique [Reeves85] based on approximate and probabilis-

tic algorithms has been proposed to reduce their rendering cost.

Fracal systems [Kajiya82, Kajiya83, Norton82] model natural objects by successively adding details
10 a simple primitive, such as triangles or quadrilaterals commonly used in two or three-dimensional frac-
wals. An overview of the combined deterministic and stochastic controls of some primitives and thewr
motions is provided by Foumnier et ai. [Foumier82], based on the theoretical work of Mandelbrot
[Mandelbrot75-Mandelbrot82]. Basically, the fractal approach recursively subdivides a primitive to pro-
duce more details by connecting the subpolygons from the midpoints of the sides, where the midpoints are
randomly varied within some limits. This subdivision idea has been applied to one-dimensional fractal
lines, two-dimensional fractal planes, three-dimensional fractal surfaces, and four-dimensional fractal
motions, such as a leaf in the wind. More complex models like a mountain or terrain can be similarly subdi-
vided from a coarse mesh of triangles or quadrilaterals. One advantage of using fractal modeling is that pos-

sibly unlimited amounts of object detail can be automatically generated based on few control parameters.
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However, fractal systems require computer time to recursively generate deuails.

Models that combine several different techniques have attracted research attention. Smith [Smith87]
discusses the common control properties of different techniques used for producing natural phenomena, in
particular tree-generating systems. The systems implemented by fractals, graftals, and particles are com-
pared with examples of tree generation. Unlike the geometric grammar used in a fractal system, a graftal
system uses a topological grammar to describe the growth pattern of trees, which in turn is interpreted

geometrically at drawing time. Similarly, Prusinkiewicz et al {Prusinkiewicz88] use L-systems for model-

ing plants.

Another example is the modeling system proposed by Barzel and Barr [Barzel88], where constraints
are applied to the modeling of objects. The system specifies the geometric constraints of "Point-to-Nail”,
“Point-to-Point", "Point-to-Path”, and "Orientation" as relations between primitive elements. To satisfy
these constraints, a set of dynamic forces are found and used to guide the motion of the elements. More-
over, the elements not only move towards their destinations defined by geometric constraints, but also
maintain positions and orientations which are constrained in a dynamic control environment. This enabics

the modeling task to assemble the elements of a rigid object by controliing the temporal behavior of the cle-

ments.

The use of mathematical constraints for the dynamic modeling of physically-based flexible models
[Platt88] is another combining technique. The properties of reaction constraints and augmented Lagrangian
constraints are used in the flexible models to simulate the effects of moldability and incompressibility.
These properties can characterize the dynamic behavior of flexible models when they interact with other
objects in the environment. These interactions can be very difficult 10 produce using traditional modeling
techniques. Platt’s approach allows the control of reaction constraints to guide flexible models along a path
using a reduced amount of computing time to detect object collisions, while augmented Lagrangian con-
straints can maintain the models with volume-preserving squashing and molding of 1affy-like substances.

By using these techniques, interesting scenes such as a sphere squashing a seat cushion and a compressible



11

gelatinous cube hitting a table have been modeled in a physically realistic way.

1.3.2. Rendering and Motion Control

Temporal anti-aliasing, aiso called motion blur, is a research topic involving rendering and motion
control. Motion blur is a visual effect caused by the object’s movement during the exposure time of a cam-
era and is often used 1o give the viewer the illusion of the motion when the cbject or camera moves rapidly.
A technique for modeling the effects of a lens and aperture in a virtual camera is presented by Potmesil and
Chakravarty {Potmesil82]. In this technique, motion blur is generated by convolving moving points with
the optical system transfer functions in terms of the path, object’s velocity, and exposure time of the cam-
era. Alternatively, the supersampling approach proposed by Korein and Badler [Korein83] uses multiple

intensity buffers, each one corresponding to a different point in time.

The animation of cameras [Karp90] introduces rendering issues 10 research in motion control; these
include camera motion planning, material and viewing style selection, visual continuity control, and multi-
ple viewport seutings. The setting of an additional viewport can depict the details of local interest from the
fmain viewport; the same event or simultaneous related events can be presented in two or more perspective
views. With a better organization of cameras, a motion can be assisted using some of the filmmaking tech-

niques and knowledge from the animation domain.

For each frame of a motion sequence, the rendering process usually requires considerable computing
time for realistic effects. The cost of realistic rendering can be waded off for various rendering details. If
using an interactive animation system, the sysiem can display objects as wireframes for interactive play-
back to minimize the high rendering cost, or all frames in an animation scquence can be rendered off-line

by another process.



1.4. The Problems and Research Goals

The essential research issue in compuler animation is not how to generate a motion. but how the
motion can be generated more naturally and easily. In traditional animation, a motion is generated by hand
drawing from one frame to the next and edited in a "draw-view-redraw” cycle. It is possible to produce an
animation frame by frame even using this primitive drawing method and its redrawing cycle. However,
drawing by hand, animators work in a very low level control environment in which they have to specify all
the contro! details in each frame of a motion. If a small positioning ertor is detected or a slight change is

made when reviewing a generated sequence, the sequence has io be redrawn.

This limited control environment is ever more difficult when animating a motion with soms
dangerous actions that can not be experienced, or when there is a high degree of intcraction between objects
that is not easy to predict. This difficulty can double or triple the number of the redrawing cycles. The addi-
tion of these two -- drawir; and redrawing, makes an animation task extremely expensive and time con-
suming.

Even though the drawing technique used in the traditional animation has been replaced by computer
techniques, limited control of animation to some degree stilt remains. To discuss the issues, we first look at
the main differences that have resulted from using today’s computer techniques. From the three drawbacks
outlined in section 1.2, the two dimensional drawing plane of traditional animation has been replaced by the
three dimensional modeling space; a sequence of drawn frames is now produced by a computer-oriented

control system; and the primitive drawing has becn extended to various hierarchical control levels.

A motion can be spec:” programming (or some other high-level control means such as using a
dynamic control package or a conuol algorithm) and edited in a “"program-execute-view-reprogram” cycle.
A motion generated by a computer can be edited through an interactive interface at run time. However, this
type of editing is currently limited to only a few predefined control parameters, which can not satisfy the

general needs of changing an existing motion.
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The motion generated by the programming and testing cycle can be expensive and time consuming.
The remaining difficulty mainly comes from the testing cycle, even though the cycle has changed from
hand drawing to computer programming. For instance, for a few seconds of animation, animators must pro-
gram all the control details for each frame of the motion. If some error occurs when reviewing the generated
motion, the motion needs to be reprogrammed, recompiled, and reexecuted. This trial and error cycle may
need to be repeated many times before preducing the desired motion. Especially for animating a complex
motion involving a large control degrees of freedom and dynamic interactions between moving objects, it is
not clear in the first place how the motion shculd be programmed. In this case, many tests are required to

match the correct motion image that an animator has in mind to the program code.

For the remaining problem, two solutions have been currently proposed: high-level languages and
interactive systems. High-level languages, including animation languages, natural languages, and constraint
languages, can reduce some of the burden of debugging an animation using a simplified descriptive
language tool. Without worrying about every low-level control detail, the user can better concentrate on the
problem and describe the problem at a level that is closer to our natural understanding. This means that
fewer errors will be made while describing the motion. On the other hand, the high-level specification abil-
ity is restricted by the assumptions made to support such a language, as well as the cost of designing the

language. The same test cycle remains for using the high-level languages.

The use of an interactive animation system provides a good testing cycle for varying the controi of a
motion. Using an interactive sysiem, the user can interactively edit the motion and view the change
instantly on the screen. This on-line testing environment reduces the length of the testing cycle "what you
see is what you get". However, the use of an interactive system restricts the motion that can be modeled
with the system. The ability to vary the motion is limited to a set of parameters or the use of a few com-
mands which automatically generate the motions previously defined by the system. In this case, the user has
little to say about how a motion behaves. The instant change ability provided by an interactive system is

mainly lisnited to a set of parameters, which varies the strength of similar behaviors. Some systems allow
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the user to interactively specify a set of keyframes for a moten. which ate then automatically interpolated

to a smooth motion by the systemn. This type of system needs the support of highly intcractive 3-D input

and output devices, which are currendy in the research stage.

This research proposes a new motion control model that uses neither a complete programming
language nor an interactive system limited to a few predefined motion cases. Instead, this new model com-
bines the two approaches to form a better system control environment. New control concepts and mechan-
isms are introduced in this environment, for specifying atomic controls and structuring these controls to
complex motions. Using the environment, the user can interactively compose a motion by coordinating the
interactions between objects, scheduling events and their responses, and defining the unique behavior
styles. With the ultimate goal of reducing the limitation of the control environment, especially the testing
cycle, this thesis proposes an alternative and better approach for generating dynamically changing motions,

in an intuitive, creative, and structured system control environment.

The intuitive control environment refers to the new concept of control introduced by the relation
model. This concept is based on the idea of decomposing the motion into primitive units. That is, instead of
generating a motion step by step in a sequential order, the possible elementary controls which could be used
in a motion are first described (by programming or scripting). Each of these primitive units matches our
natural understanding of simple control etfects. In this way, the task of describing an animation is
simplified into smaller problems. These elementary controls serve as the very basis for modeling complex
motion behaviors. At some higher level, possibly using an interactive environment, the user can freely build
some constraint network or tree structure among these elementary controls. The interactive system for

specifying the interconnectior: should be natural for the user.

The creative system control environment refers to a highly interactive eavironment. This environ-
ment should not restrict the control parameters to a predefined motion. Instead, the user’s passive role in
interactively repeating the motion should be changed to an active one. The user should be ablz to interac-

tively define and modify a motion both locally and globally. The system should not place any constraint on
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how a molici is generated, but should let the user use his or her creative ability to generate the desired
motion. The motion generated by the user may not be previously known to the system. A debugging

environment is supported 1o interactively model and edit the motions through the system’s interfaces.

The structured system control environment refers to the structures which can be modeied among the
elementary controls. These structures are used as the high level control mechanisms used to produce com-
plex behaviors. Each behavior may depend on the users, dynamic situations, and experimental purposes.
These different behaviors can be built from the structures modeied among the elementary controls used in
the motion. Thus, a structural control editor can be used to flexibly model and revise an object’s motion.
The use of this structure editor allows for exploring alternative behaviors, without even touching the

derailed cede.

The animation model proposed here is mainly aimed at the middie levels of the motion control
hierarchy. The lower levels of the hierarchy address the low level conwol detils, such as computing
inbetween frames given a set of keyframes, or computing the motion of an object given the forces and
torques that are acting on it. Towards this purpose, our model decomposes the control complexity of p:o-
gramming a complele motion into separate modules. Our model also suggests hierarchical structuring
mechanisms that can be used to produce complex motions. With these explicit structuring mechanisms, a
complex motion can be modeled with great ease. Different motion behaviors can be flexibly tested by vary-
ing the structures built in the motion. Cur model does not specify the low level control details of a motion,
but given the low level control procedures our model generates the input w these procedures that will pro-

duce the desired motion.
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1.5. Outline of the Thesis Chapters

The next chapter outlines animation techniques and systems based on them. Three research trends are
reviewed. These are: control approach, control facility, and control hierarchy. Control approach motivates
the research, control facility applies the ideas to technical details, and control hierarchy introduces possible
hierarchical structures when applying the ideas. Within each trend, two major groups have been developed
over the years. These include kinematics and physically-derived motion in the control approach, interactive
tools and programming languages in the conuol facility, and high level abstraction and multi-level inier-

faces in the control hierarchy. Besides the research review, specific problems in applying these techniques

are also presented.

Chapter 3 describes the problem of behavior animation, especially in the domain cf dynamic environ-
merits. The unsolved problems in current animation research motivates the new control model of behavior
animation presented in this thesis. In comparison with the new model, other approaches previously used for
the problems are summarized. These include the predefined sequence approach, sensor-effector approach,
rule-based approach, and predefined environment approach. In addition, the new relation model proposed

by this thesis is introduced, along with an example using the basic ideas in the model.

Chapter 4 defines the theoretical foundation of the relation model. The concepts of environments
(static and dynamic), an enabling condition, a response, a relation, directed graph of linked relations, and a
sequential behavior are formally defined. The special control properties of relations used in dynamic
environments are discussed. Relation mapping among the objects in a general environment, relation classes.
and the minimum and maximum number of relations which are required in a scene animation application

are also systematically outlined.

Chapter S presents the technical details of the relation model. These details are divided into two parts:
relation modeling and relation structuring. In the modeling part, a general relation frame is used for model-
ing the relations of various types. The frame consists of three control sections: control header, action body,

and finalization. The syntax rules for modeling a relation’s control properties and its behavior are described
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in detail. In the structuring part, a four-level relation composition hierarchy is proposed. These four levels
are: selective, state, pattern, and sequential. Details of the structuring of relations at each of the levels are
presented. Also, a general algorithm for processing the relations at each step of the animation is outlined,

together with the time complexity for running the algorithm.

Chapter 6 describes a prototype implementation of the relation model. The system architecture for
customizing the technical "skeleton” of the relation model and structuring its parts is outlined. Details of
using a textual, frame-like language for specifying the relation frame are presented. An interactive behavior
editor is introduced. Four components of the editor, for scene composition, pattern structuring, sequence
structuring, and scene rendering, are described in terms of external interfaces and internal data structures of

the sysiem.

Chapter 7 presents a set of dance examples in various room environments. These examples are incre-
mentally modeied from an environment consisting of only a few static objects to environments v .1 more
static and dynamic objects. Each of the examples is modeled from composing the environment to structur-
ing the relations which are necessary for modeling a desired behavior in the environment. The miudeling of

the relations and the steps in structuring the relations for each of the examples are described in detail.

Chapter 8 reviews the important ideas proposed in the relation control model, summarizes the major

contributions of the research, and comments on possible future work.



Chapter 2

Research Trends in Computer Animation

The diversity of animation research comes from the many aspects of this field, such as the object
types, movements, tasks, and behaviors. Take object types as one example. If an object is made of rigid
materials, the object’s motion can be produced using a hierarchical model with transformation matrices. If
an object is made of curved soft materials, the object’s motion can be generated by changing the control
vertices or skeletons of the surfaces used to model the object. This chapter discusses the control techniques
and systems developed in animation over the past decades in three groups. The basic ideas, research pro-
gress, major contributions, and typical techniques and systems in each of the groups are outlined. And the

important applications using these techniques are briefly reviewed.

2.1. Groups of Animation Research

To provide a clear view of animation research, the diversity of the research is divided into a few
problem domains, each of which covers a set of similar problems. For instance, physically derived control
is one of the domains which can be identified. In this domain, motion is controlled by using forces, torques,

mass, inertia, and other physical properties. Examples of physically derived motion are a rigid object falling

down stairs and a flag swinging in wind.

An animation system can use techniques developed in one or several problem domains, to achieve
the best control effect for an animation. A system can use dyramic control techniques to produce physically
realistic motion, or kinematic control techniques to get good feedback rate, or highly interactive 3-D conirol
devices to directly specify a motion. The combination of techniques used in a system may vary from one
system to another. However, the ultimate goal of a system is to offer the user an intuitive, creative, and
structured control environment. This environment offers good evaluation criteria for using techniques. Th-

is also why we include typical systems in the discussion of animation research.

18
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Our discussion of animation research in each problem domain covers the following aspects: the hasic
theories on problem solving, research progress, important contributions, and typical systems. Since the dis-
cussion clearly outlines the past research experience in each problem domain, further research on similar
problems can be better planned. Also, the discussion encourages the exchanging of ideas between different

domains.

Three problem domains have been identified by this research: control approach, control facility, and
control hierarchy. The domain of controi approach deals with the techriques used for controlling a motion.
The domain of conwol facility deals with the tocls used for specifying the control of an animation. The
domain of control hierarchy deals with the use of hierarchies for controlling complex motions. In each of
the three domains, two major groups emerged as alternative researches are the kinematics and physically
derived motion groups in control approach, interactive tols and programming languages groups in control

facility, and high-level abstraction and multi-level interfaces groups in control hierarchy.

Kinematics and physically derived motion are the two major control approaches used in animation,
where kinematics studies the conventional motion contro! using geometrical transformations and physically
derived motion (also called dynamics) studies the use of forces, torques, and other physical properties in an
animation. Interactive tools and programming languages appear as the two major approaches dealing with
the issue of how to specify the control of a motion. For the control hierarchies, high-level abstraction allows
convenient and automatic motion generation but lacks contro! over the details of the motion. On the other

hand, multi-level interfaces provide control at levels of progressively more detail.
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2.2. Kinematics vs. Physically Derived Motion

2.2.1. Kinematics

The Approach

Kinematics is the traditional animation approach in which motion is described by geometrical
transformations, such as rotation, scaling, and translation. No knowledge of the physical properties of the
object are used in motion control. This approach has been widely used in the control of keyframe anima-
tion. As the extremes of a motion or critical junctures in a motion sequence are explicitly specified by key-
frames, using geometrical transformations, in-between frames are generated by various interpolation

methods such as linear interpolation, parabolic interpolation, or cubic spline interpolation.

Linear interpolation is fairly straightforward and well suited for transforming the shape of an object.
1t may, however, produce some undesirable side effects which give the animation a mechanical look. The
main drawback of linear interpolation is the lack of smoothness in the resulting motion. Alternatively, para-
bolic interpolation maintains the smoothness of a motion path by its continuity in velocity, and cubic spline

interpolation generates a motion with continuity in acceleration.

The control of kinematics can be conducted either by forward Kinematics of inverse kinematics. For-
ward kinematics is the positioning of a point by iraversing the transformation matrices from some root node
outward to the leaves of a modeling tree. Inverse kinematics determines the rotation angles or the transla-
tion values from the end effectors located at a pasticular point in space. As kinematics conwols a motion
based on the computation of geon.ctrical transformations, the motion involved in a complex environment

can be difficult to produce using this technique.

Research Progress

In the early 1960s, the temporal behavior of interpolated points on a path was first noticed by anima-
tion researchers. The P-curve technique was introduced by Baecker [Baecker69] in his GENESYS system,

where a P-curve was used to define both the trajectory of the point and its location in time. This technique



was later extended to three ditnensions by Csuri [Csuri7S]. Fureher in this direction, the technique of using
moving point constraints between keyframes was developed by Recves {RecvesR1]). This technique allows
the specification of multipie paths and the speed of interpolation. which is used to generate a patch control
network. One example with three keyframes (k1, k2 and k3) and three inoving points (ml, m2 and m3)

which produces an interpolated path over equal time intervals is shown in Figure 2.1.

mi
m2

m3

Figure 2.1 In-betweening Using Moving Point Constraints

The use of kinematic positioning coupled with constraint specifications has been suggested by Badler
[Badler86] as a promising solution to complex animation tasks. By definition, a constraint includes spatial
regions, orientation zones, and time expressions. Multiple constraints on a body position or orientation may
be specified and optimally controlled with a constraint satisfaction system. Three-dimensional input devices
have been used for sositioning and manipulating three-dimensional objects and for visually establishing

multiple constraints and motion goals.

The difficulty in applying the keyframe approach to three-dimensional animation is due to the
description of thr.cc-dimensional keyframes. Interactive and programming descriptions of three-dimensional
keyframes are not natural, as the descriptions are based on the projected keyframes in two dimensions. In
order to obtain a realistic three-dimensional effect, the description may need to be refined many times. This

repeated cycle can be very costly and time consuming when the described keyframe becomes complex.
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Towards this problem, the idea of "keyed" parameters, which in turn conwol the positioning of
objects in the keyframes, has been developed. Once an appropriately parameterized model is created, the
parameters can be keyed and interpolated to produce an animation. One well-known example of parameter-

ized model is the facial animation created by Parke [Parke82].

System Application

GENESYS [Baecker69] is an early picture-driven animation system developed at MIT. In this sys-
tem, a motion can be described by using a set of predefined animation commands, and it can be adjusted in
terms of the dynamic behavior of the parameters on each P-curve path. For instance, the motion from one
comer of a room to another can be controlled by the parameters x(¢) and y(t) on each P-curve. The system

also provides the rhythm descriptions o vary the display ume or intervals between [rames.

SCANIMATE [Honey71b] is an analog animation system developed by Computer Image Corpora-
tion. This system allows the signals produced by a video synthesizer to be modified. An image can be
zoomed, shrunk, and rotated, and the color and intensity of the image can be easily modified. "he system
has been used for many commercials and films, including "2001: A Space Odyssey” and "Yellow Subma-
rine”. The CAESAR system [Honey71a] is similar to SCANIMATE, but with more operationai power. This
system allows a figure to be segmented into several parts, each of which can be separately controlled and
displayed on a separate portion of a TV screen. The inbetween frames can also be computed by the system.

This system has been used by the ABC, NBC, and CBS TV networks.

GRASS [DeFanti76], designed by the Computer Craphics Research Group at Ohio State University,
is a user-oriented real-time animation system. The system is described as "habitable” as it could be used by
a computer novice. The comrnands for changing intensity and moving a picture aiong a path are similar to
Baecker’s P-curve technique. The commands which change the vector list, such as translation, rotation, and

scaling, are performed by the hardware. Macros and conditional execution are also provided in GRASS.

BBOP, developed at the New York Institute of Technology [Stern83], is designed to animate
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articulated 3-d models by interpolating keyf{rame poses established during interactive sessions. The position
of the model at any one instant is determined solely by nested transformation matrices. EM
[Hanrahan87, Hanrahan87] is a system developed as an enhancement to BBOP to bring a form of pro-
grammed conuol to the keyframe approach. EM uses a geometric modeling language which allows
parametric control over the transformations at each joint in the model and over the geometry of the indivi-

dual body parts.

TWIXT [Gomez86], a three-dimensional event driven animation system, is designed by the Com-
puter Graphics Research Group of Ohio State University. In contrast to traditional keyframe interpolation
schemes, TWIXT constructs frames to capture the display parameters of the objects onto the tracks of
action. On these tracks events are defined whenever something happens. The values between events are

interpolated based on frame numbers. The union of activity on all tracks forms a frame instance.

2.2.2. Physically I' “rived Motion

The Approach

Physically derived motion applies physical laws to derive the object’s movement, instead of position-
ing the object by geometrical transformations. In this approach, a motion is calculated in terms of the
object’s mass and inertia, the appiied force and torque, and other physical effects of the environment. As a
result, the motion produced is physically more accurate, and appears more attractive and natural. There are
many types of motion, such as falling or reactine to collisions, which can result automatically from the
dynamics environment. In animation research, it has been a goal 1o establish the control techniques for
dynamics and use dynamics to provide a minimal user interface to the highly complex motion. Besides, the

dynamics approach is generally considered a useful tool in the fields of robotics and biomechanics.

Physically derived motion, also called dynamic control, takes into account a body’s mass and inertia
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as well as the various forces acting on the body. The dynamics equations of motion are uscd 10 relate the
acceleration of the mass (object) to the forces and/or torques acting upon it. A force produces translational
motion and a torque produces revolute motion. The well known Newtonian equation of motion, F =m*a,
is used to produce the motion of a particie. In this equation, F is the force vector acting on the point mass,
m. and a is the acceleration the mass experiences. Given the acceleration, the velocity and posiuon along
the path of motion can be founa. A torque is produced when a force acts at a point on the body other than
the center of mass. The basic equation for computing torque has the form T =p* f, where p(x.y.z) is the
point being acted on and f(fx.fy.fz) is the force applied 10 it. Similar to a force, a torque can be
represented as a 3-D vector in space. Moreover, other types of forces, such as gravity, spring, and damper,

can also be modeled and integrated into the dynamic environment when they are necessary.

Research Progress

A wide variety of dynamics formulas have been discovered since 1500. One example is Newton’s
three laws of motion. These law4 explain why objects move and the relationships which exist between force
and motion. The methods used for integrating individual forces in 3-D vector space are weli defined in phy-
sics. In computer animation, various forces and torques acting on and in the object’s body can be
abstracted to a few control types. For instance, the graviational force can be calculated automatucaily.
Interactions with the ground, other collisions, and joint limits can be modeled as springs and dampers. Such
internally controlled motion as muscles in animals or motors in robots can be interactively specified using

an interactive interface. In Figare 2.2, an example of the forces and torques acting on a body is presented.

The dynamics equations for articulated bodies including humans and animals have posed a rescarch
challenge for computer animation. An articulated body is modeled with rigid segments connected together
at joints capable of less than 6 degrees of freedom. Because of the interaction between connected segments,
the dynamics equations are coupled and must be solved as a system of equations, one equation for each
degree of freedom. Numerous formulations of the dynamics equation for rigid bodies have been defined.

Although derived from different methodologies, all the equations produce the same results. The most
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Figure 2.2 Forces and Torques Acting on the Body
significant equations include the Euler equations {[Wells69], the Gibbs-Appell formulation
(Horowitz83, Pars79, Wilhelms5a], the Armstrong recursive formulation [Armstrong79, Armstrong85], and

the Featherstone recursive formulation [Featherstone83].

The Euler equations are one of the more intitive formulations. These equations are defined by three
translational equations and three rotational equations. It is simple to solve these equations if the accelera-
tions are given and the forces and torques are desired. But, the equations do not properly deal with con-
straints at the joints. The Gibbs-Appeli equations are a non-recursive form that has O(n*) time complexity
for n degrees of freedom. The equations express the generalized force at each degree of freedom as a func-
tion of the mass distribution, acceleration, and velocity of all segments distal to this degree of freedom.
Thus, the method allows considerable flexibility in designing joints. The Armstrong recursive formula can
be thought of as an extension of the Euler equations with multiple segments. The method is built on tree
structures and is suitable for certain types of joints. The complexity of the method is linear in the number of
joints. The Featherstone method is a recursive linear dynamics formulation, and is flexible in the types of
joints. For the control of articulated figures, the recursive method can compute the motion more efficiently

than the independent equation method if the figure contains more than nine joint leveis.

As dynamics offers hope for more realistic, natural, and automatic motion control, the approach has
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also been introduced into kinematic models as a supplemental tool. Users may specify the motion of a lim-
ited subset of body joints and have the dynamics calculate appropriate motion for the rest. Inverse dynamics
is a common technique used for "goal directed motion”. The technique computes a motion starting from
the desired end place. The placement of an object’s end effect can be dealt with by pushing and pulling it
with external forces, which can be further utilized to generate the motion in between. Position constraints
can also be simulated by using appropriate forces holding the body in position. The mode! of a mass-spring

control system has been used to control the motion of legless figures such as snakes and worms.

The use of dynamic control for the problem of collision response between rigid objects is discussed
by Moore and Wilhelms [Moore88]. In this technigue, a collision is treated as a kinematic problem in terms
of the relative positions of objects in the environment. The response of arbitrary bodies after collision in the
environment is modeled using springs, and an analytical response algorithm for articulated rigid bodies is

also applied to conserve the linear and angular momentum of linked structures.

A general control model used for the three dimensional dynamic process of arbitrary rigid objects has
been proposed by Hahn {Hahn88]. This model takes into account various physical qualities such as elasti-
city, friction, mass, and moment of inertia to produce the dynamic interactions of rolling and sliding con-
tacts. Another technique used for the dynamic control of collision between rigid bodies [Baraff89] starts
from the problem of resting contact. The forces between systems of rigid bodies, cither in motion or station-

ary, with no-colliding contact are analytically formulated, which can then be modified to simulate the

motion of colliding bodies.

Spacetime constraints [Witkin88)] is a technique that combines both the what and how requiremenis
of a motion into the system of dynamic control equations. A motion can be described not only by what task
is required, such as "jump from here to there”, but by how the task should be performed, "jump hard or lit-
te”. These requirements are specified by coupling the constraint functions representing forces and posi-
tions over time to the equations of the object’s motion. The solution to this problem is to control the motion

which can satisfy the "what" constrairits with the "how" criteria optimized.



Another notable research direction in dynamic control is the modeling and animation of elastically
deformable materials, such as rubber, cloth, paper, and flexible metals. This .echnique employs elasticity
theory to construct differential equations that represent the shape and motnn of deformable materials when
they are subjected to applied forces, constraints and interactions with other objects. The models are active
as they are physically based; the descripticns of model shape and motion are unified o yield realistic

dynamics as well as realistic statics in a natural way.

System Application

Near-real-time control of human figure models has been produced using an interactive system at the
University of Alberta [Armstrong85]. The system has two main components: front end and dynamic
analysis. The front end component is responsible for displaying the human figure model and interacting
with the user. The dynamic analysis component manages a collection of motion processes. Efficient algo-
rithms for solving the equations of figure's motion have been used in a distributed computing environment

of multiple processors.

The Deva animation system [Wilhelms87], developed at the Berkeley Computer Graphics Laboratory
of the University of Califomia, is an experimental system for simulating the motion of articulated bodies
using the Gibbs-Appell formulation. In this system, the forces and torques are controlled in one of the five
states: direct dynamic control, relaxation, frozen, oriented, or hybrid k-D contrel. To ease the control com-
plexity, the grapiiical editor Virya is used with the system. With Virya, the user can design and store con-
wrolling functions for each degree of freedom of the body, as well as the state of each degree of freedom

over time.

The Manikin system [Forsey88] is used to explore dynamic manipulation of articulated bodies at the
University of Waterloo. This system uses dynamic analysis to address the traditional problems of inverse
kinematics, directed movement, and kinematic constraints. The system shows that it is possible to have

multiple forces, torques, goals, and constraints applied simultaneously. The key positions of articulated
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bodies are dynamically manipulated, and later interpolated by a spline function. The forces and torques

applied in a dynamic control are automatically derived by the system.

Other animation systems use dynamic control in addition to their kinematic models. The PODA ani-
mation system utilizes simple dynamics to simulate the forces applied by the legs. Thus, the acceleration of
a figure's body is manipulated by applying forces to produce coherent dynamic realism. The famous work
of mechanical ants and robots by the New York Institute of Technology also includes some dynamic
analysis in the control. These systems suggest the possible integration of dynamic control with kinematic

models, when only the appearance of realism is required but physical reality is not.

2.3. Interactive Tools vs. Language Programming

2.3.1. Interactive Tools

The Approach

Interactive techniques have attracted considerable attention in animation research due to their flexible
control capabilities. Basically, interactive control refers o motion control techniques that allow the user w0
design motions in realtime while watching the animation develop on the graphics screen. For example, the
"keyed" parameters of a model can be continuously modified by connecting their values to numeric input
devices. The values of parameters can be stored in a hierarchically structured database. When reading from

the database, parameter values between keyframes are automatically interpolated to produce the animation

sequence.

Research Progress

In using interactive control, three priinary tools for settng up interaction modes are used. These are
systems for relating input devices to parameters, menu facilities, and methods for programming based on
keyboard and function keys. In order to control parameters with input devices, inputs are modeled as vari-

ables whose numeric values are functions of physical devices. Statements connecting parameters to input
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devices are entered from the keyboard or read from a file. The assignment of inputs to devices can be
Acsigned to take advantage of characteristics of input devices, such as using the tablet to conuol the motion
of a whole body, and the joystick for an arm. Moreover, the construction of constrained inputs can be pro-
duced by connecting functions. A group of parameiers can be controlled by a single device, or a single

parameter’s value can be produced by a function combining tne input from several devices.

The menu system allows users io create their own system of menus to interface with the command
interpreter. The items in a menu can be displayed on the screen and selected using a tablet. A set of menus
can also be set up so the user can organize a network or hierarchy of menus. The user may either use a set

of default menus, or create and organize a set of individualized menus on a per-model, or per-user basis.

The alias facility of a system allows users to assign commands to one key oi a sequence of keys. For
instance, if a command contains a particularly long specification, it can bave an alias that is either an abbre-
viation, or a single key on the keyboard. The command interpreter responds 1o the abbreviation or key
exactly as if the fuli command had been given. More generally, partial commands and strings can also be

aliased. Sets of aliases can be saved and used for different control models.

Interactive techniques have generally been used in three conwol processes, which are keyframing,
path specification, and control functions. In keyframing, the user specifies keyframes, a sequence of posi-
tions and the times when they occur, and the computer interpolates between these positions to produce the
animation. Path specification involves interactively designating a coherent path over time. Often this path is
defined by using a tablet to pick positions in a displayed world. The description of the path represents the
entire motion of a particular object. The use of control functions defines the motion for each degree of free-
dom as a function of time versus position. Again, the functions are generally developed by designating

control points which define curves.

A number of experiments employing three-dimensional interactive devices have been conducied. One
of them that uses a field sequential stereoscopic display to facilitate the task of 3-D object pointing [Tak-

emura88] has been developed at ATR Communication Systems Research Laboratories. Three performance
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aspects of pointing interaction were measured. First, human performance in adjusting random dot siereo-
gram depth is measured to determine the possibility of pointing at a 3-D object. Second, user performance
in pointing ar 3-D objects using a mouse as an input device is measured. Third, user performance using a
3-D magnetic tracking input device is tested. These experiments show that the task of pointing at a 3-D
object on a field sequential stereoscopic display can be performed with relatively high accuracy, and the 3-

D magnetic tracking device has beiter performance than a 2-D input device like a mouse in terms of the

task completion time and error rate.

Another notable research result using a six-dimensional sensor for object placement was presented by
Ware [Ware88]. As the problem of placement is viewed as a six-dimensional operation, three for position
and three for orientation, a six-dimensional sensor called a bat is configured using a one button Six-
dimensional mouse. Both the ability 10 perceive the spatial relationship of objects in the three-dimensional
environment and possible user interactions to replace the objects in the environment using the bat are tested
on an IRIS workstation. A variety of interaction modes, such as translate x and all translations by x, y. and
z, can be sclected from 2 system menu. Even though the research did not directly address an animation

problem, the fundamental achievement of the research is 1o show the effective use of an interac.v: device

in the three dimensions.

The concept of virtual reality, which simulates the natural action in the reai space, has been rocently
introduced, and used in the research of space touring and interactive manipulation v.ithis a three-
dimensional environment. The reszarch group at University of Alberta {Green90] has reported some
interesting results on a virtual reality control environment using several interactive devices in onc system.
The system can interact v;'ith the user by both his/her eye and hand movements. During the interaction, the
user can view a three-dimensional image wearing a "EyePhone”, and ouch or grab an object displayed in
the "EyePhone" with his hand’s movement, where the movement is detected by the "DataGlove” worn on
the hand. Thus, the system provides the user with a virtual space in which the task of interactive control can

be performed by the joint efforts of a user’s eye and hand movements.
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System Application

TWEEN [Catmu!l79], designed at NYIT's Computer Graphics Laboratory, provides a means of gen-
erating and manipulating digital forms of character images. At any time, the user can review the in-
betweens and modify them with an electronic pen. The resuiting changes 0 other in-betweens are recalcu-

lated by the system.

PODA [Girard85], designed at Ohio State University, allows animators to controi the complex rela-
tionships between the motion of the body of a figure and the coordination of its legs. An interactive menu-
driven interface is used for both the incremental construction and behavioral control of animals having any
number of legs composed of any number of joints. An example of a 14 legged insect shown in its walking

cycle in PODA is given in Figure 2.3.

Figure 2.3 A 14 Legged Insect in Its Walking Cycle

The 3SPACE Digitizer System {Badler86], implemented at the University of Pennsylvania, makes
use of a six degree-of-freedom input device for manipulating and positioning three-dimensional objects.
With this device, the positioning of an articulated figure is handled by visually establishing multiple goals,
and then letting a straightforward tree-wraversal algorithm achieve simultaneous satisfaction of all con-
straints. An example of setting a goal for the lower torso and a goal for the hand of a figure is shown in Fig-

ure 2.4.

MUTAN (Multipie Track Animator) {Forin87], designed ai the University of Montreal, is an interac-
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Figure 2.4 Interactive Seuting of the Goals of the Lower Torso and the Hand

tive system for independently animating 3-D graphical objects. All animation constraints for a graphical
object are recorded on separate tracks. A set of commands which allow the animator to manipulate marks,
tracks and frames are defined. The system also includes the 3D HORIZON graphics editor and a 3D digitiz-

ing program.

2.3.2. Programming Language

The Approach

Animation languages provide a programming means for specifying and controlling animation. The
object modeling, temporal relationship of parts, and motion variations can be explicitly described by a
stream of textual instructions in a programming language. Using an animation language gives the animator
complete control over the process. The mouon concepts and processes can be expressed in terms of abstract
data types and procedural programming. Once a program is created, the rest of the process of producing the
animation is completely automatic. The programming approach is suitable for algorithmic control or when
the movement simulates 2 physical process. Certain sophisticated motions and some special motion cffects
can be animated with a slower programmed approach. One major disadvantage in using programming,

however, is its feedback cycle. The animator may not see the resulting motion until the program is complete
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and the full animation is rendered.

Research Progress

There are three subbranches which have emerged in the development of animation ianguages. These
are subroutine libraries, preprocessors, and complete languages. Subroutine libraries are used to supply
graphical functions that are added to a preexisting high-level language. The library can be simply linked to
the language at execution ume. Examples of subroutine libraries include the ACM Core system and the
Graphics Kemel System (GKS). These graphics packages support two and three dimensional transforma-
tions, perspective, drawing primitives, and control structures. A subroutine package can be both language

and device independent. The cost of using a subroutine package is fairly low. But the calling interface to

subroutines can be difficult tc use.

A graphics preprocessor is an extension to a compiler that permits the syntax of an existing language
to be augmented by new (graphics) commands. New graphical features are recognized and incorporated
into the language. The preprocessor program works prior to the interpreter or compiler, and its output,
which combines native language commands with expanded commands, is passed to the high-level language
compiler and compiled as usual. Through the use of this technique, most high-level structures of program-
ing, such as loops and condition flow, are supported by the host language. From the user’s viewpoint, a new
graphics language that fully incorporates an existing high-level language as well as graphics commands is
created. The new graphics language is executable if the graphics commands are precompiled to the host
language environment. Consequently, the technique has been widely used in the design of graphics
languages.

A complete programming language with original graphics syntax and semantics is yet another
approach to developing, manipulating, and displaying visual images. In this approach the expense of a
preprocessor is avoided, but considerable effort is required to produce a complete programming language.

Also, a new compiler is required for the language. In practice, few graphics languages have beew designed
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using this technique.

Language Application

A number of object-oriented and actor languages have been implemented to date. LOGO [Papen70],

developed at M.I.T., is a programming language primarily for children. Its most important concept is turtle

geometry which is based on polar-coordinate graphics.

ASAS [Reynolds78, Reynolds82], desis;1zd at the Architecture Machine Group, is an extension of the
Lisp programming environment. This language includes geometric objects, operators, parallel control
structures and other features to make it useful for computer graphics applications. The operators arc applied
to the objects under the control of medular programming structures. These structures, called actors, allow

parallelism, independence, and optionally, synchronization. Also, the extensibility of ASAS makes it grow

with each new application.

CINEMIRA [Thalmann84] is a high-level, three-dimensional animation language based on daua
abstraction. The language is an extension of the high-level Pascal language. It allows the animator to write
structured scripts by defining animated basic types, acior types and camera types. For instance, a wee model
can be described by a 3-D graphical type as follows:

Type TREE = figure( Var BRANCHES: TEXT;
NBRANCHES: INTEGER;

POSITION: VECTOR;
HEIGHT,LENGTH: REAL);

where BRANCHES is a file of kinds of branches, NBRANCHES is the number of branches, POSITION is
the position of the trunk, HEEIGHT is the height of the trunk, and LENGTH is the length of the branches.

Another example which shows the motion sequence of a bird could be specified as:

The class hierarchy of a modeling and display system [Grani86], designed at the University of North
Carolina, has been applied to the problems of constructing extremely complex geometric objects. The sys-
tem is defined in terms of the class facility of the C++ language. With the class hierarchy, the common ele-

ments of geometric procedures and methods are shared by as many classes as possible. An example of the
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Procedure DRAWBIRD( FRAME: INTEGER);
var FIRSTBIRD: BIRD;
begin
create FIRSTBIRD(FRAME RIGHTBODY ,RIGHTWING,C,D).
TRANSLATION(FIRSTBIRD,<<0.0,FRAME*BIRDSTEP>>.FIRSTBIRD);

draw FIRSTBIRD;
delete FIRSTBIRD;
end;

class hierarchy of the system is shown in Figure 2.5. Rather than develop a uniform primitive representa-

tion, the system accepts a diversity of geometry by building a framework which combines dissimilar

models in an orderly manner,

|
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Figure 2.5 The Class Hierarchy in the Modeling Portion

As it wms out, the production of three-dimensional animation using a graphical programmting
language is still time-consuming. The quality of the animation is closely tied with the programmer’s
knowledge and skill. In addition, the description of irregular or stochastic processes is not natural if

expressed by language statements. One altemative to these problems is to provide a programming interface
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to an interactive animation system. Examples can be drawn from current systems. EM, for instance, brings
a form of programmed contrul to the keyframe animation system BBOP. MIRANIM {Magnenat-
Thalmann85] is composed of an animator-oriented system called AMMEDIT and an animation sub-

language called CINEMIRA-2. As a result, more control facilities and less programming knowledge for

complex motions are both offered by the system.

An extended graphics language is influenced by the programming language it is based upon, and an
interactive system strongly relies on hardware facilities for controlling interaciion in realtime animation. In
between these two approaches, scripiing has been applied in an effort to provide a method of animation that
is more powerful than the interactive approach and not as difficult to work with as a full blown program-
ming language. A script language is usually easier t0 icarn and use than a generai-purpose programming

language and thus easier for people who are not experienced programmers.

2.4. High-level Abstraction vs. Multi-level Interfaces

2.4.1. High-level Abstraction

The Approach

One of the current research trends in animation is to provide the user with higher level control. By
providing a means where motion can be automatically controlled, much of the burden of generating detailed
motion descriptions is shifted from the animator to the animation software. The animator is able to com-
municate with the animation system in what amounts to a high-level interface for automatic motion syn-
thesis. For instance, a motion can be described as "walk towards door” or "open window", leaving the sys-
temn to find the appropriate low-level motion description. These high level control ideas have also been used

in the other fields, such as robotics and artificial intelligence.

The Development and Examples
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A natural language interface and a knowledge base which encodes an understanding of some simple
English verbs for motion has been proposed at the University of Pennsylvania [Badler89, Kalita89]. If it is
possible to input nawral language to an animation system, we can expect that particular actions can oe
modeled by adverbial modifications of the closest motion verb. It can also be expected that this system will
use English verbs to characterize more complex activities and, in particular, incorporate the mechanical

characteristics of the tasks in the lexical meanings of action verbs.

Facial animation is another examnle of high-level abstraction. A number of facial animation systems
have been created. The common characteristics of these systems are the high-level abstraction of the facial
parameter model. For : stance, in Parke’s sysiem [Parke82]}, the expressions and features of the face are
coni:olled by two classes of parameters: expression and conformation. Expression parameters are related o
the eyes and the mouth, and include such things as pupil dilation, eyelid opening, direction of vision, jaw
rotation, and width of the mouth. Conformation parameters include the color of the skin, the color of the
eyes, the neck dimensions, nose characteristics and so on. Using this model, each emotional expression,

like "shout" or "giggle", can be produced with a natural expression.

Various techniques have been develeped to convey high-level to low-level interpretation. These
include parameterization, finite state machines, command libraries, and hierarchies. Parametric motion con-
trol involves designating parametess whose values define the configuration or motion of the objects
modeled [Hanrahan87,Paike82]. Deciding the best way 10 structure the parameters that represent the
desired motion is one problem in using this technique. Finite state machines are appropriate for describing
and controlling repetitive cr coordinated motion {Tomov ic67, Zeltzer82]. The state changes rely only on the
current configuration of the model and the passage of lime. Command libraries provide a means of storing
low-level motion descriptions under high-level command names. However, combining commands may
send different directions o the same joints and produce nonsensical motion. Use of a hierarchical structure
which parses high-level commands through levels of progressively more detailed control hierarchy may

make combining commands less problematic and also reduce the number of commands that need to be
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stored. The possibility of combining these techniques into one system is very promising. One example is
Zelzer's skeleton animation system [Zeltzer81-Zeltizer83] which combines the use of command libraries

and a hierarchical interpreter with finite state machines.

2.4.2. Multi-level Interfaces

The Approach

The high-level abstraction of a motion is supporied by a number of low-level processes. The high-
level abstraction 2llows a natural, goal-directed communication between animators and animaiion software.
But, it lacks the control flexibility of the low-level motion processes. When the motion is complex, there
are many degrees of freedom between the model’s parts and between the model and the environment, which
need to be considered. The control properties and relations in motion need to be abstracted into levels. The

capability to select and manipulate tlie low-level processes needs to be supported.

A human body possesses some: 200 degrees of freedom controlled by about 400 different muscles. In
terms of a motion goal, the activity at each joint must be defined over the time interval of the motion.
Without a multiple level contro! scheme, the motion will be rigid and less flexible. For instance, how can
the "walk" style be varied in terms of the speed of pace, the swing style of the arms, and the walking dis-
tance between paces? The variation of "walk" style depends upon the walker’s physical state at the moment
(tired or full of energy) and the physical structure of the body (shorn or fat). These physical states and

geometrical conditions can be controlled through the levels of a structured parameter modei.

In order 1o control a complex motion, a large problem with many degrees of freedom needs to be
decomposed into a hierarchically coordinated set of smaller subproblems, each with only a few degrees of
freedom. Commands to the top level of such a system invoke the set of low-level subsystems necessary o
perform a particular motion sequence. Also, the variations of motion can be manipulated at different levels
of detail in the hierarchy. The idea of problem decomposition through hierarchical levels has been used as a

powerful organization principle. This organization promises a system which will be general, relatively easy



to understand and control, and extensible.

One example of using a control hierarchy in animation is the PODA animation system [Girard85].
The system uses a strategy in which the figure’s motion may be designed and manipulated at different lev-
cls of control. At the lowest level the animator may define and adjust the character of the movement cf the
legs and feet. At a higher level the animator may direct the coordination of the legs and control the overali
motion dynamics and path of the body. More examples of using the control hierarchy of animation will be

presented in Chapter S, in comparison to the control hierarchy proposed by this thesis research.

2.5. Approaches Using the Animation Techniques

Several animation approaches have applied the techniques developed in animation research in various
areas. These are described as the algorithmic approach, stochastic approach, learning approach, stimulus-
response approach, behavior rule approach, predefined environment approach, robotics research approach,
and parallel computing approach. Among them, the algorithmic approach refers 1o motion developed
through the use of a particular algorithm, possibly some mathematical expressions. The stochastic approach
is based on the use of random perturbations applied during modeling and motion, which are usually defined
by other methods. Examples using this approach are fractal mountains [Fournier82], particle systems
[Reeves83], and grass blowing in wind [Reeves85]. Learning refers to changing the motion depending upon
cxperience. By learning, objects can be controlled, as real creatures are, with the ability to think. Thus,

motion can be much more interesting and attractive, rather than mechanical-like.

The stimulus-response approach suggests that environmental interactions be taken into account dur-
ing motion generation. The motion of each object is determined not only by its own internal algorithm, but
by the behavior of other objects in the environment. Thus, the motion is usually triggered by the output
from a neural control network which takes input from the object’s sensors. Examples of this research are
the works of Braitenberg [Braitenberg84], Travers [Travers88). and Wilhelms {Wilhelms89]. Similar to the

stimulus-response approach, the behavior rule approach addresses the motion depending on other objects
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and the environment sensed by the moving object. But, rather than using the neural network, this approach
uses a set of behavior rules which determines when an action should be called. Examples of this approach
are Petworld [Coderre88] and Reynold's flock-like behavior [Reynolds87]. The predefined environment
approach suggests another solution to the behavior control problem in an cnvironment. This approach
makes the assumption that the environment is previously known. One optimal motion path is selected from
all other possible solutions computed from the environment. Animation research related to this approach

are the works of Ridsdale [Ridsdale88], Hahn [Hahn88), and Moore and Wilhelms [Moore88).

Similar researches have been done in the related fields of motion control - computer animation and
mechanical simulation in robotics. Examples include forward and inverse kinematics, motion trajectorics,
dynamics, collision detection, and path planning. The current state of the art is similar in both fields. For
instance, some robotics systems use "teaching by example” for control, where a robot arm is positioned at
certain points in a trajectory. The system remembers these positions, and generates a smooth motion path
through them. This method follows the same principle as keyframing or path specification in computer ani-

mation. Other robotics systems control the robot by a series of instructions, which corresponds to the

research of animation languages.

Another animation approach is to use the power of parallel processing to reduce the computational
load of an animation. This has the potential of providing a real-time motion control environment for many
types of interactive animation. One example is the FrameWorks animation system {Green87] that handles
the distribution of the motion computations over a network of workstations. This system wtilizes the inter-
frame dependencies over the network and supports the task level to parallelize an animation program over

the network. Towards the similar motivation, a survey on the current parallel architectures and algorithms

for graphics rendering is presented by Crow [Crow88].



Chapter 3

Problems Review and Research Outline

This chapter discusses the details of special control issues involved in the problem domain of scene
animation. Research motivations towards the identified scene problems are outlined. Prior to the proposal
of a new approach, previous approaches motivated in the similar research direction are reviewed and
evaluated. The basic ideas in our proposed relation control approach are briefly explained. And an example

using the relation control ideas is illustrated.

3.1. Review of Problems

The problem of motion specification for a single object has been studied for decades. However, the
problem of scene specification has not been thoroughly studied in current animation research. There are
many special control issues which are not involved in the motion of a single object, but are important for
motion in a scene environment. In the following subsections, these issues are discussed under three head-

ings: large problem size, implicit behavior structure, and indirect environmental control.

3.1.1. Problem Size -- Number of Degrees of Freedom

Animating a single object’s motion can be difficult due to the large number of degrees of freedom in
the object’s model. Examples of such models are trees with many branches and human figures with a large
number of body segments. An object modeled by a large number of control degrees of freedom (object
parts that can move) implies a large control problem. The task of animating an object with a large number
of degrees of freedom is more compiex than animating one with a simple model, such as a baill or box. To
further illustrace this point, consider a human figure model as an example. It can have over 200 degrees of
freedom when a fully defined articulated figure model is used. Imagine the case of animating such a realis-
tic figure's motion, which can require the specification of tens of thousands of values for few seconds of the

figure’s movements,

41



42

A large number of degrees of freedom in an object’'s model presents the first complexity layer of an
animation. This layer can not simply be removed or wansferred to another layer with less control complex-
ity, even though inverse control or goal-directed task animation in some sense can reduce some of the
difficulties. In general, the control-degree layer must be dealt with by an animator, in some clever and
efficient way. Above this layer, there are other layers which create additional control difficulties in anima-
tion. One of them is to guess the "correct” control values for a motion. Determining the "correct” result for
an ill-defined model introduces additional control degrees for an animation, especially when the model con-
tains a large number of controls. It may be possible to determine the "correct” control values for a motion,
but these values have little to do with a slightly different motion task or goal. Consider the human figure
example again. Since the figure has a number of coupled subparts, the movement of one subpart will be
influenced by the motion of the other connected subparts, directly or indirectly. The influence of these sub-
parts can result in a very complex situation. Imagine the cost and time required to guess the "correct” con-

trol values for the figure's motion, if the figure model is not well-defined and understood.

It is not impossible to guess an object’s motion once, but in general the trial and error approach can
be very expens:ve and time consuming. Current animation research has addressed this problem for a single
object’s motion, using well-defined object models. But, the research has not addressed the problem of scene
motion, the motion in the dynamic cnvironment with both static and dynamic objects, environment boun-
daries, and unpredictable scene events. A scene motion is an extension of a single object’s motion. In this

domain, an object’s motion is not isolated to the object itself, but dynamically influenced by the environ-

ment in a very complex control situation.

The additional control degrees introduced by an environment can be seen from the example of two
moving objects. When two objects are moving together, their motions are influenced by each other. One
aatural influence is the avoidance behavior between the two objects. While avoiding each other, one object
might change course, use a different speed, or perform different actions. One moving object can show

interest in the other, or have a dislike feeling to the other, whil¢ the other follows, copies, and disturbs the
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first one’s motion. During the animation, one object can also play a leading role and encourage or assist the
other object. As a result, the leading role may be discouraged, ignored, or rejected by the other object, or
influenced in another way. To effectively address the additional control complexity between the two mov-

ing objects, the additional degrees introduced by the other object should be modeled.

Here, we use the term "connection” to describe the influence of the environment or a motion. This
connection is different from a physical connection in an object’s model, because the connection does not
exist physically, but virally in a condition that each environmental influence on the motion must or may
satisfy. For the two moving objects example, if one of them stretches his arms, the other may respond to the
stretching in some way. The other object may need to avoid the siretched arms or perform a similar reac-
tion. The imponant question here is how the motion in a two-object environment can be controlled to

automaticaily lead to a natural and realistic animation.

When the two-object environment is extended to a more general environment with a boundary, obsta-
cles, other siatic and dynamic objects, and scene events, the motion of an object is further constrained by
the environment. In this case, :he mouon is not just affectied by the other object as in the two-object
ensironment, but by the boundary, obstacles, other static and dynamic objects, and scene events in general.
Each of them may contribute 1o the modeling of an object’s motion. Avoiding the possible collisions with
other objects in the environment is the first consideration. This consideration will vary an object’s motion
whenever a potential collision could occur. We refer 1o this as the environmental collision connection,

which is implicitly connected from the moving ebject to the other objects in the environment.

Besides the collision connection between a moving object and the environment, many other environ-
mental connections can be modeled. One example is the “connection” between a moving object and the
environment boundary. The object may be interested in one piece of the environment boundary but bored
with the other pieces. This interest may lead to a motion approaching and following along the special piece,
and a bored feeling may turn the moving object away from the other pieces. From the two-object environ-

ment to the general environment, the “connection” between the two objects is extended to every pair of
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moving objects and the other object in the environment, which forms a large control basis for the motion.

If the "connections” from a moving object to the environment are not explicily modeled, the task of
animating the motion must rely on guessing how a natura! scene motion should be. Even when the problem
we are discussing is shifted from a single object’s domain to a scene domain, the essential problem is the
same -- 10 animate a natural motion which is defined by a large control basis. So we can compare the scene
motion case 1o a single object’s motion by the pain of guessing the "correct” control values. As indicated
above, it can be very costly to guess the "correct” values in a human figure model. A similar situation

occurs when the motion is involved in the dynamic environment.

It may be argued that it is always possible 0 animate a scene motion according to onc predefined
sequence. Thus, the scene problem can be solved in the same way as for a single object, where the scene
motion is predefined by a sequence of actions. In this case, it doesn’t seem necessary to study the general
control issue of scene motion, such as how a motion can be influenced by the environment. There are two
answers for this argument. One is the additional difficulty in the dynamic environment of guessing the
"correct” control alues tor the motion. Blind guessing does not reduce or solve the additional degrees
introduced by the environment. Instead, these environmental degrees grow with the number of objects
involved, and the complexity of the motion 1o be modeled. The other answer is the wide range of environ-
mental behavior applications. In an environment, there are a large number of behaviors that can be
explored. If we do not understand how a motion is generally "connected” to the environment, each behavior
application requires a predefined sequence model. The motion once generated according to the model can

not be easily revised for a new sequence, showing a slightly changed behavior or the same behavior in a

slightly changed environment.
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3.1.2. Implicit Behavior Modeling Structure

An explicit structure is used to model the physical connections between the subparts in a single
object’s body. Realistic motion can easily be produced if such a structure is found. Examples using this
structure are the tree-like structure of articulated human figure, the subdivision structure of fractal
geometry, and the muscle groups used in facial expression animation. With an explicit structure, a single
object’s motion, even if it has a 'arge number of degrees of freedom, can be easily controlled. Structuring

an object’s motion i, one way of eliminating the blind guessing of the "correct” control values for a motion.

When an object is placed in an environment, the object’s motion is not just affected by its own
model, but also by the surrounding environment. Even though the "connection” from an environment to an
object does not physically exist, it can still be modeled to show the environment’s influence on an object’s
motion. The structure for modeling the environmental “connection” can be more dynamic than the structure
of a single object. To reduce the guessing in scene motion, this structure should be explicitly modeled to
effectively control the dynamic behavior of an object caused by the environment. Currently, this structure

is cither missing or implicitly used in scene motion applications.

Currenty, a predefined sequence model is used for animating the motion in an environment. The
sequence tells exactly what behavior an object should perform at every time step and ¢ :ry location along
the predefined path. The animation is produced from one action to the next, and from one object to the next,
where each motion is produced in its own control space. No "connections” between objects and between
objects and the environment are generally modeled and used in the motion control. Essentially, the same
control concept and mechanism used for a single object’s motion is used for the case of a scene motion.
This control approach can eventually match the motion to a predefined sequence, but it leaves the efforts to

the sequence itself as no environmental structures are modeled for the similar use in a different situation.

To illustrate this point, let’s consider dance motion in a room environment. Suppose the room
environment is surrounded by walls and with some chairs randomly placed in the room. In this room

environment, two dancers are practicing their favorite dances, together with the behavior of avoiding walls,
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chairs, and the other dancer in the room. Periodically, a dancer may decide to switch his dance pattern to a
new one, and show fear or dislike towards one of the chairs for some reason. To animate this dance
behavior in the room, a sequence is usually first predefined. Along the defined sequential path, the behavior
of avoiding the walls, chairs, and the other dancer is planned at precise times and locations. The behavior of
changing a dance pattemn is also precisely planned in the sequence. The fear or dislike behavior towards
one particular chair is modeled in the sequence when this chair appears on the path. Now, assume that for
some reason this behavior needs to be slightly changed, such as applying the fear or dislike behavier o
another chair, or switching the dance pattern during another time interval. This slight change requires the
redefinition of the sequence and the motion is reanimated from the beginning. There is no easy way to use
the previously modeled behavior in a slightly different manner. The same is true for a slight change in the
environment. For instance, if the chairs in the room are relocated. a new behavior sequence needs to be pro-
duced, recoded, recompiled, and retested to mawch the relocated objects. Notice that in this case the
behavior is not changed, but the environment has, which also changes the precise time and location

assumed in the previous sequential behavior.

3.1.3. Indirect Environment Control Effect

From the previous two subsections, we can see that additional control degrees for a scene motion are
introduced by the environment. This additional control complexity increases with the number of objects in
the environment and the behaviors modeled between these objects. The complexity also increases with
slight variations in the environment, as no behavioral structure is explicitly modeled in the motion. With the
missing environment structure, the animation of a predefined sequence relies on blind guessing to match the
motion to the planned sequence. To search for a solution, we first ask whether these problems can be han-
dled using the current techniques, which are aimed at providing a beuer motion control environment. For
this purpose, we look at three approaches for reducing the control complexity of animation. These are

motion representation and understanding [Esakov89, Fishwick88, Kalita89, Magnenat-Thalman83], three
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dimensional interactive environments [Chen88,Takemura88], and command driven systems

[Girard8S, Zeltzer82].

Motion representation and understanding provides the user with a high-level control interface, which
allows descriptions of knowledge, reasoning, level representations, and natural language. This approach
suggests a great improvement over previously existing movement representations, such as labanotation,
graphical languages, or robot control systems. One example of using a natural language interface is to
characterize complex activities by English verbs that can be further specified using adverbial modifications
of the motion verbs, such as a "more" or “less” modifier. Using the power of natural expression, this

approach is expected to describe subile movement, behavior, emotion, and intended movement.

Three dimensional interactive environments address the same problem, but suggest a different solu-
tion. This approach offers the user the ability to specify a motion directly using three dimensional interac-
tion. The environment can be supported using conventional two dimensional input devices or three dimen-
sional input devices. Research by Takemura {Takemura88] shows that a 3-D input device performs better
than the 2-D input device in terms of task completion time and error rate, where the experiments used both
a 2-D mouse and a 3-D magnetic tracking device. More research results on the use of three dimensional
input and output devices appear in the work of {Fisher86, Green90], which shows simple object manipula-

tions 2nd navigation in a three dimensional environment.

Command driven animation systems provide the user with a ready-to-use system with a limited set of
motion actions. These systems include facial expression, legged locomotion, or skeleton walking models.
Most of these systems are based on animating a single object having a large number of degrees of freedom.
Since the control details are handled by the system, the user does not need to worry about the control
details. These systems release users from the burden of a complex animation; but the users have little say

over how the motion will be performed, even though changing the parameters in the model is possible.

Overall, these three approaches reduce the control complexity by providing the user with a higher

level interface. However, underneath these interfaces, the difficulty of the detailed control of a motion still



rernains, including the additional control complexity introduced by a scene animation. The use of these

interfaces shifts the problem of animation complexity to the system, but does not solve the problem.

The control complexity of a scene animation not only comes from the objects which contain a large
control basis, but also from the environment where the motion is performed. The control degrees of frec-
dom introduced by the subparts of a single object are handled by using the subparts structure. But, for the
environment "connection” in a scene motion, no explicit structure has been modeled and used in the motion

control process. As the environmental structure of a scene motion is missing or implicitly used in a
predefined sequence, it is very difficult and expensive 0 mode! motions that behave independenty in

environments. This difficulty still exists even when the problem is shifted to the system underneath its

interface.

3.2. Research Motivations

To effectively address the problem of a scene motion, we need 10 study the special control issues
introduced by the environment and apply new concepts and mechanisms that can effectively dcal with this
problem. We have developed a new control model for the problem of scene animation that supporis an
intuitive, creative, and structural control environment for animation. The model should reduce the degrees
of freedom introduced by an environment by directly addressing the problem, extend the animator’s
efficiency for animating scene motions by suggesting general solutions to animation probiems, and explore
the wide range of dynamic behaviors by providing explicit behavioral structures.

Several basic issues in scene animation: are addressed by the new control model:

- a new control concept for sceiie animation cailed relauons,

- new control mechanisms based on this new concept,

- explicit control structures for using the new control mechanisms, and

-- a new behavior animation system using the new concept, mechanisms, and structures.
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The first step in effectively addressing the additional control complexity of a scene motion is to use
the new control concept. This concept is based on the general issue of how a moving object is connected to
the environment, rather than how an object moves along a predefined path. If the general issue for control-
ling a scene motion is well understood, the solution to a specific motion can easily be denived as one
specific application of this concept. On the other hand, if the solution to a specific motion sequence is pro-

duced, the solution can’t easily be generalized to other specific motions.

The generai control issue of a scene motion is first discussed from the environment side. The ques-
tions of how an environment restricts or stimulates a scene motion, and how a natural behavior is derived
from the environment are asked, based on a general environment control perspective. This perspective in
our study is based on an object-l0-object control concept, which decomposes the control of a scene motion
into the influence of each object in tiie environment. For example, consider a room environment with walls
and three randomly located chairs. The control of the motion in this environment can be decomposed into

the effict of each object in the room, such as each of the walls and the chairs.

From the object-to-object control concept, the influence of one object on a moving object can be
separately modeled. In this way, the question of how to animate a sequential behavior in an environment is
transferred to the question of how to organize the reactions between the objects in the environment. For the
previous room example, the minimal environmental influences on a motion in the room are the avoidance
behavior for each of the walls and chairs. Other alterr.ative behaviors involving each of the walls and chairs
can be similarly modeled from the object-to-object control concept. This concept defines the general view
of scene animation, and the use of a set of controls modeled from this concept produces a specific motion

application.

With the object-to-object control concept, two basic cotitrol issues need to be dealt with in a scene
animation. One is the modeling of object-to-object influences, and the other is the combination of these
influences to produce more complex behaviors. Modeling an object-to-object control is localized to two

objects, the object presenting an environmental “"connection™ and the object responding to the "connection”.
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One response to one environmental "connection” between the two objects is modeled as one influence con-
trol. The description of a control should directly state the two objects that are connected, how the "connec-
tion" is sensed and the behavior between the objects. This description can be as simple as a high level

language or a script language, based on the object-to-object control concept

For a specific motion behavior in an environment, a set of conwols should be selected and used 10
model the desired behavior. Behavior modeling is concerned with how to naturally integrate the controls
during the progress of 2 motion, such as how to select a control and link from one control to the next The
modeling of a desired behavior can be produced using a high-level control interface, where decomposed
controls from a scene environment are used as basic elements. One suggestion for such an interface is an
interactive environment. Within this environment, the user can directly express how a desired sequential

behavior should be modeled using a set of controls.

For an effective integration of controls, common structures used to link the controis are explicitly
outlined in the integrated behavior. These structures are logically separated in several hierarchical levels.
From the bottom level 1o the top level, simple behaviors are gradually integrated to a more complex and
responsive behavior. The use of these structures reduces the cost of guessing a “correct” scene mouon,
whose environmental structures are unknown or implicitly used. Both behavior creation and revision can
benefit from the use of structures, with simple structural editing such as an adding, deleting, or replacing of

controls. This allows a wide range of behavior applications to be produced from a set of controls.

A behavior animation system using the new control concept, mechanisms, and struciures proposed
for scene animation is outlined. The system has the ability to describe the controls of a scene motion based
on the object-10-object control concept, and integrate the set of controls to produce a desired environmental
behavior, through an explicit structure approach. The system allows the user 1o interaclively compose an
environment and compose the sequential behavior in the environment at the same time. The use of the sys-
tem motivates the general modeling of a scene motion, rather than a specific predefined path. The system

sets an example which extends the traditional boundary of a complete programming or commard interface
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for a predefined motion.

3.3. Previous Approaches

In the extended problem domain of scene motion, the problem is usually handled according to a
predefined sequence using the same control concept and mechanism as .ur a single object’s motion. This
predefined sequence model can not effectively handle the special control issues introduced by an environ-
ment, such as the large control basis, motion interactions, and dynamic changes in the environment and
behavior. The implicit control of these effects makes scene animation a very expensive and time consuming
task. The motion modeled by this approach is rigid. with litle adaptive ability for slightly different
environments and behaviors. These limitations are due to the lack of direct control and mechanisms which

can support such a motion.

In addition to the predefined sequence model, a few other approaches have been proposed for the
scene motion problem over the past decades. These are the sensor-effector approach, the rule-based
approach, and the predefined environment approach. Detailed discussions of these approaches are included
in the following subsections, which emphasize the inputs, outputs, and link structures between the two
ends. The issue of how effectively each approach handles the problems of scene animation is also dis-

cussed.

3.3.1. Sensor-effector Approach

The sensor-effector approach is one of the first approaches to the problem o’ -ene animation. This
approach presents a control model which consists of three parts -- sensors, effectors, and a neural network
which connects the sensors and effectors. Using this model, an object’s motion depends on how the
environment is sensed and how the sensed information is processed through the neural network. The output
signals from the network are used to trigger various effectors, which produce the object’s motion. The

approach proposed by this model simulates the way that humans and animals usually perform in the real
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world. The sensor-effector model is outlined in Figure 3.1.

neural network

sensors . — p effectors

| e

Figure 3.1 Sersor-effector Control Model

One important feature of the sensor-effector approach is its natural way simulating motion in an
environment. It starts by sensing the environment, then some functions of the sensed information are used
to trigger the object’s effectors. However, the use of the model depends on the understanding of real neural
networks. The efforts to explore such a potential have progressed over the years. But, it is still a research

problem to determine how a neural network is actually connected between the sensors and cffectors in a

moving object in the real world.

One significant work in the sensor-effector approach is Braitenberg’s beok "Vehicles: Experiments in
Synthetic Psychology" [Braitenberg84). This book explains the possibility of generating some interesting
motion behaviors, such as fear, aggression, love, selection, and foresight, in a simple environment of a
light source and a few vehicles. A vehicle is modeled by sensors, motors, and some connections between
them. Once a sensor detects the light source, the amount of sensed light is transmitted through the connec-
tions to motors which drive the object. Different behaviors can be produced by using direct or crossed con-
nections, or other complicated layer functions. In addition, both excitory and inhibitory responses can be
modeled in the connections. It is interesting to observe that different motion behaviors can be produced by

such a simple connective model, which are simulated by wires and mechanical parts in the experiments.

BrainWorks [Travers88] is a system based on the ideas of Braitenberg, in which an interactive graph-
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ics interface is used to construct a nervous system of a simple animal. Using this system, the user initially
starts with a brainless animal body shown as a turtle. which is later equipped with visual sensors and touch
bumpers and simple motors to drive the turtle in either position or orientation. The system allows the user
10 interactivel y select a nerve from a menu and a tool for connecting the nerve to the neural network. The
network can be gradually built by repeating the interactions. Once the network is built, the turtle can
display reasonable behavior, such as seeking or avoiding in an environment. One use of the system is to
provide an educational environment for grade-school children to learn the basic behavioral mechanisms and

autonomous animal motion through their own experience.

Inspired by the ideas of Braitenberg, Wiihelms [Wilhelms89] has proposed another interactive sys-
tem for the control of behavioral motions. This system provides the user with an interactive control
environment to map a connection network between sensdrs and effectors. Among the connections, various
nodes can be used to invert, emphasize, or apply a threshold to the signal. More sophisticated procedural
operations for other mappings can also be used. At the output end, the motion effectors are modeled by the
forces whose magnitude and direction are determined from the output of the network. A positive valued
effector produce- a pushing force and a negative valued effector produces a pulling force. Using this sys-
tem, the behavioral motion can automatically be produced by setting up the contro! network of transfer

nodes and letting the motion go. As a result, examples of the attraction and avoidance behaviors among

blocks have been produced.

3.3.2. Rule-based Approach

The rule-based approach is another solution to the problem of scene animation. In comparison with
the sensor-effector approach, this approach uses similar input and output parts, taking the sensed informa-
tion as its inputs and motor controls as its outputs. In between the inputs and outputs, this approach uses a
set of behavioral rules to map from the sensors to the motors, instead of the neural network used in the

sensor-effector approach. The control model of the rule-based approach, in terms of the three parts, is
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shown in Figure 3.2,

behavior rules

. | if FEAR is high -
° COMBAT e effectors

Figure 3.2 Rule-based Control Model

This approach uses a set of behavioral rules to determine the proper motion, such as when and what
actions should be produced. The choice for selecting actions can be represented in a decision tree, where
each branch contributes cne control alternative. The decision amongst the alternative branches ranks the

order of importance for selecting a control, depending on the weights and thresholds that are used by the

behavior rules.

The use of behavior rules offers a great challenge for modeling a broad range of motions which are
defined by a set of rules. But, the use of rules is less efficient due to the rule interpretation process, which
travels through the rule decision tree. This inefficiency becomes worse when a large set of rules is used.
Especially for the motion in a dynamic environment, it can be more difficult and less efficient to build and
process a large decision tree, which covers all the possible behaviors in the dynamic environment. Updating

a large decision tree due to a slight environment or behavior change can also be very difficult.

One noticeable work in the rule-based approach is Petworld [Coderreg8), based on a world of pets,
rocks, and trees which inhabit a two-dimensional environment. This research uses behavior rules to model
some simple animal behaviors in the environment. Within the environment pets can move onc unit along
their body orientations or change their body orientations to a new heading. Pets have a field of view about

90 degrees, can carry one rock at a time, eat trees as food sources, use rocks to build nests, attack each
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other, and die from starvation or wounds.

The pets’ motion is basically performed in a loop of see-think-do. From the information perceived
from the world, each pet has a chance to decide what to do before an action is performed. If more than two
possible actions are suggested at the decision time, the selection is made based on the ranking of the
actions. Conditionally, the one that has the most urgent priority is selected from the suggested actions. In
the Petworld system, a decision tree covering all possible actions is built, where each branch of the tree
represents one control alternative on the node conditions. For instance, at one node for the combating con-

dition, both "attack” and "run" control alternatives are represented as two branches.

The selection at each decision node is expressed by a few behavioral rules. One example of a

behavioral rule used at the combating node is:

Combating

1. If you have an available attack, and your damage is low, then recommend a tradeoff of attack-

ing and running away.
2. Otherwise, recommend running away from any visible pets.

The ranking of an action is computed according 1o each pet’s internal states such as HUNGER, FEAR,
INJURY, and others, which can be interactively varied through the system’s interface. In addition, several

decision strategies can be applied to construct the competitive, compromise, and displacement behaviors.

A model of flock-like behavior based on a centralized, noncolliding aggregate motion has been pro-
duced by Reynolds [Reynolds87]. In his study, the behavior of each bird in a group is simulated indepen-
dently according to the bird’s local perception of the dynamic environment. The model is first supplied with
a geometric form and the ability to fly; then th~ “xhaviors of a flock, such as avoiding a collision and the
urge to join the flock, are applied using the proper forces. The behaviors are abstracted to rules in the pre-
cedence order of collision avoidance, velocity matching, and flock centering. These behaviors model the

adility of individual birds to fly and participate in natural aimless flocking. The fiock’s motion can be
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directed by controlling a global position vector or a global direction vector for the flock. In general, the
grouping principles behind this behavior model can be uscd tor other kinds of aggregate motion, such as a

herd of land animals or a school of fish.

3.3.3. Predefined Environment Approach

Another approach to solving the problem of scene animation is based on the assumption of a
predefined environment. As the environment is previously known, a specific motion behavior in the
environment can be carefully planned. One typical application using this approach is to select one optimal
path in the environment, either the shortest path or the path using minimal energy for the moving object.
This minimal path is derived from all the alternatives starting from an initial position to a goal position in

the environment. The control model proposed by this approach is outlined in Figure 3.3.
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Figure 3.3 Predefined Environment Control Model

This approach has the potential to control a complex motion or motions in an environment, when the
environment is previcusly known. Based on the environment, a scene motion which satisfies certain
behavior crizeria can be carefully controlled. It is also possible that the controls of a scene motion can be
automatically produced by the animation system, when the user picks the initial and goal positions of a
motion from the environment and selects the behavior criteria from the system’s menu. However, the

motion produced by this approach depends on the predefined environment. There can be a high cost associ-
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ated with sligh:ly varying the environment by adding, deleting, or relocating objects in the environment.

Path planning in a static environment is the typical application of the predefined envirenment
approach. This application starts from a given static environment and then the motion (or motions) which
can navigate around the obstacles in the environment are planned. A well-known technique used for this
type of applications is the visibility graph for the obstacles in the environment According to this graph, a
collision-free minimum-cost path can be found from an initial position to a goal position, among the paths
depicted in the graph. The use of a path planning algorithm has been extended from the robotics applica-
tions to behavioral animation. The path planning approach focuses on converting the piecewise linear paths,
that current algorithms generate, to smooth paths and accommodating trajectory planning to the regions

predicted in both the space and time domains.

The work of Ridsdale [Ridsdr1e88] suggests the use of knowledge-based systems for planning the
motion in a stage environment. He proposes a system which has the ability o select an 2 gpropriate path
from position A 10 position B with respect to the other characters present on the stage. If another character
appears on the path initially selected between the two positions, rules are used to search for a "good”
revised path which can avoid the obstacle and also keep the same atiitude 1o the other characiirs on the
stage. This system uses a stage database which may be updated each time a character on the stage moves.
The updating process increases the control overhead of the animation. Also, examples shown by the system
are mainly the motions that are planned while only one object moves on the stage. The question of real-time
planning for a motion in a dynamic environment, where several objects move at the same time, still remains

unsolved.
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3.4. Proposed Relation Approach

To effectively address the problem of scene animation, a new control model is proposed. As in previ-
ous approaches, this model takes sensors as its input and cffectors as its output, where the sensors are based
on the four common sensing channels -- visual, smell, sound, and tactile. Behaviors are generated by pro-
cedural control primitives that produce natural movements for the object. These conuol primitives are
called relations and are individually triggered by the sensed information and combined to produce more
complex behaviors. This model is called the relation model and the approach using the model is called the

relatior: o2 proach. This model is illustrated in Figure 3.4.

relations

sequentilal
cehaviors

environmenta.

cbiects

Figure 3.4 Relation Control Model

The relation model is based on the new control concept of scene animation. Since the motion is
influenced by the environment in many ways, we propose that motion control should be decomposed into
primitives which individually address the relevant environmental influences. These influences should ke
modzled directly and individually, which supplies the necessary basis for further systematic contro! of these
influences. The decomposition of motion control is based on the object-to-object influence control concept,
which we call relation control. Each relation models one interaction between two objects, one presenting
the source and the other responding to the source. A relation shows one response which can dynamically
participate in a motion, depending on the behavior modeled by the relation. Using altemative relations, an

animation can easily be modified to produce another behavior or used in another slightly different environ-
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ment. A formal definition of a relation in the context of scene animation is given in Chapter 4.

We expect that the control environment supported by the relation model will provide an intuitive,
creative, and structured working space for scene animation, in a wide range of behavior applications.
Within this environment, the users have the ability to freely express their ideas on the behaviors in a scene
motion, rather than following the examples provided by a system. Several important steps in developing the

components of the relation model are:
[1] relaton definition and its theory

The first step in defining the relation control model is to precisely define the concepts of an
environment (static or dynamic), an environmental influence, and a relation. The diversity of
relations used in the problem domain of scene animation is divided into a few types. Based on
these types, common control properties of relations are defined and discussed. Other control
issues of relations, such as the environmental mapping and minimal and maximal uses of rela-
tions in general, are studied.

12] frame modeling of a relation

For the modeling of relations, a general relation frame is used. This frame includes both the
local control properties and the main reaction process of a relation, where the local properties
are separated into suitable property description and interactive control access. The main reac-
tion process describes the detailed control of the behavicr. The use of relaticn modeling frame
is independent of a specific #nguage or a specific control technique.

{31 structural synthesis of relations

Individual relations are structured while modeling a desired dynamic environmental behavior.
The structures that can be used among relations are organized in a relation synthesis hierarchy,
with multiple control levels. Each of the hierarchical levels addresses one important behavior
control aspect. The use of the hierarchy allows easy addition, deletion, and replacement of rela-
tions or other structuring mechanisms which can clearly outline the interconnection of the rela-
tions in a modeled behavior.

i4] behavior editing

The structures built in a scene motion are not just used for one behavior application, but for
exploring a wide range of behaviors in the environment by revising the built-in structures. The
structural interface through the levels of relation synthesis hierarchy directly supports the
behavior control aspects, which can be easily located for the behavior revision purposes. A
behavior revision can be directed either to the highest control level of natural behavior expres-
sion or 10 one of the lower levels localized for a partially connected behavior structure.



{S] prototype implementaticn of the relation model

Since the relation control approach introduces new concepts, mechanisms, and structures for
animating a scene motion, a prolotype implementation using the ideas of the relauon control
approach has been produced. This prototype implementation example is expected to provide an
intuitive, creative, and structured control environment, which completely differs from the tradi-
tional sequence approach directly copied from the problem domain of a single object. as well
as other proposed approaches. Both scene environments and dynamic environmental behaviors
can be composed on-line using the implemented system.

It is desirable 1o organize the system into various interface levels which can serve users with

different knowledge and experience using the relation control model. The naive user can issue

a named motion behavior recorded by the system. The user with limited relation knowledge

can experiment with one particular example modeled by the system to see how the behavior is

structured and learn to revise the behavior. The experienced user can directly use the system

- -lities to model a new behavior, by describing the new relations and structuring the relations
.. rthe lowest control level to the higher levels.

3.5. An Example Using the Reiatior Approach

Consider a walking motion in a room environment as an example using the relation approach. In this
example, the environment consists of alls, three chairs, and two persons, which are randomly placed in the
room. The behavior that we are interested in modeling is as foliows: Each of the persons initially selects a
heading for a walk. During a walk, a person tries 10 avoid the chairs randomly placed in the room, the saer
walking person, and the room boundaries. If a potential collision with one of the chairs, other person, and
room boundaries is detected, the person will take a necessary response to avoid the potential collision. One
of the persons may also express a dislike or fcar behavior while avoiding one of the chairs, which is

covered with a particular color or texture pattern or just identified by the person.

To model the above behavior by using relations, the motion is first decomposed into individual rela-
tions based on the object-to-object conuol concept. There are three basic object-to-object mappings in the
room environment, which are: wall-to-person, chair-to-person, and person-to-person. Here, a group of
objects with similar control properties, such as walls, chairs, and persons, is viewed as one object entity in
our relation decomposition scheme. Based on the three mappings, six relations are used to model a person’s

walking behavior in the room:

relation object-to-object: behavior contro!
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walkstep person_i-to-person_i:  move one walking step
avoidperson  person_j-to-person_i:  turn away from person_j
avoidwalls walls-to-persons: turn away from a too-close wall
avoidchairs chairs-to-persons: turn away from a too-close chair
dislikechair  chair_2-to-person_2:  reverse turn at chair_2

fearchair chair_3-to-person_1:  take few sieps back at chair_3

The "walkstep” relation is mapped from and to the same person, where the variable person_i denotes
one of the persons. "Avoidperson” is mapped from one person to the other, where the variables person_i
and person_j denote two distinct persons. "Avoidwalls” is mapped from the walls to the persons, where
both objects are groups. The control of this mapping is applied for each of the persons against each of the
walls in a double control loop. Similarly, "avoidchairs” is mapped from the chairs group to the persons
group. "Dislikechair" is mapped from chair_2 to person_2, where the index value 2 denotes the 2nd chair
and the 2nd person in the group. "Fearchair” is mapped from chair_3 to person_l, using a similar member-

indexing function.

Each relation models one simple behavior triggered by one environmental influence mapped between
the two related objects. Brief descriptions of the local influenc. nd »zhavicr of the above six relations are:
"walkstep” advances the current walking step to the next step. “Avoidperson” prixiuces a uming response
when the person views the other person coming too close to the path Here, :he relation is triggered by a
distance threshold mapped between the two walking persons. "Avoidwalls” turns the persor: when he/she is
coming too close (a distance influence) to one of the walls, to a new heading in which the next “vo walking
steps can be produced. "Avoidchairs” wrns the person away from a chair that is too close to the person.
"Dislikechair” produces a quick reverse tumn when person_2 is close to chair_2, where both the distance
threshold and chair_2 identification are the unique sources for the relation. "Fearchair” results in person_1

taking a few backward steps, when the person gets 100 close to chair_3.

Each relation performs a simple behavior triggered by an environmental infiuence. Whenever the
influence becomes active, the behavior is automatically triggered 1o its active response. For instance, the

relation "walkstep” is triggered active when the person is motivated to walk. This active relation produces a



simple walking behavior step by step at each motion control siep. Relauon "avoidwalls” is triggered acuve
if the distance from the person 1o one of the walls is below a threshold, which results in an active avoiding
behavior to lead the person heading away from the wall. When a person walks in the room, his/her motion
varies from one behavior to another, or to some complex behavior composed of several simple behaviors.
The change of behaviors in a scene motion depends on the dynamic influences of the environment and the
control structures imposed on the use of relations. Here, we assume that the relations are separately
modeled for each described behavior. Among these relations, certain control structures are also modeled in

a way described below for the desired walking behavior in the room.

Initially, each of the persons is seif motivaied 10 walk in the room. This motivation triggers the rela-
tion "walkstep" to its active response, which produces a walking siep at cach control step. This simple
walking behavior can be interrupted by the other relations, if a wall or a chair in the room appears too close
to the person. The interrupting structures among relations are modcled by the relation staie controls, whose
details are explained in Chapter 5. At this point, we assume that these interruptions arc possible and con-
sider only the effects produced by them. For instance, when the relation "avoidchairs” is triggered active by
its distance threshold for one of the chairs, the relation interrupis the active walking relation and blocks it
while avoiding the chair. This relation stays blocked unul the avoiding relation becomes inactive again.
Similar interrupting structures are modeled to block the acuve walking relation when a distance threshoid is

sensed from either one of the walls or the other person walking in the room.

The use of two alternative relations “"dislikechair” and "fearchair” requires additional interrupting
structures. Consider the case when the distance threshold is detected from the 2nd chair in the room, and
both relations "avoidchairs” and "dislikechair” are simultancously triggered active. At this ume, the relation
“dislikechair" interrupts not only the walking relation, but also the avoiding relation commonly used for all
the chairs in the room. It blocks the walking relation during the dislike behavior period and cancels the
active state of the common avoiding relation. After the blocking period, the walking relation is resumed to

its active behavior. A similar analysis can be produced for the “fearchair” relation. But. this time a different
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interrupting structure is used from the “fearchair” relation to the "avoidchairs” relation. When these two
relations are triggered active by a distance threshold from the 3rd chair to the 1st person, the relation "fear-
chair” blocks both of the relations during its fearing behavior. After that, both relations are recovered to
their active states. From there, the "avoidchairs” relation again blocks the walking relation during the period
of its normal chair-avoiding behavior. The possible interrupting structures among the relations during the
walking behavior in the room are depicted in Figure 3.5, where each structure can be dynamically intro-
duced at one instant in time during the motion. Here, the solid arrows predict the possible interactions
among the necessary relations used for the walking behavior and dashed arrows predict the interactions

among the alternative and necessary relations.

avoidwalls

Figure 3.5 Relations Interrupting Scheme While Walking in a Room

Note the potential changeability of a modeled behavior by using the relation control approach. This
ability can be illustrated from the above walking example. To vary the walking behavior described above,
we can simply map the "dislikechair” relation to another chais member, or extend the "fearchair” relation to
all the chairs in the room after a few times of chair-avoiding ¢xperience, or add, delete, and replace a rela-
tion, or structure a different type of interruption between the ©»:0 rslations. There are many ways 1o simply

change the behavior modeled in the walking motion, based on the decemposed relation controls.



Chapter 4

Theoretic Foundation of the Relation Model

This chapter gives the formal definitions of environments (both static and dynamic), a response, an
enabling condition, a relation, a directed graph of linked relations, and a sequential behavior. Four control
properties of relations are discussed, which are: optional, intcractive, selective, and variable structuring pro-
perties. The mapping of related objects in an environment, including both an individual and a group of
objects which may be environmentally mapped to one or more relations, is depicted. The diversity of rcla-
tions used for a scene animation is divided into a few class types, based on the differences between the
object sources. The use of relations in terms of the two extreme cases -- the minimum and maximum

numbers, is also analyzed.

4.1. Definitions of the Relation Model

There are two types of environments found in the problem domain of scene animation: static and
dynamic. A static environment is composed of several static objects, one moving object, and an arca res-
tricted by the environment boundary. A siatic environment may also involve several moving objects which
do not interact in either the time or space dimensions; each object can move either in its own space, or they
can move sequentially in the same space so their movements do not overlap in time. This special case, with

multiple moving objects whose motions are independent of one another, is viewed as the equivalent of one

moving object.

A dynamic environment is composed of several static objects, several moving objects, scene evenis
that dynamically occur in the environment (such as a sound), and an area restricted by the environment
boundary. The motions of objects are not isolated, but interact with one another at the same time and in the

same area. These motions can also interact with events occurring in the environment at uncertain tmes.

The use of static environments in scene animation forms a large and currently popular animasion

application domain. Stalic environments are similar to dynamic environments, but are easier to describe.
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Since there are a large number of important applications that can be handled by static environments, they
form an important subset of dynamic environments. Dynamic environments are applied to the more general

research issue of scene animation.
The definitions of the two environment types used in scene animation are:
Definition 1

A static environment (SE) is an environment composed of one moving object or several moving
objects whose motions are independent of one another, several static objects, and a bounded space;
whereas, a dynamic environment (DE) is an environment composed of several moving objects
whose motions are dependent on one another, several static objects, scene events, and a bounded

space. These two environment definitions can be symbolically described as:

SE = (M, {S;}.B) where j=1,...m, m20
DE = ({M,}. (S,). (Ec}. B) where i=1,..n, n22; j=1...m, m20;
k=1,..9, q20

where M or M, is a moving object, S, is a static object, E is an event, and B is a bounded space.

An example of a static environment is a room (the environment boundary) with a number of chairs
(the static objects) and one walking person (the moving object). An example of a dynamic environment is a
room with a number of chairs, several people walking around the room, and irregular occurrences of sound.
In this example, the walking persons are the moving objects and the sound occurrences are the cvenits
occurring in the room environment. The static objects and the environment boundary in this particular

example are the same as for the previous static example.

Since the problem domain of scene animation includes both static and dynamic environments, the
terms "static environment” and "dynamic environment” will be heavily used in the following discussions.
For simplicity, the word "environment” will be used 1o refer to static environments and the words "dynamic

environment” for dynamic environments.



An object’s motion in an environment can be decomposed into a set of control units based on
environmental influences. These influences can be traced to the environment boundary, obstacles, other
static and moving objects, and scene events. Each of these influences can be dynamically cnabled, disabled,
and systematically developed during a motion. While a motion progresses in the dynamic environment, the
motion can be dominated by one major influence at one time, but collectively conurolled by several
influences at another time. The active set of environmental influences can be dynamically convernted to dif-
ferent sets during a scene motion. For instance, when an object moves closer 10 a table, the object should
naturally respond to the close distance to avoid possibie collision with the table. At this time, the motion is
dominated by the table influence. Afier avoiding the table, the object may tumn its head to another passing
object and shortly stop or slow down its motion because of the occurrence of a sound. At this ume, the

motion is collectively controlied by both another passing object and a sound event.

From time to time, a scene motion can be dynamically formed by a varying sct of environmental
influences, including newly introduced ones, continuously performing ones, and other temporarily blocked
or resumed ones. If these dynamic influences can be properly controlled in a scene motion, a rich set of
desirable and natural motion behaviors can be modeled. One example using a variable set of influences is
the motion of roiling balls through a room environment. In this dynamic situauon, various avoiding
influences by the balls can be produced depending on what strategies and control mechanisms are used.
Each environmental influence produces a response. The formal concept of response with respect to the

domain of scene animation is defined as:

Definition 2

A response r is a primitive unit of a motion determined by one environmental :2fluence and can be
described by a wple (c,t,st,w) where ¢ is the control process that execuies the respense, ¢ is the

response duration, s¢ is the response strength, and w is the set of switches for determining subtle

differences in response.



67

One simple example of a response is a look response. The lock response is modeled by the control
process that generates the primitive motion of looking, the duration of the look, the strength of the look
(such as the head and body tuming speed and final orientition), and optional control based on other
cnvironmental conditions (see section 4.2 for examples). If we consider as our environment example a
room with chairs, iwo walking persons, and irregular sound events, the possible responses in this environ-
ment can be a walking step, a side step, a forward step, a backward step, a jump, a pause, a body turn, an

arm raise (left or right), a ncd, a clap, and a grab.

A response can be repeatedly used in a motion any number of times. During the motion, a response
could behave as a candidate ready to be triggered, a participant actively reacting in the motion control pro-
cess, an idle actor temporarily blocked by other responses, or an unselected candidate whose effective con-
trol status has been canceled from the current control session. These different reaction stages are character-
ized by the four control states: potential, active, suspended, and terminated. At any time, a response must
be in one of the four control states. A formal description of state control is included later in the relation

definition in this section.

The control process of a response can be locaily varied by its duration, strength, and switched
opuional control. A rcsponse’s duration deiermines the length of time that the response should last; a
response's strength determines the amount of the response; and a response’s optional control determines the

possible response adjustment based on other environmental conditions.

The active state of a response is triggered by an enabling condition sensed from the environment,
which can be based on an object's color, size, or velocity, or the distance to an object. The enabling condi-
tion of a response can be in general based on one or more sensory properties, such as the geometricai, phy-
sical, optical, or other properties, sensed through the visual, sound, smell, or tactile channel. The use of an
enabling condition explicitly describes the environmental "connection” between a response and an environ-
mental influence sensed in the environment. Here, the enabling condition is the source of the response, and

the response is the effect. The formal definition of the enabling condition of a response is:
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Definition 3

The enabling condition C, of a response is a Boolean expression involving one or more scnsory

properties of an object o, sensed from either the visual, sound, smell, or tactile channel.

For the previous room environment example, the possible enabling conditions in the environment are
Boolean expressions involving the size of a chair, the color of a chair, the distance to a chair, seeing a chair,
seeing a wall, seeing the other person, a specially textured surface of a wall, the walking speed of ihe other
person, the distance to the other person, and hearing the sound. These conditions can be sensed as the

sources upon which a number of responses can be triggered.

A relation provides a mapping from the object presenting an enabling condition to the object per-
forming the conditionally triggered response. Between the two related objects, a relation also describes the
details of how the condition is sensed and what response results from the sensing. For example, a "friendly”
relation can lead to a smile (response) from a moving object o the object identified as a friend; a "strange”
relation can result (2 ¢ slow motion response from the object appearing as a stranger. Besides the direct
control related from a perception 10 a reaction, a relation’s state is another control used to determine

whether a relation should be used or not in each dynamic environment situation.

A relation has three main parts: the source, the responder, and the response. A relauon’s source is the
object presenting the enabling condition, the responder is the object that performs the reaction triggered by
the enabling condition, and the response describes how the responding object changes. The source object of
a relation may be either a static or a moving object, while the responder object may only be a moving or a

dynamic object. A diagram illustrating the two related objects and the response mapped between ilie two

objects is shown in Figure 4.1.

The enabling condition plays an important role in connecting the parts of a relation, and thus is expli-
citly stated in a formal definition of a relation. Also, as relation state control addresses the important issue
of other indirect environmental influences on a relation, it is also explicitly expressed in the definition. The

formal definition of a relation is:
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.~ aresponder object

a response ---.  a source object

Figure 4.1 A Response Between the Two Related Objects

Definition 4

A relation R is a wple ( O, O,, C,, r, s ) where the 0, denotes the source object or a group of
similar source objects, O, denoics the responder object or a group of similar responder objects (the
source and the responder could be the same object), C, is the enabling condition sensed from the

source, r is the response that the responder performs, and s € (S poteniiat» Sactive s S suspended » S terminazed )

is the control state of the relazion. Each of these states respectively signals either the ready, active,

blocked, or terminated state of a relation.

One example of a relation in the room environment is the "avoid_chair” relation between a chair and
a walking person. In this relation, the chair is the source object, the walking person is the responder object,
a close distance to the chair is the enabling condition, and an avoiding primitive motion such as a wrning is
the response. Another example is the "like_person" relation between 1wo walking persons, where the liked
person is the source object, the other person is the responder object. In this example, the enabling condition

is that the liked person is in the other person’s sight, and the response is a raised arm showing the "like"”

fecling.

Among the four relation states, S orenials S actives S suspendeds and S minaiea» the active state is the only
one under which a relation can perform its response. Once a relation is switched to the active state, its
response process is actively controlled by the other control properties. such as response duration, response

strength, and the use of optional switches. These local control properties can be adjusted every time a
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relation is changed to the active state. Thus, an active relation cun be identified not only by its active state
but also by its local properuas at the active time. Symbolically. an aciive relation can be described as:

R( O:' Orv Co\ i Sacn'va)

r,—(c.l,- .Sf,',W‘)
where r; ‘ncluces the local couirol properties, ¢;,5¢;, and w;, at time § under the active state S 5.y, Of the

relation.

Moie than one relation can be active at any time; these form the set of active relations and can vary in
number. One such example is the walking motion in a room. While walking in the room, the person may
wave to » frienc passing by and approach a target at the same time. At another time the person may avoid a
roiling bail appearing in its path or follow the ball's motion instead. This dynamic change of a scene
motion caa te modeled by the use of relations, depending on both the conditional sensing and the state con-
trol of the reiations. The conditional sensing of a relation can cause a state transition of the relation itself,
but the state control of a relation in general involves more complex environmental control factors, such as

the use of control strategies, modeling of individual characters, and selections based on both urgent and per-

sonat reasons.

One of the reasons for a state transition is the interaction among relations. It is pos..:%:i¢ that a rel:tion
can be activated by another active relation, or an active reiation can be temporarily blocked <+ terminated
by another active relation. During the intraciion among relations, we can view these state transitions as
chains dynamically propagated from one relation to the next. A chain occurs when cne relation causes a
state transition in another relation, which causes further state transition in other relations. The relations
whose states are changed in a chain-like =ffect foria a directed graph of linked relations. The formal

definition of the graph is:

Definition §

Let G = (V,E) be a directed graph of linked relations, where the veriex set V = (R;} is the set of rela-

tions, and the direcied edge set E contains the set of {<R;, R j>) where R; controls the state
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transition of R,, such that

< Ra -R1> = R‘(Onoon‘ 'Con ris Snc!ivc) - RJ(OJ‘I 'O’I‘C°f‘ rj' S.)
where R, and R, refer 1o two distinct relations, <R, ,R, > refers 10 a state ransition from relation R;
to relation R, which occurs at some time during the motior, and s° denotes the new siate caused by

the interaction.

A directed graph of linked relations can be divided into a set of sequentially linked chains, each of
which forms a subgraph of a direcied graph. A sequentially linked chain is restricted to consecutive connec-
tions between two adjacent pairs, suchasRL = { --- , <R ,R;><R, . R;>, --- }. With one exception, a
relation cannot appear in more than one edge in a sequential chain. However, a cyclic chain can be formed
as one special type of sequentially linked chain, with the first and last relations being the same:
RL = {<R,,R,>....<R,.R,>). Each directed edge in a sequential chain or a graph represents a state

control issued at one instant during 2 motion.

Besides the graph of linked relations, individual relatiors can also participate independendy in a
motion. These relations are referred to 1s individual active relations. The reason for the state transition of an
individual relation is the control of its conditional sensing and response duration. A relation can participate
independently in a motion when its enabling condition becomes true; the active response of an individual
relation ends when its effective response duration is over or when its enabling condition becomes false.
Another reason for the state transition of an individual relation is due to relation scheduling control, which

is introduced in Chapter 5.

During the penod of a motion sequence (from the initial time Ty to the final time T,). groups of
linked relations and individual acrive relations can participate dynamicaily in the motion at each point in
time. If the itk time instant is denoted by T,, where T, satisfies the condition T(<T,;<T,, then we count the
groups of linked relations and individual active relations at each time instant T; and collect them from the
initial time T, to the final time T,. These cullected relations in a motion sequence describe the control com-

plexity of the motion.



The sequential behavior of a mouon can be stated as a collection of relations from the i-'ual ume Ty
to the final time T ,. The collection of relations includes both the groups of linked relations and individual
active relations, which participate in the motion at one time T, during the sequence period 179.7,]. An
individual relation is collected at time T, if the relation is triggered active at that time. A linked relation,
whose state is interacted by another relation, is collected at time T, if it is active at that time. Note that a
linked group (as a directed graph) may grow from one time to another. From these observations, we define
a sequential behavior as a collection of relations at each time T, during the motion, as follows:

Definition 6

Let A(T,) be the set of active relauons at time T, (including individual and linked active relations),
where T,<T,<T,. A sequenual behavior in the period [T¢,7,] is the collecuon of sets

A(To) A(T).....A(T,) at each sequential tme instant.

4.2. Special Control Properties of Relations

As stated in the previous section, a motion can be conwolled by a set of relations. The control of the
motion based on these relations is not merely a linear summation of the relations, but a more complicated
dynamic process. The complexity of controlling relatons to produce natural environmental behaviors can
be auributed to the changes in the environment, interactions between objects - events, varnous
motion habits, and personal preferences introduced by the object types in the en. .. Another reason
for the dynamic control of relations is the production of easily modifiable sequential behavior. Relations

should be dynamically organized in such a way as to resolve potential conflicis, cooperate for similar goals,

define individual behavior elements, and combine the elements to set desired behavior sequences.

One simple example showing the dynamic control process of relations is the motion of walking
towards an attractive target in an environment with a number of rolling balls. In this environment, the
motion towards the target may be delayed by avoiding the rolling balls, watching the balls, and following

one of the balls with a specially textured surface. The motion may also be temporarily paused to yield o
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fast passing balls, or compleicly replaced by a fotlowing reaction towards one attractive roiling ball.

This motion of the scene above can be decomposed into a set of relations which are mapped individu-
ally from the person to the environment boundary, 10 the rolling balls as either a group cr an individuai, and
to the attractive target. Modeled individually, these relations can be dynamically linked in such a way as lo
convey the desired behaviors. For instance, if each response towards the rolling balls, as described above, is
modeled by a relation, four relations named as "ball_delay”, "ball_watch”, "ball_follow", "ball_pause” can
be used 10 model these behaviors. These relations are dynamically applied o the motion, independent of
the ordering of the rolling balls and when the motion takes place. The relations involving the balls can also
compete dynamicaily with one another and cooperate with the relation "lowards the attractive target” during
thé motion.

The following is a discussion of relation control properties, especially the collective use of relations

in dynamic environments. Four control properties of relations are outlin: g, which are: optional. interactive,

selective, and variable structuring.

The optional property shows the subtle behavior differences of a response based on other environ-
mental conditions. Such a condition is no: the enabling condition that is directly specified in the relation.
Instead, it is an additional one sensed from the current local environment, such as a nearby obstacle to the
left. The influence of the other condition can be optionally controlled using switches. A switch is a variable
which has two control values: “on" and "off”. The “on" switch value adds the control to the response; the
“off" switch value turns off the additional control. The change in response could be a slighdy increased
velocity or a directed turning reaction away from the nearby obstacle. For instance, the response of turning
away from a wall could be a left turn if another obstacle is located on the right. The response of avoiding an

obstacle could be accelerated if another moving object is approaching quickly.

The interactive property describes possible state transitions of a relation that are caused by the other
relations. For example, a potential relation can become active, or an acdve relation can be temporarily

blocked or terminated from the current motion control session. Here, the state transition of a relation is



caused by the interaction of another active relation. Different state controls can be issued from an active

relation to other relations used in the current applicaton. Each of them causes one type of state transition

in the interacted relaton.

If any pair of states in the sWLe SeL (S pounnat» Sacuve » S auspended, S termunased? 18 cONsidered as a possible
state transition, we have nine such cases out of twelve as the three paired from the state S, mnana 10 Others

are not possibie. These nine possible state transitions are listed in the following.

potential -->  active
potential -->  suspended
potential -->  terminated
actve -->  potential
active -->  suspended
acuve -->  tlerminated
suspended -->  potenual
suspended -->  acuve
suspended  -->  terminated

These nine possible state transitions are analyzed using the two interaction forms: parallel and
sequential. Parallel interactions are those in which both interacting and interacted relations are active at
the same time, where the interacting relation issues a state control which changes the siate of the interacted
relation. Cn the other hand, in sequennal interactions only one reiation (either intcmcting or interacted) is

active after a state-control interaction.

A parallel interaction by definiiion causes the staie of the interacted relation to change from any state
to only the active state. The possible states for such a transition are potential and suspended. The transition
is caused by either activating a potential relation or rcleasing a blocked relation. The reason for issuing a
parallel interaction is to add other relations which can assist thc motion of the interacting relation. One
example is the parallel use of two relations "approach an attraciive target” and "look around”, where the

active looking reaction is added to the approaching relation which issues the parailel-form interaction.

Another control mechanism used for parallel interaction is a grouping, in which several relations
become active at one instant in time. The grouped relations are active at the same time, when the referenced

time is reached and their enabling conditions are true. This control mechanism is viewed as one special case
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of parallel-form interaction, where the role of interacting relation is replaced by the referenced time.
Deuailed discussion of the grouping control mechanism is presented in Chapter S. In the following diagram,
three parallel interactions, in terms of the two possible interactive state transitions (potential --> active,

suspended --> active) and one grouped state transition, are illustrated.

@ time_i

pctential -> active

zuspended -> active

a relation interaction a grouping structure

A sequential interaction by definition resulis in one of the relations, either interacting or interacted,
being active afier a state-conurol interaction. Here we only consider the case when the interacting relation
remains active after a sequential interaction. This means the state of interacted relation is converted o0 2
state other than the active one. There are seven such possible cases out of the nine if we ignore the two in
the previous situatior.. When scarching for the circumsiances in which 1o issue these scven transitions, we
focus on the final states produced by tie transiiions. There are three such final states (potential, suspended,
and tcrminated), which divide the seven transiticns into three groups. The transition group for the final
potential state is: active --> potential, suspended --> potential: the group for the final suspended state is:
potential --> suspended, active --> suspended: the group for the final terminated state is: potential --> ter-

rninated, active --> terminated, suspended --> terminated.

The transitions ieading to the final potential state are issued when the response of the interacted rela-
tion is disabled. Such a transition indicates that the interacted relation is not currently active as is the
interacting relation which was selected for more important reasons. When converted to the potential state,
the interacted relation is still a ready candidate for the next chance. The transitions leading to the final
suspended state are issued when the response of the interacted relation is blocked during the active period

of the interacting relation. Such a transition is issued when the two relations, interacting and interacted, are
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mutually exclusive or alternative relations. Only one of the relations (the interacting one in this case) should
be in the active state. Transitions leading 1o the terminated stale are issued when the response of the
interacted relation is no longer used in the current motion session. These transiuions cancel the relations
mapped to the dynamic object sources which have left the environment. These sources can be another

moving object or a scene event. When such a case is cenain, removing these unnecessary reladons can

speed up the process.

One example of a sequential interaction is the usc of two relations "avoid an obsiacle” and “approach
an auractive target”. Assume at some point in the motion, the relation "avoid an obstacle” becomes active
and it issues a state control to the relation “"approach an autractive target”. If the issued contol is one of the
transitions leading to the potential state, the relation “approach an auracuve target” is disabled, but can be
used in the next time step. The possible state transition of the relation depends on its state when the contro!
is issued. For instance, the state “-ansition "active --> potential” is produced if the approaching relauon is
previously in its active state. A similar case results in the other possible transitions. Alternatively, if the
issued control is one of the transitions leading to the final suspended state, the approaching relation is
blocked during the active duration of the avoiding relation. This blocked relaiion is recovered to its previ-
ous state when the blocked period is over. Also, if the issued control is one of the transitions leading (o the

final terminated state, the approaching relation is canceled from the current process as the warget has already

moved away from the scene environrment.

In addition to ihe interactions between two relauons, on: several relations can become active upon
the active state transition of another refation. This scheduling structure can be viewed on the whole as
another form of sequential interaction. Three time references of a relation’s active duration can be specificd:
the first time step, the last time step, an intermediate time step. If relations are scheduled at the first ime
step they become active when the referenced relation becomes active. A similar rule is used for the final
time step. For an intermediate time step, the scheduled relations become active at one time during the active

duration of the referenced relation. In the following diagram, these sequential interactions, in terms of the
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ones in the sequential interactions and three scheduling references, are illustrated.

|
0

to an inactive state
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a relation interaction a schedu“ng structure
The selective prc:- i+ of relations indicates the selection of one relation from a set of mutually

exclusive . ..ations. There are two reasons for such a selection: the order of imporiance and the order of per-
sonal preference. A sclection of either reason can be determined by the assigned priorities, which could be a
-ated value range or a specialiy assigned priority set. As the priorities are assigned by reascns, they can
-usny used to address one of the reasons. For instance, the personally assigned priorities can be used 0

model a changed mood or an accumulated time experience in response to the same environmental siation.

One exampie using the personally assigned priorities occurs when a moving object sees two attrac-
tive targets and hears a sound event at the same time. In this example, at least three relations "approach tar-
get 1", "approach target 2", and "pauseA at sound” become active by the enabling conditions sensed in the
environment. However, as the three relations are contradictory tc each other, the selection of one of the
relations is necessary, based on the usc cf personally assigned priorities. For instance, if the object is timid,
the object will likely stop at the sound and ignore the two attractive targeis. If the object is determined, the
object will continue approaching one of the targets and ignore the occurrence of sound. The selection of one

of the targets depends on the object’s personality.

Based on the priorities a-.igned either urgently or personally among 2 set of relations, a selection can
be conducted using one of two strategies: the one-step stralegy and the two-step strategy. The one-step stra-
tegy is applied directly to the priorities assigned to the relations, where the highest priority is selected.
Alternatively, the two-step strategy is applied in two steps: one is the selection of sensing channelis and the

other is the selection of assigned priorities in each channel. One possible order of sensing channels is deter-
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mined by the frequency of use of the channels, such as the visual. sound, smell, and wctile. Another way of
determining the order is based on the sensing ability of the object. whether the object is more sensilive 10
one channel than other channels. The use of the one-step strategy generally relies on the priorities assigned

urgently or personally among the relations.

The two-step strategy can be used to flexibly model the sensing ahility of an object in different
motion applications. The sensing ability in one channel may also be modeled at different levels o suit the
needs of dynamic behaviors. Note the behavior difference which can be easily modeled by changing the
order of twe channels or two assigned sensing abilities of one channel. For instance, an object modcicd
with good sight will always show ¢ n w,  pesponse; an object with an impaired hearing ability will

ignore the occurrence of sound.

The variable structuring ; - =~ » of relations explicitly describes the changeability of relation con-
tr. . scructures modeled among relations in a scene motion. This property is based on the previous three pro-
perties (optional, interactive, and selective) and explicidy states that the control structures modeled among
a set of relations are dynamically formed from one instant o the next during a2 motion. The other three [wo-

pertics are examples of this property.

In summary, the optional property shows the subtle behavior differences caused by the influence of
other environmental conditicns. These differences may lead to differently formed link structures of the rela-
tions. The interactive property shows the variable interaciive structures of linked relations which can be
formed during a motion. The selective property shows the selective use of relations based on one of the two
reasons. Each selected set of relations defines an unique basis from which further control structures can be
modeled accordingly. From the previous three properties, we obuin the variable structuring property of
relations due to subtle behavior differences, variable interactive structures of linked relations, and selective

use of relations based on different reasons.

The variable structuring property of relations clearly drav.» an important conceptual boundary

between the motion in 2 scene and the motion of 2 single object. In the motion of a sirgle object, the used
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control structure is derived from the subparts connection of the object, by either a set of equations or some
control constraints. This subpants-structure defined for a single object remains unchanged during the
motion. When a scene motion is modeled by relations, the structure among relations dynamically changes
while simulating the cooperative, negotiative, and communicative behavior in a dynamic environment. If
we compare these two structures (subparts-structure and relations-structure), we find the major difference
between the two is static versus dynamic structuring. The relations-structure used for a scene motion does
not remain constant during the motion, but dynamically varies as indicated by the variable structuring pro-

perty of relations. The question of how to explicitly build the dynamic structure of relations is one of the

issues investigated in this study.

4.3. Related Objects Mapping

The first step in using the relation control approach is to study the scene problem and decompose it
into a set of smaller problems, based on the object-to-object control concept. The solutions to the smaller
problems are called relations. Each relation is mapped to two-related objects -- the source object and the

responder object.

In dynamic environments, source objects can be both static and dynamic, while responder objects
must be dynamic and produce responses. Static objects in an environment include the environment boun-
dary, obstacles, and objects which temporarily appear static in the environment. Dynamic objects include
moving objects, scene events, and objects whose properties, such as color, change during a motion. The
concept of object is used for both an individual and a group of objects, which have similar properties.
Examples of group objects are a school of fish, a flock of birds, and a herd of animais. With the use of this
coneept, the two object parts of a relation (source and responder) can be mapped to either an individual

obiect or a group of objects.

There are four possible mappings based on whether the source and responder are individuals or

groups. These types are one-to-one, one-lo-a-group, a-group-lo-one, and a-group-to-a-group. The four



80

mapping types are illustrated in Figure 4.2.
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Figure 4.2 Four Mapping Types of a Relation

The one-to-one type maps from an individual relation source to an individual responder. Examples of
this mapping are relations such as a person opens a door, a dog jumps ithrough a nng, and a fish swims
around in a tank. In these examples, the person, dog, and fish are the responders whose motions are
enabled by the door, ring, and tank. In this type of relation, one responder is controlled by one individual
source. The one-to-one mapping is removed from the control environment if the source object is removed
from the scene. If the source object is a moving object or a scene event, the relation may be dynamically
swilched among the set of relation states depending on how the source changes. For the scene event, the
relation may become active when the event occurs in the environment, suspended when the event tem-

porarily disappears, and potential after some period of time.

A-group-to-one type maps a group of relation s.;ces to an individual responder. Examples of this
mapping include a shark attacking a school of fish, a dog chasing after balloons, or an actress shak.. < hands

with an gudience. In these examples, the school of fish, balloons, and audience are the soure
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influence the individual objects of a shark, dog, and actress. Any member in the source group may become
the active source of the relation, which may switch the relation from the potential state to the active state.
The active members in the source group can vary from one subset to another during the relation’s active
state. For the relation of a shark attacking a school of fish, the shark may actively respond to one of the fish

in the center of the group or it may be infiuenced by several fish at the edge of the group.

There are a few ways of simplifying the control of a relation when the source is a group of objects.
First, the definition of the relation should be independent of the group size. At the relation description level,
a source group should be simply addressed by the group name, similar to an individual. The detailed control
on the source group parnt should be automatically supplied by the relation control system. Second, the
members of the source group can be indexed by a variable, which can be varied while modeling a behavior.
Third, the summary control over the entire source group can be »pecified in a separate section of a relation’s

description.

The one-to-a-group lype maps an individual relation source to a group of responders. Examples of
this mapping are the responses of a school of fish to a piece of food, and a flock of birds flying around an
obstacle. In these examples, a group of responders such as a school of fish and a flock of birds are
influenced by a single source, such as a piece of food or an obstacle. As with the source group, none of the
members in the responder group is active when the relation is in the potential state, and somic or all of the
members are active when the relation is switched to the active state. The :  _apers which are active can
vary from cne instant to the next. For example, a fish heading away from the food at one moment may not

be aware of it, and the birds that have passed the obstacle no longer need to actively respond to it.

In a group response, the response of each group member depends not only on its own sensing ability,
but also on the conditions of the other group members. One example is the blocked condition temporarily
formed by other group members in front of an object. The source can be missed if other members of the
group are currently within the line of sight. The temporary members situation might change the nature of

one's sensis: ;. This process may be expensive, as it needs to go through every other group member at every
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time interval.

A miss may also occur when a member is moving in the opposite direction to the source, in which
case the source i; not sensed by the member. On the other hand, the detection of the source by a group
member does not necessarily mean that the member can perform the related response. Sometimes the
response may be delayed or withdrawn due to the present group conditions. An example occurs when a fish

sees a piece of food, but can not approach the food since another fish already has it.

A-group-to-a-group type maps a group of relation sources to a group of responders. The source group
can be the same group as the responder group, or a totally unrelated group. Examples of this mapping can
be drawn from the schooling behavior of fish, collision among balloons, and games involving two teams.
At first, this mapping may be considered an additioﬁ to the two mappings of one 10 a group and a group o
one. However, this is not the case. The mapping of a-group-to-a-group can introduce more complex control
sitzations among the group members than the case when there is only one group included in a relation. For
instance, if the two parts of a relation are mapped to the same group (such as a school of fish), one member
in the group may play both roles of source and responder at the same time. At another time this member
may have only the source role, or the responder role. The roles of source and responder can be mapped io
various subsets of the group. The process of identifying the member roles of a group may be required at

each control interval, as each member role may change over lime.

In any environment, the two-parts mapping of rclations is not only isolated to individual relauons.
An object in one relation, either an individual or a group, may be involved in other relations as either a
source or responder. An object mapped to multiple relations with the same or different roles is called an
overlapped object. Relations can be propagated in a long chain through the overlapped objects. Out of the
possible overlapping forms, three pattemns are used as primitives to form other complex overlapping pat-
terns. These are the patterns of one-in-one-out, many-in-one-out, and one-in-many-out, based on how one
object can be mapped to multiple relations. The many-in-many-out case is formed from the combination of

the two patterns of many-in-one-out and one-in-many-out. The overlapping forms of the three primitive
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patterns are illustrated in Figure 4.3.

one-in-one-out

® one-in—-many-out
ore relat..n one relaticn ./
many-in—one—out cne relation several relatlons

several relations one relation

Figure 4.3 Three Primitive Pattemns Amcng Overlapped Relations

The first pattern, one-in-one-out, represents the simple overlapping case where one object plays two
roles in two relations, the responder role in one and source role in the other. A relation is represented by a
linked line which points from the source to the responder. The responder is called the in part and the source
the out part. The object in a one-in-one-out role actually plays the respender role in one relation and the
source role in the other (in and out here only refer to the representation of a relation). When an object plays
interchanging roles, a similar behavior such as the following can be propagated from the first relation to the
second. Assuming there is a chain of single overlapped relations in this format, it can be expected that a
behavior wave will be propagated from the source object of the first relation to the responder object of the

last relation, through all the overlappea objects in between.

The second pattern, many-in-one-out, represents the overlapping case where one object plays the
responder roles of multiple relations and the source role of another relation. In this pattern, the possible pro-
pagated behaviors from multiple relations to the same object can be either integrated from the responses of
multiple sources or selected from one of the responses, depending upon the priorities assigned to the rela-
tions. One example of this mapping form occurs when a moving cbject avoids an obstacle, waves to a

friend passing by, and attempts to match another moving object’s speed. At the same time, the object may
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be regarded as an attractive target by anothcr moving object in the environment. In general, if the over-

lapped object is a group object, the same control principles used for the group members of a relation should

be applied to each of the relations.

The third pattem, one-in-many-out, occurs when one aobject plays the responder role in one relation
and source roles in multiple relations. As from the same overlapped object, these multiple-out relations can
be automatically linked in some structure by the relation control system. Through this structure, the
dynamic control information about the shared source object can be directly passed on to the responders. For
instance, the relations mapped to a moving object, as the sources, should be terminated when the object
moves away from the environment. Another example is a scene event which is mapped as the sources of
multiple relations. These relations are accordingly triggered active or inactive upon the appearance or disap-

pearance of the event, such as a series of sound. The event may be caused by an enabling condition as a

source.

If the shared source object is a group of objects, the active members mapped to each of the over-
lapped relations can vary from time to time. At any time, the members of the source group could be
involved in all, some, or none of the overlapped relations. Also, different member sets of the source group
can be dynamically formed for each of the active overlapping relations. To facilitate the process, some

structure for linking the active member set of each relation can be maintained for the relative change of the

members.

4.4. Class Types of Relations

To simplify the discussion « ¥ individual relations, the diversity of relations in the domain of scene
animation can be divided intc ; o types. This division is based on the type of the source (such as the
static source and dynamic sourc -~ .- common control properties of relations can be discussed based on

these few source types. On . - -...:s, the control strategies and mechanisms in dealing with the properties

of each type can be introdin .,
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Relation sources are initially divided into two basic types: static and dynamic. Static sources include
objects which present static enabling conditions in the environment, such as the environment boundary,
obstacles, and other static objects. Dynamic sources include objects which present variable enabling condi-
tions in the environment. There are two types of dynamic sources: moving objects and scene events. In
addition the scene events type can b= divided into four event types, which are entering, exiting, updating,
and passing.

The entering event type includes events which introduce new relation sources into the environment;
the exiting event type includes events which remove existing relation sources from the environment; the
updating event type includes events which modify existing relation sources in the environment; and the
passing event type includes events which bring new relation sources into the environment, but only for a
very short period. In summary, the class division of relation types is shown in Figure 4.4. Further discus-

sion of these class types is provided in the following subsecuons.

relations

7N

moving objects sgene evepts
entering updating
(into the scene) (change the scene)
passing
exiting (a short event)

(leave the scene)

Figure 4.4 Class Division of Relation Types
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4.4.1. Static Relation Sources

Relations with static sources are initially selected when the environment is composed. These include
the relations for avoiding environment boundaries, avoiding obstacles, bouncing off an obstacle, and
approaching a static target. If the environment is modified by adding or deleting various static objects, the
relations responding i¢ the updated environment can be partially reselected according to the updated
objects. For static sources, both mandatory and optional responses can be modeled. Mandatory responses
perform the necessary reaction to the static sources and optional responses perform the secondary reaction

or an additional behavior effect.

In a dynamic environment, a static object may temporarily become a moving object and a moving
object may temporarily become static. For instance, a static table moves if it is pushed and a rolling bail
will eventually stop. These examples show that the initial classification of source type can change during a

motion. This change may lead to the use of a different control mechanism.

4.4.2. Dynamic Relation Sources

This relation class covers two types of dynamic sources: moving objects and scene events. Moving
objects can cause the value of an enabling condition to change as they move. These changes include the dis-
tance from the object to the source, the speed of the source, and certain actions performed by the source.
Scene events affect the values of enabling conditions when the events appear and disappear in the environ-

ment. Examples of these events include lightning, sound, and a flock of passing oirds.
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4.4.2.1. Moving Object Sources

If the source object of a relation is a moving object, it can also play the responder role in another rela-
tion. When an object plays both the source and responder roles in two different relations, we call these two
overlapped relations. One special case of two overlapped relations is the mapping of two objects, where
each of them plays one interchanged role (sou..< or responder) in one of the relations. In other words, the
source object in the original relation plays the responder role in the other overlapped relation, and vice
versa. Thus, one object’s response will reflectively depend on the other object’s response according to the

overlapped relations. This reflective relation mapping can be generally extended to iwo object groups,

which are illustrated in Figure 4.5.

Figure 4.5 Reflective Responses Between Two Object Groups

Two different control mechanisms are used for reflective responses. One is synchronized control and
the other is asynchronized control. Synchronized conirol updates the two objects’ responses at the same
time based on the conditions sensed from the other object. The previous object states are recorded prior to
the control of the two reflected responses, in order for the objects to sense and respond at the same time.
Asynchronized control produces each reflecied object’s response in turn. This means only one object’s
response is updated at a time. This is supported by keeping a global variable to identify the current respond-
ing object. In a mutually reflective scheme, two independent relations between two moving objects can

eventually be merged into one relation that both agree with, or to a new relation that both are happy about.
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4.4.2.2. Scene Event Sources

The scene event sources can be further divided into four event types, which are: entering, exiting,

updating, and passing. The difference between these event types are discussed below.
a) entering events

By definition, these events introd:ce a new relation source into the motion environment. In response
1o this newly introduced source, special attention to the control of new relation(s) or existing relation(s)
should be addressed. The new relation(s) can include those involved with the new object as either a source
or a responder. An example of the former is a moving object avoiding a newly arrived object and an exam-

ple of the latter is the newly arrived object avoiding a table located in the room.

The new source object introduced by the entering event can be either an individual or a member of a
group which existed previously in the environment. A new group member who is the first to enter the
environment can be treated the same as an individual. However, for a new group member who is not the
first to enter the environment, the event will not introduce a new group relation to the control environment,
except for extending the member set. Another change caused by the entering event source may be the intro-
duction of a new relation after some time period. This mainly refers to the type change from dynamic to
static. One example of this change is a roiling ball gradually coming to a stop after rolling some distance.

Facilities for signaling this type of change in the relation control scheme should be provided.
b) exiting events

When a source object is removed from the environment by an exiting event, the relation or relations
irvolving that source should be deleted from the control environment. The removing control is applied to
all relations where the removed source appears as the only fesponder of the relation. This implies that the
relation(s) should be terminated as no one in the environment will be interested in responding o it. How-
ever, one exception to termination occurs when the source is a group member and not the last one leaving

the environment. In this case, the source rather than the relations should be removed from the source and/or



responder groups.
c) updating events

An updating event can have two effects on a source object: nioving the source object o another
environmental location or breaking the source object into several pieces at the same location. If the source
object is moved to another environmental location by the event, no new relations are introduced to the con-
trol environment. However, the type of rclations mapped to the source are changed first from static to
dynamic, and then from dynamic to static after the move. This may require updating the type control stra-
tegies and techniques. If the source is broken into pieces by the event, these pieces can form a source group
of the same relation as the original source, or new rclations based on the pieces. The use of the same rela-

tion or new relations after an updating event can be automaticaily determined by the event handler of the

relation control system.
d) passing events

The passing event brings a new source object 1o the environment only for a very short interval,
Examples of a passing event are a flock of birds passing over a scene or a lightning bolt appearing in the
environment. A passing event can be decomposed into entering and exiting events, where the entering event
simuiates the appearance of the passing event and the exiting event simulates its disappearance. Under this
assumption, the same controi sirategies used for the entering and exiting events can be appiied when a pass-

ing event appears and disappears in the envircnment.

However, a more effective control strategy can be directly derived from two special properties of a
passing event. These are the connective property and repeating property. The connective property is based
on the close relationship between the event’s appearance and disappearance. This implies that the control of
a passing event’s disappearance can be performed as an "undo™ action on the ¢ -enl’s appearance. The
repeating propeity is based on the repetition of the passing event over a limited period. Each iime the same
updating control of relations, such as adding, updating, and deleting the new relations, is repeatedly

applied. To facilitate the repeated conuvol, the new relations introduced by the passing event can be
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temporarily switched to the suspended state after the first experience of the passing event. When the event
repeats itself, these suspended relations can be quickly resumed to the active responses; if not, these

suspended relations should be released after an idle period.

4.S. Minimum and Maximum Number of Relations

The control complexity of 2 scene animation can be measured by the number of relations used in the
environment. The more relations that are used, the gieater is the control complexity among these relations.
The use of relations can be predicted from the objects used in the environment. Each relation includes two
related objects, the source and responder. One example of a relation mapping graph for an environment
with three static objects, two dynamic objects, and a sound event is presented in Figure 4.6. For clarity, the
static objects in the graph are drawn using solid lines, the dynamic objects are drawn using boldface lines,

and the sound event is drawn in the dotted line. In this figure, only one relation is mapped between two

objects.

(static) (dynamic)

st O “

-

Figure 4.6 Example of Relztion Mapping Graph in an Environment
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The simplest control in a scene animation occurs when the least number of relations are used in the
animation. This occurs when the only motion in the scene is obstacle avoidance. In this case, only the avoid
relations are used between moving objects and other objects in the environment. In general, if an environ-

ment is composed of n static objects, m dynamic objects, and the environment boundary as one entity,
the minimum number of relations for avoiding other objects in the environment is
R pirimum =m*n +m*(m-1)+m
=m*(n+m)
In this equation, the first item represents the relations involving the a static objects and the m dynamic
objects, the second - represents the relations among the m dynamic objects, and the third item

represents the relations from the environment boundary to the m dynamic objects.

The relations used for obstacle avoidance in an environment are far from the relations needed to pro-
duce interesiing, individual, and personai mouon around an environment. There are many other alternative
relations which can be used to produce interesting motion behavior. Even for the necessary avoiding rela-
tions, there may be more than one way to avoid obstacles. These alternative relations can be derived from
the experience of a moving cbject, persona’ preference of each individual, other dynamic influences at the

avoiding time, as well as additional responses {0 the scene events.

The altemative relations based on the experience of a moving object are differentiated by the number
of times the object responds to the same related source. Without knowing the exact number of times alter-
native relations are used (which may depend on each application), the maximum number of altemative rela-
tions for modeling an object’s experience can be estimated to a ¢, factor, whose value is in proportion o the

maximum number of times an object responds t0 the same related source.

Alternative relations used to demonstrate an individual's character are differentiated by the changes
of a character during a motion. The maximum alternative relations for modeling a character’s change can

be estimated to a p; factor. whose value is in proportion to the number of characters modeled for an object.
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The aliernative relations for the additional responses to scene events are differentiated by the evenls
occurrence in the environment. Thus, the maximum alternative relations can be estimated by m*k , where
m is the number of dynamic objects and & is the number of scene events present in the environment. The
alternative relations for the reflective responses of 1'+o moving objects can be estimated to a d, factor,

whose value is in proportion to the number of reflected responses between the two moving objects.

By counting these variable factors, we use additional coefficients representing the alternative rela-
tions for each of the terms derived in the minimum relation equation. The original equation is also extended
t0 a new term for the relations involving scene event sources. The extended equation represents the max-
imum number of relations which can be used in a general environment context. In this extended equation,
the coefficient C,, added to the term involving static object sources, represents the average number of ena-
bling conditions modeled for a static object. The coefficient C ., added to the term involving dynamic
object sources, represents the average number of enabling conditions modeled for a dynamic object. The
coefficient C», added to the term involving the environment boundary source, represents the number of
possible enabling conditions modeled from that boundary. The coefficient C,, added to the new term
involving dynamic scenc event sources, represents the average number of enabling conditions modeled
from such a source. In summary, the maximum number of relations when using alternative relations in the
modeling of a scene motion is

R atiernaue =Cs *m*n+Cg*m*(m-1)+Cp*m+C *m*k
= m*(Cs*n+Cy*(m-1)+Cp+C *k)

The above analysis {or using alternative relations provides a basis for comparing the control cora-
plexity of environmental behaviors. The coefficients counted for each relation source type can be increased
from the minimal configuration of relations, which should be first conducted in a given environment, 1o the

maximum use of alternative relations.

Estimating the number of relations possibly used for a scene motion application also outlines the

basic complexity layer for modeling and controlling such an application. In general, if more relations are



used, then a more complicated control situation can be presented. This potential increase of relation control
complexity is due o the fact that relations do not behave independently. Instead, their dynamic behaviors
can interfere with each other in a rather complex and even unpredictable pattern during a motion. The

estimated number of relations can be similarly counted for the time complexity for running such an anima-

tion.



Chapter §

Outline of the Relation Model

This chapter presents the technical "skeleton” for using the relation control model. The "skeleton”
contains two parts: relation modeling and relation structuring. Relation modeling uses a general frame for-
mat to describe the local control properties and the behavior of each relation. A relation only performs a
simple responsive behavior between the two related objects. To model the complex, dynamic behavior in an
environment context, relations are structured into a hierarchy. Four structuring levels are derived in the
hierarchy, for addressing the important behavior control aspects of the animation. These four levels are:
selective control, state control, pattern control, and sequential control, A general algorithm for processing

the relations at each control step of the animation is outlined, along with its time complexity analysis.

5.1. Frame Modeling for Relations

The relation control frame is used for modeling relations of different types. Common control proper-
ties of relations, such as the source and responder objects, enabling condition, sensory channel, response
strength, response duration, and response behavior, are included in the relation frame description. The rela-
tion frame is divided into three sections: control header, action code, and finalization, as shown in Figure

5.1

The control header of a relation frame consists of a set of control slots, whose initial values can be
specified at relaiion declaration time. The conirol slots in the relation control header are: initial sensing
state, effective duration, names of the source and responder objects, enabling condition, selective priority,
response strength, optional switches, and motion aspect (used for possible conflict prevention). The use of

each of these slots is now described.

The initial sensing slot is used to specify whether a relation can initially sense its enabling condition.
If a relation is specified as initially active, with the keyword ACTIVE for the slot value, its enabling condi-

tion can be actively sensed at each control step. The initial active assignment at this slot signals the

94
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action
code

finalization

Figure 5.1 Three Control Sections of Relation Frame
potential state of a relation. Otherwise, the relation is in the suspended state. The default value for this slot
is inactive sensing (suspended state). If a relation is not initially in its active sensing (potential state), it can

still be changed to this state by other active relations or modeled behavior structures.

The effective duration slot is used to specify the time pericd that a relation will be active once it is
triggered. A relation will terminate its response when this duration is over, or when its enabling condition
becomes false. The normal response duration, however, can be interrupted by interactions amongst rela-
tions. Such an interruption can either delay the active response for some time or completely terminaie the
response. An interruption can be caused by an inter-relation call, other structured behavior control, or a

priority-based selection. Also, the initial duration value can be varied through the interactive interface of a

relation control system.

The name slots are used to state the source and responder objects. The source and responder objects
will be the same cbject, if one of them is not explicilly specified. Both source and responder can be either
an individual object or a group of objects. The mechanism for mapping a relation to a group object is

automatically handled by the system. The difference between naming a group of objects and an individual
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group member requires special attention. The group case is specified by the group name, arid the member
case is identified with the particular group member index, such as "object_name(i)” for the ith group

member.

The enabling condition slot describes how the source is sensed by the responder. The condition
sensed from the source can be specified as “"channel name: enabling condition”. In this format, the channel
name indicates one of the standard sensing channels (visual, sound, smell, and tactile) and the enabling con-
dition indicates the conditions that must be satisfied to enable a response. For exampie, the distance condi-
tion in the visual channel can be specified as "visual channel: ifclosetoblock(distance)”. The condition
becomes true when the distance 1o the source object falls within a given threshold, which is provided by a
parameter. If the condition is true, the reaction defined in the relation body is performed. The enabling con-

dition for the other standard channels, such as sound, smell, and tactile, are specified in a similar way.

The selective priority slot is used to assign a competitive priority among relations that could conflict
or produce alternative responses. There are two types of priority assignments: urgent and personal. The
urgent priorily assignment is based on the relative order of importance amongst the relations, and the per-
sonal assignment is based on the personal preferences of individual characters. Priorities assigned for dif-

ferent reasons can be separated into value ranges, with the highest value having the highest priority.

The response strength slot contains all the parameters that control the response process of the rela-
tion. Three types of response parameter values can be specified, which are the direct type, functional type,
and random type. The direct parameters passes the assigned parameter value to the process directly. The
functional parameters first applies a function, such as linear interpolation, to the parameter before it is
passed to the relation. The random parameters pass a random value within a specified range to the relation.
Consequently, the use of these parameter types can achieve either a definite, functionally variable, or ran-

dom control effect when the object responds to the environment.

The optional switches slot is used to specify subtle control over the object’s response based on other

objects in the environment. These could be nearby objects or an object currently passing by. Depending
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upon the presence of other environmental conditions, an object could behave slightly differently towards its
related source, in addition to its normal reaction. This subtle difference is modeled using switches. Once a
switch variable is specified in the switch slot, its value can be interactively switched 10 "on" or "off". Each
interaction with the switch reverses its state. With the "on" vaiue, the subtle modification of a reaction is
enforced. Otherwise, no change is made to the normal reaction. One example of a subtle modification of a

relation is to change the direction of a turn or extend the duration of a look, when another object in the

scene moves closer.

The motion aspeci slot is used to specify the part of the motion that the relation controls, such as the
mecvement of an arm or a leg of a human figure model. More detailed description can be the name of a force
2r a torque used at a body’s joint o generate the motion, such as a push at the left_clbow. Based on the
explicitly specified control aspect, possible conflict amongst the active relations can be easily predicted.
This quick prediction can speed up the control process and guide the proper use of mutually exclusive rela-
tions. If a possible conflict is detected for the same control aspect, the conflict is avoided by selecting the

relation with the highest assigned priority.

The action code of a relation frame describes the relation’s response. The action code can be
specified by a script, a procedural notation, a high-level animation language, or a natural language, as long
as the descriptive tool used has sufficient power to express the reaction of the object. For instance, if a pro-
cedural notation is used for the action code, all the control facilities, including conditional test, looping

structure, and subroutine call, defined in the procedural notation can be used without extra cost.

In addition to the use of one existing language, other rules for directly citing the slot names and
expressions from the control header section are also included in the action code. One of them is the channel
name reference, which refers to the enabling condition specified in the channel slot of the control header.
This reference retrieves the condition sensed by the channel, without stating the condition directly in the
code. This simplified reference is simpler and provides clearer description of the problem. One example of

a visual channel reference is "visual channel: statement | (statemnents}". Excitatory and inhibitory
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responses based on a channel’s current state can be simply expressed as "channel name” and "!(channel
name)". The AND and OR operators can be used 10 combine the responses from several channels. In this

type of expression AND has higher priority than OR unless parentheses are used.

One initial motivation for having the action body of the relation frame is the ability to use different
types of motion control techniques. These include the commonly used techniques such as kinematics,
dynamics, stochastic process, and 3-D parametric keyframes. The selective use of these techniques depends
on the application requirements. It also depends on the range of motions which can be modeled with the
available computing power and special motion effects. For instance, the use of kinematics leads to a quick
and reasonably realistic motion in simple problem domains. The use of dynamics produces more realistic
motion in a fairly complex domain with a relatively slow control process. Also, 3-D parametric keyframes
provides a general contro! mechanism for a broad range of motions, based on the similar keyframing tech-

nique used in the traditional animation.

Since there is more than one control technique which can be used in animation, we would like
keep this option open in the definition of the action code. The description of the action code of a relation
should not be restricted to the use of one control technique. It should be the user’s choice to decide which
technique to use according to the application’s need and the user’s experience. For this reason, rules defined
in the action code are fairly general, abstract, and high-level. The use of these rules can be easily adopted o
other control techniques. Examples of the current system versior, shown in Chapter 6, are produced using

procedural control of 3-D parametric keyframes, using the C programming language as its host language.

As stated before, two object forms are used in modeling relations, an individual and a group. For both
forms, only the object name is used in the relation description body. A relation is described using only the
names of the source object and responder object, where only the object types matter in the description of a
relation. From this reason, we can view group behavior as an extension of a single object behavior 10 the
whole group. It is the system’s responsibility 10 check for the case where the named object stands for an

individual or a group and how the group control facilities are applied. To do that, the system uses its
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previous knowledge about the named object from an earlier object declaration and applies the proper group

facilities while interpreting the code described in the action body of a relation.

One exception to the general group extension rule is the modeling of an individual group member’s
bzhavior. If a member’s behavior is completely different from the rest of the group, a separate relation
addressing that member can be produced. This relation is specified using the member indexing function in
cither the source or responder slot. If a member’s behavior is only slightly different from the others, this
slight difference can be addressed using the member indexing function in the action code of the grougr ela-
tion. By changing the parameter of the member indexing function, either a specially modeled relation or a
slightly varied behavior in a group can be reassigned to another member. Slight behavior variation of

several group members can be similarly treated using two parameters 10 define an object subset that

receives special treatment.

Communication among relations can be modeled in the action code using one of the state control
functions, which are state_active, state_blocking, state_deactive, state_suspended, and state_terminate. The
C procedure declarations for these procedures are:

void CallActive(relation)
char *rclation;

void CallActiveBlock(relation)
char *relation;

void CallDeactive(relation)

char *relation;

void CallSuspended(relation,interval)
char *relation;

int interval;

void CallTerminated(relation)
char *relation;

The CallActive(relation) routine changes the siate of the named relation to the active state, which triggers
that relation’s response, if its enabling condition is currently true. The CallActiveBlock(relation) routine

changes the state of the named relation to the active state and at the same time moves the relation issuing
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the call from the active state to the suspended one. The relation is suspended during the active response of
the relation it calls. The CallDeactive(relation) routine changes the state of the named relation to the poten-
tial state, and this relation can become active as soon as its enabling condition is true. The
CaliSuspended(relation,interval) routine changes the state of the named relation to the suspended staie for
the specified time interval. Once the interval is over, the relation’s state retumns (o its original value. The

CallTerminated(relation) routine changes the state of the named relation to the terminated state.

Other state controls are used for relations that are scheduled with respect to a referenced relation.
These relations can become active at any time during the active period of the referenced relation. To check
for this possibility, a relation can issue three function calls during its active response. These calis check for
the relations occurring at the three time references, and issue an active-call if such a relation is found. These
three times are: initial active time, in-between active time, and final active time. Relations scheduled at one
of these times will be called active by the routine issued at that time. Three checking routines for the three
referenced times are declared in C as:

void Call_initial_active(

void Call_in_active()
void Call_final_activeQ

Among them, Call_initial_active() checks for relations scheduled at the initial active time of the issuing
relation. Call_in_active() checks for relations scheduled at some time during the active duration of the issu-
ing relation. Call_final_active() checks for relations scheduled at the f.nal active time of the issuing rela-
tion. These controls can be automatically checked by the system, for each active relation at each control
step. No explicit routine statements are necessary in this case. To reduce unnecessary search, our current
system uses explicit statements for this task, where only the relations with the routine statements are

checked.

Two other routines used for changing a relation’s state are Set_active() and Set_deactive(). The rou-
tine Set_active() sets the state of the relation issuing the call to active, and routine Set_deactive() sets the

state of the relation to potential. The C procedure declarations for these twe procedures are:
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void Set_active(Q)
void Set_deactive(

These two routines are issued at either the initial active time or the final active time of a relation. When
such a state transition occurs, either from the potential to active or from the active to potential, these rou-
tines change the relation’s state in the system’s relation table. Again, these self-state controls can be
automaticaily checked by the system, while observing the dynamic state transitions of each relation at each

control step. Currenly, it is left as pan of the state control facilities issued inside a relation’s body.

The finalization part of a relation frame is used to specify the summary control that is necessary at the
end of a response. When a relation involves a group, either a source group or a responder group, such a
control over the group is normally required. The control could be the computation of an average response
strength, selection of an extreme reaction, and an ending message from a group response to other relations.
Other possible actions at the end of a response could be self-state control, interactive state control, struc-
tured control, and the control necessary at the end of a response. To meet these needs, the finalization sec-
tion of a relation frame provides a separate place for specifying these actions. This place separated from the

action body section is only processed at the end of a response, which can be a response extended to a group

object.

The general format of a relation frame is shown in Figure 5.2, where the C procedural description is

simply included within the pairs of curly braces together with the other relation statements.

/* control header of relation frame
source name: string /* either an individual or a group
responder name: string /* either an individual or a group
channel name: Boolean expression . enabling condition(s)
... /* other sensing channel
initial state: constant
effective duration: integer
TESponse parameters;
parameter declarations /* see below
switches: string [On | OFF]
priority or preference: integer
motion aspect: constant /* position, orientation, color, etc

/* action code of relation frame



relation name  {
C statements -- required before conditional test

channel name: {
C procedure calls -- for state control

C statements -~ for computing the excitory responsive
behavior
switch: {

C statements -- for computing subtle response difference
upon the switched condition

}

library references -- for common response control
'(channel name){

C statements -- for computing the inhibitory responsive
behavior
)

)
(channel name AND .. OR .. ): {

C statements -- for computing the response based on the combined
conditions sensed from multiple channels

~ finalization of relation frame
==> {

C procedure calls -- for state control
C statements -- for finalization control

"

/* the response parameters have one of the foliowing forms
string number /* coatrol type
string numberl -> number2 /* dynamic type
string numberl <-> number2 /* variation type

Figure 5.2 Simplified Version of Relation Control Frame
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5.2. Hierarchical Structuring Mechanisms

There is no question that using a hierarchy is a good way of organizing massive amounts of informa-
tion into a more understandable and effective form. This idea has been used in the area of computer anima-
tion, since the amount of control information for many motions tends to be large. The hierarchies used in
animation are based on the levels of control details for the motion. The higher the level, the more abstract
the control information that is present. For instance, in most animation hierarchies, the task level is the
highest level at which a motion can be specified, either by natural human language or system commands
such as "walk from here to there” or "sit down on this chair”. This high-level inverface is converted into
more detailed control inforination, such as the walking cycle, and ann and {eg movements in the cycle,
which form the middle levels of the hierarchy. At the lowest level each position and orientatior for the

geometrical primitives must be produced.

Hierarchical structures based cn the amount of control details also represents the levels of the user's
understanding of the motion. With different levels of training and motion control knowledge, users can
selectively work at one suitable control level. Users with littie knowledge of a motion can leam from the
experience of viewing the motion issued by a natural siatement or a command at the highest hierarchical
level. Users with more motion control knowledge can leamn from the experience of interacting with the
motion at various middie levels. And, users with sufficient control knowledge and skills can learn from the

experience of working at the lowest level, which gives the maximum control over the motion.

Another advantage of using a control hierarchy in animation is the conwrol structures supplied
through the hierarchic.l levels. These structures, from the lower ievels to the higher levels, offer direct con-
trol of related motion aspects. It gives a great benefit for the user to trace controls related to a single aspect,
such as the movement of the left arm. The task of tracing the levels of coatrol in a linear program can be
very difficult and time consuming. A hierarchical structure is one way of getting around this problem. With
the explicit structure of a motion, the time and effor required to produce a desired effect is greatly reduced

by the structural guidance. Also, the motion can be modeled, tested. and modified in a direct and effective
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manner.

The same reasons motivate the use of a hierarchy in our motion control model. We use a hierarchy to
organize the large amount of control information required for animation, and to permit the system to adapt
10 users with different knowledge, skills, and purposes. We also use the hierarchical structures to separate
and organize the related controls of each behavior aspect. However, as relations are used as the basis for
building such a hierarchy, the goal and mechanism for using a hierarchy in the relation control scheme is

quite different from the traditional approaches.

One of the differences with the traditional approz. hes is the way a hierarchy is used. Unlike other
hierarchies built on the concept of movement, from more detail to more abstract, our hierarchy uses the
concept of relations. Our hierarchy organizes information based on how two objects are related to each
other, and how one object is related to the environment. If a relation’s condition is true, a response is
automatically triggered by the relation. In this hierarchy, the lowest level deals with relations, modeled as
primitive control elements, rather than raw geometric information. Another difference is the purpose of
each hierarchical level. The levels in our hierarchy are not merely used for the purpose of forming a com-
plete motion, but for adding other related controls of a motion in the environment. A motion can be issued
at each level of our hierarchy, not just the top level. When motion is structured through the levels, more

responsive, interesting, and realistic motion in a dynamic environment is produced.

Because of these two essential differences, our relation hierarchy can be used for a wide range of
behavior applications in an environment, rather than just one motion application. The application scope of
our hierarchy extends from a predefined behavior sequence 10 a set of behaviors constructed from a set of
relations modeled at the lowest level. Our hierarchy also provides the user a learning environment for incre-
mentally modeling a complex and dynamic behavior from simple relation behaviors, by working up

through the hierarchical levels.

In the following subsections, previous control hierarchies that have been used in animation are intro-

duced. Following that, our control hierarchy for behavioral animation is outlined in detail.
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§.2.1. Previous Research on Control Hierarchies

Zeltzer [Zeltzer85] has identified three hierarchical control modes based on a survey of a number of
character animation systems. These three control modes are called guiding systems, animator_level sys-
tems, and task_level systems. The levels of control modes are based on the control approaches used in the
character animation systems. The guiding mode covers the systems with no mechanisms for user-defined
abstraction. Thus, motion control can not interact with the environment and no feedback information from
the control process is used by these systems. The animator_level systems allow the animators to specify
motion algorithmically. Examples of these systems include abstract prograinming languages and message
passing systems. The task_level systems give the animator facile control over compiex motions by trading
off explicit controt over the details of motion. Zelizer claims that a promising approach is to integrate these

three control modes together into one animation system, so that the weaknesses of one control mode can be

overcome by the use of other modes.

The skeleton animation system designed by Zeltzer [Zelizer82] uses a three level control hicrarchy
for human figure motion. This hierarchy consists of the three levels of task control, skill control, and primi-
tive control. Among them, the task control level is the highest one, accepting a task description from the
user and decomposing the task description into a list of skill components, such as walking, running, or
grasping. These skills are passed to the skill control level, in which they invoke a fixed set of primitive pro-
cedures which are parameterized. A primitive proceduse, at the primitive control level, can access a fixed
list of joints in the human figure model and change the current rotation values of these joints in the system’s
skeleton database. Through the levels of this hierarchy, a figure’s motion is structured into a regular motion
sequence of primitives. The parameters at both the skill and primitive control levels can be vanied within
certain ranges. The level division of the contro! hierarchy used in the skeleton animation system is outlired

in Figure 5.3.

A four level hierarchy for what an object is has been proposed by Barr {Barr89]. In this hierarchy, the

first level, called "object-as-image"”, represents two dimensional modeling primitives, primarily pixel
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Figure 5.3 Levels of Control Hierarchy in the Skeleton Animation System
images and vector line drawings. The next level, called "object-as-shape”, represents three dimensional
kinematic primitives, including polygons, patches, and the like. The third levei, called "object-as-behavior”,
represents objects as rigid and fleaible physical bodies. And, the final level, called "object-as-timeline”,
incorporales time-dependent goals of behavior or purpose as the fundamental representation of what the
object is. Using this approach, objects can be modeled at different levels of abstraction, inc:::ding the
modeling of objects generated by an animation. The most interesting idea about this hierarchy is the clear
outline of a new graphics pipeline. Through the pipeline (levels of the hierarchy), objects can be modeled
using different representations from one level to the next. The levels proposed in Barr’s hierarchy are out-

lined in Figure 5.4.

A hierarchical reasoning system called HIRES [Badler86], permits modeling of an activity at multi-
ple levels in different representations. The levels of the system are based on continuous system simulation

models, discrete simulation models, petri nets, timed petri nets, and scripts. To simulate a motion, the sys-
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Figure 5.4 Levels of the Barr’s Hierarchy
tem supports the representation of a dynamics problem using a continuous simulation paradigm at the
lowest level. The next level might be supported by a queuing system (discrete) model, including parametric
keyframes, while the upper levels can be symbolic, state-based, qualitative-rcasoning models. If these
descriptive levels are appropriate for the animation process being controlled, the problem of animating
natural, fluid, coordinated, task-oriented, and expressive motions can be expected as the system uses the

power of other research areas extended into the graphics domain.

§.2.2. Relation Composition Hierarchy

The control hierarchy proposed in this thesis is based on relaiions. Prior to structuring relations into a
hierarchy, relations are modeled as primitive conuols. The modeling of relations should be as simple as
possible. In the previous section, we have described how relations are modeled using the relation frame.

Here, we show how relations are structured into hierarchies in order to produce more complex behaviors.

Since the control hierarchy proposed by this research is quite different from the hierarchies used in
other animation applicaiions, two special environmental properties should be addressed by the hierarchy.

One is the flexible control of responses to dynamic changes in the environment, and the other is the change
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of environmental behaviors. We expect that the motion built by a hierarchy can be easily modified in
response to changes in the cnvironment, that can happen during an animated sequence. Such changes
include the appearance or disappearance of an object, a different initial environmental setting, a delayed
event occurring, or an cbject added, replaced, or deleted from the environment. The structures built in the
hierarchy should support such a change, similar to the change of an environment. Here a movement com-

posed of reiations resembles an environment composed of objects.

The control of relations that can forrn changeable behaviors is another special feature of our hierar-
chy. Using a hierarchy, we can structure relations to describe an individual, desirable, and personal
environmental behavior. To this end, effective control mechanisms are required to address the transition
from a set of relations (o0 an environmental behavior. The transition is more complex than a collection of
relations, each behaving individuaily, or a simple addition of the relations. Instead, many unpredictabie
control patterns of relations can be dynamically formed in both the time and space dimensions during a

motion. The structures built in the hierarchy explicitly and effectively address these dynamic processes.

In addition, the use of a hierarchy will facilitate changing behaviors. A behavior once modeled
through the hierarchy can easily be modified to produce a slightly different behavior. Thus, the hierarchy
not only facilitates the modeling of one behavior, but also a set of similar behaviors each ruied by a dif-
ferent character. The use of a hierarchy can provide a flexible testbed for behaviors, where a set of
behaviors can be easily explored in terms of the structures built for the motion. The hierarchical transition
from a set of relations to an unique behavior can be extended to the transition from a set of relations to a set

of similar behaviors.

In summary, a control hierarchy based on a set of relations can play an important role in explicitly
and effectively organizing, modeling, and editing one cr a set of similar behaviors, which are independent

of environments, personal characters, and purposes.

We propose a hierarchy with four relation composing levels, called selective control, state control,

pauern control, and sequential conirol. This hierarchy is based on the complexity of an environmental
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behavior, growing from a simple, carefree behavior to mature, responsive behavior. Selective conuol com-
poses the set of relations that are necessary for the current environment and behavior. State control com-
poses the state transitions among sclected relations. Pattern control composes a set of relations to produce

identifiable behavioral elements. Sequential control composes behavior patierns from the lower levels o

produce ordered sequential behaviors.

One major difference between our hicrarchy and other proposed hicrarchies is the flexible and versa-
tile use of a hierarchy. Our hierarchy is not limited to one complete motion that is issued at the highest con-
trol level, as other hierarchies are. In our case, each hierarchical level expands an object’s behavior to a
more dynamic, responsive environmental behavior. Motion with the behavior modeled at each hierarchical

level can be independently tested as the levels are constructed before the entire hierarchy is constructed.

The levels of our relation hierarchy are outlined in Figure 5.5, and more detailed discussions of these

hierarchical levels are presented in the following subsections.

5.2.2.1. Selective Control

The input to the selective control level is the reiations that have been modeled using the relation
frame description. Each of these relations depends on iwo objects for its existence: the source and
responder. When a relation is added to the system, its two objects as well as its other local control proper-
ties are recorded in the relation table, while its main response and finalization code are copied to the rela-
tion library. With this information, the relations that can be used in an environment, based on the objects in
the environment, can be determined. A relation is selected by an environment if both its source and
responder objects -sent in the environment. If the environment is changed by adding or deleting one
or more objects, the sci of selected relations wiil change based on the objects changed in the environment.
This environmental selection of relations can be automated, by examining each relation to see if both of its

source and responder objects are included in the environment. This search can be repeated when the

environment is changed.
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Figure 5.5 Levels of the Relation Composing Hierarchy
The second selection of relations is based on the modeling of a behavior. We call this selection
behavioral selection. An environment selects all the relations which are able to react in the environment,
and a behavior selects the relations which are necessary for modeling the behavior. In the current system,
this control option is left to the user who can interact with the relations menu of the system. The user sug-

gests the previously selected relations that will be used in the current application, using a menu.

This second selection option allows the user to experiment with several behaviors in the same

environment. It selects the relations that are used as basic elements in the higher levels to forn a desired
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behavior. Users with different taste, experience, and purpose can choose to reselect the relations that are
used in the environment while modeling a behavior. One example of behavioral selection is the selective
use of relations in response to a sound. When a sound event is added to the environment, relations using the
sound source are initially selected by the environment. These initially selected relations, however, can be
selected again while modeling individual behaviors, such as a quiet response at the first sound appearance,

but disturbed responses 1o subsequent events. This behavioral selection option can also be automated, by

using the behavior knowledge stored in the system.

§.2.2.2. State Control

State control is used to control the state transitions of the relations selected in the previous level. A
relation can only respond when it is in the active state. The other three states describe either potential,
suspended, or terminated status for the relation. Initially, a selected relation can be in one of the two states,
potential and suspended. A relation is in the potential state if it is initially assigned the active sensing state.
A relation is in the suspended state if it is not assigned an initial state. During a motion's progress in the
environment, relations selected in one of the two initial states are possibly converted to one of the other

states. Whether a relation is converted or not depends on the relation’s sensing, duration, and interactions

with other relations.

There are many reasons for modeling the interactions among relations, that leads to state transition in
a relation. Some of the reasons are mutually exclusive, competitive, and cooperative behaviors. Other rea-
sons are personal taste, preference, experience, and motivation of an individual. The structures used at this
level to medel state transitions are: self state control, interactive state control, and environment state con-
trol. Self state control is due to the enabling condition assigned to a relation. A true enabling condition
occurring when the relation is in the potential state will lead to a transition to the active state. The active
state changes to the poiential state when the enabling condition becomes false, or the response duration is

over. Only an active enabling condition for a relation (potential state) can lead to an active response (active



state} by itself.

Interactive state conuol occurs when a relation’s state is changed by other relations. This control is
issued from an actlive relation to another relation that can be active or inactive. Five state controls can be

issued by an active relation (see Section 5.1 for a relation’s description):

CallActive(relation)
CallActiveBlock(relation)
CaliDeactive(relation) !
CallSuspended(relation,interval)?,
CallTerminated(relation)

Among these calls, only the CallActiveBlock(relation) is an inter-dependent control between two relations
(calling and catled relations). The calling relation, the one issuing the call, blocks itself during the active
duration of the called relation. This control can describe mutually exclusive use of two relations. This
interaction produces a delayed response relative to another active relation, such as the relation in response
10 an event currently occurring in the environment. Other calls issued by the caliing relation only change

the state of the called relation, not the state of the calling relation.

Environmental state conirol describes the state changes that occur due to eygms" in the environment.
The compoesition of the environment determines the first selection of relations either in the pofzntial or
suspended state. The dynamic object sources in the environment also affect the state transitions of relations.
For instance, the time and length of an event in an environment can trigger staie transitions among rela-
tions. The dynamic behavior of a moving object can be modeled using state transitions. Examples are the
use of a newly active relation and a delayed relation whose behavior is temporarily blocked when an event
occurs. In general, when a dynamic source such as an event or a moving object appears or disappears in an
environment, relations influenced by the dynamic source are possibly triggered from one state to another. In

tiis case, we say that the composition of a dynamic environment is the basis of possible state transitions.

The three structures leading to a possible state transition are illustrated in Figure 5.6. In this iHustra-

ton, a double circle represents a relation where the inside ciicle shows the response and outside circle
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shows the condition. The type of color used 1o draw the circles denotes the current state of the relation. A
red-colored outside circle indicates the active enabling condition (potential state), a red-colored inside circle
indicates the active response (active state), and both circles in green show the suspended state. The
relation(s) currently in the terminaied state should be instantly removed from the relation control diagram.
An interactive state control is drawn as a line from the interacting reiation to the interacied relation, where a
ietter along the line indicates the changed state of the interacted relation, such as letter "a” for the active

state, "p" the potential state, "s” the suspended state, and "t the terminaied state.

@) self_call

relation_call

(a.p,s,t)

" . environment_call

Figure 5.6 Three Structures for a Possible State Transition

5.2.2.3. Pattern Control

At the pattern control level, relations are combined into various behavior pattems. These patterns are
formed by the grouping, scheduling, and recording control mechanisms. Each of the patiems produces a
complex behavior unique either to a local environmental situation or 10 the local time reference modceled in
the pattern. The environmental reference stimulates the active set of relations and the way to structure the
relations. Special behavior can be modeled when the situation occurs. The time reference in a pattern adds
other subtle responses relative to the main action stream of the pattern. The pattern modeled by this refer-

ence can be commonly used in various environmental situations.
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A grouping structure causes a set of relations to be active at a time relative to the beginning of a
behavior pattern. A grouping structure places the grouped relations in the potential state at the referenced
time, and they can change to the active state when their enabling condition becomes true. Whether these
relations will take an active role in the motion depends on the value of their enabling conditions. For the
relations modeled with the default true enabling condition, a case used for common relations, the grouping
structure directly brings these relations to their active responses (the active state). In this case, the active

sensing slate is immediately transferred to the active response state.

If the relation is in the suspended state, it will immediately recover 10 the active state once it is called
by a grouping structure. If the relation is in the potential or active state, no difference is made by the call

issued to the relation. If the relation is in the terminated state, an error is reported.

The scheduling structure causes a set of relations 1o be active when the referenced relation changes to
the active state. Three time references can be used, which are: the first time step, the last time step, or one
of the time steps during the active response. When the referenced relaton becomes active, it checks for the
possibility that a group has been scheduled at its initial active time. If there is one, the relation calls the
scheduled group as one of its initial activities. Checking for the relaizons scheduled at the other two time
references is similarly processed. A group scheduled during the active tme is checked at each time step of
the motion, and groups scheduled at the final time step are only checked prior to the time when the refer-
enced relation ends its active response. A schedule can alsc reference a scene event, at the time that the

event occurs, continues, or ends.

Recording is the third mechanism used for modeling behavior patterns. The relations in the lower
levels and the same contro! level (grouping and scheduling), are recorded and given a name. The recording
only copies the necessary control structures built among the relations, including their states, local control
properties, interactive controls, and grouping and scheduling structures. The copy is limited to the relations
which are used in the pattern. The recording provides a better control interface for the next level of the

hierarchy, where the named behavior patterns can be directly referenced as elements while modeling a
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sequential behavior or behaviors.

5.2.2.4. Sequential Control

Two sequeniial control mechanisms are used, which are scaling and ordering. Scaling controls the
length of time that a pattern is active, which can be either stretched or compressed in the time dimension. If
a behavior pattern is selected active and the current sequential time frame falls in the pattern’s scaled dura-
tion, the pattern will be called active to produce its behavior. The use of an active pattern requires the copy
and removal of the pattern’s structures at its two duration boundaries. At the siart, the previously recorded
pattern structures are copied to the system’s control environment, which produces the patiern behavior. At
the end, the patiern structures are removed from the system. The removal of a pattern recovers the previous

control environment before the pattern was copied.

The ordering mechanism controls the order and connection of the behavior patterns. It checks which
pattern should be placed first in a sequential behavior and so on, and whether the ordered patterns are con-
nected without blank interval in between two adjacent patterns. Adjacent connection between two pattemns
can be better tested after the scaling test for the previous pattern. In that case, we can better estimate the
start time for the next pattern, especially when the duration of a pattern is determined upon a local environ-
ment reference. A set of patterns. in general, is arranged in a sequential time order, but the case for overlap-
ping patterns whose behaviors are then combined in parallel is also possible. A list of bekavior patterns can

be repeated using a looping control structure, if required. One example of possible ordering of three

behavior patterns is shown in Figure 5.7.

One example of using behavior pattemns is the experience gained by performing a motion multiple
times. This behavior difference can be modeled using behavior patterns. The first experience of avoiding
obstacles in the path selects a pattern showing a timid and cautious behavior. The second and subsequent
experiences selects a pattern showing a more confident behavior. The experience can be modeled by order-

ing the proper behavior patterns for the proper periods. The proper time to order the next pat’ + be
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Figure 5.7 A Possible Ordering of Three Bebavior Patterns

determined by the active duration selected for the current pattern. For instance, if the first pauem is called
"timid" and the second pattern is called "confident”, two sequential behaviors timid—confident— and

confident—timid-» can be ordered, with each adjustable behaving period.

§.2.3. Other Suggestions

One suggestion for using the relation hicrarchy is to have a flexible control interface that allows the
user 1o directly interact with the levels of the hierarchy. The user can visually experiment with different
control levels, such as the selection of relations, the desirable partition of state sets, the grouping and
scheduling of relations, and the sequential orderir.g of previously modeled behavior patterns. As one of our
research goals, we are searching for a model that can be effectively and flexibly used for a wide range of
behaviors. Part of the model is the relation composition hierarchy, which assists the user to freely express
his or her ideas about how a motion behaves. This model extends the system’s ability to a wide range of

dynamic behaviors in the same or slightly varied environment.

Subjective control in motion, in terms of an object’s mood, personality, and intention, is one impor-
tant issue in today’s animation research. In our proposed model, this issue is handled by the use of different
control levels in the hierarchy. A character or a subjective control can be modeled through the hierarchical

levels, such as a patient or a routine-like behavior. However, it could be promising to supply one additional
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control level, subjective control level, on the top of the hierarchy. This level is aimed to supervise the sub-
jective controls through the lower hicrarchical levels, in an explicit and effective manner. A better control
interface to view and revise the relevant subjective controls could be provided at this level. Currently, this

level is not explicitly outlined in the relation composition hierarchy.

5.3. Relation Processing Algorithm and Its Complexity

This section presents a general algorithm for processing the relations at each time step of the anima-
tion. Here, we assume that the relations have been described using the ORS language (see Section 6.2) and
structured through the interactive relation control system (see Section 6.3). The structured controls as pro-
posed in the relation composition hierarchy {see Section 5.2.2) have been recorded in the sysiem’s data
structures. These controls include the selection of a relation, a state control linked between two relations, a
grouping and/or scheduling structure, and an ordered sequence of behavior pattemns. As recorded in the
system’s internal data structures (see Figure 6.7 and Figure 6.8), the contrcl information can be directly

accessed while processing the following algorithm.

This algorithm runs whenever the user presses the recording button on the screen, while interactively
structuring the relations using the interactive control system. This can occur at the time of selecting the
relations, modeling the level structures, or completing an ordered sequence. The algorithm runs according

to the control information recorded to the system and for cach keyframe recording of an animation.

INPUT:
relations & structured relat.on controls

OUTPUT:
a sequential motion behavior

PROCESS:
for each of the behavior patterns
if the pattern is active
if the pattern’s starting frame f1 matches the current motion keyframe
copy the pattern’s structure to the system
if the pattern’s ending frame f2 matches the current motion keyframe
remove the pattern’s structure from the system
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for cach of the relations
if the relation is selected
if the relation is grouped to a time *pstant
if the grouped instant matches the curtent molion keyfrane
change the relation’s state to j-owentiss
if the relation is in the potential or active 3taic
process the relation, possibly using gi:zp conuol
if the relation is in the active state
check for state control(s), if any
issue the activating controi(s), or
issue the deactivating control(s), or
issue the blocking control(s), or
issue the terminating control(s)
check for scheduled relations, if any
change the scheduled relations’ states to potential
(at either the first active time, or an in-between time,
or the last active time)

Figure 5.8 General Relation Processing Algorithm

In the above algorithm, the statement “process the relation” calls the relation routine in the library

generated by the ORS language preprocessor. A block diagram of the relation control process is shown in

Figure 5.9.

During the relation control process, two conditions can lead io the end of a response. One is a false
enabling condition and the other is the end of the response duration. In other words, a response ends if its
enabling condition becomes false or its response duration is over. The last code section in the relation pro-
cess, also called the finalization section, is reserved for specifying the end control which is not applicable
a group of objects. This section only contains a small portion of the relation process and is separated from

the rest oi e process which may be combined with the group control facilities.

A relation is specified between two objects, the source object and the responder objeci, and each of
these objects can be either an individual or a group. If a relation has a source group and a responder group,
the relation control process is extended 1o the use of group control facilities, as shown in the following

diagram:
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Figure 5.9 Block Diagram of the Relation Control Process
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These group control facilities are automatically supplicd by the system when a relation is called for process-
ing.

If a relation _s specified between a sour..e group and a single responder, only the source group controi
is added to the basic reintion control process, and if a relation is specified between a single source and a

responder group, only the responder group control is added. No additional group control is required, if a

relation is specified between a single source and a single responder.



The process for changing the state of another relation, using a state control or scheduling or grouping,
is based on the data structure allowing direct access to that relation. The access time to another relation
linked irom the current processing relation should be a constant &(1). Thus, the processing time for the

step "for each of the relations” is only proportional to the number of relations used in the application.

The evaluation of relation processing algorithm is based on the assumption that the process is issued
after a sequence modeling. Assume a scene animation application having R relations and using 8 behavior
patierns in a selected sequential order. The lower bound of time complexity for each processing step of the
animation occurs when all the relations are specified between two individual objects. In this case, each pro-
cessing step takes o(R = B) time. This estimation gives the best processing time. It could be worse when a
relation is specified from or to a group of objects. The time required to determine the members of a group
is a constant O(1), baseu on the assumption that the member information has been stored in an object table

which car be directly accessed from each processing relation.

The worst case for group control is hard to estimatc because the size of the source group or the
r. _onder group of the relations can vary from one application to another, depending on the environment. If
we assume that the same group members in the source group and the responder group are used for each of
the relations, then the upper bound of time complexity will be O(RM M _+B), where M, denotes the
numher of members of the source group and M, the number of members of the responder group. This worst
case will rarely occur because of the small possibility for the assumed uniform member distribution in all

the relations.

A better way to - mate the time complexity is the average case. In this case, the complexity analysis
is based upon the average number of group members. Under this assumption, if we assume M ,; is the aver-
age number of members of the source group and M ,, is the average number of members of the responder
group, then we have the average time complexity as a time function of (RM .M ., + B). This average com-
plexity at each processing step more closely represents the need of various applications. The use of

minimum and maximum number of relations in a general environment context is given in Section 4.5.
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Our algorithm checks for cach relation for its state status at each processing step. This lincar check-
ing could be reduced o only the necessary relations whose states allow the: o actively panticipate in the
current motion control step. One such suggestion is to use three double linked lists for each of the potential,
active, and suspended states. In this case, only the relations in the potential and active states need to be pro-
cessed at each step. However, additional time for searching and updating these link structures as well as the

space for maintaining the structures is required, which may not necessarily reduce the entire processing

cost.



Chapter 6

Prototype Implementation

This chapter presents a prototype implementation of the relation control model. This system is not
limited to one motion application, but can handle a wide range of applications. OQur system uses the new
control concepts and mechanisms proposed in the relation conuol model to model a wide range of behavior
applications in dynamic environments. Both the modeling of relations and the relation synthesis hierarchy
for modeling environmental behaviors are used in this system, which allow the user to explore previously

unknown motion behaviors in unknown environments.

6.1. System Architecture

The initial motivation for designing the system is to provide the user with an intuitive, creative, and
structured control environment for modeling behavior in a dynamic environment. The system is intuitive,
providing the user with a natural logic for behavior control; creative, to allow the user to freely express his
or her ideas, and structured, to guide the user interactively in medeling complex behavior through hierarchi-
cal structures. The system provides a general test-bed for environmental behaviors and supports the users’

creativity at various control levels.
The main features of this implementation are:

{1] The sys'em handles a wide range of unknown behaviors in unknown dynamic environments, in con-
trast to traditional systems which have predefined motions with certain behaviors in previously

known environments.

[2] The system provides a mixture of language description and interactive control. The language descrip-
tion allows for the general and natural control of an animation, and interactive control allows for the

flexible modeling and editing of an environment and environmental behavior.

[3] The system provides multiple behavior understanding levels, varying from a simple level to a more
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complex, responsive, and individual level in dynamic environments. These levels enable users with

different animation knowledge and skills to lcarn from the experience of using the system at a suit-

able level of detail.

[4] The system presents the user with a structured control interface, not detailed control codes, o visu-
ally trace and experiment with an object’s behavior. With a simplified interface, the user can quickly

model a motion and revise the motion for other intended tehaviors.

Our implementation is called the relation control system (RCS). The system supports a work place
combining language description and interactive control. The language part of the system is used to model
relations, in terms of the enabling condition, local control propertics, and response behavior for each rela-

tion. The interactive part of the system assists the user with structuring the model and environmental

behaviors based on previously described relations.

The two parts of the system, language description and interactive contyol, are ordered in a processing
pipeline: language processing followed by interactive control. The first processing step of RCS interprets
the language description of objects and relations for the next step of the system, which allows the user 1o
interactively compose an environment and structure the relations from simple primitive behaviors to more
complex environmental behaviors. Both steps contribute to the modeling of complex behaviors. Here, the
language processing is not used for describing a compleie motion, and the interactive control is not used for
issuing predefined motion sequences or adjusting a few parameters in a predefined motion. In an interac-
tive session there are many ways of combining the relations. These alternatives can be explored by the user

in the second interactive processing step, using the relations described by the language.

The input to the first processing step is a language description of objects and relations, and the output
from this step is a set of system modules built from the input data. The input to the second processing step
is the modules from the first step and the system’s interactive facilities, and the output from it is the
modeled environment and environmental behaviors, which are displayed interactively through recorded

frames. The inputs and outputs of the two steps in the RCS sysiem are outlined in Figure 6.1.
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Figure 6.1 Input and Output Process Interface for RCS

Modules generated by the first processing step include a primitive definition file, classes database,
relation table, and response library. The primitive definition file contains the user defined object types and
instances declared from the standard and defined data types. The classes database stores the objects
modeled by the class types, including polygons, curves and surfaces, fractals, and particles. Procedurally
modeled objects are included in the class type of polygons, where the object names recorded in the polygon
database are actually the names of the routines for generating the objects. The relation table contains each
relation’s interactive control properties, including the relation’s name, source and responder object nanies,
its enabling condition, initial sensing state, priority assignment, local responsive control parameters, and
optional switches. These control properties are the ones specified in the control header of the relation frame.
The response library contains the action part of each relation, which can be called by the rclation’s name
recorded in the relation table. The action part of a relation inciudes the procedural description in both the

action body and finalization sections of the relation frame.

The interactive part of the system can be divided into four components. These are the scene compos-

ing component, pattern control component, sequence control component, and scene rendering component.



These components cover the three processing steps of computer animation: modeling, motion control, and
rendering. The motion control part is covered by both the pattern control component and sequence control
component. The division of these two components resembl.s the level division of the relation composition
hierarchy, where the pattern component covers up to the patiern control level, and sequence component
covers only the sequential control level of the hierarchy. The reason for using one component for several
control levels is to address the lower control levels in a consistent control interface and provide names for
these basic behaviors. The named behaviors are then used as the basis for the sequences constructed in the
sequence control component.

The main functions of the four components are:

Scene composing component

The composing component is used (o interactively compose a scene environment based on the
objects previously described in our relation language. This composition is mainly done through
mouse interactions, such as menu selecting, object picking, object dragging, and button clicking.

Pattern control component

The pattern control component is used to interactively structure relations, previously described in our
relation language. The structuring uses the mechanisms proposed for the selective, state, and patiern
control levels. This component also traces and displays the structures built among relations dynami-
cally during a motion’s progress, in a simplified graphical display. The experience of visualizing the
dynamic development of control structures helps the user to learn from previous experiments.

Sequence control component

The sequence control component is used to interactively structure sequenial behaviors based on the
patterns modeled in the pattern component. The structures that are modeled in this component are
pattern selection, pattern ordering, time scaling, and sequence recording and playback.

Scene rendering component



The rendering compenent is used to adjust the scene views and special coloring effects.

The interactive environment of RCS, including the modules generated from the language processing

step, the four interactive components, and the standard sysiern facilities, is outlined in Figure 6.2.
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Figure 6.2 Structure of the RCS System

The following sections describe the language used to describe objects and relations, and the interac-
tive components of the environment used for modeling behaviors. The discussion of each system com-
ponent emphasizes the control interface between the sysiem and user, showing how the user interactively
composes a scene environment and structures a sequental behavior according to the environment, and how

the controls specified through the interface are directed 1o the system’s internal modules.



6.2. Objects and Relations Scripting Language

The objects and relations scripting language (ORS language) is designed for describing both the
objects used for composing the environment and the relations among the objects that are used ir a
behavioral animation. The language combines C procedural descriptions and frame-like descriptions for
modeling the objects and relations. The procedural statements in C are used as the basic elements to fill in
the modeling details in a frame-like format. The modeling of objects is used for procedurally defined
objects. The modeling of relations is based on the relation frame proposed in Chapter 5. This frame consists
of three sections: control header, action body, and finalization. The control header section contains a set of
slots, each of which can be specified by either a value, a variable name, or an expression in C. The action

body and finalization sections include mainly the C statements and other specially defined relauon expres-

sions.

“The major difference between the ORS language and other arimation languages is the relation
description. The frame description of a relation only relies on two objects, the source and responder. Thus,
a relation is described in a local, simple, and independent way, while in other ;anguages a motion is usually
described in a global, complex, and dependent way. The description of a motion through programming can
be very difficult, ime consuming, and inflexible. The description of a relation oniy involves the control
details for the two related objects. It is also independent of the way the relation is used in a behavior appli-
cation. The simplified description of a relation dees not limit its power to trodel complex motions. On the

other hand, the use of simply described relations gives us more freedom to creai® & #:otion with variable

behaviors.

The modeling part i the ORS language covers both procedural and other standard way of modeling
objects. The modeling of standard objects, such as polygons, curves and surfaces. fractals, and particles, is
described by the common features of each standard type. For instance, the modcl of a polygona! object
includes a list of vertices, assigned to the slot "VERTICES: x1 y1 z1, ...". The model of a curve or surface

object is based on a collection of controi vertices, curve or surface type, and other control parameters. A
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fractal object is modeled by the vertices of a triangle or rectangle primitive, and the other control parame-
ters required by a stochastic process. A particle object is modeled by a set of particles or vertices, plus the
initial position, velocity, life time, and other properties of the particles. The routines for generating the
objects of these standard types are automatically supplied by the system. The syntax for the standard object

types is presented in Figure 6.3, in which upper-case words are ORS reserved words and lower-case words

are values supplied by the programmer.

OBJECTNAME: a_name /* polygon cbject
TYPE: a_number f*+ POLYGON | POLYLINE
COLOR: a_number /* RED !4

VERTICES: xyz,...,
COLOR: a_number
VERTICES:xyz,...,

OBJECTNAME:a_name /* curve & surface object
TYPE: a_number /* CURVE | SURFACE
C&S TYPE: a_number /* BEZIER
STEP: a_number
COLOR:a_number
VERTICES: xy z,..., /* 4 vertices for a curve
. «.v-..3 I* 16 vertices for a surface

OBJECT NAME: a_name /* fractal object

TYPE: a_number /* FRACTAL

VERTICES:xyz,..., /* either atriangle or
ced /* arectangle

COLCR: a_number

RATIO: a_nrumber

LEVEL:a_number

OBJECTNAME: a_name /* particle object
TYPE: a_numbser /* PARTICLE
VERTICES:xyz,..., /* ie. 4 vertices

VELOCITY:vdxdydz,....,/* speed & direction
COLOR: c1¢2 c3 c4

SIZE: s1s2s3 4

LIFETIME: a_number
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Figure 6.3 Synuax for Standard Object Types

Procedural modeling is generally used for user-defined objects. The modeling syntax used for this
consists of a set of slots, which are: name, primitive, para_def, and initial. The slot "name:" accepts an
object’s name. The slot "primitive:" contains a description of a user defined object type and an instance
declaration. The slot "para_def:" collects a set of initial values of parameters used for modeling the object.
The slot "initial:" specifies the routine for assigning the initial parameter values to the declared object
instance. The syntax of the procedural object type is given in Figure 6.4.

OBJECT NAME: a_name
PRIMITIVE: {
f* primitive data structure
/* of the named object

} .
PARA_DEF: doublea_name a_real_number,

int a_pame a_int_number
INITIAL: {
/* initia! assignment of the
/* parameter values 1o the modeled
/* object type

}

Figure 6.4 Syntax for the Procedural Object Type

Modeling of 2n individual object and a group of objects is treated in a similar way in the ORS
language. The only difference between the two cases is the inclusion of a pair of brackets. If a pair of brack-
ets is included after the object name (such as birds{]), the object is 4 group; otherwise, it is assumed to be an
individual. Note that no actual group members are given in the case of a group declaration, which is left as

one control option in the interactive control process. The actual group members are determined by the com-
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position of the environment. Each time an environment is changed, the actual group members currently

used can change.

The procedural description of initial modeling, in the slot "iniual:", is independent of the object
types. No matter whether the object is declared as an individual or a group, only the object name is refer-
enced in the description. If the object is declared as a group, the additional control structure to apply the
modeling code to each of the group members is automatically supplied by the system, when the routine is
called. Since the acwal group size is not known at the time when the code is specified, a variable whose

value is the size of the group is given as a parameter. A procedural modeling example of a group of blocks

is given below.

object name: block
primitive: {
struct blockobj {
double x, z;
double hw, hl, h;
int color; };
struct blockobj block[]; }
para_def: double sx 0.1,5z 0.1,sh 0.3,
sw 0.2,s10.2,
int sc 28;
initial: {
block.x = sx;
block.z = sz;
block.hw = sw;
block.hl = sl;
block.h = sh;
block.color = sc;

)

The motion part of the ORS language uses the reiation syntax. defined in Chapter S, to descrite the
motion produced by the relation. The slot values in thc control header of a relation frame can be constant
values, variables, or expressions in C. The descriptions in the other two frame sections, the action body and
finalization, consists of procedural statements plus other relation control statements and references to slot
values specified in the control header. The description block for each of the two sections is formed by a pair
of braces {}. consistent with the convention of the host language C. Each block can be identified by the

frame pan context, where the action body section follows the relation’s name, and the fnalization section
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follows the "==>" symbol after the action body.

A slot description in the action header section of a relation could be missing. In this case, two rules
are used depending on whether the relation is the first one in the motion part. A missing slot description in
the first relation is filled with a default slot value by the system. However, this substitution rule is not
always true for all the slots. Some slots may not have a default slot value, such as the source cbject name or
the responder object name. In this case, the slot should be explicitly assigned a value on its first use. The
second rule is to inherit the slot value from the previous relation, if the current relation is not the first one

declared in the motion part. Otherw:se, an error message will be produced.

The slot values in the control heu.i2r can be referenced either by slot name or parameter name in the
action body and finalization sections. For instance, the enabling condition specified in a sensing channel
slot can be referenced by the channel’s name in the control code. The excitatory response for a channel is
expressed as the chaaticl's name, for example: "channel name: { ... )", and an inhibitory response is
expressed as "!(channel name): { ... }". Collective control based on multiple channels can be expressed
using the connectors AND or OR to form an extended channel reference. All the channel names used in the

procedural code are replaced by the sensing conditions from the control header, when they are processed by

the system.

The finalization section is mainly used for summarizing a group’s response and issuing the necessary
control at the end of a response. The group summary control may direct a specially selected group member
or produce a motion based on the average group response. Other conuels in the finalization section include
state contro! calls either to the relation itself or to other relations, message passing, or an environment

update.

Objects modeled by one of the standard types (polygons. curves and surfaces, fractals, and particles)
are rendered by the standard system routines. Only the objects whose types are defined in the modeling pan
need to include a rendering description. The same rule for handling the difference between an individual

and a group in the modeling and motion control parts is used for the rendering part. That is, an object
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declared as a group is treated the same as an individual. As a result, the rendering code of an object is
specified only in reference to the basic object type. Additional group control in rendering is automatically
produced by the system. For instance, the rendering code for a group of blocks can be as simple as:
block |
}drawblock(block_i,Scene);

where block_i is the group indexing variable, Scene is the built-in data structure for display, and

drawblock() is the rendering routine for the block object, in the user-defined library.

6.3. Interactive Contro! System

The second step in the pipeline is to structure relations into a desired behavior using an interactive
control system. This system is constructed in such a way as to suppor! an intuitive, creative, and structured
control of behavior animation, based on the relations modeled in the first step. To this end, four interactive
components are supported by the system, which are: scene composing, pattem control, sequence control,

and scene rendering.

Interactions in a component are supported by the use of windows, such as menu windew, message
window, scene window, button window, and text dialogue window. By interacting with these windows, the
user can select a menu item, adjust a parameter value, pick up an object and drag it tc a new scene location,
and press a command button. Menus for each component are organized in a hierarchy. One example of a
menu hierarchy used in the scene composing component is "scene composing ==> class/object/value”. In
traversing a menu hierarchy the following rules are used: a submenu is opened if the corresponding item on
the parent menu is selected; and a submenu is closed if the "exit” menu item is selected. More details on the
contents of the menu hierarchy are given in the sections on each component. Figure 6.5 shows a global

view of the whole menu hierarchy for the four interactive components of the system environment.

The interactive system environment was built on a IRIS 3130 workstation. There are four interaction

areas: display area, menu area, system message area, and on-line help area. In this basic division, the
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Fijnure 6.5 Menus Hierarchy For the Four Interactive Components
display area shows a three-dimensional view of the composed scene environment and the motions in the
scene; the menu area displays the active menu; the system message area reports the current system control
staie and any error messages; and the on-line help area provides guidance for the user. The division of the

screen into four interaction areas is shown in Figure 6.6.

Most interactions are conducted using the mouse on the IRIS workstation. The three buttons on the
mouse are referred to as the left_button, middle_button, and right_bution. A combination of the buttons is
expressed as a combination of the buttons names, such as left_middle_button. The use of mouse buttons
depends on the context of the interaction. For example, in menu interactions, pressing the left_button on a
menu item traces down or up one level of the menu hierarchy. Pressing the middle_button on a menu item

selects the item. Pressing the right_button on a menu item executes the control defined by the item, such as

the contro! of a relation.
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Figure 6.6 Screen Division For the Four Interaction Areas
The interactive control environment is built using the WINDLIB package and FDB package
[Green86a,Green86b], which supports device-independent window hierarchies, frame-like graphical data-
bases, and three-dimensional display structures. The high-level window and content structures of the
WINDLIB package are directly linked to the low level graphical routines of the IRIS workstation, 1o speed

up the display process.



63.1. Scene Compgsition Component

The scene composition component is used to interactively compose a scene environment when a set
of dynamic behaviors can be tried out. Composing an environment is the first activity in modeling
behaviors. The selection of this component, by a mouse click in the component icon, brings up the four
interaction areas for this component. The display area shows an empty scene environment the first time the
component is used. Otherwise, an environment previously composed is displayed in the area. The menu
area shows the class menu as the root of the menu hierarchy for this component. The system message arca

shows the menu levels that have been traversed so far and other system messages.

Mouse functions in the menu area are: clicking the left_button on an item traces the menu hierarchy
down one level from the item, clicking the middle_button on an item selects the item, and clicking the
right_button on an item displays the contents of the item, such as an object if the menu hierarchy has been
traversed down to the object menu. These general rules for using the three mouse butions in the menu area
may not apply all the time. If a case does not currently apply, it is skipped and nothing will happen upon
clicking the mouse button. Clicking the middle_button on a menu item a second time reverses the previous
action. It is like an undc "'nction. If a menu item is previously activated, clicking the middie_button on the

item a second time deactivates the selection. Clicking the third time will activate the item again, and so on.

A set of soft butions are specially configured for modeiing a scene environment. Three soft buttons
are located at the upper-right comer of display area. These are "paste”, "cut”, and "showit”. The use of these
buttons simulates cut and paste interactions in a three-dimensional environment In the upper-left cormer of
the same area, a soft button labeled "view angle” is used to vary the viewing angle of the scene camera
model. A click on this button gives a new scene view rotated 90 degrees clockwise. In addition, two soft
buttons placed in the system message area are used for either clockwise of counterclockwise rotation of a

selected object.

The use of these soft buitons and other mouse interactions allows the user to interactively select an

object from the object menu, resize the object by adjusting its modeling parameters, place and replace the
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object in the test scene, set a new initial object orientation, or add the object to or delete the object from the
final environment. More details on these interactions are given in the scene component section of Appendix

Al.

The final environment can be viewed in any of four directions, front, left, back, and right, respec-
tively. The front view is the default one on initially entering the environment. This view can be changed to

other views by mouse clicks on the "view angle” button. Each click on the button changes to the next view.

Composing an environment in our system can occur at any point in the animation process. Since we
use relations for modeling a scene motion, the task of composing the complete environment can be delayed
until after the motion control process. Here, we. propose a two-step composing strategy. The first step com-
poses the basic environment with the objects of different types. This basic environment is used for model-
ing the behavior elements in response to the basic object types. After that, the basic environment can be
extended by duplicating existing cbjects. Note that the environment produced in the second step does not
require new behavior elements different from the ones modeled in the basic environment. It only requires

the use of the basic elements.

6.3.2. Pattern Control Component

The four interaction areas of the pattern control component are initially as follows: The sysiem mes-
sage area shows the levels of the menu hierarchy that have been traversed and other system messages. The
on-line help area prompts for user input and outlines the mouse button functions in the menu area. The
display area shows the composed environment as well as the motions in the environment. The menu area
initially lists the "responder” menu in the component’s menu hierarchy, which can be traversed up or down

through mouse interactions.

Three control modes are used in the menu area of the pattern controt component. These are the menu
mode, group mode, and schedule mode. The menu mode is the one normally used in the menu area of other

components. In this mode the following operations can be performed: A left_button click on a menu item
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traverses down or up one level in the menu hierarchy. A middle_button click selects the menu item. A
rvight_button click displays the item’s content depending on the menu context. Both group and schedule
modes are used for interactively structuring relations from the relation menu. The detailed use of these two
modes is explained in the section on structuring relations. A quick overview of the use of the three buttons
in each mode can be obtainea from the submenu for each mode, shown in the on-line help area. The sub-

menu of each mode is opened if a left_button click is performed on the mode item and the item is active.

The “responder” menu is first displayed in the menu area when the pattern component is selected, In
this menu, only the moving objects modeled by the ORS language are listed, with the ones in the environ-
ment highlighted. Traversing down from a responder item, relations using the object as a responder are
listed in the menu "relation”. Among the relations listed, the relations selected by the environment are
highlighted. These relations are automatically selected by the system when the pattern component is
opened, according to the source and responder objects present in the environment. The relations automati-
cally selected by the environment can be interactively selected again by the user. The user selection is made
by clicking the middle mouse bution. This interaction allows the user to undo the previous selection, giving

the user an -Opportunity to reselect the relations.

The menu hierarchy of the pattemn control component is:
"responder/relation/sensor/grouppara/value”. Down from the "rclation” menu, the "sensor” submenu
presents the four standard sensing channels (visual, smell, sound, and tactile). The ones used by the parent
relation are highlighted in the menu. Further dowr., the “"grouppara” menu lists the group parameters
specified under each sensing channel. The “value” submenu displays the values initially assigned to the
parameters of the parent group. These values can be interactively adjusted by the user. The parameter
grouping facility collects the parameters into a two-level naming hierarchy, which allows quick viewing
and editing of parameters. By traversing the menu hierarchy, the user gets a high-level view of how the
relations are controlled by each other’s local properties. This view helps the user to adjust a relation’s local

behavior and structure the global behavior of relations.
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In the current system, state control is mainly modeled using the state control statements in the rela-
tion frame description. The transitions between the active state and other states such as potential, blocked,
and terminated, are described in the action code and finalization parts of a relation frame. These statements
implicitly structure the state control between two relations, from the one issuing the call 1o the one being
called. These calling structures are dynamically displayed in each control step using a graphical illustra-
tion. In this notation, a relation is drawn as a double circle, where the outside circle represents the relation’s
sensing and the inside circle the relation’s response. Initially, when a motion starts, all the potential rela-
tions are drawn in green in both circles. If a relation is in its active sensing mode, its outside circle turns
red. Similarly, if a relation is in its active response, its inside circle tums to red. State control is shown by a
line pointing from the relation issuing the call to the relation being called. The type of the call is shown by

the use of line drawing styles and colors.

Structures in the pattern control level can be interactively produced using the control modes "group"
and "schedule”. Detailed interactions for structuring relations under these iwo modes, as well as for editing
a pattern structure and recording and viewing a structured pattern, are given in the pattern component sec-

tion of Appendix Al.

The structures 2mong the relations produced by this component are recorded in the relation table.
Entries of each relation recorded in the table include the relation’s selection by both the environment and
alve user, the relation’s state that could be changed by its enabling condition and structured state controls, a
grouping or a scheduling, and its variable local control properties. The relation table is implemented as a

linked list, for each responder object. The internal structure of the relation table is shown in Figure 6.7.

At each control step, relations associated with each moving object (responder object) in the environ-
ment are searched. If a relation is currently in the potential or active state, the relation performs a sensing or
respond action. A relation automatically performs its response if its enabling condition becomes true, and
updates the relation’s staie to active. When either the source or responder is a group, the group control

structures are automatically checked and constructed when the relation is called.



.........................................................................................................................

moving cbilects

object template

opiject 1
members
selected

..............................................................
eccefenccssana

relation template

- 3
: H
: H
: :
: :
H H
: ; :
: : :
: ; :
: . H
: : :
H {other : :
a M :
: controls) H r name H
1]
E H source : :
H - : state : :
. ! M H
. — i dr————) . .
: - relations : (local r name HEE:
: : controls) Vo
: H -— L]
: : (other o
H : controls) - P
] H . .
: : next ™ - H
: H N .
: : P
. M 3 H
H . H .
: i next ~T—™ I
H : H :
H :

Figure 6.7 Internal Data Structure of the Relation Table
A grouping structure is checked when the time for the group is reached. If this time maiches the stan
time, the relation’s state is changed to active and the relation is called by the system. A scheduling structure
is checked by the name list linked to the referenced relation record. If there is one, the scheduled relation’s

state is changed to active and the relation is called with its local control parameters.

Once a behavior pattern is on-line tested to the user’s satisfaction, the patern’s structure can be
recorded to the system for the later use. The interactions for recording a pattern are as follows: A dialogue
box appears after a right_button click on the title of the "responder” menu. The user is asked for the pattern
name and confirmation of the recording. At this point, a cancellation is still possible if a negative answer is
given. A recording following a positive answer copies the relation structures to the pattem’s name. In either

case, an answer returns the system back to the original state, from which a new behavior pattem can be

modeled.



140

A pattern is recorded with only the relations selected by both the environment and the user when the
pattern is modeled. Each of the relations is recorded with its local control properties and other structural
information modeled with the relation. These include the relation’s state, and grouping or scheduling struc-
tures. The relations selected for a pattern, along with the necessary structural information are stored ina

linked list, as shown in Figure 6.8.
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Figure 6.8 Internal Data Suructure of Patterns

6.3.3. Sequential Control Component

The sequential control component is used for modeling new sequential behaviors using the set of
behavior patterns previously modeled in the other system components. This component implements the
sequential control level of the behavior hierarchy, where the only elements used for structuring a sequence
are behavior patterns. These pattems can be ordered and scaled along a sequential time dimension, and
recorded to the sysiem for a quick motion review. Initially, there are four interaction areas in this com-
ponent. The current path through the component’s menu hierarchy and other system messages are shown in

the system message area. Legal mouse functions for the menu area are displayed in the on-line help area.
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Motions can be recorded and viewed in the display area. The first menu in the menu hicrarchy, “sequential

control => pattern/time”, is lisied in the menu area.

Three soft buttons in the display area are used to extend the current environment to a more general
environment. These buttons are "pick”, "move”, and “"cancel”. The process of composing a general
environment is divided into two control modes: picking and moving. Detailed interactions for using these
modes, as well as for structuring sequences from patterns and a sequence recording and viewing, are given

in the sequence component section of Appendix Al.

The current system mainly considers linear structures for sequential behavior. If a parallel or partial
paralle! structure is used for modeling a sequence, a different structure copy and remove strategy should be
used. This strategy should consider the overlapping case when two or more patterns are used in parallel,
rather than one at a time. The copy of an active pattern inay or may not overlap part of the structures previ-
ously copied. It may cause confusion about the possible overlapping part, when the previous pattemn is
removed. One solution to this problem is 1o let the system keep track of the overlapping parts and use this

information to prevent errors when recovering an active patiern.

6.3.4. Scene Ruadering Component

The scene rendering component is uscd 10 adjust the rendering effects of the scene environment,
including color mapping, camera models, and lighting models. These rendering controls are divided into
separate rendering tools. The use of a ool is signaled by a left_button click in the tool icon, which opens
the interactive control environment for the tool. If the color mapping icon is selected, four interaction areas
are assigned as follows: the system message area shows the levels of the colors menu and other system
messages. The on-line help area describes the legal mouse interactions in the menu area. The menu area
lists the commands used for color mapping. The display area presents a test-bed for selecting colors, which
includes three standard color sliders, a sample color panel, and a set of color panels for recording the com-

posed colors. A color panel is a small rectangular area for showing an assigned color.
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Commands listed in the "colors” menu are copy, uncopy, forward, backward, nextpage, and back-
page. The copy command copies the current color 1o a color panel. The target of the copy is indicated by a
pointer that can be moved back and forth among the color panels. The uncopy command reverses the last
copy action. The forward command moves the pointer from the current panel ««: the next panel, and back-
ward command moves the pointer from the current panel to the previous panel. The nextpage command

opens a new page of color panels, and the backpage command retieves the previous page of color panels.

In the display area, a color is composed using three standard color sliders, ranging from 0 tc 255 in
red, green, and blue. The value of a standard color can be selected by a mouse click in the color slider.
Every time a new value of a standard color is selected, the newly composed color is formed and displayed
in the sample color panel. Our current sysiem uses the standard RGB system for its color composition.
This color standard could be converted to other color standard systems, such as CMY (cyan, magenta, and

yellow) or HSV (hue, saturation, and value).

Initially, five standard colors (black, white, red, green, blue) are displayed in the first row of color
panels. These colors can’t be changed. The mapping of a selected sample color to a color panel follows the
steps of selecting a panel and copying the sample color to the panel. For detailed steps refer to the rendering

component secuon of Appendix Al.

Four camera settings, cameral, camera2, camera3, and camerad, are used for setting up the multiple
views of the environment and motion on the screen. These can be the long shots from different viewing
angles, closeup shots for selected details, or parallel shots of related control effects. A camera setting is
defined by a set of viewing control parameters, including the eye position, viewing direction, position
aimed along the line of sight, and view volume in the eye coordinate system. By default, cameral is used
for a tong shot view of the environment and motion, projected to the whole screen of the display area. This
view is also used in the scene composing, pattern control, and sequence control components of the system.
Besides the use of this camera, the other three cameras are used for alternative views of the same environ-

ment and motion in the viewing component. The viewing control parameters of all four cameras can be
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interactively set by the user.

Some suggestions for the effective use of alternative cameras are as follows. Camera2 can be used as
a closeup shot of a partial environment, which shows the main character’s subtle reactions. Camera3 and
camera4 can be used for two parallel events or a pair of related source and responder objects, to simulate
the view of each object. The use of parallel views also illustrates the relation control ideas introduced in the
environmental behavior animation. On the other hand, a camera as a special object can be animated in the

viewing space, by either rotating or transiating the camera model. Also, linear interpolation can be used to

move the camera along a path.

The use of multiple cameras on the screen can be one of the four cases: one, two, three, or four cam-
eras. If the one-camera viewing mode is selected, the view set by the selected camera is mapped to the
whole display area. If the two-camera mode is sclected, the two sclected camera shots are shown on the
screen, with each in half of the display area. If the three-camera mode is selected, the first camera view is
displayed in the left-half area and the other two are each in half of the right-half area. If the four-camera
mode is selected, each camera view is shown in a quarter of the display area. These subdivided viewports

for each camera mode can be resized to a smaller area, using the mouse interactions.

The use of a grouped camera mode depends on the number of cameras selected for the current view,
A camera can be selected by a middle_button click on the camera item in the camera menu. Initally, cam-
eral is selected by default, which implies the use of one-camera mode. To change this default mode to
another mode, the user can interactively select the number of cameras required by the mode. Also, a quick
way to adjust the viewing control parameters of selected camera group is possible, through the interface
supported in the parameter menu. Namely, a left_button click on the "continue™ command advances the
current camera’s parameter menu 1o the next camera’s one, in the selected camera group. A left_bution

click on the "exit” command ends the cycle of quick group adjusting.

Interactions for viewing a previously recorded motion sequence in a selected camera mode are given

in the rendering component section of Appendix Al. Cumenty, only the default camera mode is
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implemented in the current system version.

The lighting model in the current system uses the one available from the IRIS graphics library,
Gouraud shading of diffuse light reflection. Other shading effects, such as Gouraud shading of specular
light reflection and Phong shading of diffuse light reflection, are not included in the current version, but

could be added to the system.



Chapter 7

Examples of Dance Motion in Various Environments

This chapter presents a set of examples using the relation control model. These examples use ball-
room dances as the basic animating behaviors. Based on these, other simple movements, such as forward
step, backward step, side step, head wrn (to the left or right), body turn (to the left or right), arm up and
down, pause, changing to a new dance, changing to a new pattern, and following a pattern, are uscd as the
alternative behaviors during a dancing. These basic and altemnative behaviors are modeled by relations and
used dynamically in an animation, upon each relation’s sensing ability and the state of the environment.
The examples are developed initially frecm a simple static environment, with obstacles and boundaries, then
incrementally to other more complex and dynamic environments. Similarly, the behaviors in the environ-

ments can be incrementally modeled using the relations.

7.1. Dancer and Dance Notations

The main character used in the dance examples is an articulated human figure. It consists of sixteen
linked segments: the head, neck, upper_body. lower_body, left_upper_arm, left_lower_arm, left_hand,
right_upper_arm, right_lowcr_am, right_nand, lefi_upper_leg, left_lower_leg, lefi_foot, right_upper_leg,
right_lower_leg, and right_foot. The topology of these segmenits is illustrated in Figure 7.1. The arcs point

from child segments to their parent segments in a tree-like fashion.

Every body segment, except the upper_body segment (which is defined as the root of the tree), has a
parent segment. Every segment except the feet, hands, and head has one or more child segments. For
instance, the lower_body segment is linked to its parent segment, upper_body, and its two child segments,
left_upper_leg and right_upper leg. In thc dance examples, body segments are drawn as a three-
dimensional model with body proportions measured from a live human figure. The front and back surfaces

of each body segment are rendered in a different color intensity.
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Two iypes of coordinate sysiems are used 10 control the figure’s motion: the world coordinate system

and local coordinate systems. The world coordinate system (also called the inertial coordinate system) is

centered at the root zode of the figure’s ree structure. This coordinate system places the figure in the world

space, which measures movement applied to the entire figure model. The local coordinate systems are cen-

tered about the point which joins each segment to its parent, which measures the movement applied to the

segment relative to the coordinate system of the parent. Both the world and local coordinate systems have

three orthogonal axes, x, y, and 2, in a right-handed configuration. The length of each body segment is

aligned to the y axis of the respective local coordinate system, except for the ones used for the foot seg-

ments which are aligned to the z axis.
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The origin of the world (inertial) coordinate system is set to the joint between the upper_body scg-
ment and the neck segment, while the origin of each local coordinate system is set to the proximal hinge of
the segment (the point where the segment connects to its parent). When a limb segment rotates around one
or more axes, the three orthogonal vectors of the local frame attached to the Iimb also rotate to obtain a new
orientation of the coordinate system. Thus, with the moving reference frame, each segment maintains a
consistent description in its local coordinate system. The links between the body segments are connected as
revolute joints with three degrees of freedom. The joint at the root of the tree consists of both three revolute

and three translational degrees of freedom, and connects the whole tree to the world frame.

Each segment is defined by four parameters in its local coordinate system: the length of the segment
and the three Euler angles with respect to its parent. The length of the scgment is defined according to the
figure modei. The Euler angles of a segment with respect 10 its parcnt segment can be used to calculate a
rotation matrix, composed of three orthogonal rotation matrices for the x, y, and z axes. For instance, the

matrices for computing the Euler angles of a segment r with respect to its parent segment r — 1 are

1 0 0
R, (D) = [0 cos{(D) sin(<b)J
0 —sin(®) cos(d)
[cos(®) 0 -sin(©)]
R,(8) = L 0 i 0 J
sin(®) 0 cos(©®)
|’cos(k?) sin(¥) 0
R, (W) = |-sin(¥) cos(¥) 0
L o 0 1

R"=R,(¥)R,(8)R ()
where & .6 and'¥ are the Euler angles for the rotations about the x, y, and z axes, which are in the order of

z, y, x. The matrices shown above assume column vectors for calculating the rotations.

Similarly, the orientation of segment r with respect 1o the inertial frame can be obtained fro.a the
matrix product:
R;=R'R? ---R"™'R’

The endpoint of segment r, the point which is not linked to the parent segment r — 1, is expressed as
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P’ in the frame of segment r. P" can be calculated in the frame of segment r — | by:

Pl=R"P +O;"!
where 07! is the location of the proximal hinge of segment r expressed :n the frame of segment r -1, and
P’ ! is the coordinates in frame r — 1. Repeating the calculation can convert the expression P” in the frame

of segment r 10 a world coordinate P in the inential frame.

With the tree structure of an articulated figure, the standard dance steps such as forward step and
backward step can be constructed using the positions and orientations of a figure’s body segments. Once
these standard dance steps are defined, a wide range of dances can be composed in the following way: a
dance is composed of a set of patterns, a pattemn is composed of a set of steps, and a step is composed of a
sct of well-defined body segment positions, such as foot positions, ann positions, head position, footwork,
and body turn. Time beats required to reach these positions at each dance step may be considered as another

control factor.

In standard dance notation, foot positions defining the dance movement of either the left (or right) leg
are 1st, 2nd, 3rd, 4th forward, 4th backward, and Sth positions. Other additional foot positions are SIP (step
in place), XIF (cross front), XIB (cross behind), and UNX (uncross). The arm positions in dance movemeni
are either a close position (CP) with the dance pariner or an initial standing position. The head position can
be one of LL (look left), NP (normal position), and LR (look right). Footwork describes the subtle control
applied to a foot, such as the position H-T describing the movement of stepping down on the heel then ris-
ing on the toe. Alternative footwork positions are H (heel), T (toe), T-H (toe-heel). The body tum may be
specified as 1/2, 1/4, 3/4, 1/8, 3/8, 5/8 of a full revolution either to left or to right. The time beats used fora
dance step may be 1, 2, 3, or 4 beats to reach the goal position of the = . rore detailed description of

these step positions are provided in Lake's thesis [Lake90].

Three dances are used in our examples, which are fox_trot, waliz, and test. Among them, the "test”
dance is not one of the standard ballroom dances, but selected for the novice to practice the basic dance

steps. The paterns in the "test” dance are a sequence of hasic steps or a combination of several steps, such
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as raising left and right arms, stepping forward, stepping backward, stepping forward and backward, and
stepping to the side. For the "fox_trot" dance, six dance patterns are used in the cxamples, which are the
backward_basic, bex_step, closed_position_quarter_tums, forward_and_back_basic, promenade_basic, and
twinkle patterns. Patterns selected from the "waltz" dance are box_step and lef ~x_tum. Note that the

same box_step pattern is used in both "fox_trot" and "waltz" dances, but they have different time beats,

footwork, and other modified control positions.

Consider one example of how the body segments are defined in the backward_basic patiern of the
"fox_trot” dance. The foot positions in this eight-step pattern are defined, in order, as LF BWD (left foot
backward), RF BWD, LF 2ND, RF 1ST, LF BWD, RF BWD, LF 2ND, and RF 1ST. These steps are
defined by the standard positions and orientations of the body segments that can then be interpolated to pro-
duce a smooth motion. Motion from a set of positions and orientations 1o another set can be interpolated
using several methods: linear interpolation, cubic interpolation, and interpolation using dynamic equations.
Timing control of a movement between two keyframes can be handled while interpolating the movement.
One example using the recursive dynamic equations of Armstrong and Green [Armstrong85] to interpolate
two standard dance steps is given in Lake’s thesis (Lake90]. His research also builds an interactive dance

system which allows the user to interactivelv specify the standard dance steps and pauems.

The main focus of our research is to find a better control approach for motion in dynamic environ-
ments. The approach has intuitive, creative, and flexible control abilities, allowing moton o be easily gen-
erated and automatically adapted to a dynamic environment. As motion in a dynamic environment can be
more variable, dependent, and individual than a single object’s motion, its specification should directly
address these difficulties. Motion can also be adapted to other behaviors and environments. Consider dance
motion as one example. If two or more dancers are placed in a room environment, their dance motions are
constrained by the room’s boundaries, tables or chairs serving as static obstacles, other dancers serving as
dynamic obstacles, and sound events in the room. How should the dance motion in this room environment

be modeled independent of a sequential behavior and the environment? In other words, a benavior change
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or an environment update only requires a minor revision of the modeled motion.

We use a set of relations to model the dance motion in this room environment. Standard dance steps
used for the examples are generated from Lake’s ballroom dance system. Motion sequences produced by
our system consist of dance steps, other steps, body tums, pauses, and looking around. These output
sequences can again be read into Lake’s dance system for smooth motion interpolation. The main task of
our system, as one example using the relation model, is to produce motion sequences (3D parametric key-
frames) which naturally respond to a previcusly unknown dynamic environment. Examples using the sys-
tem are incrementally developed from static environments to dynamic environments, from one dancer to
several dancers, and from simple avoiding behavior to more complex environmental behaviors. Both rela-

tion descriptions and their hierarchical structures are introduced in each of these examples.

7.2. Dance Motion in Static Environments

A static environment is composed of one moving object and obstacles located in a restricted area.
Here, two static environments are used: one with a group of objects and the one with additional individuals.
These two examples cover the general issues of motion in static environments. In our examples, both the

environments and motions in the environments are composed on-line in one interactive control session.

7.2.1. Static Environment with a Group of Obstacles

This example consists of a room environment with boundaries, one dancer, and a randomly placed
group of biocks. One possible initial setting is to place the dancer in front of two blocks side by side and
distribute the other blocks around the area. Each block can have a different size, color, and other properties.
These, in turm, may trigger relations with various enabling conditions. In this room environment, we want
to modei the following behavior: the dancer selects a dance and pattern, and then dances the pattern in the
room. Potential collisions with the walls or blocks are avoided in advance, by actions such as tuming to a

new direction. While avoiding potential collisions with one of the blocks, the dancer may show a dislike
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feeling by a quick turning at the block (180 degrees), or a fear by using a few backward steps prior to tum-
ing to a new direction. These alternative behaviors of avoiding blocks can be used at different times,

together with other behaviors in the environment (o show the differences between individuals.

Five relations are used to model the behavior described above: "move_step”, “avoid_walls”,
"avoid_blocks”, "fear_a_block” and "dislike_z_block". "Move_step” advances the dancer to the next pat-
tern step in the current dance, for the nexi keyframe instant. The pattern is repeated when the last step is
reached. "Avoid_walls™ produces an avoiding response whenever a wall is close to the dancer. This aveid-
ing response closes the current pattern step and turns the dancer in a new direction for the next two steps.
"Avoid_blocks" is similar to "avoid_walls", except the response is made to a block. "Fear_a_block" pro-
duces a fear response to a block that is larger than the others, or a particular block recognized by the dancer.
This results in the dancer moving backward several sieps when block is close to the dancer.

"Dislike_a_block” results in a quick reverse turn when a block with a specific colour is too close to the

dancer.

These relations as well as the modeling and rendering of the room, dancer, and blocks are described
by the ORS language. A sample of these descriptions is included in Example One of Appendix A2. The

source, responder, and enabling condition for cach of these relations is summarized below:

relation (source,responder):  enabling condition
move_step (dancer,dancer): motivated?
avoid_walls (walls,dancer): a_close_distance?
avoid_blocks (blocks,dancer): a_close_distance?
fear_a_block (a_block,dancer): distance_& _size?

dislike_a_block  (a_block,dancer): distance_& color?

The description of these relations and the corresponding objects is used 10 produce the system
modules used as part of the interactive relation control system. The system supports interactive composition
of the environment and the composition of relations o produce a desired behavior in the environment. For
details of using the interactive system to compose an environment and motion, refer to Chapter 6. Here, we

emphasize the structures necessary for a particular behavior and how these structures are buiit into an
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environment.

Five relations are initially selected by the environment. The user can then interactively select two
altemmative relations, "fear_a_block" and "dislike_a_block", while modeling different behavior pattems. At
the state control level, rclations selected potential by both the environment and the user can be triggered to
the active state when their conditions become true. When active, relations produce the following possible
interactions: relation "move_step” is initially wiggered active and advances the current dance step to the
next one. At one point in the motion, "avoid_walls" is triggered active when its enabling condition, a close
distance 1o one of the walls, becomes true. This rela..on issues a blocking state control to the "move_step”
relation, which temporarily blocks the relation from producing a response during the avoiding period. A
similar rule is applied when the relation "avoid_blocks” becomes active. If more than one block trigger this
relation, the one with the shortest distance is selected for the current conirol step. This can be specified by

assigning the distance values as the priority of the two relations.

The other two relations, "fear_a_block" and "dislike_a_block", are separately used in one of two pat-
terns. Here we only look at the state control level. At this level, both relations are modeled with higher
priorities than the relation "avoid_blocks", which enforces the fear behavior or dislike bek:vior prior to the
avoiding behavior. For instance, at some point in the motion the relation "fear_a_block" is triggered active.
In the active state, the relation issues a blocking state control to the avoiding relation, which is also trig-
gered active by the block. This blocking strucure allows the fear behavior be performed prior to the avoid-
ing behavior. Similarly, the active relation "dislike_a_block" used in the other patien issues a potentializ-
ing state control to the avoiding relation, which cancels the active avoiding behavior for the current control
step. The canceled avoiding behavior may be triggered active at a later time, since the relation is only

changed to the potential state.

Two behavior pattems called p1 and p2 are modeled in this example. The major difference between
the two pattems is in the use of relations “fear_a_block” and "dislike_a_block", where the former is used in

pattemn pl and the latter in paitern p2. The interactive state control among the relations for the two pauems



is ouined in Figure 7.2. These patiems are named and recorded in the system and later used as basic cle-
ments for modeling behavior sequences. These two patterns can be interactively selected, ordered, and

scheduled, at the sequential control level to produce the desired sequential behavior.

avoid blocks

pattern p1 pattern p2

Figure 7.2 Interactive State Structures of Pattern P1 and P2

The following conventions are used in the figure. A relation is drawn by a double circle where the
outside circle denotes the enabling condition and inside circle the response. An interactive state control is
drawn by an arc pointed from the controliing relation to the controlled relation. Each state conuol type is
indicated.by a letter along the arc, where the letter "a" stands for an activating call, "p" for a potentializing
call, "b" for a blocking call, and "t" for a terminating call. Notice the difference between the way that the

"fear_a_block" and "dislike_a_block" relations interact with the "avoid_blocks" relation.

S Y Y LT LY TP Y LY T
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7.2.2. Static Environment with Other Individuals

Now, we extend the environment in the previous example by adding another object, a posting board.
To model the motion in the extended environment, the object "posting board™ and relations based on the
board are first scripted using the ORS language, and then added to the interactive relation control system.
When these descriptions are added 1o the previous example, the user can directly start from the previous
example and extend the environment and motion behavior. To extend the environment, the user opens the
scene composing component and inieractively selects, locates, and includes the object “posting board™ in

the previously composed room environment

Suppose the additional behavior based on the posting board is as follows: when the dancer sees the
board for the first time, the dancer moves towards the board, reads the news on the board, and then dances
away from the board. The next time the dancer moves close to the board, the dancer simply avoids the
board and continues the dance. While avoiding the board, the dancer may decide to switch to a new dance

atiern. Also, the dancer may swiich 10 a new dance pattern after repeating the current pattern three times.
p y P pe

The additical behavior is modeled using the following additional relations: "to_board”, "stop”,
"avoid_board", "change_newdance”, and "change_newpattemn”. "To_board" moves the dancer towards the
board, when the board appears in sighi. "Stop™ hoids the dancer’s motion for a shont period. “Avoid_board”
turns the dancer to a new heading away from the board for the next two pattern steps. "Change newdance”
changes the current dance. Finally, "change_newpattern” changes the current dance pattern (10 a new one,

after it has been repeated three times.

"To_board" is mapped from the board to the dancer with the enabling condition that the board is in
sight. "Siop” is mapped from the dancer to the dancer, with the default true condition, since the relation is
called active by another relation. As the relation is not constrained by environmental conditions, it will
begin responding when it is called aciive. "Avoid_board" is mapped from the board to the dancer, with the
distance o the board as its condition. "Change newdance” is mapped from and to the same object, the

darcer, with the condition if it is called active. "Change_newpattern” is mapped also from and to the same



object, the dancer, with the condition that the current dance pattern has been repeated three times. The
objects and enabling condition for each of these new relations are summarized 1n the following table.

Detailed descriptions of these relations are found in Example Two of Appendix A2.

Telation (source responder):  enabling condition
to_board (board ,dancer): is_board_in_sight?
stop (darcer.dancer): if_called active?
avoi=_board (board.dancer): is_board_close?
change newdance (dancer,dancer): is_called_active ?
change_newpattern  (dancer.dancer): repeated_times ?

Assume all the new relations are initially selected by the environment. The second selection by the
user divide- these potential relations into two sets. One contains the rclations “to_board™, “stop”, and
"zvoid_board”, and the other has "avoid_bourd”, “change_newdance”, and "change newpattern”. This
selection is based on the :i:udeling of the two behavior patterns pl and p2 in the previous example. At the
state control level, new relations are used to produce the following interactions: “to_board” is triggered
active if the board appears in the dancer's sight. While moving to the beoard, other relations such as
“avoid_blocks" and "fear_a_block™ may interact with the active relation "to_board”, if they become active.
Orne of these relations temporarily blocks the response towards the board until the response of avoiding the
close block is complete. W hen the board is reached, the "to_board" relation scts the “stop” relation active,
which produces a short pause at the board. The "stop” relation sets the "avoid_board” relation active at the
end of its duration. This active relation produces an avoiding response at the board. This relation also issues
a terminate call to the "to_board” relation to disable a second chance of moving towards the board, when
the board again appears in dancer’s sight. The next time the dancer moves close to the board, the
"avoid_board” relation will be self triggered by its distance condition. The "move_step” relation is initiaily
blocked by the "to_board"” relation, but it is called active again at the end of "avoid_board” response. The

moving relation advances the dancer to the next pattern step.

For the second relation set used for the behavior pattern p2, "move_step” is initially self triggered

active to advance the dance pauem from one step to the next. Once the pattern has been repeated three
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times, the "change newpatiern” relation is triggered active, which switches the current pattern 10 a new one.
The dance motion could be blocked by the "avoid board” relation if the dancer moves close to the board.
This active relation produces the necessary avoiding response at the board. At the end of the avoiding
response, the "change newdance” relation is called to change the current dance. The interactive controls
amongst the new and old relations in the two behavior patierns. pl and p2, are shown in Figure 7.3. A new
notation in this example is the second letier enclosed in a pair of parentheses along the arc. This letter indi-
cates the immediate state change of the interacting relation after issuing a state control. For instance, the

letier (p) indicates the interacting relation's state is changed to potential right after issuing the call.

avoid board i
b i | change newpatterip

move_step : @
9.-.’_',.

o o

P avoid walls i P~
-~ avoid blocks! i ‘: " avoid blocks

fear | block dislike_a_block

.
e eesscanricdenancrennvervenstloresesanRseREns Uneesveereasesecnnsssvenanen o

pattern p1 pattern p2

Figure 7.3 Revised State Structures by an Additional Individual

In the state control scheme shown above, the new control structures among the new and old relations
are drawn in solid lines, whilc the previously used structures are drawn in dotted lines. One point to
emphasize here is the call-active enabling condition. For the relation whose enabling condition is not
defined. the relation will not be processed until it is called. This enabling condition is mainly used for com-

mon relations whose responses are usable in several similar situations, or the ones performing secondary
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reactions, the less important reactions calied by main reactions.

The two behavior patterns, pl and p2, can be placed in different orders, starting from different umes,
and lasting for different lengths, while modeling a desired sequential behavior. One imporant feature of
the relation model is the flexible motion revision based on simply changing the structures built on top of
relations. For example, if the control of the relation "stop” is shifted from the "to_board” relation to the
"avoid_board” relation in behavior pattern pl. a new behavior results, which shows a hesitant response after
avoiding the board the first time. As the first expericnce towards the board shows a quick avoiding response
to the board, the response gives a strong impression for the dancer’s impatient character. The difference
becomes more apparent if two dancers are placed in the environment, where one uses the same behavior
pat:ern and the other uses the varied pattern. Similarly, a wide range of behaviors can be derived from the

motion modeled by relations, such as shifting the control of the “stop” relation from behavior pattern pl to

behavior pattern p2.

7.3. Dance Motion in Dynamic Environments

Two types of dynamic objects can be involved in a dynamic environment: moving ohse~ s :ad scene
events. Moving objects can be further divided into main characters and secondary (less important) charac-
ters. In our dance examples, the dancers =re the main characters, and other objects such as a jumping trian-
gle and a spinning stool are the secondary characters. Sound is the only scene event used in this example.
These three dynamic objects are incrementally added to the environment, based on the block environment
composed in the first example. The examples in the following subsections show the direct correspondence
between the environmental and behavioral changes in the scene animation. The complexity of controlling

the motion. as shown in the examples, only linearly increases with the number of relations and the struc-

tures imposed on them.
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7.3.1. Dynamic Environment with Other Moving Objects

This example adds a jumping triangle to the block environment used in Example One. After this
addidon, the environment consists of walls, one dancer, a number of blocks, and one jumping triangie. The
triangle’s motuon is controlled by an initial jumping direction, a constant speed, and a jumping distance.
With these control propertics, the triangle jumps step by step along the initial direction until it hits an cbjec
in the room. When this occurs, the triangle jumps in a new direction, bouncing back from the hit object.
The dzancer can also be hit by the jumping triangle. The only way to avoid the collision is to have the

dancer sense the possible hit and take the necessary response to avoid the collision.

To model the additional behavior in the extended environment, five relations are used:
"bounce_at_walls", "bounce_at_blocks”, "bounce_at_dancer”, "jump”, and "avoid_triangle”. The response
of each new relation is described as follows. "Beunce_at_walls” assigns a new jumping direction to the tri-
angle when it hits the wall. Similar responses arc used for the relations "bounce_at blocks™ and
"bounce_at_dancer”, where the new jumping direction is assigned according to each hit instance. "Jump”

moves the triangle to the next jumping step, along its assigned direction. "Avoid_triangle™ advances the

dancer by a few side steps 10 avoid a possible collision w» - hz tsiangle.

The source and responder objects and enabling condition «f each of the new relations are summanized
as follows. For detailed description of the new object and the new relations in this example refer to Exam-

ple Three of Appendix A2.

relation (source.responder): enabling condition
bounce_at_walis (walls.triangie): if_hit_by_wall?
bounce_at blocks  (blocks,triangle): if_hit_by_block?
bounce_at_dancer (dancer,triangle): if_hit_by_dancer?
avoid_triangle (triangle.dancer): close_triangle_insight?
jump (triangle triangle): is_jumpable?

The environment now has two motions: the dancer’s motion and triangle’s motion. For the jumping

motion, four relations are used: "bounce_at_walls”, "bounce_at_blocks", "bounce_at_dancer”, and "jump”.

Initially, these relations are selected by the environment. The state control of these relations, at the state
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control level, is (.. follows: the "jump” relation advances the triangle to the next jumping step, if it is not
disabled by other relations. If one of the relations, "bounce_at walls”", "bounce_at_blocks”, or
"bounce_at_dancer”, is active, it disables the jumping motion, assigns a new bounce angle, and advances
the first jumping step in this new direction. The jumping motion continues after the hitting response. The

state control diagram among the relations for the jumping motion is shown in Figure 7.4.

@ bounce_at_dancer

bounce_at_blocks

Figure 7.4 Interactive State Control of the Jumping Motion

For the dancer’s motion, the only new relation is "avoid_triangle”. This relation like the other avoid-
ing relations may block the "move_step” relation when a potential collision with the jumping triangle is
sensed. However, sensing a triangle collision may be ignored if the dancer is currently busy avoiding
another obstacie, such as a block or a wall. This case shows a generai confiici when two or more relauons
are active. The solution in such a case is to select the relation with the highest priority, assigned by either
urgent or personal reasons. In this example, "avoid_triangle” is assigned a lower priority than the other two
avoiding relations, "avoid_blocks” and "avoid_walls”. Thus, a hit may not be avoidable if the dancer is
avoiding a block or a wall. As a result, the triangle will hit the dancer and bounce back in ancther jumping
direction. Other interesting behaviors can be produced if a different priority assignment is used. For
instance, if "avoid_triangle" is assigned a higher priority than "avoid_blocks”, an avoiding-hit response is
used even if a ciose block is sensed. This unreasonable reaction may push the block or stop the mouon at

the biock, which can be modeied using additional reiations.
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The interactive state conuol of the relations used in dance motion, in terms of the two behavior pat-
terns pl and p2, is shown in Figure 7.5. The same convention for drawing the graph, such as solid lines for

new relations and dotted lines for old relations, is used here to show the additional control details.
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pattern p1 pattern p2

Figure 7.5 Revised State Controls with Other Moving Object

The two behavior patterns pl and p2 are similarly structured and recorded as in the previous exam-
ples. One apparent difference between the patterns in this example is the use of the new relation
"avoid_triangle”. This new relation is only selected for pattern pl, whose interaction with other relations of
the pattern is shown in the above diagram. Because the relation is used in pattern pl and not in pattern p2,

a different behavior, that concentrates on the dance and ignores the triangle, is produced by p2.

To stess the flexible editing of behaviors, consider the following behavior change. If relation
"avoid_tsiangle” is replaced by relation "kick _triangie” (which produces a kicking response when the trian-
gle is close to the dancer), a new behavior is produced by replacing this relation. This behavior suggests the
dancer has an impatient character accordingly to hi¢ rude kicking attitude. Another example is to add an
intcractive control from the "bounce_at_dancer” relation i the "stop” relation, which generates a pausing
response when the triangle hits the dancer. This additicnai behavior shows the sensitive character of the

dancer, in comparison to the one without pausing. This adilitional change can be included in either pattern
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pl or pattemn p2.

7.3.2. Dynamic Environment with Additional Dancers

This example adds two more dancers to the room environment. To produce this environment, two
new dancers are interactively selected and assigned different height, width, and body segment ratios. Once

selected, these dancers can be interactively placed in the room.

While dancing in the room environment, the three dancers can be identificd based on their individual
dance styles. For instance, dancer one independently chooses one of his favourite dances for practice;
dancer two follows the dance pattern that dancer onc is currently performing, being attracted by the graceful
style of dancer one; dancer three, as a novice. repeats the basic steps of ballroom dancing. The three danc-
ers, dancing individually, produce similar responses to other objecis in the room environment, such as
walls, blocks, and a jumping triangle. Between the dancers, the avoiding response is used first, which over-
rides other relations, such as attraction from dancer onc 10 dancer two. A hit situation, however, may not be

avoidable if two dancers are not facing each other.

Three new relations are used for the above behavior: “avoid_dancer”, "hit_dancer”, and
"attract_dancer”. The resp~n<-3 produced by thesc relations are as follows. "Avoid_dancer” closes the
current dance step and then tlakes a few side steps to avoid a close dancer. If two dancers are responding to
each other at the same time, both take the side steps in the opposite dircctions since they face each other.
These responses quickly leave enough space between the dancers. Otherwise, if only one dancer is respond-
ing, he may need to take more side steps to successfully avoid the other dancer. "Hit_dancer” closes the
current dance step and restarts the dance from the first pattern step. "Attract_dancer” rotates dancer two 10
keep dancer one in sight and switches his pattem to maich the pattern that dancer one is using. In this case,

dancer two normally changes his paitern whenever dancer one changes to a new pattern.

The objects (source and responder) and enabling condition for each of the new relations are outlined

below. For details of the new relations refer to Example Four of Appendix A2.



relation (source responder): enabling condition
avoid_dancer  (dancer_i,dancer_j): if_too close?
hit_dancer (dancer_i,dancer_j): if_hit?

attract_dancer  (dancer_I.dancer 2):  if_insight_&_paitern_match?

These new relations are initiaily selected by the environment. The user can again select the relations
for each behavior pattern. Assume all the new relations are selected for modeling behavior pattern pl and
one relation, “hit_dancer"”, is selected for behavior pattern p2. The interactive state control using these rela-
tions in terms of dancer two’s mation is as follows: "Move_step” initially advances dancer two to the next
pattern step. "Attract_dancer” issues a blocking control to the moving relation when its enabling condition,
dancer one is not in sight or dancer one has changed to a new patiern, becomes true. The active attraction
relation produces a turn towards dancer one or a change of dance pattern. When relation "avoid_dancer”
becomes active, it blocks either "attract_dancer” or "move_step”, if either relation is active at that time. The
same strategy is used for relation "hit_dancer" which, when triggered active, may block either the attraction
relation or the moving relation. In the behavior pauttemn p2, relation "hit_dancer” adds the blocking structure
to the move-step relation if a collision occurs. The interactive state control of relations in the two behavior
patterns, in terms of dancer two’s motion, is illustrated in Figure 7.6. This interactive control scheme can

be similarly applied to the other two dancers’ motions.

Interaciive state control among the relations outlines the dynamic priorities assigned to the relations.
In our example, the “atiract_dancer” relaton has a higher priority than the moving relation, and the
"avoid_dancer” and "hit_dancer” relations have higher priority than both the attracting and moving rela-
tions. When more than one new relation is active at the same time, the one issuing the blocking control to
the other relations is the one producing the active response. However, situations exist which can not be sim-
ply solved by using blocking control from one relation to others. One example is the avoiding relations.
What happens when several avoiding relations are active at the same time? There is no unique solution for
this question. The situation may become 100 complicated for the current relations to handle. One possible

solution is to model a new relation which deals with this situation.
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Figure 7.6 Revised State Controls by Two More Dancers

A simple solution to the multiple avoiding conflicts problem uses proper priority assignment. For
example, if both relations "avoid_block™ and “avoid_triangle” are active, relation "avoid_block” with a
higher priority can issue a blocking control to the “avoid_triangle” relation, which may lead to a collision
situauon with the tnangle. A similar case occurs between the two relations “avoid_biock” and
"avoid_dancer"”. if both are active, relation "avoid_block" with a higher priority can issue a blocking control
to the other relation, which may lead to several hit-dancer responses during the avoiding-block response. If
we reverse the priority assignment, by issuing a blocking conirol from relation "avoid_dancer” to the other
relation, a hit-block situation might occur. The response in this situation can be modeled by a new relation

which solves the crisis.
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7.3.3. Dynamic Envirecnment with Scene Events

The last example adds another dynamic source, a scene event, to the previous room environment. A
scene event is treated as a special dynamic object sorrce, which occurs in a scene at an unpredictable time
and lasis for an indefinite period. Typical scene events are scunds, smells, lights, and birds passing over the
scene. The event chosen for this example is a sound event. This is modeled using the control properties of
time of occurrence, sound frequency, and sound period. Sound, as one type of dynamic object, can be

selected and added to the room environment as any other object.

The additional behavior in response to the sound is as follows: The occurrence of a sound does not
bother the jumping triangle as it may not be aware of the sound. Three of the dancers show individual atti-
tudes towards the sound. When a sound occurs, dancer one stops normal dancing and looks around to
search for the source. Dancer two keeps turning in the same place as a sign of surprise. Dancer three stops
dancing and quietly waits for the sound to end. Once the sound evemnt is over, all three dancers continue

their dances.

This behavior can be modeled using three new relations: "look_at_sound”, "turn_at_sound”, and
"stop_at_sound”. "Look_at_sound" produces a looking around response and closes the current dance step
while looking. "Turn_at_sound” closes the current dance siep and rotates the dancer during the scund inter-
val. "Swop_at_sound" does nothing but waits for the sound to end. These three relations have the same
source object, the sound. A similar enabling condition is defined for the three relations: is the sound on?
Based on the three relations, other altemative and interesting behaviors can be derived by simply exchang-
ing the responder role of these relations. For instance, we can assign the looking relation to dancer three and
the stopping relation to dancer one. We can change the "sound_on" condition to “"sound_off” or
“sound_on_2second”, by a simple interaction. In the following, the objects and enabling condition of the

new relations are outlined.

relation (source responder):  enabling condition



N T L LI LY T Y YTV PPN

look_at_sound  (sound.dancer_1): is_sound_on?
turn_at sound  (sound.dancer 2): is_sound_on?
stop_at_sound  (sound.dancer_3): is_sound_on?

These new relations are initially selected by the environment in response to the new sound event.
Each of the relations is added to one of the dancers’ motions. Using dancer two's motion as an example, the
new relation added is "turn_at_sound”. Assume this new relatior has higher priority than "move_step” and
"attract_dancer”, since the latter two are the most frequentdy used relations in dancer two's motion. This
priority is explicitly structured in the state control diagram, where relaion “turn_at_sound" blocks the
active response of either relation "move_step” or relation "attract_dancer”, while the sound event occurs.
As the sound event can occur at any time, the response may need to block other relations currently active by
using either a structure or a priority assignment. The extended state control diagram of behavior patterns pl
and p2 in terms of dancer two’s motion is illustrated in Figure 7.7. These itwo patterns c¢an be used in a

sequential order pl —»p2— or p2—pl—.

attract_dancer

avoid dancer . ... Bt dancer
.. D

~..‘~‘ b :
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. : b..
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Figure 7.7 Revised State Controls with the Event Occurring
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Another reason why the sound event response blocks one or all the other relations is the nature of the
response to the sound. Suppose the response to the sound is modeled as a secondary reaction, such as nod-
ding, clapping, or waving. This response can be overlapped with other relations when the sound event
occurs. If the response to the sound is modeled as a main action, the active response should block other
responses producing conflicting motions. In summary, the use of blocking produces a unique response, and
the use of nonblocking produces a composite response. It can be true that the conditions sensed by another
currently active relation may not allow the active response when an event occurs, such a condition could be

a nearby block. In this situation, a new relation specially modeled to deal with it could be used.

Based on the modeling and structuring of relations, alternative behaviors can be derived by revising
the relation control structure, adding a new relation, deleting an existing relation, and replacing an existing
relaton with a new one. Consider the three new relations used in this example. The deletion of
"look_at_sound” shows the insensitive behavior of dancer one when the sound event occurs in the room.
An extended use of "look_at_sound" for the three dancers produces an uniforza behavior towards the sound.
A role exchange between two relations, such as "look_at_sound” and "tum_at_sound”, switches the
behavior of the dancers. Other behaviors can be derived by varying each dancer’s sensitivity according to
the dancer’s current like or dislike, or other environmental factors. These are a few of the alternative
behavior examples using the three new relations. Together with the previously modeled relations, a wide
range of environmental behaviors can be derived and explored in a conceptual and stractural control

mechanism.



Chapier 8
Cornclusions
This chapter summarizes the main ideas proposed in the relation control model, along with its com-

parison with the other previous scene modeis. This chapter also outines the major contributions of the

resezrch and its future work.

8.1. Research Summary

This thesis presents a new behavior control model, called the relation model, based on the special
control issues of scene animation. This model produces a better control environment that encourages the
intuitive, creative, and structured exploration of behaviors in dynamic environments. Working in this

environment, the user is no longer restricted 1o predefined behavior sequences, but can freely express ideas

about how a motion in an environment evolves.

Scene animation covers a wide range of environmental behaviors that h:ave not been thoroughly stu-
died in current animation research. As a result, the contro! concepts and mechanisms for the motion of a
single object have been used for scene animation. It is possible to use technigues developed for a single
object for a sequential behavior in an environment. But this can be very costly wiid tine consuming because
an ammated seguence can not be gencralized to another environment. Further, the inoiion in an environ-
ment can be more dynamic, dependent, and complex than the motion of a single object. These environmen-
tal factors increase the control complexity of the motion, which is not a linear addition of the behaviors of

the objects in the environment, but some unknown exponential control function of the environment.

For a wide range of behavicr applications, we would like to be able to easily change motion previ-
ously produced to handle alternative cavironmental behaviors. This minimum effort should be less than
reprogramming the motion or redefining a set of keyframes. Using traditional approaches, a mgiion
behavior is hardcoded into a program or a set of keyframes, which supports no structure for varying the

behavior or the environment. This limited behavior modeling ability is one of the reasons why behavior

167



168

animation in a dynamic environment is unusually expensive.

Two imponant principles of our relation model are: the specification of atomic units of motion, and
the ability to combine these atomic units o produce sophisticated behaviors. The environmental influences
in a scene are decomposed into relations that describe how a single object responds to other objects and
events in the environment. Each relation controls one environmental influence between two cbjects, the
source object that triggers the motion and the responder that produces a response. The use of relations

reduces the scene animation problem to smaller relation control problems.

Each relation can be modeled using a frame description. A relation, as a dynamic process, has its ocwn
sensor, response, duration, strength, and state. These control properties of a relation can be explicitly

modeled in the relation frame and interactively adjusted while modeling the responsive behavior.

Relations once modeied are combined 1o formn a relation composition hierarchy. This hierarchy con-
sists of four control levels, which are called selective, state, pattern, and sequential. The selective level
selects the relations used for a particular behavior application and environment. The state level specifies the
interactive state contols among the relations. The pattern level combines relations that have the same
behavior goal, and they can be used as identifizble behavior elements in the next control level. The sequen-
tia! ievel orders the behavior patierns to form sequential behaviors. An ordered pattern list can call another
list of patterns to form a branched control structure. Or, several ordered patterns or pattern lists can produce

a lcoping control structure.

Using the relation compnsition hierarchy . the motion can easily be edited to produce other behaviors
in the same or slightly different environments. For instance, the change can be as simple as changing the
relations at the lowest level of the hierarchy, the selective control level. Other changes can be produced by
revising the structures at higher levels, such as rediructing a state control, updating the relations in a group-
ing or scheduling, and swiiching the sequential order of two behavior pattern:. These changes, based on the

hierarchical control structure, are simple, ¢xplicit, and local in comparison “vith the changes in a program.
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A protwtype implementation of the relauon control model has been produced. It contains two parts:

the relation scripting language and an interactive behavior editor for composing the relations.

The language part of the sysiem uses a textual, frame-like language to describe relations. A relation
description is divided into three sections. The control header section of the frame is used for describing the
local control properties of the relation. The action body section is used for describing the main control pro-
cess of the relation, and the finalization sectinn is used for describing the end control which needs 1o be

separated from the main control body.

The behavior editor part of the system supplies an inwractive control environment for the user 10
incrementally structure a sequential behavior, using the four hierarchical levels proposed in Chapter 5. The

editor supports composing an environment, composing the behavior in the environment and revising the

behavior to a wide range of alternatives.

A set of dance motions in a room environment have been produced using the prototype implementa-
tion of the relation conwol system. The dynamic dancing behavior in the cxamples are incrementally
modeled in a series of environments ranging from simple static ones with a group of blocks and a post-
board, 10 dynamic ones with jumping wriangles, groups ol dancers, and sound events. When Lhe environ-
ment becomes more crowded with more dynamic sources, more relations are used to structure the natural
behavior in the environment. Typical natural behaviors are 10 avoid coilisions, express personal likes and

dislikes, follow or assist other dance motions, and respond to other dynamic so

We feel that our initial research goal, to provide the user with an int ive, and structured
control environment for scene animation, has been satisfied. First, the intuitive abalily is supported by the
decomposition of the motion into relations, which allows the animator to concentrate on one aspect of the
motion at a time. The simplified control of relations matches the intuitive understanding of individual
motion controls. Second, the creative ability is supported by the ability to model behaviors using a sct of
relations. Without dealing with th: details, the user can concentrate on the behavior problem while using

the relations as the basic elements. Third, the structured ability is supported by the hierarchical structures
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explicily modeled in the motion specification. The use of these structures facilitates changing the motion, a

very difficult task if traditional programming is used.

One major difference between using the relation model and other previous models is the control
environment provided for modeling and revising adaptive behavior in dynamic environments. The relation
control environment limits the burden for specifying a complete motion ¢ a set of relations, each of which
describes one simple responsive behavior between two objects. In addition, the relation environment
extends the interactive system’s ability to the interface of hierarchical structuring mechanisms, based on the
previously modeled relations. This extended zhility allows the user to interactively define an environment
as well as the behaviors in the environment in one interactive control session. Thus, such a system can be

used as a general interactive control tool for exploring the potential behaviors and environments.

The use of a predefined-sequence model requires repeating the textual debugging cycle for any
environmental or behavioral change. As no structure for supporting such a change is modeled in the code,
the change can be made by repeating the cycle "program-cor.pile-execute-view-reprogram”, which can be
very time consuming and costly. Using this model one pays the cost of one animated sequence for one
unique behavior. For cilier slightly changed behaviors or environments, niew sequences are mcedeled for

each single case, each with detailed sequential coding.

The use of sensor-effector model relies on the understanding of how neural networks really work in
humans and animals. Currently, the research in this area is still in its early stage. Very few results have been
presented. It is still generally unknown how to model the motion of a realistic 3-D object, such as a numan

figure, in a dynamic scene environment.

The rule-based mode!l outlines the concept of individual behaviors that should be modeled in a scene
application. The use of this model presents a better view than the predefined sequence model, because the
motion modeled by rules is independent of specific environmental locations, but a sequence isn’t. However,
the modeling and revising of behavior rules is still a low leve! activity. No higher control levels for rules is

proposed at present for flexibly exploring similar environmental behaviors.
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The predefined-environment model is mainly used for suatic environments. When this type of

environment is extended to dynamic ones with multiple moving objects and unpredictable scene events, the

basic assumption for using the model no longer exist. As for this reason, the techniques developed in the

static scene domain may not be feasible for modeling the behavior in dynamic scenc environments.

8.2. Major Contributions of the Research

The major contributions of this research are:

To our knowledge, this research is among the first to directly study the problem domain of scene ani-
mation. It is the first to formally discuss the problem, analyze its special control issues, and proposc a
solution, the relation contrel model, for the problem. The proposed relation model suggests an alter-
native (and superior) solution for the problem, in comparison with the predefined-sequence model,

sensor-effector model, rule-based model, and predefined-environment model.

It addresses "he difference between the motion of a single object and the motion of objects in an
environment. Based on this difference, the theoretical foundauon of the relation control model,
including the relation concept, relauon detiniuon, relation class division, relauon environmental map-

ping, and minimum and maximum number of relations required in an environment, 15 established.

The relation control model separates the control of scene animation into two steps: relation modeling
and relation structuring. Both are generalization of panicular control techniques and systems. The
frame modeling of relations is independent of the use of particular control techniques. The relation
composition hierarchy for structuring relations is independent of the use of interactive control devices

available to a system.

The relation control model redraws the bourdary between specification time and run time, as shown
in Figure 8.1. Here, the specification time using the relation model is limited to relation modeling,
and run time is extended t0 both behavior synthesis and editing. This means the interactive system

interface is no longer restricted to issuing a motion command or adjusting a set of predcfined
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parameters. The use of the relauon model opens the sysiem’s interface w0 a wider range of behavior

applications.
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Figure 8.1 System Boundary Between Specification Time and Run Time

The relation contro! model has great potential for quickly and flexibly producing natural behavior in
dynamic environments. This potential shows a significant step forward from the traditional and
current scene animaticn approaches. The basic ideas proposed in the relation model can be applied to

similar problems in education, robotics, medicine, and scientific simulation.



8.3. Future Work

As a first attempt, the relation control model is not necessarily complete and able o deal with cevery
special scene case. The model, as proposed for the general scene problem, can be refined and expanded for
other new demands. Potential improvement of the model will motivate continued research in similar direc-

tions. The following paragraphs contain suggestions for further research.

A beuer interface protocol between the levels of the relation composition hierarchy could be provided
in a more natural way. A direct interface to specify the level control mechanisms among the relations could
be developed based on a graphical display on the screen. With the relations displayed as circles (or other
symbols), the user can select a relation by clicking the mouse on the relation's circle, link a state control
between two relations by using a rubber band mouse interaction, and group relations with the similar
behavior purpose by using mouse picking and dragging interactions. The strategies used for level structur-
ing of relations can be included as part of the interface, and used as control options for the user’s selection.
A high-level or natural ’“aguage interface at the top of the hierarchy could be implemented. If this is the
case, the use of a hierarchy serves both bottom-up control of individual relations and top-down control of

natural expressions, which ceriainly opens the relation control approach to 2 wider user community.

The idea of teaching by example commonly used in user inierface research could be adopted to the
relation control system. Users who are not familiar with the structuring mechanisms proposed by the r2!a-
tion model can learn from the examples demonstrated by the system. The system could offer both textual
instructions and visual results of the motion in a clear way. The textual instructicns could be organized in
various levels of detail, to suit the users’ understanding of the system. For the experienced users, however,

this system feature could always be skipped.

One important reason for using alternative relations in a motion is 10 produce different motion experi-
ences in the environment. Common experience is based on the number of occurrences of the same situation
in the environment, such as avoiding obstacles. The curren’ reatment of using altemnative relations 10 model

different experiences is left to the user. It is the user’s role to arrange when and which reiations should be
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altered by the object’s experience of moving in an environment. It would be better to let the system calcu-
late the number of occurrences of similar situations and select alternative relations to vary the experience.
In this way, the onus is not on the user 10 remember ihe experience and manually switch to aliemative rela-
tions.

One research issue is to explicitly apply subjective control to an object’s motion, si:ch as an object’s
intention, mood, goal, and personal initerests. The current system still models this type of conirol implicidy,
using relation selection, state control, or grouping and scheduling structures. However, no explicit structure
for modeling subjective cus:trol is outlined in the relation composition hierarchy. One suggestion is to pro-
vide an additional control level on top of the hicrarchy 10 betier organize the subjective control at the lower
levels. This level should be able to supply the control necessary for a defined mood or correct the incon-

..xtent errors in the mood at the lower levels.

Another suggestion for the future research is to adopt the decomposed relation conirol scheme to a
parallel or a distributed computing environment. The use of such an environment could speed up the pro-
cess of an animation using a large set of relations. One possibility is to use one machine as a master 10
interactivelv structre the felations, then distribute the relations along with the structures to other machines
connected in a local network. When a structure is applied to a relation on another machine, a4 message simu-
lating the structure could be constructed and delivered to the machine where the relation resides. A high-
level network manager distributes the structured relations over the network and merges the results of the

distributed controls.
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Appendix Al
Interactions in the System’s Components

In the Scene Composition Componeznt

-object selection
An object is selected from the object menu by two interactions: one is to activate the object and the
other is to view the object in the test scene. An object is activated when the middle_button is clicked
on the object item. A view of the object is produced when the right_button is clicked on the item. The
right_button click action displays the object at the center of the test scene. Only the object previously
activated (highlighted in the menu area), can be displayed in the scene. Remember the undo control
effect of a middle_button click. A second middle_button click on an object item reverses the previous
selection. In the case of a group object type, a right_button click on the object item adds one more
object instance to the scene. As a group size is not fixed, the need for composing the group members
gepends only on the application. The most recently displayed object is called the active object.

-object resizing
An object in the environment can be interactively resized from the value menu. In the value menu, a
set of graphical potentiometers are used to adjust the modeling parameters of an object. The range of
a parameter value changes with the current value. The maximum value is always twice to the current
value, which can be varied using mouse interactions. This exiends the range of a parameter
infinitely, rather than being restricted to a fixed range. For a group of objects, each active group

member can be selected and has its own set of parameter values.

-object placement and orienta:ton
The active object is initially displayed at the center of the test scene. This initial position can be
changed by picking and dragving mouse interactions. A pick is initiated when the cursor is placed
over an object and the left_button is pressed. While holding the button down, the picked object is

dragged along with the mouse movement. This interaction sequence of picking and dragging can be
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repeated several times until a satisfactory location is found. During this rclocation process, the orien-
tation of the active object can be changed by clicking on one of the rotate soft buttons. Each click on
the button gives a quarter rotation of the object in either a clockwise or counterclockwise direction.

-object paste and cut

Once a final location for the active object is determined, the object can be added to the final environ-
ment by a mouse click on the "paste” soft button. To undo the paste action, a mouse click on the
“cut” soft button is used. A cut is normally perfonned on the most recently pasted object. A cut can
also be applied to a previously pasted object after a series of cuts have made it the most recently
pasted object. A mouse click on the "showit" soft button displays the final environment. Each paste
interaction adds an active object to the object linked list, while a cut interaction removes the last

object on the list. A series of cuts may result in an empty list.
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In the Pattern Control Component
The legal mouse interactions in the "group” mode are displayed in the on-line help area as follows: 1
groupat | 2 grouping | 3 cancel. This prompt says:
1 groupat
A left_button click selects the first relation to be grouped at a requested time step.
2 grouping

Consecutive middle_button clicks select other relations to be added to the group at the same time

step.
3 cancel

A right_buuon cancels the current grouping structure.

When the left_button click occurs a dialogue box appears below the item name. To answer the ques-
tion "group at time trame?” in the box, the user can type in a frame number. The box disappears as soon as
an answer is received.

In the "schedule” mode, several relations that will execute at the same time are collected together.
These relations will become active when another relation becomes active, during the active response of this
relation, or when its active response terminates. The mouse interactions are prompted as "1 scheduleat | 2
scheduling | 3 cancel".

1 scheduleat
A left_bution click selects the referenced relation for the group.
2 scheduling

Consecutive middle_button clicks select additional relations to be added to the group.

3 cancel

A right_button click removes the most recently scheduled structure.
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The interaction for specifying one of the threc time references is: as soon as the left_button click
occurs on arelation item, a dialogue box appears with the message "select one time case?"”. For the cases of
initial time and ending time, the box window closes after it receives the answer 1 or 3 from the user. If
answer 2 is given, for an in-between tian® selection, a question "which in-between time slot?” is displayed
in the box window. The question requests a specific time value relative to the initial time of the referenced
relation. Once a time reference is selected, the middle_button clicks add more relations to the currently

selected group.

The inieractions between relations at each uine step can be viewed in the display area. To facilitate
viewing this structure, a set of soft buttons are used in the area. Three appear at the upper-right comer of

the area: "addone”, "backone", and "backall”.

jaddone]

A mouse click on the "addone” soft button inserts a marker in the current motion frame.

Ibackonel

A click on the "backone" button reverses the recorded motion to the last inserted marker, then a new

motion can be constructed.

backall
A click on the "backall” buton resets the motion to the beginning, with all the markers removed.

The use of these buttons gives a flexible environment for modeling a paitern structure. This is useful

in determining things such as the best time for a grouping or scheduling and which is the most suitable rela-

tion to use as a reference.

The use of the mouse buttons in the display area is given by: "mouse: 1_initial 2_recording 3_play-
back", in the lower-right comer of the area. These three functions define the way a motion can be interac-

tively recorded and played back.



1_inital
Each left_button click in the area, except the area covered by the soft buttons, stans a new motion.
The new motion deletes any previous motions and starts the first run of recording (12 frames).
2_recording
Conszcutive middle_button clicks continue the recording for 12 more frames.
3_playback

A right_button <lick reviews the whole recorded motion.

Using these mouse functions, the user can record a motion and see how the motion progresses in the

environment for some period of time, with an adjustable playback rate (30 frames/second is initially

assumed).

While a recorded motion is displayed frame by frame, the two pattern control structures, grouping
and scheduling, are also dynamically drawn in the relation diagram together with other state control struc-
tures. A grouping structure is drawn with a dotted line pointing from a grouped relation to the center of the
relations circle, with the grouped frame number by the end of the line. A dotied line is also drawn for a
scheduling structure, from a scheduled refation to the referenced relation. The three types of scheduling are
indicated with the numbers (1,2,3) along each line. One of the lines, either a grouping or a scheduling, is
drawn when the structure it represents becomes active. Otherwise, the line will not be drawn in the current

time step. The dynamic display of control structures during a motion's progress ties the motion to the

relevant modeled structures.
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In the Sequential Controil Component
The two control modes for extending the basic environment to a general environment are:

picking
The picking mode is entered after a mouse click on the "pick” button. In this mode the user selects an
object by pointing at it and pressing a mouse button. A picking interaction duplicates the picked
object by creating a new instance. As soon as an object is picked, the picking mode is automatically
convernezd o the moving mode.

moving
In the moving mode, the new object instance follows the mouse movement while the mouse button is
pressed.

Swiching modes is indicated by a highlighted button.

The dragging of a picked object can be repeated more than once, as long as the interface is in the
moving mode. There are three ways of leaving the moving mode. One is a mouse click on the button
"move”, which toggles the mode. The second is a mouse click on the "pick” bution, which seiects the pick-
ing mode. ;rhe third is a mouse click on the “cancel” button, which deletes the picked object from the gen-

eral enviro:ment and at the same time cancels the active moving mode.

Once the general environment is composed, a sequential behavior is produced by interactions in the
menu area. Mouse functions used in the "pattern” menu are "i timemenu | 2 activeitem | 3 quicktime". The
"patiern” menu shows the pattern names previously created.

1 timemenu
A left_button click on a pattern item traverses the menu hierarchy to the “time” menu.
2 aciiveitem
A middle_button ciick on a pattern item makes the pattern active. This selection is canceled by

another middle_button click. Selection is one criterion for z patiern’s participation in a motion
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sequence. Another criterion is the time scaling of the pattern.
3 quickiime
A right_button click on a pattern item expands the time duration of the pattern by 10 frames.

The "time" menu contains two time variables f1 and 2 for its parent patiern. These two variables
mark the time boundary of the pattern in the motion sequence. The pattern is active when it is selected and
its starting time, f1, matches the motion recording frame. An active pattern continues until its ending time
given by £2 is reached. The use of a pattern causes a structure copy and remove process. When a pattern is
active, the control structures among the participating relations, are copied to the system control environ-

ment. These structures are removed from the system when the patiern ends.

The "time" menu is used to specify the value for either f1 or f2. Three buiicn inieractions are used to
set these values. A left_button click in either the {1 or 2 slider sets a new valuc. A middle_button click in

the slider decreases the value by 5, and a right_button ciick increases the value by 5.

Sequential structures among patierns can be viewed from the system message area. Each time a new
ordering or a new time slot is specified, a new pattern list is shown in the message area. From there, the
user can easily see how patterns are ordered sequentially. possibly in paraliel as well, and the time connec-
tion between patterns. Interactions used for viewing a struciured sequence are mainly produced in the
display area. These interactions are based on the following mouse actions “1_initial ! 2_rccording I
3_playback”, in the lower right comer of this area. The leagth of the recording cycle, started by clicking
either the left_button or middle_button, is determined by the minimum value f1 and the maximum value f2
for all the active patterns.
1_initial

A left_button click signais a new recording cycle and removes the previous recording (if any).
2_recording

A middle_button click continues the recording of the next cycle. A continuous recording is possibile
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if a new active pattern is added.

3_playback

A right_buuon click plays back the recorded motion sequence.

During the experiments, any blank time steps left between iwo adjacent active patterns are ignored by
the system. In this case, the last generated frame is copied for each time step, which shows static images
when the motion is displayed. The appearance of static images shows the missing time connection between

patterns.
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In the Scene Rendering Component

The steps for mapping a selected sample color to a color panel are:
selecting a panel
The first step is done by using the forward, backward, newpage, and backpage commands, which

moves the index pointer to an available color panel. If a new page of color panels or a previous page

is selected, the index pointer is always placed at the first color panel of the page.
copying color
The second step is to copy - s3mple color to another panel using the copy command.

Colors mapped 10 the panels are the ones used for the color marping of the system. The use of these colors

are indexed by the panel number, which may be part of an object’s modeling properties.

A pizviously recorded motion sequence can be interactively reviewed in a selected camera mode, in
terms of the three mouse button functions. Tuese functions are: "1_initial 2_stopping 3_stepping”, as
promptzd in the lower-right corner of the display area. This message says:
1_initial

A left_button click in this area starts a continuous display of the motion, at a default display rate.
2_stopping

A middle_buiton click stops the dispiay.
3_stepping

A right_button click advances the motion one frame at a time. The stepping display automatically cir-

cles from the last frame to the first frame when the end of motion is reached.

Between the stepping intervals, different camera modes can be selected.



Appendix A2

Modeling of Relations in Various Environments

Example One: In 2 Room with Obstacles

This is an example for modeling the objects and relations used for the dance motion, in a room

environment with a group of obstacles such as blocks.

Scenc_modeling
Poly_class

objcct name: walls

type: POLYGON

color: 32

vertices: -5.00.0-5.0, 5.00.0-5.0,
5.000 5.0,-5.0005.90:

object name: floor
primitive: {
struct stripes §
double swidth;
int scolor; }:
struct stripes flcor;
)
para_def: double sw (1.5 ,intsc 33 ;
initial: {
floor.swidth = sw;
floor.scolor = sc;

)

object name: block

primitive: {
struct blockobj {
... /* block model defir:ition };
struct blockobj block{]:

para_def: double sx 0.1 , sz {11,

. .. /* initial control values
inatial: (

... /* assignment of initial values

}

object name: dancer
primitive: {
struct dancers {
... /™ dancer model definition };
struct dancers dancer{};

}
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para_def: intspl,sr2,
inital: {
)

Scene_mouon
relations

/* relation "avoid_walls"
object name: dancer
with: walls
visual sensor: atonewall(dancer.x+dx,dancer.z+dz)
... [* response parameters
initial: Active
avoid_walls {
. .. /* local control parameters

teststep(ndancer,&dx,&dz);
visual «~sor: {
setactive();
if( first_time ) {
Callactivefrom();
CallDeactive(move_step);
... /™ initial control } }
if( sensing_is_true ) {
Callactivein(};
if( !'savetogo(dancer) )
turndancer(ndancer); }
else {
CallActive(move_step):
Callactiveto();
setdeacive();
... /* other ending control }

}

/* relation "dislike_a_block”
visual sensor: atoneblock(...) && Nblock==dblock
para_turn: int dblock 3 ;

initial: Active
dislike_a_block (
... I* local control parameters

teststep(ndancer,&dx,&dz);
visual sensor: {

.. /* initial conirol }
if( sensing_is_true ) {

/* a dislike response j

190



191

}
=> {
if( avoided_block ) {
CallActive(move_step);
}
}

/* relation "avoid_blocks”
with: block

visual sensor: atoncblock(...)
para_turndir: int signs -1 <-> 1 |

initial: Active
avoid_blocks {
. /* local conurol parameters

teststep(ndancer, & dx,&dz);
visual sensor: {

... /* iniual control }
if ( sensing_is_true ) {

/* an avoiding response }
}
=> (
if( avoided_block ) {
CallActive(move_step);
... }
)

/* relation “fear_a block”
visual sensor: atoneblock(...) && Nblock==fblock
para_range: double atrange 0.3, int flock 2 :

initial: Active
fear_a_ block {
. /* local control parameters

teststep(ndancer,&dx,&dz);

visual sensor: {
CaliDeactive(avoid_block);
... [* initiai control }

if( sensing_is_true ) {

/> afear response }
}
= {
if( avoided_block ) {
CallActive(avoid_block):
e
)



/* relation "move_step”

visual sensor: ismovable(ndancer)
initial: Active

move_step {

visual sensor: {
setactive();

advanceonestep(ndancer); }
else setdeactive();

}

Scene_render

floor {
drawfloor(Scene);

]

block {

drawblock(nblock,Scene);
}

dancer {
drawdancer(ndancer.Scene);

)
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Example Two: With Additional Static Individuals

This is an example for modeling an additional board objcct and relations triggered by the board as the
sources. The example only shows the modeling code extended from the previous example.

object name: board
primitive: {
struct boardobj {
... /* board model definition };
struct boardobj board;
}
para_def: double sx 0.1,
. .. /* initial control values
initial: {

board.x = sx;
... ™ assignment of initial valucs

]

/* relation "change_newpaltern
initial: Active

visual sensor: ifnewpattem(...)
change_newpattem {

visual sensor: {
setactive();
nextpattern(ndancer); }
else
sctdeactive(),

)

/* relation "stop”
para_time: int vst3 <-> 35 ;
stop {

if( clock = 0) {
setactive();
clock = vst;
CallDeactive(move_step); )

clock--;

if( clock = 1) {
CallActive(move_siep);
setdeactive();
clock=0; }

)

/* relation "change newdance”
change newdance {



if( first_time ) (
restartpattern(ndancer);
... /* switch to a new dance )
else setdeactive();

}

/* relation "to_board"
with: board
initial: Active
visual sensor: isboardinsight(ndancer)
to_board {
... /* local control parameters

visual sensor: {
if( first_time) (

CallDeactive(move_sicp);
CallDeactive(avoid_board);

oo 1)
if( board_is_insight) {

if( not_face_to_board)
adjustioboard(ndancer);

else if( 'woo_close | | !close_step)
forwardstep(ndancer...);

else if( close_stcp)
closestep(ndancer);

if( too_close )
CallActiveBlock(stop);

if(end_response) (

CallActive(move_step);
CallActive(avoid_board);

} )
}

/* relation "avoid_board”
with: board
visual sensor: atboard(dancer.x+dx,dancer.z+dz)
initial: Active
avoid_board {
. .. /* local control parameters

teststep(ndancer,&dx,&dz);
visual sensor: {
if( first_time) {
setactive();
CaliDeactive(move_step);
... [* initial control } }
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if( sensing_is_true ) {

if( intersectboard(..) )
rotatedancer(ndancer);

. }

else {
setdeactive();
CallActive(move_step);

)
}

/* rendering
board {
drawboard(Scene);

}



Example Three: With Other Moving Objects
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This is an example for modeling an addiuonal jumping triangle object, as another moving object, in

the room. and relations used in the jumping motion as well as the dance motion. The relations extended for

the dance motion are due to the presence of the triangle in the environment.

object name: triangle
primitive: {
struct sideobj {
. .. /* triangle model definiton };
struct sideobj triangle;
}
para_def: double sx 0.1,

... /* initial control values
inital: {

triangle.x =sx: ... /* assignment of initial values }

/* relation "jump”
object name: triangle
initial: Active
para_size: double vh 0.4 :
jump {
... {* local control parameters

sctactive();
jumpstep(&dx,&dz);

}

/* relation "bounce_at_block

with: block

initial: Active

visual sensor: atoneblock(triangle Nblock)
bounce_at_block

visual sensor: {
if( first_time) {
setactive();
changeheading(triangle): }
else setdeactive(); }

)

/* relation "bounce_at_dancer

with: dancer

initial: Active

visual sensor: atonedancer(triangle dancer)
bource_at_dancer {
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visual sensor: {

/* abouncing response }

}

/* relation "bounce_at_wall
with: walls

initial: Active

visual sensor: atonewali(triangle)
bounce_at_wall {

visual sensor: {

/* abouncing response )

)

/* relation "avoid_triangle
with: triangle
visual sensor: isinsight(...) && hittriangle(...)
initial: Active
avoid_triangle {
... /* local conwol pararneters

teststep(ndancer,&dx,&dz);
visual sensor: {

if( first_time ) {
setactive();
CallDeactive(move_step):
restartpattern(ndancer);
)}

if( sensing_is_true ) {

if( hiuriangle(triangle,ndancer) )
onesidestep(ndancer)
else if( close_step)
closestep(ndancer)
. e }
else {
setdeactive();
CallActive(move_step):

)
}

/* rendering
triangle {
drawtriangle(Scene);

}



Example Four: With Additional Dancers

This is an example for modeling relations extended from the room environment with severai dancers.

Because the dancer object is declared as a group, no additional code for modeling and rendering the addi-

tional dancers is necessary.

/* relation "avoid_dancer
object name: dancer
with: dancer
visual sensor: atonedancer(ndancer Ndancer)
initial: Active
avoid_dancer {
... I* local control parameters

if( ndancer == Ndancer)
continue;
teststep(ndancer,&dx,&dz);
visual sensor: {
if( first_time) {
setactive();
restartpattern(ndancer);
lockdancer(ndancer);
... /* initial control } }
if(ndancer_has_true_sensing) {

if( atonedancer(ndancer,Ndancer))
onesidestep(ndancer);

else if( close_-'ep)
closestep(ndancer);

}
)

==> {
if( ndancer_ends_response) |
unlockdancer(ndancer);
setdeactive();
e}
}

/* relation "hit_dancer
with: dancer
visual sensor: hitonedancer(ndancer,Ndancer)
initial: Active
hit_dancer (
... /* local control paramzeters

if( ndancer == Ndancer)
continue;
visual sensor: {



if( first_time) {
setactive();
clockdancer(ndancer);
restaripatiern(ndancer);
o))
if( ndancer_is_hit ) {
setdeactive();
uniockdancer(ndancer);
e }
1

/* relation "atract_dancer
with: dancer

visual sensor: linsignt(...) | |

ifvarypattern(ndancer,Ndancer)
initial: Active

para_parts: intsd 1,rd 2
attract_dancer {

... /* local control paramet=rs

if( Ndancer'=sd | | ndancer!=rd)
continue;
visual sensor: {
if( first_time) {
setactive();
lockdancer(ndancer);
copypattem{ndancer ,Ndancer);
1}

if( ndancer_has_true_sensing) {
getturnto(ndancer,Ndancer); }

else {
setdeactive();
unlockdancer(ndancer);

}
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Example Five: With Additional Sound Events

This is an example for modeling an additional sound event and relations in response to the sound,
based on the previous room environment. Here, the sound event is procedurally modeled as a dynamic
object and its appearance is identificd by a period of sound in the environment

object name: sound
primitive: {
struct soundobj {
int timeon;
int period; };
struct soundob sound;

}

/* relation "look_z:_sound
object name: dancer
with: sound
sound sensor: issoundon() & & ndancer==pickd
initial: Active
para_dindex: int pickd 2 ;
look_at_sound {
. .. /* local control parameters

sound sensor: {
if( first_time ) {

setactive();
lockdancer(ndancer);
CaliDeactive(avoid_dancer);
vee )
else turnhead(ndancer); }
else {
setdeactive();
unlockdancer(ndancer);
CaliActive(avoid_dancer);
. )

}

/* relation "turn_at_sound
with: sound
sound sensor: issoundon() & & ndancer==pickd
initizl: Active
para_dindex: int pickd 3 ;
turn_at_sound {
. /* local control parameters

sound event: {
if( first_time) {
setactive();



lockdancerindancer);

click =6; } 1}
if( -~clock > 0)
turndancer(ndancer);
else {
setdeactive();
unlockdancer(ndancer);

)

}
/* relation "stop_at_sound
with: sound
sound event: issoundon() && ismovable(ndancer)
initial: Active
stop_at_sound {

... /* local control parameters

sound event: {
lockdancer(ndancer);
if( first_dancer) {
setactive();
CallDeactive(avoid_dancer);

CallActive Block(stop);
e 1)
if(ndancer_locked) {

unlockdancer{ndancer);

if( first_dancer) {
setdeactive(Q;
CallActive(avoid _dancer);

1)

01



