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Chapter 1 

Introduction

“the underlying physical laws necessary fo r  the mathematical theory o f a large part of 

physics and the whole o f chemistry are thus completely known, and the difficulty is 

only that the exact application of these laws leads to equations much too complicated 

to be soluble”. A comment made by Dirac during the infancy of quantum  mechanics.

Though it may be a b it harsh, in a sense, Dirac’s comment is still true today. 

A large part of the theoretical physics community spends its efforts attem pting to 

improve our current knowledge of the world around us not by finding new equations 

to  solve, bu t by finding new ways to solve equations th a t have been with us for years.

Our goal here is to  develop methods for the com puter simulation of the quan­

tum  dynamics of atomic and molecular systems. The Centroid Molecular Dynamics 

(CMD) formalism allows us to  express quantum  dynamics in a classical-like way so 

th a t we can calculate quantum  mechanical properties of the system in a similar fash­

ion to  a classical calculation. We will base our methods on current Q uantum  Monte 

Carlo (QMC) and centroid molecular dynamics methods and show by example tha t 

indeed we can calculate real tim e correlation functions while leaving the methods 

open for extension to  more complicated systems.

While there are many techniques to obtain dynamical inform ation from a quantum  

system, each technique has different drawbacks and advantages. We could perform 

exact calculations by directly solving the time dependent Schroedinger equation. Un­

fortunately the numerical cost of these exact calculations scales exponentially with 

the number of degrees of freedom in the system. There are im aginary tim e methods,

1
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which are considered exact in imaginary time, however returning to real time requires 

advanced model fitting which is often a very difficult procedure. In contrast our CMD 

method hopes to take advantage of well developed algorithms such as the Monte Carlo 

method. Monte Carlo calculations scale linearly with the number of particles in the 

system. This linear scaling is a m ajor improvement upon the exponential scaling tha t 

is required to  solve the Schroedinger equation. The draw back to  CMD is th a t it 

is an approxim ate method, part of this thesis will strive to justify CMD as a valid 

approximate method.

1.1 Quantum Dynam ics

One of the m ajor challenges in chemical physics is the calculation of the dynamical 

properties of a system. This problem is synonymous with solving the many body 

time dependent Schrodinger equation,

i h d^ 'dt"~ = (L1)
where r  is a vector representing the positions of all the particles in the system, H  is the 

Hamiltonian of the system and t) is the wavefunction. The quantity ubiquitous 

with the world of quantum  mechanics h will from this point forward be eliminated 

by choosing units such th a t h =  1, this is done merely for convenience.

1.2 Born-Oppenheim er Approxim ation

The ability to gain insight into physical systems analytically and com putationally is 

in general is a complicated non-trivial problem. This is due to  the fact th a t in an 

arbitrary system there are many degrees of freedom th a t need to  be accounted for. 

For example, let us look a t the Hamiltonian for a general system,

2
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+EE
N riu c  N i

/=1 i<l

nuc nuc

(1 .2)

This basic Hamiltonian used in condensed m atter physics and chemical physics in 

this form is quite cumbersome, and in many respects quite unnecessarily so. We 

have a system consisting of N ei electrons with mass m ei and N nuc nuclear particles 

(ions) with mass m nuc, and we have the charge of the electron e and the charge of 

the ion Znuc. The electronic and nuclear coordinates are t j  and Ri respectively. In 

this Hamiltonian we have accounted for in the first two term s the kinetic energy. The 

first term  is associated with the kinetic energy of the ions, and the second term  with 

the kinetic energy of the electrons. The th ird  term  is the energy associated with 

the interaction between electrons, the fourth term  is the energy associated with the 

interaction between ions, and finally the fifth term  is the energy associated with the 

interaction between ions and electrons.

The Born-Oppenheimer (BO) approximation 1 can help us reduce the complexity 

of this problem. The BO approximation allows us to  separate the electronic and 

nuclear degrees of freedom. The justification for this approximation is th a t the nuclear 

motion is orders of magnitude smaller than  the electronic motion. W ith this in 

mind, we can consider the nuclei to  be moving around some averaged electronic 

charge density. Conversely, the electrons can be considered to  be moving around 

statically positioned nuclei with classical charge distributions. There are of course 

many examples where the BO approximation is invalid, notably superconductivity is 

one of those systems where the therm al motion of the nuclei is commonly treated as 

a perturbation. In this work, we shall be adopting the BO approxim ation and we will 

be concerned with the nuclear motion of the atom s in some averaged potential.

LThe BO approximation is explained in many introductory condensed matter text books, for 
example see [2]

3
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1.3 Statistical M echanics and Quantum Statistics

To understand the fundamental how and why of the basic properties of m atter at 

a microscopic level is the subject known as statistical mechanics. Though we can 

gain a foundational understanding of the therm odynamics of m atte r w ithout atomic 

detail, to be able to fully understand and appreciate the governing principles of ther­

modynamics we need to account for the statistics of a large ensemble of particles. 

T hat is, we need to  know the similarities and differences of a system of one particle 

and th a t of a system with 1023 particles. In addition, only a t the microscopic level 

can we a ttem pt to introduce quantum  mechanics, which brings in its own statistical 

description of reality.

An extremely useful, if not essential, construct of statistical mechanics is the 

partition function. The partition function is usually defined as the summation of 

Boltzmann factors over all the states, s, of a system,
allstates

z =  e ~ E{s)^  (L 3 )
s

where we introduce fi — 1 /( fa T )  and where T  is the tem perature and k B is Boltz­

m ann’s constant. This tem perature dependent function Z  tends to be underestim ated 

in its im portance to  statistical mechanics, in fact we often use it merely as a normal­

ization factor. However, the partition function allows us to  calculate many useful 

tem perature dependent properties of a system such as the internal energy U, heat 

capacity Cv, free energy F  and even the pressure P.

_ ± d Z  
Z d , ^  

dU 
d T
—k BT \n (Z ) ,  (1.4)

\ d V ) TN

We will come back to the definition of the partition function to  help illustrate 

im portant concepts in the formalism of Path  Integrals, and in the formulation of

4

U =

Cv = 

F  -  

P  =
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CMD. It is ideal to  now introduce the definition of the partition  function in quantum  

mechanics.
allstates

Z  — Tr[e~®^\ =  (s\e~^^\s) (1.5)
S

where H  is the Hamiltonian operator for the system, and |s) is a complete set of 

states.

In addition to  the partition function, another useful quantity  in quantum  statis­

tical mechanics is the density operator,

p = e~0 . (1.6)

The density operator is in a sense the precursor to  the partition  function. The parti­

tion function can be w ritten as the trace of the density matrix,

2  =  Tr[/>], (1.7)

which means th a t any of the properties from Equation (1.4) can be found from the 

density m atrix. The position representation of the density m atrix  is defined as

p (x ,x ')  = (x\p\x'), (1.8)

where \x) is an eigenfunction of the position operator x, and x  and x' are two separate 

positions of the the particle.

In quantum  mechanics we no longer have the convenience to  label each particle 

and watch it evolve in time. We need to  account for the indistinguishably of particles, 

and this introduces a quantum  statistics of its own. In nature, particles come in one 

of two different classes, Bosons or Fermions, and they each have their own unique 

quantum  statistics. Bosonic particles obey Bose-Einstein statistics and Fermionic 

particles obey Fermi-Dirac statistics. Though it should not be used as a definition, 

in fact it is merely a consequence of their statistics th a t a boson can be classified as 

a particle with integer spin (in units of h), S  =  0, S  =  1, S  =  2 etc., some examples 

are photons, helium-4 atoms and pions. Fermions on the other hand are particles 

th a t have half integer spin (in units of ti), S  = 1/ 2, S  =  3/2, etc., the most common

5
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example of a fermion is the electrons, others include helium-3 atoms, protons and 

neutrons.

Aside from spin, the most significant difference between bosons and fermions is the 

symmetries of their wavefunctions upon particle exchange. A bosonic wavefunction 

is symmetric under particle exchange, th a t is, in a system consisting of a t least two 

identical bosons, if we switch the labels of two particles, the resulting wavefunction 

will remain the same. The fermionic wavefunction is anti-symmetric upon particle 

exchange, th a t is, in a system consisting of a t least two identical fermions, if we switch 

the labels of two particles, the resulting wavefunction will have the opposite sign. In 

summary we have for the bosonic/fermionic wavefunction, being acted on by

the particle exchange operator P,

p q B  = q,B

p<t,F = - $ F. (1.9)

This anti-symmetry of the fermionic wavefunction leads to  the fundamental Pauli 

Exclusion Principle, which proclaims th a t two identical fermions cannot occupy the 

same state. There is no such restriction on bosons, in fact an infinite number of 

bosons can occupy the same state at any given time, this la tte r property is connected 

to  the phenomenon of Bose-Einstein condensation.

In com putational physics, the anti-symmetry properties of fermions causes a se­

vere problem known as the Fermion sign problem. In com putational simulations of 

quantum  materials it is often required to calculate averages. W hen the value we are 

averaging is fluctuating back and forth between positive and negative numbers, the 

resulting subtraction often exceeds the precision of current computers. There are 

many proposed remedies to this, however the work following will be concerned with 

particles th a t are governed by Bose-Einstein statistics.

1.4 Correlation Functions

Of critical im portance in the area of quantum  dynamics, as well as in classical dynam­

ics, is the notion of correlation functions and their connection to  transport properties

6
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and spectra. Classically we define a correlation function for some general system 

consisting of N particles as

C{t) =  <B(Q )A(t)) =  J  . . .  J  dpdqB(p, q; 0)A(p, q-, t ) f(p , q), (1.10)

where we have phase space coordinates p(t) and q(t) which can be found from the 

systems equations of motion with the initial conditions th a t p (0) =  p  and <7(0) =  q. 

The variables B (t)  and A (t) have param etric tim e dependences on the dynamical 

phase space coordinates such th a t B ( t) =  B (p (t),q (t))  and A (t)  =  A (p (t),q (t))  and 

of course B(0) and A(0) are the values of B {t) and A (t) a t t  =  0 respectively. The 

phase space variables p(t) and q(t) as well as dp and dq should be thought of as N- 

dimensional objects for the N particles of the system, and we have also introduced 

a phase space distribution function f(p ,q ) . In the situation where B (t) = A (t), we 

then refer to  the correlation function as an auto correlation function.

In quantum  mechanics we define the correlation function as a normalized trace 

over the operators A (t) a t time zero and B (t)  a t some time t,

C{t) = \ T r  \e - fiAB ei&tA e - iA* \ . (1.11)
Zj l  j

Strictly speaking a correlation function tells us the correlation as a function of time 

between two variables (or operators if we use the quantum  mechanical definition), and 

describes the average decay of some property of the system. However, in the 1950’s 

Green and Kubo showed th a t correlation functions could be used for a wider range 

of topics in non-equilibrium statistical mechanics. They showed th a t we can use 

some correlation functions to  describe transport properties and other macroscopic

time dependent properties. It has even been stipulated [3] th a t correlation functions

play as im portant a role in non equilibrium statistical mechanics as the partition 

function did in equilibrium statistical mechanics. This can be seen by Lars Onsager’s 

regression hypothesis: The relaxation of macroscopic non-equilibrium disturbances is 

governed by the same laws as the regression of spontaneous microscopic fluctuations 

in an equilibrium system. Onsager received the 1968 Nobel Prize in Chemistry with 

the following citation:2 ’’for the discovery of the reciprocal relations bearing his name,

2official text of the citation from the Nobel e-museum
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which are fundamental for the thermodynamics of irreversible processes”

We can more elegantly express this hypothesis m athem atically in the form of 

correlation functions as in [4]

i ( t )  -  {A) C(t )  ,
.4 (0 )-(.4 ) <7(0)’ ' 1

where we have defined A (t)  as the phase space equilibrium average, and (A) as the 

time independent equilibrium average, and the correlation function we are concerned 

with is

C{t) = (<L4(0)<L4(t)>, (1.13)

where <L4(t) is the instantaneous fluctuation in A (t) from its tim e independent equi­

librium average,

8A(t) =  A (t) -  (A). (1.14)

A commonly used example is the simple particle velocity auto correlation function

C (t) =  (v(O)v(t)), (1.15)

where v (t) is a vector representing the velocity of a single particle in a many body 

system. Regardless of how we calculate this autocorrelation function (which in general 

is not an easy task for a many body system), it can be shown th a t the tim e integral 

of this autocorrelation function is proportional to the self-diffusion coefficient. T hat

iS’
d = \Jq (v (o)v W )di- I1-16)

Of course, we are not limited to simply taking the direct tim e integral. In fact it 

is more common to see the Fourier transform  of a correlation function. One example 

is the current autocorrelation function and its relation to the frequency dependence 

of the electrical conductivity,
poo

a (u )  =  p  /  dte~iwt(J(0 )J{t)). (1.17)
Jo

We can even describe the absorption of radiation of a system via correlation func­

tions. If we consider a system with a tim e dependent Hamiltonian in perturbation

8
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theory such th a t

H  = H0 - M - E ( t ) ,  (1.18)

where H 0 is tim e independent and solves H 0ipj = Ej'ipj, M (i) is the to ta l dipole 

moment of the system and E (t) is the time dependent electric field. We assume th a t 

the perturbative time dependence is turned on instantaneously a t tim e t  = 0. We can 

then use Fermi’s Golden rule to  express the probability per unit tim e th a t a transition 

from one state  to another will occur. From this probability, we can find the spectral 

lineshape function /(w ), and re-write it in term s of the autocorrelation of the time 

dependence of the dipole moment3,

1 r°°
I ( uj) = —  /  dte~lu,t{M (0) • M (t)) (1.19)

27r J o

As a final example, we can use the density autocorrelation function to  tell us

about the dynamical structure factor, which can be easily found experimentally4 for

most systems

/
°° dt

- ( p ( k , t ) p ( - k , 0))e— *, (1.20)

where
„ ( M )  =  (121)

3

is the density, and k  is a wave vector.

Although we have only provided a short list of examples, we can see th a t correla­

tion functions do indeed provide us with a tremendous am ount of information. For a 

more thorough explanation of the general theory of correlation functions, please see 

[3, 4],

1.5 Overview of Thesis

As was stated, our goal is to  develop practical methods to  explore the quantum  dy­

namics of atomic and molecular systems. Until now, the proper inclusion of quantum  

statistics in a real time dynamical simulation of many problems has remained a great

3For a complete derivation of this result, please see [3]
4 Via neutron scattering experiments

9
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challenge. We will also introduce new methods th a t will be essential for the extension 

to  a general many body system.

In C hapter 2 we will begin by reviewing the concept of statistical mechanics in the 

language of Feynman path  integrals. Then we will introduce the formalism of Bose- 

Einstein centroid molecular dynamics (and regular centroid molecular dynamics), 

which is based primarily on a concept due to  Feynman [5]. The remainder of Chapter 

2 will be devoted to the discussion of Monte Carlo and path  integral Monte Carlo 

methods and their use in a centroid molecular dynamics simulation, including an 

original method of adding a specific constraint into a path  integral Monte Carlo 

algorithm. Chapter 3 will show a proof of principle test th a t was done by the author 

to see how well the Bose-Einstein centroid molecular dynamics approxim ation holds 

for a model system [6]. Chapter 4 contains a series of practical algorithms developed 

by the author for performing CMD simulations for anisotropic systems. Though we 

will not be testing whether this works with quantum  statistics, the formulation and 

algorithms developed have been left open for the inclusion of many particles and the 

quantum  statistics.

10
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Chapter 2 

Theory and Methods

As expressed in the introduction, we wish to  develop practical approaches to study the 

real time dynamics of atomic and molecular quantum  systems. Unfortunately, with 

most real time quantum  dynamics methods, we must inevitably make approximations. 

Our interest lies with a specific real time quantum  dynamics m ethod known as Bose- 

Einstein Centroid Molecular Dynamics (BECMD) [7], which is an extension of CMD 

[8, 9] to  the case of systems th a t obey Bose-Einstein statistics. BECMD allows us to 

calculate real tim e correlation functions for various operators. The results for single 

particle correlation functions are returned in the form of a double Kubo transform 

of the quantum  mechanical correlation functions. The most im portant aspect of the 

CMD and BECMD method is th a t we can create classical-like real tim e correlation 

functions, which can then be calculated with standard com putational techniques.

The CMD and BECMD methods are approximations th a t we expect to break down 

after a long tim e period, as will be seen in the following sections. We expect CMD 

and BECMD to be exact a t t =  0, where the length of time th a t the approximation 

is valid is dependent on the system chosen.

The following chapter will discuss in detail the necessary formalism and theory 

behind BECMD, and a general overview of the specialized com putation techniques 

used in the simulations. We will begin with a brief review of Feynman path  integrals 

in Section 2.1 which will be necessary for most of the com putational work. The path 

integral representation will also allow for a more physical interpretation of the CMD 

theory. CMD was originally formulated in a path  integral representation, whereas we

11
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will present it in its recently developed operator formalism [8, 9, 7]. After this review 

of path integrals, Section 2.2 will explain the operator formalism of BECMD, which is 

a more analytically intuitive formalism than  CMD’s original path  integral formalism.

2.1 Path Integral Formulation of Statistical M e­
chanics

The path  integral concept was originated by Feynman [5, 10], and it was developed 

as a formulation of quantum  mechanics completely consistent with modern quantum  

mechanics. In fact the path  integral formulation of quantum  mechanics is much more 

physically intuitive than the common wave formulation, bu t unfortunately it also 

happens to be considerably more m athem atically arduous for even the simplest of 

problems. Here we shall look at a path  integral formulation of S tatistical mechanics, 

specifically how we can write the partition function in term s of a path  integral.

The definition of the partition function is

allstates

Z =  ^ 2  e_/3Ei (2.1)
j

where E j is the energy eigenvalue of the Hamiltonian H  acting on the state  |j) . W ith 

this in mind we can rewrite Equation (2.1) as

allstatesZ= E =  T r [e -« s ], (2.2)
3

The object inside the summation of Equation (2.2) is very similar in m athem atical

form to the definition of the propagator from the language of path  integrals,1. The

propagator is defined as

K (q ',t;q ,0 )  = {q'\e-'t*\q). (2.3)

We have implicitly introduced the position operator q which has a complete and 

orthonorm al set of eigenstates \q), such th a t

LFor a detailed account of how the propagator is derived please see [5]

12
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q\q) = q\q),

(q'\q) = 8{q' -  q),

J  dq\q)(q\ =  1. (2.4)

We can then interpret the propagator as the probability am plitude th a t the particle 

starting a t q a t t  =  0 will end up a t q' after some time t.

The standard path  integral expression for the propagator is, in reduced notation

K  = J  D q(t)etS[qW\  (2.5)

where the integral should actually be interpreted as an infinite number of integrals

over the infinite possible paths the particle could take from q to  q'. We have introduced 

above the action functional of the system

S[q{t)} = £  { ^ - V [ x ( t ) ] } d t .  (2.6)

To make the connection with statistical mechanics, let us consider the situation

where tim e is imaginary, t  = —i/3, this allows us to  write the propagator as

K (q ',- ip - ,q ,0 )  =  ( ? ' |e - ^ - * % )  =  (q '\e ^ \q ) . (2.7)

Now, let us insert an identity ]TT \ j)(j\  to the left of the state  |<?), and, after some

light algebra, we can re-write the propagator as

o) = ^ 2 e~m ti\q)(q '\j)- (2-8)
j

If we set the initial and final positions of the particle equal, we create a closed path 

in imaginary time for the particle. Integrating Equation (2.8) over q leads to

J  dqK (q ,-t/3 ;q , 0) = J  d q ^ e ~ pEi {j\q)(q\j)

=  [ dq\q){q\\j)
j

=  ^ 2  e~^Ei =  (2-9)

13
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q ci

Figure 2.1: The closed Feynman paths of two indistinguishable particles th a t have 
not undergone particle exchange. Each individual particles path  is discretized into 
P  = 10 time slices.

In the language of path  integrals, the partition function is a sum m ation over all 

possible closed paths of a particle during the imaginary time /3.

If one wishes to  introduce quantum  statistics into this formalism, it takes place 

quite naturally. We must account for the indistinguishably of particles. To do th a t, let 

us consider two particles. W ithout quantum  statistics, we could imagine the particles 

having paths such as pictured in Figure 2.1, where each particle begins a t some point 

gior q2, and moves along the path, and finally, after an im aginary time /3, returns to 

its original position qi or q2. In Figure 2.2, we allow the particles to switch places. 

W ithin the tim e period ft the particle starting  a t q\ now ends up a t q2, and the 

particle th a t originated a t q2 ends a t q\. We refer to  this as an exchange of particle 

labels, or as a perm utation. This particle exchange happens in a low temperature (or 

high density) regime, where the time period /? is large, and equivalently the path  is 

long.

14
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Figure 2.2: The closed Feynman path  of two indistinguishable particles th a t have 
undergone particle exchange. The two particle path  has been discretized identically 
as in Figure 2.1. After an imaginary time /3 the particles have exchanged places and 
created a closed path th a t is twice as long.

2.2 Feynman Path Centroid Formulation of Quan­
tum  Statistics

Starting w ith the Path  Integral representation for a single particle2, let us first begin 

with the definition of the centroid position which was suggested by Feynman [5] as 

one of the most classical-like objects,

This is defined in term s of a closed Feynman Path  Integral, with an im aginary time 

period in which the particle has traveled through and then returned to  its original 

starting position. The centroid position corresponds to  the centre of mass position of 

the Feynman Path.

Though the path  integral representation of the centroid allows for a diagrammatic 

explanation of the centroid variable qc, it is convenient to  have an operator description 

for a centroid variable in general. An operator form alism  has been developed [8, 9, 7] 

and will be explained here. It should be noted th a t Equation (2.10) is not necessary 

in the operator formalism. We have included Equation (2.10) because it gives a more

2The Path Integral representation for a particle will be explained in section 2.1.

(2.10)

15
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physical meaning to the centroid position. Prom this point, the m ajority of the theory 

presented here in Section 2.2 was taken from [7], although it is not original work, it 

is necessary to  understand the work presented in this thesis.

W ithin CMD, we have the ability to calculate the quantum  mechanical Kubo 

transformed real time correlation function for two observables A  and B given as,

(.BA(t))Kub0 =  \ \  [ P duTr[e~^-u)flBe-uftei&tAe-iAt}
Z  P  J o

_  f  f  dpcdqc pc{pc,qc)
“  J  J  c c( ) ( '

where H is the Hamiltonian of the system, qc and pc are 3N dimensional (for a system 

of N particles) vectors of the centroid position and centroid momentum and pc(pc, qc) 
is the phase space centroid density. The right hand side of Equation (2.11) is the 

CMD correlation function, which has the same m athem atical form as the classical 

correlation function in Equation (1.10). The left hand side of Equation (2.11) shows 

how the CMD correlation function relates to the quantum  mechanical correlation 

function.

For any stationary quantum  mechanical observable A, we can define a correspond­

ing centroid variable Ac(pc,qc) given by the definition

A.c (Pc, Qc) = Tr[6c(pc, qc)A] (2.12)

where 6c(pc, qc) is the quasi-density operator (QDO) given as

h(pc,  qe) =  v {pc, qc) /pc(pc, qc) (2-!3)

where

<P(Pc,qc) = J  f  (2.14)

is the unnormalized quasi-density operator (UQDO), and the centroid density is de­

fined as

16
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PciPc, Qc) = Tr[<p(pc, qc)] 

with the convenient relation giving the partition function,

(2.15)

Z  = J l ^ k P , M -  (2.16)

The param eters C and p in Equation (2.14), along with the position and momen­

tum  operators q and p  in the above equations are 3 N  dimensional vectors like the 

phase space centroid position and momenta qc and pc.

Conveniently, the centroid phase space variables pc and qc corresponding to  the 

quantum  mechanical position and momentum operators can be w ritten as follows:

qc = Tr[5c(pc,qc)q\ (2.17)

pc = Tr[5c(pc,qc)p\. (2.18)

This is an im portant and convenient consequence of the definition of the QDO. In 

general a centroid variable corresponding to an operator is a function of the centroid

phase space variables pc and qc. For example the centroid variable (q2)c corresponding

to the operator q2 is not (in general) equal to  the square of the centroid variable qc.

The above definitions have been for static variables only, but the inclusion of

dynamical variables is straightforward. One can use the Heisenberg time evolution 

operators to  include dynamics for centroid variables in the standard  way,

fic(Pc, Qc, t ) =  etHt6c{pc, qc)e~lHt. (2.19)

The above equation is impractical, since it requires knowledge of the solution of 

Schroedinger’s equation. In practical situations one has to  resort to  approximations. 

In the CMD approximation, the time dependence of the QDO is param etric with the 

time dependence of the centroid variables pc and qc

$c(Pc ?c; t) »  5c(pc{t), qe(t)). (2.20)

17
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This allows us to use the Heisenberg equations of motion

j ( i ) = p ( t ) / m  (2 .2 1 )

ii(t) = P(t), (2.22)

where the force operator, F(t),  is minus the derivative of the potential in analogy to 

classical mechanics,

F  = - d V / d q ,  (2.23)

and the time evolution is given with the standard Heisenberg tim e evolution operators 

F(t) = elHtFe~lHt. These create corresponding classical-like equations of motion tha t 

we can solve (either analytically or com putationally depending on the system chosen)

Qc{Pc, qc\ t ) = Pc{Pc, Qc5 t ) / m  (2.24)

P c iP c , Qc, t ) =  Fc(pc, qc; t ) .  (2.25)

W ithin the CMD approximation, we can use Equation (2.18) and Equation (2.20) to 

remove the centroid momentum dependence on the centroid force, resulting in the 

following classical like equations of motion for the centroid positions and mom enta of 

the system

'ic(l') = P e ( t ) / m  (2.26)

M t )  = F M t ) ) .  (2.27)

W ith this formalism in place, we can now calculate centroid molecular dynam­

ics correlation functions, which are equivalent to the Kubo transform  of the exact 

quantum  mechanical correlation function. However this has only been formulated for 

systems which obey Boltzmann statistics. The goal is to include quantum  statistics 

for systems which obey Bose-Einstein statistics (as well as Fermi-Dirac statistics). 

This was first attem pted [11] by using the following expression for the QDO, where

we trace the UQDO over symmetric states (it is im portant to  note, th a t this is, in

general, not a valid definition for the QDO)

18
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K ( P c ,  Qc) =  S<p(pc, Qc ) /p ' (Pc ,  Qc) (2.28)

where the prime denotes th a t this is a modified operator. The S  is a symmetrization 

operator dependent on the statistics of the system. We now can write a modified cen­

troid density (denoted with a prime) defined with the inclusion of the symmetrization 

operator

p ' i P c  Qc) = Tr[S<p(pc, qc)\. (2.29)

In addition, with this modified QDO we can still define a centroid variable for each 

quantum  mechanical operator. For the case of Boltzmann statistics, S  is the identity 

operator, and Equation (2.28) is identical to  Equation (2.13) and gives us the correct 

statistics. However, when S  is the symmetrization operator for Bose-Einstein (or 

Fermi-Dirac) statistics, this definition leads to  centroid positions and m om enta tha t 

are not equal to  the corresponding centroid variables of the position and momentum 

operators,

Qc¥: T r [ 6 ’c(pc, q c)q] (2.30)

Pc ^  Tr[6'c(pc, qc)p] (2.31)

from which we cannot derive the CMD equations of motion from the Heisenberg

equations of motion [7]. Although the definition of the QDO in Equation (2.28) does

not accurately account for quantum  statistics in general, there are certain situations 

for which this definition of the QDO does. For example, if we use centre of mass and 

relative distance coordinates, which are symmetric with respect to  particle exchange, 

Equation (2.28) does account for quantum  statistical correctly.

To remedy this, an alternate formulation of the QDO has been proposed [7] and 

tested  num erically for a m odel system  [12]. If one defines th e U Q D O  such that

(?&>«. «c) =  /  d u e - ^ X ' S e - f ) ,  (2.32)
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where again S  is the symmetrization operator, the effective Hamiltonian H '  is written 

for convenience to include the term s linear in position and momentum,

H ' = H -  i((q  -  fc ) /0  -  «7(p ~  P c ) P  (2-33)

where H  is the ordinary Hamiltonian of the system. W ith this new UQDO, we can 

then define a centroid density which is identical to the one in Equation (2.29)

PciPc,  Qc) = Tr[$(pc, 9c)] =  Tr[S<p(pc, qc)], (2.34)

and then we can define a new QDO analogous to Equation (2.13)

~5cipc , Qc) =  <P(Pc Qc ) /pc (Pc ,  Qc) (2.35)

Again we see th a t in the case of Boltzmann statistics, Equation (2.35) reduces to 

the corrected form of Equation (2.13). The tilde appearing in Equation (2.35) now 

signifies a “new” QDO which we shall refer to simply as QDO from this point on. 

Any reference to  the operator in Equation (2.13) shall be referred to as the old QDO. 

In general, I will be using the tilde to  refer to a quantity th a t correctly accounts for 

any quantum  statistics, which are completely accounted for by the inclusion of S  in 

Equation (2.32). In later sections, we may include a superscript on some quantities 

to  distinguish which statistics have been chosen. However, a t this point we do not 

make such a distinction. The tilde on the centroid density in Equation (2.35) again 

signifies th a t we are correctly accounting for quantum  statistics, even though densities 

in Equations (2.34) and (2.29) are identical, we use the tilde in this instance to  signify 

th a t there is a difference between Equation (2.34) and Equation (2.15).

W ith this QDO, we can again associate to  each quantum  observable a centroid 

variable,

A c (Pc,  Qc) =  T r [ lc(pc, qc)A], (2.36)

Most im portantly, it is now possible to obtain centroid position and momentum vari­

ables th a t correspond to individual centroid coordinates as we did w ith Equation 

(2.17) and Equation (2.18):
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qc = Tr[6c(pc, qc)q] = qc (2.37)

pc = Tr[5c(pc, qe)q] = qc (2.38)

To account for the time dependence of the QDO, we make an identical approxi­

m ation for the QDO as we did for Boltzmann QDO in Equation (2.20), namely tha t 

the QDO’s time dependence is param etric with the time dependence of the centroid 

variables themselves.

W ith these definitions, we can now reformulate from the Heisenberg equations of 

motion, a new set of equations for the centroid dynamics again using the CMD ap­

proximation

It is an im portant difference th a t the centroid force, defined w ith the QDO of 

Equation (2.35) is now dependent on the centroid position and the centroid momen­

tum , which was not the case with the old QDO. In addition, we can no longer write 

the centroid force as the derivative of the centroid density in analogy with other forms 

of MD,

$c(pc,qc',t) «  8c(pc(t),qc{t))- (2.39)

qc (t) = p c(t) /m ,

Pc(t) = Fc{pc(t),qc(t))

, where the centroid force is defined using Equation (2.36)

(2.40)

(2.41)

Fc = Tr[5c(pc{t),qc(t))F]. (2.42)

(2.43)
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As a consequence of the new definition of the QDO and the new centroid variables, 

we must modify the relationship between the true quantum  correlation function and 

the BECMD correlation function. It was shown in [7] th a t since the new centroid 

variables in Equations (2.37) and (2.38) are represented by the Kubo transform of 

the corresponding operators we can then relate the BECMD correlation function to 

a second order Kubo transform  of the quantum  correlation function

(BA(t))D = /  djj. j  i v(TB(- iv)A( t - i i i ) )

where we have introduce the superscript D, to denote a second order Kubo transform. 

T  is the Dyson time ordering operator [13], which can be used for imaginary time as 

well and has the following effect:

" ‘ I ' V > "  (2 '« )K K \  A( t  -  i n ) B { - i v ) , v  <  n  . v '

2.3 Markov Chain M onte Carlo M ethods and the  
M etropolis algorithm

In general a Monte Carlo (MC) algorithm is merely a com putational m ethod of cal­

culating a multi-dimensional integral th a t cannot be (or is extremely difficult) to 

solve analytically or with standard numerical algorithms known as quadrature or 

trapezoidal methods. The method is based upon the statistics of large numbers and 

randomness, in fact it is suggested th a t its name, Monte Carlo, was taken from the 

city Monte Carlo, which is a Las Vegas style city tha t has numerous casinos, famous 

for their use of randomness and probability in gambling.3

Let us look a t a trivial example4 of the application of Monte Carlo. Suppose we 

wish to calculate

F  = f  d x f (x ) .  (2.46)
J a

3It is also said there is a game played by children in Monte Carlo, Monaco that exemplifies the 
nature of the method.

4This example is taken from a course on Quantum Monte Carlo Methods in Statistical Mechanics, 
taught by Dr. Massimo Bonninsengi 2004
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where f ( x )  is some non-negative (we make f ( x )  non-negative for simplicity of this 

example) on the interval [a, b]. M athematically we are merely calculating the area 

under the ’curve’ of the function f ( x ) .  We can compare this to  some box th a t has 

a w idth w = \b — a\ and some known height h such th a t h > f ( x )V x  €  [a,b]. For 

a random number pair, (Xi,yi) such th a t a < Xi < b and 0 <  t/j <  /i we record 

the number of times Nhu th a t the point (Xi,yi) is less than  (x i , f ( x i ) ) .  Now, let 

us generate a large set of non biased random points (Xi,yi), and we keep track of 

the number of random points we generate N triais as well as the number of hits Nhits- 

Since the random points should be evenly spread over the surface of the box, the ratio 

Nhit/Ntriais converges to  the area under the curve f ( x )  in the lim it of the number of 

trials N triais goes to infinity. This primitive m ethod is often referred to  as a Hit or 

Miss method.

A significant improvement on the Hit or Miss m ethod is called Importance Sampling. [14] 

Suppose th a t instead of wanting to calculate a simple integral like in the example 

above, we want to  calculate a multidimensional quantity such as

/  -  f  dx i ’ ' ' '  dxMf ( x i ’ • • • dxM) p ( x i . ■. dxM) /2 47^
f  d x i . . .  dxMp{dxi . . .  dxw)  ’

which is not an unrealistic situation when we think about the quantity p ( x \ . . .  x M) 

as a density m atrix, and its integral as the partition  function. W ith the Hit or Miss 

method, we would generate a large set of random M-dimensional points and blindly 

s ta rt recording whether it hits or misses. In general this m ethod is fine, but it may be 

extremely inefficient depending on w hat the functions f { d x i , . . .  x M) and p (x i . . .  x M) 

are. For example, if f { x \ , .. .xm )  is some widely spread out Gaussian function and 

p(x i . . .  x M) is some sharply peaked Gaussian function centered a t the same point as 

f ( x i , . . . Xm), we know th a t the product f ( x i , . . .  Xm)p(x i • • • ^m) will also be sharply 

peaked. By choosing randoms numbers blindly, we will most likely have a large 

number of misses compared to hits, and this will cause a very slow convergence 

to  the correct answer. However, if we know w hat the function p ( x i . . .  % )  looks 

like, we can use it to  help sample our random numbers. Essentially, we will be 

choosing random numbers th a t are distributed so th a t we know they will have some
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contribution to the integral. Since there is a well defined m ethod for generating a 

random number according to a Gaussian distribution, im portance sampling in the 

context of a Gaussian is sometimes called Gaussian sampling. It should be noted 

th a t im portance sampling can be done for any function p { x \ . . .  x m ), as long as there 

is an unbiased m ethod for generating random numbers according to  th a t distribution.

In addition to  im portance sampling, we introduce the Metropolis algorithm [15], 

which is a Markov chain/random -walk acceptance-rejection algorithm. We can think 

of it as a random walk through state-space w ith states (configuration) {s0, s i , . . . }  

and a transition probability P (s  -> s') th a t describes the probability of a transition 

from state s to  state s'. The difficulty is in choosing P (s  —> s') such th a t it satisfies 

detailed balance

We can satisfy detailed balance by carefully choosing our transition probability as

where T (s  -> s') is the sampling probability, and A (s  —>■ s') is the acceptance proba­

bility. We define the acceptance probability as

In practice, the sampling probability is usually the kinetic energy term  of the 

action, since it is a Gaussian in momentum, it is easy to  sample the distribution and 

the probability distribution tt(s) is usually the potential term  of the action.

Further discussion of the im plementation of general Monte Carlo methods, includ­

ing a m ethod or analysing statistical errors known as blocking analysis can be found 

in [14] or [16] as well as many other numerous resources. In blocking analysis, one

7r(s)P(s  -*  s') = ir(s')P(s' s) (2.48)

where 7r(s) is a given probability density which we wish our set of random  states to 

converge to. We can see from detailed balance th a t

(2.49)
S

P{s s') =  T (s  -*  8')A(8 -)• s') (2.50)

A{s  -*• s') =  m in  ( 1, (2.51)
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can calculate the error associated with the correlation of the d a ta  points by averaging 

(blocking) consecutive segments of da ta  and then finding the variance of these blocks. 

As a function of the block size (number of da ta  points averaged in a single block) we 

expect the ratio  of the variance of the block averages over the expected uncorrelated 

variance to  plateau a t some value. At this limiting value there is little  or no correla­

tion between the blocks, and we can use the block averaged variance to  calculate the 

true error estimation.

2.4 Path Integral M onte Carlo

A powerful m ethod for simulating quantum  mechanical liquids, solids and clusters is 

P ath  Integral Monte Carlo (PIMC). For our purposes it is a nearly essential method 

since inevitably the convenient representation of the operator formalism of CMD 

must be put aside and replaced with a path  integral representation when we wish 

to  develop a simulation approach. PIMC lends itself nicely to  the CMD framework, 

and historically, CMD was originally formulated using path integral techniques.[17, 

18, 19, 20, 21]

To begin with, we will look at the simplest version of a discretized tim e path 

integral Monte Carlo (DT-PIMC) method, and then in the following subsections we 

will describe in more detail more advanced methods, specifically, a m ulti level DT- 

PIMC method, and a Fourier Path  Integral Monte Carlo (F-PIM C) method.

As with the path  integral representation, we describe a particle by a closed path5 

in the imaginary tim e interval (3. The Feynman path  is discretized into P  time slices 

and a t each tim e slice, and we can record the position of the particle. We can visualize 

this as a polymer, where each bead on the polymer is the particle’s position a t tha t 

particular tim e slice. Each bead on the Feynman path  is connected to  i t ’s neighbour 

by a harmonic potential (classically connected by a spring). In a many particle 

simulation, it is im portant to remember th a t the interaction between particles only

5Not all path integral based simulations require a closed path, methods such as and Path Integral 
Ground State (PIGS) are based upon Path Integrals yet do not have closed paths. PIMC however 
does require the paths to be closed
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takes place a t equivalent time slices.

A PIMC simulation works basically the same way as a MC calculation with the 

exception th a t we now have this strange (but simple) interaction between time slices. 

The simplest sampling method in PIMC is referred to as single slice sampling, wherein 

we move only one single time slice (bead) per move. We define the acceptance proba­

bility identically as we do in Equation (2.51). The sampling distribution th a t we use 

is defined as

T ( r i )  =  (27tAr ) - 3/2e ~( ’a*™5 , (2.52)

which is a Gaussian centered around

Tm =  r t ± ± n ± i . (2.53)

This sampling distribution has also been commonly referred to  as Gaussian sampling 

and free particle sampling. The multiplicative constant in Equation (2.52) is extra­

neous information, since we only use the sampling distribution in a ratio  in Equation

(2.51) we never have to worry about it.

2.4.1 Multi Level Metropolis

The multi-level Metropolis method is a staging algorithm designed to  improve the 

convergence of a MC calculation, and has been used extensively in P ath  Integral 

Monte Carlo simulations [22]. In a single slice Monte Carlo procedure, a bead6 of 

the path  is moved on average a distance proportional to  \/A r. However, in the limit 

tha t P,  the number of beads, goes to  infinity, we see th a t r  =  £  — > 0, and our 

displacement which is proportional to  y fr  also goes to  zero. From a com putational 

viewpoint, this means th a t our particle would never move and the estim ator we are 

trying to  calculate would never reach a converged value. For a further discussion on 

the necessity of multi-slice moves, please see [22],

The multi-slice move increases the efficiency of the calculation by sampling a larger 

section of the path  initially during the first level, and then moves smaller subsections of

6The term bead is referring to the position of the particle at a some specified time slice.
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th a t portion of the path  during the following levels. During the first level we attem pt 

to make a coarse move th a t covers a full section of the path  with a large effective 

reff .  Each subsequent higher level has a smaller effective r e/ /  until r e/ /  =  r ,  a t which 

point all the beads in th a t portion of the path  have been individually moved. The 

increase in efficiency comes from the fact th a t the lower level moves (with larger r e/ / )  

are attem pted first. These lower level moves have lower probability of being accepted 

than  do the higher level moves. If one of the lower level moves is not accepted, it is 

not worthwhile to  continue, and we save com putational time by not checking whether 

the higher level moves are accepted. We simply reject the move and continue onto 

the next MC step.

To actually perform the m ulti level algorithm we first choose a section of the path 

th a t has 2l  + 1 slices, where L  is the number of levels (which will eventually be a 

param eter of the simulation), starting  a t the bead fj. Keeping the endpoints fixed, 

we sample the position of the bead ri+2t - i  with an associated r e/ /  =  2L_1r .  The 

bead r i+2L-i is the midpoint between beads r, and r i+2L, as shown in Figure 2.3.

For the second level of the move, assuming the first level was accepted by the 

Metropolis algorithm, the segment of the path  is bisected a t the midpoint, using 

bead r i + 2L - 1 as a fixed endpoint of the new segments of the path. The midpoints, 

beads ri+2L- 2  and ri+2L-2 +2L-i are then sampled with an effective r e/ /  =  2L~2r. These 

moves are then tested with the Metropolis algorithm and, if accepted, the next level 

bisects each segment again, doubling the number of segments and halving the value

Of Te f f .

At each level I the Gaussian distribution (free particle sampling probability) 7} 

used is

Ti =  (2VA7r)(- 3/2)e_i1^  (2.54)

, where 2 1t  is the effective r ef j  at level I and we have centered th is G aussian at 

rm — | ( r a +  r&), where ra and are the two endpoints of the segment.

It is im portant to  stress th a t a m ulti level move is only accepted if all the levels 

have been accepted individually. This is why we simply reject the whole step if one
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Figure 2.3: For a L  =  3 level move, we choose a segment of the Feynman path  starting 
a t fj. At level one, time slices r* and rj+8 are treated as endpoints, and we move time 
slice ri+4 with r e/ /  =  2 2t , the dashed circle represents the size of the move we are 
allowed to  make. In level two,i f  the move in the first level was accepted we bisect 
the path  segment a t ri+i and we a ttem pt to  move time slices ri+2 and ri+Q using 
Tef f  — 21r .  At level three, i f  both the moves in level 2 were accepted, we bisect the 
path segment again a t r-j+2 and r ,+6 and we a ttem pt to move tim e slices r i+ i, ri+3, 
f j+5 and rj+7 using r e/ /  =  r .  If all the moves have been accepted, only then do we 
keep the final configuration.
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single level is rejected. We don’t  want to  waste com putational tim e by attem pting a 

move to an unfavourable configuration of the path.

2.4.2 Fourier Path Integral Monte Carlo

Though DT-PIM C has been the most successful and widely used m ethod of PIMC, for 

our purposes the Fourier path  integral Monte Carlo (F-PIMC) [23] algorithm will later 

introduce a convenient m ethod of constraining the centroid position of a Feynman 

path, which will be a necessary part of our algorithm to do CMD. In the Fourier path 

integral approach the displacements of the Feynman path  integral are represented by 

a Fourier series of the path. In recent literature,[23, 24, 25, 26, 27, 28, 29, 30, 31] the 

Feynman path  was represented by the Fourier sine series

00

q{u) = q +  - ( ? '  -  q) + aksin(kiru / /?), (2.55)
P  k=1

where the path  begins a t q and after an imaginary time /?, ends a t q'. The Fourier 

components ak are 3 N  dimensional vectors for each Euclidean component of the 77- 

particles. However, when the end point of the path  is identical to the starting point 

q' =  q, as in the case of a closed Feynman path, it is possible to use a full Fourier 

expansion to  represent the path  [25], such th a t

00

q(u) = ckei2lrkû ,  (2.56)
fc=—oo

where ck is the full Fourier series coefficient, and is a 3vV dimensional vector. It is 

im portant to realize th a t q(u) is a purely real object, and as such c_*, =  c*k allows 

for simplification in the application of this method. We would like to  use this repre­

sentation of the Feynman path  to  make the moves in a Metropolis algorithm. This 

requires us to  rewrite some of the path  integral results in term s of a Fourier expanded 

path.

We can write down the path  integral representation of the quantum  mechanical 

partition function as
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where J  is a constant whose value is not im portant since we will always be concerned 

with the ratio  of two such objects. In the argument of the exponential is 5[§(u)], the 

imaginary time action functional of the system w ritten in a non discretized form,

(2.58)

Substituting Equation (2.56) into Equation (2.58), the integral for the kinetic term  

of the action can be solved analytically:

This can then be used in Equation (2.57), or any path  integral expression.

As a com putational method, one must of course truncate the infinite summation 

in Equation (2.59). In DT-PIMC methods, we have a ubiquitous param eter P  which 

is the number of beads or time slices of the Feynman path. Similarly, in Fourier 

path  integral techniques, we choose some finite number M  of Fourier modes. If one 

intends to  remain in Fourier space to calculate estimators of observables, it is advised 

[23, 25, 24] to use a partial averaging technique, which approxim ately accounts for 

the upper Fourier modes which have been neglected by correcting the action. In the 

work following, we do not use any partial averaging, and do not try  to  account for 

the neglected higher modes. Instead, we only adjust the pa th  in Fourier space, and 

then transform  back to real space to  perform the Metropolis acceptance rejection 

algorithm and calculate averages.

The Fourier expanded kinetic term  in the action, when placed back into the path 

integral expression, still remains in a Gaussian form. Now however, we have a sum of 

quadratic term s instead of a single quadratic term. In contrast to DT-PIM C methods, 

instead of moving a single time slice, or even a segment of the path, we move the 

entire path, ie: we move all of the Fourier components.

(2.59)
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The move is made uniformly in a cube about the old coordinates such th a t the 

new Fourier component is given by

4  =  Cfc +  Aak(uk -  0.5), (2.60)

where A is a displacement param eter (magnitude of the displacement) th a t can be 

adjusted to encourage convergence. A must also be changed with the number of 

Fourier components M  to keep the acceptance rate at a decent7 value. This can be 

accomplished by scaling A linearaly with the number of Fourier components M . Uk 

is a uniformly distributed random number in (0,1), and Ok = \ J 4m^2fc2 • We can see 

th a t for each Fourier component the move is weighted by This can cause problems 

with the zeroth, k  =  0 mode. This can be circumvented in two ways, first, we can 

shift the indices of the modes so th a t k -»  k +  1 which should not have a dram atic 

affect on moves in the large M  limit, or we can omit the k  =  0 mode from the move, 

since the we have the adventitious fact th a t the k — 0 mode is

M

00 M z=0

which is simply the centre of mass, or centroid position of the path, so we can move 

the centre of mass position in real space, and move the shape of the path  in Fourier 

space.

2.5 Constraints in Quantum M onte Carlo

In a standard DT-PIM C or F-PIM C calculation, we can define a quantity qc, which 

is a Cartesian vector given by

1 p
9 c = p X >  (2-62)

i= 0

where P  is the number of time slices in the PIMC calculation (Not the number of 

modes used in the F-PIM C method), and $  is the position of the particle a t the

7By this we mean that the acceptance rate should be about 30% to 50%.
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i — th  time slice. In the P  —> oo limit, for a closed Feynman path, this is exactly the 

centroid position.

W ith this definition, we would now like to  use a MC calculation to  calculate 

properties of the system. Specifically we want to calculate the centroid force Fc for 

later use in a MD simulation, when the particle is confined to  having a centroid 

position pinned a t qc. T hat is, we want to constrain the freedom of the ’centre of 

mass’ or centroid position of the Feynman Path. This implies th a t during a PIMC 

calculation, any move we make is only allowed to  alter the shape of the path  as long 

as qc remains fixed.

F irst of all, in a general PIMC algorithm, we have w hat is referred to  as a ’global’ 

move of the path. This is where the position of the particle a t every tim e slice is 

displaced by some random number, such th a t for all time slices

Qi  ̂Qi T Arrandomi (2.63)

where rrandom is a random number in the interval (—1, 1) and is the same for all time 

slices. The param eter A governs the m agnitude of the displacement and is usually 

on the order of the therm al wavelength At - It is used as an adjustable param eter 

which only affects the acceptance rate and the rate of convergence of the calculation. 

Obviously a global move changes the value of qc by exactly A rrandom, in fact a global 

move does nothing but change the position of the centroid, leaving the shape of the 

path the same. For a constrained system, we have no choice but to  eliminate moves 

of this type in the algorithm.

Path  shape altering moves such as single slice or multi slice moves prim arily change 

the shape of the path. Single slice moves change the shape of the path  one slice at 

a time, although it also changes qc. In a m ulti slice move, we a ttem pt to  alter the 

shape of the path  by wiggling a segment of the path. Unfortunately this also moves 

the centroid position.
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2.5.1 Constraint in Discrete Time Path Integral Monte Carlo

The first, naive a ttem pt to add a constraint into a DT-PIMC calculation would be to 

simply re-locate the path  of the particle after each Metropolis move. This can simply 

be done by calculating the centroid position of the new path  q'c, and subtracting 

from each tim e slice the difference qc — q'c of the two centroids. This, however, is 

now changing the position of all the time slices w ithout a sampling distribution, this 

breaks our Markov chain random walk.

Instead, let us look back a t the path  integral representation of the density m atrix 

and add in the constraint for the centroid position in the form of a delta function

/  OO
-  £  f ), (2.64)

i=0

where the infinite sum inside the delta function is the the centroid position of the 

path  after the move. We must keep in mind th a t the infinite sum will be truncated 

down to  ]T)iLo pi where P is the number of tim e slices in the MC simulation.

Now, let us approximate the delta function in Equation 2.64 by a Gaussian func­

tion with a finite, bu t small, width j|. Since the action of the system is found as the 

exponent in the density matrix, this then allows us to write a modified discretized 

action as

S(q, q'\ r) =  37V/2 log(47rAr) +  ^  ^  +  r V (q, q') +  ^ {q c -  ^  ^ ) 2, (2.65)
P i=0

where a  is a user defined positive number th a t needs to  be large enough for the 

Gaussian function to appear delta function like. In a com putational simulation, a  will 

be used as a param eter, and even though we have the freedom to choose it arbitrarily, 

there are some lim itations we must consider. First, we must not choose a  too large, 

to  illustrate th is, consider a configuration o f the path  that is already in a position  

where qc =  J2f=o p- If a  were incredibly large, the centroid constraint term  would 

dominate over the action and any displacement from this configuration would always 

be rejected during the metropolis procedure. This would result in a simulation tha t
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would be frozen a t th a t configuration and any estim ator we are trying to  calculate 

would very slowly converge to the correct value.

The first two term s in Equation (2.65) correspond to the kinetic energy. The first 

of those term s is not position dependent; in fact it is a constant. W hen we perform a 

PIMC calculation, the contribution from this constant term  will always be canceled 

since we will be looking at a ratio  of equations similar to  Equation (2.64). The 

second term  in the kinetic energy has the same form as the constraint, the square 

of the difference of a position. We know th a t the kinetic energy has a significant 

contribution to the action of the path, therefore we know th a t for the constraint to 

hold we need to have an equal or greater weighting on the constraint compared to 

the kinetic energy term . This leads to a minimum requirement th a t a  >

This method of constraining the centroid position is completely new, and has now 

been tested. The results will be summarized in Section 4.2.

2.5.2 Constraints in Fourier - Path Integral Monte Carlo

Constraining the centroid position in F-PIM C is significantly simpler than  in DT- 

PIMC. Let us revisit Equation(2.61), which describes the zeroth mode of the Fourier 

series expansion of the Feynman path

It is extremely im portant to  realize th a t this k =  0 mode is identically the centroid 

position. To constrain its value, we simply do not change its value when making a 

move.

In no way are we breaking the Markov chain, or are we making an approximation. 

We have simply found a type of MC move th a t does not alter the centroid position. 

As such, we can use this as an exact method of constraining the centroid position.

Since the constrained F-PIM C method is not based on a effective action like the 

constrained DT-PIM C method, nor does it alter the Markov chain, we can consider 

the constrained F-PIM C method exact (in a statistical MC sense). The tim e scale 

of the constrained F-PIM C m ethod is slightly faster than  the constrained DT-PIMC
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method and, in addition, there is room for significant improvement by using a method 

of partial averaging [25, 23]. The main lim itation for this m ethod is th a t it does not 

include quantum  exchange effects in a many body system. To date, there has been 

very little progress in the inclusion of quantum  statistics in a F-PIM C simulation, 

though there has been some work done in [30]. It is however possible to  include 

exchange in DT-PIM C [22].
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Chapter 3 

Proof of Principle in One 
Dimension

W ith the formalism of Section 2.2 we can now attem pt to assess the accuracy of 

the BECMD approximation for single-particle time correlation functions. This is an 

im portant step since we are in a regime where we expect quantum  exchange effects 

to take place, a t this point we can no longer distinguish between the particles under 

normal circumstances. This proof of principle calculation allows us to  judge what 

type of potentials will work well within the CMD approxim ation since we will have 

an exact solution to  compare to. Some of the results presented here have appeared 

in the article entitled On the calculation of single particle time correlation functions 

from Bose-Einstein Centroid Molecular Dynamics, [6].

3.1 Physical System

It is possible to write an analytical solution in the BECMD formalism for the case 

of two bosons interacting in a 1 dimensional harmonic potential trap  [12]. However, 

in this case, the CMD approximation is exact and we do not learn any information 

about the validity of the approximation. To accurately test this method, we need to 

choose a potential th a t is anharmonic. Our choice is a 1 - dimensional potential of 

the form

V ( x u x 2) = ^moj2(x21 + x l )  + c(x31 + x l )  + g ( x j  + x l) ,  (3.1)
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Figure 3.1: The potential for our system as a function of the position x.  The solid line 
is the potential with c =  0 and g =  0 which is the harmonic potential. The dashed 
line is the potential with c =  0.1 and g =  0.01 and the dotted line is the potential 
with c =  0.1 and g =  0.1.

where uj is the frequency of the trap, m  is the mass of the particle, and the param eters 

c and g are chosen arbitrarily with the condition th a t g > 0 for stability. This model 

has also been used to  test the validity of the CMD method w ithout exchange [9] and 

has also been used to test CMD with exchange using centre of mass and relative 

distance coordinates [11]. By varying the param eters we can test a wide range of 

potentials while in most cases staying close to a harmonic system. Figure 3.1 shows 

the potential as a function of position for a few choices of param eters. This potential 

with the specific choice of param eters c =  0.1 and g =  0.01 was used to  test the 

BECMD m ethod in [6].
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Since the system is small, consisting of only two bosons, and the potential has a 

simple analytic form, we are able to calculate exactly the centroid density and the 

centroid force prior to the calculation, as opposed to more advanced algorithms tha t 

would calculate the force on the fly.1

3.2 Analysis of the Centroid D ensity and Centroid  
Force

W ithin the BECMD (and FDCMD) formalism, we can write the general centroid 

density, with the inclusion of exchange as

1 N
(xu  x 2\ r ) . . .  pD(xP , p x P+ii r ) ,  (3.2)

p i=l
where p  indicates the perm utation of two particles (since any perm utation of N par­

ticles can be found by a successive number of two particle perm utations we need not 

consider anything higher than two particle perm utations), P  is again the discretiza­

tion of the path, and we have introduced the distinguishable density pD(x-,/3), which 

is the density if we were to  have an ensemble of particles th a t obeyed Boltzmann 

statistics (i.e. a system of distinguishable particles).

This m ethod of accounting for perm utations in the density is identical for the 

centroid density as well. Explicitly, since we will be looking a t the case of two bosons, 

we can write the full centroid density as

I
P c I F { X c l , X c 2 , P c l , P c 2 )  =  2 l P ? ( X c h X c2 , P c l , P c 2 ) ± P c ( X c l , X c 2 , P c l , P c 2 )], (3.3)

where we now have the linked density labeled by the superscript L, which corresponds

to  the density with an exchange of particle labels, i.e. linked paths as in Figure 2.2.

It may be more informative to see how Equation (3.3) is found using the QDO,

as opposed to an extension from Equation (3.2). By using Equations (2.32), (2.33),

and (2.34) and noting th a t we have re-adopted the notation th a t qc, pc, £ and rj are

xBy on the fly we mean that we calculate the necessary quantity at that configuration only when 
we need it, as opposed to pre-calculating and reading from a table.
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all vectors, i.e. qc =  (xci, xc2) and C =  (Ci? C2) (unless specifically labeled with a 

subscript), we can write the two particle centroid density as

p f /F(xc,,Pc) =  Tr 7  f d C d n i  f  J  J (27r)2 p  J0 ^u e - (P - u) (H - i i (q -q c)/^-ir)(p-pc)p)

x 5 b/f (3.4)

where S B!F is the symmetrization operator. For a two particle system we can write 

it as

S BlF = l- { I ± P \  (3.5)

where I  is the identity perm utation, which makes no modification to  anything it
a ~

operates on, and P  is the perm utation o p e ra to r/ which changes particle labels.

By inserting Equation (3.5) into Equation (3.4) we can split the centroid density 

into two terms:

Pc /F(Qc Pc) = 2T r
I  f  d C d p  1 f  , - ( p - u ) ( H - i < ; ( q - q c ) / p - i T i ( p - p c ) P )

J  J  M 2 P  Jo

± ]-T r
2

7  [ *J J (27r)2 /? Jq
due~^~ u){H-K(q-qc)IP-iri{P-Pc)P)

X p e - u (H-i(Ui-Qe)/P-iTi(P-Pc)l3) (3.6)

Looking at the first term  in Equation (3.6), applying the identity operator (which 

does nothing), and utilizing the cyclic invariance of the trace allows us to  re-write the 

first term , which we will label p\, as

rP
O' =  2T r

f  fJ J (2vr)2 P Jq
due-P^-^-Q^/P-tviP-p^P)

The integral over u in Equation (3.7) is now trivial, and leads to

Pi P ( H - i t ( q - q c) / 0 - i v ( p - P c ) 0 )

(3.7)

(3.8)

2The notation here begins to get a little cluttered. Previously we used P  to denote discretization 
in a Feynman path, and we used p  to denote permutations. Here P  has the same meaning as p  
except it is in operator form
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The final four integrals (over Ci, ( 2, Vi and 772), which are m athem atically equivalent 

to Fourier integrals, are performed numerically using the FFT W  numerical library 

[32], and pi is identically Pc(qc>Pc)-

The second term  from Equation (3.6) cannot be analytically simplified as much 

as the first term . We define the entire second term  as Pc{xc,Pc), which then allows 

us to  rewrite Equation (3.6) exactly as Equation (3.3).

As was previously mentioned, for this proof of principle we calculate the centroid 

force and the centroid density prior to performing the dynamics. A brief explanation 

of the calculation of the centroid density was given above. The calculation of the 

centroid force is nearly identical. We first s ta rt off w ith the definition of the centroid 

force in term s of the QDO.

where again, x c and pc are treated as vectors for the particles. W ith Equation (2.35) 

and Equation (2.32) we can rewrite Equation (3.9) in similar two part expression as 

we did with the centroid density:

As with the centroid density, we can label the first term  as distinguishable and the 

second term  as linked (with exchange). The Kubo integral in both  of these term s (as 

with the linked term  from the centroid density) will be calculated numerically.

The trace operation and the four Fourier-like integrals are both  linear operations,

integrals. This is merely a convenience th a t makes both the trace operation and the 

Fourier-like integrals significantly easier. Once we calculate the trace of the integrands

(3.9)

(3.10)

which allows us to bring the trace operation inside to  the integrand of the Fourier-like
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we have a centroid density and centroid force in “ £ - 7 7  space” , which is a reciprocal 

space to the centroid phase space. Numerically we then used a fast Fourier transform 

to  create the true centroid density and centroid force.

Since in our examples the centroid density and centroid force are four dimensional 

objects in x c\, x c2, pc 1 and pc2, we cannot view them  in their full form. Instead we look 

a t them  as a function of one variables, where the other variables have been integrated 

over. This allows us some insight into the shape of the centroid density and force.

In Figure 3.2, we see the plot of the integrated one dimensional centroid density 

as a function of x c\. Note th a t the dependence on x ci and x c2 are identical. In Figure 

3.3 is the integrated centroid density as a function of pc 1, where the dependence on 

Pd  and pc2 are identical as well. As a function of centroid momentum, we see tha t 

they are completely symmetric about pCi =  0. As a function of centroid position, 

however, we see th a t the centroid density is not centered about x c =  0.

I t was stated th a t the centroid force may in general also depend on the centroid 

momentum. Let us look a t the centroid force in the same way we looked a t the cen­

troid density. In Figures 3.4 and 3.5 we can see the centroid position and momentum 

dependencies of the integrated centroid force weighted by the centroid density. It was 

shown [6] th a t there is a small momentum dependence of the centroid force (relative 

to  the position dependence), i.e. the momentum dependence is roughly two orders 

of magnitude smaller than  the position dependence. In addition, we have assumed 

th a t the centroid force is a completely real quantity. We can see th a t the imaginary 

components of the centroid force weighted by the centroid density are several orders 

of magnitude smaller than  the real components of the centroid force This is true for 

both the centroid position and momentum dependence.

It is also interesting to  look a t the centroid force if using the old QDO as defined in 

Equation (2.13). In Figure 3.6 we can see th a t the general shape of the centroid force 

is retained, but there are some differences with the magnitude, especially when we 

look a t the integrated centroid force as a function of centroid position of the particle 

tha t the potential was not differentiated with respect to, i.e. the centroid force on 

particle 1, as a function of the centroid position of particle 2.
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Figure 3.2: The centroid density as a  function of the centroid position of particle 
1. The centroid density has been integrated over the remaining three centroid phase 
space variables.
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Figure 3.3: The centroid density as a function of the centroid mom entum of particle 
1. The centroid density has been integrated over the remaining three centroid phase 
space variables.
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Figure 3.4: The centroid force has been weighted by the centroid density and inte­
grated over the centroid mom enta and one of the centroid position variables. The 
solid line is for the dependence on the centroid position of particle one and the dashed 
line for particle two.
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Figure 3.5: The centroid force has been weighted by the centroid density and inte­
grated over the centroid positions and one of the centroid mom entum of particle two. 
The dependence on momentum is identical for both particle one and particle two.
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Figure 3.6: The centroid force as defined using the old QDO from Equation (2.13) 
has been weighted by the centroid density and integrated over the centroid momenta 
and one of the centroid position variables. The solid line is for the dependence on the 
centroid position of particle one and the dashed line for particle two.
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Figure 3.7: The centroid force as defined using the old QDO from Equation (2.13) 
has been weighted by the centroid density and integrated over the centroid positions 
and one of the centroid momentum of particle two. The dependence of on momentum 
is identical for both particle one and particle two.

The centroid momentum dependence of the centroid force, if using the old QDO, 

is drastically different than  with the BECMD QDO. Though the m agnitude of the 

centroid force is approximately the same for both definitions of the QDO, the shape 

is significantly different. As we can see in Figure 3.7, the integrated centroid force 

changes sign when the old QDO is used.

Another peculiar feature of the old QDO is th a t the im aginary component of the 

integrated weighted centroid force on particle 1 is non-zero as a function of the centroid 

position of particle 1 or particle 2. In all other cases, the im aginary component was 

effectively zero. There was a very small finite value for all the calculations. However
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it was many orders of magnitude smaller and had no distinguishable shape. We 

therefore discarded it as numerical noise from the simulation. It is symmetrically 

non-zero with each particle; th a t is the imaginary component of the centroid force on 

particle 1 as a function of particle 1 is equal to  minus the im aginary component of 

the centroid force on particle 1 as a function of particle 2,

3 ( / c i ( « i ) )  =  —S(/e l(Z 2))-  (3.11)

We can see this in Figure 3.8, and we note th a t it is symmetric in such a fashion tha t 

we will have cancellation of the imaginary momentum dependence th a t allows us to 

obtain the correct dynamics in certain circumstances.

3.3 Single Particle Correlation Functions

It was shown numerically in [6] th a t with the BECMD formalism we can correctly 

account for the quantum  exchange effects of two bosonic particles confined in the 

potential described by Equation (3.1) using the param eters c =  0.1 and g =  0.01. 

Single particle real time double Kubo transformed position autocorrelation functions 

were calculated and compared to the double Kubo transform  of exact quantum  me­

chanical result obtained from a variational calculation. The autocorrelation function 

in question is given by

W ) ) D -  f  f  (3-12)

Here we will extend the results of th a t study by varying the cubic and quartic coeffi­

cients of the potential.

It should be noted th a t there was success using a QDO defined by Equation 

(2.13). However, it was only capable of correctly calculating correlation functions 

using certain coordinates. Specifically for the two particle system, centre of mass and 

relative distance coordinates were used and the results were as accurate as with the

QDO defined by Equation (2.35). However, for single particle correlation functions

it begins to  deviate from the exact value shortly after the t  =  0 value.
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Figure 3.8: The imaginary component of the centroid force defined using the old QDO 
from Equation (2.13) has been integrated over the centroid positions and one of the 
centroid momentum. The solid line is for the dependence on the centroid momentum 
of particle one and the dashed line for particle two.
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If we look a t Equation (3.12), we can see th a t when we consider the centroid 

variables to  be classical-like phase space variables. The expression is identical in form 

to  the classical dynamics definition of the correlation function in Equation (1.10). 

We can then use classical MD techniques using the classical-like equations of motion 

defined in Equations (2.40) and (2.41) to calculate individual MD trajectories, which 

are then integrated over the initial conditions using a Markov chain MC calculation.

In Figure 3.9 we can see the centroid position autocorrelation function as a func­

tion of time. This calculation is taken from [6], and it shows th a t the BECMD result 

agrees very well with the exact calculation. Also it shows w hat the result would be if 

we were to  use the QDO defined in Equation (2.13). We can see th a t this old definition 

yields a correlation function th a t begins to differ from the exact result significantly 

sooner than  the BECMD result. As we expect, the t  =  0 equilibrium result is exact, 

since a t this point we are not making the CMD approximation. For a more indepth 

discussion of this calculation for these specific param eters the reader is referred to [6].

We would also like to  see the correlation function for varying values of the param ­

eters c and g. In Figures 3.10 - 3.16 we see th a t the CMD approxim ation becomes 

less effective as the anharm onicity is increased. In Figure 3.10 we have the same 

choice of param eters as in Figure 3.9. However, we have changed to  a tem perature 

corresponding to /3 = 7 and we see similar results to  those in Figure 3.9.

In Figure 3.11 we have increased the anharmonicity in the quartic term  of the 

potential and are using the param eters c =  0.1 and g =  0.05 a t a tem perature of 

/3 =  7. Although we still have good agreement between the BECMD result and the 

exact quantum  mechanical result, as expected the increase in the param eter g has 

caused the BECMD result to  degrade sooner. We can see this even further in Figure 

3.12, where we have increase g to g =  0.1. At this point the BECMD result is only 

accurate for roughly one oscillation.

In Figure 3.13 we have set c =  0 and we are looking at the effect of adding only a 

quartic term  to the potential with g =  0.01. We have now regained the symmetry of 

the oscillation about zero. This choice of param eters causes the potential to become 

sharper and we again see th a t the BECMD approximation is only valid for short time
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Figure 3.9: The double Kubo transformed correlation function for an individual par­
ticle. Results are for /? =  10. The solid line corresponds to  the exact result and 
the dashed line corresponds to  the BECMD approximation. The dotted line is the 
result obtained when using the QDO defined in Equation (2.13). The calculation 
was carried out for 400000 MC steps and with a MD time step of 0.025 (au). The 
param eters used were c =  0.1 and g =  0.01.
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periods. By making c non-zero and choosing the param eters c =  0.01 and g =  0.01, 

we can see we in Figure 3.14 the BECMD approximation holds extremely well. In 

Figure 3.15 we have again increased the cubic param eter and have c =  0.05 and 

g = 0.01, and we still see very good agreement between BECMD and the quantum  

result. Finally by increasing c again, choosing c =  0.11 and g =  0.01, we can see in 

Figure 3.16 th a t the BECMD result begins to  differ more from the exact result. As 

we increase the anharm onicity of the system (increasing c), the pre-calculation of the 

centroid force and centroid density becomes increasingly difficult.

In addition, there is the limiting case when we choose c =  0 and g =  0 and we 

return to  a purely harmonic potential. We do not bother to  calculate this result since 

it can be w ritten analytically. In this specific system the BECMD approxim ation is 

exact, and this has been shown and derived in [12].
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Figure 3.10: The double Kubo transformed correlation function for an individual 
particle for /3 — 7, c =  0.1 and g =  0.01. The solid line is the exact quantum 
mechanical result, and the dashed line is the BECMD approximation.
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Figure 3.11: The double Kubo transformed correlation function for an individual 
particle for f3 =  7, c =  0.1 and g =  0.05. The solid line is the exact quantum  
mechanical result, and the dashed line is the BECMD approximation.
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Figure 3.12: The double Kubo transformed correlation function for an individual 
particle for — 7, c =  0.1 and g =  0.1. The solid line is the exact quantum  
mechanical result, and the dashed line is the BECMD approximation.
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Figure 3.13: The double Kubo transformed correlation function for an individual 
particle for /3 =  7, c =  0 and g =  0.01. The solid line is the exact quantum  mechanical 
result, and the dashed line is the BECMD approximation.
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Figure 3.14: The double Kubo transformed correlation function for an individual 
particle for /? =  7, c =  0.01 and g =  0.01. The solid line is the exact quantum  
mechanical result, and the dashed line is the BECMD approximation.
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Figure 3.15: The double Kubo transformed correlation function for an individual 
particle for /? =  7, c =  0.05 and g — 0.01. The solid line is the exact quantum  
mechanical result, and the dashed line is the BECMD approximation.
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Figure 3.16: The double Kubo transformed correlation function for an individual 
particle for /3 =  7, c =  0.13 and g =  0.01. The solid line is the exact quantum  
mechanical result, and the dashed line is the BECMD approximation.
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Chapter 4 

Centroid Dynamics with 
Anisotropy

To be able to  perform a BECMD simulation there are many steps th a t need be looked 

at in detail. We have already discussed the theory in Chapter 2 and now it is time to 

see how the pieces fit together, while keeping in mind th a t we would like to eventually 

extend the simulation to a many body system. The algorithm we intend to  use can 

be broken down and described nicely in pictorial form and is shown in Figure 4.1.

We wish to  calculate the correlation function similar to  Equation (2.44). We 

attem pt this by using a PIMC simulation to  sample the initial conditions from the 

centroid density and this first initialization calculation is represented by the horizontal 

squiggle-arrow. For several thousand of those initial conditions we then perform 

a classical-like MD algorithm for each initial condition, which are represented in 

Figure 4.1 by the vertical squiggle-arrows. In addition to this, a t each MD step the 

classical-like force is calculated from a PIMC calculation th a t has its centroid position 

constrained, i.e. we need to know the force on th a t particle when it is a t th a t point 

only.

4.1 Anisotropic Potential

To test CMD in an anisotropic potential, we choose the system of a single helium 

atom  in the presence of an N 20  molecule. For our simulation, the N 20  molecule
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Figure 4.1: A simple schematic of the algorithm we intend to  use. The horizontal 
squiggle arrow represents the sampling of the initial conditions which is done by a long 
MC calculation. The vertical squiggle arrows represent a MD trajectory, for which 
we use a constrained PIMC simulation to calculate the force. After these trajectories 
have been run, we average them  and we have our correlation function. In principle we 
need thousands of these MD trajectories to  accurately calculate a correlation function.
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will be rigid, and pinned.1 Molecules such as iV20  and their interactions with helium 

clusters, which range from the size of a few atoms to thousands of atoms, have been 

studied in great detail both experimentally and numerically [33, 34, 35].

We define a Cartesian coordinate system for the iV20  potential, such th a t the 

z — axis  is along the length of the molecule with the origin centered a t the centre of 

mass of the molecule. The potential features azimuthal symmetry around the z —axis, 

and though we could represent the potential in cylindrical coordinates, we would gain 

no advantage from a com putational viewpoint. We do, on some occasions, express 

positions in spherical coordinates. This is done only to  help interpret results.

There is a global minimum of the potential in a torus around the N20  molecule, 

and in addition there is a local minimum at the oxygen end of the molecule and a 

shallow local minimum at the nitrogen end. At a tem perature of I K  we do not expect 

the helium atom  to  localize in the local minimum at the end of the molecule. At this 

tem perature, we expect it to  remain in the torus shaped global minimum around the 

molecule.

We choose this potential with the foresight th a t we will eventually want to include 

more than  one helium atom, which will require, in addition to  the BECMD formalism, 

a method of correctly account for quantum  exchange. In DT-PIM C this is possible, 

but has not yet been done with a constraint on the centroid position. In F-PIM C 

there has been progress regarding the inclusion of exchange effects [30], although it 

has not been used to  the extent th a t DT-PIM C has.

4.2 Centroid D ensity and Centroid Force

The two most im portant objects in the simulations we will be working with, as in 

Chapter 3, are the centroid density and the centroid force. As we know, from a 

theoretical viewpoint, the centroid density will lead to  the partition  function, which 

gives us a plethora of information. However the centroid density is also used exten­

sively in our simulation, and it will be used as the sampling distribution of our initial

xWe mean that the molecule will be fixed in place and has no degrees of freedom
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conditions for the MD calculations. It can be shown th a t the centroid momentum 

dependence of the centroid density is Gaussian (for three dimensions we will have 

three Gaussian functions) and can be factored out yielding

Pc(Pc, Qc) = e - ^ p°pc(qc), (4.1)

where qc =  (x c, yc, zc) is a standard Cartesian vector defining the centroid position 

of the helium atom, and pc is defined similarly. This allows us to  generate the ini­

tial centroid momentum conditions by sampling Gaussian distributed numbers. The 

result of this, for a large number of initial conditions, is shown in Figure 4.2.

The position dependence of the centroid density does not have a convenient ana­

lytic expression like the centroid momentum distribution. To obtain this distribution, 

we run a long PIMC calculation and record the positions qc. I t is difficult to  interpret 

the x c and yc dependence of the centroid density since there is azim uthal symmetry 

and it is therefore highly degenerate in the x  — y  plane. However, the x c and yc 

dependences of the centroid force are shown in Figures 4.3 and 4.4. We can see from 

these plots th a t there is a peak in the distributions near x c (or yc) pa ±3A. These 

peaks correspond to  the global minimum of the N 20  centroid potential.

The centroid density dependence on zc (the z-axis is along the length of the N 20  

molecule) in Figure 4.5 has its peak also corresponding to  the global minimum of 

the centroid potential, which is to  the right of zero. At higher tem peratures, we 

could expect to  see a peak in all three centroid position density profiles near the local 

minimum. However, a t a tem perature of I K  we do not see this feature.

The calculation for the sampling of the initial conditions was for one million 

MC steps with P  =  50 discretizations of the Feynman path. The initial conditions 

were sampled a t every 100th MC step and the to ta l com putational time for this 

initialization step of the procedure was approximately 13 hours.

At the end of the day, we wish to do an MD calculation, which means we need to 

integrate a set of equations of motion. In the BECMD formalism, we have a set of 

classical-like equations of motion given by Equations (2.38) and (2.37). Regardless 

of w hat numerical integration technique you choose to  use, whether it be the Euler

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



600

& 300

-0.5 0
Pc

0.5

Figure 4.2: Histogram representation of the Gaussian distribution of centroid mo­
menta. The distribution was sampled using standard Gaussian distributed random 
numbers with the correct mean and Gaussian width.
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Figure 4.3: Histogram representation of the centroid position density for the x c co­
ordinate. The two peaks to  the left and the right of the zero are the locations of the 
global minimum in this y  — z  plane.
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Figure 4.4: Histogram representation of the centroid position density for the yc coor­
dinate. The two peaks to the left and the right of the zero are the locations of the 
global minimum in this x  — z  plane.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



600

500

400
•a

t
300

200

100

-1 -0.5
hDnm—

0
z (Angstrom)

0.5

Figure 4.5: Histogram representation of the centroid position density for the zc co­
ordinate. The peak of this density is located to  the right of zero and corresponds to 
the global minimum.
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algorithm, a velocity Verlet algorithm [14], or a R unge-K utta algorithm [36], the 

integral2 step is the calculation of the centroid force.

As was stated  earlier, one of the main differences between this calculation and the 

proof of principle calculation of the unphysical anharmonic oscillator is th a t we do not 

pre-calculate the centroid force prior to the CMD calculation. Instead we calculate it 

on the fly  as we move through the CMD simulation. This means th a t every time the 

integrator algorithm calls for the centroid force, we must calculate the centroid force 

for th a t configuration a t th a t point in time.

The calculation of the centroid force is done via a PIMC method. For our purposes, 

we wish to constrain the centroid position and average the force a t th a t point. This 

means we need to  use the constraint methods proposed in C hapter 2. Since it is an 

approximation, we would first like to  test the constrained DT-PIM C method. In DT- 

PIMC we used a Gaussian function to  approximate a delta function which constrains 

the centroid position. We can alter the strength of this approxim ate delta function 

by varying the param eter a  from Equation (2.65)

In Figure 4.6 we have a calculation of the average radial position, ravg, for a He 

atom in the presence of an N 20  rigid rotor th a t is pinned3 in place using different 

values for a. We are setting the constraint so th a t the particle’s centroid position 

is placed a t (in Cartesian coordinates) q =  (3.704,3.704,1.058)A, which corresponds 

to  a radial magnitude of 5.34443A. The initial starting configuration of the path  is a 

random distribution around the position of the constraint. The initial centroid posi­

tion value is not equal to  the constraint value. As we see with a value4 of a  =  5 x 1048 

( a « o o  for com putational purposes) after a few MC steps, the ravg value is identical 

to  the constrained value. This would be the ideal situation, bu t unfortunately this is 

too large a value of a. If we look a t Figure 4.7 we can see how the constraint value 

affects the average squared radial position. In the limiting case of a  =  5 x 1048, we 

can see th a t the r 2„fl has been constrained to approximately the value of (rawg)2. This

2 A pun, since we will be integrating to calculate the force.
3The term pinned means that we do not allow the N^O molecule to rotate.
4The value a = 5 x 104 8  has no significance, it was chose arbitrarily to test the upper limit when 

the Gaussian appears like a delta function.
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Figure 4.6: Convergence of the short time average constrained radial position, ravg, 
for one Helium atom  in proximity to  an N 20  molecule as a function of the MC steps. 
The simulation was run with a discretization of 20 tim e slices for the Feynman path, 
a t a tem perature of IK .  The calculation was carried out for various different values 
of a, which is a measure of the strength of constraint. Here we show how the optimal 
value of a  compares to the extreme values.

means th a t we are not only constraining the centroid position, bu t we are also forcing 

all the time slices to the centroid position.

In addition, in Table 4.1 we can see the short time averaged values of the centroid 

positions, as well as how the constraint value a  changes the acceptance rate, which we 

aim to  keep in the range of 0.3 to 0.5. However, the acceptance rate  does not change 

the simulation result, it only changes the length of time it takes to  reach a converged 

value. I t should be kept in mind th a t the choice of the value for the param eter a  is 

dependent on the tem perature and number of discretizations of the path  and should
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Figure 4.7: Convergence of the short time average squared constrained radial position, 
(r2)avg, for one Helium atom  in proximity to an N 20  molecule as a function of the MC 
steps. The simulation was run with a discretization of 20 tim e slices for the Feynman 
path, a t a tem perature of IK .  The calculation was carried out for various different 
values of a, which is a measure of the strength of constraint. Here we show how the 
optimal value of a  compares to  the extreme values.
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Table 4.1: Effects of the constraint value a  can be seen on the average radial position 
and average squared radial position. As well, the effect of the constraint value on the 
acceptance rate of the calculation is shown. The final entry in this table corresponds 
to a F-PIM C simulation where the constraint is considered exact.

a Acceptance Rate Tavg
A

(r2)avg
A2

MC method

0 0.40707 3.19642 10.30547 DT-PIM C
5 x 102 0.40598 3.19453 10.29209 DT-PIM C
5 x 103 0.41006 3.19869 10.32009 DT-PIM C
5 x 104 0.41717 3.21088 10.40541 DT-PIM C
5 x 105 0.58360 3.80748 15.61761 DT-PIM C
5 x 106 0.59972 5.39756 33.45641 DT-PIM C
5 x 107 0.30114 5.46852 34.39759 DT-PIM C
5 x 108 0.03725 5.44280 31.16018 DT-PIM C
5 x 1048 0.00013 5.38840 29.16049 DT-PIMC

N /A 0.70060 5.48519 34.58493 F-PIM C

be chosen with the criterion a  > £^.

Overall, the inclusion of a constraint in DT-PIMC is possible with this method 

and, as a future prospective, the constrained DT-PIM C m ethod will allow for the 

inclusion of quantum  exchange effects in a many body system. However, the addition 

of the constraint is an approximation, and it severely slows the DT-PIM C calculation. 

The algorithm used in this project could of course be improved, bu t the tim e scale 

improvements would not be large enough to  make a significant difference.

To calculate the centroid force we must use a constrained PIMC method. As was 

discussed in Sections 2.4.2 and 2.5.2, F-PIM C lends itself naturally  to  the language 

of a constrained centroid position, while for DT-PIM C methods we must make an 

additional approxim ation by means of a sharply peaked Gaussian function added to 

the path  integral representation of the centroid density. The constrained centroid 

force given by the F-PIM C method can be considered exact, and we can use it to  test 

how well the constrained DT-PIMC m ethod agrees.5 Due to  the numerical cost of the

5As stated earlier, DT-PIMC will be most useful for a simulation with multiple particles since
particle permutation using DT-PIMC methods is a well studied algorithm.
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constrained DT-PIMC method, it will be more beneficial for us to  use the F-PIMC 

method for our calculations.

Before we move on with the simulation, we need to  know th a t the centroid force 

we calculate is accurate.

The analytical operator expression for the centroid force (in one dimension, the 

three dimensional case is a trivial extension) is

However, in the simulation we use the path  integral representation for convenience, 

so th a t here the centroid force can be w ritten as

where <& corresponds to  the position of the particle a t the i — th  tim e slice.

Since the potential, and as such the centroid force, are dependent only on the 

position, we know th a t the convergence will be quick compared to  the convergence 

of the to ta l energy, which is dependent on the momentum. In fact, the convergence 

of the force has been found to have the same timescale as the convergence of the 

potential, which is not surprising, since the estim ator used to  find the force is simply 

a two-point finite difference method:

where h is a param eter of the simulation. To find an acceptable value of h, we can 

calculate the force for a range of values of h and choose a value a t which the calculated 

value of the force doesn’t  change significantly. We do have numerical restrictions, so 

tha t we cannot choose a value of h th a t is too small or the subtraction in Equation

(4.4) will be beyond the precision of our computers. In Figure 4.8 we can see the value 

of the centroid force as a function of h. We expect the centroid force to  be correct 

in the lim it of h going to zero. It may be difficult to  see in Figure 4.8, however, th a t 

the value of the centroid force plateaus for small h. Therefore, we choose a value of 

h =  0.01 Bohr,6 in the plateau region, for all our simulations.

Fc(Pe,qc) =  T r  r* t J T  ■ (4.2)

(4.3)
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Figure 4.8: The average value of the centroid force on the helium atom  along the x 
direction as a function of the finite difference size used in the force estim ator from 
Equation (4.4).
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Figure 4.9: The centroid force on the helium atom  along the x direction as a function 
of centroid position x c. The yc and zc components were kept fixed a t zero.
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Figure 4.10: The centroid potential as a function of centroid position x c. The yc and 
zc components were kept fixed at zero.
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In Figure 4.9 we can see a profile of the centroid force, as a function of the centroid 

position. In this calculation, the Feynman path  was discretized into 20 time-slices, 

which means th a t there is inherently (as always in a PIMC calculation) a systematic 

error in the calculation. The yc and zc values were held constant a t yc =  0 and 

zc — 0 during this calculation, which allows us to see the centroid force as a function 

of x c, which was incremented by a step size of A x c =  0.1. This cross-sectional view 

of the centroid force has the expected shape when we look a t the centroid potential 

in Figure 4.10. The noisiness of the centroid force and the centroid potential is an 

artifact of both  the step size A x c and the MC convergence of the estim ators for the 

centroid force and centroid potential. In all PIMC calculations we have two inherent 

statistical errors, the first being the MC time which is the number of MC steps in 

the simulation. Ideally we would like to have an infinite number of MC steps to 

statistically reach a completely converged and exactly correct answer. The statistical 

error in an MC calculation is approximately 1 / \ /N ,  where N is the number of MC 

steps. Unfortunately, the number of MC steps is proportional to  the com putational 

time for the calculation. The second inherent error comes from the discretization 

of the Feynman path, which translates in our simulation to  the number of Fourier 

components we keep. Analytically the path  needs to be discretized into an infinite 

number of time slices, which corresponds to an infinite Fourier expansion. The number 

of tim e slices of path  also affects the com putational time, and how it affects the 

com putational time is algorithm dependent. For our simulation the com putational 

time is proportional to the number of time slices. We would then like to  minimize 

the com putational time while maximizing accuracy.

In our simulation, the most im portant estim ator from the PIMC calculation is 

the centroid force. We would like to know the minimum number of discretizations of 

the Feynman path  th a t are required to reach an average th a t is close to  the infinite 

discretization limit. In Figure 4.11 we see the centroid force as a function of the 

discretization for a converged F-PIM C calculation. As the number of discretizations

6I apologize for switching units here, but the algorithm was easier to write in atomic units, while 
the results are better represented in Kelvin and Angstrom units.
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Table 4.2: The acceptance rate, which we would like to m aintain within the range 
from 0.3 to  0.5, for different values of M  and the associated step size A.

Acceptance Rate M A
0.4787 10 1.5
0.46858 20 3.0
0.62968 30 3.0
0.46694 30 4.5
0.5247 50 7.0

0.41228 100 15.0

increases, the average of the centroid force along the x  direction begins to  converge 

to a certain value. For our simulations, we chose P  =  50, since a t this value we are 

very close to the converged value of the force.

To help increase the convergence efficiency, we have often talked about keeping 

track of the acceptance rate, which is the ratio of the number of individual MC 

moves th a t were accepted to  the number of MC moves in total. We strive to keep the 

acceptance rate within the range from 0.3 to 0.5. The acceptance can be adjusted for 

an individual calculation by modifying the length of the move. In the algorithm this 

corresponds to adjusting A in Equation (2.63) for DT-PIMC or in Equation (2.60) for 

F-PIMC. In DT-PIM C A can be chosen to be approximately the therm al wavelength 

and the acceptance rate will generally fall in a desirable range. For F-PIM C we simply 

must test what values of A give a decent acceptance rate. For both DT-PIM C and 

F-PIMC, a very small A will mean th a t the configuration will not have changed very 

much, and most likely the move will be accepted, thus giving an acceptance rate tha t 

is too high. For a very large A, the new configuration will be significantly different, 

and will most likely be an unfavourable configuration, which means most of the moves 

will be rejected, leading to  a small acceptance rate. Table 4.2 shows for a F-PIMC 

calculation of a single helium atom  in the presence of a pinned N 2 O molecule the 

desirable acceptance rates for differing values of A and M .

The overall efficiency of the calculation of the centroid force can be optimized 

by consideration of the algorithm. There are two m ajor bottle necks in our F-PIM C
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Figure 4.11: The F-PIM C converged centroid force along the x  direction for a single 
helium atom  in the presence of a pinned rigid N 2 O molecule a t I K  as a function of 
M , the number of components of the Fourier expansion of the Feynman path  tha t 
were used in the simulation. For these simulations M  is always equal to  th  P , the 
number of discretizations, or the number of time slices of the Feynman Path. This 
calculation was run for 400000 MC steps, and the acceptance ratio  was kept between 
0.3 and 0.5.
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algorithm. The first is the actual Metropolis MC rejection algorithm, for which we 

need to  calculate the potential for the entire path  twice for each MC step and we 

must perform two numerical Fourier transforms. Unfortunately, there is not much 

we can do for this. The second bottle neck is the averaging of quantities. Naively, we 

would update the average of some quantity a t each step. However, as described in

[14], there is correlation in the averages. So, instead of calculating the average of a 

quantity a t each MC step, we can calculate the average after every 10th MC step or 

every 100th step. More specifically, we want to only calculate the average once it is 

uncorrelated with the last calculation of the average.

Finally, we have one more trick to help make the calculation faster and more 

efficient. For an individual trajectory we will now spend m ost of the tim e calculating 

the centroid force using F-PIMC, although the CM D/BECM D formalism does not 

require the notion of a path  integral obviously we see th a t the calculation does. In 

addition to  the initial centroid conditions, we must also supply initial conditions for 

the individual beads of the Feynman path. In other words, we need an initial shape for 

the path  each time we use the F-PIM C algorithm. If we s ta rt out in an unfavourable 

shape, then the beginning of the calculation will be spent reshaping the path, whereas 

if we started  in a favourable shape then there would only be minor adjustm ents to 

the shape of the path.

W hat we would like to do is always s ta rt in a favourable configuration. To do 

this, a t the first MD step of each MD trajectory we use a long MC calculation which 

hopefully brings the path  into a nice shape. For the rest of the consecutive MD steps, 

when we move the centroid position according to the previously calculated force, we 

keep the shape of the path  from the last MC step of the previous MD step. This way, 

we can assume th a t the shape of the path is close to a favourable configuration, and 

we will only have to  make minor adjustments. This then allows us to  cut down the 

MC tim e of the calculation of the centroid force for all the MD steps after the first 

step. So for each MD trajectory, the first MD step is a long MC tim e shaping step, 

and the rest are short run  average steps.

We also implement a similar technique when we begin the trajectory. During
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the initial sampling of the centroid density we also stored the shape of the path 

corresponding to  the initial condition. W hen we begin the MD trajectory, we use not 

only the centroid initial condition, but we s ta rt with this configuration of the path 

instead of starting from some random shape.

4.3 Centroid Dynam ics

As a first test of this anisotropic potential, we would like to  calculate the centroid 

position autocorrelation function for the z  coordinate. We choose this correlation 

function as opposed to the x  or the y  autocorrelation function due to  the symmetry 

of the system. The period of oscillation in the x  and y  directions are unfortunately 

longer than the time th a t the MD trajectories can be considered correct, a t which 

point we will not know if the CMD approximation is failing or ju s t the numerical 

integrator.

For each trajectory calculated, we used the constrained F-PIM C simulation to 

calculate the force a t each step. The DT-PIMC would work as well. However, it 

is currently a more expensive calculation than the F-PIM C m ethod and is only an 

approximation, whereas the F-PIMC can be considered exact.

The dynamics of each trajectory was calculated using a Verlet integrator [14]. 

This numerical integrator was chosen for the fact th a t it minimizes the number force 

calculations and returns the most accurate result. Specifically, the Verlet algorithm 

requires only one calculation of the force per time step and returns a position whose 

error is of the fourth order in the time step. Unfortunately the Verlet algorithm does 

not calculate the velocity as well as it calculates the position, since it relies on a finite 

difference m ethod to  calculate the velocity which is only accurate to  the second order 

in the time step.

There is a modified Verlet algorithm, Velocity Verlet, which gives more accurate 

velocities. The compromise is th a t Velocity Verlet requires an additional calculation 

of the force for each time step. Since we are looking for the centroid position auto­

correlation function, we are not overly concerned w ith the velocity and will choose,
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Figure 4.12: The x c and yc components of a typical trajectory. The solid line corre­
sponds to the x c component, and the dashed line to the yc component.

in favour of tim e constraints, the regular Verlet algorithm. We chose the Verlet algo­

rithm  as opposed to  the Euler algorithm purely because the Euler integrator generally 

gives poor results, and we chose it over a Runge-K utta method due to the fact tha t 

Runge-K utta methods require multiple calculations of the force.

We can see some of the typical dynamics by looking at an individual trajectory of 

a helium atom. In Figure 4.12 we have the trajectory of a single helium atom  in the x  

and y  directions. We expect on average the x  and y  components of the trajectory  to 

have the same dynamics. Again this is due to the cylindrical symmetry of the system. 

This will cause the autocorrelation functions in the x  and y  directions to  look almost 

identical.

In Figure 4.13 we can see the trajectory in the z-direction. For this trajectory,
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Figure 4.13: The zc component of a typical trajectory.

the helium atom  oscillates nicely about the global minimum centered on the positive 

side of the centre of mass of the molecule. We expect at low tem peratures th a t the 

potential will have a harmonic shape. This is shown nicely by the oscillating nature 

of this trajectory.

We can also see the phase space trajectory for the centroid position and centroid 

momentum in the z-direction in Figure 4.14. We see th a t the trajectory  is almost a 

closed loop after one period, which means th a t there is some energy loss, which is 

probably given to  the motion in the x  — y  plane. We must keep in mind th a t the 

centroid velocities we calculated are not as accurate as the centroid positions, due to 

the fact th a t we used the regular Verlet integration algorithm

W ithin the CMD framework, we are trying to calculate the single Kubo transform
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Figure 4.14: The phase space trajectory for the zc component of a helium atom  in 
the presence of an N 20  molecule.
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of the quantum  mechanical autocorrelation function for the zc component, which is 

given by:

< l ( 0 ) j ( t ) ) ^  =  I  /  (4-5)

We calculate this integral by averaging the trajectories started  from initial conditions 

distributed by pc{Pc,Qc), which was shown in Figures 4.2 - 4.5. For this calculation, 

we averaged over 2880 trajectories a t which point the correlation function was un­

modified by the addition of more trajectories in the average. It is possible to  form the 

correlation function with as little as 300 trajectories and m aintain the form of the zc 

autocorrelation function. Unfortunately, the x c and yc autocorrelation functions do 

not agree with w hat is expected. We sampled our initial conditions a t every 100th 

MC step. In Figure 4.15 we can see in the rectangular box, the initial conditions th a t 

were used in the averaging. These initial conditions were chosen because they are 

produced near the end of the MC calculation, since the beginning of the calculation 

is considered an initialization stage. In other words, we choose an area where we can 

consider the MC calculation to have reached a converged value.

The zc autocorrelation function we obtain can be seen in Figure 4.16, as well as 

in Figure 4.17, where we can see the x c and yc autocorrelation functions. We can 

see th a t in m agnitude the zc autocorrelation’s am plitude is on a completely different 

scale than  the x c or yc autocorrelation functions. As well, the period of oscillation of 

the zc autocorrelation is on a different scale as well.

As stated, the x c and yc autocorrelations functions, due to the cylindrical sym­

metry, are nearly identical. Unfortunately, we cannot see the full tim e evolution of 

these correlation functions. It would be possible to increase the number of MD steps, 

but we cannot assume th a t those results would be the true dynamics of the system. 

Due to the lim itations of the Verlet integrator (and all other integrators), we are not 

able to  extend the length of the calculation w ithout increasing the com putational 

time. We show the results in Figures 4.16 and 4.17, with the understanding th a t they 

are preliminary results, showing th a t the method developed can be used to calculate 

correlation functions. These results may not be accurate, as they are most likely 

not properly converged. The accuracy of the CMD approxim ation in an anisotropic
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Figure 4.15: The configurational initial conditions from a MC calculation. The solid 
black line corresponds to the the x c initial conditions, the solid grey line corresponds 
to the yc initial conditions, and the dotted black line corresponds to  the £c initial 
conditions.
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Figure 4.16: The zc autocorrelation function for a single helium atom  in the presence 
of an N 2 O molecule. The error bars correspond to  the Monte Carlo statistical error of 
the initial conditions. The calculation of the errors in the dynamics is a significantly 
more complicated problem and have not been included.
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Figure 4.17: The x c and yc autocorrelation functions for a single helium atom  in the 
presence of an N^O  molecule. The solid line corresponds to  the x c autocorrelation 
function, and the dashed line corresponds to the yc autocorrelation function.
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system is still an open question, although we now have a well formed m ethod to test 

it.

We can, from the Fourier transform of the zc autocorrelation function, find the 

dominant energy level spacing which we can estim ate a t about — 21cm "1. This value 

is reassuring, since we are in a low tem perature regime of T  =  IK ,  and we know from 

exact calculations th a t the ground state energy is approximately —26cm "1, which is 

the same order of magnitude of (and lower than) our calculated energy level spacing. 

We would like to stress th a t the purpose of the studies presented in this chapter is 

to  set the stage for large scale CMD simulations of systems with anisotropy. Several 

algorithms and methodologies were developed and we have shown th a t these types of 

simulations are possible. More time will have to be spent on ’’convergence studies” 

of the correlation functions, however, and these will be the subject of future work in 

the Roy research group.
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Chapter 5 

Conclusions

O btaining dynamical information from a quantum  mechanical system is to  date still 

a problem th a t is not entirely solved. There are numerous m ethods in use to gain 

dynamical information but all of them  in some way have a drawback. Some methods 

are exact, such as directly solving the time dependent Schroedinger equation. These 

direct methods unfortunately are very time consuming. They become exponentially 

more difficult as the number of particles is increased. To avoid this exponential 

scaling we chose an approximate method. Although BECMD is an approximation, 

it allows us to  write the quantum  mechanical system in a classical-like form. In this 

classical-like form we can use classical-like methods such as Monte Carlo algorithms 

which scale linearly with the number of particles in the system. This linear scaling 

in an immense improvement upon the exponential scaling of the direct method. This 

thesis hoped to  show th a t BECMD is a valid approximation to  the true quantum  

mechanical dynamics.

We can make two principal conclusions about the work presented in this docu­

ment. First, from Chapter 3 we can say th a t using the BECMD formalism, we can 

correctly account for quantum  exchange effects. We presented a proof of principle 

dem onstration of BECMD’s ability to calculate single particle correlation functions, a 

feat which has never been successfully accomplished with similar approxim ate m eth­

ods. Secondly, in Chapter 4, the CMD method has been laid out for further studies 

of anisotropic systems. This thesis was concerned with developing new tools to  al­

low us to  achieve these goals and we can categorize this work as applications and
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advancements o f CMD methods.

The ability to perform a CMD simulation on an anisotropic system, using an on the 

fly  force calculation is a m ajor stepping stone in the world of CMD. This is due to the 

fact th a t we require a constrained PIMC calculation to perform the simulation. An 

excerpt from a recent review [37] on CMD reported “The main limitation o f CMD is 

a consequence of being a constrained dynamic approximation, ie., the dynamic states 

accessible along the time evolution are severely limited. These states corresponds to a 

fixed centroid path integral and we do not see any feasible way to avoid the limitation  

of using fixed centroid path integrals in the constrained dynamics”. W ith this in mind, 

we now have a functional method to do just tha t.

We have tested two methods of performing a constrained PIM C calculation. 

We have used the natural formalism of F-PIM C with a full Fourier series expan­

sion, where the zero-th mode of the expansion is identically the centroid position. 

The constraint on the centroid position is accomplished by simply not adjusting 

the zero-th mode in the MC Metropolis step. We have also developed an approx­

im ate m ethod using a constraint with DT-PIMC. We formally introduce the con­

straint via the addition of a delta function in the centroid density. We express this 

delta function as the integral of an exponential and approxim ate it by a Gaussian, 

£(<Zc~ p  ]Ci=i 9*) =  e ~ ^ 9c”  T.i=i<u)2' w e stress th a t the im portance of the DT-PIMC 

approximate method will be most useful since there is already a well documented 

method of including exchange in DT-PIMC calculations [22], whereas there is a less 

documented method in F-PIM C [30].

The inclusion of quantum  statistics [6,11, 7, 38, 39, 40] will play the pivotal role in 

the successful application of CMD methods to  systems such as small helium clusters 

and nano-droplets as well as the study of cool trapped noble gases th a t will allow us 

to  study the phenomenon of Bose-Einstein condensation. However, CMD has been 

applied to  many systems th a t do not require quantum  effects, such as the application 

to  non superfluid 4iTe [41], para-i72 [42, 43, 44, 45, 46] and general anharmonic 

systems [47].

Since the work presented in this thesis consists of new methodologies and algo-
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rithms, all com puter software codes had to be designed and program m ed1 by the 

author. We present in Appendix A .l a schematic of the general code used for the 

anisotropic system. Simulations run with this code took several days and even several 

weeks to  complete. Having a parallel com puter cluster was tan tam ount to finishing 

any calculation. On a single processor the same calculation would have taken approx­

imately a year to  complete.

Future Directions
As has been stated  many times, we have now set down the framework for future 

research to  be conducted. The first aspects th a t need to  be addressed are the issues of 

convergence and accuracy. MC calculations are by their nature statistical calculations 

and are subject to  statistical errors. These, of course, can be eliminated simply 

by running longer calculations. There are also systematic errors, due to the finite 

discretization of the Feynman path, which can be eliminated by choosing a large 

enough discretization. There may also be errors associated with the integration of the 

equations of motion from the MD portion of the algorithm. All of these convergence 

issues must be addressed before we can claim to  have an accurate result.

After we can accurately assess the quality of the CMD approxim ation in a system 

such as the one used in Chapter 4, we can then move on to  adding more than  one 

particle into the system. W ith the BECMD formalism, the current methods to add 

exchange in a PIMC calculation, and the new m ethod developed within this project 

to  add a constraint on the centroid position, we should be able to  account for the 

quantum  statistics of the system. At this stage, we would no longer need to  limit 

ourselves to  systems of rotors. The algorithm and code developed in this project are 

general enough to take any potential and thus will work in general for almost any 

system. O ther such systems we could study are trapped noble gases, or other trapped 

atoms like Rubidium th a t a t low tem perature undergo Bose-Einstein condensation.

Currently we are limited by the fact th a t for systems such as the N 2 O  potential, 

we have no formal way to include rotational dynamics within the CMD framework.

'■Approximately 10000 lines of code were written for this project
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To go beyond pinning the molecule in place like we did in this project, we would of 

course need to  develop a method to include rotational degrees of freedom. W ith the 

ability to perform simulations with rotational degrees of freedom would allow us to 

accurately model a doped helium cluster. There have been many recent experiments 

and simulations with these types of systems [33, 34, 35]. BECMD should in principle 

allow us to calculate and compare properties of these systems with the results from 

experiment and assess the im portance of exchange effects on the dynamics.

Finally, as one more prospect, since in principal CMD can be extended to  any 

quantum  statistics, we can essentially trea t fermionic systems using FDCMD. Unfor­

tunately, this may be a lofty goal, since FDCMD does not eliminate the fermion sign 

problem, which plagues all fermionic calculations.
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Appendix A 

Schematic of the code used for the 
anisotropic system

To help illustrate this project, a schematic of the C + +  code w ritten to  perform the 

simulations is given in Figure A .I. The figure describes the essential parts of the 

calculation for a single trajectory while calculating the centroid force on the fly. The 

first step before the MD loop, Initialize centroid position and centroid momentum , 

is in itself a complex PIMC calculation. From this step we obtain a set of initial 

conditions th a t we can use to s ta rt the individual trajectories.

If we look a t the cartoon representation of our algorithm in Figure 4.1, this first 

step corresponds to the horizontal squiggle arrow, and for each vertical squiggle arrow 

we m ust run the following MD loop. It is a t this point when we can see the extreme 

parallel nature of the algorithm. Once the first initialization step is completed we can 

run each trajectory on a different processor.

The path  refining move inside the MC loop is the only difference between the 

F-PIMC and DT-PIM C calculations. For F-PIM C we need to  Fourier transform  the 

path, and make the re-shaping move by altering the Fourier components where as in 

DT-PIMC we use the multi-level Metropolis algorithm. Since we are trying to perform 

a constrained PIMC calculation, we must first eliminate the global move, which moves 

the entire path  of the particle w ithout altering the shape of the path. If we are using 

F-PIM C we m ust then also make sure we are not adjusting the zero-th Fourier mode 

since it corresponds to the centre o f mass of the path, which is identically the centroid
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position. If we are using DT-PIMC, we must alter the action by adding the Gaussian 

approximation to a delta function. The Metropolis algorithm checks to  see if the new 

configuration of the path  will be accepted or rejected. After the Metropolis algorithm, 

regardless of whether we accepted or rejected the new configuration, we calculate the 

value of our estim ator and update the average.
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(initialize centroid position and centroid momentum )

(Make global move. j~ 

(Metropolis )-----------
Remove if doing constrained dynamics

(Make path refinment move ) 

(Metropolis )

(calculate the centroid force j 

(Calculate any other averages of interest )

\End MC Loop)

(integrate Equations of motion and update centroid position )

(End MD Loop)

Figure A .l: Schematic of developed algorithm.
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