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Abstract

A new microprocessor within a given processor architecture may introduce

performance-improving features that either can only be accessed through novel

instructions or require new code-generation techniques to be beneficial. In

response, compilers must be extended/improved to make use of these new

instructions and to generate better schedules for the new hardware. The

compiler improvements that enable these specializations can take significant

time to develop, thus applications compiled Ahead-Of-Time (AOT) will often

not benefit from code specialization without later recompilation. Furthermore,

code compiled for a specific hardware sub-target lacks performance portability,

thus, for better performance, there is a need to maintain multiple builds for

each processor architecture leading to significant development and maintenance

costs. This thesis provides an overview of existing sub-target specialization

methods and demonstrates that challenges to existing methods can be overcome

by applying code specialization only to a small percentage of the code in a

program. Moreover, it proposes DASS, a novel Dynamic Adaptive Sub-Target

Specialization technique to recompile selected parts of a program at runtime.

Empirical evidence indicates that selective specialization can achieve up to

93% of whole-program specialization speedup by statically specializing less

than 1.5% of the application code. Furthermore, DASS can dynamically

achieve performance close to that of static specialization, reaching up to 83%

of statically attainable speedup while performing recompilation and redirection

during execution.
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Chapter 1

Introduction

Performance-improving features, introduced as a processor architecture evolves

over time, either can only be accessed through new hardware instructions or

require changes in code generation to yield better performance [12]–[14], [32],

[37], [52]. For instance, most modern CPUs and GPUs have specific instructions

to exploit data parallelism following the Single-Instruction Multiple-Data

(SIMD) paradigm. SIMD computations are executed in modern hardware via

vector instructions that operate on wide vector registers (e.g . 512 or 4096

bits) [5], [23]. Acceleration through specialization is not new but it is a

growing trend [28], [34], [39]. For instance, major companies have introduced

specialized units into their commodity processors, namely Advanced Matrix

eXtensions (AMX™) by Intel®, Scalable Matrix Extensions (SME™) by

Arm®, and Matrix Multiply-Assist (MMA™) by IBM®. These units require

new instructions that programmers/compilers need to explicitly include in their

code to benefit from the full potential of these extensions.

Most performance-critical applications are distributed as Ahead-Of-Time

(AOT) compiled binaries by Independent Software Vendors (ISVs) [27],

[59]. An alternative to AOT compilation is Just-In-Time (JIT) compilation

that delays optimization and code generation until application runtime (Sec-

tion 2.3). Application binaries compiled AOT can execute immediately and an

indefinite number of times, without any compilation costs at runtime. Moreover,

hardware architectures are designed to be backward-compatible, meaning that

all instructions available on older architecture versions must execute on newer
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architecture releases. Thus, AOT-compiled binaries that use a common subset

of Instruction Set Architecture (ISA) instructions can execute without

recompilation on different releases of the same architecture. Nevertheless, AOT-

compiled binaries cannot benefit from the performance of specialized computing

units in most commodity processors without recompilation — the new instruc-

tions need to be added/generated by programmers/compilers. Furthermore,

compilers can be modified to generate a schedule of existing instructions that

executes faster on new versions of an architecture [18]. Thus, recompiling

portions of AOT-compiled applications with the latest version of a compiler

may result in binaries produced with a better code-generation strategy.

This thesis presents results that indicate that the benefits of novel hardware

instructions and/or better code-generation strategies can be achieved by spe-

cializing only parts of an application — henceforth referred to as code segments

or simply segments. In this work, code segments are selected, based on their

frequency of execution and their contribution to the run time of the application,

for specialization either via code attributes — without any changes to existing

AOT compilers — or dynamically — through a novel JIT-enabled technique.

Experimental results with SPEC CPU® 2017 benchmarks [10] indicate that

dynamic specialization can enable ISVs to deliver close to the fully-specialized

performance. This thesis makes the following contributions:

• An overview of the applicability and downsides of existing static and

dynamic sub-target specialization techniques.

• An in-depth performance evaluation of the SPEC CPU 2017 benchmarks,

which shows that specializing only a small fraction of the application

closely matches the performance of a fully specialized program. For

instance, specializing only 1.5% of the Imagick benchmark leads to 93%

of the performance attained by whole-program specialization. For the

LBM benchmark, whole-program specialization can be matched with

specialization of only 19% of the application.

• Dynamic Adaptive Sub-Target Specialization (DASS), a compiler system

that enables segments of an AOT-compiled program to be recompiled
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at runtime to take advantage of sub-target specialization and relevant

improvements to the compiler since the program was compiled.

• A proof-of-concept implementation of DASS using LLVM [29] that enables

close to AOT-specialized performance for some benchmarks from the

SPEC CPU 2017 suite.

The remainder of this thesis is organized as follows. Chapter 2 presents

background concepts and terminology adopted throughout the thesis. Chapter 3

explains the concept of sub-target specialization and provides an overview of

existing methods for performing specialization on program code. Chapter 4

presents the main ideas behind DASS and a description of the proof-of-concept

implementation in LLVM. Chapter 5 describes the experimental setup and

methodology used to obtain preliminary results, and identifies instances where

DASS bridges the limitations of AOT compilation w.r.t. new hardware and

compiler versions, and where it falls short. Chapter 6 contrasts related works

with DASS. The conclusions of this study are discussed in Chapter 7.
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Chapter 2

Background

This thesis focuses on optimization benefits enabled by Sub-Target Spe-

cialization (Chapter 3), through which a program is optimized for a specific

model of a CPU architecture (microarchitecture). Sub-target specialization

is a performance optimization frequently missed in common software due to

how it reduces program portability. Independent Software Vendors (ISVs)

leverage program portability to decrease maintenance and distribution costs of

projects with large code bases (e.g . millions of lines of code). For performance-

critical software, ISVs utilize Ahead-Of-Time (AOT) compiled (Section 2.2)

languages — e.g . C/C++, Fortran, and COBOL —, high-level languages that

need to be compiled to the assembly of a given architecture before execution.

In comparison, Just-In-Time (JIT) compiled (Section 2.3) languages — e.g .

Java, Python, and C# —, can start execution immediately, adapting to the

currently executing microarchitecture, and having some or all of the program

(re)compiled at run-time.

2.1 Independent Software Vendor (ISV)

An Independent Software Vendor (ISV) develops and distributes software as

pre-packaged binaries to clients outside of their own organization. Distributing

large software projects, that must meet client expectations of functionality, leads

to long and costly production pipelines that encourage cost saving wherever

possible. Considering this investment, maintaining additional software versions

requires clear business value. Builds for different CPU targets expand the reach
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of the software to new hardware platforms and clients. While, sub-target builds,

designed to achieve better performance, do not provide the same growth in

reach and their optimizations can vary in value (Section 5.2). Thus, ISVs tend

to avoid sub-target specialization, limiting hardware optimization on software

that can be functionally ubiquitous on client computer systems.

2.2 Ahead-Of-Time (AOT) Compilation

AOT compilation is the process of fully translating a program to an executable

binary format, prior to the execution of the program. Many languages (C/C++,

FORTRAN, COBOL, etc.) [7], [46], [47], [53] were designed for, and are mainly

used through, AOT compilation. AOT compilation enables the use of these

languages for high-performance computing because the full compilation allows

for extensive and complex optimizations to be performed without impacting

execution time. However, with optimization, the target hardware for the

program must be known ahead of time. The target architecture for code

generation can be set implicitly — the program is generated for the hardware

where the compilation is executed — or explicitly by specifying either a generic

target architecture or a specific sub-target.

The cost of AOT compilation is incurred before execution and depends on

the complexity of the source language as well as the size of the source code [35],

[45], [55]. There is zero execution-time overhead, for compilation, because

the entire program, including dependent libraries, is assembled beforehand.

Thus, AOT compilation is advantageous for programs with many Lines of Code

(LOC) because the high compilation cost is separated from program execution.

The AOT cost is incurred only once and can be amortized over many program

executions. Thus, AOT compilation is appealing to performance-focused ISVs

whose clients need programs that run efficiently and quickly.

2.3 Just-In-Time (JIT) Compilation

JIT compilation consists of translating a part of a program (functions or code

blocks) into executable binary code during execution time [6]. Instead of
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the program being compiled before execution, code is typically interpreted

before specific sections are identified as candidates for JITing. Delaying JIT

compilation can speedup startup times for the program, while only paying the

AOT compilation cost for small parts of the program [25]. Furthermore, the

JIT process can be offloaded to a separate thread of the program, allowing for

parallel execution and compilation. However, the compilation time can still

impact the overall execution time of the program, thus, identifying suitable

JIT candidates is key. In traditional JIT systems, this is guided by mechanisms

that identify frequently executed code (hot code) which is then marked and

compiled as the program executes [19]. Ideally, the compilation overhead is

offset by the speedup on future executions, which payout if the JIT-compiled

code re-executes often.
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Chapter 3

Sub-Target Specialization

Most optimizing compilers, by default, generate code that is generic to a

given CPU architecture, or target. Specialization for a given ISA version, or

sub-target, can be enabled via compiler flags or language attributes. CPU

vendors develop new ISAs over successive hardware releases as the hardware

design changes to meet the needs of modern software development [37]. Code

that is not specialized to a sub-target can execute on any CPU of the same

target, as CPU vendors maintain backward compatibility with previous releases

by retaining, or in some instances emulating, features from previous versions

of the ISA [26], [48]. However, this portability comes at the cost of code

with no sub-target specialization that might not take full advantage of the

new ISA or improvements in the compiler. ISVs usually avoid sub-target

specialization to decrease the costs of developing, maintaining, and distributing

software. Avoiding sub-target specialization creates a gap between the potential

performance attainable by a program on a given hardware, and the actual

performance achieved by a generic build of the same program. For processor

designers and manufacturers, this gap is worrying because it reduces the

performance advantage of upgrading to new hardware.

3.1 Static Specialization

In the context of this thesis, static specialization refers to any sub-target-

centred compiler optimization that occurs prior to the execution of the program.

Optimization can occur as a part of the original program build process (Sec-
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3.1.1 Sub-Target Builds

The most straightforward method for achieving sub-target specialization is

for the software vendor to optimize and maintain separate builds for each

sub-target that they support. These full builds can then be distributed to

clients based on their respective hardware needs. Separate builds allow for the

generated code to target the specific sub-target throughout the compilation

process. Furthermore, there is no execution-time compilation overhead and

there is no need for additional dynamic mechanisms to identify the sub-target

of the executing hardware.

However, these advantages comes at a significant cost for an ISV that

wants to maintain builds for each sub-target. Each build requires development

resources that impacts the production budget and cost structure of ISVs. For

small software this is less impactful, as software build times are manageable.

However, for a large software project, the pipeline of compiling and testing the

software can become a significant time cost [44], [54], [64], making the effort of

supporting additional builds a major resource investment. Furthermore, because

sub-target optimization changes the instruction generation for a program [40],

bug testing cannot be generalized between different sub-target builds as each can

introduce unique compiler bugs. While this problem exists for all specialization

methods, those that apply specialization at the scope of the entire program,

like sub-target builds, require further testing than methods with a selective

and small scope for specialization. Thus, when considering the ISV perspective,

sub-target builds are often not a reasonable method to achieve specialization,

and as such more complex methods are considered.

3.1.2 Static Binary Recompilation

Given the often prohibitive cost of performing code specialization in the pro-

duction pipeline of an ISV program, moving that specialization onto the client

machine is a promising idea. This can be achieved through binary recom-

pilation [42], [61], the process of decompiling a binary to an optimizable IR

format, and recompiling the IR back to a binary with new optimizations. In
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this instance, the optimization is focused on the current hardware sub-target on

the client machine. This allows the ISV to ship a generic binary while clients

who desire more performant code can still attain the benefits of sub-target

specialization.

Despite the possible benefits, this method is limited by the capabilities of

decompilers. Many decompilers focus on lower-level optimizations and local

optimizations that may not include the more extensive code analysis needed for

efficient sub-target specialization. One of the current limitations of decompilers

is that often they are not able to fully recover type information or access

patterns to dynamically allocated memory, thus limiting the information that

can be recovered in the regenerated IR and limiting the effectiveness of sub-

target specialization [61]. Moreover, some decompilers require a significant time

investment to decompile and recompile the program [4]. Further complicating

the situation, decompilers can reveal proprietary secrets encoded in the software

distributed by an ISV, and as such code may be intentionally obfuscated in

the process of generating a binary format [11], hamstringing a decompiler’s

optimization potential. In some commercial software, contractual clauses

may prevent both clients and compiler or hardware vendors from performing

decompilation. With these complications, an ISV relying on their clients to

recompile code themselves is unlikely. Even if desired, a client could face

prohibitive time costs to perform the re-optimization.

3.1.3 Shared Libraries

Reducing the scope of specialization to individual functions or files is another

method of reducing the impact of specialization on an ISV production pipeline.

Instead of maintaining separate builds for the entire program, functions des-

ignated for specialization are extracted to be compiled to a shared library.

Building a version of the shared library specialized for each desired sub-target,

all of the versions are packed with the program binary. At run-time, the

function version specialized for the executing hardware is selected by a simple

run-time mechanism. In practice, this method is akin to having a class contain-

ing the targeted functions, and creating sub-classes that override them with
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sub-target specialized functions.

The reduced scope of specialization in this method reduces the impact on

the production pipeline but also reduces the potential optimization benefit

and introduces a small selection mechanism overhead. While Link-Time-

Optimization (LTO) can replace this mechanism with a call to the correct

shared library, selecting functions that both benefit from specialization and

are significant in terms of program execution is the main concern. Selection

is a difficult task, as the benefit from specialization and relative hotness of

a function can vary by hardware and workload. Furthermore, the process

of extracting code to a shared library and performing the selection mimics

actions taken with dynamic function specialization (Section 3.2.2), while losing

a significant portion of the dynamic information available to the latter. As

such, a shared library optimization strategy is limited to instances where the

development team in an ISV has explicit knowledge of what functions will both

benefit from optimization across workloads and which will not overwhelm build

resources to compile for specialized shared-libraries.

3.2 Dynamic Specialization

Dynamic specialization methods perform sub-target specialization by opti-

mizing for the executing hardware contemporaneous with program execution.

Compared to static specialization, dynamic specialization is capable of adapting

to new hardware sub-targets automatically, avoiding the need to manually

identify the specific sub-target that specialization will target. Furthermore,

dynamic methods have the potential to access in-depth metrics on program

performance and hardware capabilities, which can be used to further tune

optimization. The trade-off, for the availability of dynamic information, is

that the time to perform sub-target optimization acts as an overhead on the

execution time of the optimized program. Specialization methods must at-

tempt to compensate for this overhead, through a mix of reducing the scale

of overhead and performing specialization optimizations that pay-off the cost.

The following sub-sections summarize different dynamic specialization methods
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(shown in Figure 3.2), focusing on how they reduce overhead by either reducing

optimization capabilities (Section 3.2.1) or the scope of program code that is

optimized (Section 3.2.2).

3.2.1 Interpretation

Dynamic-typed and interpreted languages, such as Python [49], reduce, and in

some instances entirely remove, build-time cost through interpretation. Inter-

pretation reads and executes the original source code or a compiler-produced

reduced bytecode format [57], executing through an installed interpreter that

is configured to the hardware sub-target. Ideal for quick software testing,

interpretation overhead is high [24] compared to AOT compiled code, as such

achieving specialization speedup is difficult for this method.

Python is considered a “glue” language that enables the efficient combination

of high-performing modules written in other languages. Therefore, for Python,

the versatility of run-time interpretation justifies the higher overhead because

most of the performance-sensitive computation is coded in higher-performance

AOT compiled languages and connected to the Python code through bindings.

Attempts to use interpretation for AOT compiled language such as C/C++ often

require reduction to a subset of the full feature set, and delivers performance

far below the capabilities of a pre-compiled binary [33]. Thus interpretation

of C/C++, and other AOT compiled languages, focuses on a lowered version

of the language that is closer to machine code to reduce the interpretation

overhead [8]. However, this design decision also reduces the optimization

capabilities of the interpreter. Thus, there is very limited scope for the use of

interpretation to achieve dynamic specialization. Many interpretation systems

for AOT languages either ignore performance in the pursuit of other goals (e.g

rapid application development) [56] or act as a low-level binary recompilation

system, where the specialization capability is limited [8].

3.2.2 Function Specialization

As noted in (Section 3.1.3), reducing the scope of optimization to individual

functions reduces the overhead of compilation. When specialization is applied
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dynamically, this takes greater importance, as it reduce execution time over-

head. Beyond reduction, function specialization differs in how the code for

optimization is retrieved, of which we note two key approaches below.

Binary Recompilation

Binary recompilation consists in raising the level of representation of the pro-

gram from its binary form to an intermediate representation level that can

be used by an optimizing compiler. The ability to raise the representation

is limited and the overhead of recompiling an entire application can be high.

Therefore, a solution is to reduce the scope and limit the binary recompilation

to functions of interest where performance gains are expected. This reduc-

tion of scope is performed by dynamic recompilation methods to reduce the

overhead of recompilation and focus the optimization improvements where

it is important [16]. Alternatively, targeted recompilation may be used to

insert instrumentation, debug information, or code changes into a compiled

binary [15]. The downside of this approach is that the time taken to decompile

the function code is an additional overhead, and the IR raised from the binary

can lack information, limiting the recompiler’s capability to specialize to a

sub-target.

Fat Binary JIT

The process of creating the IR is costly and the ability of binary analysis to

reconstruct the IR is limited. Furthermore, the IR reconstruction replicates work

already performed during the AOT compilation. Thus, instead of recreating

IR, the system could preserve the IR originally constructed from the source

code. This approach is referred to as a fat binary [40], wherein IR and AOT

compiled code are packed together, allowing dynamic compilation systems to

access and compile the preserved IR. By doing so, this method removes the

overhead of decompilation. When using a fat-binary JIT system for target

specialization, the selection of which portions of the program should have their

IR preserved to enable recompilation is important because optimizations that

are unlikely to change with specialization should be performed by the AOT

14



compiler and do not require JIT compilation. Additionally, saving the IR

increases the binary file size and may expose proprietary code design that

can inform the development of exploits targeting the program. Thus, security

concerns may require IR obfuscation which increases both the AOT compilation

time and the JIT compilation time.
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Chapter 4

Dynamic Adaptive Sub-Target
Specialization (DASS)

The core idea of this thesis is to introduce Dynamic Adaptive Sub-Target

Specialization to AOT-compiled applications that could run on processors with a

common target but different sub-targets. At runtime, DASS performs sub-target

specialization on code segments copied in a compiler intermediate representation

(IR) form at compile time. The IR of such code segments is stored alongside

the code in the program binary, similar to other fat binary approaches [40].

Aside from sub-target specialization, DASS also enables applications to benefit

from improvements in new releases of a compiler without AOT recompilation.

This section presents DASS’s core design (Section 4.1) — from code segment

cloning to dispatch and execution of sub-target-specialized code at runtime

— and a proof-of-concept implementation in LLVM (Section 4.2). Sources of

overhead imposed by this prototype implementation and the core concept of

DASS (Section 4.3) are identified as potential downsides.

4.1 Core Design

DASS is a compiler system that compiles application code and produces an

AOT-compiled binary that is optimized for a specific target, as most optimizing

compilers. However, DASS binaries are augmented with the IR of selected

code segments that could be further specialized for a sub-target at runtime.

Candidate segments may be identified through profiling information, static
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analysis, and/or run-time cost/benefit heuristics. The main steps to produce

a DASS binary that is enabled to benefit from sub-target specializations

are: 1. Fat Binary Creation: involves cloning and storing the IR of selected

segments alongside the generated code (Section 4.1.1); 2. Dynamic Redirection

Setup: generation of instructions to select, at runtime, if each selected segment

will execute the AOT-compiled code with target optimizations or the JITed1

code with sub-target optimizations (Section 4.1.2); 3. Symbol Resolution: this

step enables the JITed code to address global variables and call functions

in the AOT-compiled code or in libraries (Section 4.1.3); 4. Dynamic Sub-

target Specialization: generation of sub-target-specialized code at run-time

(Section 4.1.4). Both Fat Binary Creation and Dynamic Redirection Setup

happen at compile-time, while Symbol Resolution and Dynamic Sub-Target

Specialization happen at run-time.

4.1.1 Fat Binary Creation

Alongside the AOT-compiled application code, DASS stores the following for

each selected code segment: 1. SEG.ID: a unique identifier used by DASS to

know which segment to use and/or compile; 2. SEG.IR: the code segment’s

IR; and 3. SEG.SYM LIST: the list of symbols used in the IR (e.g . variables

and/or functions). SEG.IR is copied after common simplification compiler

transformations — e.g . dead-code elimination and CFG simplification — to

reduce the IR prior to cloning but prior to any sub-target transformation

passes. Variables that are constant and statically initialized are not added to

SEG.SYM LIST in order to not obfuscate statically known constants and allow

common optimizations — e.g . constant folding or constant propagation — to

happen during dynamic specialization (Section 4.1.4).

4.1.2 Dynamic Code Redirection

After IR cloning, DASS generates code that dynamically redirects execution to

the AOT-compiled code while the JITed code is not available. The JITed code

1JITed is a neologism for Just-In-Time compiled.
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might not be available because SEG.IR is being compiled. SEG.IR compilation

can happen at any point during the execution of the program. For example,

the first time the execution reaches the entry of the segment or the beginning of

the program execution. JITed code might also not be available because, based

on a run-time cost/benefit analysis, DASS decided to use the AOT-compiled

code instead. Once the JITed code is available, the redirection code inserted

by DASS can direct execution to use it.

4.1.3 Symbol Resolution

Any access to symbols in the AOT-compiled code needs to be resolved to

their addresses because SEG.IR is compiled at runtime. SEG.SYM LIST contains

symbols used by each code segment and, after the link stage, also contains the

address to each symbol. DASS resolves each symbol by associating the symbol

with their respective address in SEG.SYM LIST after compiling SEG.IR. This

resolution ensures that the dynamic linker knows the address of all symbols

referenced by the JITed code. Similarly, DASS resolves any function calls from

JITed code to functions in the AOT-compiled code to their addresses through

the SEG.SYM LIST. Calls from the JITed code to library functions are handled

by the dynamic linker, as is commonly done for any AOT-compiled program.

4.1.4 Dynamic Sub-Target Specialization

DASS performs sub-target specialization by setting the target and sub-target

for compilation to the detected host CPU executing the application at runtime.

SEG.IR compilation overhead can be amortized by spawning the compilation

on a worker thread to overlap it with the program execution.

4.2 DASS Prototype Implementation

The proof-of-concept (POC) implementation of DASS is realized inside

the LLVM project [29] with whole functions as the granularity for sub-target

specialization. LLVM is an umbrella project that hosts sub-projects with tools,

libraries, and infrastructure for, among many other things, creating compilers,
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writing transformation passes, and building JIT compilers. LLVM provides

a production-grade Intermediate Representation called LLVM IR used for

target-independent code analysis and transformation.

This section describes 1. how DASS extends Clang, the LLVM C/C++

frontend, to support explicitly marking functions to be JITed (Section 4.2.1);

2. an LLVM IR pass that copies the IR and inserts dynamic-dispatch logic

into marked functions (Section 4.2.2); 3. a JIT runtime library built on top of

LLVM’s ORC JIT (Section 4.2.3); and 4. extensions to LLVM’s linker (LLD)

to create sections in the binary that store the IR of JIT candidate functions

and other DASS metadata (Section 4.2.4).

4.2.1 Extensions to Clang

int foo(int x) __attribute__((ijit)) {

return x - 2;

}

Listing 4.1: Function annotated with the ijit attribute.

In the POC implementation the C/C++ function attribute ijit (Listing 4.1)

marks functions for sub-target specialization through JITing with the DASS

runtime. As discussed in Section 4.1, candidate functions can be identified

through profiling, static analysis, or run-time cost/benefit analysis. In this POC

implementation, to focus experimentation on the potential speedup of selective

specialization, no automatic mechanism to select functions is implemented.

Instead, two criteria, measuring the fraction of execution time attributed to a

function and the static sub-target specialization speedup, are used to apply

attributes to the functions of an application (See Section 5.1.2). These criteria

approximate the effects of an effective automatic selection method.

4.2.2 IR Cloning and Dynamic-Dispatch Insertion Pass

This LLVM IR pass copies function definitions that have the ijit attribute and

serializes their IR into constant strings. The IR strings are added to a list of

DASS metadata objects that contain: 1. the name of the copied function; 2. its

IR; and 3. a list of symbol names and their addresses — the latter are filled
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of the statically compiled function body. While asynchronous compilation

completes, all calls to the function execute this body. Once the IR string is

compiled the table is atomically updated, thus future trampoline loads will

jump to the JITed code.

In the POC implementation, functions are copied immediately after the

function simplification passes in LLVM, which is fairly early in the optimization

pipeline. The continuation of this research will investigate alternative stages

of the optimization pipeline in which candidate functions should be copied.

Optimization passes that do not depend on sub-target-specific information

should be executed before cloning so that the costs do not impact application

execution time. Nevertheless, the initial experimental results indicate that

complete optimization pipelines can be executed at runtime with reasonable

cost (Chapter 5). Therefore, not performing AOT compiler transformations

that depend on sub-target information is just a policy to avoid premature

specialization.

4.2.3 JIT Runtime

DASS’s runtime is built on top of On Request Compilation (ORC) v2

API [31]. ORC is a library for building JIT compilers. Languages such as

Lua [22], C++ [56], and Swift [60] make extensive use of ORC’s API to build

their interpreters and read-eval-print loop (REPL) tools. DASS employs

ORC’s methods to explicitly define symbol bindings — used to handle references

from JITed code to functions and variables in AOT-compiled code or libraries

— and compile IR strings upon request.

The JIT runtime’s entry function is called through the trampoline inserted

by DASS’s IR pass (Section 4.2.2). As arguments, the entry function takes the

name of the function to JIT compile, the trampoline table entry associated

with said function, the address to the entry of the AOT compiled function,

and the address to the block that calls the JITed function via the trampoline.

An asynchronous thread is created to JIT the requested function and control

is immediately returned to the application code. While the JIT compiles

the candidate function, the AOT compiled code is executed. Once the JIT

21



compilations are complete, the trampoline table is atomically updated to direct

the application to the block that calls the JITed function’s code on subsequent

trampoline table loads.

ORC is built to allow JITed code to execute in multiple threads or to spawn

new threads. JITing concurrency is also available out of the box. Thus, the

only additional synchronization required by DASS is to ensure that only one

worker thread is compiling a particular function at a time. This is guaranteed

by an atomic update to the trampoline entry used to indicate that a function

1. needs to be compiled; 2. is being compiled by another worker thread; or

3. was already compiled. In the two latter cases, the JIT runtime immediately

returns the control flow to the application code because the trampoline table

is/will be updated with the JITed code address by the worker thread JITing

said function. Any worker thread that successfully exchanges the table entry

from 0 to 1 acquires the task to JIT the function’s IR. The value of 1 in the

table entry causes the trampoline to direct control flow to the AOT-compiled

code.

DASS sets the sub-target for JITing with the host CPU information detected

by ORC, which is able to identify the CPU running the application. In the

current POC, every function is compiled with the same optimization pipeline.

However, the implementation is flexible and easily adaptable to enable functions

to be optimized with different sets of passes.

4.2.4 Extensions to LLD

DASS requires minimal changes to LLVM’s linker, LLD. More specifically, LLD

was extended to concatenate the list of DASS metadata objects generated for

each compilation unit by DASS’s IR pass (Section 4.2.2) into a single global

hidden list. Additionally, the start and end symbols of DASS’s JIT binary

sections are generated by further extensions to LLD. Such symbols are used:

1. to skip the JIT-runtime initialization if no function was marked to be JITed;

and 2. to enable the runtime to safely traverse the entire JIT section.
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Table 4.1: Sources of specialization overhead with the DASS prototype.

Overhead Source

Compilation
Fat-Binary IR Size

Fat-Binary IR Features

Optimization Pipeline

Initialization Fat-Binary IR Size

Indirection
Calls to JITed Functions

Calls to AOT-compiled Symbols in JITed Code

Optimization AOT-compiled Symbols stored in Prototype Structures

Locality AOT-compiled Code Distance in Memory from JITed Code

4.3 DASS Overhead

DASS’s current implementation has inherent overheads due to design decisions

made during its development. The main sources of overhead, observed in the

experimental evaluation of DASS (Chapter 5), are summarized in Table 4.1.

Details on each are listed and discussed below.

4.3.1 Compilation Overhead

Because DASS moves sub-target specialization from compilation time to run

time, an obvious source of overhead is the cost of compiling the IR of selected

segments. Compilation cost is a non-trivial function of the size — measured as

the number of instructions – and features — e.g . presence of loops, number

of accesses to memory through global symbols or via pointer arguments — of

the copied IR. The size can determine the workload of compiler transforma-

tion passes while features determine which passes may execute and how often

some passes may execute during compilation. Moreover, different optimization

pipelines (e.g . -O2 and -O3 ) have different costs as they enable different

passes, or configure the same passes with different assumptions on the desired

trade-off between expected compilation time and expected performance of the

generated code. Even if the compilation is fully overlapped with the execution

of the application, longer compilation times delay the use of the potentially

more optimized JITed code and thus indirectly add overhead. Furthermore,
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asynchronous compilation still requires compute resources, preventing their

usage in other computation. For the applications used in this thesis’ experi-

mental evaluation (Section 5.4.1), compilation time was not a significant source

of overhead — up to 0.46% of an application’s execution time (See Table 5.5).

4.3.2 Initialization Overhead

This overhead comes from setting up the JIT runtime as well as ORC and

LLVM’s components for JITing. The setup entails registering each selected

segment’s IR and their corresponding symbols, setting the sub-target, and

selecting the optimization pipeline. Initialization overhead cannot be easily

amortized because the IR compilation cannot happen before the JIT runtime

is fully started. However, as discussed in Section 5.4.1, initialization cost is

usually minimal — up to 0.006% of the application execution time, with small

variations based on the number of symbols and the size of a segment’s IR.

4.3.3 Indirection Overhead

This overhead comes from the trampoline structure used as a dynamic-dispatch

mechanism (Section 4.1.2). The cost of executing the table load and indirect

branch is incurred every time a selected segment is executed. For frequently

called segments, this indirection overhead can become significant (Section 5.4.2).

A less obvious source of indirection overhead is paid when accessing variables

or calling functions in the AOT-compiled binary from the JITed segment. The

addresses of variables and functions defined in the AOT-compiled binary

are stored in a table, thus every access goes through a double indirection.

Some applications exhibited a high indirection overhead due to extra memory

operations to access data and call functions in the AOT-compiled binary

(Section 5.5.1). This overhead can be eliminated by using instructions that

directly reference the address of such symbols; whether this is possible depends

on the code model that is used by the JIT compiler.
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4.3.4 Optimization Limitation Overhead

While DASS focuses on optimizing specific code segments, the data structures

and code adjustments necessary to facilitate that dynamic specialization can

have inadvertent impacts on the optimization and generation of the surrounding

AOT-compiled code. The LLVM GlobalOpt pass identifies global variables

that never have their address taken. For those instances reads/writes of the

variable can be simplified as the compiler can verify when and where the value

in the variable is modified. Considering programs with frequent accesses to a

global variable, this pass can provide a substantial speedup to total program

execution time.

As it relates to DASS, implementation of the prototype requires registering

the symbols (global variables and functions) called within a selected segment to

the JIT engine. To achieve this, the addresses of global variables must be saved

to a data structure that is accessed by the DASS runtime. By accessing these

addresses, all global variables used in selected segments cannot be optimized

by GlobalOpt both in the JITed code and in all AOT-compiled code. While

this is the most obvious and impactful (Section 5.4.3) instance where DASS

can induce inadvertent overhead by limiting optimization, other instances can

exist and may emerge in future compiler optimizations.

4.3.5 Lower Code & Data Locality Overhead

This overhead comes from the decreased data and instruction locality between

the JITed code and the AOT-compiled code. The JITed code is generated into

a shared library that is loaded at run-time by the dynamic linker. Thus, if the

JITed segment is placed far away — e.g . different memory pages — from the

AOT-compiled code that calls it, then performance suffers from instructions

cache and iTLB misses. Similarly, as the JITed code is no longer co-located

with the AOT-compiled code, access to variables in the AOT-compiled code

might exhibit poor data-cache locality. This source of overhead can be more

significant if transitions between JITed and AOT-compiled code are frequent

(Section 5.5.1).
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Chapter 5

Evaluation

The proof-of-concept implementation of DASS is used to evaluate the feasibility

of dynamic sub-target specialization of C/C++ code through a fat-binary JIT

approach. In the following sections, the evaluation answers the questions:

1 How the performance of sub-target-specialized code compares to target-

specialized code? (Section 5.2.1)

2 Can the improvements of sub-target specialization be achieved without

recompiling the whole application? (Section 5.2.2)

3 Can DASS achieve the improvements of static sub-target specialization?

(Section 5.3)

4 What are the sources of overhead in the current implementation of DASS?

(Section 5.4 and Section 5.5)

A summary of the key results from each question is presented in Section 5.6.

5.1 Experimental Setup and Methodology

The evaluation is performed on the C/C++ benchmarks from the SPEC CPU2017

suite. Benchmarks are compiled with the SPEC base1 metric and run on the

ref workload. The default -O3 and -Ofast pipelines are used to compile

the intrate and fprate benchmarks respectively. All benchmarks are com-

piled with a development compiler built from LLVM 15.0.0, which includes

optimizations for the PowerPC architecture.

1All benchmark modules are compiled with the same set of compiler flags passed in the
same order, unless explicitly stated otherwise.
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Table 5.1: Machine configurations for the evaluation.

Name Architecture Processors RAM

Machine-9 POWER9 ™ 20 492 GB
Machine-10 POWER10 ™ 24 895 GB

All experiments are performed on two machines, one with a POWER9 CPU

(Machine-9) and the other with a POWER10 CPU (Machine-10), the compute

resources for each are shown in Table 5.1. Experimental results are presented

as the average of three program executions, unless stated otherwise. Variance

between executions was measured and found to be minor throughout all execu-

tions, at most 0.265% of total execution time. Most performance measurements

are presented as a speedup from the execution time of the benchmark entirely

compiled with POWER7 sub-target specialization, which is referred to throughout

this chapter as “P7”. Performance metrics used to measure overhead are

collected through hardware counters with the Linux Profiler, perf.

5.1.1 DASS Prototypes

Three prototype variants of DASS are evaluated:

• D-Block: Selected functions are compiled on the first call and execution

is blocked until the compilation completes, at which point the application

execution resumes by calling the JITed code.

• D-Async: Selected functions are compiled on the first call but asyn-

chronously on a separate thread, thus the application execution continues

executing the AOT-compiled function. Once compilation completes,

subsequent calls execute the JITed code.

• D-Start: All selected functions are compiled at once before the main

function is called. In this variant, compilation also blocks the execution

of application code.

A diagram of each prototype’s sequence for performing JIT compilation of

selected functions is shown in Figure 5.1.
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5.1.2 Specialization & Selection Methods

This evaluation analyzes the performance of each benchmark when sub-target

specialization is applied 1. to the whole program; and 2. to selected functions.

Whole-program specialization is performed via the -mcpu=<sub-target> ,

where <sub-target> is set to pwr7 (POWER7), pwr8 (POWER8), pwr9 (POWER9),

and, for Machine-10, pwr10 (POWER10). Sub-target specialization of selected

functions is performed via the arch=<sub-target> function attribute and

setting -mcpu to pwr7.

A function f is selected for both static and dynamic sub-target specialization

based on a sub-target specialization importance criteria, measured on the

executing machine: 1. the number of perf samples that hit f represents at

least XX% of total samples in the code compiled for the machine’s sub-target;

and 2. the number of samples that hit f decreases by Y Y% between the profiles

obtained by applying whole-program specialization for the POWER7 sub-target

and the machine’s sub-target. This selection criteria is indicated as EXX-SYY.

For example E02-S05 selects functions with 2% of total sample count and that

have 5% fewer samples when specialized for the executing machine’s sub-target,

than for POWER7. The first condition establishes that f makes a contribution

to the total execution time while the second establishes that specializing the

compilation affects the contribution of f to the total execution time.

The number of functions, and their corresponding percentage of IR instruc-

tions and function execution time relative to the total execution time of a

sub-target specialized run, is shown for both machines in Table 5.2 and Ta-

ble 5.3. Benchmarks wherein no function falls into any selection are omitted. A

detailed list of each function selected by the criteria is included in Appendix A.

Template functions were not considered for specialization because of limita-

tions in the DASS prototype. Marking selected functions is performed manually

with a C/C++ attribute in the source code, as such for template functions naively

adding the attribute applies specialization to all template instantiations created

by the compiler. Furthermore, creating explicit instantiations with the attribute

for each selected template function was infeasible for the number of template
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Table 5.2: Number of benchmark functions (Fn) and percentage of program
IR and execution time (Time) corresponding to functions selected by each

criteria for Machine-9.

Benchmark E10-S10 E05-S05 E02-S02

Fn IR % Time % Fn IR % Time % Fn IR % Time %

perlbench 0 N/A N/A 0 N/A N/A 3 0.49% 7.93%
mcf 0 N/A N/A 0 N/A N/A 1 12.9% 23.6%
namd 2 2.08% 28.6% 8 9.97% 77.8% 13 16.5% 99.4%
povray 2 0.17% 28.7% 3 0.20% 36.0% 8 0.81% 50.2%
lbm 1 19.1% 99.1% 1 19.1% 99.1% 1 19.1% 99.1%

omnetpp 0 N/A N/A 0 N/A N/A 2 0.05% 20.4%
xalancbmk 0 N/A N/A 0 N/A N/A 2 0.11% 10.3%

x264 1 0.15% 24.6% 3 0.27% 41.7% 10 2.49% 63.1%
blender 0 N/A N/A 0 N/A N/A 2 0.07% 5.35%

deepsjeng 0 N/A N/A 2 10.1% 15.8% 9 24.1% 42.0%
imagick 2 1.42% 66.1% 3 1.43% 71.8% 4 1.48% 93.1%
leela 0 N/A N/A 3 0.98% 20.6% 10 4.19% 52.2%
nab 1 3.75% 59.3% 2 4.69% 68.4% 4 5.32% 99.0%
xz 0 N/A N/A 0 N/A N/A 2 0.95% 50.0%

Table 5.3: Number of benchmark functions (Fn) and percentage of program
IR and execution time (Time) corresponding to functions selected by each

criteria for Machine-10.

Benchmark E10-S10 E05-S05 E02-S02

Fn IR % Time % Fn IR % Time % Fn IR % Time %

perlbench 0 N/A N/A 1 0.26% 7.81% 5 0.93% 18.5%
namd 2 2.10% 29.0% 8 10.0% 72.7% 13 16.5% 99.5%
povray 1 0.09% 14.4% 4 0.26% 49.4% 8 0.81% 62.3%
lbm 1 19.1% 99.5% 1 19.1% 99.5% 1 19.1% 99.5%

omnetpp 0 N/A N/A 0 N/A N/A 6 0.25% 38.5%
xalancbmk 0 N/A N/A 0 N/A N/A 1 0.003% 2.17%

x264 2 0.24% 39.6% 3 0.27% 46.2% 11 2.58% 69.1%
blender 0 N/A N/A 0 N/A N/A 1 0.01% 2.58%

deepsjeng 0 N/A N/A 2 10.1% 13.9% 10 25.1% 38.1%
imagick 3 1.48% 87.2% 3 1.48% 87.2% 3 1.48% 87.2%
leela 0 N/A N/A 3 0.69% 21.0% 6 1.82% 33.8%
nab 1 0.29% 11.5% 3 4.38% 76.7% 4 5.32% 86.5%
xz 0 N/A N/A 0 N/A N/A 2 16.0% 10.7%
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functions in parest. Performing selection as a compilation pass would remove

this limitation, as such template functions pose no challenge for the core concept

of dynamic specialization. Library functions were also ignored. Libraries do

not include their source code within their binary, restricting recompilation, and

replacing calls to the library functions, with alternative code that is inserted

during AOT compilation, is not possible with the prototype.

These restrictions do not greatly limit function selection, there is only

one instance of a library function, in nab, which has 6.4% of total program

samples. Ignoring template functions disallows parest, apart from that, only

one function in leela cannot be selected, which has 2.3% of total program

samples.

5.2 Static Specialization

This section examines the program speedup from static specialization by

comparing the execution time of benchmarks compiled for newer sub-targets,

up to the executing machine’s sub-target (POWER9/POWER10), with respect to

P7 . Comparing the speedup achieved by performing sub-target specialization,

both across the whole program (Section 5.2.1) and only on select functions

(Section 5.2.2), answers questions 1 and 2 .

5.2.1 Whole-Program Specialization

Every experiment is performed independently for both machines outlined in

Table 5.1, afterwards similarities and differences are identified and explained.

Machine-9 Results

Figure 5.2 presents the speedup achieved with whole-program sub-target spe-

cialization on Machine-9. Speedup varies between 85% for x264, to a minor

slowdown in omnetpp of 1.6%. Seven benchmarks saw at least 10% speedup

over P7 when compiled for the machine sub-target (POWER9), encouraging the

conclusion that specialization achieves substantial performance gains.

Analyzing code differences between the same benchmark compiled with P7
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Figure 5.2: Sub-target specialization speedup percentage for a given sub-target,
in respect to P7 , on Machine-9. Ordered by POWER9 speedup.
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and the POWER9 sub-target reveals the source of specialization speedup and

identifies benchmark’s with code that benefits from new processor hardware

instructions. The significant program speedup in x264 comes from increased

support for loop vectorization starting with POWER8. The addition of several

vector instructions to the POWER ISA enables the compiler to vectorize the

benchmark’s loops, adding the POWER9 instruction vabsdub to optimize many

computations. namd sees substantial speedup, caused by the POWER9 compiler

using instructions such as extswsli to improve execution time performance.

lbm and imagick display substantial POWER9 speedup, both from POWER9

targeted IR transformations that reduces the size of the binary code, and

through instruction scheduling optimizations that improve data locality and

reduce memory stalls on POWER9.

Multiple benchmarks display minor instances of slowdown when specialized

to POWER9. Differences in compiler priorities, which achieve speedup when

applied to benchmarks like namd have adverse impacts on function code with

different features, as is the case with the slowdown measured for omnetpp.

POWER9 targeted code generation replaces the sldi instruction with extswsli

in the function cSimulation::selectNextModule. The computation per-

formed by the instructions is effectively covered by sldi, while extswsli

performs a more costly operation (sign-extension) that causes the slowdown.

Despite these instances of performing higher cost computation, in terms of

program execution time, these instances represent at most a slowdown of 1.6%

with POWER9 specialization, while the speedup from specialization on other

benchmarks is far greater.

Machine-10 Results

Figure 5.3 presents the speedup achieved by whole-program sub-target special-

ization on Machine-10. Specialization speedup varies from a 218% speedup

in x264 to a slowdown in mcf , with a greater range of speedup found then

on Machine-9. The speedup for x264 identifies the advantage of specializa-

tion and this benefit is further shown with significant speedup from lbm and

imagick. However, the greater variance of speedup reflects that the advantage
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Figure 5.3: Sub-target specialization speedup percentage for a given sub-target,
in respect to P7 , on Machine-10. Ordered by POWER10 speedup.
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of sub-target specialization depends on the features of the program; on how

the compiler generates code; and on the availability of applicable hardware

instructions.

For instance, the significant improvement in x264 comes from instructions

mentioned in Section 5.2.1, alongside further POWER10 optimization. For the

function x264 pixel var 16x16, the execution time is reduced by 6x through

introducing the vectorization intrinsic lvm.vector.reduce.add to the func-

tion IR and the corresponding vector instructions during code generation.

Improvement from POWER10 specialization is also seen with imagick, where

the prefixed instruction paddi, new to POWER10, is used to replace multiple

addi instructions in hot code.

All evaluation is performed with a compiler version that is still in de-

velopment where some of the profitability analyses are still being deployed,

which explains the results where POWER10 specialization does not produce the

best speedup (e.g . mcf , namd, lbm). For instance, in lbm an aggressive

SLPVectorizer pass on POWER10 introduces unnecessary vectorization. Upon

removing this pass, the speedup between POWER9 and POWER10 becomes equal.

The slowdown in mcf emerges from a 75% increase in the execution time of

sqec qsort because of a mix of less aggressive loop unrolling and changes to

the LoopStrengthReduce pass.

Conclusions

The results in this section indicate that sub-target-specialized code achieves

significantly higher speedups than target-specialize code, providing an answer

to 1 . Across both machines, significant execution time speedup can be achieved

by optimizing program code to the current hardware sub-target. However,

speedup varies based on the hardware needs of the program. In applications

where new hardware can be utilized (x264), specialization is very effective,

while applications like xalancbmk show negligible speedup (Machine-10) or

even slowdown (Machine-9). These results encourage limiting the scope of

optimization to code that might produce significant speedup, ignoring functions

that do not benefit from specialization.
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Figure 5.4: Speedup percentage attained by different function specialization
criteria for POWER9, relative to P7 , on Machine-9.

5.2.2 Selective-Function Specialization

To measure the effectiveness of reducing the specialization scope to individ-

ual functions, this section evaluates the performance attained if only selected

functions, as per the selection criteria in Section 5.1.2, are specialized. Special-

ization is performed statically; the rest of the program is compiled for POWER7.

Effective instances of specialization are identified by a close speedup to that

reached by whole-program sub-target specialization. Further explanation of

results is informed by the percentage of whole-program POWER9/POWER10 pro-

gram execution time, shown in Table 5.2 and Table 5.3, that is accounted for

by the criteria selected functions. A key assumption is that programs with

consistent specialization across benchmark code should attain roughly the

same percentage of whole-program specialization speedup as their percentage

of program execution time. Instances where specialization speedup is greater

indicates code that has more specialization potential within the program. When

selecting functions for DASS, greater specialization potential is preferable.

36



Machine-9 Results

Figure 5.4 compares the speedup from only specializing functions selected

by each criteria to POWER9, with whole-program specialization for POWER9.

Specializing only criteria selected functions is able to attain a significant

portion of total specialization speedup, especially for E02-S02. This conclusion

is supported when considering the percentage of execution time accounted for

by selected functions, shown in Table 5.2.

When the execution time dominated by the criteria selection is close to

the total program execution time (> 90%), the proportion of full POWER9

specialization attained by selective specialization corresponds to the execution

time dominance. For instance, namd with E02-S02 covers 99% of execution

time, and attains 99% of POWER9 specialization speedup. Similar behaviour, is

shown for imagick, where E02-S02 covers 93% of execution time, and attains

96% of POWER9 speedup. This is expected, as speedup is only attainable from

improving functions that are a significant portion of runtime. Furthermore in

instances were almost all execution time is covered by criteria functions, almost

all attainable specialization speedup should be achieved.

However, when criteria selection execution time dominance is a smaller

portion of the total (< 90%), more variable behaviour with regards to specializa-

tion speedup proportion is shown. For instance, x264 at E05-S05, covers 42%

of execution time, but attains only 20% speedup. Analysis of whole-program

specialization of x264 compiled for POWER7 and POWER9 reveals that the total

program samples decreases by 42% when function profiling is performed. While

the sample reduction of the three E05-S05 functions: x264 pixel satd 8x4,

get ref and mc chroma, is 20%, 36% and 31% respectively. From this it is evi-

dent that the lower selective function speedup emerges from the criteria selecting

functions that speedup less than the benchmark average function speedup.

Looking at the profiles of other x264 functions finds: x264 pixel sad 16x16

and x264 pixel sad x4 8x8 with sample reductions of 84% and 88% respec-

tively. Both dominate substantial program execution time for POWER7 (16%

and 7.7%), however their POWER9 execution time dominance is decreased so
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much that they are missed by the E05-S05 criteria (reduced to 4% and 1.6%).

These results indicate a limitation of the selection criteria, with the selection

focusing on recompilation of functions that have a substantial execution time

on the executing hardware, it sometimes misses opportunities to recompile

functions that once specialized will no longer be dominant in the total program

execution time. This encourages future work to consider how hot functions will

vary by sub-target specialization, and discourages assumptions of uniformity in

terms of what functions dominate execution time between different sub-targets.

Compared to the sub-optimal selection for x264, other benchmark criteria

selections attain speedup significantly higher than the combined execution time

dominance of the selected functions. For imagick at E10-S10, a 66% combined

execution time dominance attains 94% of whole-program POWER9 specialization

speedup. This is caused by the function MorphologyApply, which is selected

by the criteria and sees a 36% reduction of samples when compiled to POWER9,

compared to the average reduction of 26% for the whole benchmark. Similar

behaviour is seen with povray at E02-S02, with a combined execution time

dominance of 50% that attains 89% of whole-program whole-program special-

ization speedup. This comes from greater specialization sample reduction from

the functions All Sphere Intersections (24% reduction), Inside Plane

(34% reduction), and Inside Quadric (36% Reduction), compared to the

whole-program specialization sample reduction from POWER7 to POWER9 of 12%.

Machine-10 Results

Figure 5.5 compares the speedup from only specializing functions selected

by each criteria to POWER10, with whole-program specialization for POWER10.

For certain benchmarks selective specialization attains close to whole-program

specialization while targeting only a few functions. The function selected by

the criteria in lbm, LBM performStreamCollideTRT accounts for > 99% of

the total samples in the profile. Thus, specializing this single function realizes

almost all the improvements of whole-program sub-target specialization.

In comparison, x264 has notably low criteria selection specialization

speedup. The gap between execution time dominance (46%) and percentage of
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Figure 5.5: Speedup percentage attained by different function specialization
criteria for POWER10, relative to P7 , on Machine-10.

whole-program POWER10 specialization speedup (14%) is significant. The cause

of this gap comes from not including the function x264 pixel sad x4 8x8,

that sees a 97% reduction in samples from POWER7 to POWER10, in the func-

tion selection criteria. The reason this function is missed is because from

POWER7 to POWER10 it moves from having the largest execution time percent-

age (16%) in terms of profile samples, to only 1.3% of samples when the

benchmark is compiled to POWER10, due to specialization speedup. In compari-

son, x264 pixel satd 8x4 is selected by the criteria, despite a specialization

sample reduction of 14% compared to the average sample reduction of 62%.

For most benchmarks, increasing the number of functions selected for

specialization decreases the performance gap relative to whole-program special-

ization. povray is the only exception where speedup decreases from E05-S05

to E02-S02. Analysis reveals that the generated code for whole-program spe-

cialization has fewer nop instructions than the code generated with criteria

selection specialization. nop instructions are added to guarantee alignment of

the target of branches or to avoid pipeline hazards. It is not clear why the nop

instructions were added/left by the compiler. Nonetheless, the difference in
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code alignment produced significant differences in the instruction-cache per-

formance: E02-S02 execution reports 15% more L1-icache-load-misses when

specializing functions that added nop. Removing the specialization attribute

from two of these functions — Intersect Light Tree and DNoise — resulted in

E02-S02 speedup of 2.10%, compared to the E05-S05 speedup of 1.95%.

Conclusions

Answering 2 , reducing the scope of specialization to selected functions can

realize a significant portion of specialization speedup, provided that the selected

functions are hot and improve with new sub-target compilation. This is

encouraged by the results from lbm, though with the caveat that vendor

programs face varied workloads and are unlikely to see a program with as

dominant a function and as clear an optimization opportunity. Furthermore,

the opportunity for sub-target specialization speedup is not equally distributed

in program functions, as shown with imagick on Machine-9 and namd on

Machine-10. Those instances further encourage reducing specialization scope,

as careful selection can attain near whole-program specialization speedup, while

performing specialization on functions that take a moderate proportion of total

program execution time.

This evaluation identifies complications with attaining sub-target special-

ization through selecting hot functions. The lower speedup present with x264

on both machines emerges from selecting functions with significant execution

time when specialized for the machine sub-target, ignoring the execution time

when compiled generically. The difference of which functions are dominate in

program execution time between generic and specialized compilation compli-

cates selection. Knowledge of a programs hot functions for a given machine

cannot accurately reflect the ideal functions to select for specialization, as

generic compilation can exhibit significantly different function execution time

dominance. Furthermore, function selection for this evaluation is performed

with benchmark profiles formed by combining the results from each executed

workload. Real world scenarios exhibit greater variation in workloads then

any benchmark suite and for most programs attaining full awareness of how
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different workloads impact function hotness is very difficult. As such, the

task of identifying appropriate functions for specialization is complex and

necessitates substantial future study.

5.3 DASS Specialization

The conclusions from Section 5.2 indicate that there is significant optimization

that can be achieved by specializing individual functions. To answer 3 , this

section contrasts the specialization of selected functions statically (Section 5.2.2)

to the dynamic specialization of the same functions with the DASS prototype

implementation. Only functions in E05-S05 are used for specialization because

this criteria presents a middle ground between specialization speedup and the

number of targeted functions. Furthermore, limitations in the current prototype

implementation make execution of many of the functions in the larger E02-S02

criteria fail.

One benchmark — namd — is excluded from both machine comparisons

because limitations in the DASS prototype prevent it from specializing functions

for the program. namd defines some hot functions (e.g . pairlist from pairlist)

in headers such that multiple definitions of the function exist across different

program files. When read from the fat-binary by the DASS runtime, these

definitions overwrite eachother and break the JIT engine. For Machine-10, nab

is excluded as the JIT engine is restricted to a small code model which when

applied to the selected function code for nab results in segmentation faults

that prevent benchmark execution. In both instances, benchmark execution is

limited by the current prototype, and the limitation is not inherent to the core

ideas and design of DASS.

Machine-9 Results

Figure 5.6 compares the speedup when functions selected by the criteria are

statically specialized to POWER9, to the speedup when DASS performs the spe-

cialization of the select functions dynamically. Comparing static and dynamic

specialization, even with the best performing prototype variant D-Block, the
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Figure 5.6: Speedup percentage of static specialization and DASS prototypes
for POWER9 with the E05-S05 selection criteria, on Machine-9.

specialization speedup of DASS diverges significantly with the static speedup

for most benchmarks. Only lbm achieves roughly equal performance to static

specialization, while nab, x264, and imagick have significantly lower DASS

speedup than static specialization, with a speedup reduction of 56%, 39%

and 49% respectively. Furthermore, D-Block causes slowdown from P7 for

deepsjeng , leela, and povray . These results are especially poor as the bench-

marks perform better when compiled generically than if dynamic sub-target

specialization is performed. Explanation of these results encourages an analysis

of what additional costs are imposed by the DASS prototype compared to

static specialization.

Comparing the results of DASS prototypes, significant variation in speedup

for the same benchmark occurs in some instances. While D-Block and D-Start

exhibit similar speedup for all benchmark runs, D-Async shows lower speedup

than the other prototypes for imagick. For D-Async, execution of static

AOT-compiled generic code until asynchronous compilation completes, results

in a 70% reduction in speedup compared to D-Block. Analysis of the selected

functions reveals that two of the three selected functions, MeanShiftImage

and MorphologyApply, have only one and two calls for the entire bench-
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Figure 5.7: Speedup percentage of static specialization and DASS prototypes
for POWER10 with the E05-S05 selection criteria, on Machine-10.

mark execution respectively. This low call count, combined with D-Async

executing at least one call of any function with AOT-compiled generic code

while compilation completes, is the cause of the observed speedup reduction.

For MorphologyApply, 50% of function execution is performed with AOT-

compiled code, while for MeanShiftImage, all function execution is performed

with the generic code. This generic code execution, alongside the results of the

JIT compilation of MeanShiftImage never being executed, is the cause of the

lower speedup seen between D-Async and D-Block/D-Start.

Machine-10 Results

Figure 5.7 compares the speedup when the functions selected by the criteria are

statically specialized to POWER10, compared to speedup when DASS performs

specialization of select functions dynamically. Mixed results, in line with those

for Machine-9 are found when comparing static and dynamic specialization.

D-Block is the best performing prototype variant, and lbm performs closest

to static speedup. While, imagick has significantly lower speedup when

specialization is performed dynamically (60% reduction), the gap of static vs

dynamic speedup for x264 decreases from a 39% reduction on Machine-9, to a
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21% reduction on Machine-10. Finally, perlbench, deepsjeng , leela, and

povray slowdown when dynamically specialized with DASS compared to P7 .

Significant slowdown for povray with -36% speedup, encourages a study of

potential overhead sources that DASS can introduce.

Comparison of speedup between prototype variants shows significant vari-

ance between D-Block/D-Start and D-Async for the benchmark imagick.

The reduction in speedup from D-Block to D-Async is 108% for the benchmark.

Slowdown comes from MeanShiftImage, which exhibits greater execution time

dominance compared to benchmark execution on Machine-9 (41% vs. 31%). As

the function runs exclusively in the AOT-compiled generic code when D-Async

is measured (because of a singular function call over the entire benchmark

execution), the speedup reduction increases on Machine-10 from Machine-9.

Conclusions

Experimental results from both machines indicate that D-Block and D-Start

show little difference in speedup for all tested benchmarks. In applications with

multiple workloads where selected functions are not called in all workloads,

blocking could improve over startup because extraneous compilations would be

avoided. However, for the analyzed benchmarks all functions are called on each

workload, minimizing the difference between the two approaches. In comparison,

the asynchronous compilation variant, D-Async, has noticeable slowdown when

performed on imagick for both machines. Two factors contribute to this

slowdown. First, while the functions are being compiled the non-sub-target-

specialized AOT-compiled code is used and, as the results in Section 5.2.1

show, the performance difference between target and sub-target-specialized

code can be significant. Second, if two threads — an application thread and

a JIT runtime thread — access the JIT table, synchronization is required

to ensure coherent access. Instructions required for synchronization, such as

memory fences, incur overhead. Furthermore, for the benchmarks used in this

evaluation, the advantage of asynchronous compilation is limited because their

compilation time is insignificant, as shown in Section 5.4.1.

Speedup comparisons between static specialization and the DASS prototype
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variants from both machines indicate an affirmative but dependent answer to

3 . Considering the best-performing variant D-Block, dynamic specialization

through DASS is only able to match static specialization speedup for certain

benchmarks that exhibit highly desirable characteristics for dynamic function

compilation. Variation in dynamic specialization effectiveness can be attributed

to differences in code generation or missed optimizations, which arise from

compiling the functions in isolation from their original context in the application

code. However, an inspection of code generated by the DASS prototype and

by the AOT compiler points to further differences. Whether these additional

differences are inherent to the idea of DASS or are a side-effect of the prototype

design is important to a proper evaluation of the concept. Thus, in the spirit

of always measuring one level deeper [41], an in-depth study of the various

sources of overhead for DASS is necessary.

5.4 DASS Overhead

As discussed in Section 4.3, there are five distinct sources of overhead in

the current DASS implementation: 1. Compilation Overhead (Section 4.3.1):

the cost of performing sub-target specialization at run-time; 2. JIT Runtime

Initialization Overhead (Section 4.3.2): the cost of reading fat-binary data

and setting up the ORC and LLVM’s components for JITing; 3. Indirection

Overhead (Section 4.3.3): introduced by the trampoline structure used as

a dynamic-dispatch mechanism that enables the AOT-compiled code to call

JITed functions; 4. Code Optimization Limitations (Section 4.3.4): limitations

to code optimization applied both to surrounding AOT-compiled code and

to the selected function code; and 5. Lower Code & Data Locality Overhead

(Section 4.3.5): caused by the placement of JITed functions potentially far and

separate in memory from the function’s original context (surrounding functions

and variables). Although the access to symbols defined in the AOT-compiled

code also undergoes indirection, its effects are mostly observable as poor locality.

Analysis of the first four overheads is performed for both test machines in the

following sections; analysis of locality overhead is performed in Section 5.5.
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All overhead is calculated using D-Block and compared to the total execution

time of benchmarks that are run with the prototype. D-Block is analyzed as

it performs the simplest version of JIT compilation, such that program startup

(D-Start) and adjacent computation (D-Async) are not impacted. This avoids

confounding factors that can impact compilation time measurement.

5.4.1 Initialization & Compilation Overhead

Measurement of the overhead for initializing the DASS runtime and performing

JIT compilation of functions during execution was performed for all bench-

marks, and compared to the total benchmark runtime when executed with

D-Block. Compared to other instances of overhead both initialization and

compilation are one-time costs, that occur once per the entire benchmark exe-

cution (initialization) or once per target function for each benchmark execution

(compilation). Because of this one-time cost, the longer a given benchmark

executes, the less this overhead should impact total execution time. Despite this

amortization, both initialization and compilation are affected by the amount of

IR that has been saved in a fat-binary for JIT compilation. Throughout this

section the number of IR instructions saved to the fat-binary for a function

or group of selected functions is referred to by the general term lines-of-code

(LOC). Furthermore, the JIT compilation time of a function influences whether

asynchronous compilation is valuable, as longer JIT compilation that blocks

execution can noticeably delay important program execution.

Machine-9 Results

For Machine-9, measured overhead of both initialization and compilation shown

in Table 5.4 is comparatively low as a proportion of program execution time.

Analysis of the raw cycle count for initialization and compilation for each

benchmark provides insight into how these one-time overhead costs change

based on function selection and code behaviour.

Initialization overhead exhibits a correlation between LOC and the number

of cycles required for initialization. Creation of the JIT engine instance acts as

the constant factor in initialization overhead, while processing the fat-binary
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Table 5.4: Percent of total D-Block compiled benchmark cycles for initialization
of the DASS runtime and JIT compilation of the selected functions from the
E05-S05 selection criteria for Machine-9. LOC is the number of IR lines.

Benchmark # Fn LOC
DASS Initialization JIT Compilation

Cycles % Total Cycles % Total

leela 3 342 2031K 0.0005% 49M 0.0121%

povray 3 387 2600K 0.0004% 28M 0.0046%

lbm 1 505 2051K 0.0019% 40M 0.0362%

x264 3 664 6820K 0.0026% 540M 0.2060%

deepsjeng 2 1579 4655K 0.0019% 145M 0.0578%

nab 2 1709 5323K 0.0021% 188M 0.0727%

imagick 3 4549 13235K 0.0040% 1115M 0.3385%

IR and associated symbols is the source of this correlation. This pattern

holds for most instances, however it is broken for x264, wherein a relatively

low LOC produces a higher initialization overhead than expected (albeit still

insignificant). This variance comes from the execution behaviour of x264, as

it is the only benchmark run on Machine-9 that invokes the program binary

three separate times during its workload. As such, the cost of initialization is

payed three times, causing the disproportionate overhead. lbm displays the

opposite behaviour, with a lower overhead than povray despite a higher LOC.

For this instance, the cause is symbols, as lbm has none, while povray must

register ten symbols at initialization. Furthermore, povray registers three

functions, while lbm registers one, each of which has their own data structures

that are read separately.

Compilation overhead displays a similar correlation. LOC and the compila-

tion time grow with each-other for most benchmarks, x264 (three invocations

tripling JIT compilation) and leela disrupt this trend. leela has a higher raw

compilation time than lbm, despite a lower LOC. Differences in the number

of functions or symbols are not the answer, as leela has an equal number of

functions and less symbols (3 to 10) than povray , despite having a longer

compilation time.

Analysis of leela’s compilation overhead by function reveals that self atari
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Table 5.5: Percent of total D-Block compiled benchmark cycles for initialization
of the DASS runtime and JIT compilation of the selected functions from the
E05-S05 selection criteria for Machine-10. LOC is the number of IR lines.

Benchmark # Fn LOC
DASS Initialization JIT Compilation

Cycles % Total Cycles % Total

leela 3 240 1358K 0.0005% 18M 0.0068%

povray 4 500 2360K 0.0006% 32M 0.0074%

lbm 1 505 1635K 0.0020% 30M 0.0353%

x264 3 664 5211K 0.0027% 362M 0.1837%

perlbench 1 1149 7628K 0.0035% 193M 0.0879%

deepsjeng 2 1579 3279K 0.0018% 101M 0.0545%

imagick 3 4705 9277K 0.0058% 732M 0.4564%

comprises 55% of the total JITed IR, but incurs 66% of the compilation overhead.

Comparing statically optimized IR reveals the function has a constant-bound

loop which is unrolled when compiled for POWER9. This operation differentiates

self atari, from the other selected functions for leela, which do not signifi-

cantly modify the code through IR transformations. Unrolling increases the

number of IR instructions, which extends the compilation time for the given

function, causing leela to have a higher compilation overhead.

Machine-10 Results

Overhead results from Machine-10 (Table 5.5) show a low comparative over-

head for both initialization and compilation. Correlation between LOC and

initialization/compilation is present. Instances of variance come from the afore-

mentioned symbol registration (povray), and multiple benchmark invocations

(three for perlbench and x264). Compilation time variation comes from the

extent of optimization performed for the given benchmark functions.

Conclusions

Experimental results from both machines exclude initialization and compila-

tion from being significant contributors to the speedup reduction seen for the

DASS prototype in Section 5.3. Compared to program execution time, both

initialization and compilation time overhead is insignificant for the analyzed
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benchmarks. However, considering hypothetical programs with shorter exe-

cution time (evidenced by the multiple executions of perlbench & x264),

initialization/compilation overhead can become significant. Thus the amount

of IR saved to the fat-binary compared to the execution time of program work-

loads is an important consideration when applying a DASS based approach

to specialization. Furthermore, the results from leela on Machine-9 reveal

that more aggressive compiler transformations can significantly impact JIT

compilation time, a potential limitation on the extent of applied sub-target

specialization when considering programs with shorter execution times.

5.4.2 Indirection Overhead

To facilitate JIT compilation of selected functions and later redirect execution

to JITed code, the DASS prototype implements a JIT trampoline structure

(described in Section 4.2.2). To measure the indirection overhead induced

by this structure, a modified version of the prototype (called Indirect) is

contrasted with results from Static and D-Block. Indirect performs the

same JIT trampoline indirection as D-Block, but does not perform run-time

compilation and redirects execution to an AOT-compiled copy of the selected

function instead of JITed code. To isolate indirection overhead from other

factors, the AOT-compiled function copy is sub-target specialized via the same

function attribute used to specialize Static. The extent of overhead induced

by the DASS trampoline structure is shown by comparing the speedup of

Indirect to the speedup of Static and D-Block. Speedup that is closer to

D-Block than Static indicates that the indirection necessary for the DASS

prototype is the dominant source of dynamic specialization overhead.

Trampoline overhead comes from the added instructions and function call.

Thus, the overhead is assumed to be in relation to the number of calls to

the selected function, as each call executes the trampoline. Functions that

are called infrequently with respect to the benchmark execution time should

exhibit less indirection overhead than those executed frequently. To test this

assumption the raw execution time difference between Indirect and Static,

and the number of calls to selected functions, is shown for each benchmark,
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Figure 5.8: Contrasting speedup on Machine-9 for E05-S05 static specialization
(Static), dynamic specialization (D-Block), and a modification of DASS
(Indirect), that uses the JIT trampoline to call AOT-compiled code.

alongside the speedup comparison.

Another form of indirection overhead comes from accesses to AOT symbols

within the JITed code. Separating this overhead from other factors is more

complicated, and often is revealed through loss of locality in data accesses.

Thus, this overhead is analyzed through the benchmark profile metrics in

Section 5.5.

Machine-9 Results

Experimental results for Machine-9 are shown in Figure 5.8. For applications

like leela, povray , and x264, indirection represents the majority of dynamic

specialization overhead, while for deepsjeng , nab and imagick, there is

a substantial portion of overhead that occurs separate from the indirection

mechanism. Analysis of the indirection overhead reveals that in the instance of

leela, the JITed code is faster than static code, as the speedup for D-Block

improves over Indirect. The reason the benchmark has a lower speedup than

Static with D-Block is because of indirection overhead.

Table 5.6 shows how indirection overhead grows with the number of selected

function calls for Machine-9. These results are in line with the assumption
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Table 5.6: Calls made to DASS E05-S05 selected functions compared to the
difference of execution time between Indirect and Static, for Machine-9.

Benchmark Selected Function Calls Indirect - Static Indirect / Static

nab 251 -0.438s -0.09%
lbm 3000 0.091s 0.04%

deepsjeng 1147891208 16.148s 3.71%
x264 2935327434 21.965s 4.55%

imagick 7934662915 42.340s 7.49%
leela 9159189545 59.358s 8.04%

povray 21354156842 172.484s 17.35%

Table 5.7: Calls made to DASS E05-S05 selected functions compared to the
difference of execution time between Indirect and Static, for Machine-10.

Benchmark Selected Function Calls Indirect - Static Indirect / Static

lbm 3000 -0.312s 0.19%
deepsjeng 1147891208 14.297s 4.72%

x264 3052760393 14.881s 4.06%
perlbench 3453544769 13.838s 3.35%
imagick 7988222453 21.235s 7.63%
leela 11310453124 35.267s 7.31%

povray 23927201310 86.924s 14.43%

that indirection overhead grows with the number of functions calls. Overhead

is minimal for benchmarks where the selected functions are called infrequently

(lbm, nab). While, the overhead both as a proportion of total execution time,

and as a raw time difference increases alongside the number of function calls.

The slight speedup for nab with Indirect over Static comes from variability

in benchmark execution time, and is not indicative of Indirect improving

execution time for certain instances.

Machine-10 Results

Speedup comparison for Indirect on Machine-10 is presented in Figure 5.9.

Similar behaviour to Machine-9 is present, certain applications are dominated

by indirection overhead while other benchmarks demonstrate significant non-

indirection overhead (deepsjeng and povray).

The growth of indirection overhead with the number of calls to selected
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Figure 5.9: Contrasting speedup on Machine-10 for E05-S05 static specialization
(Static), dynamic specialization (D-Block), and a modification of DASS
(Indirect), that uses the JIT trampoline to call AOT-compiled code.

functions is shown in Table 5.7. The assumption, that a benchmark’s raw

indirection overhead corresponds to selected function calls, holds for most appli-

cations, however perlbench breaks this assumption, with a lower raw overhead

than deepsjeng but 3x the number of selected function calls. Furthermore,

while raw overhead grows with selected function calls for most benchmarks,

variation in total benchmark execution time causes the percentage of indirection

overhead to decrease with call growth for some benchmark pairs (imagick and

leela).

Analysis of performance metrics from Static and Indirect for perlbench

and deepsjeng reveals a 24x growth in I-Cache misses for deepsjeng from

Static to Indirect. This compares to a 1.4x increase in the metric for

perlbench, with the significant difference of metric growth being the main

source of the relatively high indirection overhead for deepsjeng compared to

perlbench and x264. The cause of this significant increase in I-Cache misses

relates to the creation of a function clone that is called through indirection for

each selected function call. This clone is located at a different memory address,

as such cloned instructions are not always in the I-Cache when the original

function is called. Furthermore, the indirection must access instructions from
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both the original function addresses and the cloned function address every call,

and these instructions can overlap and evict each other within the cache. This

eviction can incur significant slowdown as memory accesses are expensive to

perform, explaining the greater overhead of deepsjeng . Similar behaviour

can occur with the DASS prototype, as the JITed code instructions are located

separately from the AOT-compiled function. This loss of instruction locality is

investigated further in Section 5.5.

Conclusions

Evaluation of indirection overhead for Machine-9 and Machine-10 identifies

that the majority of speedup reduction from static specialization for the DASS

prototype is caused by the indirection overhead added by the JIT trampoline

structure. Furthermore, correlation between the raw indirection time overhead

and the number of calls to functions with the JIT trampoline is present. These

results discourage dynamic specialization of short functions with frequent calls,

where indirection overhead can overpower the execution time speedup from

sub-target specialization. If specialization of short functions is desired, alterna-

tives with lower indirection overhead, such as modification of function call sites

(binary rewriting), should be considered, if feasible. Few benchmarks demon-

strate substantial overhead separate from indirection (imagick, deepsjeng ,

nab, povray), investigation of these overheads requires deeper analysis.

5.4.3 Optimization Limitation Overhead

To perform JIT compilation and redirection to JITed code the DASS prototype

must create additional data structures to register global variables and fat-

binary IR. These structures and how they access and use global variables and

other data has implications for the optimization of both the surrounding AOT-

compiled code, and the IR that is saved for JIT compilation. Optimization

limitations incurred by these structures limits the total speedup achievable by

dynamic specialization. The overhead incurred by these structures is shown by

a comparison of Indirect and a further modification that adds the structures

but continues to not perform JIT compilation (Indirect+Struct).
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Figure 5.10: Contrasting speedup on Machine-9 for E05-S05 static special-
ization (Static), dynamic specialization (DASS), and two modifications of
DASS: Indirect, that uses the JIT trampoline to call AOT-compiled code;
and Indirect+Struct, that includes creation of the JIT data structures to
Indirect.

Machine-9 Results

Optimization overhead is not a significant factor for most benchmarks when

executing on Machine-9 (Figure 5.10), except for the benchmark nab. For

nab, significant optimization is applied with static specialization through the

LLVM GlobalOpt pass. The JIT structures explicitly access the address of

every global variable in the function, preventing these optimizations. When

the GlobalOpt pass is disabled for both Static and D-Block, the two versions

achieve a close speedup over P7 of 11.8% and 11.2% respectively.

Machine-10 Results

Experimental results from Machine-10 (Figure 5.10) show that AOT-compiled

code is unaffected by the JIT structures for any of the evaluated benchmarks.

nab fails to execute DASS and as such, the potential overhead incurred to the

benchmark from GlobalOpt pass optimization limitations cannot be measured.
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Figure 5.11: Contrasting speedup on Machine-10 for E05-S05 static special-
ization (Static), dynamic specialization (DASS), and two modifications of
DASS: Indirect, that uses the JIT trampoline to call AOT-compiled code;
and Indirect+Struct, that includes creation of the JIT data structures to
Indirect.

Conclusions

Optimization overhead is not a significant factor for most benchmarks mea-

sured in this evaluation. However, nab indicates that the JIT structures,

and specifically their access of global variable addresses can incur significant

overhead. As such, modifications to the compilation pipeline ordering, to move

JIT setup after any limited passes, should be considered. Though, this is not

always possible, as moving fat binary creation too far can transform the IR

with generic specialization decisions that limit dynamic specialization gains.

5.5 DASS Metric Analysis

Analysis of how overhead impacts JITed code execution, as opposed to the

surrounding JIT structures (e.g . trampoline), is complicated as speedup of the

function body alone can be impacted by timing instrumentation. Thus, to

explore this overhead, various metrics are collected from benchmark execution,

for both Static and D-Block. These metrics are shown in Table 5.8 for
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Machine-9, and Table 5.9 for Machine-10. Significant differences in metrics

between the Static and D-Block versions indicate impacts from the DASS

prototype.
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Table 5.8: Benchmark metrics comparing Static and D-Block specialization for E05-S05 on Machine-9. D-Block/ Static is
calculated using profile cycle counts. Normalized metrics where DASS differs from the Static by more than 10% are identified
with Green if less than, or Red if greater than. DERAT is a small buffer that caches effective to real address translations from
the dTLB.

Metric deepsjeng leela povray nab x264 lbm imagick

D-Block / Static 10.32% 7.76% 19.41% 6.90% 6.71% 0.04% 13.26%

Static D-Block Static D-Block Static D-Block Static D-Block Static D-Block Static D-Block Static D-Block

Cycles 1259B 10.32% 2131B 7.76% 2904B 19.41% 1365B 6.90% 1492B 6.71% 621B 0.04% 1632B 13.26%

Instructions 2170B 10.39% 2892B 14.22% 4764B 23.79% 1790B 7.84% 2745B 7.93% 1004B 0.03% 3186B 17.93%

Instruction Count Normalized Metrics (X / Instructions)

Branch Miss 1.5e−3 1.6e−3 3.3e−3 2.9e−3 1.1e−3 1.0e−3 4.4e−4 4.0e−4 3.4e−4 4.3e−4 1.8e−5 1.9e−5 3.0e−4 2.6e−4

Branch Load Miss 1.5e−3 1.6e−3 3.3e−3 2.9e−3 1.1e−3 1.0e−3 4.4e−4 4.0e−4 3.4e−4 4.3e−4 1.7e−5 1.9e−5 3.0e−4 2.6e−4

iCache Miss 1.9e−3 1.5e−3 1.1e−4 1.7e−4 1.9e−3 1.8e−3 2.2e−6 1.0e−5 9.8e−4 1.1e−3 6.4e−6 1.0e−5 1.2e−6 1.9e−5

dTLB Miss 1.6e−8 1.7e−8 1.1e−7 9.0e−8 2.4e−8 2.3e−8 4.9e−8 3.5e−8 5.4e−8 5.3e−8 2.0e−8 1.2e−8 1.9e−9 6.3e−9

iTLB Miss 6.0e−7 7.3e−4 6.3e−7 3.8e−7 1.1e−6 8.8e−6 1.6e−7 2.6e−8 1.5e−6 1.2e−6 5.4e−9 1.4e−8 5.6e−9 4.8e−8

Cycle Count Normalized Metrics (X / Cycles)

L1 Miss Stalls 0.021 0.021 0.017 0.017 0.035 0.034 1.4e−3 1.3e−3 8.6e−3 8.4e−3 3.3e−5 5.8e−5 2.3e−3 2.4e−3

FE Stall 0.050 0.046 0.119 0.113 0.039 0.040 0.020 0.019 0.013 0.016 8.1e−4 8.9e−4 0.020 0.038

BE Stall 0.153 0.158 0.142 0.142 0.163 0.171 0.156 0.153 0.134 0.133 0.148 0.148 0.146 0.133

DERAT Miss Stall 1.3e−3 1.4e−3 7.7e−4 9.1e−4 2.1e−4 1.3e−4 6.8e−6 9.4e−6 9.2e−5 1.0e−4 1.1e−5 1.5e−5 7.8e−5 4.6e−4

DERAT Miss 1.3e−4 1.3e−4 6.9e−5 8.9e−5 3.4e−6 2.1e−5 1.1e−6 1.7e−6 1.7e−5 2.7e−5 2.5e−6 4.8e−6 2.3e−6 7.1e−6
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Table 5.9: Benchmark metrics comparing Static and D-Block specialization for E05-S05 on Machine-10. D-Block/ Static is
calculated using profile cycle counts. Normalized metrics where DASS differs from the Static by more than 10% are identified
with Green if less than, or Red if greater than. DERAT is a small buffer that caches effective to real address translations from
the dTLB.

Metric perlbench deepsjeng leela povray imagick lbm x264

D-Block / Static 5.16% 12.62% 8.06% 37.34% 10.07% -0.36% 4.10%

Static D-Block Static D-Block Static D-Block Static D-Block Static D-Block Static D-Block Static D-Block

Cycles 1602B 5.16% 1180B 12.62% 1875B 8.06% 2335B 37.34% 1085B 10.07% 639B -0.36% 1574B 4.10%

Instructions 3814B 5.79% 2170B 10.32% 2873B 14.28% 4714B 32.16% 3201B 15.37% 1055B 0% 2756B 8.05%

Instruction Count Normalized Metrics (X / Instructions)

Branch Miss 5.4e−4 5.2e−4 2.4e−3 2.2e−3 5.3e−3 4.6e−3 8.6e−4 7.6e−4 3.9e−4 3.5e−4 2.5e−5 2.5e−5 4.2e−4 3.8e−4

Branch Load Miss 2.8e−4 2.8e−4 7.4e−4 7.4e−4 1.6e−3 1.4e−3 3.8e−4 5.1e−4 1.2e−4 1.1e−4 8.3e−6 8.5e−6 1.6e−4 1.5e−4

iCache Miss 1.6e−3 1.7e−3 7.3e−5 4.7e−4 4.4e−5 3.9e−5 7.0e−4 1.9e−3 3.7e−7 1.2e−5 2.1e−6 4.6e−6 5.6e−4 6.0e−4

dTLB Miss 1.7e−8 1.7e−8 1.0e−4 9.2e−5 4.1e−7 3.8e−7 2.5e−10 2.5e−10 6.8e−9 7.0e−9 7.2e−6 7.2e−6 4.5e−8 3.1e−8

iTLB Miss 6.3e−6 4.8e−7 4.4e−7 9.9e−5 3.1e−7 1.3e−7 1.2e−6 2.7e−6 8.2e−10 2.7e−8 4.9e−9 1.5e−8 5.3e−8 4.8e−8

Cycle Count Normalized Metrics (X / Cycles)

L1 Miss Stalls 0.031 0.030 0.017 0.018 0.012 0.012 0.039 0.033 1.6e−3 2.0e−3 5.1e−5 6.9e−5 8.4e−3 8.3e−3

FE Stall 0.033 0.035 0.028 0.040 0.049 0.045 0.018 0.048 0.011 0.012 5.6e−4 6.9e−4 9.4e−3 0.010

BE Stall 0.535 0.553 0.594 0.571 0.538 0.541 0.732 0.670 0.717 0.718 0.746 0.745 0.698 0.685

DERAT Miss Stall 1.3e−4 1.3e−4 2.5e−6 2.8e−6 4.4e−6 7.0e−6 4.6e−8 1.6e−6 1.1e−6 2.4e−6 1.7e−5 1.5e−5 2.3e−6 5.0e−6

DERAT Miss 9.8e−4 1.0e−3 3.6e−4 3.4e−4 7.4e−5 8.9e−5 1.1e−6 6.6e−5 1.1e−5 1.9e−5 4.1e−5 4.2e−5 6.2e−5 1.0e−4

dTLB Miss Stall 1.4e−6 1.4e−6 1.2e−5 7.3e−5 1.6e−5 1.3e−5 1.1e−7 9.6e−8 1.0e−6 9.3e−7 1.1e−4 1.0e−4 5.1e−6 5.4e−6
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5.5.1 Lower Code & Data Locality Overhead

The sources of poor locality in the DASS prototype are multi-faceted. When

a JITed function is loaded at run-time, it might be placed far in memory

— e.g . on different pages — relative to the AOT-compiled code that calls it.

Code located on different pages requires multiple entries in the iTLB and may

exhibit poor instruction-cache locality. Moreover, placing the JITed function

in a different memory location may have an effect on the prediction of existing

branches — e.g . it may introduce branch aliasing. These potential overhead

sources are explored for both machines using the gathered metrics.

JITed code can also be impacted by lower locality when accessing data

because the JIT runtime cannot make assumptions on where in memory

the JITed code will be loaded, it must be conservative and not use memory

instructions that encode small relative offsets — e.g . 32 bits in the medium

code model or 16 bits in the small code model. Therefore, the JITed code

accesses symbols in the AOT-compiled program through a table — generated

by the JIT runtime (Section 4.2.3). As a result, every access in the JITed

code to symbols in the AOT-compiled code goes through an indirection. The

indirection adds overhead in terms of more instructions per access but, more

importantly, because the table is placed on different memory pages than either

the JITed and AOT-compiled code, the indirection may add more overhead in

terms of address translation.

Machine-9 Results

Metrics from Table 5.8 helps explain the speedup reduction for deepsjeng

and imagick, which both have substantial non-indirection overhead. High

iTLB miss rates with D-Block compared to Static indicate poor locality when

transitioning from AOT code to JITed code.

For imagick, higher DERAT2 miss induced stalls reflect higher costs in

accessing AOT-compiled symbols within JITed code.

2A small buffer that caches effective-to-real address translations from the dTLB.
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Machine-10 Results

The results in Table 5.9 indicate that locality is the source of overhead for

povray , deepsjeng , and imagick because these applications experience

significantly more instruction cache and iTLB misses with D-Block than with

Static. Moreover, placing the JIT function in a different memory location may

have an effect on the prediction of existing branches — e.g . it may introduce

branch aliasing. Such effects can explain the 34% increase in branch load misses

in povray .

Analyzing the locality impacts from AOT-compiled symbol accesses indi-

cates that: 1. there are more stalls due to DERAT misses ranging from 12%

in deepsjeng up to 34.8× in povray ; 2. DERAT misses are 81% higher in

imagick and 60× higher in povray ; 3. deepsjeng exhibits 6× more dTLB

misses.

Conclusions

Analysis of code metrics supports the conclusion that locality overhead, both

as a function of code instructions being separated in memory for the AOT-

compiled and JITed code, and as an indirection to access AOT symbols in

JITed code, explains the remaining memory overhead for the experimental

benchmarks. The instance of povray highlights the issue of executing JITed

code that is distant in memory from the rest of the program, as it suffers

from significant instruction cache misses. imagick, identifies overhead from

symbol access, wherein data cache and DERAT misses become significant.

These results encourage future work to reduce the separation in memory space

for AOT and JITed code, and to work to reduce the level of indirection for

accessing AOT symbols.

5.6 Summary

The feasibility of dynamic sub-target specialization is supported through posi-

tive answers to the questions raised in this chapter. Experimental results from

LLVM and the DASS prototype are encouraging, but also raise new questions
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for future work and considerations that must be made when implementing and

applying DASS.

Answering 1 affirmatively, results from Section 5.2.1 identify multiple

benchmarks where sub-target specialization is a significant optimization (greater

than 10% improvement in execution time). Despite this improvement, instances

where specialization is minor or even incurs slight slowdown, reveals that

specialization as an optimization is not guaranteed value. Instead, it is valuable

for instances where program code is amenable to the features unique to sub-

targets (e.g . x264, lbm).

The conclusions from Section 5.2.2 answer 2 by showing certain benchmarks

(e.g . namd, imagick, lbm) can attain a significant portion of whole-program

specialization by statically specializing only a fraction of the total program

code. While these results are encouraging, experimentation also reveals an

instance where selective specialization has negative impacts on the instruction

cache by introducing divergent memory alignment goals between generic and

sub-target specialized code. Furthermore, results from x264 reveal that the

benefit of specialization varies greatly within a program’s functions, indicating

that selection of functions for specialization requires careful consideration.

3 is answered with analysis of the DASS prototype, the variant D-Block

produces positive results for certain benchmarks, lbm and to a lesser extent

x264, wherein dynamic specialization speedup approached that of static spe-

cialization. Despite these instances, substantial overhead was observed for

many benchmarks, encouraging investigation to answer question 4 .

Overhead analysis is a substantial portion of this evaluation, as answering

4 is complicated due to the multiple potential sources of overhead (Section 4.3)

and the extent of overhead seen for certain benchmarks (povray , deepsjeng

and imagick). Compilation and Initialization overhead are not significant

(Section 5.4.1) for the analyzed benchmarks. Despite that, experimentation

reveals that the amount of specialized IR correlates with these overheads, and

as such consideration must be taken for these costs when executing programs

with shorter execution times.

Indirection (Section 5.4.2) is the major cause of overhead for multiple bench-
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marks (perlbench, leela, x264). Analysis reveals significant overhead can be

incurred both by frequent calls to JITed functions, and through the movement

of JITed code in memory from the original call site (deepsjeng), a factor that

is explored further as Locality overhead. For indirection, improvement can be

achieved by simplifying the calls to JITed code by rewriting call sites instead

of the trampoline structure, however, this is not feasible for many developers.

The DASS prototype faces higher overhead from Optimization Limitation

(Section 5.4.3) in the instance of nab due to the JIT data structures preventing

the GlobalOpt pass. This instance encourages further exploration of how DASS

is implemented through compiler passes, and if a greater modification of the

optimization pipeline is necessary.

The results discussed in Section 5.5.1 indicate that a significant source of

overhead is caused by a mix of indirection and lower code & data locality

introduced by the placement of JITed code relative to AOT-compiled code.

Although there is not much that can be done to increase instruction locality,

some changes could improve the locality of data. In particular, the indirection

to access data can be avoided by passing the addresses of symbols as arguments

to the JITed function. However, this solution is dependent on the ABI and

would only work for functions that access a small number of symbols, otherwise

the arguments would be passed through the stack and cause a similar locality

issue. Moreover, passing addresses to functions may affect the results of escape

analysis and reference analysis with detrimental effects on performance. Another

possibility is to employ an inspector/executor approach that would observe the

address range where the JITed code was loaded and, if the distance to accessed

symbols permits, replace indirect loads with (direct) offset-based loads. The

efficacy and trade-offs of such solutions are left for future investigation.

5.6.1 Function Selection Takeaways

Evaluation of DASS reveals both instances where function code is amenable to

the dynamic specialization method, displaying specialization speedup roughly

equivalent to that achieved statically (lbm), and code wherein dynamic spe-

cialization performs significantly worse than static specialization (povray).
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Through the evaluation, the relative overheads of these benchmarks was con-

nected with distinct function features and behaviours (IR size, function calls,

global symbols). Thus, when considering what functions should be selected

manually or automatically for a DASS-based system, specific considerations

related to function behaviour and design can be taken.

These selection considerations are listed below:

• Function Features: Analysis of specialization speedup in Section 5.2

reveals that instances of significant speedup are explained through the

application of new sub-target instructions to the code. Furthermore,

the largest instances of speedup relate to utilizing new vectorization

capabilities through sub-target instructions. This encourages selecting

functions that display features relevant to new sub-target capabilities

(i.e. vector operations). While it is difficult to identify future sub-target

capabilities, analyzing instructions introduced in recent sub-target designs

can effectively improve selection.

• Low IR Proportion: Data from analyzing compilation time in Sec-

tion 5.4.1 indicates that the overhead is insignificant for the analyzed

functions. Part of these results emerges from the comparatively low

amount of IR that was selected and JIT compiled. Applying DASS

to real-world programs can require wider selection as hot functions dif-

ferentiate greatly by workload. With that consideration, the extent of

fat-binary IR saved should still be small as, beyond one-time initialization

and compilation costs, the trampoline structure necessary to support

DASS incurs an overhead on selected functions even if JIT compilation

is not performed.

• Call Frequency: Indirection overhead was shown to be significant in

Section 5.4.2. As mentioned above, DASS incurs an overhead for selected

functions through its trampoline structure. With that in mind, functions

that are called infrequently relative to their individual call execution time

are better suited for DASS selection as the indirection cost occurs once
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per call. Furthermore, issues of locality with JITed code (Section 5.5.1)

are exacerbated by higher call frequency, as the instruction cache impacts

are felt in part as execution moves from AOT-compiled to JITed code.

• Global Symbol Usage: Indirection as it relates to accessing global sym-

bols is another noticeable overhead in the evaluation. When considering

function selection, if symbol accesses can not be optimized with the JIT

compilers code model, it is preferable to avoid functions with frequent

global symbol accesses, as each access requires an expensive indirection.

Symbols, as they pertain to calls for AOT-compiled functions in JITed

code, also impact instruction cache locality, as the distance in memory

between the instructions of the two functions is often far greater than in

a statically specialized binary.
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Chapter 6

Related Work

Related work to DASS focuses on existing methods of performing dynamic

compilation with C/C++ and other statically compiled languages (Section 6.1).

Not all dynamic compilation methods are explicitly designed to perform sub-

target specialization, however in their implementation many of the steps

necessary to perform specialization are supported. Thus, these approaches can

be compared to DASS, both in the extent of program code that is dynamically

compiled, and in their methodology for identifying compilation targets. Beyond

the development of DASS, research has designed and implemented methods

of static and dynamic analysis to find program hot functions. Other methods

have also been explored for the creation of fat-binaries. These works and others

(Section 6.2) are relevant as means of extending and comparing alternatives to

DASS with the goal of improving the methods applicability in future work.

6.1 Dynamic Compilation Methods

Dynamic code compilation for static languages has been a persistent point

of interest in prior research. For dynamic compilation, there are two major

approaches: holistic (Section 6.1.1) and selective (Section 6.1.2). A holistic

approach targets the entire program for (re)compilation during execution. In

comparison, a selective approach narrows the scope to specific “high-value”

segments of the code. While the holistic approach benefits from simplicity

in its broad target, selective methods like DASS are subject to additional

considerations. A selective dynamic compilation system must have a mechanism
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to decide what segments are high-value and worthy of recompilation.

6.1.1 Holistic Dynamic Compilation

Holistic dynamic compilation is expensive compared to a selective approach,

as the cost to recompile is significantly greater when targeting the entire

program code compared to individual functions. Thus, these methods require

more significant optimization improvement to pay-off the cost of compilation.

Facing this cost, some holistic methods ignore performance, focusing instead on

alternative benefits that justify the cost to performance. Approaches to enable

interpretation with C/C++ commonly follow this path. Cling [56] and Runtime

Compiled C++ [9] both focus on enabling rapid application development,

trading off high overhead with faster code change feedback when developing

smaller applications. Feedback is also the goal of CLIP [33], which is designed to

be a simplified teaching tool for C/C++. DASS, unlike these methods, focuses on

improving program execution time and adopts a selective dynamic compilation

approach to reduce recompilation overhead.

For holistic methods, that focus on optimization, the overhead of full

program compilation can be reduced through various methods. Dynamo [8]

reduces interpretation overhead by recording and compiling short instruction

traces into “fragments”, with the goal of quickly moving from the costly process

of interpreting instructions, to the majority of execution occurring through

optimized fragments. While, the work of Hildenbrand [21] reduces the overhead

of binary recompilation through the development of a lower-level IR that

preserves more of the original compilation work for the program. In contrast,

DASS with a selective focus starts out with the equivalent of the “fragments”

in Dynamo. Furthermore, the fat-binary design of DASS saves the original

compilation IR, thus a lower-level representation is not needed, as the cost of

decompiling is avoided, and LLVM IR can be more aggressively optimized.

Holistic methods that seek to improve program performance often utilize a

combination of architectural and program behavior information. BOLT [42]

optimizes code for data-center applications by collecting offline profiles to

inform dynamic recompilation that is performed over the entire program to
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improve cache efficiency through binary layout reordering. PROPELLER [2]

distributes a compilation process similar to BOLT’s, but it also reduces the,

potentially significant, overhead incurred by profiling. Lightning BOLT [43]

develops a similar process to reduce compilation costs by enabling parallelism

within the most costly optimization. It transforms the approach of BOLT

into a selective one by performing analysis on the respective reduced cost and

retained value of only compiling certain functions. Different than BOLT, DASS

does not require profiling data as candidates for dynamic specialization can be

identified via other mechanisms, e.g . static analysis or run-time cost/benefit

heuristics. Moreover, the goals of BOLT are orthogonal to DASS’s, thus they

can be employed together.

6.1.2 Selective Dynamic Compilation

The choice of which segments to target for specialization influences the possible

optimizations that dynamic compilation can perform and the corresponding

cost. DyC [20] focuses on individual variables, recompiling the code blocks

where these variables appear to generate binaries where these variables can

be treated as run-time constants. ADAPT [58] identifies loop nests that lack

function calls or I/O, creating multiple experimental versions of the code and

picking the best-performing version. Azure [63] targets Single-Entry-Single-

Exit regions of binary code that demonstrate sufficient parallelism, producing

modified binaries that take advantage of new hardware constructs. Castanos

et al.’s work [40] and ExanaDBT [50] focus on recompiling entire functions,

allowing for easier insertion of recompiled code into the host program through

call modification or through a trampoline to a dynamic library. DASS employs

function-level specialization and thus is not limited to optimizations that target

specific variable usage or loops as DyC and ADAPT. Instead of raising binary

code to an IR-form like in Azure and ExanaDBT, DASS saves the IR of selected

segments into the binary, thus it preserves more static information. Castanos

et al.’s work [40] is the most similar work to DASS. However, the system

proposed by Castanos et al. is designed to use JIT technology while the DASS

implementation uses a JIT compiler as a convenient way to produce a prototype,
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as DASS can be realized without a JIT.

The identification of recompilation targets needs to balance the amount

of information required for the decision and the overhead of retrieving that

information and making the decision. DyC [20] and Tick C [17] makes use of a

manually applied annotation attached to each code line that identifies it for

dynamic compilation. Forgoing manual identification, Calpa [35] extends DyC

by applying the system’s annotations automatically, requiring a profile of the

program to be built in a previous run of the program to inform its decisions.

Different than DyC and Tick C, DASS can specialize segments at the level of

functions, thus the selection can be done manually via function attributes or

automatically by the compiler. In addition, the runtime component of DASS

can be extended to only apply sub-target specialization to candidates that pass

a set of run-time cost/benefit criteria.

6.2 DASS Expansion Works

The DASS prototype identifies target functions through function attributes

manually applied to source code. While this is sufficient for investigating the

feasibility of dynamic specialization, identification and application of attributes

to beneficial functions is often not feasible in real-world programs. Thus,

exploration of both static analysis to identify initial targeted functions, and

dynamic analysis, to confirm the hotness of targeted functions, is an important

consideration for future work.

The work of Wu & Larus [62] outlines a static analysis, built on heuris-

tics, that can estimate basic block execution frequencies, and which can be

extrapolated to estimate function call frequencies. VESPA [36] builds on this,

using a machine learning model trained with profile data to statically predict

the branch frequencies and resulting basic block execution frequencies of a

program. These methods can be utilized to roughly estimate program hot

functions, which can inform automatic identification of target functions.

Dynamic analysis has improved accuracy, however it must contend with

acting as an overhead on program execution time, thus research often focuses on
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reducing analysis overhead. The work of Lee et al. [30], combines a preliminary

static analysis heuristic alongside a low overhead bytecode count to estimate

hot functions for Java JIT compilation. Mußler et al. [38] reduces the overhead

of function instrumentation through a static analysis of function features that

filters out undesirable candidates. While, Servat et al. [51] proposes coarse grain

sampling to buttress the construction of execution traces using instrumentation.

Hypothetically, considering the application of dynamic analysis to guide DASS,

the aforementioned work to reduce overhead is key to preserve sub-target

specialization speedup.

The fat binary method utilized by DASS saves the code of specific functions

to be recompiled in an optimized form at runtime. Other approaches to

preserving program code have been done within LLVM, often focusing on saving

the entire program to enable Link-Time-Optimization (LTO). WLLVM [3]

provides support for saving the entire bitcode of a program within its object

files, from which the program can be recomposed using the attached utility.

GLLVM [1] extends this work, enabling better performance through parallelism

of the process, at the cost of somewhat restricted functionality. Beyond

these works, the LLVM project directly supports embedding bitcode through

command-line arguments. While the DASS prototype design only needs the

target function IR saved, expansion of the work can make use of these techniques

to enable a greater selection of functions, at execution time, for recompilation.
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Chapter 7

Conclusion

This work evaluated the feasibility of a compiler-based system to apply dynamic

adaptive sub-target specialization (DASS). Existing methods of specialization

were reviewed, including the style that DASS builds from (Fat-Binary JIT).

From that review, the core design and a prototype implementation of DASS was

introduced. Results obtained through an in-depth evaluation indicate that there

is significant performance gains that can be achieved through static sub-target

specialization. The results further indicate that it is sufficient to specialize only

a fraction of the application code in order to achieve the majority of the whole-

application specialization gains. Furthermore, empirical evidence indicates that

in some instances it is possible to attain similar results by applying dynamic

specialization at run-time using the DASS prototype. A detailed analysis of the

overheads observed in a prototype implementation of DASS in LLVM reveals

that, although effective, a JIT-enabled approach requires careful consideration

of what functions should be selected for sub-target specialization. Moreover,

the detailed overhead analysis identified sources of overhead that are inherent

to a JIT-enabled approach.

The results of this thesis both encourage the development of dynamic

sub-target specialization techniques, and identify future work in the form of

limitations and overheads faced by the DASS prototype. While DASS is used to

evaluate the cost-benefit of sub-target specialization, the concern of identifying

the target functions for this optimization is not covered. Methods that perform

automatic identification and marking of target functions through static and/or
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dynamic analysis are necessary to see adoption of dynamic sub-target special-

ization in real-world applications. Beyond identification, evaluation of DASS

reveals future work to optimize the prototype implementation. Lower impact

structures for initiating and redirecting execution to JITed code could greatly

improve the competitiveness of dynamic specialization when compared to static

specialization. While, optimization targeted at reducing the loss of locality

between JITed and AOT-compiled code are necessary to avoid high overheads

for many functions. These improvements and more can enable dynamic sub-

target specialization for real-world applications, improving the performance of

programs and increasing utilization of modern processor hardware features.
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Appendix A

Function Selection

The functions selected for specialization in Chapter 5 are listed below, organized

by the machine and criteria for which they were selected. Further information,

on machine and criteria is given in the aforementioned chapter.
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Table A.1: Functions selected for Machine-9 E10-S10.

Benchmark Function Source File Line

namd pairlist from pairlist ComputeNonbondedInl.h 32
namd calc pair energy fullelect ComputeNonbondedUtil.h 352

povray All Plane Intersections planes.cpp 103
povray All Sphere Intersections spheres.cpp 122

lbm LBM performStreamCollideTRT lbm.c 262

x264 x264 pixel satd 8x4 common/pixel.c 234

imagick MorphologyApply magick/morphology.c 3827
imagick MeanShiftImage magick/feature.c 2108

nab mme34 eff.c 3203
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Table A.2: Functions selected for Machine-9 E05-S05.

Benchmark Function Source File Line

namd pairlist from pairlist ComputeNonbondedInl.h 32
namd calc pair energy fullelect ComputeNonbondedUtil.h 352
namd calc pair fullelect ComputeNonbondedUtil.h 351
namd calc pair energy ComputeNonbondedUtil.h 350
namd calc pair energy merge fullelect ComputeNonbondedUtil.h 354
namd calc pair merge fullelect ComputeNonbondedUtil.h 353
namd calc pair ComputeNonbondedUtil.h 349
namd calc self energy fullelect ComputeNonbondedUtil.h 361

povray All Plane Intersections planes.cpp 103
povray All Sphere Intersections spheres.cpp 122
povray Inside Plane planes.cpp 226

lbm LBM performStreamCollideTRT lbm.c 262

x264 x264 pixel satd 8x4 common/pixel.c 234
x264 get ref common/mc.c 232
x264 mc chroma common/mc.c 263

deepsjeng feval neval.cpp 1043
deepsjeng see see.cpp 19

imagick MorphologyApply magick/morphology.c 3827
imagick MeanShiftImage magick/feature.c 2108
imagick GetOneCacheViewVirtualPixel magick/cache-view.c 768

leela FastBoard::kill or connect FastBoard.cpp 1214
leela FastBoard::self atari FastBoard.cpp 1271
leela FastBoard::is eye FastBoard.cpp 805

nab mme34 eff.c 3203
nab nbond eff.c 768
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Table A.3: Functions selected for Machine-9 E02-S02.

Benchmark Function Source File Line

perlbench Perl pp padsv pp proto.h 184
perlbench Perl regexec flags regexec.c 2788
perlbench Perl pp match pp proto.h 153

mcf price out impl implicit.c 444

namd pairlist from pairlist ComputeNonbondedInl.h 32
namd calc pair energy fullelect ComputeNonbondedUtil.h 352
namd calc pair fullelect ComputeNonbondedUtil.h 351
namd calc pair energy ComputeNonbondedUtil.h 350
namd calc pair energy merge fullelect ComputeNonbondedUtil.h 354
namd calc pair merge fullelect ComputeNonbondedUtil.h 353
namd calc pair ComputeNonbondedUtil.h 349
namd calc self energy fullelect ComputeNonbondedUtil.h 361
namd calc self energy ComputeNonbondedUtil.h 359
namd calc self energy merge fullelect ComputeNonbondedUtil.h 363
namd calc self fullelect ComputeNonbondedUtil.h 359
namd calc self merge fullelect ComputeNonbondedUtil.h 362
namd calc self ComputeNonbondedUtil.h 358

povray All Plane Intersections planes.cpp 103
povray All Sphere Intersections spheres.cpp 122
povray Inside Plane planes.cpp 226
povray All Quadric Intersections quadrics.cpp 136
povray Inside Quadric quadrics.cpp 283
povray DNoise texture.cpp 548
povray Intersection objects.cpp 93
povray Intersect Light Tree lbuffer.cpp 1279

lbm LBM performStreamCollideTRT lbm.c 262

omnetpp cMessageHeap::shiftup simulator/cmessageheap.cc 195
omnetpp cMessageHeap::insert simulator/cmessageheap.cc 166

xalancbmk ValueStore::isDuplicateOf ValueStore.cpp 218
xalancbmk XPath::executeMore XPath.cpp 307

x264 x264 pixel satd 8x4 common/pixel.c 234
x264 get ref common/mc.c 232
x264 mc chroma common/mc.c 263
x264 x264 pixel sad 16x16 common/pixel.c 61
x264 pixel hadamard ac common/pixel.c 328
x264 hpel filter common/mc.c 184
x264 x264 me search ref common/mc.c 173
x264 quant 4x4 common/quant.c 53
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x264 sub4x4 dct common/dct.c 112
x264 quant trellis cabac common/rdo.c 419

blender add radiance sss.c1 349
blender ray ao rayshade.c2 2093

deepsjeng feval neval.cpp 1043
deepsjeng see see.cpp 19
deepsjeng make make.cpp 19
deepsjeng RookAttacks bitboard.cpp 545
deepsjeng unmake make.cpp 343
deepsjeng remove one fast search.cpp 368
deepsjeng attacks to attacks.cpp 124
deepsjeng gen generate.cpp 159
deepsjeng gen captures generate.cpp 398

imagick MorphologyApply magick/morphology.c 3827
imagick MeanShiftImage magick/feature.c 2108
imagick SetPixelCacheNexusPixels magick/cache.c 4732
imagick GetOneCacheViewVirtualPixel magick/cache-view.c 768

leela FastBoard::kill or connect FastBoard.cpp 1214
leela FastBoard::update board fast FastBoard.cpp 743
leela FastBoard::self atari FastBoard.cpp 1271
leela FastBoard::is eye FastBoard.cpp 805
leela FastBoard::merge strings FastBoard.cpp 657
leela FastBoard::save critical neighbours FastBoard.cpp 1168
leela FastBoard::add pattern moves FastBoard.cpp 1908
leela FastBoard::kill neighbours FastBoard.cpp 1105
leela FastBoard::nbr criticality FastBoard.cpp 2044
leela FastBoard::add neighbour FastBoard.cpp 202

nab mme34 eff.c 3203
nab heapsort pairs nblist.c 114
nab nbond eff.c 768
nab searchkdtree nblist.c 667

xz bt find func liblzma/lz/lz encoder mf.c 453
xz bt skip func liblzma/lz/lz encoder mf.c 521

1Full path: blender/source/blender/render/intern/source/sss.c
2Full path: blender/source/blender/render/intern/source/rayshade.c
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Table A.4: Functions selected for Machine-10 E10-S10.

Benchmark Function Source File Line

namd pairlist from pairlist ComputeNonbondedInl.h 32
namd calc pair energy fullelect ComputeNonbondedUtil.h 352

povray All Sphere Intersections spheres.cpp 122

lbm LBM performStreamCollideTRT lbm.c 262

x264 x264 pixel satd 8x4 common/pixel.c 234
x264 get ref common/mc.c 232

imagick MeanShiftImage magick/feature.c 2108
imagick MorphologyApply magick/morphology.c 3827
imagick SetPixelCacheNexusPixels magick/cache.c 4732

nab heapsort pairs nblist.c 114
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Table A.5: Functions selected for Machine-10 E05-S05.

Benchmark Function Source File Line

perlbench Perl leave scope scope.c 759

namd pairlist from pairlist ComputeNonbondedInl.h 32
namd calc pair energy fullelect ComputeNonbondedUtil.h 352
namd calc pair energy merge fullelect ComputeNonbondedUtil.h 354
namd calc pair fullelect ComputeNonbondedUtil.h 351
namd calc pair merge fullelect ComputeNonbondedUtil.h 353
namd calc pair ComputeNonbondedUtil.h 349
namd calc self energy ComputeNonbondedUtil.h 359
namd calc self energy fullelect ComputeNonbondedUtil.h 361

povray All Plane Intersections planes.cpp 103
povray All Sphere Intersections spheres.cpp 122
povray Inside Plane planes.cpp 226
povray All CSG Intersect Intersections csg.cpp 235

lbm LBM performStreamCollideTRT lbm.c 262

x264 x264 pixel satd 8x4 common/pixel.c 234
x264 get ref common/mc.c 232
x264 mc chroma common/mc.c 263

deepsjeng feval neval.cpp 1043
deepsjeng see see.cpp 19

imagick MeanShiftImage magick/feature.c 2108
imagick MorphologyApply magick/morphology.c 3827
imagick SetPixelCacheNexusPixels magick/cache.c 4732

leela FastBoard::kill or connect FastBoard.cpp 1214
leela FastBoard::is eye FastBoard.cpp 805
leela FastBoard::get pattern fast augment FastBoard.cpp 1356

nab mme34 eff.c 3203
nab heapsort pairs nblist.c 114
nab searchkdtree nblist.c 667
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Table A.6: Functions selected for Machine-10 E02-S02.

Benchmark Function Source File Line

perlbench Perl leave scope scope.c 759
perlbench Perl pp multideref pp proto.h 161
perlbench Perl regexec flags regexec.c 2788
perlbench Perl pp match pp proto.h 153
perlbench Perl pp padsv pp proto.h 184

namd pairlist from pairlist ComputeNonbondedInl.h 32
namd calc pair energy fullelect ComputeNonbondedUtil.h 352
namd calc pair energy ComputeNonbondedUtil.h 350
namd calc pair energy merge fullelect ComputeNonbondedUtil.h 354
namd calc pair fullelect ComputeNonbondedUtil.h 351
namd calc pair merge fullelect ComputeNonbondedUtil.h 353
namd calc pair ComputeNonbondedUtil.h 349
namd calc self energy ComputeNonbondedUtil.h 359
namd calc self energy merge fullelect ComputeNonbondedUtil.h 363
namd calc self energy fullelect ComputeNonbondedUtil.h 361
namd calc self fullelect ComputeNonbondedUtil.h 359
namd calc self merge fullelect ComputeNonbondedUtil.h 362
namd calc self ComputeNonbondedUtil.h 358

povray All Plane Intersections planes.cpp 103
povray All Sphere Intersections spheres.cpp 122
povray Inside Plane planes.cpp 226
povray All CSG Intersect Intersections csg.cpp 235
povray Inside Quadric quadrics.cpp 283
povray DNoise texture.cpp 548
povray All Quadric Intersections quadrics.cpp 136
povray Intersect Light Tree lbuffer.cpp 1279

lbm LBM performStreamCollideTRT lbm.c 262

omnetpp cMessageHeap::shiftup simulator/cmessageheap.cc 195
omnetpp record3 indexedfileoutvectormgr.cc4 188
omnetpp EtherMAC::handleMessage model/EtherMAC.cc 202
omnetpp cQueue::pop simulator/cqueue.cc 304
omnetpp cDatarateChannel::deliver simulator/cdataratechannel.cc 129
omnetpp cMessageHeap::insert simulator/cmessageheap.cc 166

xalancbmk NameDatatypeValidator::compare NameDatatypeValidator.cpp 74

x264 x264 pixel satd 8x4 common/pixel.c 234
x264 get ref common/mc.c 232

3Full name: cIndexedFileOutputVectorManager::record
4Full path: simulator/indexedfileoutvectormgr.cc
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x264 mc chroma common/mc.c 263
x264 x264 pixel sad 16x16 common/pixel.c 61
x264 pixel hadamard ac common/pixel.c 328
x264 hpel filter common/mc.c 184
x264 sub4x4 dct common/dct.c 112
x264 x264 me search ref common/mc.c 173
x264 quant trellis cabac common/rdo.c 419
x264 quant 4x4 common/quant.c 53
x264 x264 pixel satd 4x4 common/pixel.c 209

blender add radiance sss.c5 349

deepsjeng feval neval.cpp 1043
deepsjeng see see.cpp 19
deepsjeng make make.cpp 19
deepsjeng attacks to attacks.cpp 124
deepsjeng unmake make.cpp 343
deepsjeng gen generate.cpp 159
deepsjeng remove one fast search.cpp 368
deepsjeng eval neval.cpp 1091
deepsjeng FindFirstRemove bits.cpp 49
deepsjeng gen captures generate.cpp 398

imagick MeanShiftImage magick/feature.c 2108
imagick MorphologyApply magick/morphology.c 3827
imagick SetPixelCacheNexusPixels magick/cache.c 4732

leela FastBoard::kill or connect FastBoard.cpp 1214
leela FastBoard::is eye FastBoard.cpp 805
leela FastBoard::get pattern fast augment FastBoard.cpp 1356
leela FastBoard::merge strings FastBoard.cpp 657
leela FastBoard::add pattern moves FastBoard.cpp 1908
leela FastBoard::kill neighbours FastBoard.cpp 1105

nab mme34 eff.c 3203
nab heapsort pairs nblist.c 114
nab nbond eff.c 768
nab searchkdtree nblist.c 667

xz lzma mf bt4 find liblzma/lz/lz encoder mf.c 683
xz lzma decode liblzma/lz/lz decoder.c 284

5Full path: blender/source/blender/render/intern/source/sss.c
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