Surface Effects in Plane Deformations of Micropolar Elastic Solids

by

Alireza Gharahi

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Mechanical Engineering

University of Alberta

(© Alireza Gharahi, 2021



Abstract

The predictive modelling of the mechanics of materials at small scales has attracted increas-
ing attention in the recent literature mainly due to the scientific and technological demand
for models which accommodate the influence of both material internal structure and surface
effects from micro- to nano-scales. Materials whose deformation is significantly influenced
by their internal structure and surface effects include the class of micro/nano composites as
well as polycrystalline, granular and fibrous materials used increasingly in a wide variety of
advanced technological applications. Micropolar theory and surface mechanics are developed
to bestow upon the continuum-based mathematical models the capability of analyzing such
advanced materials. Notwithstanding the fact that the internal micro/nano-constituents and
the surface effects are incorporated into the model as two different enhancing strategies, the
simultaneous use of them remains rare in the literature. In particular, a systematic design
and examination of such a model which describes plane deformations in micro/nano-materials
is missing.

In this thesis we present two new linear micropolar surface mechanics models coupled
with the plane deformations of a micropolar elastic bulk. The surface models are proposed
as elastic micropolar shells capable of incorporating flexural resistance. In that sense, the
adopted surfaces are the micropolar counterpart of the classical linear Steigmann-Ogden

surface model. In conjunction with the micropolar bulk, the proposed surface models capture
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both the effects of surface and the effects of internal structures which are known to be
dominant in most of the materials from micro- to nano-meter scale.

Among the two, we apply and demonstrate the feasibility of the higher order model using
three popular micro/nano-mechanics problems. In addition, we discuss the improvements
that follow from such a comprehensive mathematical model. We evaluate the problems of
stress concentration around a cavity, effective elastic properties of nano-composites and a dis-
location near a surface. In each case, we obtain meaningful results which are in corroboration
with the existing literature.

In the next step, we perform a rigorous mathematical analysis to investigate “well-
posedness” of the models. First, we establish the general fundamental boundary value
problems associated with the models and discuss the uniqueness of solutions. We then
proceed with the analysis by applying the boundary integral equation method to exam-
ine the existence of solutions of the corresponding boundary value problems. The incor-
poration of surface effects as a separate micropolar structure gives rise to a set of highly
nonstandard boundary conditions that require special treatments. The boundary integral
equations method allows us to reduce the boundary value problems to systems of singular
integro-differential equations. However, a series of carefully chosen transforms are required
to rearrange the system of singular integro-differential equations in a form accommodated
by the well-established theory of singular integral equations. Consequently, we establish the
solvability of the boundary value problems and validate the corresponding mathematical

models.
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Preface

Our research was motivated by evaluating first the importance of bending resistance in any
surface model without reference to micropolar elasticity. This resulted in the following two
publications which confirmed a significant contribution of bending rigidity to any surface

model:

1. M. Dai*, A. Gharahi and P. Schiavone, Analytic solution for a circular nano-inhomogeneity
with interface stretching and bending resistance in plane strain deformations, Appl.

Math. Model. 55 (2018) 160-170.

2. M. Dai *, A. Gharahi and P. Schiavone, Note on the Deformation-induced Change in
the Curvature of a Material Surface in Plane Deformations, Mech. Res. Commun. 94

(2018) 88-90.

The present thesis is composed of the following five published papers: Chapter 2 is published

as a part of the article:

e Gharahi, A. and Schiavone, P. Uniqueness of solution for plane deformations of a

micropolar elastic solid with surface effects Continuum Mech. Thermodyn., 2019
Chapter 3 is published with slight differences as:

e Gharahi, A. and Schiavone, P. Plane micropolar elasticity with surface flexural resis-

tance. Continuum Mech. Thermodyn., 2018, 30, 675-688

*M. Dai was a visiting doctoral student from Nanjing University of Aeronautics and Astronautics, China,
2016-2017
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Chapter 4 is published with slight differences as:

e Gharahi, A. and Schiavone, P. Effective elastic properties of plane micropolar nano-

composites with interface flexural effects. Int. J. Mech. Sci., 2018, 149, 84-92
Chapter 5 is published with slight differences as:

e Gharahi, A. and Schiavone, P. Edge dislocation with surface flexural resistance in

micropolar materials Acta Mechanica, 2019, 230, 1513-1527
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e Gharahi, A. and Schiavone, P. Uniqueness of solution for plane deformations of a

micropolar elastic solid with surface effects Continuum Mech. Thermodyn., 2019
Chapter 6, Section 6.3 is published as the article:

e Gharahi, A. and Schiavone, P. Existence and integral representation of solutions for
plane deformations of a micropolar elastic solid with surface elasticity ZAMM - Journal
of Applied Mathematics and Mechanics / Zeitschrift fir Angewandte Mathematik und
Mechanik, 2020

A continuation of Chapter 6 is published as the article:

e Gharahi, A. and Schiavone, P. The Neumann problem in plane deformations of a

micropolar elastic solid with micropolar surface effects Mathematics and Mechanics of
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The beauty of mathematics only shows itself to more patient followers.

— Maryam Mirzakhani
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Chapter 1

Introduction

Mathematical models are vastly used in various disciplines of applied sciences and engineer-
ing. The use of mathematical models is not limited to natural sciences but also social sciences,
computer, and economics extensively benefit from the those models. A mathematical model
is an abstract description of the behavior of a system in the language of mathematics.
Classical mechanics originated in the seventeenth century from Newton’s laws of motion
and developed further to Eulerian, Lagrangian and Hamiltonian mechanics in the eighteenth
and nineteenth century, provides extensive mathematical tools to model the physics of mo-
tion of macroscopic objects. From the macroscopic view stems a branch of classical models
that idealize materials as a continuous mass rather than discrete particles. The viewpoint of
materials as bodies continuously occupying a region in the space due to A.L. Cauchy (1789-
1857) allows for differentiation with respect to space in addition to time in the mathematical
model. Such mathematical apparatus provides the model with analytical advantages barely
offered by any other methods. Determinism and rationality of the model, excellent agreement
with observations and a myriad numerical methods for analysis are only a few of the advan-
tages achieved from the continuum perspective. It is the mathematical and computational
benefits that promote the continuum mechanics to an elegant hypothesis to describe physics
of force and motion of material bodies. Again the same desirable advantages prompted the
attempts to extend the idea of continua to physics of deformation and motion of materials

in microscopic scales of time and space. However, in the microscopic scales the behavior of



materials are significantly influenced by the heterogeneity, distinguishable constituents and
discrete particle structures, the properties that in the first glance appear to be inconsistent
with the premises of continuum mechanics.

The question posed by Eringen [45] arises here as “how to reconcile” the concept of
discrete particles and constituents of a body with continuum hypothesis? Obviously, the
equations constructed within the framework of modeling particles as physical points suitable
for the microscopic view, stand outside the classical definitions and principles of the contin-
uum mechanics. The answer was sought in the successive releasing of certain assumptions
built in the Cauchy classical continuum models, what Maugin calls working hypotheses [99],
to obtain a “generalized” continuum model. The first working hypotheses of the Cauchy’s
classical continuum to be released is that there are no couples transferred between two sur-
faces dividing a volume. The second working hypothesis is that there are no internal degrees
of freedom to describe any internal micro-structures. Relaxing these assumptions, gives rise
to non-symmetric stress tensors, surface couples and body couples, couple stress tensors, and
internal degrees of freedom. These emerging quantities constitute the components of the the-
ory of asymmetric continua [138] named after Cosserat brothers [24] as the Cosserat continua.
In its most general case, a Cosserat continuum consists of deformable point elements with
three global translational degrees of freedom as well as six internal micro-structural degrees
of freedom including independent translations and rotations representing micro-deformations
of each element. This is known as a micromorphic continuum [45, 48]. What Eringen [46]
calls “micropolar theory” emerges as a special case of the micromorphic deformation theory
when the state of micro-deformations is described by independent local rigid rotation of ma-
terial point elements, also known as micro-rotations [46]. Based on the latter assumption,
a point element of material has total six degrees of freedom, including three translational
and three independent rigid rotational degrees of freedom. Kinetically, such independently
rotating rigid elements transfer not only force per unit area, but also moment(couple) per
unit area or namely “couple-stress”. A Cosserat continuum with such simplifying assump-

tions work suitably for a large class of solid materials, particularly those with significant



micro/nano-structures (e.g. polymeric composites, granular and fibrous materials).

The generalized continuum theories with independent internal degrees of freedom carry
length scales into the model. In particular, a micropolar material incorporates an intrinsic
characteristic length in the mechanical behavior of the corresponding body; a quantity which
is absent from the materials in the classical continuum. It is observed that the mechanical
behavior of a body modeled as a micropolar material is dramatically influenced by the
characteristic length of the material when the length scale of the external stimuli (such
as wavelength), or the geometrical dimensions of the body are comparable to the intrinsic
characteristic length of the material. This effect is commonly named “size-dependency” of
the material’s behavior and is not captured via the classical theory.

The mid-twentieth century marks the rebirth of the Cosserat continuum theories af-
ter half a century of dormancy, mainly because of the growing use of the materials whose
micro/nano-structures significantly affect their mechanical behavior. In a period of years in
1960s-1970s, researchers attempted to overcome the inadequacy of the classical models by re-
furbishing the Cosserat theories to achieve more comprehensive models capable of including
the micro/nano-mechanical effects. From these years forward, solid mechanics in particular,
was enhanced with generalized theories such as micropolar elasticity [49, 112], couple stress
elasticity [104, 141, 142], strain-gradient elasticity [103], and non-local elasticity [50, 84].
The couple stress theory of elasticity results as a special case of the micropolar elasticity
where the micro-rotations coincide with the global rotation of point elements in the way
defined in the classical elasticity. The strain-gradients are generated where the constitutive
theories depend on the higher derivatives of strain tensors. Further, the non-local theories
abandon the locality hypothesis in the classical elasticity meaning that the constitutive law
depends on the strain in a certain range of space about a point and the history of strain in
time rather than the strain at that point in a fixed time. For a comprehensive account of
the continuum theories, we refer to Truesdell and Noll [143].

The micropolar theory of elastic materials was surmised ahead of its experimental vali-

dations. The earliest efforts were conducted by Schijve [127, 41] in search of couple stress



effects in real materials. The objective was to detect the effects of thickness on the flexural
rigidity of metallic plates. These tests, however, reported no departure from the classical
predictions of stress fields in small scale metals due to the insufficient smallness of speci-
mens which were still far from the intrinsic characteristic length of the metals [11]. The first
evidence of the presence of micropolar and couple stress effects was observed in 1970s due
to Askar [5], and Perkins and Thompson [115]. More successful investigations of the size
dependence in micropolar theory began in 1980s with a series experiments by Lakes and co-
workers [152, 87, 88, 89]. For example, Lakes-co-worker’s team showed that certain porous
solids [88] and metallic foams [13] are describable as micropolar materials for which they
found six corresponding elastic constants. Since the observation of the micropolar elastic
effects in advanced materials, a great deal of effort was put to determine the elastic constants
corresponding to the micropolar model. A method of detecting size dependence is to test
and identify the changes in the stiffness of material samples made with similar geometries
and varying sizes. These methods of size-effect identification were adopted in experiments
by Lakes and co-workers, also popularly by others [12] to determine the micropolar elastic
parameters. In a later effort, Mora and Waas [106] calculated the micropolar characteristic
lengths for a polycarbonate circular-cell honeycomb using uniaxial compression tests and
direct measurement of strain and displacement. More recently, the mechanical properties
of heterogeneous materials with periodic circular voids were interpreted in the sense of the
constitutive laws of micropolar elasticity [10, 149]. In most cases, the experimental studies
conclude that the characteristic length defined in micropolar models is equivalent to the
average size of internal microstructures of the corresponding materials. Even though the
generalized continuum theories, and particularly the micropolar theory, are still ahead of
the experiments because of the technical challenges that arise in small scale testing, the
experimental studies remain an open and ongoing area. A comprehensive review of the
experimental studies is given by Hassanpour and Heppler [68].

Supported and validated by numerous experimental studies, micropolar continua have

proved to be a promising tool in modeling and studying advanced materials. For instance,



using graph theory and energy based homogenization of granular media Goddard [61] demon-
strated that micropolar theories represent plausible models for such materials. Subsequently,
the micropolar descriptions of granular materials were used to elaborate the theory of porous
materials which otherwise suffered from classical disadvantages in their views of microscopic
phenomena such as shear band localization [40, 39]. De Borst [29] showed that micropolar
models as higher order continua can eliminate the numerical anomalies that occur in finite
element simulation of failure modes and elastoplastic localization. Consequently, the mi-
cropolar theories are more amenable for use in numerical analysis of granular materials. For
example, Mori et al. [107] formulated a finite element method using Cosserat continuum
constitutive properties which made the model capable of considering the microrotations of
powder grains and lead to an extension of finite element analysis to applications for mi-
croscopic behavior of granular materials. Two other examples of modifying finite element
method to accommodate Cosserat continuum properties of granular materials can be found
in [145, 160]. These generalizations of continuum mechanics contributed successfully to de-
veloping models of porous, foamy and multi-phase materials [31, 32, 30]. The micropolar
theory was also adopted for an adequate representation of plastic behavior of poly-crystals
[133]. The application of micropolar theory is not limited to granular and poly-crystalline
materials. At the nano-scale level, Xie and Long [52] employed micropolar theory to model
the nanostructure of carbon nanotubes. They considered elements having kinematic proper-
ties of micropolar point elements and assigned couple stress interaction between the carbon
bonds of two neighboring elements. Before them, Ivanova et al. [76, 75] had applied the idea
of including moment components to the inter-atomic interactions. They, as well, included
rigid rotational degrees of freedom for a group of atoms taken as a single point element.
Hence, they interpreted the atomic group nano-structures in the framework of a micropolar
model. Furthermore, the micropolar mechanics was use in developing enhanced theories of
beams, plates, and shells [72, 116, 47, 1, 42, 122]. For a comprehensive review on various
applications of Cosserat continua and the development of theories of micropolar plates and

shell we refer to Altenbach et al. [2].



Micropolar theory offers many advantages over classical elasticity where a small-scale
phenomenon is involved. First, the micropolar models provide a more adequate account
of stress distribution around cracks, notches and defects where the stress/train gradients
are large [79]. The application of micropolar theory alters the stress fields and mainly
abates the stress distribution about a crack, however, it does not affect the singularity
order of the stress at the crack tip [154]. The stress concentration in small-scale mechanics is
important because usually the classical theories fail to provide a sufficient prediction of stress
in the regions of high stress and strain gradient intensity. The stress concentration regions
commonly appear in the problems of defects, notches, cracks and contact. The numerical
finite element analysis of notches and contact problems by Eremeyev et al [44] demonstrates
that the micropolar elasticity results in an ameliorated stress concentration compared to
the classical approach and it captures the experimentally observed size dependence of such
problems [121]. The couple stresses, in particular, appear near high stress gradient regions
and singularities. Shmoylova et al [130] presented similar results for the stress concentration
about a crack in bone and and proved that their results agree well with the experimental data
in [90]. In addition, the micropolar theory generally predicts higher measures of stiffness
for a material where the size of micro-structures are comparable with the configurational
measures. The accurate estimation of such properties become particularly important in
design and prediction of behavior of micro/nano-scale devices. While the effect of size is
absent from the classical elasticity, a substantial increase in the apparent elastic moduli is
predicted by the micropolar model where the size of specimen is smaller. Rueger and Lakes
[119] observed such effects in accordance with the micropolar predictions, while those effects
are missing from classical models.

Despite mostly aiming micro/nano-mechanics of materials, the concept of micropolar
elasticity found use even beyond the small-scale problems. For example, Pau and Trovalusci
[114] employed micropolar theory to study the behavior masonry walls. They demonstrated
that any material with even macroscopic internal features requires higher order continuum

models, as long as their internal kinematics effectively alters their mechanical behavior. In



particular, they concluded that the micropolar effects are more intense when the microrota-
tion of elements depart further from the classical (macro)rotations. Traditionally, discrete
element methods are the common approach to the problems involving materials with dis-
tinct features, yet Pau and Trovalusci [114] demonstrated that the micropolar model can
successfully replicate the discrete models for such materials.

Refining the classical models based on internal degrees of freedom and presence of couple
stress is not the only approach for generalization of continuum models. Observations indicate
yet another phenomenon which becomes significantly dominant at the nano-scale level. It
is well-known that the material particles (atoms or molecules) experience a different local
balancing formation than the particles deep inside the materials. As a result, the particles
on the surface assume a different structure than that of the bulk. The reconstruction of
the surface usually occurs in a form of relaxation or general reconstruction. Relaxation
happens when the surface atoms change position with respect to the bulk arrangement.
General reconstruction refers to relaxation plus rearrangement of surface atoms with respect
to each other. These different arrangements of atoms on the surface lead to different energy
states of the surface compared to that of the bulk. The difference between the energy
states of the surface and the bulk is referred to as Gibbs free surface energy [62]. The
surface stress appears as the variation of the surface free energy to the variation of strain
on the surface; a ratio that obviously assumes a different measure on the surface than the
bulk. Consequently, the constitutive properties of the surface of solids are different than the
entire body. Such different mechanical properties of material surface generally extend to a
few atomic layers, therefore their effects are usually neglected in classical continuum models.
However, these surface effects are significant in materials with non-negligible nano-structures.
Such materials often have configurations of nano-meter dimensions with a large surface area
to volume ratio. Consequently, the incorporation of surface effects in continuum models
become vital in modeling nano-structured solids, such as nano-composites, nano-porous,
multi-layer nano-film superlattices, nano-beams, nano-shells and nano-tubes.

The first rational continuum based model of surface mechanics was introduced by Gurtin



and Murdoch [64]. In their model Gurtin and Murdoch regarded the surface of a solid as
a membrane of separate elasticity adhering to the underlying solid. Gurtin and Murdoch
developed their theory based on a concurrent use of linear elasticity for the bulk and finite
deformation formulation for the surface. Due to coupling a two dimensional surface structure
with a three dimensional bulk, a quantity of the length dimension arises from the equations
which introduces size-dependence into the model. Some implications of Gurtin and Murdoch
(G-M) model were presented by Ru [118]. Since its first appearance in the literature, G-M
model has been widely used in the area of nanomechanics [93].

Among the myriad of research that model size dependence of nano-scale materials using
the G-M model of surface effects, Sharma et al. [129] incorporated surface effects into the
model of nano-inhomogeneities with eigenstrains. They illustrated the surface effects on the
size dependence of stress concentration about spherical inhomogeneities. A more general
version of the account of stress concentration about a spherical void was given in [69]. Tian
and Rajapakse conducted similar studies [139, 140] for circular and elliptical inhomogeneities
under plane deformations. In most cases, reduced stress concentrations were obtained about
voids and inhomogeneities of nano-scale size due to the positive surface elastic stiffness. As
mentioned earlier, however, because of their size-independent nature, the classical contin-
uum models generally overestimate the stress concentration near nano-scale structures such
as nano-inhomogeneities. Another interesting problem of nano-mechanics is to determine
homogeneous mechanical properties of heterogeneous materials containing nano-structures.
In that regard, Yang [151] investigated the size-dependence generated from the surface ef-
fects on the equivalent homogenized elastic properties of a heterogeneous nano-composite.
The surface effects on the elastic properties of other nano-sized materials have also been of
great interest. For example, Gua and Zhao [63] and Wang and Feng [146] considered the
size-dependence of nano-beams due to surface effects. Wang and Feng [146] demonstrated
that the positive surface elastic constants increase the predicted natural frequency of nano-
beams regardless of the corresponding modes of vibration. Gua and Zhao [63] concluded

that with positive surface constants the bending modulus of nano-beams increases due to



the significant surface effects at nano-scale level. Notably, experimental observations back
up their conclusion [14]. Surface mechanics also dominates the response of materials to the
nano-size phenomena such as inclusions, dislocations, cracks, and nano-scale defects. Dai
et al.[27] analyzed the effects of G-M surfaces of a thin film on the stress distribution and
image forces generated due to a screw dislocation in the film. They observed that the stress
concentration about the surface is lower for a positive surface elastic constant. In addition,
the positive surface elastic constant reduces the magnitude of image force and the tendency
of the dislocation toward escaping form the crystal. Wang and Schiavone [147] presented an
analytical solution of plane deformations induced by dislocations and inclusions in the pres-
ence of surface effects and demonstrated the significant size-dependence of these interacting
nano-size defects.

The G-M surface model provides a more realistic account of nano-scale phenomena where
the classical continuum models fail. Antipov and Schiavone [4] using G-M model reduced the
order of singularities of the crack tip and showed that the surface effects can predict a more
physically plausible strain at the crack tip. Kim et al. [81, 82|, as well, obtained reduced
stress singularities at the crack tip for different crack modes and interface cracks. We refer
the reader to [80] for a comprehensive account of the role of crack tip conditions in the
reduction of stress singularities at a crack tip in classical linear elasticity with surface effects.
Consequently, in all the aforementioned examples, the G-M surface mechanics serves as a
powerful tool to provide a more adequate description of mechanics of solids at the nano-scale
level.

The neutrality of stress fields is another interesting problem of nano-mechanics that was
tackled using G-M surface model. The problem arose with the following questions: un-
der what conditions the presence of surface effects retains a uniform stress field around
nano-sized inhomogeneities in nano-composites? In other words, researchers tried to find
the condition under which the inhomogeneities are neutral or “invisible”. This problem
is particularly important for exploiting surface mechanics in design of nano-materials with

desirable properties. Benveniste and Miloh [9] addressed this question by modifying the con-



tact mechanisms of inhomogeneities to achieve a undisturbed stress field or neutrality. They
employed a membrane-type interface to neutralize the stress disturbance about elliptical and
spheroidal inhomogeneities. Using G-M surface model, Dai et al. [26] proved that only the
circular elastic inhomogeneities can achieve neutrality under uniform external loads creating
plane or anti-plane deformations.

Surface effects at the nano-scale level can be so substantial that they dramatically increase
the elastic constants of a nano-structured material. This fact encouraged design of nano-
materials whose stiffness is higher than their regular homogeneous counterpart. Duan et
al. [37] showed that a nano-porous material can be made stiffer than their parent material
out of which they are manufactured. This is outstanding for optimization of design where a
more desirable elastic properties can be acquired by using less material.

Despite being successful in investigating the size dependent mechanical behavior of nano-
materials, the G-M model suffers an inconsistency with the fundamental Gibbsian principles
of thermodynamics [113]. Atomistic simulations [101] show that the elastic parameters of
surface may be negative. However, the physical nature of G-M surface as an elastic membrane
does not comply with this possibility, since having a negative elastic modulus is physically
implausible for the two dimensional elastic body of a membrane. Furthermore, Steigmann
and Ogden [136, 137] argued that an energy-minimizing configuration of surface/bulk com-
bination is impossible to achieve under compressive surface stresses with the G-M model. To
address these issues, they generalized the G-M model to incorporate the effects of flexural
resistance into the model.

The modified surface model of Steignann and Ogden form (hereafter referred to as S-O
model) has recently attracted numerous applications in analyses of nano-materials. Chha-
padia et al. [17] in their work verified the important aspects of S-O model by comparison
with atomistic simulation results. They argued that, depending on the desired accuracy, the
use of S-O model becomes necessary for problems involving surface wrinkling and bending
modes. Among other attempts to enhance the analysis of nano-materials with more elegant

surface models, Zemlyanova and Mogilevskaya [158, 159] presented a comprehensive account
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of circular and spherical inhomogeneities with S-O interfaces. They determined stress fields,
effective elastic properties and the neutrality conditions in the presence of S-O model of sur-
face effects. Han et al. [67] generalized their work to calculate the effective elastic properties
of nano-composites with multiple interacting nano-inhomogeneities of circular cylindrical
shape. The S-O surface mechanics also found use in the models of fracture, contact and
defect mechanics. Zemlyanova [156] revisited mechanics of mixed mode cracks in the pres-
ence of S-O surface model. Modeling fracture with the S-O surface predicted bounded stress
and strain fields at the crack tips of the fracture while satisfying the material symmetry
conditions. As a result, the S-O surface proved advantageous over the G-M surface model.
Zemlyanova, Li and Mi [157, 94] reconstructed the contact and nano-indentation models to
incorporate S-O surface effects. Comparison between responses of the curvature-independent
G-M model and curvature-dependent S-O model indicates that the curvature-dependency in-
corporated by the S-O model surface is increasingly important at the very small scales. Li
and Mi [94] showed that in most cases the S-O model result in higher nano-indentation
hardness. Finally, a recent analysis of an edge dislocation as an elastic defect near a S-O
planar interface by Dai and Schiavone [28] demonstrated that the bending resistance of the
interface characterizes the equilibrium state of the dislocation and diminishes the residual
interface tension as the dislocation approaches the interface. They also showed that the
use of S-O interface model with bending resistance dramatically affects the image forces be-
tween the dislocation and the interface. It may indeed lead to a physically acceptable stable
equilibrium position for the dislocation in the vicinity of the interface.

So far, we introduced two main approaches in enhancing the continuum models to become
well-suited for micro/nano-mechanical analysis: elastic surface mechanics and higher order
continuum theory of micropolar elasticity. The main idea of this thesis is to include both
theories simultaneously into a model of mechanical behavior of micro/nano-scale materials.
Each of these theories improve some aspects of the mechanical models, therefore, we expect
that the combination of these theories provides a more comprehensive account of mechanics

of materials with micro/nano-structures. As a result, the present thesis provides a basis
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where surface elasticity and micropolar theory meet. The objective is to develop a model
that captures the micro/nano-mechanical behavior of the bulk as well as the contribution of
surface effects both of which have manifested significance in certain classes of real materials
wherein the effects of both surface and internal micro/nano-structures are substantial.

The idea of incorporating both internal micro/nano-constituents and surface effects was
considered by only a handful of researchers, probably due to the mathematical complexities
associated with these models. Perhaps Zhang and Sharma [161] were among the first to
include the surface effects in the framework of generalized nonlocal theory for the internal
structures to analyze quantum dots. A similar idea was adopted in the context of couple-
stress theory to develop new modified models of nano-beams and nano-plates [128, 53]. As
one of the few attempts to develop such comprehensive models, Chen et al. [15, 16] proposed
a micropolar elastic model of nano-composites in the presence of surface effects. However,
they employed the G-M type surface in which the classical flexural resistance of the surface
is absent. In a more recent work, Sigaeva and Schiavone [131] proposed a micropolar surface
mechanics to develop a comprehensive model of anti-plane deformations in solids. They
presented a meticulous analysis to ensure their mathematical model is well-posed. We, as
well, believe that the two aforementioned approaches individually open separate gateways
to improving the accuracy of predictive modelling in solids at smaller length scales. We
expect that coupling both approaches would lead to a more comprehensive representation of
size-dependence in solids.

As stated earlier, our objective in this research is to devise a mathematical model which
brings together both surface elastic effects and microstructural aspects of a solid body sub-
jected to plane deformations. Such a mathematical model requires rigorous analysis to
investigate the proper establishment of the corresponding boundary value problem. As a
result, any such mathematical model must be designed in such a way that it will be ‘well-
posed’. In the sense of Hadamard, being well-posed means that the model puts forward
a mathematical construction which is solvable, the solution to this construction is unique,

and the solution is stable with respect to the prescribed data. Any attempt to implement
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a mathematical model without meeting the Hadamard’s “well-posedness” criteria may lead
to ineffective numerical analysis or physically incorrect solutions. We intend to develop a
well-posed mathematical model and carry out a comprehensive evaluation in terms of the
foregoing factors.

Boundary integral equation methods (BIEM) are the classical strategy for analyzing well-
posedness of the boundary value problem corresponding to a mathematical model [23, 22,
21]. A comprehensive account of well-posedness analysis of different forms of elasticity and
thermoelasticity theories using the boundary integral equation methods can be found in
the seminal book by Kupradze [85]. These methods (BIEM) commonly involve presenting
solutions of the boundary value problems (BVP)s in the form of potentials and reducing
the BVPs to some integral equations over the boundaries. This is beneficial because the
boundary value problems can be handled more efficiently in their corresponding form of
integral equations. The integral equations theory consists of well-established statements
that facilitate the well-posedness analysis [109, 144]. Consequently, the BIEMs have been
the key to the analysis of boundary value problems of classical elasticity [22, 23] and even
micropolar theory [123, 71]. However, since the BIEMs convert the BVPs to their integral
representation over the boundaries, the states of boundary conditions become extremely
important in the analysis. As a matter of fact, the incorporation of surface mechanics into
the model will further complicate the description of the boundaries and give rise to highly-
nonstandard boundary conditions. Therefore, we need to modify the BIEM technique to be
applicable to our proposed complex mathematical model.

Despite the complicated nature of the analysis, Sigaeva [132] discussed the micropolar
surface mechanics of anti-plane shear deformations. In that proposed model, however, the
micropolar surface effects were of the G-M nature with only stretching resistance assigned to
the surface. This was mainly due to the mechanism of the anti-plane deformation model that
excludes the possibility of bending across the surface. Whereas, the present thesis proposes
a micropolar model plane deformation that incorporates surface effects. As such, the surface

deformations entail the classical stretching and bending modes as well as the independent
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micro-rotations of the micropolar theory. Consequently, we aim to provide a more general
S-O type surface description capable of accounting for curvature dependence and flexural
resistance of the surface.

In Chapter 2 of this thesis, we formulate two mathematical models of linear elastic
plane deformations incorporating micropolar surface mechanics. We model the surface as
a micropolar shell perfectly bonded to the surface (or interface) of a micropolar elastic
material. We establish the corresponding boundary value problems for a simply connected
domain occupied with a micropolar linear elastic material partially bounded by closed curves
having separate micropolar surface elastic properties. We use two different micropolar shell
theories to describe the surface effects, each of which having particular advantages in terms
of application and elegance. The derivation of the two mathematical model is a detailed
version of the first five sections of the paper by Gharahi and Schiavone [59] published in
Journal of Continuum Mechanics and Thermodynamics.

Chapters 3, 4 and 5 proceed with some interesting applications of the proposed model. In
Chapter 3, we evaluate the stress concentration around a circular hole in an infinite planar
medium using our proposed model. In this chapter, we illustrate that our enhanced model
contributes to the adequacy and accuracy of the stress fields around imperfections such as
holes by introducing more variables into the problem. In addition, based on our results we
discuss the class of problems for which the use of such advanced models become substantial.
The main course of this chapter with a slightly different surface modeling is published in
Journal of Continuum Mechanics and Thermodynamics [57].

Chapter 4 is dedicated to yet another interesting problem that we mentioned earlier in
this Introduction. Evaluating the effective elastic properties of a material is a very important
application of micro/nano-mechanics because it provides a better insight into the mechanics
of micro/nano-materials which are increasingly used in several areas of advanced technology.
Finding global material properties based on the size-dependent nano-mechanical behavior
has always been one of the objectives pursued in nano-mechanics. In this chapter, we demon-

strate that our model yields a successful account of size-dependent deformations of materials
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with nano-inhomogeneities. As such, our proposed model can predict the overall mechanical
properties of materials for which the internal structure as well as surface effects are signifi-
cant. Having more data involved in the advanced mathematical model proposed in the thesis
a higher precision of calculations of mechanical properties can be achieved. However, the
more variables involved in the model the more they complicate the formulations. The entire
Chapter 4 is summarized in a publication in International Journal of Mechanical Sciences
[56] with a slight difference in the formulation of the surface effects.

We continue our evaluation of the model in Chapter 5, with a very common nano-scale
phenomenon. The presence of dislocations in the arrangement of material particles is the
key to many mechanical behavioral properties. Appearing only at the nano-scale level, dis-
locations are commonly treated in the framework of micro and nano-mechanics. Although,
the deformation theory of dislocations as a nano-scale defect is usually formulated in the
classical elasticity. Thus, the dislocation problems require further investigation in the con-
text of generalized continuum models. In that respect, in Chapter 4, we try our model on
the problem of interaction of an edge dislocation with the surface of a half-plane micropolar
medium. Knowing that our model is constructed in a way that takes into account both the
effects of nano-constituents and the micropolar surface with bending resistance, we presume
that it provides a more adequate account of the problem. In particular, we study the devi-
ations made from the existing literature by the use of our model. This chapter is published
in Acta Mechanica [58].

Chapter 6 contains the climax of the thesis. After demonstrating the merits of the
proposed model in its successful application to many practical nano-mechanics problems, we
proceed to analyze the model in terms of mathematical well-posedness. We reformulate the
boundary value problems corresponding to the mathematical model of plane deformations
with micropolar surface effects to investigate the existence and uniqueness of the solutions.
We establish the existence and uniqueness theorems and the conditions under which they
hold true. As a result, the main components of well-posedness in the sense of Hadamard are

obtained for the two micropolar surface models. A summary of Chapter 6 is contained in
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two publications by Gharahi and Schiavone [59, 60] in Journal of Continuum Mechanics and

Thermodynamics and Journal of Applied Mathematics and Mechanics (ZAMM), respectively.
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Chapter 2

Mathematical Modelling of Surface
Elasticity

We aim to present an enhanced mathematical model of the deformation of a solid body
whose mechanical properties incorporate both surface and microstructural effects. The two
effects become particularly important when dealing with materials with significant internal
micro-/nano-structure and materials considered at the nano-scale. Generalized continuum
mechanics furnishes well-established theories that attempt to release mechanics of materials
from their underlying classical assumptions as a continuum and incorporate the effects of
material constitution into the description of their mechanical behavior. For instance, under
less restrictive assumptions, the generalized theories allow stress vector on a cut surface of a
solid to be nonlinear in its unit normal; there may appear applied couples on the surface and
inside the volume of a solid body; and additional degrees of freedom account for the inter-
nal motion of micro-/nano constituents [98]. Surface mechanics enhances continuum-based
approaches to nanostructured solids by recognizing that material surfaces behave rather
differently than the bulk and subsequently incorporating these differences in an enhanced
mathematical model of deformation. It is customary to model the surface as a thin elastic
membrane capable only of extension (with no flexural resistance) [64, 65]. However, among
other deficiencies, these membrane type models are incapable of predicting an energy mini-

mizing configuration in certain compressive states of stress. To obtain a more comprehensive
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account of the contribution of surface to deformations, it is therefore necessary to improve
the surface model and include the effects of curvature and flexural resistance of the surface
[137, 136].

Another important consideration is that a large majority of research involving surface
elasticity is conducted in the framework of classical elasticity, while the extension of surface
theories to higher order continua involves inevitable mathematical challenges. In this chapter
we present plane deformations of a micropolar elastic solid coupled with a micropolar surface
model that allows for bending and twisting effects of the surface. First we present the surface
as a Kirchhoff-Love thin micropolar elastic shell bonded to the bulk micropolar material. Two
types of derivations of micropolar shell theory give rise to two types of boundary conditions
reflecting the surface effects. Finally in this chapter we formulate fundamental interior
and exterior mixed boundary value problems describing plane deformations of a micropolar
elastic solid with surface elasticity. These problems serve to describe fundamental scenarios
in which a combination of stress and displacement are prescribed on parts of the boundaries

of a multiply connected domain.

2.1 Preliminaries

Before we begin to formalize the model, it is necessary to set up the notations used in the
thesis. Also in this section we summarize the theory of linear micropolar elasticity and
demonstrate its relation to the usual classical elasticity. We, as well, define the function
spaces wherein the mathematical model is designed and further analyses take place later on
in the thesis.

In what follows, Greek and Latin indices take the values 1, 2, and 1, 2, 3, respectively, and
we sum over repeated indices, unless otherwise stated. In a Cartesian system of coordinates
{xi}?:p the partial derivative with respect to the position component x; is indicated by the
notation (...),;, = 0(...)/0x;.

We consider the Cartesian coordinates {zy,xs,x3} oriented in such a way that the

{z1, x5 }-plane coincides with the plane of deformation and z3, with the antiplane (out-
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of-plane) direction. A vector a in the Cartesian coordinates is indicated by its components
a = {ay,as,as}, the inner product of two vectors a and b, by a-b = a1b; + asby + asbs,
and the cross product (or the vector product) is denoted by a x b. In addition, the tensor
product of the two vectors is denoted by a ® b and the inner product of two tensors, M and
N is denoted by M : N = M;;N;;. A superscript “I" indicates transposition of a tensor or a
vector. If a generic point of a body in Cartesian coordinates is regarded as x = (x1, 22, x3),
then the gradient operator in Cartesian coordinates is defined as V = (aixl, 8%2, 8%3), and

. — 92 92 fo
the Laplacian operator as A = e + 92 + et

2.1.1 Fundamentals of the Theory of Micropolar Elasticity

Classical elasticity models solids as ideal elastic continua in which load transfer on an arbi-
trary surface element dA in the body occurs only through the stress vectors. This assumption
results in describing the kinematics and kinetics of the body by symmetric expressions for
stress and strain tensors. We denote the stress and strain tensors in terms of their Cartesian
components as 0;; and €;; respectively. According to classical elasticity theory, for a mate-
rial occupying a region B of volume V' bounded by surface A, the components of the stress
vector, p;, acting on an element of the surface dA are expressed by p; = o;;n;, where n; are
the Cartesian components of the outward unit normal vector to the surface element dA. In
the static case and in the absence of body forces Euler’s postulates for this piece of material

leads to the following descriptions for the balance of forces:

%pjdA = %UU’I’LZCZA = /aijﬂ-dV = O, (21)

A A \%4

and the balance of moments:

fEijkxipjdA = j{eijkmialjnld/l = / (5ijkmial]~)7l dV = O, (22)
A A \%4

where €51, is the Levi-Civita symbol of permutation and the divergence theorem is used to

convert the surface integrals to the volume integrals. The integrals vanish for every arbitrary
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piece of material, therefore, by the localization theorem the integrands must vanish. The
balance equations become,

0443 = 0, 055 = Ojj- (23)

Kinematics of a classical elastic body is identified by infinitesimal deformations including
infinitesimal displacements, u; and infinitesimal displacement gradients u; ;. Consistent with
this assumption and the symmetry of the stress tensor, the strain tensor, ¢;;, is defined as

the symmetric part of the displacement gradient, i.e.

1
€j = 5 (Ui +uji). (2.4)
For an isotropic elastic material with infinitesimal deformations the constitutive law that

characterizes the strain and stress relation is given by
0ij = 2/1€ij + AOij€xi, (2.5)

where 1 and A are the two material parameters known as Lamé constants which determine a
homogeneous isotropic elastic material. The stress field o0;;, inducing a strain field ¢;; causes
an internal strain energy whose density is expressed by F = %aijeij. The strain energy

density in terms of the strain field in components can be written as

E = peje; + % (exr)?, (2.6)
Positive definiteness of the strain energy restricts the Lamé constants to ¢ > 0 and p +
A > 0. The classical theory of elasticity, briefly described here, is in good agreement with
experimental results for many structures within the linear elastic deformation range. In
several cases, however, the discrepancy between the experimental results and the classical
theory is noticeable. These cases include the presence of large stress gradient, large frequency
elastic vibrations and bodies with significant granular structures, microstructures or large
polymeric molecules [112].
The theory of micropolar elasticity, also known as Cosserat elasticity due to the seminal

work of the Cosserat brothers [24], describes the static deformation of each point by a
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displacement vector u(x) and an independent rotation vector ¢(x). This assumption endows
each element of the material body with six degrees of freedom, three of displacement, u;
and three of microrotation, ¢;, and the possibility of non-symmetric strains and stresses.
Consistent with this assumption, two arbitrary body parts interact on their dividing surface
element, dA, in the body through forces, p;dA = o,;n;dA, and moments, m;dA = p;;n;dA
acting on the surface element. Thus, we define a quantity, x;;, analogous to the stress tensor,
known as couple stress tensor. Now, consider a material body in equilibrium occupying a
region B of the volume V' and enclosed by the surface A. In the absence of body forces, the
statement of balance of forces for this piece of material remains as given in (2.1), whereas

the balance of moments take the form

% (&?ijkxipj + mk) dA = f (sijkmialjnl + /lem) dA = / (5ijkxialj + ,Lle)J dV = 0,
A A \%

in Cartesian coordinates. Again the local description of the balance equations become,
Oiji = 0, €ijk0ij + Miki = 0. (27)

For the micropolar body, under deformations due to the external force stress p and the
couple stress m, and with the assumption of absence of body forces, body moments, heat
conduction, time dependence and dynamic effects, we can write the total potential energy
as,

I=uU—W. (2.8)

Here, U is the internal energy and W is the work of external forces, p and moments m.
Based on the principle of least action for a balanced system, variation of the total potential

energy vanishes, i.e. 0Il = 6L — VW =0.

A A

= /(Uji,j&ti + 050U + 500 + pyidpis)dV.
v
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We use the balance equations (2.7) and rearrange the equation to obtain,

U = /5EdV = /(O‘ji(S(Ui’j + €ikor) + 1jidp; ;)dV, (2.9)
1% v
where FE| indicates the internal energy (strain energy) per unit volume. The equation (2.9)
holds for every part of the body, therefore the localization theorem yields the internal energy
per unit volume as,

OF = 05i0(ui; + €ikr) + 11i00i 5, (2.10)
The expression for the variation of strain energy density leads us to the definition of micros-

(ma
)

train tensor, €; ) and microrotation tensor, sj; as follows:

(mi)

€5 = Uiyt EijkPh,  Hji = Pijs (2.11)

We regard §() as total differential in (2.10), to obtain the relations,

oFE 0E

e M= 5
aegi ) ’ 052

(2.12)

Uji:

which for a linear isotropic elastic solid imply that E' must be a quadratic function of eg-l»m)

and sj; in the following form

R mi) (mi) | BT O (mi) (mi) | A (mi) (mi)
E = TGﬁ Ej'i + TGji Gij + §€jj €ii
+< -9

Thus, the constitutive equations of the linear isotropic micropolar solid become,

oji = (pn+ oz)e%m) + (1 — a)eg»m) + )\6,(;”)5]-1-,

Wi = (7 + §)%ji + (7 - §>%ij + ﬁ%kk(sjz‘. (2-14)

It is not difficult to see that a linear isotropic micropolar material is identified by six material
parameters u, A, «, v, B, and ¢, instead of the two Lamé parameters in classical elasticity.

Using the equations (2.11) in (2.14) and substituting the results for the stress and couple
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stress tensors in the balance equations (2.7), we obtain the deformation field equations in

the body,

(M + a)ui,jj + (,u + A — oz)um- + 2a5ijk30k,j = O,

(v + )@ + (v + B = <)) + 2aepup; — 4ap; = 0. (2.15)

2.1.2 Function Spaces

In this section, we define the function spaces that are considered throughout the thesis. In
the sections that follow, we use these function spaces to specify the boundary curves. In the
upcoming chapters, as well, we highlight the function space in which the solutions are to be
sought.

We define the class of Holder continuous functions with index a € (0, 1] as the space of
functions, f(x), on a subset S of a Euclidean space satisfying Holder’s condition. The Holder’s
condition states that for all x,y € S there is a real non-negative constant C for which,
If(x) — f(y)| < C|x —y|*. Note that a bar indicates the closure of a set, i.e. S =S U a9,
and |x — y| denotes the Euclidean distance between the two points x and y. The functions
satisfying Holder’s condition formally belong to the space of Holder continuous functions
on S denoted by C%¢(S). Similarly, the functions whose nth partial derivative satisfy the
Holder’s condition belong to the space C™¢(S). Moreover, we denote the space of functions
whose nth partial derivative is continuous on the domain S by C™(S). Accordingly, we

call C(S) and C*(S), respectively, the spaces of continuous and continuously differentiable

functions on S.

2.2 Proposition

Having the preliminary conventions and definitions in mind we now begin to introduce the
model. Let S be a multiply-connected domain in R? whose boundary is denoted by 9S
composed of the union of a finite number of sufficiently smooth closed curves. Let S be

occupied by a linear, homogeneous and isotropic micropolar elastic material with Lamé-type
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Figure 2.1: Configuration of the model

constants p, A, a, and . Without loss of generality, we consider a subset I' of the boundary
0S5, comprised of a finite number of sufficiently smooth, closed curves made of thin elastic
micropolar material with separate elastic constants, s, As, as, s, and v5. The subset, I" will
therefore represent the part of the surface which incorporates additional surface effects (see

Figure 2.1).

2.3 Governing Equations of Plane Micropolar Elastic-
ity
Deformations of a plane micropolar bulk occupying the domain S are identified by displace-

ment and microrotation fields described by [112],

u = (ul,UQ,O), p = (0707 503)a (216)

where the non-vanishing components uy, us and @3 are functions of the generic point x =
(x1,5) in the plane of deformation which is considered a subspace of the Euclidean space
R3 with an orthonormal basis {ey, e», e3}, represented by a Cartesian system of coordinates
{z1,x9,23}. We neglect body forces and body couples for simplicity. In the absence of

body forces and body moments, we use (2.15) to obtain the following system of equilibrium
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equations [123],
L(ox)w(x) =0, (2.17)

where, w = (uy, ug, ¢3)7, and L(0x) = L(9/0x1,0/0xs) is the matrix of partial differential
operators defined by,

2 2
(u+a)A+(u—a:rA)@%1 (= + N glom 2 20507
L(0x) = (h— a4+ N5 (n+)A+(n—a+NE —2052 |, (218)
—204% Qa%1 YA — 4o

and A = §%/0x% 4+ 9?/0x3 is the usual two-dimensional Laplacian. We define the boundary
stress operator T(0x) = T(0/0z1,0/0xs) as [123]

(2u + )\)nlaizl + (p+ a)nga%z (u— O‘)”?aizl + )\m% 2any
T(0x) = (u— oz)nla%2 + Anga%l (2u + /\)nga%2 + (u+ oz)nla%l —2am;
0 )
0 0 Y nla—m + n28—$2>
(2.19)

where n = (ny,n9)7 is the unit outward normal to 9S. Upon determining the inner product
of T(0x)w(x), with an arbitrary vector v = (v1,vq,v3) belonging to the real coordinate

space R?, integrating over the boundary 05, and using the divergence theorem, we obtain

/V -T(Ox)w(x)ds = /div {2+ ) (v1ug 1, vausz2)

oS S
+A (v1ug2, vour 1) + (1 + @) (vaug1, v1ug 2)

+(p — @) (vaug 2, vV1u21) + 200 (—V23, V193)

+7 (V33,15 V33,2) } dv, (2.20)

where (a,b) is an ordered pair corresponding to the vector expression in the Cartesian coor-

dinates {z1,z5}. After some straightforward yet tedious calculations, we can show that,

/V - T(0x)w(x)ds = Q/E(V,W)dv + /V-L(@x)w(x)dv, (2.21)

oS S S
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where,

E(v,w) = (2u+A) (v11u11 + v22u22) + A (v11U22 + Va2us 1)
+(p+ @) (vo1ug,1 + vigur2) + (10— @) (Va,1u12 + V1 2U2,1)
+2a (—v2103 + v1293) + 7 (V319031 + V32032)
+20a (U1 — U9 + 203) v3. (2.22)

Denote by St the bounded domain enclosed by 95 and S~ = R?\(ST U dS). Assume
also that the expression a € X means that every component of a belongs to X. If we let
w 602(S+)ﬂ01(§+) be a solution of (2.17) and take v = w, we obtain the first Betti formula
in the (interior) domain S* U 9S:

/W - T(0x)w(x)ds = 2/E(W, w)dv, (2.23)

S+

where now E(w, w) expresses the internal energy density of a micropolar bulk given by [123]

A [
E(W, W) = §ua,au¢3,g + Z(Uaﬁ + U@a)(ua,g + UJg’o) (2.24)
(0
+3 (ur2 — usy + 23)° + % (31 +¥3,) -

The strain energy density is a positive quadratic form under the assumptions [47]
ptA>0, gy, a>0,

and hence the differential operator L(0x) is elliptic. Additionally, E(w,w) = 0 if and only if
w represents a rigid displacement-microrotation vector compatible with the theory of plane
deformation; that is,

w =(¢; — 329, C2 + c311, C3), (2.25)
where ¢y, ¢9, and cg are arbitrary constants. Clearly, the vector w of the form (2.25) satisfies
L(0x)w(x) = 0, and T(0x)w(x) = 0.

Next, for the exterior domain, let (2.17) be satisfied in S™. Any solution w of (2.17)

may involve an arbitrary rigid displacement/microrotation of the form given in (2.25). The
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non-rigid motion part of the solution w which is accountable for the non-zero strain-energy
in the domain is assumed to satisfy the following restrictions at infinity (r = |x| — o0)

written here in polar coordinates (r, ), [123], referred to henceforth as the class A:

ui(r,0) = 17 (Bmgsind + my cos § + mg sin 30 + my cos 30) + O(r™?),

uy(r,0) = 17 (mzsind + Bmgcosf + mysin 30 — mg cos 30) + O(r~?),

@3(r,0) = r7%(mssin 20 + mgcos 20) + O(r™3), (2.26)
where
3pu+ A
B=""2,
A+ A

and m; (i =0, ...,6) are arbitrary constants. Define further the class A* by

A" ={v v =(c; — 329, ¢o + c311, ¢3) + v}, (2.27)

where vA4 € A. Also let w €0?(S7) N CHS ) N A* satisfy L(0x)w = 0 in the multiply-
connected domain S~ and consider a disk K of radius R which encloses 05. Then, we can

write the first Betti formula in the domain S~ N Kx as:

/ w - T(9x)w(x)ds — / w - T(0x)w(x)ds = 2 / E(w,w)dv. (2.28)
aS

8KR S*ﬁKR

Using (2.26) we can show that,

/ w - T(0x)w(x)ds — 0 as R — oc.

O0KRr

Thus, letting R — o0, the first Betti formula in the exterior domain S~ is given by:

- /w -T(0x)w(x)ds = Q/E(W,W)dv. (2.29)
s

S-
If we write
1 0 )
F = 0 1 —T 5
00 1
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then the column matrices

1 0 To
FO=1 0 | FO=[ 1 | , FO=| -z
0 0 1

form a basis for (2.25) and Fk, with k = (cy, co, c3)T representing any vector of the form
(2.25).

The matrix of fundamental solutions for the operator L is given by [123]

D(x,y) = L't(x,y), (2.30)
where L* is the operator adjoint to L and whose components are given by
82 2
Ly = (p+a)yA% 4 (p— a+ A)yA-— —dapA —da(p+ a) 5,
Oxs Oxs
0? 0?
Ly = (u+a)yA%+ (p— o+ \)yA-— — dapA — da(p+a) 5,
Oxy Oxy
Ly = (u+a)(2u+ M)A
2 2
LY, = L =(u— M)A —4 A
12 21 (ILL o+ )’7 axlamQ Oé(/’L + )axlax27
* * a

Here, the scalar function ¢ is defined by

a
t(x,y) o (k:2 |x — y|2 Injx—y|+4ln|x —y|+4Ky(k|x — y|)) ,
with
B 1 s Apa
Y2p+ M) (1 + @)’ Y+ )

It is not difficult to show that the columns D@ (x,y) satisfy L(0x)D?(x,y) =0 for all
x € R?, where x # y.

2.4 Micropolar surface effects: boundary conditions of
fourth order

We describe the boundary conditions on the reinforced subset I' of the boundary 05 by a

surface model that incorporates classical and micropolar bending and twisting effects. To
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this end, we consider a micropolar shell whose mid-surface coincides with I' and is perfectly
bonded to the reinforced subset of the surface of the plane micropolar region S. Let us
assume that x'(s) denotes a generic point on I' indicating the position of the curve I' that
is the mid-surface of the shell (see Figure 2.2). We also assume that the function x!(s)
is injective and continuously differentiable with respect to the arclength s. We recall the
Cartesian basis {e1, €2, e3} and adopt normal-tangential (n—t) coordinates with orthonormal

basis {eg, e3,n} for which,
dxt(s)
ds

The two systems of coordinates are related by

, N1 =ey X e3. (2.31)

€y =

eg = cosf(s)e; +sinf(s)es,

n = sinf(s)e; — cosb(s)es,

where 6(s) is the angle between ey and e;. The set of points r, satisfying the relation,

r(s) = x(s)+2n(s), —% <2<l (2.32)

N |

identify the micropolar shell region of thickness ¢ reinforcing the boundary (see Figure 2.2).
The micropolar shell is endowed with the material properties, ps, as, As, S5, and v, separate
from that of the adjoining bulk. Under the general Timoshenko kinematic assumption,
the tangential displacements are linearly distributed within the shell’s thickness while the
normal displacement as well as the only non-vanishing component of microrotation remain

independent of the transverse coordinate, z. Formally,
u = ugy(s) — z2vo(s) + u,(s)n, (2.33)
o = ps(s)es, (2.34)
where ug is the tangential displacement of the median surface of the shell at I', and wu,, is

the normal component of the displacement. We carry (2.33) and (2.34) into the relation for

the microstrain tensor in the reinforcing shell,

e=(Vu) —¢p,. (2.35)
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Q
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Figure 2.2: Configuration of reinforcement shell

where V(.) is the gradient operator, ¢, is the permutation of the vector ¢ and 7" indicates
the transpose of a tensor. After substituting (2.33) and (2.34) into (2.35) and making use
of the curvature tensor defined by B = —‘2—‘;®e0:b0e0®e0 (® denoting the tensor product),

we obtain,

duo dUO

€ = (E — ZE — Unbo) (e() &® eo)

du,

+ (bouo + dsn + @3) (€0 ®n)

+(—vg — p3) (N ®ep) . (2.36)

where ug and vy are the tangential components of ug and vy, respectively. Note that in
deriving (2.36), we make use of the assumption of a sufficiently thin and smooth shell such
that terms ¢||B| < 1 (]|-|] denotes the norm of the tensor defined as usual by |[M]| =
(M : M)l/ ®) so that any term of the form zB becomes negligible. Through the constitutive

relations of the reinforcement on the surface, i.e.

o = (ps+as)et (s —a,)e + A (tre)l, (2.37)

po= (15 +)Ve) + (3 — &) Ve, (2.38)
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where Iy, = I — n ® n is the unit tensor of the surface since we assume o,, = 0 (not
summed over n). We may write the stress and couple stress tensors of the shell in the (n —1t)

coordinates as,

dUQ dUo

o = (2us+ ) (— Ao Unbo

ds (€0 @ eo)

d
+ |:,Us ( CZS’ +b0U0 —Uo) +Oés ( +b0U0+U0 +2g03):| (e0®n)

du,, du,,
+|:Ms(;9 +bouo—vo)—04 ( u +b0u0+v0+2¢3)}(n®e0)

ds
du dv
+)\s (d_SO - Zd_SO — unbo) (eg & 63), (239)
d d
p=(vs+ %)%(eo ® e3) + (75 — Cs)%(eg ® €g). (2.40)

The surface equilibrium equations for the reinforcing shell can be written in the form [43]

dog <
dzo_%”bo = 0. (2.41)
d S
%Jragobo = 0. (2.42)
dpg ,
dES_UO” = 0, (2.43)

where oy, 0;,,, and pf, are, respectively, the components of the surface stress and surface
couple-stress tensors, o = I,o and p® = I, in the {eg, e3,n} system. We integrate both
sides of the equilibrium equations (2.41) to (2.43) over the thickness, z € [—%, %], while
considering the traction on both faces of the shell and exchanging the components by their
expressions from the equations (2.32) and (2.33). This leads us to the three equilibrium

equations,

(2us + )\s)ti (ﬁ — unbo)

ds \ ds
- [Mst (dun + boug — U0> bo
ds
du, n _
—f—Oést E -+ bo'LLO “+ v + 2@3 bo -+ fO — fO = 0, (244)
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d
(21t + At (% - unbo) bo
S

dQ’LLn d(b()uO) dUO
t - =
* [MS ( ds? * ds ds

d2U d(bgUo) d’l)() dg03
= — +2— t—f = 24
+a3t( Tt 2 ) f =0, (2.45)

d? du,, t _ _
(a5 =t (52 bk 2 ) G5+ )~ =0, (240

where fi7, f,7 and mJ are respectively, the prescribed stress and couple stress traction
components in the tangential, normal and the antiplane direction on the outer surface of
the shell. On the other hand, the stress and couple stress traction components generated
from the substrate on the inner surface of the shell are respectively, f;, f,, and mg, in the
tangential, normal and the antiplane directions (see Figure 2.3).

We introduce the classical bending resistance of the shell by taking the vector product (x)
of the terms of the equilibrium equation with zn to construct the stress couples equilibrium

around the median surface of the shell [47],

dog do,
-2 = 24
AnX— + znx 7 0, (2.47)

where, oy and o, are the stress vectors acting on the surfaces with unit outward normals,
eo and n, respectively. We use the equation (2.43) in (2.47) and then integrate (2.47) over
the thickness to achieve the fourth equation of stress couples,

dun dun
[Lst g%’bgﬂo—’vo +Oést d—+b0U0+Uo+2(p3 =

2 2

d 2o
— (205 + As )Id”;’ (s )t e (f1 ), I=13/12. (2.48)

We carry (2.48) into (2.44) and (2.45), and implement the Kirchhoff-Love kinematic assump-

tion that the classical shear strain vanishes, i.e. €j, = 0, where €j, = 0 is a component of

€ = 3(e + €”). This assumption leads to

= Bug -+ Vsum
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to remove the possibility of shear deformations from the shell model. Consequently, we arrive

at the following set of boundary conditions on the reinforced subset I' of the boundary 95,

n (d%o - d(unbo))

ds? ds
d2(b0U0) d3un d2903
Bb — Hbyp—==
b ( ds? * ds? ) 0 ds2
th B B
P I+ IF— Iy =0 (2.49)
dug d3(boug)  d*u,
As - nb b - Bs
( ds " 0) 0 < ds3 T ds?
st dff dfy
H > = 2.
+ Sd33 +2(d8 + d5)+ n n O ( 50)
d*¢ duy, t - -
H d323 —2G, (E + bouo + 903) + §(fJ + f5) +md —mg =0. (2.51)

In the foregoing equations (2.49-2.51), A; = (2us + As)t, Bs = (2us + As)I, Hs = (75 + <s)t
and G5 = a,t are the stretching, classical bending and first and second micropolar twisting
rigidities, respectively. The boundary conditions (2.49-2.51) are written in (n—t) coordinates
and for a solution of L(0x)w(x) = 0, the substrate tractions, f,, f, and mj can be written

as boundary stress operators in component form,

fy = Tél)m(ﬁx)w,

fa = Tél)nt(ax)wa

m; = TV (0x)w, (2.52)
where, To(l)m, TV and Tg(l)nt are the components of T (9x) from the equation (2.19) in

the (n—t) coordinate system. Using this fact, the boundary conditions on the reinforcement

[' can be written in the original Cartesian coordinates as,

T (0x)w(x) = A(x)RY(d/ds) A~ (x)w + Ax)tP (). (2.53)
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Here, A(x) is the transformation operator from normal-tangential coordinates to Cartesian

coordinates defined by,

cosf(s) sinf(s) 0O
A(x)=| sinf(s) —cosf(s) 0 |. (2.54)
0 0 1

The prescribed data t(!)(x) on the reinforced boundary I' has the expression,

+ tho £+
fo =3 o

t0(x) = | fr L4 |, (2.55)

mg + 3 fo
in the (n — t) coordinates. The fourth order boundary differential operator R (d/ds) is
given by
RW(d/ds) = RU(d*/ds") + RV (dP/ds) + RSV (d2/ds?) (2.56)
+R{"(d/ds) + RY.
The operators RZ(-l), 1=20,1,2,3,4 are defined by

BiboLhe — G2 —Ad Qb

1) gls2 S ds
RO - —Bs ddsb30 + GS% _Asbg O ?
—G.bo 0 —G,
2B, by %0 —Agbg — boGs 0
R{" = | Ay — 3B, L% + G.b 0 Gs |,
0 —G, 0
A,+ B2 0 —H,b
R =| -3B,% @, 0 :
0 0 H,
0 By 0
R"”=|-Bb 0 H, |,
0 0 0
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In deriving (2.56) we use the fact that the reinforcement and the bulk are perfectly bonded

and the reactive shearing stress from the bulk (substrate) is given by

du,, )
—— + boug + 3
ds

fo = —an0|z:_% = To(l)m(ﬁx)w = 2a (
in the boundary conditions (2.49-2.51). Clearly, we must assume that by is sufficiently smooth
so that the third derivative of the curvature by with respect to the arc-length s exists on I'.
As we see, the boundary condition described in (2.53) is highly non-standard. On the left
hand side of equation (2.53), T()(9x), the so called first-order stress operator, is applied
to the deformation vector to indicate the stress generated by the bulk’s deformation. The
right hand side of the equation, however, consists of a fourth order tangential differential
operator R (d/ds), applied to the deformation vector to represent the reactive stresses in
the micropolar surface. This kind of boundary condition is particularly interesting in that

it is of order higher than that of the governing field (2.17). In the next part, we introduce a

second order representation of the micropolar surface effects.

2.5 Micropolar surface effects: boundary conditions of
the second order via three dimensional micropolar
theory (Eremeyev-Lebedev-Altenbach)

We employ an alternative form of the Kirchhoff-Love kinematic assumption for which the
shear "microstrain” component vanishes instead of the classical shear strain, i.e. €y, = 0.

From (2.36), this assumption implies that,
Y3 = —Vp. (257)

This Kirchhoff-Love model was adopted for linear micropolar plates by Altenbach and Ere-
meyev [1]. The shell equations for this model are derived using the same kinematic assump-
tions (equations 2.32-2.36) and the same surface equilibrium equations (2.41-2.43). Unlike
the previous case, however, we consider the coupling of surface force-stresses upon integra-

tion of the moment equation (2.43) over the thickness. Accordingly, the surface equilibrium
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equations of the reinforcing shell are written as,

dP,
dPy,
dz + Pobo+ fF = f7 = 0, (2.59)
dM,
B Pyp+mi—my = 0, (2.60)
ds
where,
dUO
POO = As - unbO 5
ds
du,,
Py, = M; <d_us + boug — Uo)
du,,
—|—Gs (— + boUo -+ Vo + 2()03) s
ds
dps dvg
Mys = Hs_ - Bs_>
03 ds ds

are the components of the surface stress and couple stress tensors, respectively,

t
2

P = / Iodz, M= / I (p—z(o0 + 0,) ® e3) dz, (2.61)

VIS
ol

Here again, A; = (2us + As)t, Bs = (2us + X)I, Hy = (75 + ss)t, Gs = ast and My = pugt.
In fact, the kinematic assumption (2.57) renders the in-surface microrotations equal to the
classical rotations of the midsurface. For the displacement form under consideration (2.33

and 2.34), that is,

1
p = §V X U = —vpes. (2.62)

For this case, we ignore the coupling effects of shear tractions on the surfaces of the reinforce-
ment assuming their contribution to the deformation of the surface is insignificant. Using

the foregoing assumptions in the equilibrium conditions, we obtain the following conditions
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for the reinforced boundary,

d? d(upb dur,
AS( Up (U 0)) i (M3+Gs)bo <%+bouo+¢3> _|_f6" _f[)_ = 0, (263)

ds? ds
dgun d(bolbo) ngg +
— {7 = 2.64
T2 T g v )t = 00 (2:64)

As <% - unbO) bO + (Ms + GS) (

(Hs + Bs)% — (M + Gy) (% + boug + @3) +md —mg = 0. (2.65)
The boundary condition in the original Cartesian coordinates is given by
T (6x)w(x) = A(x)RP (d/ds) A~ (x)w + A(x)t? (x). (2.66)
where the second order boundary differential operator, R (d/ds), takes the form,
R(d/ds) = R (d?/ds?) + R (d/ds) + R, (2.67)
The operators RZ(-Q), 1 =0,1,2 are expressed as

—(M,+ Go)bg =A% —(M,+ Gy)bo

RY = | (M, +Gy)%  —Ab 0 :
—(M,+Gyby 0 —(M, + G,)
0 —Ayby — (M, + Gy)b 0
R = | A, + (M, +G)b 0 (M, +Gy) |,
O _(Ms + GS) 0
A, 0 0
RP”=|0 (M,+G,) 0
0 0 H, + B,

Again, the prescribed boundary tractions on the reinforced surface take the values

+

Similarly to the previous section, the second order equation (2.66) represents a highly non-
standard boundary condition and involves the first order boundary stress operator T (9x)

on the left-hand side and the second order tangential differential operator R (d/ds), on the
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right-hand side. We observe, in the same way as in the previous section, that the boundary
conditions are of the same order as the governing equations. The types of second order
and fourth order boundary conditions introduced in the boundary value problems of plane
micropolar elasticity, though posing more mathematical complexities, includes more details
corresponding to the physical problem. Consequently, the proposed mathematical model can
more accurately describe the behavior of materials at small scaled level. In the next section
we introduce the mathematical models in the forms of boundary value problems in interior

and exterior domains.

2.6 Boundary value problems

2.6.1 (a) Interior problem

Recall that S is a bounded multiply-connected domain enclosed by dS which, for simplicity,
here consists of two sufficiently smooth closed curves I and 95, (05 = 'UDS)), representing
reinforced and non-reinforced boundaries, respectively (see Figure 2.3). The non-reinforced
boundary is divided into two open curves 0Sy, and 9Sg (057 = 0S¢ U 0Sy,) with common
end points a and b, on which the boundary values for displacement /microrotations w®, and
stress/couple-stress tractions, t(°) are prescribed, respectively. We note that in the special
case when a and b coincide, 0S; and 0S,, are closed curves. A simple example of an interior
problem is shown in Figure 2.3.

We pose the interior mixed-boundary value problem of micropolar plane elasticity with

surface reinforcement as follows: find a vector w belonging to an admissible function space

C%(S) N C*(S\{a,b}), such that,
L(0x)w(x) =0, x €S,

T(0x)w(x) = t’(x), x € IS,

T (0x)w(x) = A(x)RV(d/ds) A" (x)w + Ax)tP(x), xeT,i=1,2. (2.68)
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Figure 2.3: Interior and exterior problems

2.6.2 (b) Exterior problem

The exterior problem is defined similarly to the interior problem except that S is now an
unbounded domain with 95 described by 9S = I' U 3dS;. Here, again each one of the
non-reinforced (057 = 9S5; U 0Sy) and the reinforced (I') parts of 0S consist of closed
curves. The exterior mixed-boundary value problem of plane micropolar elasticity with

surface reinforcement is as to find a vector w € C%(S) N C'(S\{a,b}) N A* such that,
L(0x)w(x) =0, x €S,
T(ox)w(x) = t(x), x € S,
w(x)= w'(x), x € 0.,
TO(0x)w(x) = Ax)RY(d/ds) A (x)w + Ax)t7(x), x €T, i=1,2 (2.69)

Note that A* has been defined in (2.27).

In the following chapters, we present analytical solutions of the boundary value problem
for some practical and well-known problems in micro and nanomechanics. Particularly, in
the next chapter we focus on the stress distribution around a circular hole and illustrate the
effects of micropolar surface model on this classical problem which is of high significance in

engineering applications.
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Chapter 3

Stress Distribution Around a Circular
Hole in a Micropolar Material with
Micropolar Surface Effects

In this chapter we consider the problem of an infinite sheet containing a circular hole under
uniform remote loading. This problem has a significant meaning in engineering practices.
The problem can be regarded as a benchmark for further analysis of stress concentrations
around defects and notches. The upcoming analysis also demonstrates the significance of
micropolar surface effects with different elastic properties of the surface. Considering the
present classical problem from the viewpoint of the introduced surface model illustrates how
it can be successfully applied to the analysis of the practical problem of holes in materials
with microstructures. The problem of stress concentration around a single circular hole has
been subject of study in the development of theory of micropolar elasticity in 1960s. Mindlin
[102], among others, investigated the influence of couple stresses around a circular hole us-
ing a simplified Cosserat elasticity, known as couple-stress theory. The couple-stress theory,
kinematically, follows the classical elasticity, while kinetically complies with the micropolar
theory. Mindlin [102] found that the presence of couple stresses which result from non-
negligible strain gradients around a hole, decreases the stress concentration factor. Kolani
and Ariman argued that the couple stress effects [78] decrease the stress concentration,

however, not as significant as Mindlin predicted. On the other hand, the effects of sur-
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face mechanics on the stress concentration problems has been a topic of study for many
researchers. Among them, Tian and Rajapakse [139, 140] investigated the stress concentra-
tion around circular and elliptical inhomogeneities solving the plane elasticity problem in the
complex variable format. They used Gurtin-Murdoch interface model for the surface. The
more general surface model by Steigmann-Ogden is less considered for solving benchmark
problems, particularly the stress concentration problems. The researches presented recently
by Zemlyanova and Mogilevskaya [158] and Dai et al [25] are among the rare few which
consider problems with Steigmann-Ogden surface effects in classical elasticity.

In what follows, we introduce preliminaries necessary for solving the problem in the cylin-
drical coordinates system. Next, we formulate the corresponding boundary value problem
incorporating the circular surface of a hole in an infinite micropolar plane. Subsequently,
we find the analytical solution of the problem using stress functions of plane micropolar
elasticity with the corresponding specific boundary conditions on the surface. Lastly, we end

the chapter with some numerical examples and concluding remarks.

3.1 Preliminaries

In this section, we introduce the governing equations and relations in a system of cylin-
drical coordinates. We characterize the cylindrical coordinates {r, 0, z3} by the Cartesian

components of a position vector as,

Ty =rcosh, xy=rsinb, r=/z?+ 23 (3.1)

The relationship between derivatives in Cartesian and cylindrical coordinates are given by

ory or r 00’

0 o 1 0
—  —ginfh— + = — 2
o Sm987"+r608980’ (3.2)
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and the orthogonal cylindrical basis vectors {e,, ey, e3} are expressed in the Cartesian basis

{e1,eq, €3} as

e, = (cosf)e; + (sinf)ey,
€9 = (—sinf)e; + (cosh)e,. (3.3)

For a stress field described in the cylindrical coordinates the balance equations are given by

do,. 1 [0Oop, dos,
ar + - ( 09 + (UTT - 0—99)) + axg - 07
00,9 1 (0o Dosg -
67" + - (W + (Ore + 0'9r)> + 81’3 == 0,
80,,3 Joys doszz
( 26 +"’"3> T o

(0p3 — 039) =0,

!

r
Oplirr 1 3M9r
or +;(89 (hrr — M90)+

oLty 1 /0
gre r ( gge ,LLrg + ﬂ&r _'_ 36 UST - UT3) = Oa
O3 O3 aM33
— = 0. 4
or + - ( 90 +/M3) + D +(U,~9 Ugr) 0 (3 )

Curl of a tensor in cylindrical coordinates is obtained as

— (L10My3 _ OMyg _ Moy 10Moy _ OMgo y Mg
V xM _<'r a0 Ox3 r)er®er+<r 00 613+ r)e7"®e9

10Ms3 _ OMsp My _ OMyg

+<r 00 8x3>er®e3+<6x3 or >e9®er
OM,,  OM, -

+<—9—793>e ®ee+<8M3 —%)e(;@eg

r M, 8M, 1 OM,
+ (Mo Moo O _ 10M) oy @ e,

r 00
e R L DL
(24 2 10}y 3)
The gradient operator in the cylindrical coordinates is defined by V = e, = a + ear 39 +es3 323
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Figure 3.1: Circular hole in an infinite plane

3.2 Statement of the problem

Consider a circular hole of radius R in an infinite micropolar plane subjected to remote
uniform loading. We assign to the medium material properties p, a, A, v and ¢. We
adopt a system of Cartesian coordinates, {o: 1, x2}, such that the positive side of the
xy-axis coincides with the § = 0 axis of the polar (cylindrical) coordinates {o: r,6}. The
plane strain deformations are independent of the antiplane dimension x3, therefore, they are

characterized by the following displacement and microrotation fields:

u = u,(r,0)e.(0) + upey(0),

@ = p3(r,0)es. (3.6)

Using the kinematics equations of micropolar theory, (2.11), we write the microstrain and

microrotation tensors in cylindrical coordinates as

e(ml) — aure ® e + % — e ® e
- 87‘ T r 87” ©¥3 T 0
10u, ug 10ug  u,
+(; o0 —7“03)99@“(;%*7)60@69’ (3.7)
0 10
%:%er X €3 + ;%eg ® €s3. (38)
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Thus, the stress and couple stress tensors are obtained through the constitutive relations

(2.14) as

((Q,u + A)el™) 4 Xe m”) e ®e, + ((2/1 + A)ebm) 4 Nelma ) ey X ey
+ (u(eéﬁ“’ ey e = ™)) ep e + (el + e5?) + alely? — ) en @ ey
+ A ( —|— 620 )> e3 ® €3, (39)

p=(7+)s3e @es+ (7+<)ses @es+ (7 —<)s3e3 e, + (7 —)rpses @ ep. (3.10)

We identify the nonzero components of the stress and couple stress tensors written in (3.9)
and (3.10) and, subsequently, we simplify the balance equations (3.4) to obtain,

@Um» + 1 60_07“
or 00

+ (Urr - U@@)) = 07

Oog 1 (Ooge
or + r (W +(ov0 + UW)) =0
Ours 1 [ Opies _
or r ( 00 ,uTg) (0r0 = 00r) = 0. (3:11)

Finally, compatibility of the displacement and microrotation fields are equivalent to stating
that the displacement and microrotation fields can be obtained by integrating the strain
and microrotation tensors (or the gradients of displacements and microrotations). This
mathematically means that the for an arbitrary curve C' between any two points in a simply-

connected domain with displacements u and uy, and microrotations ¢ and ¢, we have

u=nu+ / Vudx, ¢ =p,+ / Vdx, (3.12)
c c

The path independent integrals in the conditions (3.12), imply that the integral terms vanish

over any closed circuit in the domain, i.e.

fVudx = j{Vgodx = (3.13)
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We use the Stokes’ theorem over a simply-connected (unbroken) domain A enclosed by the

circuit C' and find the following sufficient conditions:

V x Vu =0, (3.14a)
V x Vi = 0. (3.14D)

The condition (3.14b) is readily satisfied, while the condition (3.14a) can form the compat-
ibility in terms of the microstrain €™ and the permutation of microrotations ¢, through
the equation (2.11) as

V x (e +p,)" = 0. (3.15)

We refer to the expression for the curl of a tensor in cylindrical coordinates given in (3.5)

and show that the compatibility condition (2.11) becomes

(mi) (mi) (mi) (mi)
. T € Oe Oe 1 Oepr 0
Vx (e o) = ( e - g03> e;® e,

r or or r 00 or
. <eéz“> A oy’ 10d” 10y

r r or r 00 r 00 ) e ®eg=0. (3.16)

The foregoing equation holds if and only if,

ei;”i) N aeéTi) aef,’g”') B laeﬁm) _ Ops
r ar 87” T aQ 57“
(mi) — (m)  gelmi) q gelmd) g

€op Err + €oo - €or _ ¥s3 =0. (317)

=0,

r r or r 00 r 00

We may express the microstrain and microrotation gradient components in terms of the

stress and couple stress components through the inverse form of the constitutive equations
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(2.14), that is
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Next, we employ the following Airy-type stress functions ¢ and v introduced in [102] and

defined by:
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(3.19)

Obviously, the Airy-type stress functions, ¢ and v in (3.19), satisfy the balance equations

(3.4). In other words, the balance equations are necessary and sufficient for existence of

Airy-type functions in the form (3.19) [102]. Writing (3.18) in terms of (3.19) and inserting

the result into the compatibility relations (3.17), we obtain a coupled system of partial

differential equations in terms of the stress functions ¢ and 9 :

2 Y (o2 o2 L0 oo
<o (V 1)1/1 = 2b%(1 V)r HV 0,
21.8 2 2 9 oo
S (VP=1)y = —20°(1—v) TV o, (3.20)
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where,
2 btduta) W (+9 A
te ’ 4’ 2(u+ M)

The parameters ¢ and b defined by (3.21) are commonly referred to as the characteristic

(3.21)

lengths corresponding to a micropolar material. Solving the system of equations (3.20) we

arrive at two uncoupled fourth order partial differential equations:
V2V%p =0, V(1 -2V = 0. (3.22)

The stress functions ¢ and v of the plane strain problem without body forces must be the

solutions of the equations (3.22) and must be related to each other by the equations (3.20).

3.3 Boundary value problem

Based on the remote boundary conditions which are presentable in cylindrical coordinates

by

1
om(r —00) = Spo(l —cos20) + §p1(1 + cos 26),

| — N =

org(r — 00) = —(pas — p1)sin 26,

pr3(r — 00) = (3.23)

We can express the general solution to the two uncoupled equations (3.22) as

¢ = Alnr+ Br*+ (C+ Dr® + Er—* + Fr") cos 26,
- (Gr—2 Y H2+ L Kg(g) +J 12(£)> sin 26, (3.24)

where A, B,C,D,E, F,G,H, L, J are constants to be determined, and K, and I, are mod-
ified Bessel functions of the second and first kind, respectively. Using the general solution

of the stress functions in the form of (3.24) into (3.19), we may write the stress and couple
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stress components as
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We find the microstrains and microrotations using constitutive equations and the stress
expressions in terms of the two stress functions. We integrate the resulting components to

compute the displacement and microrotation components as

B 1 [0 109 on
=Ty, {5 T ”)Tae] ’

B 1 [10¢ OY 50N
wo= 21 [r 20  Or (1=w)r or |’

1
= , 3.27
where 7 satisfies the conditions
0 (rn)

which by integration determine the function 7 as
n = 4B0+ (2Cr~ 2 + 2Fr?) sin 20. (3.29)
From the equations (3.27) we arrive at

up = 2pu, = —{Ar~" —2Br(1 - 2v)
+ 2D+ H)r+2(G-E)r? —4(1—v)Cr!
+AvFr® +2Jr b, ( ) +2Lr K, <c)> cos 29} ,

uy = 2pupg=—{-2(D+ H)r +2(G—E)r?+2(1-2v)Cr!

- (2 (2) -2 (2))
) (1K1 ( )+ 2K2 <c>>}sm29’

s = (v+<)ps={Gr?+ Hr?
VLKo" D)+ J L= )}smze, (3.30)
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for the normalized displacement and microrotations. We now employ the boundary condi-
tions for a remotely loaded infinite medium containing the circular hole (3.23) to determine
the unknown coefficients. Accordingly, the remote loading conditions in cylindrical coordi-

nates as r — oo result in

J = 0, F=0, H=0,

1

= Zl(pl +p2), D= i(m —p1). (3.31)

The surface of the circular hole is assumed to be traction-free. We adopt the fourth order
elastic surface structure introduced in Section 2.4, with the assumption that G; = 0. By
virtue of this latter assumption, we may demonstrate the pure effect of micropolar twisting
rigidity of the surface free from the asymmetric shear-type contributions of micro-structures
of the surface. In the equations (2.49-2.51), we incorporate the fact that for the circular
surface under consideration, ds = Rdf and by = —1/R . Thus, the boundary conditions
incorporating surface effects on the circular hole become,
Ay (v dul B, dPur dPu
+ - ——L 4
2uR \ do? de 2uR3 do? do?
N H, &y}
(v 4+ <)R? db?

A du;‘_'_u* N B, _d4uj+d3u;‘
A R T A T

H, d3g0§

+ Ro,o(R,60) =0, (3.32)

+ R + Ro,.(R,0) =0, (3.33)
H, d2<p§

With reference to the equations (2.49-2.51) we can express the material properties of the
surface in (3.32 to 3.34) by Ay = (2us + A\o)t, By = (2us + A)t?/12, and Hy = (75 + <)t
which respectively, represent the stretching, bending and twisting rigidities of the surface.

Clearly, the values of the stretching, bending and twisting rigidities depend on the choice
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of the effective thickness ¢ which may differ for different modes of deformation (i.e. for
stretching and bending) [101] and also on the choice of Lamé coefficients of the surface p
and As. Indeed, to obtain realistic values of these surface parameters, more experimental
data is required as well as atomistic simulations such those undertaken in [17]. Using the
boundary conditions (3.32 to 3.34), we can determine the remaining coefficients A, C, E, G,

and L leading to a complete analytic solution of the problem.

3.4 Numerical Evaluation

Here we present some numerical results to illustrate the contribution of micropolar surface
elasticity with bending rigidity. We adopt the numerical values of the material constants
as per existing studies of surface effects given in the literature [129, 17]. However, the lack
of experimental data on the values of micropolar elastic constants and bending rigidities of
surfaces and interfaces (see, for example, [54, 3, 86] for ongoing research in this area) means
that we cannot relate our chosen values of the bulk and surface moduli via an empirical
relation. As a result, for a micropolar material with p,, = 20 Gpa, v = 0.2, (y +¢) =
4pb*(N), ¢ = 0.4 nm and b = 0.3 nm, we assume a surface of A, = 6 N/m, and B, =
H, =107 N.m. The plane medium containing the circular hole is subjected to a uniaxial
remote loading (p; = 0 and py # 0). In Figure 3.2, we illustrate the variation of the
normalized stress component g9 on the circumference of the hole. Accordingly, we observe
the contribution of the surface effect in classical and micropolar elasticity. As shown in
the figure, incorporating surface effects in both classical and micropolar models leads to
quite convergent predictions for the hoop stress. We can identify three types of similar
solutions. The classical and micropolar elasticity models without surface effects furnish
the first type of solutions which demonstrate a reduction in the stress concentration when
the micropolar solution is compared to the classical. This is, indeed, in agreement with the
results presented by Kolani and Ariman [78]. We highlight the second type of solution by the
classical elasticity with surface effects. The incorporation of bending resistance to the surface

decreases the stress concentration even further. However, the two classical solutions for hoop
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Figure 3.2: Hoop-stress concentration on the circumference of a hole of radius R = 1nm
under uniaxial remote loading

stress concentration with surface effect are quite close. The micropolar elasticity model of
surface effects makes up the third type of solutions which predict the lowest hoop stress
concentration. An overall observation of the solutions indicate that the more size-dependent
effects incorporated into the model of deformation (including surface effects with bending
resistance and microstructure of the material via micropolar elasticity), the more accurate the
results become. This is determined from the solutions converging to a minimum prediction
of the stress concentration. We have shown further, in [57], that for the components o, and
0., the incorporation of the surface bending rigidities of both classical and micropolar case
contributes more to the stress solutions.

Figure 3.3 shows variations of the normalized hoop stress with radius of the hole. We
observe that including surface effects in both classical and micropolar elasticity leads to
significant differences in the results. The difference between the solutions with and without
bending rigidity is perceptible when the radius of the hole is small enough. For the presented
numerical case, to accentuate significant effects of the bending rigidity of the surface the
radius of the hole should be less than around 2 nm, however, this size may differ depending

on the choice of values for the material parameters. Here, we emphasize that for the model of
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Figure 3.3: Variation of hoop-stress concentration with radius of circular hole

a micropolar bulk with surface effects excluding bending resistance, we assume the surface
to be a classical stretching-resistance Gurtin-Murdoch type surface. Therefore, for large
circular holes where the bulk micropolar effects are undermined the results approach the
classical elasticity with surface incorporation. Also, for a sufficiently large hole radius (e.g.
here more than 5 nm ) the results with and without surface bending effects essentially agree
so that the surface bending resistance becomes insignificant. The most general case of the
micropolar model with surface bending resistance is an exception in that sense, since even
for large circular holes the intrinsic bending resistance of the surface H remains effective.
We sum up this chapter by stating that the surface model gains accuracy via the incor-
poration of bending resistance in both classical and micropolar theories. We conclude that
size-dependence can be captured to a reasonable accuracy by incorporating higher order sur-
face mechanics in both classical and micropolar elasticity. In conclusion, our results indicate
several scenarios in which both microstructure and varying degrees of surface elasticity may

produce more precise and efficient models of deformation.
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We may use the method of the presented solution here to approach problems of more
direct application. In particular, problems concerning homogenization of nano-composite
materials are of high importance. Studying the effective properties of nano-composite ma-

terials using the proposed model is the subject of the next chapter.
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Chapter 4

Effective Elastic Properties of
Nano-Composites with Interface
Effects

In this chapter, we employ the approach from the previous chapter to study the effective
shear and bulk moduli of a micropolar nano-composite while taking into account the separate
elasticity of the interfaces. Most of the materials we deal with in reality are inhomogeneous
as they contain micro/nano-constituents or are formed of micro/nano-structures. Thus, the
statistical behavior of micro/nano-constituents determine the overall mechanical responses
of the materials. Since the micro/nano-sized constituents of most materials are randomly
distributed, the so-called homogenization theories are developed from statistical principles to
predict the overall mechanical properties of such materials [93]. Furthermore, it is well-known
that the homogenization techniques are strongly influenced by the microstructure and inher-
ent length scales of the heterogeneous material [6]. Classical models of deformation are based
on ideas from continuum mechanics which essentially ignore the material’s microstructure
and any phenomena occurring at smaller length scales. In the recent literature, two different
approaches have been taken to address the deficiencies in classical models; the theories of
higher-order continua, and the incorporation of surface/interface mechanics. The homoge-
nization techniques have been adopted with the incorporation of the Gurtin-Murdoch surface

model, to account for the size-dependency in the effective properties of nano-composites [35],
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and nano-voids [37]. The homogenization procedures commonly require knowledge about
Eshelby tensors and the stress concentration tensor for inhomogeneities (these are readily
derived by Duan et al. [34, 36]) in the presence of surface elasticity. As mentioned previously,
however, the Gurtin-Murdoch model is rather limited in that it treats the surface/interface
as a membrane incapable of predicting an energy-minimizing configuration under compres-
sive surface/interface stresses. To address the deficiencies of the Gurtin-Murdoch model,
the Steigmann-Ogden model has recently attracted extensive attention in refined continuum
mechanics models. For example, Chhapadia et al. [17] demonstrated the necessity of the
Steigmann-Ogden modification in explaining the discrepancy between the results of atomic
simulations and the classical Gurtin-Murdoch model. In the particular case of the homoge-
nization of nano-composites, the work of Zemlyanova and Mogilevskaya [158] is noteworthy.
They incorporated the Steigmann-Ogden model into a model of the interface and obtained
corresponding stress distributions as well as the effective properties of the composite. They
noted, specifically, the contribution of the enhanced model via flexural resistance of the
interface.

Adopting a higher-order continuum model is a rather popular alternative approach among
the researchers in modifying homogenization techniques to account for size-dependency [134,
97, 155, 96]. Among the aforementioned research, Liu and Hu [96], proposed a formalism
in the micropolar theory of elasticity [46] with which the effective properties of materials
could be determined in this more general setting. Subsequently, Xun et al. [150] derived the
effective in-plane moduli of a micropolar composite by incorporating the analytical solution
of the problem into the Mori-Tanaka procedure.

Introducing surface/interface mechanics into the micro-mechanical model of micropolar
elasticity combines the two approaches with the objective of providing a comprehensive
description of size-dependent composite materials. This approach has been taken by Chen
et. al. [15] who based their presentation of the interface on Gurtin-Murdoch model, which
as mentioned in the previous chapters, offers no flexural rigidity. Our specific interest in the

contribution of flexural effects in the micropolar surface model motivates the study of the
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overall mechanical properties of materials in the framework of our presented model.

The approach to the nano-composites problem presented in this chapter, enjoys the ad-
vantages of both surface/interface mechanics with flexural effects and the higher order con-
tinuum approach in the form of micropolar elasticity with surface/interface effects. We start
this chapter with a brief account of the concepts useful in estimating the effective mechanical
properties of nano-composites. Subsequently, we obtain the analytical solution of deforma-
tions of a circular inhomogeneity in the presence of surface effects in a micropolar medium.
We use the analytical solution to evaluate the effective moduli of the nano-composite using
the Mori-Tanaka approach. We identify the contribution of surface flexural resistance by
comparing a special case of our results with those in [15] in which the interface effect incor-
porates only membrane type resistance. It should be noted that Chen et. al. [15] simplified
their calculations by considering the case of a fiber composed of a classical material. They,
as well, imposed zero microrotations on the interface with the micropolar matrix. However,
we believe that a perfectly bonded interface which characterizes the influence of a classical
fiber material on a micropolar matrix should involve a couple-stress jump condition instead.
This is because on the perfectly bonded interface the independent microrotations of a mi-
cropolar material must be set aligned with the classical displacement-dependent rotations
(marco-rotations) of the classical fiber rather than zero. This choice of boundary conditions
is consistent with the fact that couple stresses are zero in the classical fiber but nonzero
in the micropolar matrix. However, to present a proper comparison, observe the effects of
micropolar flexural resistance and verify our results, we calculate the effective moduli in two
different cases of boundary conditions. In the first case, we follow the assumption made
in [15], impose microrotations on the interface and demonstrate the additional contribution
of interface flexural resistance. In the second case we use the interface couple stress jump
conditions rather than fixed rotations. At the end of this chapter, we illustrate the theory
by presenting numerical examples in which a plane micropolar medium contains nano-voids
with an enhanced surface model. To open the chapter we summarize required preliminary

concepts of homogenization theory.
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4.1 Preliminary Concepts

We would like to idealize a material consisting of different micro/nano constituents to a
homogeneous material whose mechanical properties are uniformly distributed throughout
the volume. Consider a space occupied by such a material, S, over which a probability
density of the property is defined as, p(x) at a point, x € S. However, any particular
property, M, of an inhomogeneous composite is a function of the point x, in the space S.

The ensemble average of this property over the space is defined as,
(M), = [pxMxas (4.1

A representative volume element (RVE) is a volume V', of a heterogeneous material
assumed sufficiently large to statistically represent the material in an infinitesimal neighbor-
hood. In other words, an RVE contains a representative sampling of all the inhomogeneities
and micro/nano-constituents [93]. Obviously, for a material which is homogeneous at macro-
level, we consider associated macro-elements to be micro-spaces or RVEs with statistical in-
formation about the micro/nano-structures of the material. The average of a property (e.g.

stress, strain, stiffness tensor, etc.) is found, under the assumption that p(x) = % Thus,
1
(M), = V/MdV (4.2)
1%

The concept of RVE is used in micro/nano-mechanics to estimate the overall elastic prop-
erties of materials in terms of the elastic properties of the micro/nano-constituents. The
heterogeneous RVE is subjected to prescribed boundary conditions corresponding to the
uniform fields. We calculate the overall properties of nano-composite materials based on the
RVE response to these boundary conditions. There are several schemes to determine the
effective properties of the nano-composite materials. There are two theorems that are used

in furnishing the homogenization schemes.

Theorem 4.1. Suppose an RVE of volume V' whose unit outward normal to its boundaries
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15 denoted by N, 1s subjected to remote traction boundary conditions given by XN, then the

average stress field (o), in the RVE equals the remote boundary conditions tensor, 3.

Proof. Using the balance equations (2.7) we write the average stress tensor as

@) =1 [oav

v

1
= v/div(aT@)X)dV

\%4
= l/(UTN@;x)dA = l/(2N®x)dA
v v

ov oV
= g/(nééx)dfl: Y

ov

]

Theorem 4.2. Suppose an RVE of volume V, whose boundary conditions are prescribed
displacements, u® which can be described in the form of u° = Ex with E being a constant

strain tensor. Then the average strain field in the RVE equals the constant strain tensor, E.
Proof. The proof procedure is similar to the previous theorem. O

Some of the well-known homogenization techniques include dilute suspension approxi-
mation, self-consistent method, and Mori-Tanaka method. In this section we summarize the
Mori-Tanaka method (MTM) which we use for evaluating the effective elastic moduli of a

micropolar nano-composite with surface effects.

4.1.1 Mori-Tanaka Procedure

We briefly reformulate the MTM following Duan et al. [35]. To this end, we define a RVE
of a volume V' consisting of the medium and inhomogeneities of the same type. The in-
homogeneity and the medium occupy the volumes V; and V5 in the RVE, respectively and

I' denotes the interface between the inhomogeneity and the medium. As in the previous
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section, the indices 1, 2 again correspond to the inhomogeneity and the medium, respec-
tively. The idea is based on Mori-Tanaka mean field theory which states that for a matrix
containing randomly distributed ellipsoidal inhomogeneities the average strain field in the
matrix remains the same due to adding a single inhomogeneity to the RVE [108]. There are
two strategies for formulating the effective properties of the composite based on MTM. In
the first strategy, we calculate the average of strain fields based on prescribed displacement
boundary conditions. The second approach is to formulate the average stress fields based on
prescribed traction boundary conditions. Since we readily have the analytical solution of the
problem of a circular inhomogeneity under prescribed remote loading we adopt the second
approach. Note that we are interested in the equivalent classical elastic material moduli so
that we take averages over the symmetric parts of the stress/strain fields (denoted by the
superscript ”sym”) [96]. Consequently, we express the uniform remote traction condition on
an RVE as,

t = XN, (4.3)

where, t represents the uniform traction on the imaginary boundary of the RVE with unit
normal N and ¥ = (o*¥™),, is the average of the symmetric part of the stress field which
corresponds to the stress field in an equivalent homogeneous classical medium. Under the
foregoing traction boundary conditions we define a fourth-order stress concentration tensor,
J, which connects the average stress distribution inside the inhomogeneity to the average

stress distribution inside the medium in the form
(o), =T (a™™),. (4.4)

In the equation (4.4) and the equations that follow, (.),, (.),, (.);, and (.); indicate the aver-

age quantities taken over the inhomogeneity, the medium, the total RVE, and the interface,

«@,”

respectively. The notation “:” indicates the double contraction of two tensors. Subsequently,
for the average symmetric stress jump over the interface, we adopt the representation given

in [8] and [35] and define a concentration tensor, M such that,

(01" = 51 [ (ol ®x -+ xsloin) dS =M ("), (4.5)
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Here, the vector x locates the interface’s mid-surface, n is the unit outward normal to the
interface, and

(o] = 0(2)‘ — 0-(1)‘1“’

denotes the stress jump across the interface. Also Vi denotes the volume of the inhomogeneity
phase. The concentration tensors are determined from the analytical solution of the problem
subject to the prescribed traction boundary conditions. Let f be the volume fraction of the
inhomogeneity in the RVE. Then, from the averaging procedure we can express the total

average of the stress and strain fields in the form,

(@™, = (1= f) (&™), + f (o™, + QL‘G / ([oln®x +x ® [on)dS, (4.6)
(€™ = (1= f)(e¥)y+ [ (), (4.7)

Upon use of the equations (4.4) and (4.5) in (4.6), we can write,
(o™, = [1 = NI+ FT+M)] : (e™™),, (4.8)

or
1

(o™, = [(1— A" + f(T+M)] "~ : (™™, . (4.9)

Here, I*"" is the fourth order unit tensor. We establish the equivalent homogeneous classical
material with a uniform equivalent compliance tensor D, which arises from the relation
between the average symmetric stress and strain tensors in the RVE, formally, (€*™), =
D : (o*¥™),,. Furthermore, the average stress and strains in each material phase are related

through the uniform compliance tensor of that material phase. In other words,
(€v™), =DP: (g™, , (™), =DW: (o), . (4.10)
Substituting the equations (4.10) in (4.7) and using (4.4), we arrive at,

D: (™), = (1— /D@ (c¥™), + fDW: T : (o¥™), . (4.11)
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The term (1 — f) (o°¥™), in (4.11) may be replaced by the following expression:
(1= f)(a™)y = (™), = [{a™™)) = [M: (a™™),. (4.12)
It then follows that,

D: (o®™), =D (g*™), + [f (DY = D) : J-fD® : M] : (™), (4.13)
Using the equation (4.9) we express the second term of (4.13) in terms of (o*¥"),, to obtain,
D : (™), = (D(2) + [f (D(l) - D(Q)) : J—fD(Q) : M} :

(= N+ FI+M)) ) £ (@),
from which we can determine the effective compliance tensor from the Mori-Tanaka formal-
ism,
D=D® 4 [f (DY -=D®):J—fD®: M] : [(1 - /T + fI+M)] . (4.14)
The effective stiffness tensor or the elastic moduli tensor of the composite may be obtained

. = =1 . . : .. :
as the inverse tensor, C=D . To fully determine the effective elastic moduli, it remains to

evaluate the concentration tensors J and M which are isotropic tensors of the form,

J = JL,E + JE, (4.15)
M - MbE1 + MSEQ (416)
where
1 1
E, = 5I@d)@ﬁ(?d), E, = —§I<2d>®1<2d> + TGt (4.17)

Here, 1?9 is the second order unit tensor and the scalar components Jy, J, M, and M, are
to be determined. We accomplish this task using the exact analytical solution of a circular
inhomogeneity in an infinite medium under remote loading. The solution to this problem
represents the change in the stress concentration by adding a single inhomogeneity to an
infinite RVE of the nano-composite. Note that the stress concentration change can also be
found using approximate methods such as Eshelby’s equivalent inclusion method [38]. In
the next section, we employ the exact analytical solution of the problem to calculate the

concentration tensors and subsequently the effective elastic properties.
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Figure 4.1: Circular inhomogeneity in an infinite plane matrix.

4.2 Circular inhomogeneity in an infinite medium

We consider a micropolar circular inhomogeneity of radius R in an infinite micropolar plane.
We describe the interface between the inhomogeneity and the medium by the micropolar
elastic interface model presented in chapter 1. This means that the interface of the circular
inhomogeneity and the medium is described as a flexural resistant fourth order deformable
structure. Consequently, the stress jump boundary conditions (2.49-2.51) hold at the inter-
face. Let {o: x1,x9, 23} be a system of Cartesian coordinates and {o : r,6,z3} cylindrical
coordinates with the common origin o located at the center of the circular inhomogeneity.
Expressed in the Cartesian coordinates, the infinite plane medium is subjected to uniform
remote normal stresses, 011 = p; and 095 = ps, and zero remote couple stresses 13 = o3 = 0.
We set the remote couple stresses to zero, since the remote properties of the infinite medium
are assumed in macro-scale level. The configuration of the problem is shown in Figure 4.1.

We use the equilibrating in-plane potential functions, ¢; and 1);, described by [150]
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In the equation (4.18), the indices i = 1,2 correspond to the inhomogeneity and the medium,
respectively. The displacement components can be calculated by combining the kinematic
relations (2.11) in cylindrical coordinates and the constitutive relations given by (2.14), in

the inverse form. Consequently,

@ — _ - — (1=
U o {87“ g L ae] ’
@ 1 13@ _ O 1 2 ON;
Y T 2p; L’ 00  or (1= w)r or |’
o) = 1% i=1,2, (4.19)

i

where,

ni = 4B;0 + (2C;r? + 2Fr?) sin 26,
Ai

v = ————

2(pi + A)

and B;,C; and F; , i = 1,2 are constants to be determined. For simplicity in solving the

inhomogeneity-matrix problem, we have replaced v+ ¢ by « for each phase, since only v +¢

appears in the in-plane parameters but not v — ¢. The compatibility equations written in

terms of the potential functions ¢; and v;, yield the following coupled system of equations,

0 10
27 _ R 201 _ 2 )
c; 5 (A — 1) 2b; (1 yl)raﬁA(b“
210 v — o1 — ) A
Ci r 60 (A 1) ¢1 - 2bz (1 V’L) arA¢Z) (420)

64



where A is the two-dimensional Laplacian and c¢;, b; are the characteristic lengths of a

micropolar material defined by,

o il o) Yi

= b = : 4.21
“ dpgog T A, ( )

We solve the system of equations (4.20), to obtain the two uncoupled equations,
AAg; =0, A(1—cIA)y; =0. (4.22)

Using the methods of separation of variables and the form of the boundaries [105], general

solutions of the equations (4.22) are given in the two material phases through as,

¢; = Ailnr+ B+ (C; + Dir?* + Exr—? + Fir*) cos 26,
Wy = (Gﬂ”Q FHp? + Ly Ko(—) + J; 12(3)) sin20, i=1,2, (4.23)

i G
where I, and K5 are the modified Bessel functions of the first and second kind, respectively
and A;, D;, E;,G;, H;, L; and J; are additional constants to be determined. The boundary
conditions on the interface include continuity of displacement and rotation in addition to
the stress jump arising from the model of the interface. Substituting the arc parameter of
the circle s = Rf, and the curvature by = —R in (2.49)-(2.51), and using the simplifying
assumption that the micropolar shear parameter of the surface is negligible (G5 = 0), we

may write the boundary conditions at the perfectly bonded interface as,
ﬁ d?u, n % n E _d?’un n d?ug
R2 \ db? de R4 do3 do?

Hy (d*ps ) 1)

A® ( du, u) - B _d4un N dPu,
R2 \ dO " R4 do* do3

H, (d
~ 7 ( dgff) +o) — @ =, (4.25)
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0 (d*p; @ O

ui’ (R, 0) = ug” (R, 0) = u,, (4.28)
25 (R, 0) = ¢ (R, 0) = . (4.29)

We note that the first two interface conditions are equivalent to the Steigmann-Ogden inter-
face conditions given in [158] for plane classical elasticity except that in the Steigmann-Ogden
model the shear traction couple terms do not appear. Additionally, the remote boundary

conditions lead to,

1 1
017 (r — 00) = 5 P2+ p1) + 5 (p1 = p2) cos 20, (4.30)
) 1 :
Ty (1 — 00) = 5(]92 — p1) sin 26, (4.31)
12 (r — 00) = 0. (4.32)

Again, the compatibility equations (4.20) imply that,
H; = 24b3(1 — ;) F;. (4.34)
The remote loadings conditions and the boundedness of the stress and couple stress at the
center of the inhomogeneity, allow us to calculate the following coefficients:
A, = 0,C1=0,L,=0,G; =0, E; =0,
Jy = 0, F, =0, Hy =0,

1
By = Z(p1+p2)’
1

The remaining ten coefficients are determined using three equations of the interface (Egs.

4.24-4.26), a condition arising from linear independence of the set {1, cos 26}, three equations
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describing continuity of the displacement and rotation (Eqs. (4.27-4.29)) and two compati-
bility relations Eqgs. (4.33) and (4.34). The total number of ten available equations make up

a linear system of equations with ten unknowns to be determined.

4.3 Effective bulk and shear moduli of plane micropo-
lar nano-composite wth circular nano-inhomogeneities

We apply the analytical solution derived above for the circular inhomogeneity under the
remote traction conditions to calculate the effective bulk and shear moduli. The analytical
solution was obtained for the most general case in which all of the phases (the inhomo-
geneity, the medium and the interface) are comprised of micropolar materials. In order to
compare our results with the work by Chen et al. [15], we reduce our analytical solution to
the same case considered in [15] in which the inhomogeneity is a circular fibre composed of
a classical elastic material while the medium and the interface each have micropolar prop-
erties. We mention again that Chen et al. [15] assume that this case corresponds to zero
microrotations on the interface. We prefer to characterize the influence of a classical elastic
fibre on a micropolar matrix using a couple-stress jump condition (so that independent mi-
crorotations are aligned with the classical displacement-dependent rotations defined by the
anti-symmetric part of the displacement gradient rather than set to zero). However, given
that, to the author’s knowledge, [15] is the most appropriate paper in the literature to allow
an effective comparison with our results, we calculate the effective moduli in two separate
cases. In the first case (Case 1), we use the same assumption made in [15] and impose zero
microrotations on the interface. We then compare the additional contribution of interface
flexural resistance from our model to the results in [15]. In the second case (Case 2), we do
not impose restrictions on the microrotations on the interface but instead introduce the cou-
ple stress jump condition (see Eq. (4.26)) at the interface which is based on the requirement
that couple stresses are zero in the (classical elastic) fibre but non-zero in the micropolar

matrix.
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4.3.1 Effective bulk modulus

In order to conveniently estimate the effective bulk modulus of the composite, we impose
remote hydrostatic boundary traction, p; = py = p, on the infinite medium containing a
single circular inhomogeneity. In fact, we look for the stress disturbance induced by adding
a single circular inhomogeneity to the composite. Consequently, the average stress over the

medium can be approximated by the stress induced in an infinite homogeneous medium:

(@112 = p, {027)y = 1,
(0137)y = {o31")y = 0. (4.36)

Clearly, since the remote tractions contribute no microrotation, the couple stresses do not
play a role under these particular boundary conditions. The average normal stresses inside

the inhomogeneity and the medium are related by,

(@) +{o2")y = Hl(o™)y + (0227),),

2B
= 4B, =2, = J, = —. (4.37)
p

Also, the average stress jump across the interface follows the relation,

(loul™)p + ([022])p = My({o77")y + (025" )5),
24
= —4B,+2p+ }T; = 2pM,,. (4.38)

Note that given the dependence of the coefficients A;, B;,..etc, on p, J, and M, are inde-
pendent of p as expected. The bulk modulus of the two material phases in plane elasticity
are defined by k; = p; + i, (1 = 1,2), p; and \; being the classical Lamé coefficients. Using
the relations for the stress concentration coefficients (4.37-4.38) into the equation (4.14) and

inverting the compliance tensor, the effective bulk modulus, k& becomes,

(L= f)+ f(My+ )

E _
B e (s)a )
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We employ the coefficients B; and A, determined from the analytical solution to find .J, and

M, and conclude that,

A® H2 e
F_ ) - Dt k(4 FE0 (4.40)
k2 (;—R+k1)(1—f)+“2+fk2

for both cases mentioned above. The result coincides with that obtained in [15] since the
flexural resistance of the interface does not affect the effective bulk modulus. Also, it is not
surprising that in either case we obtain the same results since under the hydrostatic remote
traction condition, no point (element) microrotation occurs in the composite. Further, since
the points at the interface undergo no microrotation, the bending resistance effects vanish
from the solution. Consequently, the use of micropolar elasticity as opposed to classical
elasticity seems to make no difference and we obtain the same effective bulk modulus (4.40)

as that obtained from the classical model with only surface stretching resistance [37].

4.3.2 Effective shear modulus

For calculations of the effective shear modulus of the composite we impose a pure shear
boundary traction p; = —py = p, on the infinite medium containing a single circular inho-
mogeneity. As in the calculation of the bulk modulus, since a single inhomogeneity causes
very little disturbance in the average stress over the medium, the average stress can be

approximated by the stress induced in an infinite homogeneous medium:

(011")2 = p, {032")s = —p,
(015")y = (051", = 0. (4.41)

Therefore, the stress concentration tensor component, .Js, relates the average pure shear

stress in the medium to the average pure shear stress in the inhomogeneity by,

1 sym sym JS sym sym
5((01?1; >1 — (03 >1) = 5(<01?1J >2 (] >2) = pJs,
= J, = (—2D; — 3R*F})/p. (4.42)
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Similarly, the average pure shear stress jump over the interface satisfies,

1 sym sym MS sym sym
5((‘7111/ >F_<02§l >r): 5 (<0111/ >2_<‘723 >2)ZPM57
Cy Ly R
M, =1 2D, + 3R*F, — —= K (= . 4.43
e (oo - S 2 () a3

Note that given the dependence of the coefficients A;, B;, ..etc, on p, J, and M, are inde-
pendent of p, as expected. As mentioned above, we consider two cases enabling us to make
a direct comparison with results in the existing literature.

Case 1: Following the assumption made in [15], we adopt the condition of zero micro-
rotation at the interface. Thus, using the Mori-Tanaka’s effective compliance tensor (4.14)

we obtain,

(1—f)+ f(M, + J,)
(1—f)+f<%> T4

We may calculate the concentration tensor components M, and Js using the analytical solu-

(4.44)

"o
2

tion found above under the assumption of applied pure shear remote traction. Consequently,

I W1K1(§) + WQCQRK2(£)

py WiKi(£) + Wie,RE(E) (4.45)
where K; and K, are again the modified Bessel functions of the second kind and,
Wi = 4651 = f)(1 — o) {4R (1 — p2) (111 — prady)
—2R*h(pf — padi — 8z (1 — 1))
—(8B,R + 2A,R*)(p1ly — piady) — 12BA.d,
—3hAR*(p1g1 + padi) } (4.46)
Wy = 12B,Adi(f — dy) + 3RAR? [1g1(f — do) + padi(f — g2)]
+(2A,R? + 8B,R) [pnli (f — do) — podi (f — 2+ go)]
—4R(tn — pady) [(1 = fpa + g (f — do)]
+2h R [(1 = f)dvps + pi(f — da)
+8purpa((dz — f)(1 — 1) + (1 —12))], (4.47)
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Wi = 12B,Asdida(f — 1) + 3hAR? [prgido(f — 1) + pady (fda — go)]
+(24,R® + 8B, R) [plida(f — 1) — pody (fdy — 2+ g)]
AR (1 — pracdy) [(1 = fda)pto + pua (f — 1)de]
—2h R [(1 = f)dopi + p3di (fdz — 1)

=8papz((1 = f)(1 = v1)da + (1 —12))], (4.48)
where,
dz' = —3 + 41/2', g; = —1 + QI/Z',
ll' = -5 + 6Vi, S; — —7 -+ SVZ',
G = —11+12u, i=1,2. (4.49)

By eliminating the flexural resistance of the interface i.e. by assuming B, = 0 and h = 0,
we recover exactly the result given in [15].

Case 2: In this case, we do not use the assumption of zero microrotation at the interface
made in [15] but instead apply the condition expressing the jump in couple stresses across the
fibre-matrix interface (Eq. 4.26) (vanishing couple stresses on the classical fibre side versus
nonzero couple stresses on the micropolar matrix side) (It is worth noting the difference in
results which follow from the subsequent use of the interface condition from Case 1 versus
what we believe to be a more precise representation of the interface condition in Case 2.).
Applying this boundary condition, we can calculate the concentration tensor components
M; and Jg. Again, using the Mori-Tanaka formula (Eq. 4.14) we obtain the effective shear
modulus z for the Case 2 boundary conditions.

We note here another check of our results: if we allow the stretching, bending and twisting
stiffness of the interface, Ay, By, and Hy, respectively, tend towards zero, our result recovers

exactly that for a micropolar composite without surface effects found in [150]. Specifically,

V(A= flpa+ (f —do)a) = X
Y((1 = fda)pe — (1= f)dopa) — X’

I
— 4.50
2 ( )
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where,

Y = R)K, (E) +2¢oRK, (E) ,
Co Co

X = 81— F)u — )1 — m)K, (5) (451)

&
Also, if we let R — oo, the size-independent effective shear modulus is given by,

a_ (A= Ppe+(f —da)m
2 (1 - fdz)M2 - (1 - f)dzﬁbf

which again can be verified using the results in Xun et al. [150].

(4.52)

In the following section, we illustrate the size-dependence of the effective shear modulus

through some numerical examples.

4.4 Numerical Evaluation

For the numerical evaluation of the foregoing analytical results corresponding to the effective
shear modulus of a micropolar nano-composite, we adopt the same material properties used
in the paper by Chen et al. [15]. Consequently, we consider a plane aluminum metal
containing 20% circular voids (f = 0.2). The material constants for such a composite are
po = 34.7GPa, pu; =0, 1o = 0.3, 1y =0, g = 34.7 GPa and «a; = 0 (refer to the equation
(4.21)). The twisting modulus of the medium =y, can vary with the first characteristic length

co according to,
Apipaca
_ 2

gt as’

V2

and consequently the second characteristic length b, is determined by,

2

2 Q26
b2 = 9
M2 + Qo
which from the assumed numerical values, b2 = 0.5¢3. In the paper [15], two types of

material properties of the surface are taken from the paper by Sharma et al. [129]. We
derive the interface elastic rigidities from the same material properties as given in [129]

and [15]. However, we require additional data corresponding to the newly incorporated
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parameters of the surface. Consequently, for Case 1 surface conditions (see above), we
require the corresponding flexural rigidity of the surface B,. For Case 2, both bending B,
and twisting H, rigidities of the surface are required. Accordingly, we choose the following
constants for the surface with flexural resistance: A, = 6.09N/m, B, = 5 x 107 ¥N.m,
H, =5 x 107¥N.m and define an intrinsic length for the surface by, ¢, = A,/p = 0.18nm.
The values for the bending and twisting rigidities of the surface are chosen based on the order
of magnitude expected for this choice of parameters [153, 101]. We acknowledge the fact that
our numerical results are limited by the difficulty in obtaining accurate experimental data
for the additional bending and twisting rigidities as well as the effective thickness arising in
our new curvature-dependent surface model: most of the ongoing experiments in this area
are focused on the conventional surface parameters of the classical Gurtin-Murdoch model
[77, 120, 95]. For this reason, we have simply chosen suitable numerical values for these
parameters for the purpose of comparison with existing results. We follow the procedure in
[15]: for the micropolar medium we assign the characteristic length ¢o = dcg and we vary
the parameter § to adjust the micropolar properties of the medium. Consequently, higher
values of § correspond to a higher micropolarity of the medium.

Figures 4.2 and 4.3 illustrate the effects of bending and twisting rigidities of the surface
for Case 1 boundary conditions. It is clear that since the microrotations have been set to zero
on the interface, the twisting modulus of the surface makes no contribution to the solution.
The effect of flexural resistance of the surface dominates when the radius of the voids is in
the lower range. For example, when R < 3.5nm, the flexural resistance of the surface plays
a significant role in the calculation of the effective shear modulus.

Figures 4.2 and 4.3 demonstrate the effects of bending and twisting rigidities of the
surface for Case 2 boundary conditions. Although small, there is an observable difference
between the resulting curves for Case 1 and Case 2, which demonstrates the significance of
using what we believe to be the more precise boundary condition of a jump in couple stress
at the fibre-matrix interface. Again we demonstrate that in the range of sufficiently small

void radius, mainly the micropolar twisting resistance of the surface controls the effective
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Figure 4.2: Variation of the effective shear modulus ratio with radius of the void for different
degrees of micropolarity (§ = ca/c,) using Case 1 boundary condition

shear modulus of the composite. By removing the effect of flexural resistance of the surface
(Bs = 0), we observe that the twisting rigidity of the micropolar surface, Hy, influences the
solution slightly in a certain range of micropolar characteristic length. In fact, a remarkable
result of this study is that when the characteristic length of the micropolar matrix is of the
order of the characteristic length of the surface ¢; (§ ~ 1) the effect of micropolar twisting
rigidity becomes significant. When the characteristic length of the micropolar matrix is
far from the order of magnitude of the characteristic length of the surface ¢, the classical
and the micropolar surface models without flexural rigidity (membrane type surfaces) yield
similar predictions for the effective shear modulus. Therefore, depending on the value of
the twisting rigidity, in the certain micropolarity range (span of characteristic length values)
of & ~ 1 a more significant effect is observed as a result of surface twisting rigidity. This
influence is also magnified for very small void radius (R ~ 1nm). From the figures, we deduce

that considering both micropolarity and flexural rigidity of the void’s surfaces increase our
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Figure 4.3: Variation of the effective shear modulus ratio with radius of the void for different
degrees of micropolarity (§ = ¢3/c;) using Case 2 boundary condition

prediction of the effective shear modulus of the composite. Below that range of void radius
the effective shear modulus follows the pattern obtained in the absence of bending rigidity
and decreases significantly.

In this chapter, we successfully examined our proposed surface model to the problem of
calculating the effective properties of nano-composite materials. The proposed micropolar
surface/interface specifically demonstrated the advantage of capturing the concurrent con-
tribution of surface flexural and micropolar twisting resistance. A comparison with a similar
research validated our results. In addition, the model enabled us to demonstrate that when
the characteristic length of the micropolar material is of the order of the characteristic length
of the surface, the micropolar twisting modulus becomes important. In the next chapter we
apply our model to a crystal dislocation problem, which is yet another interesting classical

problem that appears as a benchmark in the mechanics of small-scale materials.
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Chapter 5

Plane Problem of an Edge Dislocation
in the Presence of Micropolar Surface

Effects

We continue our examination of the model by analyzing the fundamental problem of a
micropolar half-plane containing a single edge dislocation. Dislocations play a crucial role
in the behavior of crystalline materials and metals, more specifically, they are responsible
for the plastic deformation of metals. Dislocations are defects in the perfect arrangement
of crystal atoms caused by an abrupt displacement in the arrangement of atoms slipped
against each other [117]. In fact, dislocations are defined as the boundary between a slipped
plane of particles and the un-slipped ones in a crystal lattice. Study of dislocations, as nano-
scale defects, is important in engineering applications and nano-material sciences, since the
overall mechanical properties of materials, such as strength and plastic deformation, are
highly sensitive to the density of dislocations, their creation, and their motion [70].

The theory of elasticity models dislocations as a discontinuity in the displacement field.
The slip of atoms against each other on a plane is described mathematically using a dislo-
cation vector, namely, Burger’s vector b or slip vector which determines the strength (mag-
nitude) and the direction of the slippage. Depending on the orientation of discontinuity or
slip there are two main types of dislocations. For a “screw dislocation” the dislocation (the

boundary of slipped and un-slipped particles) is parallel to the slip vector. An “edge dislo-
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Figure 5.1: Screw and edge dislocations

cation”, on the other hand, is formed when the slip vector is perpendicular to the dislocation
(see Figure 5.1).

Dislocations disturb the stress fields near the free surface of a crystalline material and
increase the potential energy generated from the effects of strain energy. This potential
energy is released when the dislocation glides on the slip plane towards the surface and
escapes from the surface. This mechanism, as well as the interaction of dislocations with
each other, explains many behavioral properties of the plastic deformations of a material
(33, 100]. Consequently, the study of interaction between dislocations and surfaces is of high
importance and has been the subject of many researches (see for example [51, 148, 28]).
The necessity for including size dependence in the analysis of dislocations as a nano-scale
phenomenon has triggered intensive research in this area. For example, Lazar et al. [92]
employed higher order non-local elasticity theory to eliminate singularities at screw and
edge dislocations. Baxevanakis et al. [7] evaluated the interaction of a dislocation with a
finite crack in the framework of couple-stress elasticity, and Gharahi et al. [55] investigated
the interaction of dislocations near the interfaces and surfaces of couple stress composite
materials. Such studies are ongoing using the incorporation of the effects of surfaces and
interfaces and applying higher order elasticity and plasticity theories.

In this chapter, we adopt our proposed micropolar surface model to analyze the fun-

damental problem of the deformation of a micropolar half-space induced by a single edge
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dislocation. First, we restate the system of partial differential equations (PDEs) arising from
the micropolar elasticity theory and demonstrate the application of Helmholtz decomposi-
tion to decoupling the equations into two fourth order standard PDEs. Next, we use Fourier
integral transforms to find the analytical solution of the standard PDEs. We validate our
results by reducing the problem to the special case of an edge dislocation interacting with a
planar surface of the Gurtin-Murdoch (G-M) type and retrieving the results of Intarit et.al
[73]. The provided numerical examples illustrate contributions from the enhanced model of
deformation which includes the micropolar effects of both bulk and the surface as well as

the classical bending resistance of the surface.

5.1 Preliminaries

The theory of dislocations in the micropolar setting is presented in a paper by Nowacki [111]
and more recently summarized in [91]. However, a more comprehensive account of the theory
is presented in the book “Theory of Asymmetric Elasticity”, by Nowacki [112]. Here, we
briefly review the theory of dislocations in a micropolar medium and introduce a plan for

solving the plane strain problem of an edge dislocation.

5.1.1 Theory of Dislocations: edge dislocation

The classical dislocation is identified by a discontinuity of the displacement field on a given

surface S in a micropolar space. This reads mathematically as,

[u(x)] =u'(x) —u (x) = b, for x — xy € S, (5.1)

2

where, b is the Burger’s vector and the superscripts “4” and “—” indicate the sides from
which x approaches S. The microrotation field is continuous and smooth everywhere in
the micropolar medium and the displacement field is continuous everywhere except on S.
Another main assumption is that the partial derivatives of displacement and microrotation

fields are continuous everywhere in the medium including S. Finally, in the absence of body
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forces, the homogeneous equilibrium equations of micropolar elasticity (2.15) are satisfied.

5.1.2 Helmholtz Theorem in Plane Micropolar Elasticity

Consider a Cartesian system of coordinates denoted by {x;}?_, and formalize plane microp-
olar elasticity such that the x; and x5 axes lie on the corresponding plane of deformation.
As was mentioned in Chapter 2, in plane deformations, the displacement and microrotation
vectors take the forms, u = (u1(xy, z2), ua(x1,22),0) and ¢ = (0,0, p3(x1, 22)), respectively,
so that the only nonvanishing degrees of freedom, {uy,us, @3}, are independent of the out-
of-plane axis, x3. This scenario is referred to as the first plane problem in the theory of
micropolar elasticity [112]. In this case, in the absence of body forces and body moments,

the equilibrium equations (2.7) reduce to,

OafBa = O; (52)
MaS,a+€3a,30a6 = 07 (53)

where the Greek indices take the values {1,2} and, as before, the ongoing convention is
summation over repeated indices. The symbols e3,5 are the Cartesian components of the
permutation tensor. The microstrain tensor egzi), and the microrotation tensor sz, are
associated with a given displacement and rotation field in plane micropolar elasticity via the

relations (2.11), which here become,

Ha3 — @3@' (55)

The constitutive relations for a linear homogeneous isotropic micropolar material subjected
to plane deformations given by (2.14) are reduced to

Oap = (H+a)egs + (1 —a)egy ) + AT 5o, (5.6)
o33 = Aelm (5.7)
oz = (V+¢)P3a, (5.8)
Hsa = (7 —S)p3a- (5.9)
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The parameters p and A are the usual Lamé constants from classical elasticity while o, ~
and ¢ are the additional elastic constants introduced in micropolar elasticity. We rewrite the
microstrain components in terms of displacement and rotation using (5.4-5.5) and insert the
result into the constitutive equations (5.6-5.9). Finally, using the resulting expressions for

the stress components in the equilibrium equations (5.2-5.3), we obtain,

0? 0? )

(4 a)Auy + (p— a + )\)aTu; +(p—a+ )\)axlg; + 2(1652 = 0, (5.10)
1

0? 0? )

(1t —a+ A)axlg;z + (i +a)Aug + (1 —a + ) a;‘; . 2aa‘§f =0, (511
2
8u1 8u2

—20— + 20— Aps — 4 = 12
O, T2om (Y )Aps —daps = 0, (512

which are the expanded form of the system of partial differential equations introduced in
Chapter 2, Equation (2.17). The set of equations (5.10-5.12) is a system of three coupled
partial differential equations in the three kinematic components (two displacements and one
rotation), required to be decoupled. We decouple the system (5.10-5.12) by decomposing
the displacement field into potential (gradient) and solenoidal (curl) parts based on the
Helmholtz theorem. The theorem states that any sufficiently smooth vector field can be
represented as the sum of the gradient of a scalar potential and the curl of a vector potential.
The gradient term in the field is curl-free (has zero curl) and the curl term has zero divergence.

Accordingly, we decompose the displacement field into,
u=Vxv+Vo, (5.13)

where W(x1, z5) and ®(xq, x9) are, respectively, vector and scalar functions to be determined.

The displacement components in plane micropolar deformation therefore become

uy = @714—\11372, (514)
U2 = @724-\1/3,1. (515)
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We may write the stress and couple stress components in terms of the functions ® and Ws:

o = 20+ NAD +2u (V10 — Do),

g2 = (2u+NAD —2p (Vg1 + D 1),

g2 = 2P 19+ VUs99 — Vs41) — aAV3 — 2003,
g1 = (2P 19+ Us99 — V341) + AW + 204p3,
piz = (v +S)ps, paz = (7 +S)paz,

H31 = (7 - €)903,1, H32 = (7 - §)<P3,2-

Using equations (5.16) into (5.2-5.3) we arrive at,

24
AD A —1 —
( )51 + 2#"‘ Y (C ) ¥3,2 07

24
AD) 5 — A -1 =
( ),2 2M+ \ (C )903,1 Oa

(dZA — 2)@3 - A\Ifg = O,

where,
(7 +5) 2 (v +<9)(p+a)

& =
200 e

(5.16)

(5.17)

(5.18)
(5.19)

(5.20)

The constants d and ¢ (of dimension "length”) are known as the characteristic lengths of the

micropolar material. The characteristic lengths are widely recognized to be associated with

the length scale of the micro-constituents and identify the micropolar properties of the solid

material. We combine derivatives of the two equations (5.17) and (5.18) to obtain,

AAD = 0,
A(CQA—l) w3 = 0.

Each of these equations contains four integration constants to be determined from the bound-

ary conditions and two relations in the form of Cauchy-Riemann equations. In order to obtain

the complete solution of the problem, we solve the equations (5.21) and (5.22) for ® and ¢35

and carry the resulting ¢3 into the equation (5.19) to find the particular solution, W3, of the

inhomogeneous equation.
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Free Surface

b |

Slip Plane Edge Dislocation

X

Figure 5.2: Edge dislocation in a depth h of a half-plane with slip plane parallel to the
surface

5.2 An Edge Dislocation in a Half-plane Medium with
Surface Effects

Consider an elastic micropolar half-plane with an edge dislocation located at a depth h below
the surface. As shown in Figure 5.2 the dislocation is oriented such that the slip-plane is
parallel to the free surface. To formulate the edge dislocation, we divide the half-plane into
two regions; region (1) defined as the strip described by 0 < 27 < h and region (2), the
half-plane where, h < x;. We associate the parameters’ correspondence to each region by
a superscript ¢ = 1,2 as (..)®%). The free surface of the original half-plane has the surface
elastic properties described in the previous section. Consequently, the surface is endowed
with classical bending and stretching rigidities as well as two micropolar twisting moduli.
The free surface is planar, therefore the radius of curvature R(s) tends to infinity and the
curvature tensor component denoted by by = —1/R(s) in (2.49-2.51), approaches zero. The
straight edge dislocation under consideration is shown in Figure 5.2.

With respect to the system of coordinates given in Figure 5.2, the arclength variable s

coincides with xy. The free surface implies that, f;” = f,, = m3 = 0, while

fi =00, 2), fif = 05(0,22), mi = uly) (0, 22), (5.23)

in the surface boundary conditions (2.49-2.51). Accordingly, the boundary conditions at the
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free surface become,

d2u(1)
sd—xé +o0,25) = 0, (5.24)
2 x1=0
d4u(1) 43 (1)
B +Hs% +oD(0,25) = 0, (5.25)
2 x1=0 2 x1=0
d2§0(1)
s uid0.e) = 0. (5.26)
2
x1=0

In the equations (5.24) to (5.26), we as well, neglect the micropolar shearing stress effects
on the surface, i.e. G4 =0, since we assume the thickness of the surface is small enough. In
addition, we have the continuity of displacement, microrotations, stresses and couple stresses
along the intersection of the two regions at 1 = h. Finally, we characterize the dislocation as
a displacement jump across the glide plane (x; = h, 2 < 0) by the magnitude of a Burgers

vector b =bey. Therefore, the jump condition (5.1) created by the edge dislocation becomes,
(h To) —u2 (h xe) = bH(—x9) = F(12), (5.27)

and the remaining the conditions at z; = h comply with the assumptions given in Section
5.1.1, the continuity of microrotations, displacement derivative and microrotation derivative.

In Eq. (5.27), H(x) denotes the Heaviside step function. We have,

We solve the three governing equations, (5.19), (5.21) and (5.22) for each region using the
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following Fourier integral transform:

f(x1,6) = \/%/f(%,%)@ﬂg“dwm

Fanas) = % / Fla, €)% duy, (5.33)

where © = y/—1 is the imaginary unit. The governing equations, consequently, reduce to the

ordinary differential equations,

d? 2.
( 2—52) oW = 0, (5.34)

da}

d2 2 2 d2 2 —~—(1)
[z =) * ()]s - o (535
d? s d? ~
()@ - (fm-¢)i -1z G

Considering single-valuedness of the functions, the solution to the foregoing system is,

0 = AWl 4 By cller 4 C@e—ltler 1 D)y o~lEler (5.37)
GO — Beln | pi)AOn | GOk | g6-a©n (5.38)
B9 = (@2 FOen _ BV e | (2 92 gesom
| g
- %@’)xlem“,for i=1,2, (5.39)

where () = /&2 4 1/c2. The condition of vanishing response at infinity implies that
A® = B® = F® = @ = (0. The remaining coefficients are to be determined from the
transformed boundary conditions,

Ay (880 + 20 4 pu (268 — 20 - 0l

(W - T ~ 2050

=0, (5.40)

xr1=0
_B. (54213,(1” + 2551175})) + H, (—25365,)1)) F(2u+ ) (213511; _ ,525(1))

+ o (a0 + £230)

—0, (5.41)

x1=0
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Hy (—e8) + (y+925| =0,
(168 - B - (1680 - wé}%) __=F@,
(&)(12) + zs\flz(f)) — (5(11) + zs\ffél)> = 0,

~(2 ~(1
- =0

r1=h

(20 + \) (215(12{ - 52@2)) +2p (zng + 52<1><2>)

—(2u+ N (CD 2@“)) — 2 (zgqf“) 12t ) =0,
r1=
(2682 - €50~ T,) — o (#8), - £5) — 20
—H <22§€),(11) - 52@:(31) - ‘I’:(slh) + o (‘I’(lll § ‘1/(1)> + 20490 % e
~2)  ~(1
F-al =0
z1=h
and the transformed Cauchy-Riemann equations,
2 ~(i ~(i ~(3
111 52 m [02 (SO:(;,)H - 52905))) - sz(a)} =0,
(2 T (i 2” ~(1 ~(1 ~(1
1§ <(I),(1)1 — £29 )) ETES)] [ <90§,111 3 <P:(a)1> :91] =0,

=0

(5.42)
(5.43)
(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

for i« = 1,2. The latter equations enforce the compatibility condition on the problem and

lead to three relations between the unknown coefficients:

G (§) (M) P
? 21 ’
a® — (&) (22N po
? 2/ ’
g0 _ (8 (211 AN s
1 20 ’

(5.51)

(5.52)

(5.53)

We find the remaining nine coefficients using the nine boundary conditions presented above.

The transformed functions, EIVD(Z.), @S)

and {Ivféz) now allow us to determine the displacement

and stress field components via their inverse transforms from (5.33), and the expressions

(5.14) to (5.16). Thus, the complete analytical solution is given in terms of Fourier integrals.

85



5.2.1 Special Case of Classical Elasticity

We set the micropolar elastic constants of the bulk material v, ¢, and o as well as the
micropolar surface rigidity H, to zero. The coefficients FM, HM and H® | in turn, vanish.
We normalize the system of linear algebraic equations by taking F (§) = 1 and calculate the

remaining coefficients. The rest of the coefficients are determined as follows:

b+ N [l

(1 _ 4
A 26(2u + \) (5:54)
) _ 2l peT™ (5.55)
2621 + \) '
(1) 2)
cv__ G oo GO (5.56)
D’ D’
(1) (2)
pw_ DI e _% (5.57)
D’ ’
where,
_ 202 + A A B,E?
O = a]e e+ )2 {% 5] (h(&@ — As) + uTi)
+h (AsB&t — 4p) } (5.58)
B 4 2u(2m+ A
o = e (g A e )
3+ A
AsBs 2 1 2h§|>
+A:BE7 ¢ ( TN
20 (20 + N) A
2B, h(e2MEl L1 5 5.59
+£ Y (e +1) + Al (5.59)
1
D§1) _ Zgzie—fllﬁ\'u(lu +A) { (E _ 2h) (AsBs§4 _ 4M2)
2u(2u + A) 2 }
T _TU(BEP— Ay, 5.60
(B =AY (5.60)

86



D§2) = z§4e’h‘5|,u(,u + ) { <% + %5235) (e2h|§‘ — 1)

3+ A
ABE €| [ 1+ el
+A B¢ |£|< e

20(2 A
L2t A)

P (el +1) — 2A,B,h&* + 8u2h} , (5.61)

3u+)\

D = 2§3yg|(2u+A)(u+A){4“ + AsBs€2!£|

§
20(2p + A)
2B (4,1 2m6)} (5.62)

The stress components are obtained from the inverse integral transform,

%0h = 5= / F(€)a e dy, i=1,2, 0,8 =1,2. (5.63)
m

where F(€) is the Fourier transform of bH(—z5) and,

57 = (2u+ ) ( — £ ) + 2 (zgi?gf)l + 52213@')) , (5.64)
5 = 2+ 0) (B - €280) — 2 (1) + 3. (5.65)
) =) = p (2685 - 9P - 9()) i =12 (5.66)

It is not difficult to see that on removing the flexural rigidity of the surface we recover the

results presented by Intarit et al. [73].

5.3 Numerical Illustrations

We determine the constants from the system of algebraic equations and hence the trans-
formed functions 5("), \T/g), and @g) We use these functions and the corresponding inverse
integral transforms of the stress components to acquire the complete solution. The solution
of the stress field components in the form of improper integrals are then computed using

numerical integration methods. In order to compare our results with those in the existing
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literature, we adopt classical elastic constants equivalent to that of an Aluminium alloy with
surface parameters introduced in [101]. Additionally, we consider hypothetical values for
bending rigidity of the surface as well as for the micropolar properties. For the purpose of
comparison, we define a surface characteristic length, Iy = As(2u + A)/2u(p + A) as in [73].

Accordingly, the numerical values for the most general case are taken as,

u = 26.1GPa, A =58.1GPa, a = 2.6GPa, v = 2.6GPa,sc =0
As = 6.091N/m, By = 0.024N.m, H; = 0.024N.m.

Again we note that the above values are chosen for illustrative purposes only and to demon-
strate the effects of each parameter on the solution. In this area of study, it is almost always
the case that the theory is ahead of the experiments making the availability of real para-
metric data almost impossible to find. We normalize the dimensions in our analysis by the
characteristic length of the surface l;. Therefore, we set the normalized measure of depth of
the dislocation to h = h/l,, and the normalized coordinates, to T; = x1/l, and Ty = x5/l
We illustrate the stress components 011, 012, and 099 at two different relative depths along
the x5 direction: 7; = 0.1 and 7; = 1. We compare five different material models to observe
the changes in the solution. The solutions corresponding to classical elastic materials with-
out and with G-M surface effects are published in [73]. Here they are obtained as special
cases of our results by letting the micropolar and extra surface parameters By, H,, «, ¢,
and v, be set to zero. We introduce three additional cases; a micropolar material without
surface effects (A; = By = Hy, = 0); a classical material with higher order surface effects
(o = ¢ =7 = Hg =0); and the most general case of a micropolar material with higher order
surface effects incorporating both bending and twisting rigidities.

Figure 5.3 shows the distribution of the normal stress component o1, along the x5 direc-
tion at the depths 7; = 0.1 and #; = 1 induced by an edge dislocation at the depth h = 1.
Looking at the stress profile at the relative depth 0.1, we observe that the use of classical
and micropolar theories in the absence of surface elasticity intensifies oq; at this depth only

slightly, while involving surface flexural and micropolar effects for both classical and microp-
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Figure 5.3: Variation of the norma_lized stress component o1 at relative depth x; = 0.1 and
Z1 = 1, for an edge dislocation at h = 1.

olar theories significantly affects the solution. The classical G-M model yields higher stress
values compared to the absence of surface effects, but lower values compared to the classical
and micropolar flexural effects of the surface. Interestingly, the stress distributions for the
classical and micropolar surface flexural effects are close to each other. On the other hand,
at the relative depth 7; = 1, the normal stress component oy, decreases by considerations of
micropolarity and surface effects of all kinds. The differences are more pronounced especially
near the dislocation core. Among the surface models, the micropolar surface involving all
the rigidity aspects presents the lowest intensity of stress distribution along the slip plane,
71 = 1, near the dislocation core.

Figure 5.4 shows the distribution of shearing component o5 at two different relative
depths, 7, = 0.1 and 71 = 1. We observe that including micropolar effects of the bulk in the
problem decreases the shear stress intensity on the plane 7; = 0.1. However, farther away
from the dislocation core, the solutions of classical and micropolar elasticity converge. In this
case, the classical G-M surface elasticity intensifies the stress, while incorporating micropolar
and flexural effects of the surface lowers the results. The classical bending rigidity of the
surface has a marginal effect on the stress component, 1o, at this depth. For the shear stress
distribution at the slip plane we notice the singularity at the dislocation core for all cases.

However, involving micropolarity of the bulk and surfaces effects with various properties
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Figure 5.4: Variation of the norma_lized stress component oo at relative depth z; = 0.1 and
Z1 = 1, for an edge dislocation at h = 1.

intensify the singularity rate of the solution. The most extreme case happens for the most
general case of a micropolar material with the flexural resistant surface. It is interesting that
the micropolar properties of the bulk affect the stress distribution locally near the dislocation
core, while all types of surface effects alter the stress distributions even at far away distances
from the dislocation core. This is true for the other components of stress as well.

Figure 5.5, shows the distribution profile of the normal stress component g95. We observe
that the incorporation of surface elasticity reduces the stress variation range at the depth
71 = 0.1. However, the stress intensity increases near the core by adopting surface effects of
any kind. The incorporation of classical bending rigidity in the surface makes an insignificant
contribution to the solution compared to analogous results using the regular G-M model.
The micropolar surface with bending and twisting rigidities, however, has a higher influence
on the profile of the stress component, o9s. At the depth ; = 1 ,we simply observe that the
classical bending rigidity and micropolar effects of the surface do not affect the stress profile.
In addition, the micropolarity of the material without surface effects makes no contribution
to the stress profile at this depth. For both illustrated depths in Figure 5.3 and also the
Figures 5.4 and 5.5, we observe that the surface effects make a global change in the pattern
of the stress distribution. Different types of surfaces affect the solution at a certain distance

from the dislocation core, however, the type of surface model in use becomes less important
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Figure 5.5: Variation of the norma}ized stress component o9y at relative depth x; = 0.1 and
Z1 = 1, for an edge dislocation at h = 1.

at distances far from the dislocation core. The same conclusion can be reached when surface
effects are ignored altogether in classical and micropolar formulations. Consequently, at
relatively far distances from the dislocation core, we have two distinct responses: one arising
from the inclusion of surface effects (relatively independent of the surface model used) and
one which does not include surface effects irrespective of the type of surface or bulk elasticity
model used.

In this chapter, we have demonstrated a successful application of our proposed model
to, yet another fundamental problem of plane elasticity. We illustrated the insufficiency
of classical approaches such as the G-M model or the sole use of higher order micropolar
theory. Also with regards to this specific problem, the incorporation of bending resistance
is generally marginal and may alter the solution only for certain cases.

The fundamental problems, presented so far, demonstrate how effectively, we are able
to apply the model to approach different problems. However, there remains the question of
whether the model is well-posed mathematically. We answer this question through a rigorous

analysis of our proposed model in the following chapter.
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Chapter 6

Wellposedness Analysis of the
Micropolar Surface Model

Before we use a mathematical model to hypothesize a physical phenomenon, we require to
ascertain that the mathematical model adequately describes the physics of the problem. In
other words, the mathematical model needs to be well-designed in order to be applicable
to real physical problems. The adequacy of a model for predicting or describing a physical
phenomenon, is evaluated through well-posedness analysis. In the sense of Hadamard [66],
a mathematical model of a physical phenomenon is well-posed, if its solution exists, the
existing solution is unique, and the solution continuously changes with the boundary data.

A boundary value problem which does not meet Hadamard’s conditions, is called ill-
posed. An ill-posed model does not adequately represent a non-chaotic physical phenomenon,
since it may lead to multiple solutions or no solutions at all for a single physical event, and
therefore erroneous results. To avoid the possibility of fruitless attempts to apply an ill-posed
model to analyze physics of a phenomenon, it is necessary to investigate the model in terms
of the mathematical well-posedness. Well-posedness analysis also uncovers the constraints,
limitations, and the range of applicability of the mathematical model.

In this chapter, we consider the well-posedness analysis of the proposed model, in terms
of existence and uniqueness theorems. In the first section, we introduce the methods which

establish the mathematical framework of the theorems. We employ the commonly used
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energy argument to examine the uniqueness of solutions of the model (e.g. [21]). To ex-
amine the existence of solutions of the corresponding boundary value problems, we use the
boundary-integral equation method (BIEM) [23, 22]. The choice of our approach to the
existence theorems is further beneficial in that, it determines the function space in which
the solutions are to be sought. Lastly, in this chapter, we determine the conditions under

which the existence and uniqueness of solutions of the proposed model are expected.

6.1 Preliminaries

Consider the Cartesian coordinates {x,xs,x3} oriented in such a way that the {1, 22}
plane coincides with the plane of deformation and x3, with the antiplane (out-of-plane)
direction. We denote a point on the plane of deformation by x = (x1,23). The analyses
in this chapter require transformations between the Cartesian coordinates and the normal-
tangential coordinates (n —t). As in Chapter 2, we parameterize a curve in the zz5-plane
by an arclength s. We assign to the normal-tangential (n — t) coordinates the orthonormal
basis {eg(s), es,n(s)} with the unit outward normal denoted by n(s) and the unit tangent
vector denoted by eg(s) at an arclength distance s from an origin s = 0. The orientation of
the tangent to the curve is measured as 6(s), the angle between the x;-alignment and ey(s).
The standard transformation operator defined by

cosf(s) sinf(s) 0O

A(x)=A1(x)=| sinf(s) —cosf(s) 0

0 0 1
transforms the coordinates between the normal-tangential and the Cartesian coordinates.
We denote by M., ., the space of (m x n) matrices and I, is the identity element in M,,y.,.
We also denote the identity element of M3y3, in short, by I. For a space of scalar functions,
X, a matrix, v € X means that every element of v belongs to X. In this chapter, we seek
the solutions to the corresponding boundary value problems for our model and the determine

the requirements of the boundary curves in the function spaces introduced in Section 2.1.2.
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6.1.1 Integral Equations

Integral equations are equations which involve unknown functions under integral operators.
The simplest integral equation is a Fredholm equation of the first kind wherein the unknown
function appears linearly under the integral sign only. For the Fredholm integral equation
of the second kind the unknown function appears both inside and outside the integral sign.
Fredholm integral equations of the first and second kind over a curve 0.5 belonging to the
x1x9-plane are of the following forms, respectively,
. K(x,y)¢(x)dy = f(x), ¢(x) — . K(x,y)p(x)dy = f(x), x,y € 9S.
Here, ¢(x) is an unknown function, while K(x,y) is called the “kernel” and f(x) is a
prescribed data over the curve 0S. We regard an integral equation as a linear operator
applied to a function ¢(x) to transform it to f(x). Indeed, for a Fredholm integral equation
of the second kind this operator is composed of an integral operator,
(A9)(x) = [ K(x,y)o(x)dy
oS

(A¢)(x) and an identity operator, (I¢)(x) = ¢(x), i.e (I — A)¢p)(x) = f(x). We define the
adjoint of that linear operator by changing the kernel to K(y,x). Integral equations that
involve differential operators as well as the integral operator are known as integro-differential
equations.

We call a kernel K (x,y) weakly singular if there exist an M € R such that Vx,y € R™ the
product |x —y|*K (y, x) is bounded by M for all 0 < o < n, where n is the dimension of the
space R™ to which x belongs. In the case of planar problems, we are specifically interested

in x,y € R?, hence the condition for o becomes 0 < o < 2.

6.1.2 Analysis Background

In this section, we lay down the useful theorems of functional analysis in application to the
integral equations method. The proofs of the stated essential definitions and theorems can

be found in references ([83] and [18]).
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Linear, Bounded and Compact Operators

Definition 1. An operator A : X — Y mapping a linear space X into a linear space Y s

“linear” if Alag + 5Y) = aA(¢) + BAW) for all ¢ and ¢ € X and all « and 5 € C.

Definition 2. An operator A: (U C X) — Y mapping a subset U of a normed space X into

a normed space Y is continuous at an element ¢ € U if
lim A(¢n) = A(9) for all ¢, € Uwith lim ¢,, = ¢.
n—oo n—oo
The operator A : U w— Y is called continuous if it is continuous for all ¢ € U.

Definition 3. An linear operator A : X — ) mapping a normed space X into a normed

space Y is called bounded if there exists a ¢ > 0 such that for all ¢ € X,

[A@)I < cllo].

For bounded operators we define the norm of the operator as,
|All,, = inf{c > 0: [|A]| < cl[¢] for all ¢ € X}.
Theorem 6.1. Boundedness of a linear operator is equivalent to its continuity.

Theorem 6.2. A linear operator A : X — Y mapping a finite dimensional normed space X

into a normed space Y 1s bounded.

Definition 4. A relatively compact set U is a set whose closure is compact, i.e. each sequence
in U C X contains a convergent subsequence. An linear operator A : X +— Y from a normed
space X into a normed space Y is called compact if it maps any bounded set from X into a

relatively compact set in Y.

Theorem 6.3. A linear operator A : X — Y is compact if and only if for each bounded

sequence {P,}5°, € X, the mapped {A(pn)}2, contains a convergent subsequence.

Theorem 6.4. Compact liner operators are bounded.
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The Riesz Theory

For an operator of the form, I¢p — Ap = f with, A: X — X, a compact linear operator on

a normed space X', we define L = I — A as an operator of the second kind.

Theorem 6.5 (Riesz first theorem). The null-space of the L operator defined by,
N(L)={¢ € X:Lo=0},
1s a finite dimensional linear subspace of X .
Theorem 6.6 (Riesz second theorem). The range of the operator L defined by,
L(X)={L¢: Lp € X},
1s a closed linear subspace of X.

Let us denote by L* the resultant operator from k times applying the operator L. Then,

the statement of the third Riesz theorem follows:

Theorem 6.7 (Riesz third theorem). There ezists a unique non-negative integer r known

as “Riesz number” of the operator A, such that,
NL)y={pe X :Lop=0}

{0} =NL) S NL) S NL)...S NL")=NL ) = ...

X=I0X) 2 LY(X) 2 .. 2 L' (X) = LX) = ...

Theorem 6.8. Let X be a normed space, A : X — X a compact linear operator and let

L = I— A be injective. Then, the inverse operator L™' = (I —A)~! exists and it is bounded.

Proof. Because L = I — A is injective then N (L) = {0}. Therefore, Riesz number r = 0. It

follows that L(X) = X which means L is surjective, hence, L™! exists.
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Now, assume L~' is not bounded. Then there must exist a sequence {¢,}>°, with

||pnll = 1 such that f,, = L~1¢, is not bounded. Let us define

n — rJIJn — Y
1/l 1/l
then ¢, — 0 as n — oo, while ||g,|| = 1. Since A is compact we can choose a subsequence

{gn@ }72, such that, Ag, ) — g € X, as k — oo. Then, because 1, = g, — Agn, we see that
Gn(ky — g as k — oo. In conclusion, g belongs to the null-space of L, i.e., g € N(L), and
therefore, g = 0 which contradicts the fact that ||g,|| = 1. O

Corollary 1. For a normed space X and a compact linear operator A : X — X if the

homogeneous equation,
¢—Ap =0,

only has the trivial solution ¢ = 0, then for all f € X the inhomogeneous equation,
¢—Agp=f,

has a unique solution ¢ € X and this solution depends continuously on f.

Corollary 2. If the homogeneous equation ¢ — A¢ = 0 has a nontrivial solution, then the
non-homogeneous equation ¢ — A¢ = f is either unsolvable or its general solution is of the

form,
¢=0"+> ey,
k=1

where, ¢* is the particular solution of the non-homogeneous equation and {¢y}7", are linearly

independent solutions of the homogeneous equation and oy, are scalar constants.

Fredholm Theory

The last corollary indicates a limitation of Riesz theory. Albeit, in the case of a homogeneous
equation with non-trivial solution, we can use Fredholm theory to find whether the non-
homogeneous equation, ¢ — A¢p = f, for a given f is solvable or not. Before stating the

elements of the Fredholm theory we need to define some terms:

97



Definition 5. Two normed spaces X and Y equipped with a bounded, nondegenerate bilinear
form denoted by (X,Y) are called “dual system”. Here, we define the bilicar form as a
mapping (-,+) : X x Y — C. The bilinearity specifies the conditions,

(g1 + oo, V) = a1 (P1, %) + az (P2, )

(0, B1th1 + Batba) = B1 (@, 1) + B2 (d, 1),

The bilinear form is bounded if there is a v > 0 such that,

(o, D) < yllell lell, for ¢ € X and ¢ € Y.

The norm of the bilinear form, {¢,1) as an operator is therefore defined as,

[{@, V)| = sup [{¢,4)| >0, for #0, or i (¢, 9)] >0, for ¢ # 0.

llgll=1
The nondegeneracy condition implies that for any ¢ # 0 there exists a ¥ € Y such that

(p,1) # 0 and for any ¢ # 0 there exists a ¢ € X such that (p,1) # 0. In finite dimensional
spaces it means that (¢,v) =0 for all Y € Y if and only if ¢ =0, and vice versa.

Theorem 6.9. A normed space X and its dual space X* form a dual system (X, X*) with
the bilinear form, (¢, d*), where, ¢ € X and ¢* € X*. It is called a “natural dual system”.

Definition 6. Let (X)) be a dual system. Then, two operators, A: X — X and B :Y — Y
are called “adjoint” if for every ¢ € X and » € Y, (Ap, ) = (¢, Bi).

Definition 7. A set G € R™, m € N, is called “Jordan-measurable” if a function,

1 xed,
X(;(X)E{O e

is Riemann integrable. The Jordan measure |G| is the integral of Xg over G.

Theorem 6.10. Let G be a Jordan-measurable compact subset, for example G C R2. Then,
(C(G),C(Q)), where C(G) is the space of continuous functions on G, is a dual system with
the bilinear form defined by,

(6,0) = / p(a)b(a)dz, 6,0 € C(G). (6.1)
G
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Theorem 6.11. Let (X,Y) be a dual system. If an operator A : X — X has an adjoint
B:Y — Y, then B is uniquely determined and A and B are linear.

Theorem 6.12. In the dual system (C(G),C(G)) with the bilinear form (6.1), the integral

operators: the integral operators,
/K z,y)o(y)dy and (By)(x /K x, Y)Y (y)dy, (6.2)

with continuous or weakly singular kernel K are adjoint operators.

Proof. We can prove this theorem by directly using the bilinear form,

(A, v) =/ /Ka: Y)o(y)dy | ¥(z)dx

//ny (2)dydz.

Since K is weakly singular or continuous then the integral operator is compact, i.e. A, — A

as n — 00, therefore,

/ / K (2,9)0(y)(@)dyds = / o) / K (2, y)b(x)dz | dy

O

Lemma 1 (Orthogonality). In a dual system (X,Y) for every set of linearly independent
elements ¢, ..., 0, € X, there exists a set Yn,..., 1, € Y such that (¢;, ;) = 0;;, where

i,j=1,...n.

Theorem 6.13 (Fredholm’s first theorem). Let (X)) be a dual system and A : X — X
and B : Y — Y be compact adjoint operators. Then the null-space of the operator I — A and

I — B have the same finite dimensions.
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Proof. First, by the Riesz first theorem we know that the null-spaces of both I — A and
I — B are finite dimensional. Let us take the finite dimensions of the null-spaces as m =
dim{N(I—A)} and n = dim{N (I — B)} such that that n > m. We choose a basis {¢; }I*, for
the null-space N (I —A) and a basis {¢;}}"_, for the null-space N (I —B). By the orthogonality

lemma (1), there exist {ag}}r, and {bx}}_,; such that

(pi,ax) =0, 1,k=1,...m
(b, Vi) =0, i, k=1,..,n.

We define a linear operator T': X — X with a finite dimensional range as,

0 m =0
i=1
Next, let a ¢ € N(I — A+ T), then for m > 0,
¢—Ap+> (d,a;)b; =0, (6.4)
i=1

hence,

Using linearity property of the bilinear form and the definition of an adjoint operator, we

have

m

(@, — Bw) + Y (@, ) (bi, i) =0,

i=1

and since (b;, ¥y) = 0j, then

(6, Y — By) + (b, ar) = 0.

On the other hand, v is in N(I — B), consequently, (¢, a;) = 0, for all k£ = 1,...m, which
by (6.4), it means that, ¢ — A¢ = 0, or in other words, ¢ € N(I — A). Since we may write
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¢ in terms of the basis {¢;}7, as

6=> ()i,
=1

by (¢, ar) = 0, we conclude that ¢ = 0. As a result, the null-space N(I — A —T) = {0}

which means, I — A — T is injective. By the corollary (1), the non-homogeneous equation,
¢ —Ap+T¢ = bpy,

has a unique solution ¢. Also, by the orthogonality condition,

1= <bm+17 77Dm-i-1> = <¢ - A¢ + T¢v ¢m+1> ) (65)

and again, from (6.3),

<T¢, 77ZJm—|—1> = <Z <¢v szm+1> Z z z:¢m+1> =0,

i=1 i=1

since i # m + 1 ever. Therefore, equation (6.5) translates into,

1= (bmt1, Y1) = (¢ — 4D, Ymi1) = (&, Ymy1 — Bomy1) =0
which is obviously a contradiction. The same argument follows when m > n, thenm =n. [

Theorem 6.14 (Fredholm’s second theorem). We assume the usual conditions from the first
theorem for A and B, that is, A : X — X and B :' Y — Y are compact adjoint operators.

Then, the non-homogeneous equations,

¢ - A¢ = fa
is solvable if and only of, (f,v) =0, for all solutions of the homogeneous adjoint equation,

W — By = 0.

Similarly, the non-homogeneous equations,

Y — By =g,
is solvable if and only of, (g, ») = 0, for all solutions of the homogeneous adjoint equation,

¢ — Ad=0.
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Proof. Consider the equation ¢ — A¢p = f with ¢ being a solution. Then for all solutions of
¥ — By = 0 we have,

On the other hand, from the first Fredholm theorem (theorem 6.13), we take the common

null-spaces dimension,
m=dimN(I — A) =dim N(I — B) < .

For the special case of m = 0, (f,%) = 0 is satisfied for all f € X and therefore, by the
corollary (1), ¢ — A¢p = f is solvable for all f € X. However, in the case of m > 0, let us
assume (f, 1) =0 (k =1,...,m) for a basis {¢;}", in the null-space N(I — B). We already
proved that for the defined,

m

T(b = Z <¢7 ai> bi7

i=1
the null-space N(I — A+T) = {0}. Hence, there exists a unique solution ¢ for the equation,
¢ — Ap+T¢ = f. Then, it follows that,

——

0

Now, since (T'¢,¥x) = 0, ¢ also satisfies ¢ — A¢p = f which proves the statement. O

The latter theorem is known as the ”Fredholm Alternative” and may be summarized as

follows:

Let (X,)) be a dual system and A : X — X and B : ) — ) be compact adjoint

operators. Then either,

N(I—A) ={0} and N(I - B) = {0}
(I = A)(X)={x} and (I - B)(Y) ={V}
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or

dim N(I — A) = dim N(I — B) € N
and (I — A)(X) = {f such that, (f,v) =0, ¢» € N(I — B)}
and (I — B)(Y) = {g such that, (g,¢) =0, p € N(I — A)}

If we define the dual system (X)) by the bilinear form of an integral in (6.1) and A and B
as integral operators (6.2), then the results of the Fredholm Alternative theorem are useful
for integral equations of the second kind. A special case is known as Schauder theory when,
Y = X" (X*: dual of X) and the bilinear form is defined as the operator (¢, 1) = ¥ (¢) for
all ¢ € X and bounded linear functionals, 1 € X'*. The statement of Fredholm Alternative

theorem for integral equations follows as:

Let G € R™ be a Jordan-measurable domain and let K : X x X — C be a

continuous or weakly singular kernel. Then either,
/Ka:y )dy = 0 and ¢ (x /ny =0,
have only the trivial continuous solutions ¢ = 0 and ¢ = 0 and
- [ Koy = f(@) and va /Kmy = 9(a),
a
have a unique continuous solution for any continuous f and g, or

/ny y)dy = 0 and ¥(x /ny =0,

have the same number of linearly independent solutions, ¢4, ..., ¢, and 91, ..., ¥,

and

—/K@wW@) — f(z) and ¥ (z /ny — 9(a),
G

are solvable if and only if,

/f(x)¢,(x)dx =0, and /g(x)qbz(x)dx =0, foralli=1,..,n
G

G
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6.1.3 Singular Integral Equations

Let x € R? characterize a generic point in R? plane, and as before, 95 a curve in R2.

Equations of the form,

A(X)p(x) +

= qiy_)ffy o / k(x.y)o(y)dy = f(x),x € 05, (6.6)
98 oS

are called singular integral equations if the following conditions are satisfied. The contour
curve 05, consists of a finite number of smooth closed curves, the functions A(x), B(x), f
and |x — y|*k(x,y), with a € (0, 1], satisfy Holder continuity condition. Additionally, the
functions A(x) — B(x) and A(x)+ B(x) do not vanish anywhere on 0S. The general singular
integral equation in the form of (6.6) is decomposed into an integral with a singular Cauchy
kernel, 1/(x —y), and an integral with a weakly singular kernel, k(x,y). The two first terms
of the equation (6.6) form the dominant part of the singular integral equation, and A(x) and
B(x) are known as the coefficients of the dominant part. Another important concept that
plays role in the theory of singular integral equations is the integer,
1 A(x) — B(x)

=3 (400 506 s o

which is known as the index of the corresponding singular integral operator, where, arg|...],q
denotes the increment of the argument of the function in brackets on one circuit of 05 in
the positive direction. It is obvious that the index depends only on the dominant part of
the singular integral equation. In the special case of B(x) = 0 the singular integral equation
reduces to a Fredholm integral equation of the second kind whose index is obviously zero. It

is easy to show the adjoint of equation (6.6) is

L BOOWY L[ o
”a[ — +malk(y, )o(y)dy = g(x),x € 05, (6.8)

A(X)p(x) —

where g(x) is also Holder continuous. The extension of Fredholm theory to singular integral
equations is developed by Noether [110] which can be summarized in the following three

theorems [109],
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Theorem 6.15 (Noether’s first theorem). The necessary and sufficient condition for solv-

ability of the equation (6.6) is

/f(x)w,-(x)dx ~0, fori=1,..n.
oS

where {;} | is the set of linearly independent solutions of of the adjoint homogeneous

equation (homogeneous form of equation (6.8)), i.e.

1 [(B(y)p(y)dy 1
A(x)p(x) — —/L + — [ k(y,x)o(y)dy = 0,x € IS,
T X—y X
oS 08
Theorem 6.16 (Noether’s second theorem). The difference between the number of linearly
independent solutions of a homogeneous singular integral equation, m, and the number of
linearly independent solutions of the homogeneous adjoint equation, n, i.e. m — n depends

only on the dominant part of the singular integral equation.

Theorem 6.17 (Noether’s third theorem). The aforementioned difference m —n = < is

equal to the index of the equation (6.6).

It follows from the latter theorem that when index of a singular integral equation equals
zero (» = 0) the number of linearly independent solutions of the homogeneous equation and
its adjoint are equal. In that case, the Fredholm Alternative theorem applies to the singular

integral equation and determines the solvability of the equation.

6.1.4 Singular Integro-differential Equation

Similar theorems for singular integro-differential equations are given in Isahanov [74]. Con-

sider the following general form of a singular integro-differential equation,

v <) o™
5 4000 + 2 [EW L L [ ypsiygay | =500 (69)

=0 oS as
where the functions A,(x) and K, (x,y) = B.(x) + (x —y)k.(x,y) have the following Holder

continuous derivatives:
d"A.(x) K, (x,y)
dx" ' OxIidy I

apkp(xa y)

oxP

(r=0,..,p; 7=0,..,1),

J
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Theorem 6.18. The necessary and sufficient conditions for solvability of the singular integro-

differential equation (6.9) are that

/f(x)@/)i(x)dx =0, fori=1,..,n,
as

where {1;}1_ is the complete set linearly independent solutions of the associated adjoint

homogeneous equation (i.e. adjoint of (6.9)),

S | (Al - - [LE ORI | g (.10)

r=0 58

Similar to Noether’s theory of singular integral equations, the difference between the number
“m” of linearly independent solutions of the homogeneous equation (6.9)° (the superscript 0
denotes the homogeneous form of the referenced equation) and the number “n” of linearly
independent solutions of homogeneous equation (6.10)° equals the index of the equation (6.9),

», which is defined by

m—-—n=ix—=

1[4 - B
2m [AP(X) + Bp(XJ o8 . (6.1)

It is evident that in the case of »x = 0 the number of linearly independent solutions of
the homogeneous equation and its adjoint are the same and Fredholm alternative theorem
determines solvability of the equation.

The above theorem for the singular integro-differential equation is also valid for systems of
singular integro-differential equations [74, 144, 109]. A system of [ singular integro-differential

equations for the unknown matrix ¢ = (¢, ..., ¢;)7 is given as,

p O o
> Agp ) + 20 [EOM L L i ygt ity | <. (612
r=0 8 08

where the elements of the matrices A(x), B(x),k(x,y) € My, and ¢ € M1, have the
same conditions as their counterparts in the equation (6.9). The adjoint homogeneous equa-

tion for (6.9) is defined by

S (AT Gow0) " - / (070 + 9/ 0y}2rf<§(y’x)¢(y)dy —0,  (6.13)

r=0 58
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where, likewise K,.(y,x) = B,(y) + (x—y)k,(y, x). Also, the difference between the number
of linearly independent solutions of the homogeneous equation (6.12)° and the number of
linearly independent solutions of its adjoint (6.13) is given by the index of the system of
integro-differential equations (6.12), i.e.

1 - det (A,(x) — B,(x))
2 det (AP(X) + Bp(x)) oS ’

w =

(6.14)

where det (A,(x) &+ B,(x)) # 0. Evidently, solvability of such system of equations depends
on the coefficients of the highest order of derivative of the unknown function ¢ which form

the dominant part of the integro-differential equation.

6.2 Uniqueness of the Solution

6.2.1 (a) Interior boundary value problem

Let S again be a bounded multiply-connected domain enclosed by 0S which, for simplicity,
here consists of two sufficiently smooth closed curves I' and 9S; (9S = I' U 95}), denoting
reinforced (representing surface effects) and non-reinforced (without surface effects) bound-
aries, respectively (see Fig. 6.1). The non-reinforced boundary is divided into two open
curves 0Sy and 0S; (057 = 0Sy U 0Sw) with common end points a and b, on which the
boundary values for displacement/microrotations w(®, and stress/couple-stress tractions,
t(© are prescribed, respectively. We note that in the special case when a and b coincide, 9.S;
and 0S5y, are closed curves. A simple example of an interior problem is shown in Fig. 6.1.
We pose the interior mixed-boundary value problem of micropolar plane elasticity with

surface reinforcement as follows: find a vector w belonging to an admissible function space

C%(S) N C*(S\{a,b}), such that,
L(0x)w(x) =0, x €S,

T(0x)w(x) = t’(x), x € IS,
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Figure 6.1: Interior and exterior problems

T (Ox)w(x) = A(x)RV(d/ds) A" (x)w + Ax)tP(x), xeT, i=1,2, (6.15)

where T denotes the boundary stress operator defined in (2.19), and the superscript i = 1, 2,
indicates the association of the corresponding quantity with the fourth and second order

models, respectively.

6.2.2 (b) Exterior boundary value problem

The exterior problem is defined similarly to the interior problem except that S is now an
unbounded domain with 9S described by 0S = I' U 9S5;. Here, again each one of the
non-reinforced (057 = 0S¢ U 0Sy) and the reinforced (I') parts of 0S consist of closed
curves. The exterior mixed-boundary value problem of plane micropolar elasticity with

surface reinforcement is as to find a vector w € C2(S) N C*(S\{a,b}) N .A* such that,
L(0x)w(x) =0, x € S,
T(Ox)w(x) = t'(x), x € IS,
w(x)=w'(x), x € dSw,
TO(9x)w(x) = A(x)RV(d/ds) A (x)w + A(x)tV(x), xeT, i=1,2 (6.16)

Note that A* represents the asymptotic behavior of the solution w and has been defined in

(2.27).
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6.2.3 Uniqueness of Solutions of Interior and Exterior Problems

Theorem: Both the interior and the exterior mixed boundary-value problems (6.15 and
6.16) have at most one solution.

Proof: Let wy; and wy be any two solutions of either the interior or exterior boundary
value problem (6.15 or 6.16). The difference v*= w; — wy satisfies the following form of the
problem in either case,

L(ox)v* =0, x€ S,
T(0x)v* =0, x € 0S5,
v'=0, x € 0Sw,

TO(0x)v* = A(x)RYV(d/ds)A~ (x)v*, x e, i=1,2. (6.17)

Here, 057 and I represent single closed curves as shown in Figure 3. Consider the following

integral over the boundary of the domain S,
/V* T (9x)v*ds = /V* - TY(9x)v*ds + / v T (9x)v*ds.
S T 8%

Using the boundary conditions in (6.17) as well as the first Betti formula given in (2.23) (or
2.29), we obtain,

2 / BE(v*,v¥)dv = / v (A(X)R@(d/ds)A—l(x)v*) ds. (6.18)

S r

Using the reinforced boundary conditions (boundary conditions associated with surface ef-

fects) of the first type (i = 1) (2.49-2.51) and integrating by parts, the integrand on the
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right-hand side of the equation (6.18) can be expanded in (n — t) coordinates as

/v:fbt-R(l) (d/ds)v},ds
T

— —/AS (Fl’(s))2ds—/BS (Fi(s))* ds

+/m£@%@m—/m@%ﬁ%—/x&mx@+%m

2 ds
T T r

t t dT v t e
—/—UObOTo(l) v;tds+/§unwds+/§g03ﬂ)(l) vy ds,  (6.19)

where v, = A1 (x)v* denotes the displacement /rotation expression in the (n — t) coordi-
nates. In integrating by parts, the boundary terms vanish since I' is closed. The functions

Fi(s) and Fy(s) are defined as,

du
Fi(s) = 2~ unbo, (6.20)
du,
FQ(S) = ’UJQbo—FE. (621)

With the assumption of a perfectly bonded interface between the reinforcement and the bulk,
the continuity of stress across the interface leads to TO(I)M

that,

v, = 20, (Fa(s) + ¢3). It follows

2/E(v*,v*)dv _ —/AS (Fl(s))2ds—/Bs (Fi(s))? ds

S +7m£@%@wi/mwwWw

— / G (Fy(s) + 3)*ds. (6.22)

It can shown that the right-hand side of the equation (6.22) is negative definite provided
that,

H;
Ay >0, Gy >0, BS_T>O’ H, >0, (6.23)
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The foregoing conditions restrict the classical surface bending rigidity B, and the micropolar
surface twisting rigidity H, accordingly. Another implication of the conditions (6.23) is that
the fourth order surface representation confines the model to a sufficiently high surface
bending rigidity, B, which occurs when the effective thickness t of the surface is significant.
Noting that B, ~ t3> and H, ~ t, the second order model appears to be preferable for a
surface with small effective thickness. Eliminating the classical shear deformation removes
the direct effects of surface shear rigidity M, from the equations and the given conditions
(6.23). Instead the condition Gy > 0 corresponding to the deviation of microstrains from
classical strains plays an independent role here. From the first Betti formula and the positive
definiteness of E(v*,v*), the equation (6.22) holds only if both sides are set to zero. Thus,
the strain energy density F(v*, v*) = 0 which by standard arguments implies that,

*
V' =(c1 — 322, 2 + 371, C3),

for some ¢y, ¢y, and ¢35 constants. The boundary condition v* = 0 on 05, and the continuity
of the solution up to the boundary enforces v* =0 in the domain S, so any solution of
the interior (and exterior) boundary value problem is unique for the type ¢ = 1 boundary
reinforcement (surface).

Consider the alternative second order boundary reinforcement (i = 2) condition (Eremeyev-

Lebedev-Altenbach shell), the right-hand side of the equation (6.18) becomes

/v;t-R(Z)(d/ds)V;tds = - / A, (Fl(s))2 ds — /(Ms + G,) (Fy(s) + 303(3))2 ds

- / (H, + B,) (¢)(s))" ds
= 2 [ E(v",v")dv, (6.24)
/

which using the same argument and positive definiteness of the strain energy enforces
E(v*,v*) =0 when,
As >0, Mg+ G >0, H,+ B; > 0. (6.25)
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The conditions (6.25) are similar to the positive definiteness conditions of internal energy
in micropolar shells and plates [47, 2] in the special case when the drilling component of
both rotation and microrotation vectors vanish (in our notation ¢, = 0) and the in-surface
rotation and microrotations coincide. In other words, the surface shell is regarded as a couple
stress material in this case. Therefore, the contribution of classical bending and micropolar
twisting rigidities appear as a sum H, + B, in material surface parameters [1]. Notice the
slightly different conditions placed on the surface moduli in this case. The foregoing theorem
can be generalized in a straightforward manner to the cases when each of 9S; and I' consist
of a union of a finite number of closed curves as well as when 95 consists of more than two

partitions 05y and 0S;.

6.3 Existence of Solutions

6.3.1 Reduction to singular integral equations

In the following representations the superscript ”0” denotes the homogeneous version of
the corresponding equation and the subscripts, ”I” and ”E”, the correspondence to the
interior and exterior formulations. In addition, the superscript (i) on the parameters no
longer means the correspondence to the fourth and second order models. Instead, we will
investigate each model in a separate section. Following the approach in Schiavone and Ru
[125], using known solutions for the related Dirichlet and Neumann problems of the equation
(2.17), we can reduce the interior and exterior boundary value problems to simpler forms
with homogeneous conditions on 9S; and 0Sy,. Consequently, we may consider the following

mixed boundary value problem:

find w € C?(S) N C'(S\{a,b}) such that,

L(Ox)w(x) = 0, x€S,
TOx)w(x) = 0, xe S,
w(x) = 0, x € 0Sy,
TOx)w(x) = AXRA ' (x)w(x)+AX)t(x), xcT. (6.26)
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The foregoing system describes the interior problem when S is bounded and the exterior

problem when S is unbounded and the requirement w € A* is added.

(a) Interior problem

We begin by constructing an auxilliary solution Dy € Mjy3 for use later in the existence
results. Let €23 be a multiply-connected domain with sufficiently smooth boundary 0€2; such
that,

SCQ, I'CQ, (0S;U0Sw) C 0.

We define a matrix D;(x,y) € Msxs with y € " whose columns Dgi)(x, y), i = 1,2,3,

satisfy the following mixed boundary value problem:

Lex)DY(x,y) = 0, x€Q,
T(Ox)DY(x,y) = TOx)DY(x,y), xe€dS.,
DV (x,y) = D(x,y), x € d\dS,. (6.27)

Clearly, the boundary values D®(x,y) are smooth since x # y ever. Consequently, from
the existence results in [123] for a homogeneous mixed boundary value problem with smooth
boundary conditions there exists a unique smooth solution Dgi) (x,y) for all y € I in the
class C2(2,) N CH(Qy /{a,b}).
We look for a solution of (6.26); in the form of a modified single layer potential:
w(x) = (V9),0) = [ (D(xy)-D,(x.y) AW)@)S,. x€5 (029

r

where ¢ € Mz, N C**(T) with 0 < a < 1 is an unknown density matrix function on
[ in (n — 7) coordinates. From the properties of the single layer potential of plane-strain
micropolar elasticity [123], it is not difficult to check that the following conditions of (6.26);

are satisfied:

L(0%)w(x) = / L (D(x.y) - Di(x,y)) A(y)(y)dSy = 0, x € .
T(Ox)w(x) = / T (D(x,y)-D, (x.y)) A(y)(y)dS, = 0, (2 > x —+0S)).
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w(x)= / (D(x,y)-D,(x.y)) Ay)$(y)dSy = 0, (2 > x +3S.,).

The remaining traction boundary condition on I' leads to a system of singular integral
equations when we approach €2; 3 x — x € I', and since y € I', we use the Sokhotski-

Plemelj theorem to find,
1
where W indicates the adjoint of a modified double layer potential defined by,

(W) = [ T(0y) (Dix.y)-D,(x. ) A¥)o¥)S,, x €T (6:29
Based on this fact, the boundary condition on I can be written as,
S00+A (%) / T(OD(x, VA VS5, ~ R (A (x) [ Dixy)A)S(y)ds,
— _R(d /D1 X, y)A(y)p(y)dSy + A7} (x )/FT(ax)Dl(X, Y)A(y)o(y)dsSy
FRoA (x) / (D(x.¥)-D, (x,¥)) Ay)$(y)dS, +t(x), x € T (6.30)

The integrals on the right-hand side are Fredholm-type integrals with at most weakly singular
kernels. The first integral on the left-hand side has a singular kernel. However, this integral
has already been investigated in detail by Schiavone [123] and lesan [71]. In the next section
we shall focus on the second integral on the left-hand side in order to reduce it to a standard

singular integro-differential form which we can evaluate in terms of the results given in [144].

Theorem 6.19. The homogeneous form of the equation (6.30)° (i.e. when t(x) =0) has

only the trivial solution.

Proof. Let ¢, € C**(T') be a solution of (6.30)%. Then,

(Vo) r(x) = / (D(x.y)-D,(x,y)) A(y)y(y)dS

solves the homogeneous interior problem from (6.26)% (i.e. when t(x) = 0). The theorem of

uniqueness of solutions for the mixed boundary value problem asserts that (V¢,);(x) = 0 in
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x € S and the continuity of a single layer potential [123] establishes (V ¢,);(x) = 0, on the
boundary x € 95, which means (V¢,);(x) =0, x € I'. The definition of D;(x,y) implies
that,

L(0x)(Vey);(x)=0, x € \S,
(Voy);(x)=0, x € 00\05S,
(Vo) ,;(x)=0,x € T. (6.31)
The solution to the resulting interior Dirichlet problem of micropolar elasticity is unique (see
[123]); hence (V@) ,(x) = 0 in the bounded domain ;\S. The Sokhotski-Plemelj theorem

for jump relations appear upon applying the T(0x)-operator to the single layer potential
(see [123]) and yield

(TV)F () () =(TV)7 ()(x) = o) = 0, x € T.

This completes the proof. The superscripts + and — indicate x’ — x € I' (x’ ¢ T") approach-

ing from interior and exterior of I', respectively.

(b) Exterior problem

Let Q5 be a multiply connected infinite domain with sufficiently smooth boundary 0€2,. For

the exterior problem of (6.26)g, we assume

S C QQ, I' c QQ, (aSt U aSw) - 8(22, {0} ¢ 52.
We define a matrix Ds(x,y) € M3y3 for which y € ', and the columns Dg) each satisfy the
following mixed boundary value problem:
L(ox)DY(x,y) = 0, x€Q,,
T(Ox)DY(x,y) = TOx)®V(x,y), xS,
D;) (x,y) = ¥I(x,y), xedN\05, (6.32)
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where ¥ € Maj,3 is given by
\I’(X7 Y) :D(X7 Y)_MOO (X)FT(Y)7

where M*(x) € M35 is written in polar coordinates as [123],

1 —2B(Inr + 1) + cos 260 sin 260 r~ (B +1)sind
M*(r,f) = ——— sin 20 —2B(Inr +1) —cos20 —r~*(8+1)cosb
dmp(B+1) r~1 (B +1)sind —r~Y(B+1)cosb 0
(6.33)

with r = |x|, § = tan™!(zy/z1), and 3 defined as in (2.26). The existence results for the
exterior mixed problems of asymmetric elasticity [123] prove that for each y € T', Dgi) (x,y)
exists uniquely in the class C2(€2;) N CY(Q;\{a,b}) N A*.

We seek the solution of (6.26) g in the form of the following modified single-layer potential:

w(x) = (Vo) () = / (W (x.y)-Dy(x,y)) Aly)(y)dS,. (6.34)

where ¢ € M3, NC3*(T") on T with 0 < a < 1 is again an unknown density matrix function
in (n—7) coordinates. Clearly, from the properties of the single-layer potential, (V@) (x) in
(6.34) satisfies the conditions of the exterior problem (6.26)g except the traction boundary
conditions on I', which leads to a system of singular integral equations. It also remains to

show that (V¢),(x) €A*. Following the method given by Constanda [20], as |x| — oo,

/F T(x,y)A(y)b(y)dSy = / D(x,y)A(y)é(y)dS, - M™(x) / F7(y)A(y)(y)dS,

r

_ Wt M(x) / FT(y)A(y)o(y)dS,

~M*=(x) /F F'(y)A(y)¢(y)dsSy

= wheA.
Also since Dg) (x,y) €A*, for all y € T, then

[ Patx ) AGIB()dS, = [ DY ixy) (A (3)dS, A
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In the above, (A¢@); are the components of the matrix A¢ € Ms,;. Consequently, w will
be of the class A*. Using the boundary integral form of the solution and application of
the T(0x)-operator to the single layer potential, as with the interior problem, the remaining
boundary condition of the exterior problem on I' is reduced to the following system of singular
integral equations on I':

1 -1
3600+A 7 (x) [

A T(9x)D(x,y)A(y)p(y)dSy — R*(dy)dx A~ (x) /F D(x,y)A(y)o(y)dSy

— R (d)deA " (x) / (M*(x)F(y) + Da(x,y)) Ay)(y)dS,

r
+ A7) [ (%) (Dafy) M ROF (v) Aly)S(y)dS,
r
+ RoAT() [ (0xy)-Dylx.y) AlY)$()dS, + tx), x € T, (6.35)
r
The integrals on the left-hand side of (6.35) are interpreted in the sense of principal value as
they have Cauchy-type singularities, while the integrals on the right-hand side are improper
integrals with Fredholm kernels. Again, knowing that the first integral on the left-hand
side has been studied in [71] and [123], we focus our attention on the second integral on
the left-hand side and reduce it to a more familiar singular integro-differential form. Before
ending this section, however, we establish the following theorem which is required later in

the analysis.

Theorem 6.20. The homogeneous form of the equation (6.35)° (i.e. when t(x) =0) has

only the trivial solution.

Proof. Let ¢, € C*%(T') be a solution of (6.35)". Then,
Vo)e(x) = [ ((x.¥)-D,x.5)) AG)y(3)d5,.
solves the homogeneous exterior problem of (6.26)% (i.e. when t(x) = 0). The uniqueness
theorem for the exterior problem [59] now asserts that (V¢,)g(x) = 0, x € S. Analogous to
the proof of the theorem for the interior problem, we show that (V¢,)g(x) =0, x € Q\9,
and therefore, (V¢,)g(x) vanishes on both sides of I'. By applying the T(0x)-operator to
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the single-layer potential, and considering the Sokhotski-Plemelj theorem for jump relations

we will have,
(TV) () (x') = (TV) 5(¢hy)(X') = Py(x) =0, x €T,
which proves the theorem. The superscripts + and — indicate x’ — x € ' (x' ¢ T)

approaching from the interior and exterior of I, respectively.

6.3.2 Singular Integro-differential Equation in the Standard Form
In this section we focus on the term

R (b)dA ™ (x) [ DEx,y)A)9¥)dS,. (6.36)

which appears in both interior and exterior problems. Before analyzing the foregoing integral,
we remind ourselves that the first integral on the left-hand side of both equations (6.30) and
(6.35) has been investigated by Iesan [71] and Schiavone [124]:

dSy + [ Ko(x,y)6(y)dS,. (6.37)

where,

and Ky is a weakly singular (Fredholm) kernel.
Let us now consider the second integral in the left-hand side (6.36) which can be repre-

sented as
R (dy) e A () / D(x,y)A(y)$(y)dS,
_ R, / (d/ds*) [A~'(x)D(x,y)] A(y)b(y)dS, + R / (dds?) [A (x)D(x,y)] A(y)e(y)dS,
R, / (@/d52) [A" (x)D(x,y)] A(y)b(y)dS, (6.38)

R, / (d/ds,) [A" (x)D(x,y)] A(y)d(y)dS,.
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It is convenient to evaluate the terms of the foregoing representation in complex form. We
regard the plane of the problem as a complex plane where points corresponding to x and y
are defined as © = x; + 1y and y = y; + 1y, and, without loss of generality, we write for a

function f on I' that f(z) = f(x), where z = z1 + 1x5. Note that,

?®ds, = dy, e?™dS, =dr, r —y = |z —y| PV,

lim cos [A(x) — B(x — y)] ! Pe=y)=0)) — 1

X—y
where B(x —y) is the angle between z;-axis and vector x — y so that,

rr—Yh . T2 — Y2
BT

The procedure of finding the fundamental solution is given by [19], and in our case D(x,y) =L"t(x, y).

The matrix of fundamental solution therefore can be written as

b 0 0
|
D(x,y)=—5-| 0 0 0 | In(]x—y|) + Do(x,y), (6.39)
2Tl 0 L
!

where Dy(x,y) is a matrix of non-singular terms and

o 3ptA—a
C22p+ N (pta)

It can be shown that R*(dx)dx [A}(x)D,(x,y)] A(y) is a Fredholm kernel for § € C*(T").
Therefore, the system of singular integral equations on I' for both interior and the exterior

problems are represented by

1 b 0 0 F
too 8 8 0] | R (dds [A7' (%) In(|x — y[)] A(y)9(y)dSy
— [ Ay, + ). x €T, (6.40)
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Here, the weakly singular kernel A(x,y) assumes different forms for the interior and exterior

problems. Through the conversion of integrals into complex representation, we find that,

/F 21 [A () In(lx — y])] A(y)(y)dS,
= {dx [(d —1 ))A( Je W) 4 g ™) }/M
+[dx (62z9 )] d) ( )dy—i- 310 /¢_y

+{2d, [(dfol(x))A(x)]+d [(deA™ }/ é(y
+ {2 [2A 7 (%)] Ax) + (de A7 (%)) (dyA(x))} ) Ff_ﬁ; y
+{<dx€i9(x)) (d A—l( ))A(x) ze(x)}ew(x) f/T(y;dy

é(y

rt—Y

(@A) AR [ 2 gy / K, (x,y)b(y)dS,.

[ 1A Gl = y1)] A)Bly)as,
= (%) ¢< ) 210(x) ¢"(y)
(dx ) ol / 2

{2 (A (x))A() (dA dAx}/f(—_y;d

¢

A 09] A0 [ Py [ Kt yisiyas,,

/ 2 [A () In(lx — y])] A(y)$(y)dS,
s,

rt—Y

= (””dﬂdA (0] AG)
/Kgxy

[ A7 il 31)] Aoy
= [0y / K, (x,y)6(y)dS5,

rt—Y
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where K;(x,y) (i = 1,...,4) are weakly singular kernels and ¢™ (y) (n = 0, ...,3) denotes

the nth complex directional derivative with respect to y on I'. Noting that,

100
A" X)A(x)=|0 1 0 |,
001
0 -1 0
[dxA7'(x)]A(x)=6,|1 0 0|,
0 0 0
100
(A A~ (%)) [dxA(x)] =62 | 0 1 0 |,
00 1
(0 —1 0] 100
(AT (x)]A(x) =0 |1 0 0] =620 1 0|,
|0 0 0| 000
[0 —1 0] 100
[d2A7(x)] A(x) Oes| 1 0 0] —=300,]10 10
0 0 0 000
0 -1 0
-1 1 0 0/,
0 0 0

we obtain the following system of singular integro-differential equation on I'. The system of

integral equations reduces to the following system of integro-differential equations,
3
1 " (y)
SO+ D My (x) / e
n=0 r

ZQAN@JWWW%+WQ7XGP (6.41)

where,
0 GOy —c He,
1 ’ g
Mo(X) = 2— C — Asbe’s 0 % s
i 0 —G, 0
Agb — B 6> g
eze(x) ] I—?/ )
M, (x) = 0 —Bbilb,+Gsb 206 |,
2m : "H,
0 0 =
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o [0 —Bbog 0

M, (x) = 0 —33 b, |
2 7
0 0
£30() 0 0 0
M;(x) = 0 —Bob 0
2 1o 0 0

6.3.3 Existence Theorems

The system (6.41) is not well adapted to the classical existence theory for singular integro-
differential equations presented in [74] (see also [144] and [135]). The reason is that the
coefficient matrix corresponding to the highest-order derivative M3(x) is always singular.
However, it is still possible to write the system (6.41) in the classical form for which the
existence theorems for the interior and exterior problems can be established. To do so, we

introduce the unknown matrix function p € Mjsy; on I' with components defined as

p(y) = 61(y), pa(y) = b2(y), p3(y) = ¢3(y),

n(y) = ), p5<y>=¢g<y>+%e—w<y>¢g<y>.

To ensure compatibility between the equations in terms of the new variable p and those in

terms of ¢ we require the conditions,

Hs o),
vBsb
Under the assumption § € C*(T'), and using the relations,

6719(x) . efZH(y) . 6710()() . efze(y) "
/ s(y)dy = / ( ) ¢3(y)dy,
r r—y r r—y
ZQS —290(x 29 y)e —210(y) 198 x 67219(x) _ 198 y 67210(y) /
/ a(x)e o(y)e ¢§(y)dy——/<’(> <) )¢3(y)dy,
I I

r—Yy r—Yy
we remove singularity from some of the terms on the left-hand side of (6.41) and move them

pa(y) = p5(y), ps(y) = paly) +

to the right-hand side as improper integrals. Finally, we obtain,

Ao(x)p(x)—i-Al(x)p'(X)—i—%/FBl(x)p(x)i_fo /M (x,¥)p(y)dSy+t(x), x € T,
(6.42)
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where,

[ A be?™)g2 —Bbe?® e ™) —B.bo 20 0
. 0 (—Bshif , + Gb)e?™ 2%29’5619(}{) —3Bsb20,562w(x) — Bobe??®)
B (x) = 3 0 0 %e“’(x) 0 0
0 0 0 0 0
0 0 0 0 0
0 G, —c 20, 0 0
: >0,
c— A, 0 G 00
1 ’ v
Bo(x)=§ 0 —Gb 0 0 0|,
0 0 0 00
0 0 0 00
0 0 0 0 0
0 0 0 0 0
A(x)=1]00 0 00/,
00 ™ 10
0 1 0 0 0
500 0 0
0o 0 o0
Ax)=00 1L 0 o0 |,
000 0 -1
000 -1 0 }

and M(x,y) is a weakly singular kernel of the form,

M(x,y) =

S O *x *x %
S O * *x ¥
O O % % ¥
o O o oo
o O O OO

where “x” denotes a (possibly) non-zero component whose specific form does not affect the
analysis. The system of integro-differential equation in the standard form of (6.42) can be

investigated through the well-documented theorems [74, 109, 144]. It is clear that the index
of the system (6.42) is



Consequently, in the case of (6.42), Noether’s theorems reduce to Fredholm’s theorems which

paves the way to proving the existence results.

Theorem 6.21. (Ezistence of the interior problem (6.26);) The system of singular integral
equations (6.30) has a unique solution ¢ € C>*(T'), with 0 < o < 1 whenever t € C1*(T).
In addition, if t € C%*(T), the interior problem of (6.26) with C* boundary T incorporating
bending and micropolar twisting rigidities has a unique solution describable in the form (6.28)

with ¢ € C**(T) being the unique solution of (6.26);.

Proof. The system of integral equations (6.30) is equivalent to the system (6.42) and
since the index of the corresponding dominant operator is zero, Fredholm’s theorems apply
to (6.42) and its adjoint system. From Theorem 1 we deduce that the homogeneous system
(6.42)° (with t(x) = 0) has only the trivial solution, p, = 0. Therefore, from the Fredholm
alternative, there exists a unique solution of (6.42), which is p € C**(T"). The latter implies
that ¢ € C3%(T) exists as the unique solution of (6.30) for t € Ct*(T"). We may construct
the solution of (6.26); by (6.28) and the uniqueness of the solution of (6.26); completes the
proof.

Following the same procedure, we can establish an analogous theorem for the exterior

problem:

Theorem 6.22. (Existence of the exterior problem (6.26)r) The system of singular integral
equations (6.35) has a unique solution ¢ € C**(T), with 0 < a < 1 whenever t € CH*(T).
In addition, if t € CY*(T"), the exterior problem of (6.26) with C* boundary ' incorporating
bending and micropolar twisting rigidities has a unique solution describable in the form (6.34)

with ¢ € C>*(T) being the unique solution of (6.26)g.

6.3.4 Existence Theorem for the Case of Second Order Boundary
Conditions

In the second chapter of this thesis, we introduced an alternative version of the of micropolar

surface model utilizing second order boundary conditions [59]. This model is based on the
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Altenbach-Eremeyev-Lebedov shell representation [43, 2] and still incorporates bending and
twisting resistance of the surface. For that case, the boundary differential operator matrix

on the curve I' (which incorporates surface elasticity) will become:

R(dx) = R*(dx)dx + Ro, R*(dx) = Radx + Ry, (6.43)
where
A, 0 0 0 (As + M + G5)0 0
Ro=| 0 M,+Gq 0 , Ry = | —(As+ M+ G)0 0 M, + G
0 0 H, + B, 0 — (M + Gy) 0
—(Ms+ G0, Al (My+Gy)0,
Ro= | —(M,+ Gy)0ss —AHb° 0
(M, + G0, 0  —(M,+Gy)

Here, 6(x) belongs to a broader set of admissible functions #(x) € C*(T"). The boundary
integral equation method proceeds as before and leads to the following system of integro-

differential equations:

e r r—y
- / N(x,y)p(y)dS, +t(x), x€T. (6.44)
r
where
. 0  (Mi+G)odb 0
My(x) = 5 | —Abb 0 MetCe
g 0  —(M,+G)b 0
oo | Asb 0 0
(&
M, (x) = 0 (M,+G)b 0
2m 0 0 H,+B

ol
The singular integro-differential equation (6.44) is of Vekua’s standard form [74] and can be

examined by comparing (6.44) with the class of equations given in (6.42). We find that the

index of the singular operator in (6.44) is again zero as in the standard form (6.42),

) | Ash 0 0
Ai(x) =0, By(x) = 5 0 (Ms+ Gs)b 0 ,
0 0 —Hsst
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and therefore,

_O’

T

assuming the surface material coefficients are non-zero (Ag, My, G, Hg, Bs # 0). Conse-
quently, the Fredholm alternative holds for (6.44) and its adjoint.
We readily have the following existence theorems for the alternative case of the second

order boundary conditions of the surface.

Theorem 6.23. (Ezxistence of the interior problem (6.26); with second order R(dy) given in
(6.43)) The system of singular integral equations (6.30) has a unique solution ¢ € C*(T),
with 0 < o < 1 whenever t € C»*(T'). In addition, if t € CY*(T"), the interior problem
of (6.26) with C? boundary T incorporating bending and micropolar twisting rigidities has a
unique solution describable in the form (6.28) with ¢ € CH*(T') being the unique solution of
(6.26);.

Theorem 6.24. (Existence of the exterior problem (6.26)g with second order R(dy) given in
(6.43)) The system of singular integral equations (6.35) has a unique solution ¢ € C*(T),
with 0 < a < 1 whenever t € CY*(T'). In addition, if t € CY*(T'), the exterior problem
of (6.26) with C? boundary T incorporating bending and micropolar twisting rigidities has a
unique solution describable in the form (6.34) with ¢ € CY*(T') being the unique solution of
(6.26)p.

Proof. The proofs of the existence theorems can be found the same way through Fredholm

theorems. O

We mention in closing that the case in which the entire boundary of the solid is coated
gives rise to a Neumann-type problem (similar to the one studied in [126]) in which the
corresponding homogeneous systems of singular integral equations give rise to nontrivial
solutions that affect the solvability of both the interior and exterior boundary value problems.

This case is not covered by the results in the present thesis since it requires further analysis
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of the corresponding integral equations. This can form the basis of future research in this

areal.

!A. Gharahi and P. Schiavone recently addressed this problem in Math. Mech. Solids (The Neumann
problem in plane deformations of a micropolar elastic solid with micropolar surface effects: Accepted for
publication)
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Chapter 7

Conclusions

In this thesis, we have proposed a comprehensive model of plane deformations of micropolar
solids with micropolar surface effects. In our model, we described the surface as a micropolar
elastic shell perfectly bonded to the surface (or the interface) of a micropolar material bulk.
We introduced two surface models based on two different micropolar shell theories to mimic
the deformations of the surface. The presented models use micropolar shell theories of the
Kirchhoff’s type as their bases for the surface mechanism in conjunction with the classical
theory of micropolar elasticity. We demonstrated that a slight difference in the kinematic
assumptions of Kirchhoff-type shell theories leads to two different orders of surface conditions;
one of them leads to second order and the other leads to fourth order boundary conditions.
In either cases, the effects of bending and twisting modes of deformation of the surface are
captured in the model. This is, on its own, a substantial improvement since these effects are
commonly missing from surface mechanics. In the first part of the thesis, we successfully
applied the mathematical model to three widely interesting micro/nano-mechanics problems.
We examined the fourth order boundary conditions model which is more challenging in terms
of analysis. The second order surface models of the same problems involve less complexity
and are expected to be solvable by the same analytical techniques.

First, we determined the analytical solutions of the stress fields around a circular cavity
under remote loading and evaluated variations in the stress concentration due to the size-

dependence effects. We demonstrated that the stress field can be calculated with a higher
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precision when more information is carried into the model. In particular, the hoop stress
around a cavity is important since it corresponds to the failure mechanisms and the emer-
gence of plastic zone. Generally, for a smaller hole the hoop stress intensity factor is shown
to be lower compared to the predictions of models which incorporate less size-dependent
variables. Furthermore, we find that when the hole radius is sufficiently small, the bending
rigidity of the surface contributes significantly to the solution.

Next, we proceeded by examining the contribution of our model to the effective properties
of a nano-composite containing material inhomogeneities. We illustrated that for nano-
scale inhomogeneities, all the size-dependent components of our model become important in
the calculation of the effective shear modulus. However, the degree to which these effects
dominate depends on the ratio of their corresponding characteristic length to the size of
the inhomogeneities in a representative volume element. In particular, we demonstrated the
surface/interface flexural resistance effects as well as the surface micropolar twisting effects
by comparing our results with a similar study in the existing literature. Thus, we validated
our model by showing that in a special case, our formulations reduces to the existing model
in which flexural effects are absent from the micropolar surface/interface. In addition, we
concluded that the bending and twisting rigidities of the interface, as well as the micropolar
properties of the bulk exert no influence on the overall bulk modulus of the composite.

As the final test, we applied our model to the fundamental problem of an edge disloca-
tion close to the surface of a micropolar half-plane. Once again, we demonstrated that the
proposed model can indeed be successfully applied to fundamental problems of plane elas-
ticity. In particular, the contribution of micropolar surface effects and other size-dependent
variables were examined and shown to be significant in a sufficiently small-scale level. In
addition, we concluded that the classical G-M surface model may not be sufficient for ma-
terials in which micropolar bulk effects and surface twisting rigidities are significant. In
contrast, the classical bending resistance of the planar surface only marginally affects the
stress distribution induced by a nearby edge dislocation. Nevertheless, the incorporation of

this surface effect in the model of deformation may still prove to be useful in certain cases, for

129



example, in the presence of a reinforcement attached to the boundary of the solid. Finally,
we concluded that the particular choice of surface and bulk models become important for
calculations of stress near the dislocation core but not as important farther away.

We dedicated the second part of the thesis to a rigorous analysis of the design and the
mathematical adequacy of the two models. We organized the mathematical models in the
form of mixed boundary value problems in the interior and exterior domains. These proposed
formats of the models make them well-suited for analysis by the integral equation methods.
However, the corresponding boundary value problems involve highly non-standard bound-
ary conditions due to either surface model that incorporates surface effects. In pursuit of an
answer to the question of well-posedness, we established that for each of the two presented
models any smooth solutions of the corresponding interior and exterior boundary mixed
value problems are necessarily unique. Furthermore, we demonstrated that the correspond-
ing interior and exterior problems can be reduced to systems of singular integro-differential
equations by expressing the solutions in the form of modified single layer potentials. We
further proved that Noether’s theorems apply to the existing models according to which the
models fit into Fredholm’s theorems. Consequently, we established solvability of the corre-
sponding mixed boundary value problems in the appropriate function spaces. Furthermore,
we found the underlying restrictions on the boundary and the prescribed data. Thus, con-
sidering the appropriate function spaces, and the restrictions on the data and the boundary,

the statements of well-posedness in the sense of Hadamard hold true for both models.

7.1 Future Work

The present work opens the gate to several new possibilities. First, the proposed mathe-
matical model can be applied to various popular problems of micro/nano-mechanics. For
example, it is well-known that in fracture mechanics the incorporation of surface effects
ameliorates the order of singularity of stress fields at the crack tip and reduces the anoma-
lies that follow from the classical models. It would be interesting to investigate the stress

distribution at the crack tip using the proposed model and compare the results with other
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popular surface elastic models. Equally attractive is the calculations of micropolar elastic
moduli which has remained challenging to theoretical and experimental studies. The model
at hand can pave a way for further research about finding the effective micropolar elastic
properties of materials.

Further ideas can be considered for expansion of this project. For instance, developing
a combined model of non-linear elastic micropolar plane deformations coupled with surface
effects of micropolar type would be an idea to pursue. The linear theory degenerated from
such a model, then can be compared to the model proposed in this thesis. A similar model
can be developed for torsional deformation in micropolar elasticity with the incorporation of
surface mechanics. Also, micropolar theories of plates and shells can be combined with the
micropolar surface elasticity. Introducing time-dependence and generalizing the model to
encompass three dimensional deformations are other possibilities that, although challenging,
could be topics of further studies. Of course, any newly proposed model creates a topic of re-
search for investigating the design and validating the model in terms of its well-posedness and
applicability limitations. Any such investigation requires a rigorous mathematical analysis

which will create a subject of study for further research.
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