
qwertyuiopasdfghjklzxcvbnmqwerty

uiopasdfghjklzxcvbnmqwertyuiopasd

fghjklzxcvbnmqwertyuiopasdfghjklzx

cvbnmqwertyuiopasdfghjklzxcvbnmq

wertyuiopasdfghjklzxcvbnmqwertyui

opasdfghjklzxcvbnmqwertyuiopasdfg

hjklzxcvbnmqwertyuiopasdfghjklzxc

vbnmqwertyuiopasdfghjklzxcvbnmq

wertyuiopasdfghjklzxcvbnmqwertyui

opasdfghjklzxcvbnmqwertyuiopasdfg

hjklzxcvbnmqwertyuiopasdfghjklzxc

vbnmqwertyuiopasdfghjklzxcvbnmq

wertyuiopasdfghjklzxcvbnmqwertyui

opasdfghjklzxcvbnmqwertyuiopasdfg

hjklzxcvbnmrtyuiopasdfghjklzxcvbn

mqwertyuiopasdfghjklzxcvbnmqwert

yuiopasdfghjklzxcvbnmqwertyuiopas

dfghjklzxcvbnmqwertyuiopasdfghjklz

2

 Table of Contents

Table of Contents
Table of Contents .. 2

Abstract... 3

1. Cryptography ... 3

2. RSA .. 4

3. Triple RSA encryption: ... 4

3a. Generating Public and private key .. 5

3b. Encrypt using public key ... 7

3c. Decrypt using private key ... 8

3d. Two way communication (Server, Client) ... 10

4. Generation of Keys: ... 13

 Calculation Example.. 14

 Appendix .. 18

References: ... 26

3

Abstract

 The Rivest Shamir Adelman (RSA) is a popular cryptosystem. Mainly

used for its easy implementation in securing data transmissions. In RSA

cryptography, two different keys are used; a private and public key. The public
keys can be shared with everyone where the private key is a secret. RSA has

been used for online payments, banking applications, various secure

authentications processes and used by many government organizations.

 This work consists of describing a new approach to enhance the security

of RSA using an old approach. In this we enhanced the security feature by

introducing an advance version of RSA called Triple RSA. To enhance the
security and confidentiality we have implemented the Triple RSA in a similar

approach to 3DES. This provides integrity and a strong authentication.

 3DES is a modern variation of DES (Data Encryption Standard) which
uses a block of plaintext 64 bits in length, with a 56 bit key. The actual key

length equals that of the plaintext. The last bit on the right of the key is a parity

bit. There were many concerns about the weakness of DES against brute force
attacks due to the key length, so 3DES was developed in response to needing a

stronger encryption method. 3DES works in much the same way as DES, except

that goes through three cycles during the encryption process using three keys:

encryption, decryption, and another encryption. It has a key length of 192 bits
(64 bits x 3 keys), but its actual strength is 168 bits (56 bits x 3 keys). Encrypt

with Key1, decrypt with Key2 and encrypt with Key3. There are two-key and

three-key versions. This method is three times as strong as DES.

1. Cryptography
 The public key cryptosystem was introduced in 1976 by Whitfield
Diffie and Martin Hellman. It uses public key for encryption as well as a

private key for decryption. Each user gets two keys one public and one private.

The public key is published and the private key is secret. There is no need to

share the private key. The challenge would be that two parties would have to
agree on a secret key without anyone else finding out. The secret key method is

faster but only moderately secure.

 Diffie-Hellman is an asymmetric key algorithm used for public key

cryptography. The Diffie-Hellman algorithm was created to address the issue of

secure encrypted keys from being attacked over the internet during

transmission. The process works by two peers generating a private and a public
key. Peer A would send its public key to peer B and peer B would send its

https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman

4

public key to peer A. Peer A would then use the public key sent from peer B
and its own private key to generate a symmetric key using the Diffie-Hellman

algorithm. Peer B would also take the same process as peer A and in turn

produce the exact same symmetric key as peer A, though enabling them to

communicate securely over the in-secure internet. Both peers can now encrypt,
transmit and decrypt data using their symmetric keys. DH approach is used here

to securely exchange the triple RSA public keys between two parties.

2. RSA

 RSA is a public key algorithm invented in 1977 and it was publicly

described to everyone in 1978 by Ron Rivest, Adi Shamir and Leonard

Adleman at MIT. Encryption is the very efficient way for data security mainly
in military and in banking online transactions. It is very difficult for

unauthorized access to occur when the cipher text is stronger. The encryption

and decryption of RSA works as, both the sender and receiver will share their

public keys with each other. The sender will send an encrypted message to the
receiver, using the receiver’s public key. The receiver will decrypt the message
by using his/her private key.

3. Triple RSA encryption:

 Triple RSA is an improved version of RSA. It provides more security in

receiving the original private/public 3RSA key set from the issuing authority

than RSA. Initially both the parties will exchange their public keys with each
other. The message is first encrypted using receiver’s public Key1. The receiver

only has the corresponding private key to decrypt and he/she only can decrypt

it. This step provides confidentiality. The encrypted message is further

encrypted by using receiver’s public Key2. It can be decrypted on the receiver’s
side using receiver’s private key.

5

 Finally, the double encrypted message is again encrypted using

receiver’s public Key3. The data can only be decrypted using receiver’s private

Key3, Key2, and Key1 respectively. Hence the message cannot be modified by

unauthorized access. Hence the data integrity is achieved.

 Advantages:

 Each user has sole responsibility for protecting his or her private key. The
purpose of the strong algorithms and keys is to make the process of breaking the

encryption take so long that the data’s time value is reduced to nothing.

 3a. Generating Public and private key

 Explanation:

 Source has only one public key and private key for RSA encryption
and decryption.
 Source:

r = new Random();

p = BigInteger.probablePrime(bitlength, r);

q = BigInteger.probablePrime(bitlength, r);

 N = p.multiply(q);

phi=p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE));

e = BigInteger.probablePrime(bitlength/2, r);

while (phi.gcd(e).compareTo(BigInteger.ONE) > 0 && e.compareTo(phi) < 0

)

{

 e.add(BigInteger.ONE);

 }

6

d = e.modInverse(phi);

Explanation:

 Modified code has functionality to generate 3 public keys and 3

private keys to implement triple RSA encryption and decryption

 Modified:

r = new SecureRandom();

//Generate public key and private key 1

p1 = BigInteger.probablePrime(bitlength, r);

q1 = BigInteger.probablePrime(bitlength, r);

N1 = p1.multiply (q1);

phi1=p1.subtract(BigInteger.ONE).multiply(q1.subtract(BigInteger.ONE));

e1 = BigInteger.probablePrime(bitlength/2, r);

while(phi1.gcd(e1).compareTo(BigInteger.ONE) > 0 && e1.compareTo(phi1)

< 0)

 {

 e1.add(BigInteger.ONE);

}

d1 = e1.modInverse(phi1);

 //Generate public key and private key 2

 p2 = BigInteger.probablePrime(bitlength, r);

 q2 = BigInteger.probablePrime(bitlength, r);

 N2 = p2.multiply(q2);

 phi2 = p2.subtract(BigInteger.ONE).multiply(q2.subtract(BigInteger.ONE));

 e2 = BigInteger.probablePrime(bitlength/2, r);

 while (phi2.gcd(e2).compareTo(BigInteger.ONE) > 0 &&

 e2.compareTo(phi2) < 0) {

 e2.add(BigInteger.ONE);

 }

 d2 = e2.modInverse(phi2);

 //Generate public key and private key 3

 p3 = BigInteger.probablePrime(bitlength, r);

 q3 = BigInteger.probablePrime(bitlength, r);

 N3 = p3.multiply(q3);

 phi3 = p3.subtract(BigInteger.ONE).multiply(q3.subtract(BigInteger.ONE));

 e3 = BigInteger.probablePrime(bitlength/2, r);

 while (phi3.gcd(e3).compareTo(BigInteger.ONE) > 0 &&

 e3.compareTo(phi3) < 0) {

 e3.add(BigInteger.ONE);

 }

 d3 = e3.modInverse(phi3);

7

Output:

 Sharing public keys to each other (receiver)

 Sharing public keys to each other (sender)

 3b. Encrypt using public key

 Explanation:

 Source will encrypt the plain text only once using one public key

and send this cipher text for decryption
 Source:

 byte[] encrypted = rsa.encrypt(teststring.getBytes());

 System.out.println("Encrypted String in Bytes: " + bytesToString(encrypted));

 Explanation:

 Modified code will encrypt the plain text 3 times using 3 different

public keys

8

a. Plain text to Ciphertext1 using public key 1
b. Ciphertext1 to Ciphertext2 using public key 2

c. Ciphertext2 to Ciphertext3 using public key 3

 Modified code will take this Ciphertext3 for decryption

 Modified:

 // encrypt using clients publickey1

 BigInteger encrypted1 = rsa.encrypt1(new

 BigInteger(sendMessage.getBytes()),cs.publicKey1,cs.cN1);

 System.out.println("Encrypted String in Bytes: " + encrypted1);

 // encrypt using clients publickey2

 BigInteger encrypted2 = rsa.encrypt2(encrypted1,cs.publicKey2,cs.cN2);

 System.out.println("Encrypted String in Bytes: " + encrypted2);

 // encrypt using clients publickey3

 BigInteger encrypted3 = rsa.encrypt3(encrypted2,cs.publicKey3,cs.cN3);

 System.out.println("Encrypted String in Bytes: " +encrypted3);

 pwrite.println(encrypted3);

 BigInteger encrypted2 = rsa.encrypt2(encrypted1,cs.publicKey2,cs.cN2);

 System.out.println("Encrypted String in Bytes: " + encrypted2);

 Output:

 Sender is sending a message which is encrypted as a string and

 sent to the receiver.

 3c. Decrypt using private key

Explanation:

 Source code will decrypt the cipher text to plain text only once

using one private key
 Source:

 byte[] decrypted = rsa.decrypt(encrypted);

9

 System.out.println("Decrypted String in Bytes: " + bytesToString(decrypted));

 System.out.println("Decrypted String: " + new String(decrypted));

Explanation:

 Modified code will decrypt the cipher text 3 times using 3 different
private keys

a. Ciphertext3 to Ciphertext2 using private key 3

b. Ciphertext2 to Ciphertext1 using private key 2

c. Ciphertext1 to Plain text using private key 1

 Modified:

 // decrypt using server privatekey3

BigInteger decrypted3 = rsa.decrypt3(new

 BigInteger(receiveMessage),cs.privateKey3,cs.sN3);

 System.out.println("Decrypted String in Bytes: " + decrypted3);

 // decrypt using server privatekey2

 BigInteger decrypted2 = rsa.decrypt2(decrypted3,cs.privateKey2,cs.sN2);

 System.out.println("Decrypted String in Bytes: " + decrypted2);

 // decrypt using server privatekey1

 BigInteger decrypted1 = rsa.decrypt1(decrypted2,cs.privateKey1,cs.sN1);

 System.out.println("Decrypted String in Bytes: " + decrypted1);

 String text2 = new String(decrypted1.toByteArray());

 System.out.println("\nPlain text: " + text2);

 Output:

 Receiver decrypted the message by using key3, key2, key1

10

 3d. Two way communication (Server, Client)

Explanation:

 Source code has a below logics,

a. Creating connection

b. Waiting for client and accepting the connection
c. Send and receive plain message from client to server and

vice versa .

d. Display messages in console
 Source:

 // reading from keyboard (keyRead object)

 BufferedReader keyRead = new BufferedReader(new

 InputStreamReader(System.in));

 // sending to client (pwrite object)

 OutputStream ostream = sock.getOutputStream();

 PrintWriter pwrite = new PrintWriter(ostream, true);

 // receiving from server (receiveRead object)

 InputStream istream = sock.getInputStream();

 BufferedReader receiveRead = new BufferedReader(new

InputStreamReader(istream));

 String receiveMessage, sendMessage;

 while(true)

 { if((receiveMessage = receiveRead.readLine()) != null)

 { System.out.println(receiveMessage);

 }

 sendMessage = keyRead.readLine();

 pwrite.println(sendMessage);

 pwrite.flush();

 }

Explanation:

 Modified code has a following logics,

a. Creating connection.

b. Waiting for client and accepting the connection .

c. Server and client will Generate 3 public and 3 private keys , both
will send 3 public keys in one string for encryption (from server to

client and vice versa) as soon as server accepts the connection.

d. Both server and client will parse the public key string into 3 public
keys and display the keys in console.

e. When client receives plain text from user, it will encrypt the

message 3 times using server’s public Key1,Key2, Key3 and client

will send cipher text to server

11

f. When server receives cipher text from client, it will decrypt the
cipher text 3 times using server’s own private key3,Key2,Key1 and

display the plain text in console
Modified:

 PrintWriter pwrite = new PrintWriter(ostream, true);

 RSATestNew rsa = new RSATestNew();

 ChatServer cs = new ChatServer();

 String keyToClient = cs.keyGen();

 pwrite.println(keyToClient);

 pwrite.flush();

 // reading from keyboard (keyRead object)

 BufferedReader keyRead = new BufferedReader(new

InputStreamReader(System.in));

 // receiving from server (receiveRead object)

 InputStream istream = sock.getInputStream();

 BufferedReader receiveRead = new BufferedReader(new

InputStreamReader(istream));

 String receiveMessage, sendMessage;

 receiveMessage = receiveRead.readLine();

 if(receiveMessage.contains("!e1!")) {

 System.out.println("Key from client: " + receiveMessage);

 String[] textArray= receiveMessage.split("=");

 String[] key1 = textArray[0].split("!m1!");

 cs.publicKey1 = new BigInteger(key1[0].replace("!e1!", ""));

 cs.cN1 = new BigInteger(key1[1].replace("!m1!", ""));

 System.out.println("Public Key 1 from client : " + cs.publicKey1);

 String[] key2 = textArray[1].split("!m2!");

 cs.publicKey2 = new BigInteger(key2[0].replace("!e2!", ""));

 cs.cN2 = new BigInteger(key2[1].replace("!m2!", ""));

 System.out.println("M2: " + cs.cN2);

 System.out.println("Public Key 2 from client : " + cs.publicKey2);

 String[] key3 = textArray[2].split("!m3!");

 cs.publicKey3 = new BigInteger(key3[0].replace("!e3!", ""));

 cs.cN3 = new BigInteger(key3[1].replace("!m3!", ""));

 System.out.println("M3: " + cs.cN3);

 System.out.println("Public Key 3 from client : " + cs.publicKey3);

 }

12

 Output:

 Sharing public keys to each other (receiver)

 Sharing public keys to each other (sender)

13

Receiver is responding back to the sender. So the message is encrypted
by using public key1, key2, key3 and sent.

 Sender receives a message and it is decrypted again by using the key3,

 key2 and key1.

4. Generation of Keys:

 The keys generation for the RSA algorithm are described as,

1. Consider two different prime numbers as p and q.
 The integer p and q should be chosen at random for security

reason and should be similar in magnitude and different in

length.

2. To Compute “n=p*q”
 “n” is used as the modulus for both the public and private keys.

14

3. Compute φ(n)
 φ(n) = (p − 1)(q− 1)

 Where φ is Euler's totient function. This value is kept private.

4. Choose an integer e such that 1 < e < φ(n)

 e is released as the public key exponent.
5. Determine d as d = e−1 (mod φ(n))

 d is kept as the private key exponent.

 The public key consists of the modulus n and the public (or encryption)
exponent e. The private key consists of the modulus n and the private (or

decryption) exponent d, which must be kept secret. p, q, and φ(n) must also

be kept secret because they can be used to calculate the encryption value.

4a). Calculation Example

Example of RSA encryption and decryption:

1. Choose two distinct prime numbers, such as
 P = 7 and Q=11

2. Compute n = p*q giving

 n = P * Q = 3 * 11 = 77

3. Compute the totient of the product as φ(n) = (p − 1)(q − 1) giving
 φ(n) = (7-1)(11-1) =60

4. Choose any number 1 < e < 60

 Let e = 13
5. Compute d, the modular multiplicative inverse of e (mod

φ(n)) yielding,

 d = 37

 e * d mod φ(n) = 1

 13 * 37 mod 77 = 1

 Encrypt the word “art”

Note: Refer Appendix B

Let’s consider a=3,

a b c d e f g h i j k l m n o p q r s t u v w x y z

3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

 Letter -> ‘a’
 C = Pe mod n

 = 313 mod 77

 = 1594323 mod 77

 = 38

15

Letter -> ‘r’

 C = Pe mod n

 = 2013 mod 77

 = 69
Letter ->‘t’

 C = Pe mod n

 = 2213 mod 77
 = 282810057883082752 mod 77

 = 22

 Decrypt the word “art”

 Let’s consider,

 Letter -> ‘a’
 P = Cd mod n

 = 3837 mod 77

 =28313468473157736370011296127792731029354930758695

 159595008mod77
 P = 3

 Let’s consider,

 Letter -> ‘r’
 P = Cd mod n

 = 6937 mod 77

 =108997454908319501293332197291058067456733457962345
 651347387153299189mod77

 P = 20

 Let’s consider,
 Letter ->‘t’

 P = Cd mod n

 = 2237 mod 77
 = 4673467107597213797264418917851420180413539213312

 mod77

 P =22

Note: Refer Appendix B

Let’s consider a=0,

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

16

 Encrypt the word “art”

 Letter -> ‘a’

 C = Pe mod n

 = 013 mod 77
 = 0

Letter -> ‘r’
 C = Pe mod n

 = 1713 mod 77

 = 73

Letter ->‘t’
 C = Pe mod n

 = 1913 mod 77

 = 61

 Decrypt the word “art”

 Letter -> ‘a’
 P = Cd mod n

 = 0d mod 77

 P = 0

 Letter -> ‘r’

 P = Cd mod n

 = 7337 mod 77
 P = 17

 Letter ->‘t’

 P = Cd mod n

 = 6137 mod 77
 P =19

Note: Refer Appendix B

Let’s consider a = 1,

a b c d e f g h i j k l m n o p q r s t u v w x y z

1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

17

 Encrypt the word “art”

 Letter -> ‘a’
 C = Pe mod n

 = 113 mod 77

 = 1

Letter -> ‘r’

 C = Pe mod n

 = 1813 mod 77
 = 46

Letter ->‘t’

 C = Pe mod n

 = 2013 mod 77
 = 69

 Decrypt the word “art”
 Letter -> ‘a’

 P = Cd mod n

 = 137 mod 77

 P = 1

 Letter -> ‘r’

 P = Cd mod n

 = 4637 mod 77
 P = 18

 Letter ->‘t’

 P = Cd mod n

 = 6937 mod 77

 P =20

18

Appendix A

1).To find the‘d’ value

p = 7
q = 11

n = 7 x 11 = 77

φn = (7-1) x (11-1) = 60

e = 13

d = 37

To find the value of “d”:

 Let’s take the value φ(n)

Step 1:

 φ(n) value on top row 60 60

 ‘e’ value second row 13 1 Let’s consider the value as’1’
 Divide the left side value 4

 Step 2:

 Multiply the quotient ‘4’ with the second row values
 4 *13 = 52 4*1 =4

 Step 3:

 Subtract the first row value with the multiplied values
 60-52=8 60-4=56

 8, 56

 Repeat all 3 steps until you get the value “1”.

 Step 1:

Previous calculations second row values

 Should be on first row 13 1

 Previous step3 calculation values on
 Second row 8 56

 Divide the left side value 1

 Step 2:

 Multiply the quotient ‘1’ with the second row values

 8 *1 = 8 56*1 =56

19

 Step 3:

 Subtract the first row value with the multiplied values

 13-8=8 1-56= - 55

 Here we found negative value “ -55”. So we have to take mod φ(n) for the

negative value.

 -55 mod 60 = 5

 5, 5

 Repeat all 3 steps until you get the value “1”.

 Step 1:
Previous calculations second row values

 Should be on first row 8 56

 Previous step3 calculation values on

 Second row 5 5

 Divide the left side value 1

 Step 2:
 Multiply the quotient ‘1’ with the second row values

 5 *1 = 5 5*1 =5

 Step 3:
 Subtract the first row value with the multiplied values

 8-5=3 56-5= 51

 3, 51

 Repeat all 3 steps until you get the value “1”.

 Step 1:

Previous calculations second row values

 Should be on first row 5 5

 Previous step3 calculation values on
 Second row 3 51

 Divide the left side value 1

 Step 2:

 Multiply the quotient ‘1’ with the second row values

20

 3*1 = 3 51*1 =51

 Step 3:

 Subtract the first row value with the multiplied values
 5-3=2 5-51= - 46

 Here we found negative value “ -46”. So we have to take mod φ(n) for the
negative value.

 -46 mod 60 = 14

 2, 14

 Repeat all 3 steps until you get the value “1”.

 Step 1:

Previous calculations second row values

 Should be on first row 3 51
 Previous step3 calculation values on

 Second row 2 14

 Divide the left side value 1

 Step 2:

 Multiply the quotient ‘1’ with the second row values
 2*1 = 2 14*1 =14

 Step 3:

 Subtract the first row value with the multiplied values

 3-2=1 51-14= 37

 1, 37

Here we reached the value “1”. Then the ‘d’ value is “37”

 d= 37

Encrypt:
C = Pe MOD n

C = 313 MOD 77

C = 38

21

Decrypt:
P = Cd MOD n

P = 3837 MOD 77

P = 3

Appendix B

 If the off-set value a=3 then the plain text will be encrypted by using

public Key1, Key2, Key3 and decrypt by using private Key3, Key2, Key1.

The keys will scramble the message in plaintext to cipher text and to the

original message in plain text from cipher text.

Let’s consider a=3,

a b c d e f g h i j k l m n o p q r s t u v w x y z

3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

Encrypt:

1) Key 1

 Key 1 (7,11)

P= 7 and Q=11 , n =77 , e=13, d=37

 Encrypt “a”

 C = Pe mod n

 = 313 mod 77

 = 1594323 mod 77

 = 38

2) Key 2

 Key 2 (7,13)

P= 7 and Q=13 , n =91 , e=11, d=59

 Encrypt “a”

 C = Pe mod n

 = 311 mod 91

 = 61

3) Key 3

 Key 3 (13, 11)

P= 13 and Q=11, n =33, e=7, d=103

22

 Encrypt “a”

 C = Pe mod n

 = 37 mod 33

 = 9

Decrypt:

1) Key 3

 Key 3 (13, 11)

P= 13 and Q=11, n =33, e=7, d=103

 Decrypt “a”

 P = Cd mod n

 = 9103 mod 33

 = 3

 2) Key 2

 Key 2 (7,13)

P= 7 and Q=13 , n =91 , e=11, d=59

 Decrypt “a”

 P = Cd mod n

 = 6159 mod 91

 = 3

3) Key 1

 Key 1 (7,11)

P= 7 and Q=11 , n =77 , e=13, d=37

 Decrypt “a”

 P = Cd mod n

 = 3837 mod 77

 = 3

If off-set value a=1, the keys will scramble the plain text into the same text

as cipher. So the message transmission will not be much stronger.

Let’s consider a=1,

a b c d e f g h i j k l m n o p q r s t u v w x y z

1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

23

Encrypt:

1) Key 1

 Key 1 (7,11)

P= 7 and Q=11 , n =77 , e=13, d=37

 Encrypt “a”

 C = Pe mod n

 = 113 mod 77

 = 1

2) Key 2

 Key 2 (7,13)

P= 7 and Q=13 , n =91 , e=11, d=59

 Encrypt “a”

 C = Pe mod n

 = 111 mod 91

 = 1

3) Key 3

 Key 3 (13, 11)

P= 13 and Q=11, n =33, e=7, d=103

 Encrypt “a”

 C = Pe mod n

 = 17 mod 33

 = 1

Decrypt:

1) Key 3

 Key 3 (13, 11)

P= 13 and Q=11, n =33, e=7, d=103

 Decrypt “a”

 P = Cd mod n

 = 1103 mod 33

 = 1

 2) Key 2

 Key 2 (7,13)

24

P= 7 and Q=13 , n =91 , e=11, d=59

 Decrypt “a”

 P = Cd mod n

 = 159 mod 91

 =1

3) Key 1

 Key 1 (7,11)

P= 7 and Q=11 , n =77 , e=13, d=37

 Decrypt “a”

 P = Cd mod n

 = 137 mod 77

 = 1

If off-set value a=0, the keys will scramble the plain text into the same text

as cipher while encryption. So the message/password will be easy to break.

Let’s consider a=0,

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

Encrypt:

1) Key 1

 Key 1 (7,11)

P= 7 and Q=11 , n =77 , e=13, d=37

 Encrypt “a”

 C = Pe mod n

 = 013 mod 77

 = 0

2) Key 2

 Key 2 (7,13)

P= 7 and Q=13 , n =91 , e=11, d=59

 Encrypt “a”

25

 C = Pe mod n

 = 011 mod 91

 = 0

3) Key 3

 Key 3 (13, 11)

P= 13 and Q=11, n =33, e=7, d=103

 Encrypt “a”

 C = Pe mod n

 = 07 mod 33

 = 0

Decrypt:

1) Key 3

 Key 3 (13, 11)

P= 13 and Q=11, n =33, e=7, d=103

 Decrypt “a”

 P = Cd mod n

 = 0103 mod 33

 = 0

 2) Key 2

 Key 2 (7,13)

P= 7 and Q=13 , n =91 , e=11, d=59

 Decrypt “a”

 P = Cd mod n

 = 059 mod 91

 =0

3) Key 1

 Key 1 (7,11)

P= 7 and Q=11 , n =77 , e=13, d=37

 Decrypt “a”

 P = Cd mod n

 = 037 mod 77

 = 0

26

References
1. http://scanftree.com/programs/java/implementation-of-rsa-algorithmencryption-and-

decryption-in-java/

2. http://www.gripinit.com/2015/04/03/rsa-algorithm-and-implementation/

3. http://way2java.com/networking/chat-program-two-way-communication/

4. http://www.java2s.com/Code/Java/Security/SimpleRSApublickeyencryptionalgorithmimple

mentation.htm

5. http://ayyostream.blogspot.com/2012/01/how-to-generate-random-prime-number-in.html

6. http://security.stackexchange.com/questions/15991/using-rsa-with-3des-instead-of-plain-

3des-does-it-make-sense

7. http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/triple-des.htm

8. https://en.wikipedia.org/wiki/Key_size

9. https://en.wikipedia.org/wiki/RSA_(cryptosystem) - calculation

10. https://asecuritysite.com/encryption/rsa?val=11%2C3%2C3%2C4

11. http://searchsecurity.techtarget.com/definition/asymmetric-cryptography

12. http://searchsecurity.techtarget.com/definition/RSA

13. http://www.iosrjen.org/Papers/vol2_issue7%20(part-1)/L0277277.pdf

14. http://www.di-mgt.com.au/rsa_alg.html

15. https://en.wikipedia.org/wiki/Key_generation

16. https://en.wikipedia.org/wiki/Cryptography

17. https://defuse.ca/big-number-calculator.htm

18. https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

19. http://www.internet-computer-security.com/VPN-Guide/Diffie-Hellman.html
20. http://codenamekidnextdoor.blogspot.ca/2011/09/explaining-triple-data-encryption.html

21. http://searchsecurity.techtarget.com/tip/Expert-advice-Encryption-101-Triple-DES-

explained

22. https://www.secpoint.com/what-is-diffie-hellman-encryption.html

23. http://www.math.ucla.edu/~baker/40/handouts/rev_DH/node1.html

http://scanftree.com/programs/java/implementation-of-rsa-algorithmencryption-and-decryption-in-java/
http://scanftree.com/programs/java/implementation-of-rsa-algorithmencryption-and-decryption-in-java/
http://www.gripinit.com/2015/04/03/rsa-algorithm-and-implementation/
http://way2java.com/networking/chat-program-two-way-communication/
http://www.java2s.com/Code/Java/Security/SimpleRSApublickeyencryptionalgorithmimplementation.htm
http://www.java2s.com/Code/Java/Security/SimpleRSApublickeyencryptionalgorithmimplementation.htm
http://ayyostream.blogspot.com/2012/01/how-to-generate-random-prime-number-in.html
http://security.stackexchange.com/questions/15991/using-rsa-with-3des-instead-of-plain-3des-does-it-make-sense
http://security.stackexchange.com/questions/15991/using-rsa-with-3des-instead-of-plain-3des-does-it-make-sense
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/triple-des.htm
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://asecuritysite.com/encryption/rsa?val=11%2C3%2C3%2C4
http://searchsecurity.techtarget.com/definition/asymmetric-cryptography
http://www.iosrjen.org/Papers/vol2_issue7%20(part-1)/L0277277.pdf
http://www.di-mgt.com.au/rsa_alg.html
https://en.wikipedia.org/wiki/Key_generation
https://defuse.ca/big-number-calculator.htm

