Triple RSA Encryption

MINT CAPSTONE PROJECT 2015
2/5/2016

llzk kiya Velusamy

Table of Contents

Table of Contents

TabIE Of CONTENTSeeeiietee ettt ettt e e ettt e e e e bt e e e s abe e e e e e nbeeeeesabeeeesanreeeas 2
Y o1 1 T PP PSP UT O PU PP PPUPROTN 3
3 O oY o o = - o] 1Y% U PP PP RRRT 3
2 RS A ettt e e bttt e e e a bt e e e e bet e e e e b et ee e e e bet e e e e ahbeeeeeaabaeeeeahbteeeeebreeeean 4
3. Triple RSA @NnCryplion: .o 4
3a. Generating PUblic and private KeY.......ueue i 5
3b. ENCrypt USING PUDBIIC KEY ..uiiiiiee ettt e e st e e e e e e e e rar e e e e e e e e ennnnnns 7
3C. DECrypt USING Private KEYuuuuuiiiiiiiiiiiiiiiiiiiiitiitiiiieeeraeeererereerereeseraraa————————————————————aaaaaannnaanan———_. 8
3d. Two way communication (Server, ClIENT)ccuuiiiiie e e e e e e e e eenens 10
o 1= oY= =Y Ao a T e B 1SNt 13
CalCUIAtioN EXAMIPIE. ...ttt e e e e e s st e e e e e s s s bbb e e e e e e e s s anrrreeeeeens 14
A PP ENAIX e e 18
RETEIENCES: ..ttt ettt e e bttt e e ettt e e e abb e e e e e a bt e e e s e bbb e e e enraeeeeaareeeeeaane 26

Abstract

The Rivest Shamir Adelman (RSA) is a popular cryptosystem. Mainly
used for its easy implementation in securing data transmissions. In RSA
cryptography, two different keys are used; a private and public key. The public
keys can be shared with everyone where the private key is a secret. RSA has
been used for online payments, banking applications, various secure
authentications processes and used by many government organizations.

This work consists of describing a new approach to enhance the security
of RSA using an old approach. In this we enhanced the security feature by
introducing an advance version of RSA called Triple RSA. To enhance the
security and confidentiality we have implemented the Triple RSA in a similar
approach to 3DES. This provides integrity and a strong authentication.

3DES is a modern variation of DES (Data Encryption Standard) which
uses a block of plaintext 64 bits in length, with a 56 bit key. The actual key
length equals that of the plaintext. The last bit on the right of the key is a parity
bit. There were many concerns about the weakness of DES against brute force
attacks due to the key length, so 3DES was developed in response to needing a
stronger encryption method. 3DES works in much the same way as DES, except
that goes through three cycles during the encryption process using three keys:
encryption, decryption, and another encryption. It has a key length of 192 bits
(64 bits x 3 keys), but its actual strength is 168 bits (56 bits x 3 keys). Encrypt
with Keyl, decrypt with Key2 and encrypt with Key3. There are two-key and
three-key versions. This method is three times as strong as DES.

1. Cryptography

The public key cryptosystem was introduced in 1976 by Whitfield
Diffie and Martin Hellman. It uses public key for encryption as well as a
private key for decryption. Each user gets two keys one public and one private.
The public key is published and the private key is secret. There is no need to
share the private key. The challenge would be that two parties would have to
agree on a secret key without anyone else finding out. The secret key method is
faster but only moderately secure.

Diffie-Hellman is an asymmetric key algorithm used for public key
cryptography. The Diffie-Hellman algorithm was created to address the issue of
secure encrypted keys from being attacked over the internet during
transmission. The process works by two peers generating a private and a public
key. Peer A would send its public key to peer B and peer B would send its

3

https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman

public key to peer A. Peer A would then use the public key sent from peer B
and its own private key to generate a symmetric key using the Diffie-Hellman
algorithm. Peer B would also take the same process as peer A and in turn
produce the exact same symmetric key as peer A, though enabling them to
communicate securely over the in-secure internet. Both peers can now encrypt,
transmit and decrypt data using their symmetric keys. DH approach is used here
to securely exchange the triple RSA public keys between two parties.

2.RSA

RSA is a public key algorithm invented in 1977 and it was publicly
described to everyone in 1978 by Ron Rivest, Adi Shamir and Leonard
Adleman at MIT. Encryption is the very efficient way for data security mainly
in military and in banking online transactions. It is very difficult for
unauthorized access to occur when the cipher text is stronger. The encryption
and decryption of RSA works as, both the sender and receiver will share their
public keys with each other. The sender will send an encrypted message to the
receiver, using the receiver’s public key. The receiver will decrypt the message
by using his/her private key.

Bzcaiver's public kavto] Ciphar J O private ke to
enarypt J » L dacrypt

ESA Encnption deoryption

3. Triple RSA encryption:

Triple RSA is an improved version of RSA. It provides more security in
receiving the original private/public 3RSA key set from the issuing authority
than RSA. Initially both the parties will exchange their public keys with each
other. The message is first encrypted using receiver’s public Keyl. The receiver
only has the corresponding private key to decrypt and he/she only can decrypt
it. This step provides confidentiality. The encrypted message is further
encrypted by using receiver’s public Key2. It can be decrypted on the receiver’s
side using receiver’s private key.

Finally, the double encrypted message is again encrypted using
receiver’s public Key3. The data can only be decrypted using receiver’s private
Key3, Key2, and Keyl respectively. Hence the message cannot be modified by
unauthorized access. Hence the data integrity is achieved.

Deorypted Brivae key 3

| Deoyptad Privae key 2 |
| Encopeet Pustic w1 | Decrypad Brivae key 1
Il
1] |

Encevptsd Dublic key 3 |7 STOP
EVDER RECEIVER

Sending public keyl, keyl,
ka2¥3 1o mnder

Sending public keyl, kayl,
kay3 torecaiver

-

Tripla RSA Modal

Advantages:
Each user has sole responsibility for protecting his or her private key. The
purpose of the strong algorithms and keys is to make the process of breaking the
encryption take so long that the data’s time value is reduced to nothing.

3a. Generating Public and private key

Explanation:
Source has only one public key and private key for RSA encryption

and decryption.
Source:
r = new Random();
p = Biglnteger.probablePrime(bitlength, r);
g = BiglInteger.probablePrime(bitlength, r);
N = p.multiply(q);
phi=p.subtract(Biglnteger.ONE).multiply(q.subtract(BigIinteger.ONE));
e = Biglnteger.probablePrime(bitlength/2, r);
while (phi.gcd(e).compareTo(Biglnteger.ONE) > 0 && e.compareTo(phi) < 0

)
{
e.add(Biglnteger.ONE);

}

d = e.modInverse(phi);

Explanation:
Modified code has functionality to generate 3 public keys and 3

private keys to implement triple RSA encryption and decryption
Modified:
r = new SecureRandom();
//Generate public key and private key 1
pl = Biglnteger.probablePrime(bitlength, r);
gl = BiglInteger.probablePrime(bitlength, r);
N1 = pl.multiply (ql);
phil=pl.subtract(BigInteger.ONE).multiply(ql.subtract(Biginteger.ONE));
el = Biglinteger.probablePrime(bitlength/2, r);
while(phil.gcd(el).compareTo(Biglnteger.ONE) > 0 && el.compareTo(phil)
<0)
{
el.add(BigInteger.ONE);
¥
d1 = el.modlInverse(phil);
/IGenerate public key and private key 2
p2 = Biglnteger.probablePrime(bitlength, r);
g2 = Biglnteger.probablePrime(bitlength, r);
N2 = p2.multiply(g2);
phi2 = p2.subtract(Biglnteger.ONE).multiply(g2.subtract(Biginteger.ONE));
e2 = Biglnteger.probablePrime(bitlength/2, r);
while (phi2.gcd(e2).compareTo(Biglinteger.ONE) > 0 &&
e2.compareTo(phi2) <0) {
e2.add(Biglnteger.ONE);
¥
d2 = e2.modlInverse(phi2);
//Generate public key and private key 3
p3 = Biginteger.probablePrime(bitlength, r);
g3 = Biglnteger.probablePrime(bitlength, r);
N3 = p3.multiply(g3);
phi3 = p3.subtract(Biglnteger. ONE).multiply(g3.subtract(Biginteger.ONE));
e3 = Biglnteger.probablePrime(bitlength/2, r);
while (phi3.gcd(e3).compareTo(Biginteger.ONE) > 0 &&
e3.compareTo(phi3)<0) {
e3.add(Biglnteger.ONE);

}
d3 = e3.modlInverse(phi3);

Output:

Sharing public keys to each other (receiver)
£ console 3 = &

o % B EEE 8o
ChatsServer (7) [Java Application] fusr/lib/jvm/java-T-openjdk-i386/bin/jz
Eerver ready for chatting
Key from client: !el!1317438426527976973464917647296668607
Public Key 1 from client : 1317438426527976973464917647296
M2: 2698383479825631633325332360790814156081642043964369396
Public Key 2 from client : 9651312212854631180502964066331
M3: 2276561325739866345698188986227588902467047837033126160
Public Key 3 from client : 1014782544604013610300239172296

Sharing public keys to each other (sender)
£ Console &2 = &

] % B B (E& B8 -0
Chatclient (5) [Java Application] fusr/lib/jvm/java-7-openjdk-i386/bin/ja
Btart the chitchat, type and press Enter key:

Key from server: !elll317980853804364588302109261782195238
Public Key 1 from server: 13179808538043645883021092617821
Public Key 2 from server: 94285726036464090426627197143389
Public Key 3 from server: 726058445641458342475378429399413

Enter your Mesage here >>s>s5o555555>

3b. Encrypt using public key

Explanation:

Source will encrypt the plain text only once using one public key

and send this cipher text for decryption
Source:

byte[] encrypted = rsa.encrypt(teststring.getBytes());
System.out.printin("Encrypted String in Bytes: " + bytesToString(encrypted));

Explanation:

Modified code will encrypt the plain text 3 times using 3 different
public keys

a. Plain text to Ciphertextl using public key 1
b. Ciphertextl to Ciphertext2 using public key 2
c. Ciphertext2 to Ciphertext3 using public key 3

Modified code will take this Ciphertext3 for decryption
Modified:
/I encrypt using clients publickeyl

Biglinteger encryptedl = rsa.encryptl(new
BigInteger(sendMessage.getBytes()),cs.publicKeyl,cs.cN1);
System.out.printIn("Encrypted String in Bytes: " + encryptedl);
/I encrypt using clients publickey2
BigInteger encrypted2 = rsa.encrypt2(encryptedl,cs.publicKey2,cs.cN2);
System.out.printin("Encrypted String in Bytes: " + encrypted?2);
I/ encrypt using clients publickey3
Biglnteger encrypted3 = rsa.encrypt3(encrypted2,cs.publicKey3,cs.cN3);
System.out.printIn("Encrypted String in Bytes: " +encrypted3);
pwrite.printin(encrypted3);
Biglnteger encrypted2 = rsa.encrypt2(encryptedl,cs.publicKey2,cs.cN2);
System.out.printin("Encrypted String in Bytes: " + encrypted2);

Output:

Sender is sending a message which is encrypted as a string and
sent to the receiver.

E console 2 = &

] % b 2|IS&E - E~-r-
ChatcClient (5) [Java Application] fusr/lib/jvm/java-T-openjdk-i386/bin/ja
Public Key 1 from server: 18356783216266246710744869273285
Public Key 2 from server: 11189116341841542585634184060986
Public Key 3 from server: 10046664836493722504909778137268

Enter your Mesage here =>>>>>>>:m>>>>>

priginal Text: hi

Encrypted String in Bytes: 1689143822221933661679487891918
Encrypted String in Bytes: 9851661179408831922145560758972
Encrypted String in Bytes: 1209848657422228287725523714588

3c. Decrypt using private key

Explanation:
Source code will decrypt the cipher text to plain text only once
using one private key
Source:
byte[] decrypted = rsa.decrypt(encrypted);

System.out.printin("Decrypted String in Bytes: " + bytesToString(decrypted));
System.out.printin("Decrypted String: " + new String(decrypted));

Explanation:
Modified code will decrypt the cipher text 3 times using 3 different
private keys
a. Ciphertext3 to Ciphertext2 using private key 3
b. Ciphertext2 to Ciphertextl using private key 2
c. Ciphertextl to Plain text using private key 1
Modified:
/Il decrypt using server privatekey3
Biginteger decrypted3 = rsa.decrypt3(new
Biginteger(receiveMessage),cs.privateKey3,cs.sN3);
System.out.printin("Decrypted String in Bytes: " + decrypted3);

// decrypt using server privatekey?2

Biginteger decrypted2 = rsa.decrypt2(decrypted3,cs.privateKey2,cs.sN2);

System.out.printin("Decrypted String in Bytes: " + decrypted2);

/I decrypt using server privatekeyl

BiglInteger decryptedl = rsa.decryptl(decrypted2,cs.privateKeyl,cs.sN1);

System.out.printin("Decrypted String in Bytes: " + decryptedl);

String text2 = new String(decryptedl.toByteArray());
System.out.printIn("\nPlain text: " + text2);

Output:
Receiver decrypted the message by using key3, key2, keyl
E console 22 = &

El -_E* bﬂ = El @ = E - :=J -
Chatserver (7) [Java Application] fusr/lib/jvm/java-7-openjdk-i386/bin/jz
Public Key 3 from client : 1237278237876950348141417417831
Cipher Message from client: 120984865742222828772552371458
Decrypted String in Bytes: 9851661179408831922145560758972
Decrypted String in Bytes: 1689143822221933661679487891916
Decrypted String in Bytes: 26729
Plain text: hi

Enter your Mesage here =>>>>::>555:55>

3d. Two way communication (Server, Client)

Explanation:
Source code has a below logics,
a. Creating connection
b. Waiting for client and accepting the connection
c. Send and receive plain message from client to server and
vice versa .
d. Display messages in console
Source:
/Il reading from keyboard (keyRead object)
BufferedReader keyRead = new BufferedReader(new
InputStreamReader(System.in));
/l sending to client (pwrite object)
OutputStream ostream = sock.getOutputStream();
PrintWriter pwrite = new PrintWriter(ostream, true);
/I receiving from server (receiveRead object)
InputStream istream = sock.getlnputStream();
BufferedReader receiveRead = new BufferedReader(new
InputStreamReader(istream));
String receiveMessage, sendMessage;

while(true)

{ if((receiveMessage = receiveRead.readLine()) !'= null)
{ System.out.printin(receiveMessage);
}

sendMessage = keyRead.readLine();
pwrite.printin(sendMessage);
pwrite.flush();

Explanation:
Modified code has a following logics,

a. Creating connection.

b. Waiting for client and accepting the connection .

c. Server and client will Generate 3 public and 3 private keys , both
will send 3 public keys in one string for encryption (from server to
client and vice versa) as soon as server accepts the connection.

d. Both server and client will parse the public key string into 3 public
keys and display the keys in console.

e. When client receives plain text from user, it will encrypt the
message 3 times using server’s public Keyl,Key2, Key3 and client
will send cipher text to server

10

f. When server receives cipher text from client, it will decrypt the
cipher text 3 times using server’s own private key3,Key2,Keyl and

display the plain text in console
Modified:
PrintWriter pwrite = new PrintWriter(ostream, true);
RSATestNew rsa = new RSATestNew();
ChatServer cs = new ChatServer();
String keyToClient = cs.keyGen();
pwrite.printin(keyToClient);
pwrite.flush();
// reading from keyboard (keyRead object)
BufferedReader keyRead = new BufferedReader(new
InputStreamReader(System.in));
I receiving from server (receiveRead object)
InputStream istream = sock.getInputStream();
BufferedReader receiveRead = new BufferedReader(new
InputStreamReader(istream));
String receiveMessage, sendMessage;
receiveMessage = receiveRead.readLine();
if(receiveMessage.contains(!el!")) {
System.out.printin(*Key from client: " + receiveMessage);
String[] textArray= receiveMessage.split("=");

String[] keyl = textArray[0].split("!m1!");

cs.publicKeyl = new Biglnteger(key1[0].replace("!el!", "));
cs.cN1 = new Biglinteger(key1[1].replace("!m1!™, "));
System.out.printin(*"Public Key 1 from client : " + cs.publicKeyl);

String[] key2 = textArray[1].split("!m2!");

cs.publicKey2 = new Biglnteger(key2[0].replace("!e2!", "");
cs.cN2 = new Biglinteger(key2[1].replace("!m2!", "));
System.out.printIn(*M2: " + cs.cN2);

System.out.printIn(*"Public Key 2 from client : " + cs.publicKey?2);

String[] key3 = textArray[2].split("Im3!");
cs.publicKey3 = new Biglinteger(key3[0].replace("1e3!", "");
cs.cN3 = new Biglinteger(key3[1].replace("Im3!", ""));
System.out.printin(*M3: " + ¢s.cN3);
System.out.printin("Public Key 3 from client : " + cs.publicKey3);

11

Output:

Sharing public keys to each other (receiver)
E console =2 = &

¢ B B B |SE = 8-
Chatserver (7) [Java Application] fusr/lib/jvm/java-7-openjdk-i386/bin/jz
Berver ready for chatting
Key from client: 1el!1317438426527976973464917647296668607
Public Key 1 from client : 1317438426527976973464917647296
M2: 269038347982563163332533236079014156081642043964369390
Public Key 2 from client : 9651312212854631180502964066331
M3: 2276561325739866345698188980622758890246704783703312610
Public Key 3 from client : 18147025446084013610300239172296

Sharing public keys to each other (sender)
& Console &2 = &g

¢ B M EFHE 2 B--0-
ChatcClient (5) [Java Application] fusr/lib/jvm/java-7-openjdk-i386/bin/ja
Etart the chitchat, type and press Enter key:

Key from server: !el!1317980853804364588302109261782195238@
Public Key 1 from server: 13179808538043645883021892617821
Public Key 2 from server: 94285726036464090426627197143389
Public Key 3 from server: 72605844564148342475370429399413

Enter your Mesage here =>>5355555555>

12

Receiver is responding back to the sender. So the message is encrypted
by using public keyl, key2, key3 and sent.
£ Console &3 = &

® s B Eeee »a8-m-
Chatserver (7) [Java Application] fusr/lib/jvm/java-7-openjdk-i386/bin/jz
Decrypted String in Bytes: 26729

Plain text: hi

Enter your Mesage here »>>>>>>>5>5>>>>

how are you

priginal Text: how are you

Encrypted String in Bytes: 6856148236407031855806069826846
Encrypted String in Bytes: 2104443825653073012519724099586
Encrypted String in Bytes: 1408781529264088566837416739108

Sender receives a message and it is decrypted again by using the key3,
key2 and keyl.

£ console 2 = &

= =% b (8|8 B -~
Chatclient (5) [Java Application] fusr/lib/jvm/java-7T-openjdk-i386/bin/ja
Encrypted String in Bytes: 1289848657422228287725523714588

Cipher Message from server: 1488781529264088566837416739160
Decrypted String in Bytes: 2184443825653873012519724099586
Decrypted String in Bytes: 6056148236487831855806869826846
Decrypted String in Bytes: 126254665415336596841525109

Plain text: how are you

Enter your Mesage here >>>5555555555>

4. Generation of Keys:

The keys generation for the RSA algorithm are described as,
1. Consider two different prime numbers as p and g.

» The integer p and qshould be chosen at random for security
reason and should be similar in magnitude and different in
length.

2. To Compute “n=p*q”
» “n” isused as the modulus for both the public and private keys.

13

3. Compute ¢(n)
o(n) =(-1)g-1)
Where ¢ is Euler's totient function. This value is kept private.
4. Choose an integer e such that 1 <e < (n)
> e is released as the public key exponent.
5. Determine d as d = e* (mod ¢(n))
> d is kept as the private key exponent.

The public key consists of the modulus n and the public (or encryption)
exponent e. The private key consists of the modulus n and the private (or
decryption) exponent d, which must be kept secret. p, q, and ¢(n) must also
be kept secret because they can be used to calculate the encryption value.

4a). Calculation Example
Example of RSA encryption and decryption:

1. Choose two distinct prime numbers, such as
P=7and Q=11

2. Compute n = p*q giving
n=P*Q=3*11 =77

3. Compute the totient of the product as ¢(n) = (p — 1)(q — 1) giving
o(n) = (7-1)(11-1) =60

4. Choose any number 1 <e <60
Lete=13

5. Compute d, the modular multiplicative inverse of e (mod

¢(n)) yielding,

d=37

e*dmod o(n)=1
13*37mod 77 =1

» Encrypt the word “art”

Note: Refer Appendix B
Let’s consider a=3,

albjcid{e/fig/h|i|j|k|lI|m{njo|lp|g|r|s|tjulv|iw|X|Yy|zZ
1(1)1|1j1|1|1j141|1(2|2 2122222
3/4/5/6/7/8/9/0(1|2({3|4|5|/6(7|8|9|/0]|1]|2(3|/4|5|6|7/|8
Letter > ‘a’

C=P¢modn

= 3% mod 77

= 1594323 mod 77

=38

14

Letter > ‘r’
C=Pemod n
=208 mod 77
=69
Letter ->°t’
C=P¢*mod n
=22¥ mod 77
= 282810057883082752 mod 77
=22

» Decrypt the word “art”

Let’s consider,

Letter > ‘a’

P =CYmod n
=38% mod 77
=28313468473157736370011296127792731029354930758695

159595008mod77
P=3

Let’s consider,
Letter > ‘r’
P =CYmod n
= 69% mod 77
=108997454908319501293332197291058067456733457962345
651347387153299189mod77

P=20
Let’s consider,
Letter >°t’
P=CYmod n
=223 mod 77
= 4673467107597213797264418917851420180413539213312
mod77
P =22
Note: Refer Appendix B
Let’s consider a=0,
ajbjcidie|f|g/hji|j|k|I m|njo|p|lqgq|r|s|tjulviw|x|y|z
1]1j1(1]1/1]|1 1 2122222
0/1/2/3/4/5/6/7/8/9/0(1|2,3|4/5|/6|7|8|]9/0[|1|2|3|4]|5

15

> Encrypt the word “art”

Letter -> ‘a’
C=P¢mod n
=0 mod 77
=0
Letter -> ‘r’
C=P¢mod n
=178 mod 77
=73
Letter ->°t’
C=Pemodn
=198 mod 77
=61

» Decrypt the word “art”
Letter -> ‘@’
P=CYmod n

=09 mod 77
P=0

Letter > ‘r’

P =CYmod n
=73%" mod 77

P=17

Letter ->°t’

P =CYmod n
=613 mod 77

P =19

Note: Refer Appendix B
Let’s considera =1,

a|bjcid|e|f|lg|h|i|j|k|lI | m|njo|p|qg]|Tr]s u W | X z
1/1/j1}j1(1|1/1|1|1]|1 2 2|2 2
1/2/3/4/5/6/7/8/9/0/1/2|3]4|5]|/6]7/8]9 1 34 6

16

> Encrypt the word “art”

Letter -> ‘a’
C=P¢*mod n
=1 mod 77
=1

Letter -> ‘r’
C=P¢mod n
=188 mod 77
=46
Letter ->°t’
C=P®*mod n
=20 mod 77
=69

» Decrypt the word “art”
Letter -> ‘@’
P=CYmod n

=13 mod 77
P=1

Letter > ‘r’
P =CYmod n

= 46" mod 77
P=18

Letter ->t’

P =CYmod n
=69% mod 77

P =20

17

Appendix A
1).To find the‘d’ value

p=7
g=11
n=7x11=77

on = (7-1) x (11-1) = 60

e=13
d=37

To find the value of “d™:
» Let’s take the value ¢(n)
Step 1:
¢(n) value on top row—> 60 60

‘¢’ value second row 2> 13 1 € Let’s consider the value as’1’
Divide the left side value > 4

Step 2:
Multiply the quotient ‘4’ with the second row values
4 *13 =52 4*1 =4
Step 3:
Subtract the first row value with the multiplied values
60-52=8 60-4=56
8, 56

» Repeat all 3 steps until you get the value “1”.

Step 1:
Previous calculations second row values
Should be on first row—> 13 1
Previous step3 calculation values on
Second row 2> 8 56

Divide the left side value - 1
Step 2:

Multiply the quotient ‘1’ with the second row values
8§*1=8 56*1 =56

18

Step 3:
Subtract the first row value with the multiplied values
13-8=8 1-56=-55

Here we found negative value “ -55”. So we have to take mod ¢(n) for the
negative value.
-55 mod 60 =5

5, 5

» Repeat all 3 steps until you get the value “1”.

Step 1:
Previous calculations second row values
Should be on first row—> 8 56
Previous step3 calculation values on
Second row 25 5

Divide the left side value - 1

Step 2:
Multiply the quotient ‘1’ with the second row values
5*1=5 5*%1 =5
Step 3:
Subtract the first row value with the multiplied values
8-5=3 56-5=51

3, 51

» Repeat all 3 steps until you get the value “1”.

Step 1:
Previous calculations second row values
Should be on first row—=> 5 5
Previous step3 calculation values on
Second row 23 51

Divide the left side value = 1

Step 2:
Multiply the quotient ‘1’ with the second row values

19

3*1=3 51*1 =51

Step 3:
Subtract the first row value with the multiplied values
5-3=2 5-51=-46

Here we found negative value “ -46”. So we have to take mod ¢(n) for the
negative value.
-46 mod 60 = 14

2,14

> Repeat all 3 steps until you get the value “1”.

Step 1:
Previous calculations second row values
Should be on first row—> 3 51
Previous step3 calculation values on
Second row 22 14

Divide the left side value - 1

Step 2:
Multiply the quotient ‘1’ with the second row values
2*1 =2 14*1 =14
Step 3:
Subtract the first row value with the multiplied values
3-2=1 51-14=37

1, 37

Here we reached the value “1”. Then the ‘d’ value is “37”

d=37
Encrypt:
C=P¢*MODn
C =3B MOD 77
C=38

20

Decrypt:
P=CYMODn

P =38% MOD 77
P=3

Appendix B

If the off-set value a=3 then the plain text will be encrypted by using
public Keyl, Key2, Key3 and decrypt by using private Key3, Key2, Keyl.
The keys will scramble the message in plaintext to cipher text and to the
original message in plain text from cipher text.

Let’s consider a=3,

albjc|dje|f|iglh|i|jlk]I|m|njo|p|qg|r|s|tju|lv|iw|Xx|y]|z
1/1(1(12/1j141|1(111|2|2 21212222

3/4/5/6/7/8/9/0|1]|2|3|4]|/5|/6|7[8|9]0|1]2|3|/4|5|/6|7]|8

Encrypt:

1) Key1l

Key 1 (7,11)

P=7and Q=11,n=77,e=13,d=37

» Encrypt “a”
C=Pemod n
=38 mod 77
= 1594323 mod 77
=38

2) Key?2
Key 2 (7,13)
P=7and Q=13,n=91, e=11, d=59

» Encrypt “a”
C =P®modn
=3% mod 91
=61
3) Key3

Key 3 (13, 11)
P= 13 and Q=11, n =33, e=7, d=103

21

» Encrypt “a”

C=Pemodn
=3"mod 33
=9
Decrypt:
1) Key3

Key 3 (13, 11)
P=13 and Q=11, n =33, e=7, d=103

» Decrypt “a”
P=CYmodn
= 91% mod 33
=3

2) Key 2
Key 2 (7,13)
P=7and Q=13,n=91, e=11, d=59

» Decrypt “a”
P =CYmod n
=61 mod 91
=3
3) Key 1
Key 1 (7,11)
P=7and Q=11,n=77,e=13,d=37

» Decrypt “a”
P =CYmod n
=38% mod 77
=3

If off-set value a=1, the keys will scramble the plain text into the same text
as cipher. So the message transmission will not be much stronger.

Let’s consider a=1,

X
N

ajlbjcidie|f|g|h]|i

= —
[N
[N
[N
[N
=

=
[\
N

w NS
[N

a1l N
N

112/3/4{5/6(/7/8/9/0|1]2|/3|4[5|6|7|8]9]0]1]?2

22

Encrypt:
1) Key1l
Key 1 (7,11)
P=7and Q=11,n=77,e=13,d=37

» Encrypt “a”
C =P®modn
=1 mod 77
=1

2) Key?2
Key 2 (7,13)
P=7and Q=13 ,n=91, e=11, d=59

» Encrypt “a”
C=P®mod n
= 1% mod 91
=1
3) Key3

Key 3 (13, 11)
P=13 and Q=11, n =33, e=7, d=103

» Encrypt “a”
C=Pemod n
=1"mod 33
=1
Decrypt:
1) Key3

Key 3 (13, 11)
P=13 and Q=11, n =33, e=7, d=103

» Decrypt “a”
P=CYmod n
= 1'% mod 33
=1
2) Key2

Key 2 (7,13)

23

P=7and Q=13,n=91, e=11, d=59

> Decrypt “a”
P=CYmodn
=1 mod 91
=1
3) Key 1
Key 1 (7,11)
P=7and Q=11,n=77,e=13, d=37

» Decrypt “a”
P=CYmod n
=13 mod 77
=1

If off-set value a=0, the keys will scramble the plain text into the same text
as cipher while encryption. So the message/password will be easy to break.

Let’s consider a=0,
ajbjcidje|flig/hli|jlk|lI | m|n|jo|p|qg|r|s|tju]vV
111

X
<
N

[N
[N
R
=
R

=
=
=
()
[N

N NS
[N
N
[N

0(1/2/3/4/5/6{7/8/9/01|2|3]4|5/6|7|8]9]0]1

Encrypt:
1) Key1l
Key 1 (7,11)
P=7and Q=11,n=77,e=13,d=37

» Encrypt “a”
C =P®modn
= 0% mod 77
=0

2) Key?2
Key 2 (7,13)
P=7and Q=13 ,n =91, e=11, d=59
» Encrypt “a”

24

C=P®mod n
=0 mod 91
=0
3) Key3
Key 3 (13, 11)
P=13 and Q=11, n =33, e=7, d=103

» Encrypt “a”
C=P®mod n
=0" mod 33
=0
Decrypt:
1) Key3

Key 3 (13, 11)
P=13 and Q=11, n =33, e=7, d=103

» Decrypt “a”
P =C9Ymod n
= 01% mod 33
=0

2) Key?2
Key 2 (7,13)
P=7and Q=13,n=91, e=11, d=59

» Decrypt “a”
P=CYmod n
= 0% mod 91
=0
3) Key 1
Key 1 (7,11)
P=7and Q=11,n=77,e=13,d=37

» Decrypt “a”
P =CYmod n
=0% mod 77
=0

25

References

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.

21.

22.
23.

http://scanftree.com/programs/java/implementation-of-rsa-algorithmencryption-and-
decryption-in-java/
http://www.gripinit.com/2015/04/03/rsa-algorithm-and-implementation/
http://way2java.com/networking/chat-program-two-way-communication/
http://www.java2s.com/Code/Java/Security/SimpleRSApublickeyencryptionalgorithmimple
mentation.htm
http://ayyostream.blogspot.com/2012/01/how-to-generate-random-prime-number-in.html|
http://security.stackexchange.com/questions/15991/using-rsa-with-3des-instead-of-plain-
3des-does-it-make-sense
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/triple-des.htm
https://en.wikipedia.org/wiki/Key_size

https://en.wikipedia.org/wiki/RSA_(cryptosystem) - calculation
https://asecuritysite.com/encryption/rsa?val=11%2C3%2C3%2C4
http://searchsecurity.techtarget.com/definition/asymmetric-cryptography
http://searchsecurity.techtarget.com/definition/RSA
http://www.iosrjen.org/Papers/vol2_issue7%20(part-1)/L0277277.pdf
http://www.di-mgt.com.au/rsa_alg.html|

https://en.wikipedia.org/wiki/Key_generation

https://en.wikipedia.org/wiki/Cryptography

https://defuse.ca/big-number-calculator.htm
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

http://www.internet-computer-security.com/VPN-Guide/Diffie-Hellman.html|
http://codenamekidnextdoor.blogspot.ca/2011/09/explaining-triple-data-encryption.html

http://searchsecurity.techtarget.com/tip/Expert-advice-Encryption-101-Triple-DES-
explained

https://www.secpoint.com/what-is-diffie-hellman-encryption.html
http://www.math.ucla.edu/~baker/40/handouts/rev_DH/nodel.html

26

http://scanftree.com/programs/java/implementation-of-rsa-algorithmencryption-and-decryption-in-java/
http://scanftree.com/programs/java/implementation-of-rsa-algorithmencryption-and-decryption-in-java/
http://www.gripinit.com/2015/04/03/rsa-algorithm-and-implementation/
http://way2java.com/networking/chat-program-two-way-communication/
http://www.java2s.com/Code/Java/Security/SimpleRSApublickeyencryptionalgorithmimplementation.htm
http://www.java2s.com/Code/Java/Security/SimpleRSApublickeyencryptionalgorithmimplementation.htm
http://ayyostream.blogspot.com/2012/01/how-to-generate-random-prime-number-in.html
http://security.stackexchange.com/questions/15991/using-rsa-with-3des-instead-of-plain-3des-does-it-make-sense
http://security.stackexchange.com/questions/15991/using-rsa-with-3des-instead-of-plain-3des-does-it-make-sense
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/triple-des.htm
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://asecuritysite.com/encryption/rsa?val=11%2C3%2C3%2C4
http://searchsecurity.techtarget.com/definition/asymmetric-cryptography
http://www.iosrjen.org/Papers/vol2_issue7%20(part-1)/L0277277.pdf
http://www.di-mgt.com.au/rsa_alg.html
https://en.wikipedia.org/wiki/Key_generation
https://defuse.ca/big-number-calculator.htm

