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Abstract

Information networks represent relations in data, relationships typically ignored in

iid (independent and identically distributed) data. Such networks abound, like co-

authorships in bibliometrics, cellphone call graphs in telecommunication, students

interactions in Education, etc. A large body of work has been devoted to the anal-

ysis of these networks and the discovery of their underlying structure, specifically,

finding the communities in them. Communities are groups of nodes in the network

that are relatively cohesive within the set compared to the outside.

This thesis proposes Top Leaders, a fast and accurate community mining ap-

proach for both weighted and unweighted networks. Top Leaders regards a com-

munity as a set of followers congregating around a potential leader and works based

on a novel measure of closeness inspired by the theory of diffusion of innovations.

Moreover, it proposes Meerkat-ED, a specific and practical toolbox for ana-

lyzing students’ interactions in online courses. It applies social network analy-

sis techniques including community mining to evaluate participation of students in

asynchronous discussion forums.



Contents

1 Introduction 1

1.1 Thesis Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statments . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Top Leaders 6

2 Background and Related Works 7

2.1 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Social Network Analysis . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Community Mining in Social Networks . . . . . . . . . . . . . . . 10

2.3.1 Graph partitioning Approaches . . . . . . . . . . . . . . . . 10

2.3.2 Hierarchical Clustering Approaches . . . . . . . . . . . . . 12

2.3.3 Modularity Based Approaches . . . . . . . . . . . . . . . . 14

2.3.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . 15

3 Top Leaders Approach 18

3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Measuring Closeness . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Main Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Initialization Methods . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Association of Nodes to Leaders . . . . . . . . . . . . . . . 23

3.3.3 Updating Leaders . . . . . . . . . . . . . . . . . . . . . . . 24



3.4 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Weighted Top Leaders . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Evaluation Methods and Experiments 27

4.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Real Word Benchmarks . . . . . . . . . . . . . . . . . . . 27

4.1.2 Synthetic Networks . . . . . . . . . . . . . . . . . . . . . . 29

4.1.3 Large Scale Real Networks . . . . . . . . . . . . . . . . . . 30

4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Comparing with Ground Truth . . . . . . . . . . . . . . . . 30

4.2.2 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Comparing Initialization Methods . . . . . . . . . . . . . . 32

4.3.2 Comparing on real benchmarks . . . . . . . . . . . . . . . 33

4.3.3 Comparing on synthesized benchmarks . . . . . . . . . . . 35

4.3.4 Comparing on large scale data set . . . . . . . . . . . . . . 35

4.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

II Meerkat-ED 40

5 Social Network Analysis of Asynchronous Discussions in Online Courses 41

5.1 Intoduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Challenges: an Overview of Related Works . . . . . . . . . . . . . 43

5.2.1 Extraction of Social Network . . . . . . . . . . . . . . . . . 43

5.2.2 Measuring the Effectiveness of Participation . . . . . . . . 44

5.2.3 Results Representation . . . . . . . . . . . . . . . . . . . . 45

5.3 Elaborate Description of Previous Attempts . . . . . . . . . . . . . 45

6 Meerkat-ED: Social Network Analysis toolbox for Education 51

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Practical Application . . . . . . . . . . . . . . . . . . . . . . . . . 52



6.3 Interpreting Students Interaction Network . . . . . . . . . . . . . . 53

6.3.1 Student Network Extraction . . . . . . . . . . . . . . . . . 54

6.3.2 Visualization of Student Network . . . . . . . . . . . . . . 54

6.3.3 Analyzing Leadership in the Student Network . . . . . . . . 54

6.4 Interpreting Term Network . . . . . . . . . . . . . . . . . . . . . . 57

6.4.1 Term Network Extraction . . . . . . . . . . . . . . . . . . 57

6.4.2 Visualization of Term Network . . . . . . . . . . . . . . . . 58

6.4.3 Finding Term Communities (Topics) . . . . . . . . . . . . . 60

7 Conclusion 64

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 65

7.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 68



List of Tables

4.1 Results of different initialization methods . . . . . . . . . . . . . . 33

4.2 Comparing the accuracy of Top Leaders and other approaches on

real benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Comparing the accuracy of Top Leaders and other approaches on

synthesized benchmarks . . . . . . . . . . . . . . . . . . . . . . . 37



List of Figures

2.1 Edge Betweenness . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Clique Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Determining community of node n . . . . . . . . . . . . . . . . . . 21

4.1 Visualized communities detected using Top Leaders . . . . . . . . . 34

4.2 Comparision with other approaches on benchmark networks . . . . 38

4.3 Comparing the running time of Top Leaders and other approaches . 39

5.1 Comparing Centrality of Students . . . . . . . . . . . . . . . . . . 46

5.2 Comparing Participation of a Group . . . . . . . . . . . . . . . . . 47

5.3 Graph of Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Structural Profile Sociogram . . . . . . . . . . . . . . . . . . . . . 48

6.1 Visualized Student Network . . . . . . . . . . . . . . . . . . . . . 55

6.2 Visualization of messages in an interaction . . . . . . . . . . . . . . 56

6.3 Comparing centrality of students . . . . . . . . . . . . . . . . . . . 56

6.4 Visualized Term Network . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Co-occurrence of terms . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6 Term communities (Topics) . . . . . . . . . . . . . . . . . . . . . . 61

6.7 Term communities (Topics), zoomed . . . . . . . . . . . . . . . . . 61

6.8 Comparing participation range . . . . . . . . . . . . . . . . . . . . 62



Chapter 1

Introduction

Data mining is recently challenged with finding patterns in structured and heteroge-

neous data. These structures are usually in the form of information networks, which

encode the relations between data entities using graphs. This is in contrast with the

traditional data mining approaches – e.g. association rule mining, supervised clas-

sification or clustering algorithms – which deal with independent and identically

distributed data (IID) [21].

Neglecting the dependence structure of the data, and assuming the independence

of data instances can lead to inappropriate conclusions [29]. For example consid-

ering only the content of web pages and overlooking their linking structure would

lead to poor search results for a search engine. Therefore incorporating structural

information of the data is crucial in pattern mining.

1.1 Thesis Motivations

Many application domains such as marketing, biology, epidemiology, sociology,

criminology, and zoology produce inter-related data. These inter-relations could be

represented using information networks while sharing a common trait, i.e. com-

munity structure. This structure refers to existence of groups as densely connected

set of nodes when there is sparse connections between different groups. Detecting

these communities is an important prerequisite to understanding of such structured

data. To get a better sense of its practical importance, consider a group of web pages

that have more links to each other than to the other pages. Being in the same group
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may be linked to the closeness of topics, which might in turn enable search engines

to better focus on a narrow set of related pages for answering queries [19].

This abundance of structured data has resulted in increasing popularity of com-

munity mining in social sciences such as psychology, anthropology, and criminol-

ogy as well as in computer science and data mining. As of today, there has not

been any consensus on the exact definition of community. For example, one ap-

proach defines it as a subgraph with density of inside edges greater than density of

connections to the outside [24]. While another perspective, relies on the notion of

structural similarity and further incorporates structural elements such as hubs and

outliers [56]. Having these different definitions, many recent approaches have been

proposed for finding communities in social networks [22, 12, 42, 11, 46, 56, 8, 9].

These approaches have promising results in some cases but still are not completely

satisfactory and present some issues (described in detail in Chapter 2); such as as-

suming no prior or side information about the network; having problem in detecting

highly inter-related or mixed communities; having problem in scalability for large

networks.

In practice, we might have access to some prior information about the network

in hand. As motivating examples, we see the number of communities in a blog

network about US political elections, or in a business network, the analyst is only

interested in top k company communities. Besides, these prior information could

be obtained by exploiting the network using visualization systems [10]. This mo-

tivates development of methods utilizing available information about the network,

such as the number of communities, to perform the community detection task more

efficiently and accurately.

One the other hand, the interactions in online discussions forums is an interest-

ing example of information networks. There is a growing number of courses deliv-

ered using e-learning environments and their online discussions play an important

role in collaborative learning of students [17]. Even in courses with a few number

of students, there could be thousand of messages generated in a few months within

these forums. Unfortunately, current e-learning environments do not provide much

information regarding the participation of students and the structure of interactions
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between them. In many cases, only some statistical information is provided such

as their frequency of posting [17]. Consequently, instructors have to monitor the

discussion threads manually which is hard, time consuming, and prone to human

error.

There is a recent line of work on applying social network analysis techniques

to evaluate the participation of students in online courses [6, 15, 55, 34, 17]. While

proposed methods tackled with some of its challenges, they do not address the

problem completely (described in detail in Chapter 5). Therefore, it is interesting

to investigate the practicability of social network analysis and community mining

techniques in analyzing students interactions in online discussion threads.

1.2 Thesis Statments

This dissertation elaborates on the importance of social network analysis for mining

structural data in the field of computer science and its applicability to the domain

of education. More precisely it is addressing the following statements:

• TS1: Computing science could use theories of social network analysis from

sociology to develop new methods for analysis of the stucture in relational

data.

• TS2: Specifically, diffusion of innovation theory which describes the struc-

tural features that influence whether individuals will join communities, could

be useful in measuring the closeness of nodes in structured data.

• TS3: The widely used k-means algorithm in clustering could be an inspira-

tion for an analogous and effective approach in community mining.

• TS4: Social network analysis could have useful applications in e-learning

— for monitoring and evaluating participation of students in online courses.

1.3 Thesis Contributions

In this dissertation, we present a new community detection approach based on find-

ing top-k leaders in an information network. In contrast to other methods, we ex-

ploit prior knowledge about a given network, such as the desired number of commu-
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nities to be found. In our work, we assume that each community has a representative

leader node, which is the most central node in that community. A community is a

set of all follower nodes assembling close to a leader. Briefly, our approach first

finds promising leader nodes in the given network, then iteratively updates commu-

nities and their corresponding leaders until there is no change in the communities.

This scheme is very similar to the partitioning philosophy adopted in clustering

methods such as k-means. While k-means is infamously sensitive to noise, our

approach, Top-Leaders, coupled with our notion of closeness highlighted herein,

allows us to identify marginal nodes in a network as outliers and thus is not affected

by noise. Moreover, hubs, nodes that connect different communities, can also be

identified. The closeness measure we propose, Intersection Closeness (iCloseness

for short), is a novel measure to assess the relations between community nodes. We

use this measure to both find the initial leaders in a network as well as to update

relations among community nodes. For instance, in the initialization we choose

potential leaders who are not too iClose to each other to avoid starting with leaders

that might end up within the same true community. When associating followers

with leaders, we assign a follower to the iClosest leader.

This closeness measure encapsulates the notion of membership in a community

and its basic idea is reinforced by observations made on community dynamics in

social networks with regard to the probability of joining a group based on the con-

cept of diffusion of innovation [3]. It is observed that the likelihood of joining a

community in social networks depends upon the number of pre-existing connec-

tions with group members and the density of edges between these members and

other members in the group. In other words, if I am faced with two groups in which

I already have friends and if I need to join one of these groups, I could choose ei-

ther one, but there is a higher probability to join the group in which I have more

friends. In addition if I am faced with two groups in which I have the same number

of friends, there would be a higher probability that I would join the group in which

the connectivity of my friends with the group is stronger.

Moreover, we proposed Meerkat-ED, a specific and practical toolbox for ana-

lyzing students interactions in asynchronous discussion forums of online courses.
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It analyzes the structure of these interactions using social network analysis tech-

niques including community mining. Meerkat-ED prepares and visualizes over-

all snapshots of participants in the discussion forums, their interactions, and the

leaders/peripheral students in these discussions. Moreover, It creates a hierarchical

summarization of the topics discussed in the forums, which gives the instructor a

quick view of what is under discussion in these forums. It further illustrate how

much each student has participated in these topics, by showing his/her centrality in

the discussions on that topic, the number of posts, replies, and the portion of terms

used by that student in the discussions.

1.4 Thesis Organization

This dissertation is organized into two parts. The first part introduces commu-

nity mining in social networks and our new approach for detecting communities.

The second part illustrates the practicability and practicality of social network tech-

niques including community mining in analyzing interactions of students in online

discussions and presents our specific social network toolbox for such analysis. Fol-

lowing these two parts, Chapter 7 concludes the overall contributions of this thesis.

The first part is divided into three chapters; Chapter 2 briefly introduces social

networks and social network analysis and then surveys the current approaches for

community mining in social networks. The next chapter, Chapter 3, details our

iCloseness measure and proposes the community detection algorithm, named Top

Leaders. And finally Chapter 4 reports the result of our experiments on accuracy

and efficiency of Top Leaders approach for both real and synthetic benchmarks

compared to other state-of-the-art contenders.

The second part of this dissertation has two chapters. The first chapter, Chapter

6, illustrates the place and need for social network analysis in study of the interac-

tion of users in e-learning environments and then summarizes some recent studies in

this area. The following chapter, Chapter 6, presents Meerkat-ED – our solution for

social network analysis of online courses – and illustrates its practical application

on our own case study data.
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Part I

Top Leaders: Community Detection
based on Diffusion of Innovation
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Chapter 2

Background and Related Works

Social life is relational; it’s only because, say, blacks
and whites occupy particular kinds of patterns

in the networks in relation to each other that
“race” become an important variable.

Collin (1988)

2.1 Social Networks

First introduced in social and behavioral sciences and focused on relations between

entities and patterns of these relations, social networks are formally defined as a set

of actors or network members whom are tied by one or more type of relations [38].

The actors are most commonly persons or organizations however they could be

any entities such as web pages, countries, proteins, documents, etc. and sometimes

under a more general name, information networks. There could also be many dif-

ferent types of relationships, to name a few, collaborations, friendships, web links,

citations, information flow, etc. [38]. These relations represented by the edges in

the network connecting the actors and may have direction (shows the flow from one

actor to the other) and strength (shows how much, how often, how important).

2.2 Social Network Analysis

Unlike individualist or scientists in attribute based social sciences, social network

analysts argue that causation is not located in the individuals, but in the social struc-

ture [38]. Social network analysis is the study of this structure.
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Rooted in sociology, nowadays, social network analysis has became an inter-

disciplinary area of study, including researchers from anthropology, communica-

tions, computer science, education, economics, criminology, management science,

medicine, political science, and other disciplines [38]. For example in medicine, it

is used to understanding the progression of the spread of an infectious disease [31],

in criminology, it is an important part of a conspiracy investigation and identifying

the nature and extent of conspiratorial involvement [14], or in education it is helpful

in monitoring interactions and participation of students in online courses [44].

Social network analysis examines the structure and composition of ties in the

network to answer questions like:

• Prestige: Who are the central actors in the network?

• Influence: Who has the most outgoing connections?

• Prominence: Who has the most incoming connections?

• Outlier: Who has the least connections?

• Density: What proportion of possible ties does actually exist?

• Path Length: How many actors are involved in passing information through

the network?

• Community: Which actors are communicating more often with each others?

• etc. . . .

The question we are focused in this part of the thesis is how one can find the

communities in a given social network. Communities are cohesive subgroups of

actors among whom there are relatively strong, direct, intense or frequent ties [54].

In the rest of this chapter, we first list the important terms in social network analysis

and then summarize the related work to community detection in social networks.

We propose our new community detection approach in the subsequent chapters.

• Neighbourhood of a node consists of its adjacent nodes i.e. the nodes di-

rectly connected to it.

• Bridge is defined in graph theory and is referred to as an edge connecting

different components of a network i.e. removing it from the network would

increase the number of connected components in the network.
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• Clique is a subgraph of a network in which all the actors are connected to

each other.

• Centrality is a notion of prominence or social power in networks [38] and

has different indices:

– Degree centrality shows the number of ties a node has to the other

actors of the network. In case of directed graphs, it could be divided

into indegree and outdegree centrality [38]. More formally, the degree

centrality of node n with degree deg(n) – its number of adjacent edges

– is computed as: CD(n) = deg(n)
N−1

, where N is the size of the network.

– Betweenness centrality shows the influence of a node (or an edge) on

the flow of information between other members in the network. It is

computed based on the number of shortest paths runs through that node

(or edge) [42]. Let σuv denotes the number of shortest paths between

node u and v and σuv(n) denotes the number shortest paths between u

and v that runs through n. The betweenness centrality is computed as:

CB(n) =
∑
u,v 6=n

σuv(n)
σuv

.

– Closeness centrality shows how close a node is to other members of

the network. It is computed based on the length of shortest paths from

this node to all the other actors in the network [38]. Assuming dσ(n, v)

denotes the length of the shortest path from node n to node v, the close-

ness centrality of node n is defined as: Cc(n) = 1∑
v
dσ(n,v)

.

– Eigenvector centrality shows how close a node is to other powerful

members in the network. It is computed by assigning relative scores to

nodes based on scores of their neighbours. PageRank is a well-known

example of this measure.

• Density is a measure for how connected the actors are in a network i.e. the

proportion of ties in the network divided by the total number of possible ties.

• Cohesion is the extent to which the actors are tied with nodes in their sub-

group rather than rest of the network [38].
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2.3 Community Mining in Social Networks

Community detection in social networks has been pursued by sociologists for many

decades. More recently, it has also attracted attention from physicists, applied

mathematicians and computer scientists [40]. The availability and growth of large

datasets of information networks makes community mining a very popular research

topic in computing science. This line of research resembles well-studied clustering

methods in machine learning. However, clustering approach in machine learning is

closer to individualist approach in social sciences, as they both use the attributes

of data entities. This is in contrast with social network analysts’ perspective which

is more focused on the relation between the entities. This view seems closer to

graph partitioning problems in machine learning. Unfortunately one may not apply

available methods for parititioning to the problem of community mining because

of the assumptions on availability of predefined partition size. which is not a valid

assumption for real social networks. [41].

2.3.1 Graph partitioning Approaches

Graph partitioning is a traditional and well-studied approach in parallel computing,

circuit partitioning and layout. The objective of graph partitioning algorithms is to

divide the vertices of the graph into k groups of predefined size, while minimizing

the number of edges lying between these groups, called cut size [20]. Finding the

exact solution in graph partitioning is known to be NP-complete. However there

are several fast but sub-optimal heuristics such as METIS [30], flow-based methods

[19], information-theoretic methods [16] and the most well-known Kernighan-Lin

algorithm [32].The Kernighan-Lin algorithm, designed primarily for circuit layout,

optimizes a benefit functionQ, which represents the difference between the number

of edges inside the groups and the number of edges running between them. It start

by partitioning the graph into two groups of equal size and then swaps subset of

vertices between these groups to maximize Q. After a series of swaps, it chooses

the group with largest Q for partitioning in the next iteration. This algorithm has

O(n2 log n) time complexity where n is the number of vertices [20].
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Another important family of graph partitioning algorithms is the spectral clus-

tering methods [43]. They divide the network into groups using the eigenvectors of

matrices, mostly the Laplacian matrix. For example the spectral bisection method,

divides the graph by repeated bisection. In every step, the cut size of a partition in

two groups is R = 1
4
sTLs, where L is the Laplacian matrix and s is a vector show-

ing the partition: si is either +1 or−1 that shows to which group the corresponding

vertex belongs. It could be shown that R =
∑
i a

2
iλi where λi is the ith eigenvalue

of L. Therefore for minimizing the R, it finds the first non zero eigenvalue of the

Laplacian matrix and having its corresponding eigenvector, the vertices would be

partitioned into two groups, where vertices with positive element in the eigenvector

are placed in one group and negative ones in the other [20].

The major incompatibility of these methods is that community structure detec-

tion assumes that the networks divide naturally into some partitions and there is no

reason that these partitions should be of the same size. In minimum cut methods,

it is necessary to specify both the number of groups and the size of the groups. If

one tries to minimize the cut size without fixing the number of groups, the solution

would be grouping all the vertices in one group. Likewise for the size of the groups,

just minimizing the cut size would result in separating the vertex with lowest degree

from the rest of the graph as a group.

Several alternatives measures have been proposed for the cut size, such as con-

ductance [5] ratio cut [7] and normalized cut [50]. The conductance of the subgraph

C is defined as

Φ(C) =
c(C,G\C)

min(kC, kG\C)

Where c(C,G\C) is the cut size of C and kC , kG\C are respectively the sum of degrees

of vertices in C and outside C. This would result in picking groups with nearly equal

total degrees and hence approximately equal size [20]. The ratio cut is defined as

Φ(C) =
c(C,G\C)

min(nC, nG\C)

where nC , nG\C denotes the number of vertices in the subgraphs. The normalized

cut is also defined as

Φ(C) =
c(C,G\C)

kC

11



These two measures also biased towards divisions into equal-sized groups [20].

The assumption or bias of equal-sized groups, along with the fact that most of

these graph partitioning methods are iterative bisectioning, makes them inappropri-

ate for community detection. The later is a problem because for example a partition

of three groups would be obtained by splitting one of the partitions from the first bi-

partition while the optimal solution could be a group containing vertices from both

of those groups. The next class of approaches, Hierarchical Clustering approaches,

are more desirable in community detection which are described in the next section.

2.3.2 Hierarchical Clustering Approaches

Hierarchical clustering approaches define a similarity measure between vertices

and group similar vertices together to discover the natural divisions in a given

network. Hierarchical clustering approaches classify into two major categories:

agglomerative algorithms and divisive algorithms. Agglomerative algorithms it-

eratively merge groups with high similarity, while divisive algorithms iteratively

remove edges connecting vertices with low similarity. In agglomerative methods,

the similarity between vertices needs to be generalized for groups. Which could be

done in three ways: single linkage, complete linkage or average linkage. In single

linkage, the similarity of two groups is defined as the most similar vertices between

those groups, while the complete linkage defines it as the least similar vertices. And

average linkage computes the average similarities of every pairs of vertices in two

groups as the similarity of those groups.

The result of hierarchical approaches depend on the similarity measure they

use. There are many similarity metrics proposed to measure similarity between

vertices, mostly by measuring the similarity of neighbourhood of those vertices or

their structural equivalence using their corresponding rows of the adjacency matrix

(A). For example the Euclidean distance [54] computes the similarity of vertex i

and j as follows:

dij =
√∑
k 6=i,j

(Aik − Ajk)2

Alternatively one could measure the similarity using the Pearson correlation [20]

12



between rows of the adjacency matrix which is defined as:

Cij =

∑
k (Aik − µi)(Ajk − µj)

nσiσj
,

where µi =

∑
j Aij
n

and σi =

√∑
j (Aij − µi)2

n

Another common measure computes the similarity by measuring the overlap be-

tween neighbourhoods ℵ(i) and ℵ(j) of the vertices i and j [20] using the Jaccard

index:

wij =
|ℵ(i) ∩ ℵ(j)|
|ℵ(i) ∪ ℵ(j)|

These hierarchical approaches do not presume the size of groups, however they

have other drawbacks in the context of community mining. The major weakness

of agglomerative methods is their time complexity (O(n2) for single linkage and

O(n2 log n), overlooking the calculation time of the chosen similarity measure)

which makes them unscalable for large networks. Moreover, they tend to miss

the periphery vertices due to their low similarity. On the other hand the divisive

methods, tend to cluster all the periphery nodes, even the outliers, and often as a

separate clusters. Besides, hierarchical approaches in most cases generate an artifi-

cial hierarchy while do not provide a way to choose which one of these partitioning

levels represents the real community structure of the network [20].

GirvanNewman algorithm

Girvan and Newman [22] proposed the first community detection approach using

the social network analysis techniques and opened a new venue for community

detection algorithms. Their method is a divisive hierarchical clustering algorithm

which iteratively removes the edge with highest betweenness to obtain the com-

munity structure of the network. The betweenness of an edge could be computed

as the number of shortest paths running through that edge. High betweenness is a

sign for bridges in the network, which are edges connecting different communities,

illustrated in Figure 2.1. Their approach obtains good result in real world data sets,

however, it is computationally expensive and unscalable for large networks as it
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Figure 2.1: Edge Betweenness: edges connecting different communities have high
betweenness. In this figure, the thickness of edges represents their betweenness.
The edge between two communities, has the highest betweenness as all the shortest
paths between any pair of vertices, which are in different communities, have to run
through this edge.

needs running time of O(m2n) in general and O(n3) in sparse networks, where m

is the number of edges [22].

For choosing which level of hierarchy best represents the community structure

of the network, in [42], Newman proposed modularity Q, which is a measure for

the quality of a particular division of a network. This measure became an objective

for a class of popular approaches that try to maximize the modularity for finding

good communities. The following section further elaborates on these approaches.

2.3.3 Modularity Based Approaches

The modularity (Q) is a measure for assessing communities which shows the qual-

ity of that particular partitioning of the network. Its basic idea is to compare the

partitioning with a randomized network with exactly the same vertices and same

degrees, in which edges are placed randomly regardless of community structure. It

measures how well the edges fall within the communities compared to the random-

ized network. Let A be the adjacency matrix of the network containing m edges

(m = 1
2

∑
ij Aij); then the portion of edges within communities is:

1

2m

∑
ij

Aijδ(R
i, Rj)

Where Ri shows the community that vertex i belongs to, and δ(x, y) is one if x

is equal to y and zero otherwise. The modularity is then defined as subtraction of

this quantity from its expected value for the randomized network (with same nodes
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where edges created randomly but with respect the node degrees).

Q =
1

2m

∑
ij

[Aij −
didj
2m

]δ(Ri, Rj)

where di =
∑
j

Aij

There are variety of approximate optimization algorithms for searching the space

of possible partitionings of a network in order to detect the partitioning with the

highest modularity. Newman uses a greedy optimization in [42]. He employs an

agglomerative clustering method, starting with each vertex as a cluster, in each

step it merges the clusters that most increase the modularity. Later Clauset [12]

presented a very fast version of the algorithm , called FastModularity, which has

become very popular ever since.

There are some doubts in the usefulness of modularity. In [23], Good et al. have

shown that on some real networks, the communities corresponding to the optimal

modularity fundamentally disagree with the ideal communities. We also observed

the same phenomenon in our results as described in Chapter 4.

2.3.4 Other Approaches

In addition to the prominent Q-modularity approach [12] mentioned earlier – against

which we compare our results – there are two other algorithms worth mentioning

that are not only innovative in the process of discovering communities but are also

highly effective in many cases: CFinder [46] and SCAN [18]. We also compare our

results against these two contenders.

Clique Percolation

Clique Percolation method, called CFinder, is proposed by Palla et al. [46] to par-

tition networks into overlapping communities. Based on the observation that edges

within communities are likely to form cliques, they defined a community as union

of adjacent cliques. More precisely, they used the term k-clique for a complete

subgraph of size k, considering two k-cliques adjacent if they share k − 1 vertices.

They defined a k-clique community as the largest connected subgraph obtained by

union of k-cliques which are reachable from each other through a series of adjacent
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Figure 2.2: Clique Percolation: an example illustrating the detected communities
by clique percolation with k equal to 4. The red vertices are the overlapping ones
which belong to more than a community. K-cliques (complete subgraphs of size
k) are reachable only by other k-cliques from their community, where k-cliques are
adjacent if they share k − 1 vertices. Figure is reprinted from [46]

k-cliques. Here k is an input parameter for the method where k between 3 and 5 ob-

tains very good results on real world networks [46]. Since a vertex could belong to

more than one clique, it could also belong to different communities detected by this

method, which enables detection of overlapping communities. Figure 2.2 illustrates

an example of detected communities using this method.

SCAN

Rooted in the well known density-based clustering algorithm DBScan [18], Xu et

al. derived a similar approach for community detection in social networks and pro-

posed the SCAN algorithm [56] which detects not only communities, but also hubs

and outliers in networks. Hubs are actors who have ties with many communities but

belong to none, and outliers are actors who are outsiders and do not belong to any

community. Similar to the notion of reachability in DBScan, SCAN uses the neigh-

bourhood of a vertex for community mining. Nodes that are structurally reachable

from each other are grouped together in the same community. More specifically,

structural similarity for vertices i, j with immediate neighborhood ℵ(i), ℵ(j) is

16



defined as:

σij =
|ℵ(i) ∩ ℵ(j)|√
|ℵ(i)||ℵ(j)|

Having the similarity of every connected pair of vertices, they defined the ε-neighbourhood

of a vertex as the vertices with similarity higher than ε with that vertex. They fur-

ther considered the vertices that have ε-neighbourhood of a size greater than µ as

the cores, and defined a community as vertices that are reachable to each other

through a set of cores, while reachability to a core is being in its ε-neighbourhood.

Their performance appears to be very good but it is highly dependant on their

two parameters: the structural similarity threshold for a “core” vertex, ε, and the

minimum number of neighbours needed to propagate the reachability, µ. This sen-

sitivity to parameters could be addressed using a visual data mining approach [10].

Recent Directions

The more recent directions in community mining includes the investigation of lo-

cal algorithms for very large networks, the detection of overlapping communities,

and the examination of community dynamics. When networks are too large to re-

alistically fit in main memory such as the entire World Wide Web, approaches that

consider global information about the network are inadequate and local methods

are unavoidable [9, 11, 36]. These methods use local information by expanding

the neighbourhood around a given node or set of nodes to identify communities

that encompass the starting nodes in question. Fuzzy methods [24, 39, 46, 58] al-

low nodes to belong to multiple communities. Indeed, many real world networks

present genuine overlap between true communities.

Similar to the interest in studying cluster changes in time or clustering data

streams, there is new research interest in investigation of the dynamics of group

formation in social networks [4, 53, 2]. Backstrom et al. [3] studied the evolution

of large-scale social networks over time and found that the tendency of an individual

to join a community is influenced by his number of friends in that community and

also crucially by how those friends are connected to one another. This is the source

of inspiration for our new closeness measure presented in the following chapter.
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Chapter 3

Top Leaders Approach

3.1 Motivations

In this chapter we present in detail a new approach for detecting communities in

social networks, named Top Leaders. Top Leaders is inspired by the well-known

k-medoids clustering algorithm; however it works based on the relations between

data points instead of their attributes. Similar to principal, this algorithm consists

of choosing k representative nodes as leaders and then associating other nodes, the

followers, to one of these leaders based on the relations/links between nodes to form

communities. It iteratively elects new leaders for each community and reassigns

nodes to the leaders to form new communities. Convergence is attained when the

best leaders are found and each node is associated to its most appropriate leader.

Similar to k-medoids, our algorithm is sensitive to its initialization, the selection

of the initial k leaders. We have experimented with a variety of strategies, from

a random selection à la k-means to more advanced heuristics. And we came up

with an adjustable initialization method which could be adjusted with the prior

knowledge of the network and its communities to yield very accurate results.

Top Leaders works based on a new measure of closeness, iCloseness, inspired

by the theory of Diffusion of Innovations. This closeness measure is computed

based on the intersection of neighbourhoods and quantifies the closeness between a

node and a leader (i.e. most central node of the community). We use iCloseness in

associating nodes to communities and in selecting initial leaders.

In the following, we first introduce iCloseness, then we describe the general

18



framework of our algorithm and our initialization methods. After that we elucidate

the processes associating followers to a leader, electing new leaders, and detecting

outliers. Finally, we present a generalization of the algorithm for weighted net-

works.

3.2 Measuring Closeness

Top Leaders assumes that a community is constituted of a leader and the follower

nodes associated to it; where the community leader is the most central member in

its community. With leaders representing communities, the community member-

ship of the remaining nodes is the association of followers to nearby leaders. This

association is very much related to the theory of Diffusion of Innovations and its

application to information networks [51, 49].

Diffusion of Innovations which stems from research in sociology, is a theory

of how, why, and at what rate new ideas and technology spread through cultures.

Specifically for the case of information networks, if we consider the act of join-

ing a community as a behaviour that spreads within a network, then based on this

theory the probability of joining a community depends on the number of friends

one already has in the community and the internal connectedness of the friends

within. This is the main idea behind our closeness measure, the Intersection Close-

ness (iCloseness), which is based on the common neighbours between two nodes

within a predefined neighbourhood. This concept of the increase of the probability

of joining with the increase of existing friends in a community and their connec-

tivity is argued in [3] in the context of social networks dynamics. Socially, there is

indeed advantage in joining a group with friends that know each other and who are

connected.

To measure iCloseness of leaders and a given node n, we compute the inter-

section of these leaders’ neighbourhoods and n’s neighbourhood, i.e., how many

neighbours they have in common (Figure 3.1a). One would join the community

in which there are more friends already in. The density of the intersection is also

considered. One is more tempted to join a group where he or she has friends who
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already know each other (Figure 3.1b) and are connected within the community

(Figure 3.1c).

More formally, let ℵ(n, d) denote the neighbourhood of depth d for node n (n

itself is included), which is an induced subgraph of the network, formed by all nodes

reachable from n by traversing at most d edges. Assuming |S| shows cardinality

(size) of set S, we define the iCloseness as follows:

iCloseness(n1, n2, d) = |S|+Density(S) (3.1)

where S = ℵ(n1, d) ∩ ℵ(n2, d)

The density of an intersection is the proportion of edges in the intersection relative

to the total number of possible edges within it. Let A be the adjacency matrix of

the network where Aij = 1 if vertex i is connected to vertex j and 0 otherwise, then

the density of the subgraph S representing the intersection is obtained by:

Density(S) =

∑
i,j∈S Aij

|S| × (|S| − 1)
(3.2)

Note that iCloseness is symmetric but does not satisfy the triangle inequality.

3.3 Main Framework

The basic idea of the Top Leaders algorithm, is first to find some k community lead-

ers, and then determine the community membership of other nodes in the network

based on their relations to the identified leaders. This relationship is based on a

notion of closeness, clarified in Section 3.2, which in turn stems from observations

made on the dynamics of group formation in social networks.

Algorithm 1 highlights the major steps of Top Leaders algorithm. The first step

is the selection of the initial k leaders which is described below in Section3.3.1. The

second step is an iteration in which we alternate between association of followers

and election of new leaders. First, nodes are either associated to a leader or labeled

as outliers (elaborated further in Algorithm 2), and second, when all nodes in the

network are dealt with, a new leader is picked in each community.

Below, we focus on the initialization of leaders and on how to associate nodes
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(a) Intersection of neighbourhoods

n
L1 L2

(b) Density of common neighbours

n
L1 L2

(c) Expanding Neighbourhoods

Figure 3.1: Determining community of node n: n should be assigned to leader L1

because a) n has more common neighbours with L1 than L2, b) although n has
the same number of common neighbours with L1 and L2, its common neighbours
in L1’s intersection are more connected to each other, c) although n has the same
number of common neighbours with L1 and L2 and both intersections are equally
dense, it has more common neighbours with L1 if we expand its neighbourhood
boundary by one.

Algorithm 1 Top Leaders algorithm
Input: Social network G, integer k

initialize k leaders
repeat
{finding communities}
for all Node n ∈ G do

if n /∈ leaders then
associate n to the iClosest leader {Algorithm 2}

end if
end for
{updating leaders}
for all l ∈ leaders do

l← arg max
n ∈ Community(l)

Centrality(n)

end for
until there is no change in the leaders
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to leaders. Since the initialization also exploits the notion of closeness used in

associating followers to leaders, we start by clarifying our iCloseness measure.

3.3.1 Initialization Methods

Like with any partitioning process, the initialization is crucial. Starting with the

correct leaders allows quick convergence while starting with the wrong leaders will

necessitate many iterations and may get stuck in a bad local optimum. This is a

known problem with k-means for instance and many ways out were suggested in

the literature such as running the nondeterministic algorithm multiple times or sug-

gesting heuristics for the selection of better starting points. We experimented with

myriad strategies specific to information networks and report here some initializa-

tions from a naı̈ve random selection of leaders to a more elaborate approach. We

highlight herein these initialization methods and show their impact in the experi-

ments in Chapter 4.

Naı̈ve Initialization

The naı̈ve initialization is a random selection of k nodes from the network. This is

simple but is not deterministic and may lead to bad results.

Top Global Leaders

Founded on the fact that community leaders are central nodes in their community,

this initialization method picks the k most central nodes in the network as the initial

leaders. This approach is also naı̈ve because while community leaders are indeed

central in their respective communities there is no reason that they should be the

most central in the global network. In fact this methods produces good results in

some cases but it yielded results worse than random in some others. On average,

however, this strategy seems satisfactory. We added a variation such as selecting

randomly k leaders from a larger set ck of most central nodes in the graph where

c is a constant. However, this did not produce better results and in addition is non

deterministic.
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Top Leaders & not Direct Neighbour

The major drawback of Top-Global-Leaders is the fact that it is possible that two of

the most central nodes belong to the same community. Choosing arbitrarily the k

most central nodes may force a community to split and this would negatively affect

the final results. Therefore we propose to choose the k most central nodes that

are not directly connected to each other which avoids choosing leaders in the same

community. To implement this strategy we start from the most central node, and

add the next central one to the current set of leaders if it is not directly connected to

any of the already selected leaders.

Top leaders & not iClose

Top Leaders & not Direct Neighbour method improves the result significantly but

still produces inaccurate results in some cases. This intermittent inaccuracy is due

to the fact that being direct neighbours does not exclude being in different commu-

nities. Therefore, the method could occasionally mistakenly avoid choosing two

correct leaders that are directly connected but truly in different communities. To

steer clear from this problem, instead of using a simple direct connectivity, we use

our already defined iCloseness to measure how close a node is to a given leader (i.e.

how much it belongs to that leader’s community). The computation is simply after

starting with the most central node, we add the next central one to the current set

of leaders after checking its iCloseness to the already selected leaders and add it to

the current set of leaders if it is not too iClose to any of the already selected leaders,

compared to a threshold. In our experiments, this threshold is set 5 while this value

was tested and is stable with most networks we encountered.

3.3.2 Association of Nodes to Leaders

Algorithm 2 depicts the process of associating a node to its iClosest leader. For

finding the iClosest leader for a given node, we initialize its candidate leaders by

considering all the leaders in its view, ℵ(n, 2× δ), these might possibly have com-

mon neighbours of depth δ with that node. We start measuring iCloseness between

the node and its candidate leaders, by neighbourhood depth 1 (which consists of the
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nodes that are directly connected to this node). If there is more than one candidate

leader (with the maximum iCloseness) for this node we would expand the node’s

neighbourhood by one (by adding nodes that are directly connected to the current

nodes in its neighbourhood). We keep expanding the neighbourhoods as long as

there are ties up to the neighbourhood depth threshold (δ).

Algorithm 2 Associate n to the iClosest leader
Input: Social network G, node n, set of k leaders

depth← 1
CanList← leaders ∩ ℵ(n, 2×δ)
repeat

CanList← arg max iCloseness
c ∈ CandList∧

iCloseness(n,c,depth)>γ

(n, c, depth)

depth← depth+1
until |CanList| ≤ 1 ∨ depth > δ
if |CanList| = 0 then {No candidate leader}

associate n as an outlier
else if |CanList| > 1 then {Many candidates}

associate n as a hub
else {Only one candidate leader in CanList}

associate n to CanList
end if

The algorithm is not sensitive to the value of δ. We have experimented with a

variety of networks and different depth grater than 2 have given the same result.

Thus, we set the δ threshold at 2.

3.3.3 Updating Leaders

The reassignment of leaders is simply the election of the node with the highest

centrality in a community (arg maxn∈Community(l)Centrality(n)). This is because

the centrality of nodes in a community measures the relative importance of a node

within that group. For computing the centrality we use a generalization of degree

centrality which also works for weighted networks. The degree centrality for a node

n within a community is the number of edges from the community incident upon

n and represents to some extent the “popularity” of n in the community. For a

community C of size N , the degree centrality of a node n in C is DC(n) = deg(n,C)
N−1
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where deg(n,C) =
∑
m∈C Anm, is the number of edges in C incident upon n.

3.4 Outlier Detection

To detect outliers in the network, we define an outlier threshold (γ). Only leaders

that are iCloser than this threshold to the node are considered. If after reaching the

neighborhood threshold, the node is still not iClose enough to any of the current

leaders; it is marked as an outlier. Hubs are those nodes that follow more than one

leader. They sit on the intersection of communities. Different value of the γ outlier

threshold can give different results. When we know that no outliers exist in the

network, γ is set to 0. Otherwise γ depends on the density of the network, and to

correctly identify outliers, γ could vary between 1 and 4 in most cases.

3.5 Weighted Top Leaders

For weighted networks, we should generalize the notion of iCloseness. We define

the Belongness function B that represents to which degree a node belongs to a

leader. Belongness of nodes in the neighbourhood of leader l is calculated while

expanding the neighbourhood of l as described in Algorithm 3. Note that if the

network is unweighted this value would be always one for all neighbours of a leader.

Having this function, we redefine the iCloseness as follows:

Algorithm 3 Calculating Belongness
Input: Social network G, node l

B[l,l]← 1
for depth = 0 to δ do

for all n ∈ ℵ(l, depth) do
for all m incident to n do

B[m,l]← max(B[m,l], B[n,l] ×Wmn)
end for

end for
end for

iCloseness(n1, n2, d) =
∑
v∈S

B(v, n1)×B(v, n2) (3.3)

+Density(ℵ(n1, d) ∩ ℵ(n2, d))
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Similarly the Density is also generalized for the weighted graph. Let W show the

weight matrix of the network (after normalization where all weights are between 0

and 1) which would be equal to the adjacency matrix if the network is unweighted,

then the density of the weighted subgraph S is obtained by:

Density(S) =

∑
i,j∈SWij

|S| × (|S| − 1)
(3.4)

Apart from iCloseness we need to have a minor change in the process of updat-

ing leaders. For computing the degree centrality for a node in a weighted network,

we sum up the (normalized) weights of edges from the community incident upon

n instead of simply counting them. Consequently, for comparing the nodes in each

community and selecting the node with the highest centrality as the new leader, we

compare them by
∑
m∈CWnm (note that we do not need the division as the denom-

inator is the same for all nodes in the community).
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Chapter 4

Evaluation Methods and
Experiments

The most common approach in evaluating the accuracy of community mining algo-

rithms is to report the result of the algorithm on well-known (typically small) real

world datasets for which the ground truth is known like Zachary Karate Club data

set [42, 22]. In this way, the accuracy is evaluated by comparing detected communi-

ties with the true communities in data. Another alternative is testing the algorithm

on synthesized networks which are generated with characteristics similar to real

networks and with a built-in community structure like the Girvan and Newman or

LFR benchmarks [22, 35]. The scalability of the method could be further examined

by applying the algorithm on large real networks for which there is no explicit no-

tion of ground truth but we can check if the results are sound like with Amazon or

DBLP datasets [12, 42]. For evaluating our proposed approach, we used all these

three methods. Here we introduce our data sets and evaluation metrics, then report

and discuss our results on them.

4.1 Data sets

4.1.1 Real Word Benchmarks

We have shown the accuracy of our approach by applying it over 6 well-known

benchmark data sets.
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Karate Club:

This network is drawn from the well-known study of Zachary [57]. In this study,

relations between 34 members of a university karate club over a period of two years

are observed and their network of friendships is constructed. The Wkarate dataset

indicates the relative strength of these relations (number of times these people had

interaction) while Karate dataset represents the presence or absence of interaction

among the members. During the study, a disagreement developed between the ad-

ministrator and the teacher of the club, which eventually made the club split into

two smaller ones centering around the administrator and the teacher (represented

by node 34 and node 1).

Strike:

This is the communication network of employees in a sawmill [45]. This data is

collected in order to analyze the communication structure among the employees

after a strike. Presence of an edge between two employees shows that they have

discussed the strike with each other often. There are three groups as the ground

truth according to age and language of the employees.

Football:

This dataset is the schedule for 787 games of the 2006 National Collegiate Ath-

letic Association (NCAA) Football Bowl Subdivision [56]. In the NCAA network,

there are 115 universities divided into 11 conferences. Additionally, there are 4

independent schools as well as 61 schools from lower divisions. Each school in a

conference plays more often with schools in the same conference than schools out-

side. Independent schools do not belong to any conference and play with teams in

all conferences, while lower division teams play very few games. The network con-

tains 180 vertices (115 nodes as 11 communities, 4 hubs and 61 outliers), connected

by 787 edges.

28



PolBooks:

This network represents books about US politics sold by the online bookseller Ama-

zon [33]. It contains 105 nodes that represent books and 441 edges represent fre-

quent co-purchasing of books by the same buyers (This is obtained from the feature

of Amazon that indicates the ”customers who bought this book also bought these

other books”). The ground truth illustrates whether these books are ”liberal”, ”neu-

tral”, or ”conservative”.

PolBlogs:

This network represents the political leaning of blogs around the time of the 2004

presidential election[1]. It contains 1224 blogs from blog directories. 16715 links

between blogs were automatically extracted from a crawl of the front page of the

blog. The ground truth tells whether each blog is liberal or conservative.

4.1.2 Synthetic Networks

The most commonly used class of benchmarks to test community detection algo-

rithms is presented by Girvan and Newman (GN) [22]. It contains 128 nodes and a

built-in community structure with 4 groups of equal size. Lancichinetti et al. pre-

sented generalized benchmarks (LFR) which are more similar to real networks [35].

Unlike GN, in LFR benchmark, nodes can have different degrees and communities

could be in varying sizes (derived from power law distributions) which is closer to

heterogeneous distribution of nodes in real networks. In these benchmarks, each

node shares a fraction of 1 − µ of its edges with the other nodes of its community

and a fraction of µ with the nodes of other communities, where 0 ≤ µ ≤ 1 is called

the mixing parameter [20].

We have generated LFR benchmarks for networks of 5000 nodes with the av-

erage degree of 15, the maximum degree of 50 and different µ from .1 to .9. The

community range is set from 200 to 500 nodes and the exponent of the degree dis-

tribution and community size distribution left as defaults (-2 and -1 respectively).
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4.1.3 Large Scale Real Networks

This is a large network of Amazon.com, collected in August 2003 [12]. The nodes

in the network are items such as books, CDs and DVDs sold on the website. Edges

connect items that are frequently purchased together, as indicated by the “customers

who bought this book also bought these items” feature on Amazon. There are

815,223 nodes and 3,426,127 undirected edges in this network.

4.2 Evaluation Metrics

We evaluated extracted communities by both comparing with ground truth and by

measuring their modularity. Let V be the set of n nodes in the communities (n =

|V |) andR = R1, R2, . . . , Rk denotes a partitioning (set of communities) on V such

that V =
⋃k

1 Ri and Ri ∩Rj = φ for all i 6= j. We can evaluate R as follows:

4.2.1 Comparing with Ground Truth

With ground truth, validation is simply accomplished by means of comparison of

communities, those discovered against the known communities. We used two mea-

sures of agreement between partitions typically employed for clustering evalua-

tions: purity and Adjusted Rand Index. We compared R against partitioning G in

the ground truth by computing these measures as follows:

Purity

is the number of correctly assigned nodes divided by the total number of nodes in

V . Purity ranges from 0 (no agreement at all) to 1 (full agreement). It is computed

using the following formula [37]:

purity(R,G) =
1

n
×
∑
j

maxi|Rj ∩Gi|

Adjusted Rand Index (ARI)

penalizes false negatives and false positives. ARI ranges between−1 (no agreement

at all) and 1 (full agreement) with expected value of 0 for agreement no better than
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random. Let a,b,c and d denote the number of pairs of nodes that are respectively in

the same community in both G and R, in the same community in G but in different

communities in R, in different communities in G but in the same community in

R, and in different communities in both G and R. Given Rn = {Ri|n ∈ Ri} and

δ(Ri, Rj) is 1 if Ri = Rj and 0 otherwise, the ARI is computed by the following

formula [48]:

ARI =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2
− [(a+ b)(a+ c) + (c+ d)(b+ d)]

a =
∑
ij δ(R

i, Rj)δ(Gi, Gj)
b =

∑
ij(1− δ(Ri, Rj))δ(Gi, Gj)

. . .

For data sets containing outliers or hubs, we considered seteach as two other com-

munities.

4.2.2 Modularity

When ground truth is not available, modularity (Q) is typically used to assess the

quality of discovered communities. It measures how well the edges fall within the

detected communities compared to a randomized network. Let A be the adjacency

matrix of the network containing m edges (m = 1
2

∑
ij Aij); then the portion of

edges within communities is 1
2m

∑
ij Aijδ(R

i, Rj). The modularity is defined as

substraction of this quantity from its expected value for a randomized network (with

same nodes where edges created randomly but with respect the node degrees).

Q =
1

2m

∑
ij

[Aij −
didj
2m

]δ(Ri, Rj)

where di =
∑
j

Aij

The modularity would be zero when the portion of within edge communities is

no different than what we expect from a randomized network, and a value higher

than 0.3 is a sign for significantly good partition [12]. For weighted networks,

given the normalized weight matrix W , we generalize the definition of modularity
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as follows:

Q =
1

2m

∑
ij

[Wij −
didj
2m

]δ(Ri, Rj)

where di =
∑
j

Wij

4.3 Results and Discussions

In this section we report the results of our method and show a comparison with three

of other well-known community detection methods; SCAN [56], CFinder [46] and

FastModularity [12].

4.3.1 Comparing Initialization Methods

Table 4.1 shows the improvement of our results by developing the initialization of

our algorithm. As shown in Table 4.1, even the Naı̈ve initialization gives reasonable

results but with high variance.

The Top Global Leaders improves the results significantly and reaches the max-

imum ARI in Karate and Strike but the best cases in the Naı̈ve initialization for the

Football data set still do better. This indicates that there is room for improvement.

Examining the initial leaders obtained from the Top Global Leaders (TGL) and lo-

cating them in the network, indicates that some of these leaders are in the same

community in the ground truth and choosing them as leaders, forces that commu-

nity to split.

Top Leaders & not Direct Neighbour (TL&NDN) initialization do not improve

the results which shows that the condition of not being direct neighbour is not a

good one; since it would not avoid choosing leaders in the same community if they

are not directly connected, which is very probable. It also may avoid choosing two

true leaders which are in different communities and directly connected. The former

is also very probable as the leaders are nodes with high centrality and may have

links to outside of the community.

Top Leaders & not iClose (TL&NiC) method gives us the best result. This

method makes a greedy selection, starting from the node with the highest centrality
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method dataset ARI purity Q

Naı̈ve
Karate .80±.33 .90±.20 .28±.13
Strike .59±.25 .81±.13 .41±.12

Football .39±.12 .66±.08 .27±.07

TGL
Karate 1.0 1.0 0.37
Strike 1.0 1.0 .54

Football .83 .88 .43

TL&NDN
Karate 1.0 1.0 0.37
Strike 1.0 1.0 .54

Football .78 .88 .42

TL&NiC
Karate 1.0 1.0 0.37
Strike 1.0 1.0 .54

Football .98 .97 .51

Table 4.1: Results of different initialization methods. For the Naı̈ve method,
average±standard deviation is calculated over 100 runs. All the results have the
same default parameters (neighborhood threshold = 2, initialization threshold = 5
(nodes in common)) except the number of communities for each data set. (karate=2,
strike=3, football=11) and the outlier threshold which is 4 for football but zero for
karate and strike as we do not want to detect any outliers in those data sets.

to the lowest, we chose one if it does not have more than a threshold neighbours in

common with any of the current leaders.

The visualized results of these three data sets are presented in Figure 4.1. These

figures also show the correct communities as we obtained ARI 1 except for the foot-

ball data set where we misidentified four hubs and assigned them to one community,

obtaining an ARI of 0.98.

4.3.2 Comparing on real benchmarks

Table 4.2 shows a comparison between our approach (using Top Leaders & & not

iClose initialization) and the three other algorithms on data sets described in section

4.1.1. Given the correct initial k, Top Leaders provides significantly better results.

The other methods do not always find the correct k but even when that k seeded to

Top Leaders, our approach improved the quality of the detected communities based

on ARI. One interesting point in these results is the non-linear relation between

modularity and ARI which suggest that optimizing the modularity would not nec-

essarily increase the accuracy of the results and in most cases, the ground truth is
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(a) Karate (b) WKarate

(c) PolBlooks (d) Strike

(e) Football

Figure 4.1: Visualized communities detected using Top Leaders algorithm. Shape
of a node represents its community in the ground truth, while the color of the node
is according to its detected community by the Top Leaders. Moreover, size of nodes
is based on their centrality in the network and thickness of edges is based on their
weights.
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closer to a partitioning with non-optimal modularity. Some of the visualized results

of our approach given correct k can be seen in Figure 4.1.

4.3.3 Comparing on synthesized benchmarks

Figure 4.2 highlights the robustness of Top Leaders approach compared to Fast-

Modularity, CFinder and SCAN. Each plot compares the ARI of one of these meth-

ods and Top Leaders (seeded by the k suggested from the result of that method) on

the networks with different mixing parameter described in 4.1.2. The corresponding

results could also be seen in Table 4.3, where the average and variance of the plotted

results (for synthesized networks with different mixing parameter µ) is reported.

4.3.4 Comparing on large scale data set

On the Amazon network, CFinder and SCAN did not terminate successfully; while

Top Leaders obtained the result about 10 times faster than FastModularity (for the

same k = 2303 obtained by FastModularity). The modularity of Top Leaders was

0.45 versus .77 of the FastModularity (which both guarantee that the detected com-

munities are strong). However this could not show which algorithm is more accu-

rate as the higher modularity does not ensure the higher accuracy (we have seen this

in the previous experiments). Moreover our algorithm detected 89865 hubs which

are not member of any specific community and this would decrease the modularity

significantly (based on its definition presented in 4.2.2).

4.4 Parameters

Our main parameter is the number of communities in the network. This should

either be given by domain experts or obtained from another algorithm for com-

munity mining that does not require k. However, even algorithms claiming not to

require this parameter do not find the right number in many cases: FastModularity

finds 12±6, CFinder finds 1182±464 and Scan finds 299±127 communities in syn-

thesized benchmarks while the average size of communities in the ground truth is

33±5. Based on the results in Table 4.2 and Figure 4.2, using Top Leaders after an-
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dataset method k ARI purity Q

Karate
(2 groups, 34

nodes, 78

edges)

fastModularity 3 .680 .970 .380
CFinder 3 .705 .065 .182
TopLeader(3) .838 1.0 .374
SCAN 4 .314 .764 .312
TopLeader(4) .788 1.0 .361
TopLeader(2) 1.0 1.0 .371

WKarate
(2 groups, 34

nodes, 78

edges)

fastModularity 3 .802 1.0 .434
CFinder 3 .705 .065 .194
TopLeader(3) .838 1.0 .404
SCAN 4 .319 .735 .339
TopLeader(4) .665 1.0 .416
TopLeader(2) 1.0 1.0 .403

Strike
(3 groups, 24

nodes, 38

edges)

fastModularity 4 .664 .958 .555
TopLeader(4) .935 1.0 .532
CFinder 6 .348 1.0 .485
TopLeader(6) .609 1.0 .457
SCAN 3 .848 .958 .547
TopLeader(3) 1.0 1.0 0.548

PolBooks
(3 groups,

105 nodes,

441 edges)

fastModularity 4 .637 .838 .501
CFinder 4 .630 .814 .469
SCAN 4 .599 .819 .499
TopLeader(4) .649 .838 .517
TopLeader(3) .639 .828 .498

Football
(11 groups,

180 nodes,

787 edges)

fastModularity 7 .206 .427 .567
TopLeader(7) .758 .777 .445
CFinder 12 .983 .913 .532
TopLeader(12) .993 .977 .511
SCAN 11 1.0 1.0 .501
TopLeader(11) .988 .977 .513

PolBlogs
(2 groups,

1224 nodes,

16715

edges)

fastModularity 12 .892 .954 .311
TopLeader(12) .835 .942 .283
CFinder - - - -
SCAN 74 .541 .407 .166
TopLeader(74) .749 .949 .256
TopLeader(2) .882 .939 .293

Table 4.2: Comparison of Top Leaders and other approaches on real benchmark
datasets. Column k indicates the number of communities obtained by running the
corresponding method.
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method k ARI purity
fastModularity 12.8 ± 6.8 .817 ± .098 .346 ± .259
+TopLeader .886 ± .042 .334 ± .262
CFinder 1182.6 ± 464.3 .884 ± .075 .713 ± .155
+TopLeader .949 ± .007 .788 ± .220
SCAN 299.7 ± 127.0 .670 ± .194 .374 ± .287
+TopLeader .948 ± .009 .673 ± .326
TopLeader(33.2±5.4) .939 ± .021 .499 ± .297

Table 4.3: Comparing the accuracy of Top Leaders and other approaches on synthe-
sized benchmarks: reported results are averaged for the synthesized networks with
different networks mixing parameter µ.

other community detection approach would increase the quality of the final results

significantly. In other words, if we trust the number of communities discovered by

a community mining approach, seeding this number to Top Leaders would increase

the quality of the discovered communities.

The other important parameter is the outlier threshold, γ. This parameter shows

how iClose should a node be to a leader to be consider connected to that leader.

That is, if a node has less than γ common friends with the leader, it does not have

a considerable intersection with it and could not be part of its community. γ is an

integer set to 0 (no outlier detection) or adjusted for the amount of noise to remove.

For example the results reported in Table 4.2 for Football data sets obtained by

setting γ to 4.

For the two other parameters, our algorithm does not exhibit any sensitivity and

can remain at their default values. The first is the iCloseness threshold used in

the initialization. It is a small constant showing the maximum number of common

friends that two leaders in different communities can have. It is related to the aver-

age degree of nodes in the network and it is set to 5 in all our experiments, indicating

that two leaders may be in the same community if they have more than 5 common

friends. The second is the neighbourhood threshold, δ, which shows to what extent

we should expand our neighborhood to find the winner leader. Setting this param-

eter to 2 gives us the reported results and increasing it does not change the results.

This is due to the small world phenomenon in social networks i.e. the diameter of

the network – longest shortest path – is increasing logarithmically with the size of
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Figure 4.2: Comparison of Top Leaders and other approaches on LFR benchmark
networks. Each plot compares one of the methods against Top Leaders which shows
their obtained ARI as a function of mixing parameter µ. The Figure 4.2d shows the
results of Top Leaders given the correct k.

the network which indicates that large social networks have small diameters [20].

4.5 Complexity

The complexity of our algorithm is O(kn), the proof of which is similar to the

one for k-medoids. If we fix the maximum number of iterations to some constant,

in every iteration all the nodes should be assigned to one of the k leaders, which

takes O(kn) (the computation time of iCloseness could be neglected as it is only

computing intersections of neighbourhood and is not a function of n or k). Based

on our experiments, Top Leaders converges in a pretty small number of iterations.

We have fixed the maximum number of iterations to 10 in all of our experiments
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Figure 4.3: Comparing running time of Top Leaders and other approaches for dif-
ferent number of nodes in the network.

an none reached that, even the Amazon, our largest dataset, converged after only 6

iterations.

Besides, our implementation is much faster than O(kn), as in every step, for

each node, we only considered the leaders in its view, ℵ(n, 2 × δ), whom are the

leaders that might possibly have common neighbours of depth δ with that node.

Comparing to other methods, the time complexity of FastModularity isO(nlog2n)

[12]. SCAN is reported in [56] to be in order of O(m) where m is the number of

edges in the network; however as it is expanding a community for each core node,

it seems that the order of their algorithm is actually O(nc), where c is the average

size of the communities in the network. In Supplementary Information of [46], it is

stated that finding full sets of cliques in a network is non-polynomial, while the ef-

ficiency of CFinder is shown by reporting its actual running time on large networks

[46].

Here, we similarly show the running time of Top Leaders and compare it with

FastModularity, CFinder and SCAN. Figure 4.3 illustrates this comparison. We

have generated datasets with the same parameters as described in section 4.1.2 but

for varying number of nodes (µ = .5). Obviously all the experiments performed

on the same machine (Quad-Core AMD Opteron Processor 8378). We reported the

CPU time used by the program, which is used as a point of comparison for CPU

usage of a program 1.

1http://en.wikipedia.org/wiki/CPU_time
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Part II

Meerkat-ED: A Social Network
Analysis Toolbox for Analyzing

Participation of Students in Online
Courses

40



Chapter 5

Social Network Analysis of
Asynchronous Discussions in Online
Courses

After introducing social network analysis and community mining approaches in the

previous part, this part elaborates on an interesting application of those approaches

in the context of on-line Education. Here we present how one could extract mean-

ingful information about participation of students in online courses using social

network analysis techniques, including community mining. In this chapter we first

illustrate the place and need for social network analysis in studying the interaction

of users in computer-supported collaborative learning environments. We continue

by summarizing some recent studies in this area. In the next chapter, we present

our specific toolbox for social network analysis of online courses, and illustrate its

practical application on our own case study data.

5.1 Intoduction

There is a growing number of courses delivered using e-learning environments, es-

pecially in postsecondary education, using computer-supported collaborative learn-

ing (CSCL) tools, such as Moodle1, WebCT2, Blackboard3, etc. Online asyn-

chronous discussions in these environments play an important role in collaborative

1http://en.wikipedia.org/wiki/Moodle
2http://en.wikipedia.org/wiki/WebCT
3http://en.wikipedia.org/wiki/Blackboard_Learning_System
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learning of students. It makes them actively engaged in sharing information and

perspectives by interacting with other students [17].

In CSCL, there is a theoretical emphasize on the role of threaded discussion

forums for online learning activities. Even basic CSCL tools enable the develop-

ment of these threads where the learners could access text, revise it or reinterpret it;

which allow them to connect, build, and refine ideas, along with stimulating deeper

reflection [6].

Even in courses with a few number of students, there could be thousand of

messages generated in a few months within these forums, containing long discus-

sion threads bearing many interactions between students. Therefore the CSCL tools

should provide a means to help instructors for evaluating participation of students

and analyzing the structure of these interactions; which otherwise could be very

time consuming for the instructors to be done manually.

Unfortunately, current CSCL tools do not provide much information regarding

the participation of students and structure of interactions between them in discus-

sion threads. In many cases, only some statistical information is provided such as

frequency of postings, which is not a useful measure for interaction activity [17].

This means that the instructors who are using these tools, do not have access to a

convenient indicators that would allow them to evaluate the participation and in-

teraction in their classes [55]. Instructors usually have to monitor the discussion

threads manually which is hard, time consuming, and prone to human error.

A large body of research exists on studying the participation of students in such

discussion threads using traditional research methods: content analysis, interviews,

survey, observations and questionnaires [15]. These methods try to detect the ac-

tivities that students are involved in while ignoring the relations between students.

For example, content analysis methods, as the most common traditional methods,

provide deep information about specific participants. However, they neglect the re-

lationships between the participants while their focus is on the content, not on the

structure [55].

On the other hand, for fully understanding the participation of students, we

need to understand their patterns of interactions and answer questions like who is
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involved in each discussion, who is the active/peripheral participant in a discussion

thread [15]. Nurmela et al. [44] demonstrated the practicality of social network

analysis methods in CSCL, as a method for obtaining information about relations

and fundamental structural patterns. Moreover, there is a recent line of work on

applying social network analysis techniques for evaluating the participation of stu-

dents in online courses like works done by Calvani et al. [6], Laat et al. [15],

Willging et al. [55], Laghos et al. [34], and Erlin et al. [17].

The major challenges these works tried to tackle are: extracting social networks

from asynchronous discussion forums (might require content analysis), finding ap-

propriate indicators for evaluating participation (from Education’s point of view)

and measuring these indicators using social network analysis. None of them pro-

vides a complete or specific toolbox for analyzing discussion threads. However,

they attempted to address one of these challenges to some extends. In the follow-

ing, we present the related works on using social network analysis for evaluation

of participation of students in online courses. First, we bring an overview of these

methods and continue by describing each of these works in more detail.

5.2 Challenges: an Overview of Related Works

For applying social network analysis techniques to assess participation of students

in an e-learning environment, we need to first extract the social network from the e-

learning course, then consider which measures show an effective participation and

finally report these measures in an appropriate way. Here, we bring an overview of

the previous works related to each of these three phases.

5.2.1 Extraction of Social Network

CSCL tools record log files that contain the detailed actions that occur within them

and hence information about the activity of the participants in the discussion forums

[44]. Laat et al. [15], Willging et al. [55], Erlin et al. [17] and Laghos et al. [34]

used these log files generated by the environment in which the course is held to

extract the social network underneath of discussion threads. Laghos et al. stated

43



that they considered each message as directed to all participants in that discussion

thread while others consider it as only directed to previous message.

Gruzd et al., [26] and [27], proposed an alternative and more complicated way

of extracting social networks, called named network. They argue that using this

common method (connecting a poster to the previous poster in the thread) would

result in loosing much of the connections. Their approach briefly is: first using

named entity recognition to find the nodes of the network, then counting the number

of times that each name is mentioned in posts by others, to obtain the ties and finally

weighting these ties by the amount of information exchanged in the posts. However,

their final reported results are not that much promising and even obtaining those

results requires many manual corrections during the process.

Regarding what we should consider as the participation in extracting the social

network, Hrastinski [28] suggested that apart from writing, there are other indi-

cators of participation like accessing the e-learning environment, reading posts or

the quantity and quality of the writing. However, all of these methods extracted

networks just based on posts by student (writing level).

5.2.2 Measuring the Effectiveness of Participation

In education context, Calvani et.al. [6] defined 9 indicators for measuring the ef-

fectiveness of participation to compare different groups within a class; extent of

participation (number of messages ), proposing attitude (number of messages with

proposal label), equal participation (variance of messages for users), extent of role

(portion of roles used), rhythm (variance of daily messages per day), reciprocal

reading (portion of messages that have been read), depth (average response depth),

reactivity to proposal (number of direct answers to messages with proposal label)

and conclusiveness (number of messages with conclusion label).

Daradoumis et al. [13] defined high level weighted (showing the importance) in-

dicators to represent collaboration learning process; task performance, group func-

tioning, social support, and help services. They further divided these indicators

to skills and sub-skills, and assigned every sub-skill to an action. For example,

group functioning is divided into these skills: active participation behavior, task
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processing, communication processing, etc. Where communication processing is

itself divided into more sub-skills: clarification, evaluation, illustration, etc. and

clarification is mapped to the action of changing description of a document or url.

However, for measuring the effectiveness of participation, most of the previous

works simply used general social network measures (different centrality measures,

betweenness, etc.), available in one of the common general social network analysis

toolboxes. Laat et al. [15], Willging et al. [55], Erlin et al. [17] used UCINET4 and

Laghos et al. [34] used NetMiner5.

5.2.3 Results Representation

For results representation, Laat et al.[15] and Erlin et al. [17] only reported the

plain results. Then they brought detailed discussions on these results and showed

their soundness by specific case by case examples. Laghos et.al. [34] (Figure 5.1a)

and Willging et al. [55] (Figure 5.1b) visualized the circular centrality graph which

placed the more central/powerful nodes closer to the center. Willging further used

MAGE toolbox to build a 3D graph of interactions where central students are placed

in the center of the graph (Figure 5.3). Laghos et al. [34] plotted the structural

profile sociogram which puts students that have similar interaction pattern closer to

each other and is used to cluster students according to their level of activity (Figure

5.4). And Calvani et al. [6] drew a nonagon graph of their indicators which shows

the group interactions relatively to the mean behavior of all groups (Figure 5.2).

5.3 Elaborate Description of Previous Attempts

Hrastinski [28] proposed a comprehensive definition for online learner participation

by reviewing how other researchers interpreted it. He found out that participation is

more than simplistic measures like the total number of student posting in a discus-

sion forum or length of the discussion threads. He pointed out that online partici-

pation is defined in six different levels: accessing e-learning environment, writing,

quality writing, writing and reading, actual and perceived writing, and taking part

4http://www.analytictech.com/ucinet/
5http://www.netminer.com/NetMiner/
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(a) Figure reprinted from [34](b) Figure reprinted from [55]

Figure 5.1: Comparing Centrality of Students: the circular centrality graph which
placed the more central/powerful nodes closer to the center.

and joining in a dialogue. Further he summarized quantitative and qualitative ap-

proaches for studying online learner participation; Quantity of messages (or units:

word, phrases, sentences, thoughts, ideas), Message quality (categorized messages

according to a classification scheme: on-topic/off-topic, asking/answering, etc.),

Learner perceptions (included interviews, reflective learner reports and surveys),

Message lengths, System accesses or logins, Read messages, Time spent.

To help a tutor in monitoring these groups, Calvani et al. [6] proposed 9 edu-

cational indicators for comparing several groups based on effectiveness of their in-

teractions: extent of participation (number of messages), proposing attitude (bring

forward ideas and proposals), equal participation(deviation standard (σ) of mes-

sages for users), etc. They analyzed threaded web forums within an add-on module

for the Moodle (Forum Plus). This module added a label to each message which

shows its type; whether it is a proposal of a new idea or discussion or summary,

etc. It also logged the user’s behavior like reading a message. Using this label, they

computed their indicators which are all basically counting.

Willging et al. [55], stated that not only analyzing online interactions by content

analysis or thread analysis is time consuming; but also it ignores structural charac-

teristics of the interactions. They suggested that adding a tool based on SNA and

visualization techniques to Learning Management Systems (LMS) could be helpful

for instructors in better monitoring and assessing participation of students. They

supported this suggestion by analyzing data of an online course held on Blackboard
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Figure 5.2: Comparing Participation of a Group: this nanogram illustrates a com-
parison of participation of one group (blue lines) with the average participation of
other groups (red lines) using the nine indicators defined by Calvani in [6]. This
figure is reprinted from [6].

Figure 5.3: 3D Graph of Interactions: central students are placed in the center of
the graph. This figure is reprinted from [55].

and consisting of 21 students. They used UCINET and computed in-degree, out-

degree centrality and betweenness; they drew the circular centrality degree graph.

They also visualized interactions of students and their interactions where more cen-

tral students placed in the center of the graph.

Laat et al. [15] performed Social Network Analysis (SNA) on a course held

on WebCT and consisted of seven students. They wanted to see how dense the

interactions are and who are central participants. They used log files to build a case-

by-vase matrix and further they used UCINET to perform SNA (computing out/in

degree centralities) and drawing the sociogram (student are nodes and numbered
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Figure 5.4: Structural Profile Sociogram: students that have similar interaction pat-
tern placed closer to each other. This figure is reprinted from [34].

ties shows the volume of communications). They had analyzed this data before

using Content Analysis (CA) and Critical Event Recall (CER) reviews; here they

showed that these new outcomes agreed with their previous results using case by

case examples.

Erlin et al. [17] used the data of transcripts of a discussion thread (of 12

students) generated by moodle (from which one could gather information about

amount of messages, how many times and by whom a certain message was read).

They treated this data as relational data, stored it in a matrix and analyzed its cen-

trality, betweenness and closeness using UCINET and further drew the out-degree

centrality graph.

Laghos et al. [34] used NetMiner SNA toolbox for analyzing the SN extracted

from discussions, logged in an online self-taught course using moodle and with

128 students. They assumed each message is directed to all participants in the dis-

cussion thread. They reported results for connection (mean ego-network size, be-

tweenness, link connectivity, bridges, cutpoints), cohesion (number of cliques with

size k), centrality (mean, sd, min and max + mean out-degree sociogram: farther

from the center, lower power in the network), and equivalence (mean of structural,

regular and automorphic equivalence + structural profile sociogram: where actors

with similar patterns of communication are closer to each other)
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While all other previous methods used log files for extracting the social net-

works, Gruzd et al. [26], [27] proposed NameNetwork, an alternative content based

method for building the social networks from discussion threads. In this method,

first names are discovered by a complicated named entities recognition approach

which also needs a manual checking at the end for obtaining acceptable accuracy.

Then ties are extracted: two names are considered connected if the number of times

they are mentioned in postings of each others is higher than a threshold. Finally,

weights are assigned to these ties based on the amount of information exchanged

in the postings; which is computed by counting the number of concepts (obtained

using Yahoo! term extractor) in the posts divided by the length of the posts.

They referred to previous methods of extracting social networks out of posting

headers as chain networks. In [25] three different methods for building the chain

networks is considered: connecting a poster to the last person in the post, con-

necting a poster to the last and first (=thread starter )person in the chain and also

connecting a poster to all people in the reference chain with decreasing weight. In

[26] they stated the first chain network is more logical and practical comparing to

other two. Comparing to NameNetwork, they claimed that about 40% of connec-

tions would be missed in the chain network (including connections mentioned in

the first posting of the thread, connections that have one end outside of the current

existing thread, connections where the addressee is not the most recent one in the

thread). However (and with much of manual adjusting), the final extracted network

is slightly better than chain network in 4 of their datasets but worse in two others.

Daradoumis et al. [13] have analyzed collaboration of students in an on-line

course held on BSCW; where every 5-6 students formed a group (there are about

90 of these groups) to deliver a final project and they interacted both inside groups

in a private space and also publicly in a general workspace. Their dataset contained

log files of the actions performed by the group participants (create, change, read or

move an object) and self-assessment reports.

They defined four high level weighted (showing the importance) indicators to

represent collaboration learning process, which are assessed by the tutor frequently

during the course (1. task performance: learning outcome, 2. group functioning
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(interaction behavior), 3. social support, 4. help services (task scaffolding) ). They

further divided the first two indicators to skills and sub-skills, and assigned every

sub-skill to an action. For example, group functioning is divided into 5 skills: 1.

active participation behavior, 2. social grouping, 3. task processing, 4. workspace

processing, and 5. communication processing. Where communication processing

is divided into 5 sub-skills: 1. clarification, 2. evaluation, 3. illustration, etc.

and clarification is mapped to these actions: change description/ change event doc,

change description url.

They analyzed the first two skills in group functioning by SNA tools named

SAMSA which makes the sociomatrix based on desired date, actors and relation-

ship type. They considered relationships between every actor that creates an object

in BSCW workspace and those that access this object in order to read it. They

have computed network density, degree centrality, degree centralization (group-

level measure based on degree centralities of actors).

In this chapter we illustrated the applicability of social network analysis in the

study of students’ interaction in e-learning environments. We summarized the re-

cent studies in this area which do not address the problem completely but tackle

with some of its challenges to some extends. In the following chapter, we proposed

our specific toolbox for analyzing students interactions in asynchronous discussion

forums.
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Chapter 6

Meerkat-ED: Social Network
Analysis toolbox for Education

In this chapter we present our specific toolbox, named Meerkat-ED, for social net-

work analysis of online courses, and illustrate its practical application on our own

case study data. Meerkat-ED is a specific social network analysis toolbox for visu-

alizing, monitoring and evaluating participation of students in discussion forums of

online courses.

6.1 Introduction

Meerkat-ED helps instructors in assessing the participation of students in asyn-

chronous discussion forums of online courses. It analyzes the structure of inter-

actions between students in these discussions using social network analysis tech-

niques. It prepares and visualizes overall snapshots of participants in the discussion

forums, their interactions, and the leaders/peripheral students in these discussions.

Moreover, It creates a hierarchical summarization of the topics discussed in the

forums using community mining, which gives the instructor a quick view of what

is under discussion in these forums. It further illustrate how much each student has

participated on these topics, by showing his/her centrality in the discussions on that

topic, the number of posts, replies, and the portion of terms used by that student in

discussions on that topic.

Meerkat-ED builds and analyzes two kinds of networks out of the discussion fo-

rums: social network of the students (links represent correspondence) and network
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of the phrases used in the discussions (links represent co-occurrence of phrases in

the same sentence). Interpreting the first network shows the interaction structure of

the students participated in the discussions. Moreover, centrality of students in this

network, lay out a notion of their leadership in the course.

Interpreting terms network, depicts the terms used in the discussion and the re-

lations between these terms. Finding the hierarchical communities in this network,

demonstrates the topics addressed in the discussions. While choosing each of these

topics will outline the students who participated in that topic and the extent of their

participation.

In the rest of this chapter, we first describe our case study data set which is

used for showing the practicability of Meerkat-ED. Then we show how we extract,

analyze and interpret the social network of the students and terms.

6.2 Practical Application

The data set we have used is obtained from a postsecondary course. The course is

titled Electronic Health Record and Data Analysis (CMPUT 690) and was offered

in Winter 2010 at University of Alberta. The permission to use the anonymized

course data for research purposes was obtained from all the students registered in

the course.

This data is further anonymized by assigning fake names to students and replac-

ing any occurrence of first, last or username of the students in the data (including

content of the messages in discussion forums) with the assigned fake name. We

also removed all email addresses from the data.

In this course, as it is also usual in other courses, the instructor initiated dif-

ferent discussion threads. For each thread he posted a question or provided some

information and asked students to discuss the issue. Consequently students posted

subsequent messages in the thread, responding to the original question or to the

response of other students.

This course was offered using Moodle which is a widely used course manage-

ment system. Moodle like other CSCL tools, enables interaction and collaborative
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construction of content, mostly using its Forum tool which is a place for students

to share their ideas 1. Only using Moodle, to evaluate student participation the in-

structor is limited to shallow means such as the number of posts per thread and

eventually the apparent size of messages. He would have to manually monitor the

content of each interaction to measure the extent of individual participation, which

is hard, time consuming and even unrealistic in large classes or forums with large

volume.

Moodle also provides a functionality to record all the information and resources

of a course in a backup xml file. We have parsed this backup file to extract the

course information including the characteristics of students (firstname, lastname,

username, email address, etc.) and information regarding the discussion threads

(sequence of details about messages in the different threads: title, content, date,

author, parent message, etc.).

We have further used Meerkat-ED to build and analyze two kind of networks

from these information: the social network of students and the network of the terms

used by them. The instructor of the course denoted the usefulness of the results of

these analysis in evaluating the participation of students in the course. In this exper-

iment, the instructor reported that using MeerkatED it was easy to have an overview

of the whole participation and it was possible to identify influential students in each

thread as well as identify quiet students or unvoiced opinions, something that would

have been impossible with the simple statistics provided by Moodle.

6.3 Interpreting Students Interaction Network

Interpreting the network of interaction between students, helps instructors monitor

the interaction structure of students, and examine which students are the leaders

in given discussions and who are the peripheral students. Here we first describe

how the network is built based on the information we have from discussion threads.

Then we visualize the extracted network and continue by bringing an analysis of

leadership of the students based on their centrality in this network.

1http://moodle.org/about/
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6.3.1 Student Network Extraction

The student network shows the interaction between students in the discussion fo-

rums. In this network, the nodes represent students of the course and edges are the

interaction between these students. An interaction between two students is weighted

by the number of messages passed between them.

This network could be built both directed or undirected (which is chosen by the

instructor); where in the directed model, each message in considered connecting

the author of the message to the author of its parent message.

6.3.2 Visualization of Student Network

Figure 6.1 shows the visualized network of students in the course. The size of the

nodes corresponds to their degree centrality in the network. This means that the

bigger a node is, the more messages the student represented by that node sent and

received.

The thickness of the edges in the network represents the weight of interactions

which is based on the number of messages in the interaction of communicating

students. Choosing an edge would bring up a pop up window that shows these

messages as illustrated in Figure 6.2.

6.3.3 Analyzing Leadership in the Student Network

The leadership and influence of students in the discussions could be compared by

examining the centrality of nodes corresponding to them in the network; as the

nodes’ centrality measures their relative importance within a network. The nodes’

centrality is depicted by the size of the nodes in the visualized network as illustrated

in Figure 6.1. Moreover, students could be ranked more explicitly in a circular

centrality graph in which the more central/powerful the node is, the closer it is to

the center, as presented in Figure 6.3.
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(a) Directed Network

(b) Undirected Network

Figure 6.1: Visualized Student Network: The left panel lists the students in the
course. The right panel shows the social network of interaction of students in the
course. The size of nodes corresponds to their centrality/leadership in the discus-
sions. The width of edges represents the weight of communication between incident
nodes.
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Figure 6.2: Visualization of messages in an interaction: the interaction window
shows the messages passed between nodes incident to the selected edge: Chole
and Eric. Selecting each message from the left panel would show its title, sender,
receiver and content.

Figure 6.3: Comparing centrality of students: the students closer to the center are
more central in the student network, i.e., have participated more in the discussions
of the course. Likewise, the further from the center, the less the student was active;
here James is the least active students in the discussions and is placed on the outer
circle.
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6.4 Interpreting Term Network

Interpreting the term network, depicts the terms used in the discussions and the

relation between these terms. Moreover, finding the hierarchical communities in

this network, demonstrates the topics discussed in the discussions. While choosing

each of these topics will outline the students who participated in that topic and the

extent of their participation. In the following, we first describe how the network

is extracted from the discussions, then we show example of obtained network vi-

sualization and present how it could be interpreted for evaluation of participation.

Finally, we show the topics (term communities) and their explication.

6.4.1 Term Network Extraction

In the term network, nodes represent noun phrases occurred in the discussions;

and edges show the co-occurrence of these terms in the same sentence. Each co-

occurrence edge contains the messages in which its incident terms occurred to-

gether; and is weighted by the number of sentences these terms co-occurred.

For building this network, we need to first extract the noun phrases from the

discussions, then build the network by setting the extracted phrases as nodes and

checking their co-occurrence in all the sentences of every message for creating the

edges.

Extracting Terms from Forums

We have used the OpenNlp toolbox for extracting noun phrases out of discussions.

OpenNlp is a set of natural language processing tools for performing sentence de-

tection, tokenization, pos-tagging, chunking, parsing, and etc.2

Using sentence detector in OpenNlp, we first segmented the content of messages

to their consisting sentences. The tokenizer was used to break down those sentences

to words. Having the tokenized words, we used the pos-tagger to determine their

part of speech, whether they are noun, verbs, adjective, etc. Then using the chunker,

we grouped these words to the phrases, and we picked the detected noun phrases,

2http://opennlp.sourceforge.net/README.html
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which are sequences of words surrounding at least one noun and functioning as a

single unit in the syntax.

Pruning

For obtaining better sets of terms to represent the content of the discussions, prun-

ing on the extracted noun phrases was necessary. We removed all the stopwords,

and split the phrases that have stop word(s) within into two different phrases. For

example the phrase ”privacy and confidentiality” is split into two terms: “privacy”,

and “confidentiality”.

To avoid having duplicates, the first characters were converted to lower case (if

the other characters of the phrase are in lowercase) and plurals to singular forms

(if the singular form appeared in the content). For instance “Patients” would be

“patients” then “patient”.

As the final modification, we have applied a common filter, which is removing

all the noun phrases that just occurred once; which would prune most of unwanted

phrases.

6.4.2 Visualization of Term Network

Figure 6.4 presents the visualization of the term network. In this figure, the size of

the nodes represents the frequency of their corresponding terms and the thickness of

edges represents the weight of the co-occurrences, which is the number of sentences

in which incident terms occurred together. Selecting an edge would show these

messages as illustrated in Figure 6.5.

In this visualization the instructor would see a list of the discussion threads in

the course while selecting any set of those discussions/messages would bring up

the corresponding term network, along with the list of terms occurring in them and

the list of students that participated in these selected set of discussions/messages.

Selecting any of these terms would show the students that used that term. Like-

wise, selecting any of the students would outline the terms used by the student, as

illustrated in Figure 6.4a and 6.4b; which is highlighting the differences between

participation of the students.
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(a) Terms used by Chole

(b) Terms used by Emma

Figure 6.4: Visualized Term Network: The left panel lists the discussion threads
in the course. The middle panel shows the network of terms in the selected set of
discussions. The upper right panel shows list of students participated in the selected
discussions, along with some statistics about their participation such as number of
posts, replies, etc. The bottom right panel shows the terms used in these discussions.
Selecting each student, would outline the terms used by that student.
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Figure 6.5: Co-occurrence of terms: selecting a co-occurrence edge would bring up
a pop op window that shows the messages these incident terms co-occurred together
in, highlighting the corresponding terms in the content.

6.4.3 Finding Term Communities (Topics)

The term Network could be further analyzed to group the terms co-occurring mostly

together. These groups represent the different topics discussed in the messages and

could be obtained by detecting the communities in the term network.

For creating the hierarchy of the topics, we applied a community mining algo-

rithm repeatedly to divide one of the current connected components of the network,

until the size of all components is smaller than a threshold, α = 5 , or the division

of any of the components would result in a partitioning with modularity less than

a threshold, β = 0.1. We used FastModularity [12] as the community detection

algorithm, however it could be any other community mining approach such as Top

Leaders, presented in the first part of this dissertation.

Figure 6.6 shows the detected topics (term communities) in the network given

in Figure 6.4. The green nodes show the representative nodes of communities. Each

representative node, contains 10 most central terms of the terms in the community

it represents. The size of the representative nodes corresponds to the number of

terms in their communities; while the size of the leaf nodes, terms, is related to

their frequency, same as the term network. Similar to the term network, here also
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one could select a set of terms, usually within a topic, to see who participated in a

discussion with that topic and to what extent, as illustrated in Figure 6.7.

Figure 6.6: Term communities (Topics): The gray circles outline the communities
boundaries and the green nodes represent the community representatives. Each
community representative is accompanied with its top 10 phrases in its community.
These could be seen in the tooltip in the figure.

Figure 6.7: Term communities (Topics), zoomed: selecting each topic, would out-
line the students who participated in a discussion with the topic, and the terms in
that topic. Here, the topic is roughly about ”patient, disclosure, confidentiality and
society”. Moreover, students who participated in this topic and their contribution
could be seen in the upper right panel.
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(a) Terms used by Chole

(b) Terms used by Emma

Figure 6.8: Comparing participation range in the topics: The left panel lists the dis-
cussions threads in the course. The middle panel shows the topics discussed in the
selected set of discussions. The upper right panel shows list of students participated
in the selected topics, along with some statistics about their participation. Here we
can see that Chole had a wider participation in this discussion thread, comparing to
Emma as she participated in more topics.

For evaluating the participation of students, one might check how wide were

their participation. In other words, students who participated in different topics

could be considered more active than students that just talked about a smaller num-

ber of topics. This could be examined by selecting each student and checking how

many topics he/she participated in as illustrated in Figure 6.8. In this chapter, we
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then proposed Meerkat-ED, a specific and practical toolbox for analyzing students

interactions in asynchronous discussion forums. Our toolbox prepares and visual-

izes overall snapshots of participants in the discussion forums, their interactions,

and the leaders/peripheral students. Moreover, It creates a hierarchical summariza-

tion of the discussed topics, which gives the instructor a quick view of what is un-

der discussion. It further illustrates individual student participation in these topics,

measured by their centrality in the discussions on that topic, their number of posts,

replies, and the portion of terms used by them. We believe exploiting the mining

abilities of this toolbox would facilitate fair evaluation of students’ participation in

online courses.
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Chapter 7

Conclusion

7.1 Conclusions

In this dissertation we elaborated the importance of social network analysis for

mining structural data and its applicability in the domain of education. In summary:

1. In Chapter 2 we introduced social network analysis and community mining

for studying the structure in relational data. We surveyed the traditional ap-

proaches and further elaborated on recent methods which borrow different

concepts from social network analysis to investigate the community struc-

ture. Along with Chapter 3, this chapter addressed the first statement of the

thesis.

2. We addressed our second statement in Chapter 3, where we established a

closeness measure, which we called Intersection Closeness, to assess the

proximity of a node to a community representative. This measure iClose-

ness is based on the theory of diffusion of innovation which states that the

probability of joining a group depends on the number of existing friends in

the group and their connectedness.

3. To address our third statement we introduced Top Leaders – a method inspired

by k-means – to mine communities in an information network. This method

uses iCloseness to assign nodes to communities, which is effective in dis-

covering communities and identifying outliers in a weighted or unweighted

network. In Chapter 4 we applied the algorithm to known real world net-

works with ground truth as well as randomly generated networks and com-
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pared the results against state-of-the-art community mining approaches. The

experimental results confirm the accuracy and effectiveness of the proposed

measure and our algorithm. Top Leaders requires k, the number of desired

communities, as input. This may seem a major hurdle. However, it is possi-

ble to obtain k after running other algorithms such as FastModularity, SCAN

or CFinder and provide the number of discovered communities to our algo-

rithm. Given this parameter, Top leaders always outperforms the contenders

in terms of quality of the communities as demonstrated in our experiments.

4. Finally we address our last statement in Chapter 5 and 6. There we illustrated

the place and need for social network analysis in study of the interaction of

users in e-learning environments. We then summarized some recent studies in

this area. We then proposed Meerkat-ED, a specific and practical toolbox for

analyzing students interactions in asynchronous discussion forums. Our tool-

box prepares and visualizes overall snapshots of participants in the discussion

forums, their interactions, and the leaders/peripheral students. Moreover, It

creates a hierarchical summarization of the discussed topics, which gives the

instructor a quick view of what is under discussion. It further illustrates in-

dividual student participation in these topics, measured by their centrality in

the discussions on that topic, their number of posts, replies, and the portion of

terms used by them. We believe exploiting the mining abilities of this toolbox

would facilitate fair evaluation of students’ participation in online courses.

7.2 Summary of Contributions

This MSc dissertation makes the following contributions:

1. A novel closeness measure, iCloseness, is presented in Chapter 3, which is

inspired by the theory of Diffusion of Innovations. This measure is computed

based on the intersection of neighbourhoods and quantifies the closeness be-

tween a node and a leader (i.e. most central node of the community).

2. A new, fast and accurate community mining approach is proposed in Chapter

3, named Top Leaders. Which applies iCloseness for mining communities in
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a given weighted or unweighted network. Simply put, it regards a commu-

nity as a set of followers congregating around a potential leader. Top Leaders

starts by identifying promising leaders then iteratively assembles followers to

their closest leaders to form communities, and subsequently finds new lead-

ers in each group around which to gather followers again until convergence.

Experimental results on real world and synthesized information networks ver-

ify the feasibility and effectiveness of our new community mining approach

using iCloseness.

3. Meerkat-ED, a specific and practical toolbox for analyzing students interac-

tions in online courses is proposed in Chapter 6. It applies social network

analysis techniques including community mining to evaluate participation of

students in asynchronous discussion forums, while its practical applicability

is illustrated using our own case study data.

7.3 Future Research

Social Network analysis and its applications in different domains have attracted

much attentions in recent years from researchers in data mining field. In this dis-

sertation we have presented an algorithm to address one of the questions in social

network analysis; community mining. We further illustrated one of its possible ap-

plicability in Education domain and for assessing the participation of students in

online courses. There is much that could be done to extend the proposed work. For

the first two contributions, future work could include:

1. Amending the Top Leaders algorithm:

(a) The major drawback of the Top Leaders is that similar to k-means or

k-medoid algorithms, it needs number of communities that should be

detected as an input. This could be addressed by using the prior knowl-

edge of the given network or some visualization tools to discover the

number of communities. Moreover, this argument could be obtained us-

ing other community mining algorithms, while we have shown that Top

Leaders improves the overall result. However, it is better to alter the
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algorithm to find this parameter by itself, similar to different methods

suggested for finding k in k-means e.g. choosing k using the silhouette

[47] or information theoretic approaches [52].

(b) One interesting direction in modifying the Top Leaders algorithm is to

make it to handle both attributes of the data entities and relation between

them. The current version works only based on the relations between

data entities, however, there could be data sets in which data entities not

only are related but also have some specific attributes.

(c) Another generalization that could be considered for the Top Leaders

algorithm is its adaptations for the case of directed networks.

(d) Top Leaders models a community as a leader and its followers, however,

a community could be considered having more that one leader. This

fuzzy notion of leadership could also be exploited in future works.

2. Regarding the educational application:

(a) For Meerkat-ED we can use a more thorough set of indicators prepared

by a comprehensive requirement analysis of participation from educa-

tional point of view.

(b) In the current version of Meerkat-ED, each term community (topic) is

represented using a set of top phrases of that community. A better way

of representing the community, which could go as far as summarizing

the content, is a part of our future work.

(c) Figuring out a systematic strategy for evaluating the Meerkat-ED, could

also be another possible research direction. Currently it is not system-

atically evaluated though its practicability is illustrated by anecdotal

evidence on one on-line course. It should be evaluated by requesting

instructors of a certain number of on-line courses to evaluate the par-

ticipation of their students with and without the use of MeerkatED and

reporting its usefulness, merit and appeal using an elaborate question-

naire.
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