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Abstract

When controlling dynamic systems such as robots a big challenge lies in defining

how the desired actions will be accomplished. In industrial settings automation has

been possible due to the structured and predictable environments. The repeatability

of the tasks makes it viable to manually automate them. Moving to dynamic and

unstructured environments, such as human settings and the outdoors, makes such

approaches impractical.

Uncalibrated Visual Servoing (UVS) presents a viable approach to facilitate robot

control and task definition in unstructured environments. UVS can be applied either

in autonomous systems, or as a direct interface for users to manage the robot. Tasks

are defined through visual features directly in image space. By estimating the full

non-parametric image Jacobian no a-priori models or camera calibration is required.

Real-world adoption of UVS has been slow despite over forty years of research.

This work presents a minimalistic framework and accompanying software library

for UVS. The goal is to enable users to create a variety of visual servoing systems using

low complexity control interfaces that easily interact with visual tracking systems to

produce a complete environment able to drive robot control. Our library, ROS-UVS,
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has now been used with several robots for a variety of tasks such as pick and place

with a WAM manipulator and quadrotor assisted flight control. Our implementation,

developed within the ROS framework, has proven to be flexible, robust and easy to use

and integrate across multiple robots and control interfaces. A simulation environment

is also available allowing users to try out our system. Finally, through the use of ROS-

UVS we explore the performance of UVS both in simulation and with a physical robot.

Characterizing the behaviour of UVS will help facilitate adoption for new users and

serves to showcase the features and applications of our library.
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Preface

This thesis is an original work by Oscar Alejandro Ramirez. Three referenced works

in Chapter 1 of this thesis have been previously published. First the work presented

in: “VIBI: Assistive Vision-Based Interface for Robot Manipulation” was performed

in a collaboration with Kinova Robotics and published in the 2015 International

Conference on Robotics and Automation. I was responsible for the robot control

while Camilo Perez developed the visual detection of objects.

The work in “Small Object Manipulation in 3D Perception Robotic Systems Using

Visual Servoing” was published at the 2014 International Conference on Intelligent

Robots and Systems. Finally, research done with Mona Gridseth was published at the

International Conference on Robotics and Automation in 2016. In this work, titled,

“ViTa: Visual Task Specification Interface for Manipulation with Uncalibrated Visual

Servoing” I developed the library used to perform the Uncalibrated Visual Servoing

used by the visual interface developed by Mona Gridseth.
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Chapter 1

Introduction

1.1 Motivation

As robots move towards domestic settings from industrial environments many chal-

lenges arise. Robot control is not an easy task. In current research a big push is

taking place to try and automate systems within unstructured environments [2]. Un-

derstanding how to control robotic systems, in order to achieve generic, common place

tasks, is still not a solved problem.

Figure 1.1: UofA’s WAM robot at the Amazon Picking Challenge
Seattle, 2015

Robots first thrived in industrial settings, where structured environments facilitate
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the tasks at hand. Their repetitive nature makes programming specific motions,

for a given task financially viable. This was first seen in the automotive industry

for example. In [2] Kemp et al. identify key aspects that make robot interactions

difficult. For instance the presence of humans along other autonomous actors such as

pets or other robots taking action can interfere with the robot’s task or change the

environment. Further more the environment is usually built and matched to human

bodies and capabilities and not those of robots. The range of challenges in these

environments encompass everything from control, perception, and design to name a

few.

A great new example in industry of the shift towards unstructured environments

can be seen in the Amazon Picking Challenge [3]. Here contestants were expected

to develop a robotic system capable of replacing humans performing semi-structured

picking tasks. The goal being, to identify and relocate items from a shelf, into a plastic

bin, in order to fulfill online orders. The shelf in this case had a variety of objects.

Non rigid structures as well as objects with high specularity challenged visual and

grasping systems alike. Object position or orientation was not predetermined; giving

the challenge more unstructured characteristics. Our system is shown in Figure 1.1

The results of the Amazon Picking Challenge showcase how, even top researchers

in the field, struggle to make robust systems for these kinds of tasks [4]. Robotic

control in fully unstructured environments is still a challenging domain. However

solutions that have the human-in-the-loop have been demonstrated to be reliable.

In [5] Leeper et al. show how human-in-the loop robotic systems can be used to

handle complex tasks in unstructured environments when performing grasping. Re-

mote operation in assistive home robotic systems was also demonstrated in [6] and [7]

where robots served as surrogates and helpers manually controlled remotely. Humans

are also able to handle shifting levels of autonomy which makes gradual integration

a possibility. Using a teleoperation interface in [8] Muszynski et al present users

with the option to shift between different levels of autonomous control. With this in

mind, the focus of our work is in trying to breach this gap between structured and

unstructured environments for robots through the use of Uncalibrated Visual Servo-
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ing (UVS) which we can use in both autonomous systems and through user defined

tasks.

Visual Servoing approaches the control of a robot through the use of visual input.

In the traditional implementation, camera images are used to define visual features

and a visual task that the robot can then complete. Although Visual Servoing has

been researched for over fourty years it has failed to see adoption in practice. Chal-

lenges include camera calibration, lack of, or difficulty integrating reliable real-time

visual trackers and a lack of simple control interfaces to which robots can be con-

nected.

1.2 Summary of Work

Before working through the details of Visual Servoing a summary of the work done

is presented. These publications illustrate the road that motivated the development

of ROS-UVS.

First, in collaboration with Kinova Robotics, we developed a system to assist

users in the operation of Kinova’s Jaco arm [9]. Developed for upper body disabled,

Kinova’s Jaco arm mounts directly on the user’s wheelchair. Their disabilities accen-

tuate the difficulties of tele-operating a robotic arm and our system was shown to

facilitate the use of the robot.

A 3D vision system was used to ease the positioning of the robotic arm with respect

to a target object as shown in Figure 1.2. Users need only click on the desired object on

an image and the robot will perform the required motion. Our work, “VIBI: Assistive

Vision-Based Interface for Robot Manipulation” [10] was published at ICRA 2015.

Grasping however, was not fully automated. In our research we faced similar problems

to the authors in [11] where a 3D depth sensor was used for coarse positioning, but

manual control had to be used for grasping. The precision of the RGBD sensor, as well

as the difficulties of precise calibration came into effect. Making the task challenging

for general applications. Based on the feedback received by Kinova it is clear that

users prefer systems that work reliably with manual intervention to a system that is
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Figure 1.2: Vision-based User Interface to a 6DOF robot arm and
hand. By pointing and selecting in a 2D video image of the scene,
the user can point to objects, select grasp types and execute robot
actions.

autonomous but not reliable.

Having faced the problems using an RGBD sensor, we explored in more detail the

challenges that arise when performing small object manipulation. Our paper: “Small

Object Manipulation in 3D Perception Robotic Systems Using Visual Servoing” [12],

outlined five major factors we dealt with. The restrictions on detection range and

resolution of affordable depth sensors limit what can be detected. End effector capa-

bilities and sensor localization inhibit how objects can be manipulated. And finally

calibration and robot control further affect precision and manipulation potential.

Uncalibrated Visual Servoing was presented as a way for users to address the

challenges of calibrated sensors and control. Sample fine manipulation scenarios were

then demonstrated such as threading a line through a fishing lure as is shown in

Figure 1.3. Although a very challenging task to perform, even with Uncalibrated

Visual Servoing, we were able to perform it in practice.

Finally, ROS-UVS: A Minimalistic ROS Library for Visual Constraint Minimiza-
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Figure 1.3: Eye in hand view as the fishing lure is threaded through
the use of Visual Servoing. This showcases the ability to perform
fine object manipulation with visual servoing

Visual Features

Tracking System

Error

Visual Servoing

Robot Controller

Visual Data

World

Robot Motion

Figure 1.4: ROS-UVS System Overview: Given some visual data
from the world the tracking system produces visual features. From
the visual features an error is computed which is used by the visual
servoing to feed the robot controller.

tion through Uncalibrated Visual Servoing was developed with the knowledge ac-

quired. Focusing on the robot control aspect of the servoing, allows for great ab-

straction and division of labour making this library very flexible. As shown in Figure

1.4, the control loop for Visual Servoing consists in taking world visual data, tracking

points of interest and generating a visual error which is then used to drive the robot

to complete a task. In our work we focus on facilitating this interaction with a robot

system and on the effects of the tracking and visual system on the robot servoing.

Using ROS-UVS to control a robot, “ViTa: Visual Task Specification Interface for

Manipulation with Uncalibrated Visual Servoing” [13] was also built in our research

group. This allowed us to explore the feasibility of Visual Servoing as a real world

solution for robot control with a human-in-the-loop. At the same time, I was able to
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Figure 1.5: Using the Visual Task Specification Interface users are
able to easily initialize trackers and define visual geometric con-
strains that help direct the robot to a given goal.

have a first test user of ROS-UVS which helped improve the usability of the system.

As seen in Figure 1.5 users are presented with views of the scene from one or more

cameras. Using these a variety of trackers can be initialized. Through the trackers

and visual features, tasks are defined using geometric visual constrains that form the

error to be minimized.

1.3 Contributions

Visual Servoing (VS) has been researched for over fourty years, but real-world adop-

tion has been slow. Challenges include camera calibration, lack of, or difficulty,

integrating reliable real-time visual trackers and a lack of simple control interfaces

through which robots can be controlled. Recent work has begun to show how VS can

be utilized in practice to accomplish tasks through visual task specifications [14].

In this work we present a minimalistic framework for Uncalibrated Visual Servoing

(UVS) with the hope that we can alleviate some of the issues that are holding back

adoption. One of the main roadblocks is the time and effort required to develop

the extensive software for video tracking and visual servo control required for real
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time execution of tasks. Fortunately there are a few good options that allow fast

prototyping of with Visual Servoing [15, 16]. Arguably one of the most complete

libraries is the Visual Servoing platform (VISP) [16].

As pointed out by the VISP authors, approaches such as a learning process of the

interaction matrix are not currently integrated within their library. In particular, an

implementation of Uncalibrated Visual Servoing is missing.

In this work we focus on enabling users to create simple control interfaces that

easily interact with tracking systems to produce a complete working environment.

Our Visual Servoing library, ROS-UVS, has now been used with several kinds of

robots for a variety of tasks such as pick and place with a WAM [17] manipulator and

quadrotor assisted flight control. Our implementation, developed within the ROS

framework, has proven to be flexible, robust and easy to use and integrate across

multiple robots. A simulation environment is also available allowing users to quickly

try out our system, both through ROS and Matlab.

Additionally, the convergence of visual servoing is studied. This is done in sim-

ulation as well as on our lab’s WAM robotic manipulator. The effects of camera

placement and types of control for the robot are studied with respect to the conver-

gence and accuracy of the resulting motions. Readers of this work can also acquire

some of the intuition as to how different control approaches affect robot motion, and

how to best tune the available parameters facilitating adoption for new users.

1.4 Thesis Outline

Visual Servoing background and related work are reviewed in Chapter 2. Chapter

3 focuses on Task Specification and how the constrains for the servoing tasks are

formally defined. Chapter 4 presents ROS-UVS, our Uncalibrated Visual Servoing

library, along with the motivating design choices that were taken and an outline

of the main features available. In Chapter 5 the convergence of Visual Servoing

is explored, both in a simulation environment, and on a real robot, alongside the

control strategies and how they affect convergence. Finally Chapter 6 presents the
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conclusions and future work.
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Chapter 2

Visual Servoing

The main objective of Visual Servoing is to minimize a visual error [18, 19, 16]. In

this chapter we present the background of Visual Servoing, and its mathematical

derivation. The two main types of Visual Servoing: Position Based Visual Servoing

(PBVS) and Image Based Visual Servoing (IBVS) are presented. Finally we delve

into Uncalibrated Visual Servoing which is a core component in this thesis.

2.1 Background

The term Visual Servoing first appeared in 1979. Introduced by Hill and Park in ”Real

time control of a robot with a mobile camera” [20] visual servoing distinguished itself

from other vision approaches by offering a closed loop control system. The idea of

using cameras to improve task accuracy through a visual feedback loop was presented

before that by Shirai and Inoue [21]. The use of a closed loop control system versus

a ‘look’ and ‘move’ system provided the turning point into Visual Servoing.

The task of Visual Servoing is to control or command a robot to interact with

its environment using vision. Tasks are defined through the use of visual features

which are obtained from one or more cameras. Jang et al. [22] provided a formal

definition of visual features as image functionals. In practice any visual feature that

can be unambiguously identified from multiple views of the environment can be used

to define tasks. The feasibility of task definition and its decidability were then further

investigated by Dodds et al. in [23]. Chapter 3 of this thesis delves deeper into the
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definition of tasks and how to use them to perform actions with a robot.

After its initial appearance in the 1970s visual servoing saw only a small amount

of progress. It wasn’t until the 1990s that research and publications in the area saw

a marked increase. In “A tutorial on visual servo control” [18] Hutchinson et al.

attribute the increase in research in the area to the increase in computing power in

personal computers. The ability to process image data at a quick enough rate was

critical in the servoing of robots.

Although image processing began to happen at a fast enough rate the accuracy

and robustness of visual trackers still required a lot of time to progress. Currently

visual trackers are reaching a point where their accuracy and robustness have im-

proved significantly. Tracking over significant periods of time and challenging visual

conditions is now robust and accurate enough to use in unstructured environments.

This presents an opportunity for another leap forward in the area.

2.1.1 Camera Configuration

Figure 2.1: Sample camera placement. Left: In the eye-in-hand
configuration the camera is attached rigidly to the WAM. Right:
The eye-to-hand camera, placed on a tripod, is to the side of the
robot providing a complete scene overview.

There are two main configurations for the placement of cameras as shown in Figure

2.1. In the eye-in-hand configuration the camera is rigidly attached to the robot. This

configuration allows the camera to be relocated and for it to be placed closer to the

objects of interest as the robot moves. Having a closer view facilitates fine object

manipulation. With a closer view there are more pixels covering a smaller area thus
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giving visual systems a higher image resolution of the region of interest to work on.

With this configuration motions have to be performed carefully as it is easy to lose

view of the section of the scene we are interested in as the camera covers a smaller

region of it.

When placing the camera in an eye-to-hand configuration both the robot and the

scene will usually be visible. This view simplifies tasks such as object identification

and localization as the camera acquires an overview of the complete scene. By placing

the camera in a stationary position the robot has more freedom of motion as it can

more easily move without causing the region of interest to leave the camera’s field of

view.

Considerations should also be taken when a human-in-the-loop is present. Driessen

et al. [24] presented a collaborative controller for the Manus arm with an eye-in-hand

camera configuration. The system was used to allow users to select objects and reach

towards them. A notable result from their study was that an eye-in-hand camera

does not provide a natural point of view for human interaction. Later in [25] Tsui et

al. reported that in their prototype interface trials, fixed camera views outperformed

a moving camera for object selection.

Each camera configuration has benefits that should be weighted when designing

a vision system. The task at hand, along with the control method to be used should

both influence the chosen camera setup. If a user will be mostly in charge, then

perhaps an eye-to-hand configuration would be preferable to improve usability and

make it easier for the user.

2.2 Visual Servoing Derivation

In this section we will work through the mathematical derivation of Visual Servoing.

A great external reference for this topic by Chaumette et al., “Visual servo control. I.

Basic approaches” [19], is also worth reviewing. Here we expand on their derivations

and highlight details relevant to our interest in Uncalibrated Visual Servoing.

As stated above, the main objective of Visual Servoing is to minimize a visual
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error which can be defined as follows:

e(t) = s− s∗ (2.1)

Where s is a vector denoting some features, e.g. the position of some object, or image

coordinates of tracked points, lines or other measures, and s∗ is the desired goal

configuration of these features. Suppose we are using an eye-in-hand configuration as

seen in Figure 5.1. Then the spatial velocity of the camera is defined as vc = (vc,ωc),

that is a linear and an angular velocity. The interaction between the camera’s motion

and the rate of change of the tracked features can then be linked:

ṡ = Lsvc (2.2)

This gives rise to the term interaction matrix, Ls, also known as the feature Jacobian.

This matrix relates how the tracked features change with respect to the camera’s linear

and angular velocities. A similar formulation is then used to model the relationship

of image error to camera motion:

ė = Levc (2.3)

The only difference being that while Ls relates camera motion to tracked features,

now Le relates camera motion to the defined error. From equation (2.3) we can then

find control velocities that will result in an exponential decrease of the error. This

is usually referred to as the Visual Seroving control law as it is dictates the robot’s

motion.

vc = −λL†
e
e (2.4)

Where L†
e
∈ R

d×2k is the Moore-Penrose pseudoinverse of Le such that L†
e
=

(LT
e
Le)

−1LT
e . Here, d is the number of degrees of freedom (DOF) that are being

controlled, and k the number of tracked features. Finally, λ is a parameter, or gain,

used to control the final robot velocities as the minimization takes place. We also refer

to λ as a step size as it determines how much the robot will move on each iteration.

The use of the pseudoinverse is needed as the interaction matrix is not necessarily a

square matrix.
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2.3 Types of Visual Servoing

There are two main ways to approach Visual Servoing [18]. They mainly differ on

how the tracked visual features are defined giving different interaction matrices. In

Position Based Visual Servoing (PBVS) the tracked features are used to calculate 3D

information about their location. To do this PBVS uses a calibrated camera and a

3D geometric model of the features of the object to reconstruct the relative pose of

the camera with respect to the object. This means that for PBVS we required both

a calibrated camera and a-priori models of the objects with which we will interact;

making it inadequate for unstructured environments.

On the other hand, Image Based Visual Servoing (IBVS) directly utilizes image

features to perform the robot control. In it’s classical implementation however the

analytic form of the image Jacobian is often used to drive the robot control. This

requires intrinsic camera parameters which still impose a calibration requirement.

Finally, Uncalibrated Visual Servoing (UVS) estimates the non-parametric image

Jacobian through robot motions avoiding all calibration or model requirements [26,

27]. In the following sections we will look at how these features are defined, and how

they affect the interaction matrices.

2.3.1 Position Based Visual Servoing (PBVS)

In Position Based Visual Servoing, 3D information is retrieved through the tracked

feature points. If we assume an eye-in-hand configuration then the error can be

defined to be:

s = (c
∗

tc, θu) (2.5)

Where c∗tc and θu represent the translation and rotation of the current camera

frame defined as Fc relative to the desired camera frame position Fc∗ . Setting the

frame Fc∗ as the reference frame for the system simplifies the derivation as we then

induce s∗ = 0 and e = s. The interaction matrix for the error then decouples the

translational and rotational motions:
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Le =

[

R 0
0 Lθu

]

(2.6)

Where Lθu is defined as:

Lθu = I3 −
θ

2
[u]× +

(

1−
sinc θ

sinc2 θ
2

)

[u]2× (2.7)

Here sinc x is the sinus cardinal defined such that x sinc x = sin x and sinc 0 = 1.

This interaction matrix gives rise to a simple control scheme:

{

vc = −λRTc∗tc

ωc = −λθu
(2.8)

The final control law gives rise to some interesting motion consequences. With

this formulation the camera’s movement results in a straight line when the system

is perfectly calibrated. However there are several complications that require special

attention. A perfectly calibrated system is not realistic in practice. Users will also

require a way to model the target objects for the servoing, and 3D information of the

tracked features needs to be generated from image data which will again be highly

dependant on the calibration.

2.3.2 Image Based Visual Servoing (IBVS)

Now we will cover the derivation of the interaction matrix for IBVS with two goals

in mind. First to create a better understanding of the dynamics of the system. And

most importantly, to motivate the use of the Uncalibrated Visual Servoing approach.

A result of the derivation of the interaction matrix is that we require knowledge of

the distance between the camera and the visual features. Since we are working with

simple 2D camera images, we do not directly have this information.

To derive the interaction matrix we begin by modeling how image features be-

have. Image features are defined in image space, and thus are 2D point projections
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with coordinates x = (x, y). Using a simple pinhole camera model we can find the

projection to this point from 3D space by:

{

x = X/Z = (u− cu)/fα

y = Y/Z = (v − cv)/fα
(2.9)

Where (u, v) are the pixel coordinates of the point in the image, cu and cv are the

coordinates of the principal point, f the focal length, and finally α the ratio of the

pixel dimensions. Taking the time derivative of equation (2.9) we get:

{

ẋ = Ẋ/Z −XŻ/Z2 = (Ẋ − xŻ/Z)

ẏ = Ẏ /Z − Y Ż/Z2 = (Ẏ − yŻ/Z)
(2.10)

This describes the motion of the visual features in the image. Studying the deriva-

tion we see we need to know how the 3D point X = (X, Y, Z) is moving with respect

to the image plane, i.e. how the camera is moving. Previously we defined the spatial

velocity of the camera as vc = (vc,ωc). Expanding this we see how the 3D point

moves with respect to the camera motion through:

Ẋ = −vc − ωc ×X ⇔











Ẋ = −vx − ωyZ + ωzY

Ẏ = −vy − ωzX + ωxZ

Ż = −vz − ωxY + ωyX

(2.11)

Finally combining (2.10) and (2.11) we get:

{

ẋ = −vx/Z + xvz/Z + xyωx − (1 + x2)ωy + yωz

ẏ = −vy/Z + yvz/Z + (1 + y2)ωx − xyωy − xωz

(2.12)

Which we can re-write as:

ẋ = Lxvc (2.13)

This allows us to solve for the interaction matrix Lx
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Lx =







−1

Z
0

x

Z
xy −(1 + x2) y

0
−1

Z

y

Z
1 + y2 −xy x






(2.14)

As a result of the analytical solution we see that in order to follow the control law

we require to know the depth Z for every feature point, which is not directly known

as we are only using 2D camera images. Having defined this background knowledge

on visual servoing we can move on to Uncalibrated Visual Servoing and how it is

implemented in order to avoid the required depth information.

2.3.3 Uncalibrated Visual Servoing in Practice

For a simple joint controller we can rewrite equation (2.4) as:

q̇ = −λĴ†e (2.15)

Here, q̇ are joint velocities. This formulation has the advantage of requiring no

knowledge of the camera placement. The interaction matrix is simply shown as J for

the Jacobian:

J =













∂f1(q)

∂q1
. . .

∂f1(q)

∂qm
...

...
∂fk(q)

∂q1
. . .

∂fk(q)

∂qm













(2.16)

Where q is a vector of joint angles, and f a vector containing image features. In

calibrated systems this Jacobian is known a priori. Since our system is uncalibrated

the Jacobian has to be determined before the error minimization can be done. To

find an estimate of the Jacobian, Ĵ , small exploratory motions [28] of each joint are

performed and the error is observed to find a ∆e, that is, we will estimate the rate of

change of the error with respect to the joint motions through finite differences. Using

this change in the error vector, we estimate the partial derivative with respect to each

joint:
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Ĵ =





















...
∆eq1

∆q1
...











. . .











...
∆eqm

∆qm
...





















(2.17)

Here ∆qi is the scale of the motion of joint i performed to generate the error

change ∆eqi . Having found the Jacobian we can then follow (2.15) to minimize the

visual error. Finally in order to keep the Jacobian updated we can perform a Broyden

update [27].

Ĵk+1 = Ĵk + α
(∆e− Ĵk∆q)∆qT

∆qT∆q
(2.18)

Where α is a learning rate. After an initial Jacobian is estimated using (2.17)

visual servoing proceeds using the control law, eq. (2.15). UVS differs from regular

IBVS in that the Jacobian is continuously estimated using (2.18), instead of computed

from an analytical expression of the camera geometry and robot kinematics. This

method has been shown to improve performance and the robustness of the servoing

to converge when used properly [27]. Since the Jacobian is only a local estimate

for the motions of the system; as the robot changes pose the Jacobian will tend

to deteriorate. Broyden’s method allows us to update the Jacobian along with the

robot’s position.

Through the use of UVS we can then avoid the need for a-priori models and system

calibration. These properties allow users to more easily place or move cameras around

the robot’s workspace. Eliminating the need for these steps makes it easier to adopt

a visual system and requires less preparation before applying the visual control.
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Chapter 3

Tasks Specification

In the context of Visual Servoing, task specification determines what the goal of the

task at hand is. Through the specified task we can define an error. Using this error

we then relate how robot motion changes the current world state with respect to the

specified target. In the previous chapter we discussed how Visual Servoing is defined,

and how a robot is driven through very simple control laws. In this chapter we will

explore how the task specification is done in order to fully develop the control loop of

Visual Servoing. Refering back to Figure 1.4 so far we have defined the panel on the

right, Visual Servoing. Now we will see how a Tracking System can help us follow

visual features that define the error to be minimized.

3.1 Visual Tracking

Visual tracking is the process of estimating the position of an object in images. De-

pending on the tracker, different aspects of an object’s position, such as position

and orientation, can be determined and followed through a series of camera images.

Tracking algorithms will often offer different features. This leaves users with a choice

where a trade off has to be made between complexity and information gathered. Fig-

ure 3.1 shows for instance a simple colour tracker known as Continuously Adaptive

Mean Shift or CAMSHIFT [29]. This is a simple tracker that clusters points in a

specific color space. It is simple to use and can process images quickly, however it

mostly serves as a way to define a region of interest for a tracked object; it does not
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Figure 3.1: Sample visual tracker. Using OpenCV’s CAMSHIFT
tracker the color of the object is used to define a region of interest
that can be followed as motion of the camera or of the object occurs.

provide a precise location for the tracked object.

As mentioned above there are many different types of visual trackers. For practical

use alongside Visual Servoing trackers need to be robust, precise, and flexible. Since

our goal with UVS is to allow simple control in unstructured environments, we need

trackers that can perform under these conditions.

Tracking is still a big challenge in unstructured environments. Not only do the

properties outlined above have to hold, but the tracker must also function in real

time. For each image frame trackers must process the image, and output the position

of the tracked region or object of interest. The time it takes to process an image

limits the maximum effective camera frame rate we can use. In this case by effective

camera frame rate we mean the rate at which we can fully process an image frame. If

we can only process half the frames a camera is producing then, half the images are

wasted.

There are two main advantages to performing the tracking quickly. In visual

tracking it is usually assumed that the inter frame motion along with changes in

intensity or light conditions will be small. In the case of robotics this can be helped

by performing motions slowly. However, unstructured environments are dynamic and

changes in lighting or the scene can affect tracker performance. By providing the

tracking system with more frames at a higher rate rapid changes can be slowed down

making the job of trackers easier as their base assumptions are held.

Having the ability to utilize higher frame rate cameras also facilitates the servoing
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of the robot. As we use the results of the trackers to drive the motion of the robot,

we need the processing time after an image is taken to be small. The commands that

we generate through visual servoing are relative to the robot’s position within the

image processed. However while the image is being processed robot motion continues.

Meaning that the longer it takes to process the image, the further away the robot will

be from where the image was taken.

Recently, Roy et al. presented “Tracking Benchmark and Evaluation for Manipu-

lation Tasks” [30]. This is a public dataset to evaluate trackers used for human and

robot manipulation tasks. As specified by the authors, for these tasks both high DOF

motion and high accuracy are needed. This dataset places a stringent convergence

criteria of ±1 pixel on the ground truths reported. In contrast previous benchmarks

use a pixel threshold tp = 20 pixels and low DOF motions [31]. This threshold is far

too high for manipulation tasks. Given the state of the art in visual trackers, few

sequences are fully tracked accurately, again highlighting the difficult task at hand.

Similar to how computing power in personal computers gave researchers the ability

to rapidly move the field of Visual Servoing forward, visual tracking performance

reaching a new level of robustness and accuracy opens the door to new opportunities.

Attention to benchmarks like this should be taken as visual trackers are the main tool

that permit visual servoing tasks to be completed.

In addition to the challenge of tracking itself, actually acquiring trackers can also

be non-trivial. Fortunately, some trackers are available in ROS. Implementations for

trackers like Kalal’s TLD [32], or more classical trackers like KLT [33] provided in

ViSP [16] allow for real time tracking and are easy to integrate through ROS. Other

tracking systems such as XVision [34] could also be integrated even if they are not

available in ROS. Recently the Modular Tracking Framework was also released1. This

library provides open-source implementations of many state-of-the-art registration

based visual trackers that can be used within ROS through the mtf bridge package

also available at the library’s website.

For our Visual Servoing application visual tracking is used to keep track of features

1http://webdocs.cs.ualberta.ca/~vis/mtf/
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on objects of interest. As we will see in the next couple of sections, this will give us

information about their motion and movement within the image. We will then use

this information to define and complete tasks.

3.2 Visual Tasks

Visual Servoing with 2D cameras allows for higher accuracy than 3D depth sensors.

Modern cameras are not only cheap, but also provide a higher resolution than equiv-

alently priced 3D sensors. This can result in better accuracy even when performing

full 3D depth triangulations with regular cameras as opposed to a Kinect sensor for

instance [35]. Cameras also have the advantage of being able to capture images both

from far away as well as at very close distances. Unlike depth sensors which normally

have a defined range. Given the right tracker implementation sub-pixel accuracy can

be given for visual features. Using this data the robot can perform precise movements.

Given these advantages for Image Based Visual Servoing, we are now left with the

problem of how to properly use them to complete tasks. Chaumette et al. outline the

classification and realization of vision based tasks in [36]. Then in 1999, Hespanha

et. al. [37] addressed this problem by defining when it can be decided if a task has

been completed.

We define a task through a task function:

T (f) = 0 (3.1)

Let the arm workspace be W ∈ SE(3), with a pair of stereo cameras that have

a field of view V . Typically V is either a subset of R3 or P3. Where R
m is the real

linear space of m-dimensions, and P
m is the real projective space of one-dimensional

subspaces of Rm+1.

If we let f be the list of point features observed in the camera’s field of view,

then the task function is said to be accomplished if equation 3.1 holds on the basis

of the observed image features. The list of features f is one of many possible lists of

features in F which is called the admissible features space. This space is a mapping
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from F into {0, 1}. The Value of 0 is given when a task is completed. For example,

for a point to point task we define f to be:

f 7→

{

0 if f1 and f2 are the same point in P
3

1 otherwise
(3.2)

This allows us to define very simple geometric constrains in order to specify tasks.

Similar mappings can be performed for other simple tasks. This mapping however

would assume that we have an accurate camera model. Since calibration error will

always be present to some extent this approach is further extended to include an

encoding, E : YT → R. Where Y is the two camera joint image space.

This encoding is then used so that the task is accomplished when:

E(y) = 0 (3.3)

This is an extension that accounts for the error in the modeling of the visual

system. Basically given a task equation 3.3 must hold when the task is completed.

For the point to point case, using the difference between the visual feature coordinates

suffices as it will only equal 0 when the points coincide.

3.2.1 Visual Task Specification

Now we will explore how to relate the mathematical definition of a task as shown

above, with the image representation. The visually specified tasks provide two main

functions. First they allow users to directly specify the task visually. Then, the task

specification is used to verify whether the task was completed or not. There are some

special cases where this can not be done. As shown by Dodds [23] cases where there is

visual ambiguity in 2D images prevent us from always validating the task. A sample

case is shown in Figure 3.2 where it appears the marker will be inserted into the cap

even though it is not properly aligned.

In practice it is easiest to combine tasks in order to generate enough visual con-

straints so that a more complex action takes place. For example in Figure 3.3 a
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Figure 3.3: Sample task definition on a heat sink installation task.
Yellow points show a point to line task while red points define a
point to point task. 24



Figure 3.4: Sample task definition on a memory card installation
task. Magenta lines represent parallel line tasks which aid in aligning
the card. The red point represents a point to line task that moves
the card to it’s final destination.
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Figure 3.5: Here the goal is to align the wrench on the right to the
bolt shown on the left. Using the tracked visual features labeled f1

through f8.

any two points, f1,f2 is defined as f1 × f2. Using this we can define the lines on the

top and bottom of the bolt to be: f1 × f2 and f3 × f4. Finally to align the wrench

to these lines we need to define the point to line task.

To specify this task we need an encoding that will equal 0 when the task is

completed so that we can satisfy equation 3.3. In this case we would like an equation

that is equal to 0 when the point is incident to the line. Luckily in homogeneous

coordinates this can be expressed with a dot product as when a line and point are

incident then: l · p = 0. Thus we define the first part of the task as:

e =









(fl1 × fl2) · fl5

(fl3 × fl4) · fl7

(fr1 × fr2) · fr5

(fr3 × fr4) · fr7









(3.4)

This specifies the point to line tasks for both cameras. To specify the constraint

that will move the wrench to the bolt we can use a point to point task. As we saw

before, the point to point encoding is expressed through the difference in the visual

features. Putting it all together we can define the whole task as:
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e =

























fl2 − fl6

fl4 − fl8

(fl1 × fl2) · fl5

(fl3 × fl4) · fl7

fr2 − fr6

fr4 − fr8

(fr1 × fr2) · fr5

(fr3 × fr4) · fr7

























(3.5)

Although this task appears to be fully defined, one problem can still arise. While

testing this task in simulation we observed an unexpected solution. Given these

constraints, the orientation of the wrench with respect to the bolt is not unique.

Having points f2,f6 and f4,f8 coincide can be visually accomplished with f5 and f7

towards the left or the right. A video of this can be seen in the ROS-UVS website 2.

When visually defining tasks it is important to keep in mind what degrees of

freedom have been constrained and which ones have not. Otherwise unexpected

solutions can be found once the robot motion is performed as was the case with the

wrench task.

3.3 Human In the Loop

In “Bringing visual servoing into real world applications” [38] our research group dis-

cussed how visual servoing can come together to allow users to control robots. The

ultimate goal is to have robots aid us in our everyday lives or in the workplace. The

challenge becomes greater due to the nature of unstructured and dynamic surround-

ings as we have discussed. The idea of having a human-in-the-loop means the human

guides the robot without controlling it completely. In the case of visual servoing

defining the task visually is an example of this.

A different approach presented by our group in “Interactive Teleoperation Interface

for Semi-autonomous Control of Robot Arms” [39] showcases a system where Visual

Servoing is used to aid at certain points during robot interaction. Using an RGBD

2http://ugweb.cs.ualberta.ca/~vis/ros-uvs/videos.html
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in general this has required prior knowledge of the manipulation task or the relevant

objects in the scene. Automatically generating the context required to automate

these tasks is still an area that requires exploring.

In this work we have focused our attention to the robot control and the effects of

the visual features on the servoing process. Our goal is to facilitate the use of UVS

for others. Having said that we can now move on and introduce our UVS library,

ROS-UVS.
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Chapter 4

ROS-UVS

In this chapter we present ROS-UVS, our Uncalibrated Visual Servoing library. More

information can be found on the library’s website1 along with the source code, tuto-

rials, videos, and documentation.

4.1 Feature Overview

In Visual Servoing one or more cameras track scene features and use them to control

the motion of a robotic system [18, 19]. Although literature in this field is mature and

extensive, relatively few works have directly addressed real-world applications [41].

One of the main roadblocks is the time and effort required to develop the extensive

software for video tracking and visual servo control required for real time execution

of tasks. Fortunately there are a few good options that allow fast prototyping for

Visual Servoing [15, 16]. Arguably one of the most complete libraries is the Visual

Servoing platform (ViSP) [16]. As pointed out by the ViSP authors, approaches such

as a learning process of the interaction matrix are not currently integrated within

their library. In particular an implementation of Uncalibrated Visual Servoing (UVS)

is missing. This is a significant omission which, when closed, might help bring Visual

Servoing into more real world scenarios. Although current vision sensors in robots

can be calibrated with respect to the robotic platform space, a different approach

consists of learning on-line how the vision sensors are related to and positioned with

1http://ugweb.cs.ualberta.ca/~vis/ros-uvs
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respect to the robotic platform as was seen in chapter 2.

In this work we introduce ROS-UVS: a minimalistic library for visual constraint

minimization through Uncalibrated Visual Servoing. ROS-UVS provides the follow-

ing:

• An implementation of Uncalibrated Visual Servoing (UVS) performed through

estimating the full non-parametric Jacobian, thereby avoiding all a-priori cali-

bration.

• It isolates the core of Visual Servoing functionality in a minimalistic way, while

being general in the types of robots, configurations, and tasks it can address.

• Only dependant on Eigen2 which is a standard of ROS libraries [1].

• Easy interaction with numerous robotic systems through ROS.

• Rather than including extensive video, image processing and tracking function-

ality, through ROS it can access numerous up-to-date computer vision libraries.

• A fully connected simulation environment available through Matlab by using

Corke’s Robotics Toolbox [42]. The simulation environment allows users to

quickly test the system, even if they do not have direct access to a robot.

Our focus is on a design that is simple to use. To that effect it is fully integrated

with with ROS [1]. It is reliable and incurs no extra dependencies on it’s users. Our

library is freely available at: http://ugweb.cs.ualberta.ca/~vis/ros-uvs/.

ROS-UVS is centered around the Visual Serviong process and accesses tracking

details and robot functionality through ROS. The main flow of information is shown

in Figure 1.4. First, tracking software is used to define visual features that identify

the locations of interest. Given the visual features, users construct an error vector

or encoding as shown in Chapter 3. This error vector is made in such a way that

when the constraints defined are met, the desired task will be completed and the error

2http://eigen.tuxfamily.org
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vector evaluates to 0. The control law defined in the Visual Servoing will then find

the motions required to minimize the given error and these will be used by the robot

controller to close the loop and perform the motion.

One limitation of Visual Servoing comes from the limited information that can

be acquired from a single point of view. To counteract this, two or more cameras

can be used. Given the multiple view points, constraints can be defined to complete

most 3D tasks. Section 4.4 showcases several systems where we utilize our ROS-UVS

system to complete a variety of tasks in 2D and 3D configurations. There is no

limitation to the number of cameras that can be used. Adding more view points will

help improve the stability and convergence. Examples of this are shown in Chapter 5.

Since this system performs Uncalibrated Visual Servoing the use of multiple cameras

is facilitated as they can simply be placed in the scene without needing to calibrate

their location or intrinsic properties.

Regardless of camera configuration the use of ROS-UVS is the same. The ROS

topic /image error is used to report the error vector. For those unfamiliar with ROS

many online tutorials are available in the ROS website.3. As a simple introduction

ROS allows users to create connected programs which are referred to as nodes. ROS

standardizes message prototypes that can be used to communicate between nodes.

This is especially useful in robotics as many components usually have to come together

to create a full robotic system.

ROS-UVS subscribes automatically to this topic through the Tracker Manager

object and uses the reported error to estimate the interaction matrix and to generate

the motions for the robot. Additionally ROS-UVS uses the reported errors to identify

when a tracker has been lost. Although identifying drift is challenging and outside of

the scope of this library, whenever a tracker stops publishing information the system

is smart enough to stop all robot motion. This is essential as with a lost tracker the

scale of the reported errors could change drastically resulting in unexpected robot

motion. As an added safety provision limits on joint velocities and joint movements

are also configurable by users. This can be done directly on the system while the

3http://wiki.ros.org/ROS/Tutorials
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servoing is taking place. This is done by using ROS’s dynamic reconfigure package 4.

4.2 System Overview

Our system is free and open-source and adheres to design principles outlined in other

software libraries such as ROS. The result of our design is a standalone library that

has no external dependencies. This allows for code extraction and reuse beyond its

original intent. As outlined in [43] many robotics software projects contain imple-

mentations which could be reusable outside of the project, however due to limitations

in the design it often becomes impractical to do so. By approaching Uncalibrated

Visual Servoing as a general robot interaction we can abstract the robot controller

and the image error tracking into individual modules.

In [44], the architecture for mobile robotic systems is evaluated. Although Visual

Servoing is not necessarily dedicated to mobile robots, many of the same properties

for a generic robotic system are desired. In their evaluation Kramer et al. suggest

design for robotic systems should follow 7 main requirements. According to the

authors systems should: (1) abstract robot hardware, (2) be extendible and scalable,

(3) provide limited run-time overhead, (4) be modelled with actuator control, (5)

follow good software practices, (6) provide tools and methods, and finally (7) be well

documented. In our implementation we attempt to complete these requirements.

Our system abstracts the robot through a robot controller that can be adapted to

any robot. This can be extended and is ultimately a direct link to the actuators as

these are what the defined control laws ultimately control. Having a minimalistic

framework allows for minimal run-time overhead. The choice of Eigen as our linear

algebra library also follows along these lines as its benchmarks show it as one of the

best performing linear algebra libraries available [45]. The simulation environment

provides simple prototyping and makes the system easy to test. Documentation and

sample uses of the library have also been provided.

A minimalistic example for using ROS-UVS is presented in listing 1. For more

4http://wiki.ros.org/dynamic_reconfigure
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details the most up to date and complete documentation of the code can be found at

the library’s website.5.

#include <ros/ros.h>

#include "ros_uvs/tracker_manager.h"

#include "ros_uvs/ibvs.h"

#include "ros_uvs/wam_controller.h"

int main(int argc, char *argv[]) {

ros::NodeHandle nh_("~");

TrackerManager tm(nh_);

WamController wam(robot_ns, nh_);

IBVS ibvs(robot, tm);

int dof = 4;

ibvs.update_jacobian(robot, dof);

int timeout = 10; // seconds

float lambda = 0.05; // step_size

ibvs->converge(timeout, lambda);

}

Listing 1: Minimalistic UVS implementation leveraging ROS-UVS.

In typical ROS fashion a node is first initialized. This node is the main process

by which the ROS system is defined. Three main objects then come together to form

the Uncalibrated Visual Servoing system.

Users of our library need only create a small interface to the robot that will be

controlled. In this interface a method to signal the robot motion will need to be

implemented. This can be done through either joint position commands or velocity

control. The UML diagram in Figure 4.1 illustrates how the data is managed and

shows the three main classes relevant to the example listing.

First a TrackerManager is created. This system is the bridge between ROS-UVS

and the visual tracking library of the user’s choice. Through this bridge the defined

visual error is fed into our system. The visual features are expected to be setup by

the user into an error vector of their choosing. This is left as a user configuration as

there is no restriction on what errors can be defined. They are task dependant and

as such it is not practical to enforce a rigid structure around them. By leaving this

5http://ugweb.cs.ualberta.ca/~vis/ros-uvs/examples.html
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Tracker Manager

+ get_error()
+ get_eef_pos()

RobotController

+ delta_move()
+ vel_move()
+ get_used_joints()

IBVS

- RobotController* : robot
- TrackerManager* trackers
- Eigen:MatrixXd : jacobian
- Eigen:MatrixXd : jacobian_inv
- Eigen:VectorXd : prev_error
- Eigen:VectorXd : prev_jnt_state
- Eigen:VectorXd : prev_eef_pos

+ step(double : lambda)
+ update_jacobian(double : delta, size_t dof)
+ broyden_update()
+ converge(double timeout, double : lambda)

/image_error

/uvs_jacobian

Figure 4.1: UML diagram overview. Three main classes are de-
fined. IBVS implements Image Based Visual Servoing and pub-
lishes the calculated Jacobian out through the uvs jacobian topic.
Tracker manager handles the data published by trackers through the
/image error topic.
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definition in the user’s control we maintain greater flexibility. Once defined, the error

vector is read through the image error topic. To have a responsive system the error

should be published with minimal delay after a frame is captured by the cameras.

Then, a RobotController is defined. This is the main interface to the robot to

control. The controller provides the ability to make small robot motions with the

delta move method. This can be implemented through any available robot inter-

face, for example both absolute movements or velocity controls will work. The only

requirement is that the implemented control method causes the motions on the robot.

Finally, the Visual Servoing object is created. This object, IBVS, depends on both

the TrackerManager and the RobotController. Using references to these objects the

IBVS object can then direct the robot to perform the required motions and find the

image Jacobian while at the same time accessing the error produced by the trackers.

As an isolated module different servoing strategies can be easily implemented. In

testing our system we have tried a variety of changes such as generating exploratory

motions based on visual feature motion rather than direct joint angle motions. Cre-

ating modified servoing modules is straight forward and easy to do.

Once everything has been defined we can drive the system to attempt convergence

with a given timeout and a step size lambda.

4.3 Simulation

Using Matlab’s new Robotics System Toolbox [46] which connects to ROS, the same

system calls and control directives are used for both simulation and real robots. Figure

4.2 shows a sample simulation of a Visual Servoing experiment.

In the simulation environment that we release with ROS-UVS we allow users

to create simple configurations for visual servoing. Virtual Cameras are available

following either a simple pinhole camera model or a full projective model.

The pinhole camera model as presented by Hartley and Zisserman [47] is shown in

Figure 4.3. In general it is easy to think of the projection as a series of homogeneous

coordinate matrix multiplications as shown in equation 4.1.
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Figure 4.2: A sample simulation experiment. The robot has 3 points
attached to it’s end effector. Color coded target points are also
visible. The two frames show the position of the virtual cameras.
At the top the images as seen from these cameras are shown.
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Figure 4.3: In the pinhole camera model the camera is shown with
its center C viewing down the Z axis. The image camera plane is
formed by the projection of points in 3D such as X onto the camera
image.
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% Initialize robot

mdl_puma560;

robot = p560;

robot.tool = rt2tr(eye(3), [0 0 0.1]’)

initial_pose = [1.5708 0.7854 3.1416 0 0.7854 0];

target_pose = [1 1.9635 2.7489 0 0.7854 -pi/4];

target_T = robot.fkine(target_pose);

% Define structure of tracked points with respect to the

% robot’s tool

eef_point_displacement = [0.00 0.00 0.00;

0.00 -0.10 0.10;

0.10 -0.10 -0.10;

1.00 1.00 1.00;];

% Target points are transformed to the target robot pose

target_points = target_T * eef_point_displacement;

% Create cameras

camera_rotation = rt2tr(rotx(pi/2) * roty(180, ’deg’) * rotz(pi);

c1 = ProjCamera(camera_rotation, [ 0.05, -1, 0.0]’), ’c1’);

c2 = ProjCamera(camera_rotation, [-0.05, -1, 0.0]’), ’c2’);

cameras = [c1;c2];

% Create point to point error function

e = @(eef, target) target - eef;

W = World(cameras, robot, initial_pose, target_points,

eef_point_displacement, pi/180, e, true);

ts = rossvcserver(’/matlab/joint_move’, ’visual_servoing/JointMove’,

@W.joint_move)

Listing 2: Sample world setup for simulation experiment in Matlab.
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/matlab/pose and matlab/joint states topics. These then connect to a controller

node which the user can direct to perform the simulation.

Sample experiments are released and documented on the library website and also

used to investigate convergence behaviour and how camera placement affects it. The

results of these experiments are presented in Chapter 5. A sample world configuration

matching that of Figure 4.2 is shown in listing 2.

Configuring a simulation world is straight forward. Users first define the world

structure. This includes the robot to be used, the cameras and their pose with respect

to the robot, the features to track on the robot and the target pose for the robot.

The error function must also be defined with respect to the tracked features. Once

defined the world is created and the ROS topics are created.

4.4 Sample Robot Use Cases

Our ROS-UVS system has been used in several projects within our lab. In our expe-

rience this system has shown to be flexible and easy to adapt to different applications.

Initial testing was done on two WAM arms using 4 and 7 degrees of freedom (DOF).

Later an Android interface to control the arms was developed. Virtual control points

were also used to drive the motion of the robot in a compliant control system through

the use of virtual springs. An interface into an ARDrone was also implemented. Some

other use cases are also discussed in this section. Table 4.1 outlines the number of

DOF controlled by UVS, the type of error that is defined, the number of cameras

used, and the type of interaction of the implemented systems. Interaction type is

determined by whether the user is able to dynamically modify the target point for

the servoing, or if the target will remain static once the user defines it for the first

time.

4.4.1 Visual Task Specification Interface

Visually specifying high-level tasks by combining a set of geometric constraints in an

intuitive way is challenging. In this system we address this challenge by presenting
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System Controlled DOF Error # Cameras Interaction
Visual Task Specification Interface User Defined User Defined 2 Static

Android Mobile 2 point-to-point 1 Dynamic
Virtual Control Point 3 point-to-point 2 Static

Amazon Picking Challenge 3 point-to-point 2 Automatic
Quadrotor Assisted Flight Control 1 angular 1 Static

3D point minimization 3 3D point-to-point 1 RGB-D Static
Gesture Based Control 3 point-to-point 1 Static

Table 4.1: Overview of ROS-UVS use case properties. Controlled
DOF are driven directly by ROS-UVS. The number of cameras
alongside the error type determine the kind of motion and tasks
that can be completed. Finally the interaction type determines if
the user can dynamically change the servoing target or if it remains
static once initialized.

the user with an image-editor like visual interface where they can specify the task.

First, users initialize trackers on the relevant objects. Then, by selecting the defined

trackers, geometric constraints such as point-to-point, or point-to-line task are de-

fined. These constraints produce the required error measure that is then given to

the ROS-UVS library. Using this error a Jacobian relating the robot motions to the

geometric constraints is learned. Using Visual Servoing the robot movements are per-

formed and the specified constraints are minimized. As can be seen in Figure 4.5 the

initialized trackers are indicated with the coloured points. Once the Visual Servoing

is performed the error is minimized.

This system allows us to explore how different constraints affect the robot’s motion

and how users plan in order to complete tasks. More analysis in this area is needed

and it is part of future work.

4.4.2 Android Mobile Interface

In this system the user’s touch location is tied directly to the Uncalibrated Visual

Servoing target. This provides an intuitive interaction as the robot will follow the

user’s finger. Development within a mobile system such as an Android device is now

simple as many tools are provided by the ROS environment. Having the ROS-UVS

library integrated in the same ecosystem only helps to further expand it.

Figure 4.6 showcases the use of the mobile interface. A top-down view of the
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Figure 4.5: Top: User defines geometric constraints visually. Green
points indicate point-to-point constraints. Magenta indicates a line-
to-line constraint, and finally blue is used for parallel constraints.
Bottom: Once the constraints have been specified the Visual Ser-
voing takes place minimizing the error of the defined goals.
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Figure 4.6: Left: Mobile platform view. Green circle displays
tracked center of the end effector. Crosshairs indicate the user’s
defined target location.

robot’s workspace is displayed to the user. Through touch interactions the user can

initialize a tracker on the end effector and activate the servoing. In this system

the need for tunable settings became apparent. Learning rate for Broyden updates,

maximum joint velocities, and step size are some of the main attributes that require

tuning to present the user with a natural system to use. ROS-UVS presents an easy

to use API allowing users to quickly develop a system and configure user interfaces

where settings can be altered while the system is running through ROS’s dynamic

reconfigure system. This facilitates parameter tuning and experimentation as changes

can be done live.

Using these features we were able to create a user interface that was responsive and

created predictable motions for the robotic arm without requiring a camera calibration

process. A great advantage of this system was that we required no registration to be

performed with the camera. We compared several other control modes including a

gamepad and a calibrated joint control system. Not having to worry about the robot

or camera moving made the visual interface easier to quickly setup and test.
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Figure 4.7: Using a virtual spring center as a virtual control point we
are able to servo the arm while maintaining contact with the table
top surface.

4.4.3 Virtual Control Points

This example describes the application of UVS for a compliant system in contact with

the environment. To this end, a virtual spring is added. Assuming a linear spring

model, the force applied by the end effector is:

F = K(xd − x) (4.2)

where K = diag(Kx, Ky, Kz) is a stiffness matrix, x = (x, y, z)T is the Cartesian

position of the end effector and xd = (xd, yd, zd)
T is the centre of the virtual spring.

In order to maintain the contact with the environment zd is set to be 20cm below

the end effector position Z. This generates a constant force in negative Z-direction.

Given the computed Cartesian force, the commanded torque to the robot would be

τ = JT
r F , where Jr is the robot Jacobian.

UVS is then used to move the robot’s end effector towards a goal. To do this,

we slightly modify the control law such that the interaction matrix J relates the
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Cartesian space of the virtual spring with the image space as follows:

J =
[

∂f(xd)
∂xd

∂f(xd)
∂yd

∂f(xd)
∂zd

]

(4.3)

and then ẋd = −λĴ†e. The commanded torque to the robot would be τ = JT
r F ,

where Jr is the robot Jacobian. Using this configuration allowed us to generate a

visual control system where we could safely generate contacts between a solid table

and the robot.

The advantage here is that we are able to use the whole UVS framework and by

changing the control output of our robot controller to be in the Cartesian space of

a virtual point at the end effector, rather than the individual robot joints we can

create a new way to interact with the robot. The exploratory motions we generate

to estimate the robot Jacobian are general and can be used in such a way directly.

4.4.4 Amazon Picking Challenge (APC)

Our research group participated in the APC [3] where contestants were asked to grasp

a variety of objects from a shelf. The ROS-UVS system was used to perform grasp

alignment. Figure 4.8 illustrates an example grasp. SURF [48] features were learned

for the set of objects to be grasped. Using these visual features, objects are identified

as they come into view.

A tracker is then automatically initialized and the grasp alignment is done through

UVS. The error is defined as a point to point geometric constraint from the object

to the center of the robot hand. Once the error is within a threshold the servoing is

stopped and the fingers on the robotic hand are closed.

Although the task was defined by simple point to point visual error the position-

ing of the arm after performing the Uncalibrated Visual Servoing was precise enough

to finalize the task. In this example a great feature is that the system worked au-

tonomously and successfully performed the grasp. A downside is that we required

a-priori information to automate the instantiation of the tracking system.
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Figure 4.8: Grasping done via Uncalibrated Visual Servoing. A
colour tracker is initialized to track the position of the green box. A
target is defined in between the hand’s fingers. Once a threshold is
reached the hand closes completing the grasp.

4.4.5 Quadrotor Assisted Flight Control

Assisted control for the flight of an ARDrone, a commercially available quadrotor,

was developed with the aid of ROS-UVS. The teleoperation system is designed to aid

users in the task of following a line by having the drone automatically adjust the yaw

while in flight to align with the target.

A sample scenario of this can be seen in Figure 4.9. Utilizing the bottom facing

camera of an ARDrone we perform line tracking by segmenting the yellow line. The

angle offset of the line to the vertical is then used to calculate the error for the visual

servoing. Teleoperation is performed where the user takes control of the roll, pitch

and elevation degrees of freedom while the UVS is performed for the drone’s yaw.

This use case was also automated and users were could turn the piloting assist on

when required.

The system allowed users to divide the drone’s control by taking over a single

degree of freedom. This approach can be used to facilitate tasks for users while at

the same time leaving them with an overall control of the robot.
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Figure 4.9: Line alignment with UVS controlling the drone’s yaw
position. Once UVS is active users manually control roll and pitch
to position the drone accordingly.

4.4.6 Other Uses

Two other relevant systems use ROS-UVS. First a 3D minimization where the error

tracking is performed in 3D. Using an RGB-D sensor, such as Microsoft’s Kinect [49],

a 3D location is tracked and the error is formulated as a point-to-point constraint

explicitly in 3D. Learning the interaction matrix with this 3D error the robot is able

to perform UVS in the same way as with any of the other applications presented in

this chapter. Notice that common RGB-D manipulation systems require a calibration

step in order to make rigid body transformations between the robot reference frame

and the sensor’s reference frame. With our implementation this is not required as the

relationship is learned automatically when the Jacobian is estimated. This use case

is another example of the flexibility of using virtual control points through the visual

servoing.

Finally a gesture based system was also developed. Through this system users are

able to initialize trackers which are used to perform UVS. These two final use cases

are of interest as they are not common uses of UVS. In this case the flexibility of

ROS-UVS made it possible to generalize its use into these peculiar scenarios.
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Figure 4.10: Top: Using a Kinect 3D points are tracked and a point
to point in 3D space is defined. The arm then moves to minimize
the tracked error. Bottom: Utilizing body tracking a 3D cursor is
created. Through gestures users are able to initialize trackers and
define a point to point task.
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Chapter 5

Visual Servoing Convergence and
Control Strategies

This chapter demonstrates Uncalibrated Visual Servoing in practice and summarizes

many of the lessons learned while using our library. With the use of ROS-UVS

we showcase and study the behaviour of UVS. Section 5.1 presents three prominent

challenges we have faced with UVS; mainly the problems of camera positioning, noise

in the visual trackers, and finally how to apply the control laws on the physical robot.

In section 5.2 we then present several experiments tailored to investigate and highlight

the challenges described. Finally in section 5.3 we conclude by reviewing the lessons

learned through these experiments and our use of ROS-UVS.

5.1 Uncalibrated Visual Servoing Challenges

With Uncalibrated Visual Servoing our goal is to control the motion of a robot with

the aid of image data. Utilizing cameras we generate constraints that limit and or

guide the robot’s movements. There are many things that affect how well the servoing

progresses. In this section we first explore the challenges in the placement of cameras

and task definition. Then, we quickly take a look at the noise present in visual trackers

when operating on common objects that we manipulate. Finally, the roadblocks faced

when controlling our robot are discussed along with the approaches we used to work

around them.
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5.1.1 Task Definition and Camera Placement

One of the main concerns when performing Uncalibrated Visual Servoing relates to

how define the visual features being tracked. These features dictate how the servoing

will be performed. To address this we need to consider what task is being defined,

and how the cameras are placed.

If the visual features are not defined properly, several problems arise. For instance,

one common problem is not properly constraining the target pose. The number of

degrees of freedom that are controlled must be fully constrained by the visual features,

otherwise, the resulting robot motion and the final pose can vary from the expected

result. An example of this was shown for the wrench task in Figure 3.5. The total

number of DOF that can be controlled with VS is directly linked to the unique

constraints in the error vector. These constraints can however overlap. In general

knowing off hand what degrees of freedom have been constrained is not straight

forward and users must acquire the knowledge and intuition to determine how a

desired task could be defined. It is useful if users can learn how to think of the object

and robot motions with their projective motions in mind.

Camera positioning and the chosen visual features also present a challenge. Plac-

ing cameras so that the task at hand is visible, both when being defined, and com-

pleted, is not always possible. Occlusion during the motion of the robot can cause

trackers to fail. Since the servoing performs a closed loop control, the desired motion

of the robot can not be calculated as specified until the trackers are reinitialized.

When a tracker fails the servoing is stopped. If the task has been overspecified this

could be handled better by identifying what rows in the error vector have been affected

and acting accordingly. This is left for future work.

The two prominent camera positions used are either eye-in-hand, or eye-to-hand.

An example for each of these can be seen in figure 5.1. In eye-in-hand the cameras

are positioned such that they can get an overview of the scene. With an eye-to-hand

configuration the cameras are mounted rigidly on the robot and the motion of the

robot will cause the camera pose to change. Where possible, the camera configuration
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Figure 5.1: Examples of camera placement Left: Eye-to-hand cam-
era. Right: Eye-in-hand camera.

should take into account the task at hand in order to facilitate its completion.

An example task can be seen in Figure 5.2. Here the eye-in-hand camera con-

figuration was selected. The rigid motion of the camera with respect to the robot

facilitates the task specification. The center of the gripper can be easily defined as

a static point on the images and the only required tracker is placed on the straw.

Configuring the cameras and the robot correctly makes difficult tasks such as picking

a small thin object like the straw feasible. This is one example of a fine object ma-

nipulation task that we were able to perform through Visual Servoing that was not

possible with low priced, off the shelf, 3D sensors [12]. As outlined in our paper the

point cloud reported by the Kinect sensor used was not able to see the straw.

Task definition is also constrained by the camera positioning. As the robot moves,

maintaining the visual features within the camera’s field of view can be challenging.

First the robot will perform motions to derive the image Jacobian. As the next couple

of sections show, the system becomes more stable when these motions result in larger

changes of the visual features. A balance must then be found to allow the motions of

the arm to be large while maintaining the visual features in the camera’s field of view.

Several approaches have been studied to try and solve this problem, but they usually

require camera calibration as presented in [50], or path planning as done in [51].
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Figure 5.2: Two camera views are shown on the left and right
columns. The straw is tracked in both cameras, a point to point
error function between the two blue rings on each camera is formu-
lated. When both errors are minimized the gripper is in position to
grasp the straw.
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5.1.2 Characterizing Visual Tracker Error

Having discussed some of the issues and challenges with camera placement we now

turn our attention to the visual trackers used for VS. Understanding their behaviour

can help us better simulate them and determine their effects on the servoing. As

the robot moves the tracked features will change which can cause trackers to drift or

fail. Unfortunately there is no quick and easy solution to this problem other than

wait for better trackers to be developed. As users become more experienced with the

behaviour of visual trackers and the robot motions, it becomes easier to identify good

candidates for tracking targets.

Figure 5.3: Sample objects used to measure noise in a sub-pixel
accurate tracker

Since we are dependant on tracker performance it is crucial we understand how

they behave and what their effect is on the servoing. To get an estimate of the normal

noise present on a tracker we tested several objects. We performed the tracking using

three different available trackers: (1) Approximate Nearest Neighbour Search [52], (2)

ESM [53], and (3) Inverse Compositional [54]. As shown in figure 5.3 we initialized

trackers of different sizes on several objects and recorded the points reported.

After initializing the trackers we moved the objects in order to simulate the mo-

tions that they will encounter in a typical manipulation task. Having moved the

objects we recorded the published feature points over 10 seconds and observed their

distribution. A sample distribution of the reported points for the playing card is
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shown in figure 5.4. The standard deviation found for the objects we tried ranged

between 0.03 to 0.43 pixels when the tracking had not failed or drifted.
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Figure 5.4: Sample distribution of the reported points for the Ap-
proximate Nearest Neighbour tracker initialized on a playing card.

These numbers give us a good estimate of the best case scenario with trackers

that are easily available. The trackers tested here produce sub-pixel accurate feature

points. Depending on the implementation details, trackers can sometimes report

integer values corresponding to the tracked pixel. In section 5.2 we use these values

to compare the effects of the noise present in these trackers.

5.1.3 Robot Control

In Chapter 2 we derived the control law used for Image Based Visual Servoing. As

shown in equation 2.15, the joint velocities, q̇, are used to drive the robot towards

minimizing the visual error. One aspect of this control law that is not often discussed

in literature is its direct relationship with a direct joint control approach.

To better understand this relationship we can refer to the system overview of

ROS-UVS in Figure 1.4. The thing to note is how the update of the control law

is propagated to the robot. In practice, on each new image frame received by the

cameras, the error and the resulting joint velocities are calculated. This means that

the robot’s joint velocities are updated at the same frequency as the camera frame

rate as long as the visual trackers can process the image data.
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Given a deterministic update rate dictated by the camera we can find an equivalent

joint position control to be:

q̇ = −λĴ†e = ∆qr (5.1)

Where r is the inverse of the camera frame rate. For example, for a 30 fps camera,

r = 1/30.

It is important to realize this relationship exists when using Visual Servoing.

Although in practice they are not exactly equivalent, due to the dynamics of the

robots. For example, whenever there is a velocity change, the robot will first have

to accelerate to that velocity, meaning the whole ∆q distance will not be traveled.

In practice they behave similarly and the use of joint control can be advantageous

in certain scenarios. In our experience the control of the robot through joint motion

commands has been more intuitive and safer to use.

Figure 5.5: Small motions are restricted by an area of tolerance
within the robot’s controller. When faced with a goal that is very
close using a step size λ that is too small might reduce the directed
robot motion into the minimum tolerance resulting in no motion.

The specifics of the robot being used can also affect how reliable the system is.

For example, in the WAM control, commanded joint movements result in no motion

when they are sufficiently small. As is shown in Figure 5.5, when performing Visual
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Seroving this situation can come into effect. Suppose the robot is trying to move

from its current position at the red circle with a target located at the green circle.

Assume also that we have a perfect interaction matrix such that the distance between

these points would be covered by one iteration of our control law when using a λ = 1.

Using a λ of 1/4 would then result in a small joint motion that is scaled down and lies

within the motion tolerance. In this case depending on the implementation, Visual

Servoing will keep trying to converge to no avail as no robot movement is being done,

or a limit on the number of time steps will be reached. In practice this increases

the minimum error of the final robot position to be TOL/λ where TOL refers to the

robot’s tolerance.

Dealing with this control issue is not straight forward. In practice this issue will

be highly dependant on the robot that is in use and how it is controlled. Note that

a similar problem was encountered on the WAM when dealing with velocity control.

Given the model of the robot’s dynamics, the force applied to accelerate it to a

given velocity was not always appropriate when commanding slow velocities. This

problem was further complicated by the fact that the minimum joint velocities were

not constant for different joint angles.

Increasing the λ parameter or gain can help reduce the error for both control

methods. In some cases it can also cause the system to be less stable and diverge as

shown in the next section. This is especially the case if the gain is set high when the

residual error is also still high as big motions are created with this. As λ is increased

the robot will can begin oscillating about the target, and if the set gain is too high

the robot will then diverge.

5.2 Uncalibrated Visual Servoing Simulation and

Experiments

In this section we take the challenges presented above and present experiments that

explore their effects and give us insight into how to best handle them. First we explore

camera positioning by creating a Matlab simulation environment using ROS-UVS
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and compare the results of performing UVS across different configurations. Then

we delve into the effects of tracker noise on the accuracy and convergence of the

servoing. Finally we present repeatability experiments performed on our two WAM

robotic manipulators.

5.2.1 Camera Rotation Experiment

In order to visualize the effects of camera placement several experiments were done

in simulation. First, we define a world with a Puma 560 robot configured as specified

by Corke in [55]. Three feature points were created and rigidly attached to the end

effector. These define the visual features to be tracked on the robot. A matching

set of points were placed 0.32 meters away to define a target for the UVS. Using

these visual features we define a point to point task for each of them. With these

constraints we generate a well defined task for the robot that covers all degrees of

freedom. Virtual cameras were placed 1.0 meter behind the target position and they

were offset by 30cm. A visualization of the world can be seen in figure 5.6.

Figure 5.6: Puma 560 placed in a Matlab simulation. Three points are used to define
a point to point error for Visual Servoing. Two cameras represented by the blue
reference frames were placed behind the robot to observe the task.

Once configured, this simulation world was used to perform Uncalibrated Visual

Servoing for 50 time steps while controlling the 6 robot joints. In order to compare
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Figure 5.7: The cameras are rotated together around the target over 1 degree incre-
ments. UVS is performed for 50 time steps at each location. Here the cameras are
represented by a simple reference frame with the camera center of projection down
the Z axis.

the performance across multiple camera placements the camera position was rotated

about the target robot location by 1 degree increments about the Z axis as shown

in figure 5.7. This was then repeated while changing two parameters. First the joint

motions when calculating the Jacobian were varied. Simulations were performed using

motions of 2, 4, 8, and 10 degrees for each joint to calculate the Jacobian. For each

of these the λ parameter was tested at 0.25, 0.50, 0.75 and 1.00. The experiment was

performed using three different camera models. First a camera that reports a precision

of up to a pixel was used, this was simulated by rounding the value calculated from

the camera projection. Then a camera reporting a perfect visual tracker, and finally

a camera where we introduced Gaussian noise with a standard deviation of 0.2 pixels

and a mean of 0.

The results of these simulations can be found in tables 5.1, 5.2, and 5.3. Here

we report the mean image error and 3D errors, as well as the mean number of steps

it took to reduce the image error to be below 10 pixels. In this context we report

image error and 3D error as the sum of absolute values of the errors for the three
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tracked visual features. When reporting the mean error values only cases which were

not identified as divergent were used.

To identify diverging cases we looked at the image error and flagged simulations

where the image error increased by over 100 pixels between iterations. A manual

inspection of the flagged cases revealed this to be a good approximation to identify

diverging cases. In some situations the Visual Servoing managed to recover, but this

only occurred after several random motions resulted in the end effector moving close

to the target. In a real world application this random motion would present a risk

to the robot and its environment and would not be acceptable. Users would stop the

robot long before it managed to recover.

From the data gathered several conclusions can be made. First, as can be seen

by the mean image error and the mean 3D error, when converging there is little

difference in the final position error. Second, when looking at the rate of conver-

gence as λ increases the speed of convergence increases. This holds over all camera

configurations.

We can also look at the stability of of the Visual Servoing with regards to the

number of instances that diverged. When performing small motions while calculating

the Jacobian the motion of the visual features in the images becomes smaller. This

results in a more unstable system as can be seen when ∆ = 2, we can see iterations

diverging at all values of λ. The pixel camera model generates the most cases that

diverge, followed by the Gaussian noise, and finally having a perfect tracking system

is the most stable. Although this is expected, it is surprising how much effect even a

small amount of noise can have on the stability of the system.

Similarly, when λ = 1.0 we see a significant increase in the number of iterations

that diverge. This relates back to equation 5.1. As λ is increased we cause bigger

robot motions. This would be equivalent to having a slower camera frame rate.

What causes the decrease in stability relates to the fact that when a motion occurs

the likelihood that it will overshoot increases. This can cause an oscillation around

the target, or if the overshoot is too large then the arm will move away from the

target and diverge.
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Looking at a specific example, we can further explore how rotating the cameras

around the target affects performance. Detailed statistics are shown in Figure 5.8 for

the case when ∆ = 6 and λ = 0.5 and a pixel camera is used. These graphs make it

easy to visualize the relationship between properties of the camera positioning. The

number of steps required to reduce the image error below 10 pixels, as shown by

the Steps to converge graph, is mirrored by the condition number of the Jacobian.

Given a higher condition number we expect the sensitivity to errors to increase. By

using the pixel rounded camera model a lot of noise is introduced in the virtual tracker

output. After having performed these experiments the true extent of its effects became

apparent. Using trackers like this greatly affects the performance of Visual Servoing.

When compared to the perfect tracker we can see that we get errors as high as 1cm,

while the perfect tracker manages to reduce the 3D error well below 1mm for most

camera poses.

As can be seen by the results, the behaviour of Visual Servoing when using perfect

trackers with sub-pixel accuracy is much more stable. The image error was reduced

to below 10 pixels in all cases within 40 steps. The image error was further reduced

to almost 0 in most cases within 20 steps. Similarly the 3D error for most cases

was under a tenth of a millimeter. Given more time to converge all camera positions

would have converged to sub-pixel camera errors. The importance of accurate visual

trackers can not be emphasised enough.

When estimating the Jacobian with small motions, introducing Gaussian noise

increased the number of instances that diverged when compared to the perfect tracker.

The system became most unstable in this case as the relative error between the change

in pixel value when estimating the Jacobian is greater. The introduction of noise

caused the Jacobian to change significantly making the system more unstable.

Surprisingly when the motions to calculate the Jacobian where larger, the number

of iterations that diverged went down when compared to the perfect tracker. A

possible explanation for this is that as the noise was introduced into the Jacobian,

the perceived utility for each joint changed and it was averaged out. The error that

was introduced made it so that joints don’t dominate the motion as much. This made
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the system less likely to diverge as smaller steps were taken.

As a conclusion, we can see that special care should be taken with regards to the

tracker used. By analyzing the visual tracker an estimate of the pixel noise should

be evaluated in the conditions in which the UVS will be performed. Knowing the

noise of the visual trackers, one can then estimate the image motion required when

generating the Jacobian to keep the relative error within some bounds so that a

minimum precision can be reached.
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Control Mean Image Mean 3D Mean Steps Iterations
Parameters Error Error to <10px Diverged

Jacobian ∆ = 2
λ = 0.25 8.151261 0.007660 8.900662 3
λ = 0.50 2.484507 0.004600 4.525526 5
λ = 0.75 2.544413 0.003703 2.966767 11
λ = 1.00 5.115854 0.005070 2.653979 32

Jacobian ∆ = 4
λ = 0.25 5.445682 0.005613 8.813953 1
λ = 0.50 1.242340 0.003169 4.640805 1
λ = 0.75 1.500000 0.003176 3.184971 4
λ = 1.00 2.800000 0.003586 2.752613 45

Jacobian ∆ = 6
λ = 0.25 5.433333 0.005976 8.834983 0
λ = 0.50 0.938889 0.002876 4.658046 0
λ = 0.75 0.902778 0.002811 3.207977 0
λ = 1.00 3.875776 0.004209 2.843636 38

Jacobian ∆ = 8
λ = 0.25 6.216667 0.005973 8.840532 0
λ = 0.50 1.047222 0.002960 4.662824 0
λ = 0.75 0.986111 0.003000 3.323864 0
λ = 1.00 3.531250 0.004253 2.925000 40

Jacobian ∆ = 10
λ = 0.25 5.952778 0.006031 8.817881 0
λ = 0.50 0.941667 0.002883 4.691429 0
λ = 0.75 0.994444 0.002940 3.292264 0
λ = 1.00 3.088608 0.003802 2.945055 44

Table 5.1: Resulting error convergence properties from rotating the
cameras around a point to point task. For these simulations the
simulated trackers reported integer pixel precision by rounding to
the nearest pixel.
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Figure 5.8: Detailed graphs of image and 3D error as well as Jacobian
condition number and steps to convergence for a camera rotation
simulation experiment where ∆ = 6 and λ = 0.5. Cameras in this
simulation reported integer pixel precision by rounding to the nearest
pixel.
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Control Mean Image Mean 3D Mean Steps Iterations
Parameters Error Error to <10px Diverged

Jacobian ∆ = 2
λ = 0.25 5.264595 0.003251 8.855263 0
λ = 0.50 0.546380 0.000382 4.738889 0
λ = 0.75 0.171979 0.000165 3.211111 0
λ = 1.00 1.042769 0.000614 3.161290 43

Jacobian ∆ = 4
λ = 0.25 5.456003 0.003420 8.844884 0
λ = 0.50 0.594838 0.000420 4.752778 0
λ = 0.75 0.198895 0.000187 3.255556 0
λ = 1.00 0.585607 0.000438 3.098361 52

Jacobian ∆ = 6
λ = 0.25 5.644139 0.003586 8.831683 0
λ = 0.50 0.643409 0.000460 4.766667 0
λ = 0.75 0.228489 0.000212 3.302778 0
λ = 1.00 0.818172 0.000629 3.102310 53

Jacobian ∆ = 8
λ = 0.25 5.831923 0.003751 8.808581 0
λ = 0.50 0.691667 0.000504 4.777778 0
λ = 0.75 0.261425 0.000241 3.330556 0
λ = 1.00 0.625176 0.000468 3.099338 57

Jacobian ∆ = 10
λ = 0.25 6.021153 0.003916 8.798680 0
λ = 0.50 0.739442 0.000552 4.772222 0
λ = 0.75 0.298541 0.000273 3.358333 0
λ = 1.00 0.913177 0.000645 3.145695 55

Table 5.2: Resulting error convergence properties from rotating the
cameras around a point to point task. For these simulations the
trackers reported sub-pixel accuracy.
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Figure 5.9: Detailed graphs of image and 3D error as well as Jaco-
bian condition number and steps to convergence for a camera rota-
tion simulation experiment where ∆ = 8 and λ = 0.5. For these
simulations the trackers reported sub-pixel accuracy.
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Control Mean Image Mean 3D Mean Steps Iterations
Parameters Error Error to <10px Diverged

Jacobian ∆ = 2
λ = 0.25 8.868672 0.006711 8.769231 1
λ = 0.50 6.266691 0.004368 4.485207 3
λ = 0.75 6.071691 0.004064 2.996970 12
λ = 1.00 6.527398 0.003631 2.540268 31

Jacobian ∆ = 4
λ = 0.25 7.145731 0.005205 8.776667 0
λ = 0.50 3.809346 0.002252 4.661017 1
λ = 0.75 4.435710 0.002510 3.135057 2
λ = 1.00 5.905690 0.003537 2.915033 26

Jacobian ∆ = 6
λ = 0.25 8.374407 0.005089 8.827815 0
λ = 0.50 4.006011 0.002318 4.662857 0
λ = 0.75 4.521807 0.002685 3.197708 1
λ = 1.00 6.235470 0.003426 2.919861 39

Jacobian ∆ = 8
λ = 0.25 7.860871 0.004988 8.794020 0
λ = 0.50 3.998573 0.002287 4.667614 0
λ = 0.75 4.410463 0.002336 3.289773 0
λ = 1.00 5.754420 0.003414 3.035211 44

Jacobian ∆ = 10
λ = 0.25 8.266994 0.005281 8.771523 0
λ = 0.50 4.132635 0.002533 4.648415 0
λ = 0.75 4.324643 0.002491 3.284507 0
λ = 1.00 6.246298 0.003606 2.985455 44

Table 5.3: Resulting error convergence properties from rotating the
cameras around a point to point task. For these simulations the
trackers introduced a small amount of Gaussian noise with a mean
of 0 and a standard deviation of 0.2.
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5.2.2 Camera Baseline Rotation Experiment

In the previous experiment the cameras were rotated about the target point while

keeping the distance between them constant. In this experiment we rotated one

camera only. This changes the baseline distance and angle of view between the

cameras with respect to the target. The outcome of this experiment is shown in

figure 5.10. In these graphs a negative value is placed wherever the system diverged.

In this iteration the experiment was run with a ∆ = 6 and λ = 0.50. The relationship

between the Jacobian condition number and the image error remains. As the condition

number increases, the longer it takes for the Visual Servoing to converge.

The Jacobian condition number fluctuates based on the rotational baseline be-

tween the two cameras. As can be seen when the cameras are placed orthogonally

the condition number is at its minimum. When the cameras overlap the Visual Ser-

voing diverges as the system is left with only one point of view of the scene.

In practice this suggests that placing the cameras with a large baseline rotational

difference will give the best results. The error is minimized faster and thus after the

50 steps of servoing we get a better final position. Logically this makes sense, when

the cameras are rotated separately from each other around the target, the view along

the camera center of projection of one camera is better covered by the other. This

better coverage of the depth dimension leads to a more stable system.

Although it would be ideal to be able to set-up the cameras in an optimal position

this is not always possible. By having a 90 degree offset it becomes hard to view the

same surface on both cameras. This makes tracking challenging when trying to follow

a planar surface for instance the image will be skewed and as the surface rotates away

from the camera the area it covers in the image decreases. As the area decreases the

tracking becomes harder and it is more likely to get lost.
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Figure 5.10: Detailed graphs of image and 3D error as well as Jaco-
bian condition number and steps to convergence for a camera rota-
tion simulation experiment where ∆ = 8 and λ = 0.5
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5.2.3 Robot Repeatability Experiments

With the lessons learned from the previous experiments, regarding camera placement

and Visual Servoing parameters, we set out to measure the repeatability on our WAM

robot. The expectation is that the repeatability achieved by the Visual Servoing

system should exceed that of the internal robot controllers. The external sensing

from the cameras should be able to correct any internal errors within the robot.

However in previous attempts to measure repeatability within our group with our

WAM robot, Visual Servoing had failed to surpass the internal robot control.

To facilitate this experiment and test the limits of Visual Servoing on our robot

we first performed a simple servoing experiment. Using a 0.001 inch dial meter we

measured the 3D error when performing a motion of a single joint of the robot. The

camera and robot configuration can be seen in figure 5.11.

Figure 5.11: Single joint robot repeatability experiment setup

The cameras were placed with close to an orthogonal position with respect to each

other. The target was located 20 cm away from the cameras. The first joint was then

rotated and a flat surface on the elbow of the arm was used to press on the dial meter.

Two different control options were used to compare the robot’s internal repeatability

to the Uncalibrated Visual Servoing.

First the arm was manually moved to the starting position where the dial meter

69



Robot Motion Robot Motion Visual Servoing
Reported Pose Commanded Pose

Mean Error (mm) 0.163 0.093 0.038
Std Variation 0.055 0.027 0.022

Variance 0.120 0.029 0.018

Table 5.4: Repeatability results for one joint control on the WAM

was placed. Then the position reported by the arm’s encoders was saved. The

arm was moved away to a position 3 degrees away from the starting position and a

uniformly random ±1 degree noise in the joint position was introduced. This was

done to introduce more variation in the motion required by the arm when completing

the task. The arm was then commanded back to the starting position which was

saved initially.

While controlling the arm this way we noticed that there seemed to be a fairly

consistent displacement. We attribute this to two things. First the dial meter exerts

a small force on the arm as it is pressed with the arm’s motion. This pushes the arm

away causing a small increase in the error. Furthermore it appears like there exist

small internal errors in the calibration between the arms commanded joint pose and

the reported joint pose.

To validate this, we then repeated the experiment by first commanding the robot

to a starting position. Once the arm had moved, we placed the dial meter and

recorded the initial measurement. Then the arm was again commanded to move

away and back to it’s initial position. Note the difference here is that the initial

position was one that was commanded before, rather than one that was reported

by the arm. Performing the measurements this way yielded a slightly reduced error

measurement. We attribute this to a reduction on the error introduced by the force

required to push the dial in.

Finally Uncalibrated Visual Servoing was performed. Using 2 visual markers

and point to point errors Visual Servoing was executed until convergence which we

identified by looking at the dial and verifying no more movement was occurring. The

trackers were reinitialized on every iteration to prevent errors arising from the tracker

drifting from the motion of the arm in between trials. The motions performed to
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Robot Motion Robot Motion Visual Servoing
Reported Pose Commanded Pose

Mean Error (mm) 0.165 0.132 0.036
Std Variation 0.032 0.031 0.015

Variance 0.041 0.038 0.008

Table 5.5: Repeatability results for 4DOF joint control on WAM

generate the Jacobian matrix were performed by displacing the arm by 3 degrees and

adding the same ±1 degree displacement. While executing the Visual Servoing λ was

set to 0.50. These measurements were repeated over 10 trials for all cases.

The resulting error is presented in table 5.4. Using Uncalibrated Visual Servoing

we were able to achieve better accuracy than the repeatability of the internal robot

controllers. However in order to achieve this we required the cameras to be very

close to the regions of interest. Placing the cameras so close to the target is not

always practical. In some situations like this eye-in-hand camera placements might

be preferred as the robot can make the cameras move to a closer position allowing

for a higher resolution view of the scene.

Knowing that we were able to outperform the robot’s controls, we then set out to

test the system when using 4DOF. The experiment setup can be seen in figures 5.12

and 5.13. Cameras were placed with a baseline distance of 30cm. The target position

was located 50cm away from the cameras. Three points from each camera view point

were tracked on playing cards attached to the robot. These were used as they have a

rich texture that made it easy to accurately track. The results for this experiment are

summarized in table 5.5. Again we were able to successfully outperform the internal

robot’s control.

When we began performing these experiments the 3D position error was not being

reduced fully as expected. This was a result of the control limitations we describe

in section 5.1.3. A simple heuristic that allowed us to decrease the final positioning

error with our robot was to drive the robot to convergence until the control limitations

came into place. Once there, a couple of visual servoing steps were performed with a

doubled λ value. This increased the commanded motion above the minimum motion

threshold we experience in our robot and allowed the system to reach a better final
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Figure 5.12: Robot repeatability for 4 DOF experiment setup. Red
lines outline the region tracked with the centroid of the quadrilat-
eral representing a point of interest. Point to point constraints are
defined between these centroids and the green points.

Figure 5.13: Robot repeatability for 4 DOF camera views
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position. This final movement improved the position of the robot by about 0.1-0.2mm.

Figure 5.14: Robot repeatability for 4 DOF robot with eye-in-hand
camera configuration

As a comparison point we also performed the repeatability experiment with an

eye-in-hand configuration. The cameras were rigidly mounted on the robot with a

40cm offset. The target was placed 35cm away from the final robot pose. The robot

configuration can be seen in figure 5.14. The resulting measurements are shown in

table 5.6. This experiment was performed in two ways. First using both cameras in

a stereo configuration, and then using only the left camera.

This configuration yielded interesting results as the mean error between the stereo

and monocular vision systems was almost the same. The main difference however

can be seen on the variance. In the case of the monocular camera configuration the

variance is almost double that of the stereo case.
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Robot Motion Robot Motion Visual Servoing Visual Servoing
Reported Pose Commanded Pose Stereo Vision Mono Vision

Mean Error (mm) 0.155 0.099 0.036 0.038
Std Variation 0.039 0.037 0.027 0.036

Variance 0.059 0.053 0.029 0.052

Table 5.6: Repeatability results for 4 DOF joint control on WAM
with eye-in-hand camera configuration

Figure 5.15: Robot repeatability for 6 DOF camera views

Robot Motion Robot Motion Visual Servoing
Reported Pose Commanded Pose

Mean Error (mm) 0.472 0.140 0.093
Std Variation 0.088 0.119 0.0951

Variance 0.306 0.555 0.3556

Table 5.7: Repeatability results for 7DOF joint control on WAM
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Finally we performed a similar configuration with our 7DOF WAM arm. Here

the achieved accuracy was not as high as with the 4DOF arm. The results of our

experiments with this arm are shown in table 5.7.

There are several sources of error when performing the Uncalibrated Visual Servo-

ing for these experiments. One such problem is that the robot is not completely rigid,

thus any non rigid motion in the joints will cause the robot configuration to shift.

This causes a discrepancy in two places. First it introduces error in the measurement

of the final pose at the dial as the robot configuration changes. And in the case of

the visual servoing, the specified targets are also shifted causing the target pose of

the visual servoing to be different from the expected one. Another source of error

comes from measuring the final 3D position in one direction at a time. Given the

robot motion it is not easy to measure the full robot pose externally.

The WAM specifications datasheet [56] reports repeatability measures of 0.1mm

and 0.2mm for the 4 and 7DOF configurations respectively when the encoder option

is installed as is the case with the robots used in these experiments. In [57] Barrett

reports repeatability experiments performed by them where the precision reached

averaged between 0.042mm and 0.078mm for large and small movements respectively

on a 4DOF arm. Although we performed the robot calibration before performing our

own tests, we were not able to achieve such high precision using the robot’s control

for the 4DOF arm. However our experiments using Uncalibrated Visual Servoing

were still able to outperform their reported performance in our tests using the 4DOF

configuration.

5.2.4 Tracker Noise Effect Experiment

As a final test we investigate the effects of tracker noise. To further validate our

system we perform a comparison between our 4DOF WAM and the simulation system

created. For this purpose we created a model of the 4DOF WAM using the Robot

Toolbox [42] as described by the Denavit-Hartenberg parameters [58] provided by

Barrett at [59]. We extend the end effector position of the arm by 3.5 cm to account for

the tool attachment equipped on our robot. Figure 5.16 illustrates our experimental
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In this configuration we performed a simulation where we compare three camera

models as the cameras are moved away from the specified target. We compare cameras

with trackers reporting perfect accuracy, accuracy with added Gaussian noise with

a standard deviation of 0.2 and a mean of 0, and a tracker reporting integer pixel

precision. The cameras were moved away from the target starting at a position 40cm

away and ending at a position 2m away. This was performed by moving the camera

backwards at 0.05m increments. We repeated the experiment with three camera

configurations. First with the cameras aligned and facing the same direction while

having a 40cm baseline offset. In the second configuration the cameras were placed

with a 90 degree offset while viewing the task target. Finally the experiment was

repeated with a single camera.

The servoing was performed for 500 time steps with a step size of λ = 0.05.

The trials were performed 50 times and the outcomes were averaged. As discussed

previously this creates a system that is equivalent to having a fast camera frame

rate. The 3D and image error are shown in 5.17. From this simulation we found that

the final image error was fairly consistent between the two camera configurations.

The final 3D error however increased as the cameras were placed further away from

the target. Similarly as the Gaussian noise was increased the speed of convergence

for the system decreased. In the case of a pixel tracker the servoing tended to be

inconsistent. When performing the experiment with larger values of λ we saw cases

where the system would diverge when the camera was only about 1 meter away.

These divergent cases became more frequent as the tracker noise increased. Using a

single camera the effects of noise in the visual trackers were more pronounced. When

introducing a noise with a standard deviation of 0.3 divergence occurred when the

cameras were placed at 0.6m from the target. Also worth noting is that this camera

configuration caused the servoing to converge slower. When the camera was close to

the target (up to abuot 0.6m) the error is significantly larger. This is reflected in the

image error where convergence was not achieved after 500 simulation steps.
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Figure 5.17: 3D error and image error is shown when performing UVS with visual trackers with different noise properties.79



Robot Motion Robot Motion Visual Servoing Visual Servoing
Reported Pose Commanded Pose 40cm from target 55cm from target

Mean Error (mm) 0.1575 0.1245 0.0737 0.1321
Std Variation 0.0262 0.0222 0.0736 0.1509

Variance 1.0666 0.7666 0.2134 0.8963

Table 5.8: Repeatability results for 4 DOF WAM in calibrated sim-
ulation configuration

Having done the simulation we performed the experiment with our 4 DOF WAM

arm. The trials were performed with 2 cameras placed with close to a 90 degree

baseline rotation. The cameras were placed at a distance of 40cm and 55cm. Moving

the cameras further away resulted in poor tracker performance. Only 1 iteration out

of 5 finalized the exploratory motions when estimating the Jacobian without having

trackers fail. They were lost shortly after the servoing began. The results for these

trials are shown in table 5.8.

The results from performing the same experiment on the real robot allow us to

make some conclusions. The error was definitely larger when the cameras were placed

further apart. However the increase was much larger than expected. This can be

explained by a fast increase in tracking error as the cameras were moved away from

the target. As mentioned previously, moving the cameras further back from the 55cm

mark made the tracking almost impossible. From this we can learn that although

the error from performing UVS will tend to grow as we move further away from the

target, in reality this growth will be much more apparent given the propensity for

trackers to begin failing when the target is further away.

5.3 Conclusions and Lessons Learned

As we tackled the three challenges outlined in this chapter we have learned several

things. The placement of the cameras with respect to the target is not as important as

the placement of the cameras with respect to each other. From the camera positioning

experiments we saw that as the cameras rotated around the target together the 3D

error increased by about 0.006m. On the other hand when changing the camera

rotational position with respect to each other the error increased by about a factor of
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10 to 0.06m. Given this information we can then prioritize the positioning such that

the cameras have a good view of the robot and the target of the servoing. Once placed

we should try to make them stand as close to an orthogonal position as possible.

The repeatability we were able to achieve with the real robot when optimizing for

accuracy surpassed the figures reported by Barrett. In our case we were not able to

match their reported values when using the internal robot controllers. Using UVS

however we performed better. This improvement attests to the precision that can

be reached by using visual sensing to drive the robot. As an added bonus UVS was

able to compensate for the external force that was exerted by the measuring dial

that we used. UVS in general seems to be robust to internal robot calibration issues

and unaccounted external forces acting on the robot. We did encounter difficulty

when performing small motions with the robot as directed by UVS. We were able to

compensate for this by modifying the gain λ when the position of the robot was close

to the target. This could be automatically identified by looking at the residual error

and using that as a guide to tune the control gain.

Using a calibrated simulation environment allowed us to validate the modeling of

the cameras and the robot motion with respect to the real system. We also learned

that the simulation of the tracker noise is not consistent as the noise changes in the

real world with respect to the distance to the cameras. In our current simulation

system we are using a constant amount of noise which is not entirely realistic. This

however a good way to find a baseline of best case scenarios given constrained levels

of noise in the visual trackers. With this knowledge we can see that the graphs

portrayed in figure 5.17 are very conservative. In reality the increase in the expected

error is much more steep with respect to the tracker noise. However as shown by the

experiments on the 4DOF WAM robot with an eye-in-hand configuration, we can see

the increase in variation on the resulting pose when using only one camera.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In our work we presented ROS-UVS. Our minimalistic framework for Uncalibrated

Visual Servoing. Our hope is that through this library we can aid in the adoption

of UVS for practical applications. ROS-UVS includes a proven implementation that

allows users to perform Uncalibrated Visual Servoing. It provides routines that esti-

mate the full non-parametric Jacobian of the robot system without requiring a-priori

calibration or object models. We provide a general interface that is easy to adapt

across different robots and environment configurations. By creating this base frame-

work users can focus on their system specific requirements and can easily adapt the

sample controllers we provide to connect our system to their robot. Developed with

ROS integration in mind, ROS-UVS is easy to integrate and run within the ROS

infrastructure. We also understand that ROS is not for everyone and our system can

also be run as a stand alone library.

Our system is free and open-source and adheres to design principles outlined in

other software libraries such as ROS. The result of our design is a standalone library

that has no external dependencies. This allows for code extraction and reuse beyond

its original intent.

In using our system we have been able to perform UVS across several different

platforms. Through simulation we were also able to explore challenges with respect

to camera placement and tracker noise. We also used the simulation environment
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alongside the physical robot and validated the robot motions and virtual camera

implementation. Through our system we managed to facilitate the use of UVS and

improve our understanding and intuitions of this robot control approach.

6.2 Future Work

Identifying and reacting to failing trackers would an interesting direction to expand

this work in. In general it would require the system to reconfigure the Jacobian and

error vectors on the fly for the lost trackers. Users would also have to define over

specified tasks so that the servoing can continue and perhaps stop once the task is

not specified fully for all the DOF being controlled or if the task is completed.

In [63] Samson defines redundancy in a robotic system when a defined task can

be achieved in an infinite number of ways and the solution set forms a dense set in

the joint space. Using this concept we can then define primary and secondary tasks

where the secondary task takes place within the solution space of the primary task.

Formalizing this idea in the context of visual servoing and integrating it with the

robot control provided is another area we would wish to pursue further.

During development of the library we shortly tried visually defining virtual fixtures

similarly to how it was done in [64]. In their work they use the XVision [65] system to

create visual trackers that sense tangent directions to defined paths. Several problems

make this a hard task, however developing a stable extension for our library that

supports such features would be great. For instance, in their system they sample

images at 30 and 60hz, however in studies of haptic interfaces it has been shown that

humans can sense up to about 300hz [66]. This suggests that natural haptic interfaces

require a high update rate. Having visual trackers perform at such a high frequency

is not easy. Further more quick snappy motions of the arm can cause trackers to

be lost. In our lab we have tested doing these actions at 120hz with some success.

However more work is required in this area.

Another great addition to the framework would be path planning integration.

Kazemi et al. [67] present a survey of planning algorithms for visual servoing. They

83



classify planning approaches into four different categories: (1) image-space planning,

(2) optimization-based planning, (3) potential field-based planning, and (4) global

path-planning. Integrating these within the current framework would allow for a more

stable and robust system that could be trusted to maintain the regions of interest

within the cameras field of view.
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