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Abstract

The aim of the first part of this thesis is to propose a method of constructing
explicit complex Banach spaces not isomorphic to their complex conjugates
as subspaces of a natural large class of Banach spaces. As a consequence,
such constructions provide examples of real Banach spaces which admit at least
two non-isomorphic complex structures. In particular, it is shown that L, for
1<p<2and 3. &l )i, for some r, /2, contain this type of subspaces.

The second part of the thesis establishes the following new characterization
of a Hilbert space in terms of unconditionality: a Banach space X is isomorphic
to a Hilbert space if and only if for every subspace Y of [5(X) there is k > 1 such
that Y can be decomposed as an unconditional sum of k-dimensional subspaces.
A consequence of our construction is that [2(X) contains at least countably
many mutually non-isomorphic infinite dimensional subspaces, when X is a

non-hilbertian Banach space with a finite cotype.
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Chapter 1

Introduction

This is a dissertation in Geometric Functional Analysis devoted to the study of
structural properties of infinite dimensional Banach spaces.

Among all Banach spaces, the Hilbert space [y is the“nicest” and most “reg-
ular”. It has lots of symmetries and, in particular, all of its infinite dimensional
subspaces are isomorphic to the entire space. This is not true anymore even
for such classical spaces as l,, L, (p # 2), whose subspaces admit much more
diversity.

In general terms, we concentrate on constructing Banach spaces which have
“few” symmetries while they also have a very decent structure. We are looking
for arguments which allow us to obtain these constructions as subspaces of
arbitrary Banach spaces or at least inside Banach spaces from certain large
classes of spaces. This would support the idea that phenomena of this type are
not merely accidental but that they reflect a common behavior.

We describe now the results of the thesis and we comment on their place in
the already existing literature.

In Chapter 2 we discuss the motivation for the problems considered in this
dissertation and we present some fundamental facts in the Banach space theory.

The first topic of this dissertation, described in Chapter 3, is devoted to
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constructing Banach spaces on which no good comparison between its linear
structure over real numbers and over complex numbers can be made.

In considering isomorphism of complex Banach spaces, a natural question is
whether real isomorphic spaces are complex isomorphic. The constructions we
exhibit in Chapter 3 not only yield a negative answer to this question but also
provide examples of real Banach spaces which admit at least two non-isomorphic
complex structures.

There are two types of known examples of real Banach spaces with more than
one complex structure, one constructed by J. Bourgain [Bo] (with a variant by
S. Szarek [S1]) and the other by N. Kalton [Ka].

In Bourgain’s example, the space X is an lo-direct sum X = (3, & Xi)i,,
where X} are suitable finite dimensional spaces obtained by considering cer-
tain random norms on CV. Szarek’s variant of this example has the finite
dimensional spaces X; obtained (again by random methods) as proportional
dimensional subspaces of {7¥, for certain gx ™\, 2 and ny " co. It should be
noted that by this method it is not possible to obtain an example of the same
type with X, C I7*, for g, < 2.

The space that Kalton constructed is a twisted sum of Hilbert spacesi.e., X
has a closed subspace E so that E and X/E are Hilbertian, while X itself is
not isomorphic to a Hilbert space. His example is a variant of the Kalton-Peck
space [Ka-P] and is constructed with a complex twisting function.

The purpose of Chapter 3 is to propose a method of constructing real Banach
spaces with at least two non-isomorphic complex structures (in fact we can
easily get a continuum of such structures) as subspaces of a natural large class
of Banach spaces, thus showing that the phenomena from [Bo}, [S1], [Ka] can be
found in a more general situation. In particular, we prove that L,, for 1 <p < 2,
and (3__ & I, )i, for some r, " 2, contain this type of subspaces. This latter
example complements the results by Bourgain and Szarek.

As we mentioned before, the Bourgain-Szarek argument does not yield ex-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



plicit examples, it relies on probabilistic methods. Our method allows us also
to exhibit a constructive version of their example.

The heart of our argument is based on a comparison of different convergence
behavior of certain series in the chosen space. The proofs are based on successive
perturbations and appropriate restrictions of the operators involved in order to
simplify their representations.

Similarly as for twisted sums, the spaces obtained here admit unconditional
decompositions into 2-dimensional subspaces, while they do not have an uncon-
ditional basis.

This latter remark leads us to the second topic of this dissertation, discussed
in Chapter 4, which is connected to the existence of unconditional basis or
unconditional finite dimensional decompositions in Banach spaces.

The first known example of a Banach space without an unconditional basis
which still has an unconditional decomposition into 2-dimensional subspaces is
the already mentioned Kalton-Peck space [Ka-P]. This fact was observed by
Johnson, Lindenstrauss and Schechtman in [J-L-S]. Their technique was fur-
ther refined by Ketonen [Ke] and Borzyszkowski [B], who used it for subspaces
of L,, and subsequently generalized in the work of Komorowski and Tomczak-
Jaegermann [K], [K-T1], [K-T2], [K-T3], where a general method of construct-
ing subspaces without unconditional basis (or even without local unconditional
structure) was developed. Among other results, in [K-T1] it is proved that every
Banach space either contains Iy or a subspace without an unconditional basis.
This theorem was later used by Gowers in the solution to the homogeneous
space problem [G]: an infinite dimensional Banach space which is isomorphic
to all its infinite dimensional closed subspaces must be isomorphic to a Hilbert
space.

Chapter 4 of this dissertation is concerned with a higher-dimensional gener-
alization of the classical notion of unconditional basis and its relation with some

subspaces of l3(X), for X a non-hilbertian Banach space. This work continues
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and, in part, generalizes the series of constructions that were done before in the
framework of arbitrary Banach spaces ([K-T1}, [K-T2}, [K-T3]).

The main result of this chapter provides the following new characterization
of a Hilbert space in terms of unconditionality: a Banach space X is isomorphic
to a Hilbert space if and only if for every subspace Y of [5(X) there is k > 1 such
that Y can be decomposed as an unconditional sum of k-dimensional subspaces.

The main step consists of constructing, for X a non-hilbertian Banach space
with a finite cotype, and for all integers k& > 2, a subspace of l3(X) which has
a k-dimensional unconditional decomposition and for which & is the minimal
number with such property. Similar constructions were previously done for
subspaces of L,, 1 < p < 2 (in [B]).

Another consequence of this construction is that [H(X) contains at least
countably many infinite dimensional subspaces, when X is a non-hilbertian
Banach space with a finite cotype.

Our argument has roots in the techniques introduced in [J-L-S} and devel-
oped later in the literature, as we mentioned above. In particular, we employ
many ideas from the tensor product presentation in [K-T3]. The essential idea
is summarized in Proposition 4.2.2, which is a version of Proposition A in [B]
and generalizes Proposition 1.1 in [K-T1]. This result will be our main criterion
for recognizing that a space with a special structure does not have higher-order
local unconditional structure. The proof of Proposition 4.2.2 is slightly different
and shorter than the one presented in [B] and, in addition, gives an important

estimate.
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Chapter 2

Preliminaries in the Banach

space theory

2.1 Motivation and fundamental notions

We will start with some basic definitions in functional analysis.
A normed space is a pair (X, || - ||) where X is a vector space over R or C

and || - || : X — {r € R | r > 0} satisfies

@) flzfl =0ifz=0

(i) {jAzll = |Al|lz|| for all z € X and scalars A
(i) flz +yll < [lzfl + lly[| for all z,y € X.

A normed space is called a Banach space if every Cauchy sequence is con-
vergent: if (z,)n,>1 C X is such that ||z, — z,,]| — 0 as min{n, m} — oo then
(Zn)n>1 converges to some point zo in X (ie., ||z, — zof| — 0).

If X and Y are two normed spaces over the same field we define a linear
operator from X to Y to be amap T : X — Y such that T(A\jz; + Aax2) =
ATz + AT zg, for all z1, 79 € X and scalars Aq, Ao. A linear operator 7 : X —
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Y is bounded if there exists M > 0 such that
| Tz|| < M||z|)

for all z € X. The smallest constant M satisfying the above inequality is
denoted by ||T}|.

Two normed spaces X and Y are said to be isomorphic if there is a one-to-
one operator from X to Y such that T and 7! are both bounded.

If X and Y are two isomorphic normed spaces, the Banach-Mazur distance

between X and Y is
d(X,Y) =inf{|TIT"| | T: X — Y isomorphism}.

The norm of an operator T : X — Y depends on the linear structure con-
sidered on X and Y; it is important whether they are real Banach spaces or
complex Banach spaces. A very natural question is the following : if X and Y
are complex Banach spaces which are real isomorphic, does this imply that they
are complex isomorphic? The content of Chapter 3 of this dissertation revolves
around this topic.

For a real normed space (X, || - ||) it is not always the case that X admits a
complex structure, that is there exists a multiplication of the elements of X by

complex scalars which is compatible with the norm
Azl = |Allzl] ,VzeX, VieC

(or compatible with a norm (|| - ||| equivalent to || - ||). Consider, for example,
the trivial case X = (R*,||-|2), for any n=1,2,.... If X admits a complex
structure then, denoting by {e;}; a basis for X, treated as a complex space, we
get that {e;,ie;}; is a basis for the real space X, contradicting with the fact
that X has odd dimension.

However, if X is a real normed space then the cartesian square X & X,

endowed with the norm ||(z,y)|| = ||z]lx + |ly|l|x or any other equivalent norm,

6
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always has a structure of a complex normed space, with respect to the multi-

plication
(a +1b)(z,y) = (az — by, ay + bx)
and the norm (equivalent to | - ||)
11, )l = supgepo,an || (€ cos 8, y sin O)]].
If (X,]|-]]) is a real normed space, the complex structures on X correspond

(in the one-to-one correspondence) to the R-linear isometries A on X such that
A? = —I. For one implication take Ax = ix; conversely, if such an isometry

exists, define (a + ib)z = az + bAx and consider on X the equivalent norm
2n
llzlll = 1/2r / (cos )z + (sin 0) Az|d6.
0

By using probabilistic methods, S. Szarek was able to construct in [S1] an
infinite dimensional space which does not admit a complex structure. As a con-
sequence of the previous discussion, his space is not isomorphic to the cartesian
square Z @ Z of any Banach space Z.

All real Banach spaces discussed throughout Chapter 3 will admit a structure
of complex Banach space. The question we will concentrate on is whether we can
obtain at least two non-isomorphic (of course we mean non-complex isomorphic)
complex structures for such a space.

In the theory of Banach spaces there are results which are true for the real
Banach spaces only. The following theorem will not only exemplify this but also
will allow us to introduce in a natural way the notion of the complez conjugate

of a Banach space, which will play a central role in the sequel.

Theorem 2.1.1 (Mazur-Ulam) Every isometry F (i.e. a mapping preserving
the distance) from a real normed space X onto a real normed space Y, with

F(0) =0, is linear.
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For a complex Banach space X define X, the complex conjugate of X, to
be the Banach space with the same elements and norm, the same addition of
vectors, while the multiplication by scalars is given by A® z = Az, for A € C
and r € X.

Obviously X and X are identical as real spaces. However, the identity map
I: X — X is an isometry which is clearly not complex linear, hence such a
naive extension of the Mazur-Ulam theorem is not true.

As we have already mentioned, X and X are identical as real spaces and
X and X, treated as complex spaces, provide two complex structures for this
real space. In many cases the spaces X and X are (complex) isomorphic. For
example, when X has an unconditional basis {e;};, the natural map J : X —
X given by J(3_,tiej) = 22,5 © € is an isomorphism between X and X.

The purpose of Chapter 3 is to propose a method of constructing complex
Banach spaces not isomorphic to their complex conjugates, and hence having at
least two non-isomorphic complex structures. Also, such constructions provide
examples of complex Banach spaces which are isomorphic as real spaces and
non-isomorphic treated as complex spaces.

We will now pass to some more specific definitions and notations from the
Banach space theory, that can be found e.g., in [L-T1] and [T}, together with
some other terminology not explained here.

A sequence {e;};>1 in a Banach space X is called a (Schauder) basis if
every vector z € X has a unique representation r = > i>1@5€; as a sum of a
convergent series. A Schauder basis represents a sort of a “coordinate system”.

We say that {u;}1>1 C X are successive blocks of {e;};>1 if each vector v is

Pr41

of the form u; = i

ajej, with {a;};>1 scalars and 0 < p; < py < ... an
increasing sequence of integers.

For a basis {e;};>1 in a Banach space X let P, : X — X be the projection
defined by P, (Z;’?__l ajej) = Y 1 aje;, for all m > 1. It can be easily shown

that sup,, ||P.|] < oo. The number sup, ||P.|| is called the basis constant of
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{eitiz1-

The existence of a basis in a Banach space does not give much information
on the structure of the space. In order to study in more detail the structural
properties of a Banach space one needs to consider bases with certain additional
properties, among the most important being the unconditional basis.

A basis {e; };>1 in a Banach space X is unconditional if there exists a constant

C > 0 such that
1) mjaseill < CIY agell,
j F

for all x = Zj aje; € X and all signs p; = +1 (5 = 1,2,...). The infimum
of such constants C is called the unconditional constant of {e;};>1. As an
example, the Haar basis is unconditional in L,[0, 1], for 1 < p < oo and it is not
unconditional for L,[0, 1].

Comparing to the case of {e;};>1 being only a basis of X, in the case of
unconditional basis we have sup, (1 3 ||| < oo, where {F,}sc(1.2,. ) are the
natural projections associated to the unconditional basis {e;};>1, defined by
F (Z;; ajej) = ocir,.} %

Another often used observation concerning unconditional bases is the fol-
lowing: if {e;},>1 is an unconditional basis with the unconditional constant C
then, for every z = 3., a;e; and every choice of bounded scalars {A;};>1, we

have

1> Nage;|| < 2C S‘ipp\nl 1) " aje

jz1 j>1
(in the case of a real Banach space we can take C instead of 2C).

A Banach space X with a Schauder basis can be viewed as a sum of one-
dimensional spaces. It is sometimes useful to consider coarser decompositions of
X, with the components into which we decompose being subspaces of dimension
larger than 1.

Let X be a Banach space. A sequence {Z}r>1 of closed subspaces of X

is called a Schauder decomposition of X if every vector x € X has a unique
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representation = ), z as a sum of a convergent series such that z; € Z; for
every k = 1,2,.... In this case we define the support of x with respect to the
decomposition {Z;}r to be suppz = {k |z # 0}. If dim Zx < oo, for all k > 1,
we say that X has a finite dimensional decomposition.

A decomposition {Z;} is called C-unconditional for some constant C' > 0,
if forallz = Y, 2 € X and i, = +£1 (k = 1,2,...) one has ||>°, uz] <
C|| >, zll- The infimum of such constants C' is denoted by unc {Z}.

It is well-known that even if a Banach space has an unconditional decompo-
sition into 2-dimensional subspaces it is still possible that X may fail to have an
unconditional basis. The first example of such phenomenon is the Kalton-Peck
space ([Ka-P]).

In the context of arbitrary Banach spaces, it was proved by Komorowski and
Tomczak-Jaegermann ([K-T1], [K-T2]) that every Banach space either contains
I or a subspace without an unconditional basis which still has an unconditional
decomposition into 2-dimensional subspaces.

Motivated by these results, it is natural to investigate properties related to
unconditionality in Banach spaces which admit an unconditional finite dimen-
sional decomposition.

In connection with the problem of constructing spaces with an unconditional
basis, some new parameters have been introduced in the literature. An impor-
tant example is the local unconditional structure of a Banach space. This is a
localization of the notion of unconditional basis.

A Banach space X has local unconditional structure if there is C > 1 such
that for every finite dimensional subspace F C X there exists a Banach space
F with a 1-unconditional basis and operators u : £ — F and w : F — X such
that the natural embedding ig : £ — X admits a factorization ip = wu and
[ullllw]l < C.

As it turns out, the arguments which appear in the literature regarding the

construction of spaces without unconditional basis can be modified to obtain

10
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that such spaces have a stronger property, namely they don’t have local uncon-
ditional structure.

Regarding the unconditional decomposition into k-dimensional subspaces,
the natural analog of the local unconditional structure can be also defined for
a Banach space. The purpose of Chapter 4 of this dissertation is to study this

type of property in general Banach spaces.

2.2 More specific concepts and facts

Let us discuss another type of Schauder basis, which is used mainly in connection
with duality problems, namely shrinking basis.
Let {z,}, be a Schauder basis in a Banach space X. We say that {z,}, is

shrinking if, for every z* € X*, the norm of ) tends to 0 as n — oo.

span {z;:}32,,
An example of a shrinking basis consists of the unit vector basis in [, for all
1 < p < c0. On the other hand, for X = [; or X = C(0,1) there is no basis
which is shrinking.

1t is a known fact ([L-T1]) that {z,}. is a shrinking basis if and only if the
biorthogonal functionals {z%}, associated to the basis {z,},, defined by the
relation z*(z,,) = &7 for all n,m > 1, form a Schauder basis of X”.

A sequence {z,}, in a Banach space X is called w-null if it converges to
0 in the weak topology, that is z*(z,) — 0 as n — oo, for all z* € X*.
Clearly a shrinking basis is w-null. Indeed, for any z* € X*, |z*(z.)| <
0] 12 g, | — 0 25 1= 0.

In order to verify whether a basis in a Banach space is shrinking, an useful
result is the following proposition, due to R. C. James [J]. We present the proof
for the sake of completeness, and also for illustrating the use of the classical
“sliding-hump” argument, which will appear often in the sequel.

In general terms, the “gliding hump” argument is typically used in situations

in which we have vectors (z;);>1 in a Banach space X whose expansions with

11
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respect to the basis (or with respect to certain Schauder decompositions of
X) start arbitrarily far. In this situation we are able to approximate an infinite
subset of the initial vectors with some other vectors (ys)s>1 whose corresponding

expansions are now disjoint.

Proposition 2.2.1 Let X be a Banach space with a Schauder basis {x}n>1-
Suppose that there exist 0 = iy < i3 < ... < 1} < ... such that, denoting by
Zy = span{z, : i +1 < n < i1}, {Zehis1 forms an unconditional finite
dimensional decomposition for X.

If {xp}n>1 is not a shrinking basis then we can find 6 > 0 and normal-
ized vectors {w;}i>1 in X, successive blocks with respect to the decomposition

{Z}k>1, such that
1>l =26y lal,
] 1

for all finite sequences of scalars {a;};.

Remark. It immediately follows from the triangle inequality that

8> el < 11D e <) lal
l 1 14

for all {a;};>1 € l1. In particular, the subspace §pan {w;} is isomorphic to ;.

Proof. For all s > 1, denote by P, : X — X the natural projection onto

span { Zy }k<s-
Since {z,}n>1 is not a shrinking basis there exist z* € X*, with [|z*|| = 1,
ane € (0,1) and, for s = 1,2,.. ., a normalized vector us € span {z, },>s so that

lz*(us)] > € Vs=1,2,....

The following inductive argument is based on the “gliding-hump” procedure.
Let s; = 1 and let ky be such that ||us, — Prus || < €/2. Let wy = Py us,
and then |z*(wy)| > €/2.

12
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Choose now so large enough such that Pp,u,, = 0 (it is sufficient to take
sy > k1 + 1) and take ko such that |Jus, — Pus,|| < €/2. Letting wy = Pyus,
we obtain |z*(wz)| > €/2.

Inductively, we can construct {w;};>1 successive blocks with respect to the

decomposition {Zj }r>1 and satisfying
|z* (wy)| > %, Vi=1,2,....

Fix an arbitrary finite sequence of scalars {a;};. Choose {6,};, with |6;] = 1,

such that | 3, 6iaiz*(wi)| = 3, lawz*(wi)|. Then

2K amfl > 1D G| > |a” (Z 9;alwl> ;
= Y lalle () = 5 lai,

>1
where K is the unconditional constant of the decomposition { Zx}x>1-
The vectors {w;}i>1 satisfy the conclusion, except that they are not nor-
malized (we have 1 +¢/2 > |Jw|| > 1 —¢/2, for all [ = 1,2,...). To this end
substitute them with {w;/||w] }i>1- a

Let us mention now some few more notations that will be used in the sequel.
Let (X,) be a sequence of Banach spaces and let 1 < p < co. We denote
by 3., @Xn)z,, the space of all sequences (z,) in ILX,, such that the following

expression representing the norm is finite

i/p
I(za)ll = (Z Ilﬂ?nll”n) < oo0.

For simplicity, when p = 1 instead of (3°, ®X,), we use the notation } , ®X,.
Also, if X,, = X for all n we will write [,(X) instead of (3_, ®X), . For a
natural number n, by I2(X) we denote the space of all n-tuples (x;)}., endowed
with the corresponding norm.

For a Banach space X denote by Ly(X) the set of all measurable functions
f :[0,1] — X with the property that ||f]|* is integrable with respect to the

13
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Lebesgue measure on [0, 1]. The Rademacher functions {r;}; on [0, 1] are defined
by r;(t) = sgnsin2'nt, for i = 1,2,.... Denote by Rad,(X) the subspace of
Ls(X) consisting of the functions of the form f(t) = >, ri(t)z:, with z; € X
for i <n.

We will require in the sequel several well known facts about the above spaces.
Namely, it is clear that Rad, (X) contains X as a subspace and it is isometric

to a subspace of 2" (X) via the map

Rad,(X) «— ©Z(X)

f(t) = Zri(t)xi — T = (Z:T ZQ%) )
(€:)

i<n i<n
where above we considered all sequences of signs (¢;)i<n.

Finally, we will turn our attention to the tensor product of normed spaces,
which proves to be an important technical tool in functional analysis.

If X and Y are vector spaces then we can define the algebraic tensor product
of X with Y, X ® Y to be the space whose elements have a representation as
finite sums of elementary tensors 27,2:1 TE @ Yr, with x, € X, y, € Y, where

the elementary tensors satisfy
(z+2)R@yu=zQy+2 vy

r@y+y)=zy+zYy
Mz®y)=dz®y=20 Ay,

forall z,2/ € X, y,y' € Y and scalars .

Such an object can be obtained by using a quotient construction. An impor-
tant feature of this construction is the universality result stating that bilinear
maps defined on X x Y (that is maps which are linear in both the first and
second variable) can be uniquely extended to linear maps on X @ Y.

The situation considered in this dissertation is the tensor product X; ®...®

X, where X; are Banach spaces (i = 1,...,m). We say that a norm | - ||

14
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on the tensor product X; ® ... ® X,,, is a cross-norm if |21 @ ... @ z,|| =
Nzillx, - - - |Zwllx,., for all z; € X;, 4 =1,...,m. If each of the spaces X;
is finite dimensional with algebraic basis { f;i)} ;, then { f]gl) Q...0f (:) Vit
is an algebraic basis in X; ® ... ® X,,,, which will be called the natural tensor
basis.

There are many examples of tensor products spaces used in the theory of
Banach spaces, including the injective tensor product and the projective tensor
product, but in this dissertation we will use only certain simple tensor product
spaces. A characteristic example consists of {5 ® X endowed with the cross-norm

induced by the space {5(X) via the map

BX) —— L®X

(T1,...,Tn) > e ®z1+...+e,®xz,,
where ey, ..., e, form the standard unit vector basis in [7.
15
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Chapter 3

Subspaces of L, with more than

one complex structure

3.1 Introduction

We will first present a construction of infinite dimensional subspaces of I,, @
Ly @ lpy @1y, ® 1 (1 < ps <...<p1 <oo) whose Banach-Mazur distance to
their complex conjugates is arbitrarily large (Proposition 3.2.2 and Corollary
3.2.3).

Then, by “glueing” together such spaces (i.e., we consider their lo-direct
sums) we get the desired constructions of spaces non-isomorphic to their com-
plex conjugates (Theorem 3.3.1, Corollary 3.3.2 and Theorem 3.4.2). Moreover,
as we will see later, these examples provide the existence of real Banach spaces
which admit not only two, but a continuum of non-isomorphic complex struc-

tures.

16
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3.2 Subspaces of [, @ l,, D l,, D, D), not-well
isomorphic to their complex conjugates

Let W,V be Banach spaces having finite dimensional decompositions {W;}
and {V;}; respectively. Let T': W — V be a bounded linear operator. We say
that T is block-diagonal with respect to {Wi}, and {V;}; if for every k there
exists a finite set By, C {1,2,...} such that

max By < minB; Vk,l€{1,2,...} with k<[,
suppka C B, Yug€ Wk, Vk € {1,2, .. }

where supp Twy, is taken with respect to the decomposition {V;};es.

The following general observation will be often used in the sequel.

Proposition 3.2.1 Let W,V be Banach spaces having decompositions into 2-
dimensional spaces {Wy. i and {V;}; respectively. Let Wy, = span{wyx, war},
for k =1,2,..., and V; = span{v; ;, va;}, for 5 = 1,2,..., and suppose that
{wi k, war}k is a w-null normalized basis in W and {v;, va;}; is a normalized
basis in V. Let T : W — V be a bounded linear operator.

Then, for every € > 0, there exist a subsequence I C {1,2,...} and Tp :
WO = span{Wi}rer, — V a block-diagonal operator with respect to {Wi}rer,
and {V;}; such that

NTiwo — Toll < e

Proof. Denote by {w},, w3,}x and {v}, v5,}; the biorthogonal functionals
in W* and V* associated to {wy, wor}r and {vy;, vs;}; respectively. Then,

since {vyj,v2;}; is a normalized basis in V, we have
li§n o] {(Twig) = lijr_nv;"j(ng,k) =0, foralk=1,2,...

and similarly for v3 ;.

17
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On the other hand, since {wy x, wo}x is w-null
lilgn v [ (Twig) = lilrfnvf’j(TwQ,k) =0, forallj=12,...

and similarly for v ;.

Let € > 0. Let C denote the basis constant of the basis {w1 k, war}s-

By a classical gliding-hump argument we can find a subsequence Iy of
{1,2,...} and a block-diagonal operator Ty : W = span{W; rer, — V such
that the columns of Ty are approximated by the correspondent columns of T
We can then write Tjwo — Top = > .7 (Sk + Up) with Sy : WY — V and
U : WO — V satisfying, for every k € Iy,

Se(wig) =0,if L £k, and [|Sk(wie)]l < (1/2C) /28
Si{way) =0, foralll € Iy

and similarly
Ue(wyy) =0,if 1 #k, and ||Uplwor)| < (1/20)¢/2%+!
Up(wyy) =0, for all | € I,.

Observe that ||Sk|| < €/25*! for k € Iy. Indeed, for all z = 3, | (aswy, +
bth’t) < WO

1 €
5_6 ok+1

20 el = gl

ISkl = [1Sk(arwip)ll <
< 1 €
= 20 2+

Similarly ||Ux]| < e/2¥*+! for k € Ip. Thus

|a]

T ywo — Tol| < Z (e/28F 4 ¢/281) < e
kelp
O

We will now pass to the main construction of this section, which will play a

central role throughout the present chapter.

Let p = {(p1,p2, .., 05) | 1 <ps < ... < p1 < o0}

18
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For every n = (p1,...,ps5) € p and N € N we will construct a Banach space
XNy as follows: we will define 2-dimensional subspaces Zy of [, @ ... ®
(depending on N and 7) which will form an unconditional decomposition for
XNy = Spant {Z}iz1-

Fixne pand N € N. Fori = 2,...,5set a; = 1/p; — 1/p;_1, and let
a = min {ay,...,as}. Fix a positive integer A > 2as3/a4 + 5.

Denote by {f;«}x the natural basis of I, (j =1,...,5). Define the vectors
z and y; spanning 7, (k= 1,2,...) by the formulas

Ty = fik +vifar Fvefar +y3fsk

Y = fak +yafer +ivsfsk
where v = N7208 = N-Hostaa) gpd ~3 = N-Mastasatas)
It is easy to see that for any scalars s and ¢ we have

max (||, [¢]) < |lszx + tyill < 4(|s| + [¢]).

It follows that the decomposition {Z}x>1 is 1-unconditional and xi, y1, T2,
Y, . .. form a Schauder basis in Xy, (and also in X y,,). This is a shrinking basis
(and hence w-null), since otherwise we can find (by Proposition 2.2.1) § > 0 and
successive normalized blocks {w;}; (with respect to the decomposition {Zx}i>1)

such that for every finite sequence of scalars {a;}:

1D w26 lal.

The contradiction occurs when we observe that {w;};>; satisfy an upper ps-
estimate. Indeed, if we denote by Qs : l,, ® ... ® l,; — [, the canonical

projection (s =1,...,5), the fact that {w;};>; are normalized implies
|Qswn]] <1,fors=1,...,5andl=1,2,....

Since {w;};>1 are successive blocks with respect to the decomposition {Z }r>1

it follows that, for each 1 <1 < 5, {Qsw;}; are successive blocks in [, . Thus,
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for every finite sequence of scalars {a;}

1> amll = QY amw)l+ ... + Q) awn)]

I>1 >1 1>1

= | Zalewz” +o Zalele

I>1 >1

1/ 1/ps

< (Z |al[p1> +... 4+ (Z laﬂ”)

=1 >1

1/ps
< 5 (Z‘ |allp5) .
1>1

The next result, concerning the behavior of linear operators acting from

XNy to YN,W, will be essential for the proof of Theorem 3.3.1.

Proposition 3.2.2 Let n € p and N be a positive integer.

Let I € {1,2,...} be an infinite set and let Y be the subspace of X, defined
by Y = span{Z}res. Consider T :Y — Xy, a block-diagonal operator (with
respect to { ZyYxer and {Zx}i>1) with ||T|| < 1. Then

(i) There exists a finite set J C I such that

max{||Tzell, [ Tyell} < 24N, forall ke I\ J.

(it) Let {I;}i>1 be a family of disjoint subsets of I with the property that |Ij| =
N, for all 1l > 1. Let 7t = } cp alk)ze, Ui = D opep, (k)Y satisfy
Yoken la(R)P? = 1, for 1 = 1,2,.... Then there exists a finite subset
Jo € {1,2,...} such that

max{||TZ||, 1T} <57TN™*, forallle{1,2,..}\ Jo.
Remark. The proof Proposition 3.2.2 will still work if we consider Xy, as a

subspace of 1, @y L, . . . By L5, for some g > 1 (note that, in this case, Xy,

is the same vector space as before endowed with an equivalent norm).

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Corollary 3.2.3 Let n € p and N be a positive integer. Then

— 1 o
d( XN Xng) > —1—66]\7 .

Proof of Corollary 3.2.3 Let T': Xy, — Xy, be an isomorphism satisfying
IT|l = 1/2. By Proposition 3.2.1 there exist an infinite dimensional subspace
Y =35pan {Z}rer of Xnyand T : Y — YN,U a block-diagonal operator with
respect t0 {Zy }rer and {Z;}x>1 such that
1
WHZEH <|Toxl < lzll,  forallz e, 3.1)

By Proposition 3.2.2 (i) we can find kg € I such that | Tozg, || < 24N, which,

combined with (3.1), concludes the corollary. |

Remark. In the same circle of problems, we should mention the result of Szarek
[S2] showing that in the finite dimensional case there is an n-dimensional com-
plex space Y such that d(Y,Y) > en, with ¢ an absolute constant.

Let us comment more on this result. In the local theory the set B = B,, =
{X | X normed space , dimX = n}, endowed with the Banach-Mazur dis-
tance, is usually called the Minkowski compactum. By a result of F. John [Jo],
d(X,13) < n'/? for every X € B, and thus, if X,Y € B, we have d(X,Y) < n.
We should also recall that, by the result of Gluskin [Gl], the diameter of B,,
Supx yep, d(X,Y), is asymptotically of order n. This remarkable fact can be

also seen as a consequence of the Szarek’s result.

Proof of Proposition 3.2.2. Because T is block-diagonal with respect to
{Zi}rer and {Z}1>1, for every k € I there exist a finite set B, C {1,2,...}
and sequences of scalars uy = (M) LU = (W) L Wy = ('L—U—);—(—j_)) S Sk =
(;;XT))J such that ] ] J
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,
max B, <minB;, Vk,le I with k<l

\ Tax =3 cp, (M © 25 +u(j) © yj) =2 jen, (wel(d)z; + vel7)y;)

| Tor =2 jes, (E(—J—) © zj + sk(4) ®yj) =2 sen, (We(d)x; + s1(5)y;) -

We start off with the complex conjugate sequences in the definitions of each
Uk, Uk, Wk, S for convenience only, since this will produce later a simplification
of writing.

Taking into account the definitions of z; and y; we can write, for all k € [

Tye = > weli)fi+ > seli)fo;+ Y nw(i)fs;

J€Bk JEB JE€EBx
+ Y e (wels) + sk (9) fag + D> s (wi(i) +isk(d)) f- (3.2)
JE€Bx JEBk

We will only prove the estimates in (i) and (ii) involving yi’s (the others
can be obtained similarly). The proof of (i) is presented in a few steps.
Let Q;: lp, ® ... ®l,; — [,,, be the canonical projection (t=1,...,5).
Step 1. We show first that there exists a set 4; C I, |A;| < N such that
il > we(i)fagll <3N, forallk eI\ Ay (3.3)
jeBx
Indeed, let A; be the set of all k € I such that ni[|> . p, wr(d)fa;ll > 3NT,

and assume that |A;] > N. Then choose a subset A of A; of cardinality N and

consider the vector y = }_, i yx. We have
",y” — Nl/p2 + Nl/p4"’4(a3+a4) + Nl/p5~)\(a3+a4+a5) < 3N1/p2
and

Tyl > [|QsTy]| = || Z Z ywk(5) fa5] > 3N~ NPs,

keAF€By :
Since ||Ty]] < 17|l llvll < llyll, we get the contradiction.
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In a similar manner as above we can obtain Ay Az C I, |Ag|,|A3] < N

satisfying

Yl D (weld) + se(d)) fagll <3N, forall ke I'\ A (3.4)

JEB,

wll Y (ki) +isk(4) fogll <3N, forall ke I\ As. (3.5)

j€Bx
Combining (3.2), (3.3), (3.4) and (3.5) we find a set A C I, with |A| < 3N
such that

ITyell < 11D wel)fsll + 1) sk(@) fosll #+INT, VEe I\ A (36)

J€By F€Bg

Step 2. By considering elements of the form z = ), _; zx, with Ac 1,
|A| = N, we can obtain in an analogous way as (3.3) a set A4 C I, with

|A4] < N such that

1Y v fogll < ANT, forall k€ T\ A, (3.7)

J€Bk
Step 3. This is a stronger estimate than (3.3) (and could have been proved
directly instead of (3.3)). We show that there is a subset Ag C I, with |As| < N ?
such that
1> wi()fasll <3N, forallkel\ As. (3.8)

Jj€Bx
For the proof take a vector y = ),z Yk, With A a subset of cardinality N* of
the set of all k € I such that || 37, p wi(7)fs4]| > 3N7**. Then

Uyll — (N3)1/pz 4 N~4(a3+a4)(N3)1/p4 + N—A(a3+a4+a5)(N3)1/ps < 3(N3)1/p2
and

1Tyl > 1QsTyll = nll D Y wal(d) fa sl > N3N (N?)H/rs = 3(N3)VP2,
ke A j€Bk

contradiction.
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As a remark, note that since {f;}; is dominated by {f;,}; (as the unit
vector bases in I, and [, respectively) we also have the estimate analogous to
(3.8)

1> we(i)figll <3NT, forallk eI\ Ag. (3.9)

JE€Bg

Step 4. We show that there exists a set As C I, |As| < N* such that

1) () + vn(5) — wils) — (7)) fasll BN, Ve I\ A5 (3.10)

Jj€By

Indeed, let A5 be the set of all k¥ € I such that

1D (i) + vels) — wels) — s(4)) fagll > BN

j&€By

and assume that |As] > N*. Then pick a subset A of A5 of cardinality K := N>

and consider the vector z = Zke,&(% — yi). We have
“Z” = Kl/m + Kl/Pz + N—QasKI/P2+a3 + N—/\(as+a4+a5)\/§K1/p2+a3+a4+a5

while

Tzl > QaTzl =7l Y > (uk(s) + vk(s) — we(5) — sk(5)) fusl
ke A JEDBx
~> N—4(a3+a4) 5N‘O"4K1/p2+°‘3+a4,

But this contradicts ||T'z|| < ||z|| since, by the choice of A,

N—4(a3+a4)N-a4 KVYp2toatas

> max{Kl/pz, N 2as Kl/pz-ms, N—A(a3+a4+a5)Kl/p2+a3+a4+a5}'
Notice that the above inequality is equivalent to

max {N4+oz4/(a3+a4)’ N5+2a3/a4} < K < NA+(/\—4)a3/a5+()\‘5)a4/a5

which is satisfied since A > 5 + 2as/ay.
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Step 5. By considering elements of the form z = ), _i(xx + yi), with
|A| large enough, and taking into account that Tz = 3", ; (T2 +10 Ty) =
> kei (T'zk — i Tyy), one can find a finite set A7 C I such that

1> (un(g) + s (5) +ion(g) = iwi()) fosll < BN, Ve € I\ A7 (3.11)

JEBk
Since p1 > ps > p3 > ps > ps it follows that {f5;}; is dominated by {f35};5
{fs;};> {fs3};- Combining this with (3.7), (3.10), (3.8), (3.11) we obtain a
finite set A'(= A4 U As U Ag U A7) such that

1Y sk(h) fasll S12N7°, forallke I\ A’ (3.12)

Jj€Bk

Using (3.9) and (3.12) in (3.6) we get a finite set J(= A U A’) satisfying
ITye|] <24N"%, forallke I\ J

(ii) Let J C I be the subset constructed in (i). By ignoring a finite number of
sets from the family {/;},5, we can suppose that I, C [\ J for all{ > 1. In

particular, for each [ € {1,2,...} we have

Q1 Tye)] < 24N~

Q2T yx|| < 24N,

for all k € 1.

Looking at T%; we can write, for each [ > 1,

ITGI = 1) a®)@ Tyl + 1Y ak)QeTyell + [[(Qs + Qa + @5) Tl

kel kel

< 4N ((Z (k)P + (Y Ial(k);m)l/pz) 4

kel kel,
+I(Qs + Q4+ Qs)Tull

< 48N+ ||QsTull + |Q4Twll + | QsTuill-
We show that there exists a subset A C {1,2,...}, ]A| < N such that
1QsTHl <3N~ Vie{1,2,.}\A
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Indeed, let A be the set of all I € {1, 2,...} satisfying ||QsTy:]| > 3N~=, and
assume that |A] > N. Choose a subset Ay of A of cardinality V and consider

the vector y = >, ., 1. We have

bl =17 alk) wll

leAop kelp
- S a5 S
le Ag kel lcAp kel; leAp kel
< NY/p2 + (,),2 (N2>1/P4—1/P2 + 73 (]\r?)l/ps—l/m) (Z Z Ial(k)tm)l/m

leAg kel;
1/p2 —2(az+ag) prl/p2 —(A=2)(az+aqtas) prl/p2
N + N N + N N-/P2,

This contradicts ||T]| < 1 since

1Tyl > [QsTyll = | S QuTGil| > 3NN,

l€Ag

Arguing similarly for Q4Ty; and Q5Ty; we obtain the conclusion. a

Remark. The proof of Proposition 3.2.2 doesn’t require / to be infinite, just
to have a certain (large) cardinality. However, the fact that Xy, is infinite
dimensional is crucial when we consider arbitrary operators defined on Xy ,,

since this will allow us to approximate them by block-diagonal operators.

3.3 Subspaces of L,, 1 <p <2, with at least two
non-isomorphic complex structures

Theorem 3.3.1 Let (rn),>, be a strictly decreasing sequence of real numbers,
with v, > 1 for all n, and let ¢ € [1,lim,, oo 7). There exists a subspace X of
(Zn21 ® I, )1, which is not isomorphic to its complex conjugate. Furthermore,
we can construct the subspace X such that, as a real space, it has a continuum

of non-isomorphic complex structures.

Proof. For each m = 1,2,... we will define X,,, as one of the spaces Xn,,

discussed before for the following choice of the parameters involved. Let 7, =
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(Tsmt1s Tomt2y - - - s Tsmas5) € - Set

. 1 1 1 1
Oy, = ININ — Sy — .
T5m+2 T5m+1 T5m-+5 T5m+4

(This definition of «,, corresponds to a from the main construction in Section

3.2, and it hopefully will not get confused with the notation as, ..., as used
there). Finally, fix a natural number N,, > (456~m)2/ m_ Now, let X, =

XN, be the space defined in Section 3.2, treated as a subspace of I,;,,, ®q

n,Tm
ligrisn ®q - - - Bg lrs,.s (see remark after Proposition 3.2.2).

Similarly as in Section 3.2, for every m = 1,2,..., let Qum : Iy Pglrs, i By
— 1 be the canonical projection, where t =1,...,5.

T @q lr5m+5 TSm+t

We will show that the space X = (}_,5; ®Xy»)i, is not isomorphic to its
complex conjugate X = (32,51 ®Xm)i,-

Suppose that 7 : X — X is an isomorphism with ||T']] < 1/4. Denote by
a=||T7!|| and by P; : X — X the projection of X onto its j-th term.

The proof is based on successive passing to appropriate subspaces in order
to simplify the representation of the isomorphism 7'

Fix an arbitrary m > 1. Recall that X,,, = span { Zk }x>1-

Let s > m. We will show that

VL C {1,2,...} infinite set Ve, > 0 3k € L such that
”PST,Z}C” < GSHZkH, Yz, € Zy. (313)

If not we can find ¢, > 0, an infinite set {k;};>1 and, for each 7 > 1, normalized

elements z; € Zy; satisfying
e < [[PT%| (: (1Qs PTzl|* + ... + lle,sPsTZqu)l/q) '

By passing to a subsequence of j’s (apply Proposition 3.2.1 to the operator
P,T\span g Zi; Yo ) we may assume that (P, Tz;);>1 are successive blocks in X..

Also, after taking a further subsequence, we get ¢t € {1,...,5} such that
Qs BT 2| = ;—8, for all j > 1.
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After relabeling we may consider ¢ = 1. To obtain the contradiction observe

that, for all positive integers M
M

M
5MY/remas > || sz”Xm > ”PsT(Z z;)|

%2 HQLSé P2l 2 SEh e,
Now a standard argument easily shows that for s > m
VL C {1,2,...} infinite set Ve, > 0 3L, C L infinite set such that
WP Tz| < ez, Vz € §pan {2y }reL. - (3.14)

Indeed, fix L and €,. By successive applications of (3.13) we can construct by
induction infinite subsets L = L} D L) D Ly O ... and a sequence of integers

ki < ky <kj<... suchthat k; € L)\ L, for j=1,2,... and
“PSTZ]” < 63/2j HZJ”, for all Zj S Zk_/7

Then let L, = {k}, k%, ...}. Since the decomposition {Z }rer. is 1-unconditional

in X,,, it is easy to see that
|P.Tz| < ellzl], for all x € 5pan { Zk }reL,-

Applying (3.14) inductively for s = m + 1,m + 2,... we obtain that for
every sequence {€s}ssm, €5 \, 0 there exist infinite sets of positive integers

L1 D Linyo D ... D Ly D ... such that
| PsT| spas {Ze}wer, || < €5, for all s > m.

Letting I = {k;};>m to be a diagonal sequence, so that k; € L; for j > m,
we have

| PsT W{ij}jzs” < €5, forall s>m.

Let Y,, = Spani {Zx}rer C Xm. Perturbing the operator Ty, we obtain an
operator (denoted again by) T :Y,, — X satisfying

P.T\ span{zi 3. =0, foralls>m
T (3.15)

wlzll < WTzl| < Sllzll, for all z € Yy,
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Let denote by R, : X — (3. X ) , the natural projection. We will

s>m

show that there exists an infinite subset 7 C I so that, after further perturba-

tions of T, we have

RmT[ span{Zx}reci 0
ke (3.16)

alzll < Tzl < flzfl,  for all z € span {Zy } ez

To this end, it is enough to prove that for all 6 > 0 and every infinite set
L C I there is k € L so that

|RnTzill < 6||zll, forall 2z € Z,.

Suppose that the above statement is not true and hence we can find § > 0,
an infinite set L C I = {k;};>m and, for each | € L, normalized elements z; € Z;

such that
IR Tzl > 9.

I L={lly,. . L. .. }withl <lp<...<l <...then, by (3.15), we have
supp R, Tz, D supp R,Tz, D ... D supp R, Tz, O ..., where the support is
considered with respect to the decomposition {X ;}ssr,. After a gliding hump ar-
@X_s)zq

with respect to the decomposition {X }esm. Since rsmyr > ... > Tsmys > ¢

gument we may assume that (R,7"z)1cr, are successive blocks in (3.,
it is now clear that we can find real scalars {a;}icr, such that z = ), .; a2 is
convergent in Y,, while R,, Tz = ZIE 1, B, Tz is divergent in X, showing that
the above assumption is false. Therefore we have (3.16).

By applying successively Proposition 3.2.1 we may also assume that the

operator T : Span { Zy },.; — X satisfies, besides (3.16),

P\T :span{Z},.; — X1 is block — diagonal
. (3.17)
P.,T :5pan { Zx}1e;f — Xm is block — diagonal.
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Applying Proposition 3.2.2 (ii) to B, T : 5pan { Zx } e — Xm we find Iy C
I, |Iy] = N,, with the property that, considering y = >_, 1o Uks

HPmTy” < 57N;lamNm1/T5m+2 < 57N7—r;am/2]\7m1/75m+2_
Thus we can write
1 o .
1B+ ot Paca YTyl > IToll — [PATyll 2 (-~ STNGEm )N, msz,

Assume 1/(8a) — 57Na*"/* > 0. There exists s € {1,...,m — 1} such that

1 1
(P + ... 4 P ) Tyl| > —— — N, /msm+2,

>
IRy > —— =N,

m— 1
Since 1/(m — 1) > Np®/? and, by our assumption, 1/(8a) > 57Nm*™/?, the
last quantity from above is larger than or equal to 57N,,/™s=+1_ This is a
contradiction since

“PSTy“ = ” Z PsTka S H Z Ql,sPsTyk” +...+ ” Z QS,sPsTyk”

kel kelo kelg
< 2N, 2N, e

where, at the last inequality, we used (3.17) and
Q¢ s PsTyill < NPTyl < llwwll <2, Ve, VE=1,...,5.

Hence we must have a > 1/456 N2 > m, for all m > 1, proving that X
is not isomorphic to its complex conjugate.

We will indicate how we can obtain continuum non-isomorphic complex
structures on X. For a set A C {1,2,...} denote by X* the Banach space
defined by X = (3., ®X,n)1, where

~ X, if A
% - if m¢

Xm, f me A

It is well known that there exists a family of cardinality continuum of infinite

subsets of positive integers { A; }ter such that |A; N A,] < o0, for t 5 s. Indeed,
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identifying N with the set of all rational numbers, we let A; to be an arbitrarily
fixed infinite sequence of rational numbers converging to ¢, for every ¢ € R.
Now notice that any two Banach spaces from the family {X{49},cg are not
isomorphic. Indeed, let A, B € {A;}1er and let T be an isomorphism between
X and X®_ Denoting A° N B = {ny,ny, ...,ny, ...} we can repeat the whole
argument for T’ x, and get |77 > ny, for all 1 > 1. o

Remark. The proof of Theorem 3.3.1 yields, for the case ¢ = 2, a constructive

version of the Bourgain-Szarek example.

Corollary 3.3.2 For 1 < p < 2, the space L, contains a real subspace having

a continuum of non-isomorphic complez structures.

Proof. Let {r,}.>1 be a strictly decreasing sequence of real numbers such that
p <71y, <2, forall n. It is well known that if 1 < p < ¢ < 2 then L, contains
an isomorphic copy of l;. Also, L, is isomorphic to an I, sum of infinitely many
copies of L, (3_®Ly), . Then L, has a subspace isomorphic to (21 ® bty

The conclusion follows now from Theorem 3.3.1. 0

3.4 Another Banach space with at least two
non-isomorphic complex structures

The following fact is well known.

Lemma 3.4.1 Let {gn}n>1 be a sequence of real numbers with g, > 1, for all

n, and let £ be a M-dimensional subspace of (3,1 ®lg, )1,- Then
d(E, 15" < MP,

where § = sup, |1/q, — 1/2|.
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Proof. Denoting by P; the natural projection of (3, ., ®l,, )i, onto its j-th
term, we have £ C (3,5, ®F, E)i, and, by the result of Lewis [Le],

d(P, B, 13mPEy < (dim P, E) Vo122 < (V=172 for all n > 1.

Thus

n>1

We can now prove the main result of this section.

Theorem 3.4.2 There exists a sequence r, /" 2 such that (ano @lm)l2 con-

tains a real subspace with a continuum of non-isomorphic complex structures.

Proof. The sequence {r,},>o will be defined inductively. We will also con-
struct inductively a sequence of positive integers { Ny, }m>1. Denoting by nm, =
(T5m—1sT5m—2; - - - , Tsm—5) for all m > 1, we will then define Xy, ,,. as one of the
spaces discussed in Section 3.2. Set a,, = min{1/r5n-2~1/T5m-1,.. -, 1/T5m-5—
1/rsm_4} (this definition of a, corresponds to a from the construction in Sec-
tion 3.2). We start the inductive construction with 7, = (ry4,7s,...,70) such
that 2 > r4 > ... > rg > 1. Having defined 7y, Ni,...,Mm-1, Njn—1 and

Nm = (T5m~17 T5m—2y -5 r5m—-5) we take N’m € {17 27 e } such that
[Nglm]l/TSm—Q_l/z > 100m. (3.18)

Setting M,, = [N2™] we can then choose Nmi1 = (smids---,Tsm) Such that

2>T5m+4> D TEm D Teme1 > ... > Tsmes and
MYrm=1/2 < 9 (3.19)

Notice that the sequence {r,},>0 converges to 2, since by (3.18) and (3.19)

we have

1 1 In2 n2
L e — = < < > 1.
0 -5 <. < mioom: orelim=1
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Let X,, = Xn,,n. be the space defined in Section 3.2, treated as a subspace
of by, @alrs,, Do - - Dalry,, ;. We will show that the space X = (3, o) ®@Xm )i,
is not isomorphic to its complex conjugate.

Suppose that T : X — X is an isomorphism with [|T']] < 1/2. Denote by
a = ||T7}| and by P;: X — X the projection of X onto its j-th term.

Let m > 1 be arbitrarily fixed. Recall that X,, = Span {Zy}x>1. A similar
argument as in Theorem 3.3.1 (see (3.14)) shows that we can find an infinite

set of positive integers I(= I,,) and an operator (denoted again by) T : Y, =
span { Zx}rer — X such that

PSTZO, \7/8:1,...,777,——1
Lzl < |Tz| < Jzll, Vz € Y.

We may also assume that P, 7 : 5pan{Z} rer — Xm is a block-diagonal
operator (apply Proposition 3.2.1). By Proposition 3.2.2 (i) we may extract a
subset K C I, with |K| = M,, such that

WPnTyi|| < 24N, forallk € K,

where y, € Z; is one of the basis vectors defining Zy, for k£ € K. In particular
{yx}rex are l-unconditional. Let R,, : X — (3., ®X,);, be the natural
projection. Since T' = P,,T + R, T, for every choice of signs {ex}rex We can

write

1B ol 2 5ol S exall = IPATC exsl

keK keK keK
1
> —24M,, N_“™. 3.20
> gl L wl . (320)

We have two cases. Assume first that 1/4a|| >, cxvell = 24M,, N ™.
Since by Lemma 3.4.1 any M,, -dimensional subspace E of (3. @®X.), C

(D essm @l )1, satisfies

s>m

d(E, 1)) = d(Ej;/[m) < M, Mrom=1/2 < o
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using the parallelogram identity, estimate (3.20) and our hypothesis we obtain

SIBTl? > G g 30 1Y BTl 2 sl Sl

keK (e hex  kEK keK

Since ||Rpn Tyl < 1Tyill < Ilka <2forall k € K, we get

Mo 2 61 2“ zyk|l2 MQ/TS"‘“
Thus, by (3.18),
1/rsm-2=1/2 >
a> 16Mm m.

The second case is 1/4a|| > e x el < 24M,, N ™ < 24M,, Na®™/*. Then

we have

1
a> —M> lNam/2 lNam/ZMl/rs,m 2 > Ml/rsm 2—1/2 >
g M N el = g > o m.

Thus a > m in this case as well. Since m is arbitrary, it means that spaces
X and X are not isomorphic. The fact that X, as a real space, has continuum
non-isomorphic complex structures follows in the same manner as in Theorem

3.3.1. -

3.5 Final remarks

As we already mentioned in Chapter 2, a space which is non-isomorphic to its
complex conjugate cannot admit an unconditional basis. As a consequence of
our construction, the spaces obtained here have a stronger property than being
without unconditional basis.

Comparing to constructions of subspaces without unconditional basis, like
the ones discussed in Chapter 4 of this dissertation, in the present case of isomor-
phisms of the complex conjugates many fewer linear operators are available, and
no criterion of a similar type as Proposition 4.2.2 is known. Thus it is not clear
how to construct spaces with at least two non-isomorphic complex structures

as subspaces of arbitrary Banach spaces X, or at least inside lo(X).
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If we allow ourselves to look for quotients of subspaces (which is essentially
different than subspaces) of Io(X) then there is the following characterization of

a real Hilbert space in terms of the cardinality of its complex structures.

Theorem 3.5.1 ([M-T}) A real Banach space X is isomorphic to a Hilbert space
if and only if every infinite dimensional quotient of every subspace of lo(X)

admits a unique, up to an tsomorphism, complex structure.

It is clear that constructions of spaces non-isomorphic to their complex con-
jugates are more difficult if we require the space to be close, in a sense, to a
Hilbert space. By refining the arguments of this chapter it seems possible to
obtain spaces which are very close indeed to ls, namely weak Hilbert spaces (see

[P]), and still not isomorphic to their complex conjugates.
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Chapter 4

Unconditional Decompositions

in Subspaces of [9(X)

4.1 Introduction

As we already mentioned, the essential idea of the construction is summarized in
Proposition 4.2.2, which is our main criterion for recognizing that a space with
a special structure does not have higher-order local unconditional structure.

Using this criterion we will then describe an abstract setting in which it is
possible to construct subspaces of tensor product spaces without the higher-
order local unconditional structure (Theorem 4.3.1). This will enable us to
obtain Theorem 4.4.1 and to provide the characterization of a Hilbert space
from Corollary 4.4.2.

Comparing to the situation from Chapter 3, in this chapter there are no
major differences between the cases of real Banach spaces and complex Banach
spaces. A choice of a particular field of scalars (real or complex) may affect only
the absolute constants which appear in the estimates. To fix our attention we

will assume that all the Banach spaces involved are real Banach spaces.
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4.2 Local unconditional structure of order k

Definition 4.2.1 A Banach space X has local unconditional structure of order
< k if there s C > 1 such that for every finite dimensional subspace E C X
there exist a Banach space V' and operators u : E —V, w: V — X such that
ig = wy, |jullllw]] < C and V has a 1-unconditional decomposition {V;},<n,
for some positive integer N, with dimV; < k, for j < N. Here ig is the natural

embedding ig : E — X. The infimum of such constants C is denoted by Up(X).

This definition generalizes the local unconditional structure (or Lu.s.t.) de-
fined in Chapter 2. Clearly, if a space X has a k-dimensional unconditional de-
composition then U (X) < co. For an arbitrary Banach space X these different

types of local unconditional structure are related via the following inequalities
Ui(X) 2 Up(X) > ... 2 Un(X) > ...

The following result generalizes [K-T1], Proposition 1.1 (see also [K-T2])

and is a version of a criterion due to Ketonen [Ke] and Borzyszkowski [B].

Proposition 4.2.2 Letk > 2. Let Y be a Banach space of cotype r, for some
r < oo, with the cotype constant C.(Y'). Suppose that there exists s < k—1 such
that U,(Y) < oo and that Y has a A-unconditional decomposition {Z;};, with
dim Z; = k for all i, for some X > 1. Then there exists an operator T : Y — Y
such that

(1) T(Zl) C Zi, fOT‘ 1= 1,2, ceey
(it) |T) < A*M U,(Y'), where M depends on s,7 and C.(Y) only,

iii) inf, |71z, — ulz,|l > 55z, fori=1,2,..., where the infimum is taken over
p i+ 12 i 2k

all real scalars p.

Proof Assume U,(Y) < oo. It is enough to construct a sequence of operators

T, :Y — Y such that, for all n, the operator T,, satisfies (i), (ii) and

: 1 :
inf, |Th 2, — pnlzll > Yol fori=1,...,n.
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The existence of the operator 7" will then follow by a diagonal construction.

Namely, pass to an infinite subsequence L; C N such that the limit over
n, im{T,,,z, |n € L} exists (since dim Z; = k, we may take the limit in an
arbitrary norm on the space of operators, for example in the operator norm). By
induction, for ¢ > 2, pick an infinite subsequence L; C L;_; such that the limit
m{T,,z |n € L;} exists. Let then L = {l},ls,...} be an infinite (increasing)
subsequence of N such that [; € L; for all <. Clearly, for every ¢, the limit over
n, im{T,|z |n € L} exists. Define the operator T' : span{Z;}; — span{Z;},
by Tz = lim{T,z |n € L}, for all i. It is easy to see that T" satisfies all the
required conditions.

Fixn and € > 0. Let Y™ = span {Z;}:<,. Since U;(Y') < oo, as it was proved
in [B], Proposition 3.1 (although the actual formulation was slightly weaker),
there exist a space V with a finite 1-unconditional decomposition {V;};<y and
operators u : Y™ — V, w: V — Y such that j = wu, ||ull|lw]] < (1+¢)Us(Y),
dimV, < s for all I < N and, for every positive integer m, the decomposition
{r:Vi}icm.i<n is M-unconditional in span{r;Vi}i<m, i<y = Rad,,(V) C Ly(V),
with M depending on s, r and C,.(Y') only. Above j : Y — Y stands for the
canonical inclusion map.

Let P, be the natural projection from Y onto Z;, for ¢ = 1,2,.... Also, by
@ : V — V denote the natural projection from V onto V; (I < N).

For a sequence of signs © = {0, }i<n, with 6, = £1 if [ < N, define an
operator Ag : V — V by Ae =3,y Q1.

For i = 1,2,... choose a sequence of signs ©; = {6,(%) }i<y such that

2

k>
< o inf, | PwAe,uP; — plz||. (4.1)

supg inf, || BwAeuP; — pulz,

Define now T, : Y — Y by T, = Y., PwAe,up;.

Fix an arbitrary y € Y. Since unc{Z;}; < A we get

1Tyl = HZR’wAeiuPi(y)ll

i=1
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= ”/0 (Zﬁ'(t)ﬂ) <Z7"i(t)WAe1—UPi(?J)) dtf|

=1

< Supogtglll}:n(t)BIIHwH/O Ilzri(t)AeiUR(y)lldt

< Aull([ 13 rseuR @

For each ¢ = 1,...,n write uP(y) € V as uPF(y) = > ;. y vi(4), with u(i) € V;
for l=1,...,N. Then, since unc{r;Vi}icn,i<n < M in Ly(V),

1Tyl <

IA

<

<

Allwli( /O I Zn(t) O by ()))2de)V?

I<N
Allwll(/ 1373 0(ritym () |2dt) 2
0 i=1i<N
AM o / 133 rBu]d
0 i=1i<N

Ml / 1S r(t)uPiy) ey 2
0

A1\4HwHHuH(/0 HZ7‘1-(75)1"5(1/)!Ith)”2

NM(1+ ) Us(Y)lyll-

Hence we have (ii) satisfied.

Before we prove (iii’), recall that for any {z;}; in an m-dimensional Banach

space we have (as a consequence of Auerbach lemma)

1
sup..—4 || Y &zs] 2 EZ 51

Returning to our proof, fix an arbitrary ¢ € {1,...,n}. Consider the k*-

(4.2)

dimensional space H of all linear operators on Z; with the operator norm and

consider the quotient space H/Hy, with Hy = span[lz,]. For each R € H, let
R be the canonical image of R in H/Hy.
Define R, : Z; — Z; by By = PwQubP;. Since dim R)(Z;) < s <k

. 1
\Ril| = inf, ||R; — plz,]| > §”Rl”a forl=1,...,n.
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This is clearly true for [p| < ||Ril]/2, and in the case |u| > ||Ril}/2 it is
sufficient to notice that, since Ry(Z;) is s-dimensional, there is an = &€ ker R
such that ||z} = 1.

By (4.1), (4.2) and (4.3) we now have

2 _

k 1
inf,, HTani —plz | > supg inf,, | PwAouP; ~

E? —1
e = P 2 IR
I<N
1
> = =
> k2§||fzzu..2k2n§j&|| —allizl = 5

O

Let us also state the following lemma which can be obtained in a similar

way as [K-T3], Lemma 3.4.

Lemma 4.2.3 Let k > 2 be an integer, a € [E5t 5, 1), n > k*(k* — 1) and let
I={1,...,n}.

(i) Foralliy,...,ixp1 €T andd=1,... k=1, let AY, .  AD

..... i1 “ 7 11,0,88,000k 410 T 2
A({?’_u’%o be subsets of I, each of cardinality at least [an]. Then there exist

Jis- s kg1 € I such that

J1 € AL

0,72, 1.7k+1’ o

,Jk+1€A foralld=1,...,k—1.

wJka0 7

(ii) For alliy,...,ix €l andd=1,... k-1, let AD . AY

0yig,eomrin? £341,0,ig,0nmyin? < *
A(ii),---,ik—l,o be subsets of I, each of cardinality at least [an]. Also, for all
B2yt €1, let Cog,ipy Ciz0iigrsins - - -+ Clis,.in_q,0 e subsets of I x I,
each of cardinality at least [an?]. Then there exists ji,...,Jr € I such

that

jleAg)m ’’’’’ ye s JE EA foralléd=1,...,k—1

wJx—-1,0
and

(71, J2) € Coja,ier - - (15 9%) € Ciooiir,0-
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Proof (i) Consider, foralld =1,...,k—1, the following subsets of I x ... x [
N’

k41
n
s . )
L = U A((),)ig,...,ik+1 x i} x .. {igsa}
iz,...,ik+1:1
n
X 5 ) .
L = U {ir} x A(z'l),O,ig,...,ik+1 X {a} X .. {igsa}

11,83, k41=1
n
_ . . (4)
Iy = U {ir} xoox {i} A% 0
’il ,,,,, 'ik+1:1

.....

nality larger than or equal to [an]-n*. Since a > (k*—1)/k* and n > k?(k? —1)

we have
k2 —2 k2 —2
k2 -2
= (a-kQ—l)n_l
-1 k*2-2
= G !
n
= —-1>0
RE-1) —

Hence [an]n* > (k? — 2)/(k* — 1) n**1, which implies

k* —2
|Il,5l>‘kj2—"—“|l><...><1|, Vi=1,...,k+1,6=1,..., k-1

1
k+1

It follows that
ﬂ Iis # 0.

l=1,.. k+1; §=1,... k=1
Taking ji, ..., Je+1 € I sothat (1, .-, Jk+1) € (h=y k11, 6=1..k_1 11,6 WE ODtain
the conclusion.

(ii) Consider the following &k — k subsets of  x ... x I
k
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é . .
Lo = |J AQL o ox {ia) x.. {in}

i, ip=1

Ls = |J (i x.ox{aadxA? .

i1yt —11

forall d=1,...,k— 1. Also let

Jig = {(il,.. . ,ik) clx...x II (il,’ig) < CO,ig,...,ik}
k

Jiz = {(il, . ,ik) elx...xI | (il,ig) € 05210)1'4,._‘,,%}
k

Jlk = {(il, .. ,ik) el x. Lo X I ! (’il,’ik) & Ci2,m,ik—-1,0}'
k

Each of the k% — 1 sets from above has cardinality at least ﬁzj |Ix...x1I|
k

The conclusion is satisfied for 71, ..., jx € I such that

(1, Jk) € ( N 11,5) N ( N Ju) :
=1,k 81,00, k—1 I=1,.0 k-1

4.3 Main construction

The next result describes a method of constructing subspaces of tensor product

spaces without local unconditional structure of order < k.

Theorem 4.3.1 Let A > 1 and D > Mk/k? —1. Let F be an n-dimensional

Banach space with a A-unconditional normalized basis { f;}7;.

(1) Suppose that || > i, fill > nY?D. Consider k+1 tensor product spaces X, =

FOL®.. QL Xo=00FRL®.. 0L, .., Xen =00...0 0 QF,
k k-1 k
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each endowed with a cross-norm. Suppose that the natural tensor basis in
each X; is Cx-unconditional, for some C > 1. Set X = X1 D ... 0 Xia
and let C.(X) be the cotype r constant of X, for some 2 < r < o0.
Then there exists a subspace Y C X, which admits a k-dimensional C)-

unconditional decomposition, such that Up_1(Y) > a/\'IC'/\“QD.

(ii) Suppose that || >, fill <n'/2/D. Consider k tensor product spaces Xy =

FRlye.. L Xo=6E0FQLe..00L, ... Xp=5&...015QF,
N, s’ g g

k—1 k-2 k-1
each endowed with a cross-norm. Suppose that the natural tensor basis in

each X; is Cy-unconditional, for some C\ > 1. Set X = X, . . .@Xk@l’gk
and let C.(X) be the cotype T constant of X, for some 2 < r < oo.
Then there exists a subspace Y C X, which admits a k-dimensional C)-

unconditional decomposition, such that Uy_1(Y) > aC/\“QDl/ 2,

Here a > 0 depends on k,r and C.(X) only.

Proof (i) Set a = (k* —1)/k% By [K-T3], Lemma 3.3 (i) there exists D* <
no < n and a subset I C {1,...,n} with [I| = ng such that

1Y £l =ne®D

iel
and for any real scalars ¢y, . .., c,, there exists a subset S C I, with |S| > [ang]

such that
I > efill = maxel(1 ~ a?)ng A7 D. (44)

iel
Without loss of generality we may assume that F” := span{ f; }:cs is the original

space F' (and in particular n =ng and I = {1,...,n}).

Let {e;}?_; be the standard unit basis in 3.

For 4y,...,%41 = 1,...,n let Z; ;. be the k-dimensional subspace of
X =X19D...®H Xy spanned by the vectors xﬁ,’._,iw, e ,zgf?__wikﬂ defined as
follows:
43
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- y 3 1] fi®e,®...Q¢
SR 100 ..01 1® f"’ o e
e ®fi,®... Qe
A 010 ...01 S s
i1 ger et 1 _
o 000 ...11
- - - _ei1®ei2®--‘®f1’k+l_
Consider the space Y = span{Zi .., }5, i, C X. The k-dimensional
decomposition {Z;, s, +1 ;ll,v--y‘ik-}.} is C, unconditional since, by our assumptions,

{fiu ®ein ® ... ® iy tiningn -5 {60 @ @€, ® fiy iy, are Ox
unconditional in Xy, ..., X1, respectively.

Also, for all 41,...,4x11 = 1,...,n and scalars s, ..., s, we have

k
max (|sy], .. ., |sk]) < [ls1z” +...+skx§1}__,ik+lu < 2(|sy|+. .. +|sk]). (4.5)

yeemsth A1

Let T : Y — Y be an operator obtained in Proposition 4.2.2, for the case

s=4k—1. On each Z;, write the operator T iy in the matrix form

vvvvv

k41
. . €} 1,000k 41 k
with respect to the basis {z;’ . Yotk T2y o, = |03 . That
.......... : i=1

is, forall iy,...,5441=1,...,nand 6 =1,...k

et (1) i1tk (k)
) - alé :Z:il,...,‘ik_(,.l + T + a’k5 i},.‘.,ik_;_l'

T($(5)

i 7"~)ik+l

Notice that for all 4;,...,%x1 = 1,...,n we have

i % . . i i 1] yoenyl 1
max ( {Jafj ] i # G} U {Jaly ™ - a2 <6 <R ) 2 o

ij 4k4"
(4.6)
Indeed, fix arbitrary 4;,..., k1, and let

1150 thd 1 11 5eemikg

~ i —an , ifi=
Cl.ij =

’il ave ik+1 . . .

a;" if ¢ #£ 7.

Observe that then [d;;];; is the matrix of the operator Tz, . —al
with respect to the basis {ng}_.,,.m}ézl,,,,,k. Then (4.6) follows from (4.5) and
Proposition 4.2.2 (iii).
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Fix arbitrary iy,...,%k41=1,...,nand 0 =2,... k.

We have, by the cross-norm property,

u}jxmlwl < N0 e)®... 8 [, ®. .. @, |+

ip=1 i1=1

+”(Zeil)®ei2 @ ... Qe ®fik+1”

i1=1
= 2| el =22
i1=1
Thus
8
mwwuzwr2d3%1
i1=1
i . i i i1, k
_ “ Z 1yeeosbkt1 5 ) s + o+ aklé k+]x§1,)...,ik+1)l‘
11"1
> | Z B @, ©. . @e,|
i1==1
and so
1S aly ) < 2n2 . (4.7)
11=1
By (4.4) there exists a subset AO22 inyy C{L,...,n} of cardinality at least

[an] such that

!azl, ,zk+1| ) (1 . a1/2)n1/2)\——1D < In1/? ”T“

max. _ (s
iy EA(O)z2 """" ik1
Thus, for every is,...,ix11=1,...nand éd = 2,..., k we have
MAX, 46 lays " < 2D7H(1 - o) TINIT -
€Ay, ik
A similar argument shows that for arbitrary i1,43,...,441 = 1,...,n and

6 €{1,3,...,k} we obtain a set AY
[an] such that

C {1,...,n} of cardinality at least

11,0488, 041

a4 @iy | < 207 (1 - a2 AT,

k3
2€A 10,3, ir 1
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After k steps, for 4q,...,%-1,%+1 = 1,...,nand 6 = 1,...,k — 1 we get
AY c {1,...,n}, with iA(;?

Tlyennike 1,0,k 01 syt — 10,0641

| > [an], such that

max aﬁg“"i’““l <2071 — AN T

: (8)
L€AY . .
k€ "l""ﬂk—lvovlk-kl

We can repeat once more the procedure of obtaining (4.7) (starting this time

from o ) — 2 < 2nY2 for § = 2,...,k) to get, for all
ig1=1

11, bhd 1 (SR IS

i1,-..,iek=1,...,nand 6 = 2,...,k, a set A(;i) o C {1,...,n} of cardinality

yeeey by

at least [an] such that

[yl < 2D (1 = oY) TY,
ig,0

hore 50 o g e g gl
By Lemma 4.2.3 (i) (note that n > D? > k*(k?—1)) we can find a k+1-tuple
(71,- - Jes1) such that

. ) _
J1€AG, e foralld=2,...k
4
. (8) —
]k E Aj1y~--yjk—1707jk+l fOI' all 5 —_ 1, ...y k - 1
: s
| Jki1 € A(j]),.,.,jk,o foral d =2,...,k.

Q) A®

0,520 dlt1? "7 Y T G150 J8,0

From the inequalities defining A this yields

max {[af}" 7| 11 # j} < 2D7H(1 = M) TINIT|

and, forall 6 =2,...,k,

ol — @y <y Yl ) Jady
£l %8
< 22k —1)D7H1 - aYAH)TIN|T.

Thus, by (4.6) we obtain ||T|| > c¢DA™!, where ¢ = (1 — a*/?)/8k*(2k — 1)
depends on k only. In the same time, by Proposition 4.2.2 (ii) we have ||T]| <
C3M Uy_1(Y). This finally yields Uy,_1(Y) > cDAX'CT2M L.
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(ii) Set again o = (k? — 1)/k%.

For this case, the role of the relation (4.4) will be played by Lemma 3.3 (ii)
from [K-T3], which states that for every sequence of real numbers cy,..., ¢,
there exists a subset S C {1,...,m}, with |S] > [am], such that

(Z AV > (1 - a) Y20 max;eg |- (4.8)
i=1

Consider, for 41,...,% = 1,...,n, the k-dimensional subspace Z;, _; of

X=X1&...®X,®l3 spanned by the vectors :1:511)%, o ;Eg“)lk defined as
follows:
[ 1 T 1 e ®.. . 06
T e 1 o0 o D] .
ng)zk _ 010 ...0 D2
9 e’L ®ei®"'®fi
wﬁ“)lk 000 ...1 D2 ! 2 K
) i ) - ei1®6i2®'“®eik

LetY = span{Z;, . }%% ., C X. Byour assumptions {Z;; ;}% ;, forms
a Cy-unconditional decomposition of Y.

IfT:Y — Y is an operator from Proposition 4.2.2 write, on each Z;, ;,,

- N k
—_ T1yee0ylk . . . - _
Tz, = [aij ]i’jzl. That is, for all 4;,...,4x=1,...,nand d=1,...,k
(8) — ik, (1) 150t (K)
T('ri],...,ik) =AU e AT

Similarly as in (4.6) we get
1

max ({[a’ﬁ’”"i" - a?g""i’ﬂ :2<0<ktU {Ia:;”‘l s j}) > TS (4.9)
Fix arbitrary 49,...,% = 1,...,n. We have
1> "2 Wl < 1D fu®en®. . . @ell+ D7) e, ®... @6l
i1=1 i1=1 i1=1
= ) full+ D7V2n}2 < op}2D72, (4.10)
=1
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Hence

on1/2 H=1/2 “TH > “ Z Ta:(l)

21,. alk
i1=1
= 1 ; k
T e I Y]
i1=1

By (4.8) we get, forall § =2,...,k

2DV T > | Z e ®...0 fi;, ... 96,

i1=1
- (Sl
i1=1
> (1—a)/?nl/? max, . ,) lagy ™| (4.11)

0,i9,..., i

and thus, for a certain subset AO ipi, C11,...,n} with IA@

0,12,.,.,ikl Z [an]’

max, _ . laZ | < 2D Y2(1 — o)~ V2T
B 0,in

Similarly, for all 41,43,...,4% = 1,...,n and § € {1,3,...,k} we can obtain

i, C{l,...,n} aset of cardinality at least [an] such that

max ]a“’ ¥ < 2D V(1 — )7V T

(%)
A’Ll 0,7

and, after k steps, for all 4;,...,4,.1 =1,...,nand d = 1,... k — 1 one can

choose A(;? .0 C{1,...,n}, with IA(;S).

iko1, 1yerfk—15

ol = [an], such that

max, lab %] < 2D7Y2(1 — )" Y2 7.

()
€A i1 eeerig 150

(1)

i1,ig= 1( 11 5eenlk

In an analogous way to (4.10) and (4.11) (estimating || >

(2) i)l from above, then using the boundeness of T" and (4.8)) we get, for all

z'3,...,zk = 1,...,n, a certain subset Cg;, ;. C {1,...,n} x {1,...,n} such

that |Cog,.. .| > [an?] and

max(u,zg)é(]o i3,k ”Yn, Jk' ..<. 2D~1/2(]— - a)“1/2 ”T”7
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where we denoted, for all the choices of the parameters involved,

Y e al
Indeed, we have for all i5,...,4p, = 1,...,n
n n n n
| Z 2 W =@ O < I Bl el +1D eallll D fall
i.ig=1 iy=1 ig=1 ip=1 ig=1
< 2nD7?

and then

— 1 2
2nD~Y|T|| > || Z (@D =2

i1,ip=1
> D72 Z e e ® .. ® e |

> D—1/2(1 - a)1/2n MAaX(iy,in)e€Co,iy,....1p ‘711’ V.

After k — 1 similar steps we obtain, for all 45,...,4,_1 = 1,...,n, a subset

Ciyin_r0 C{1,...,n} x {1,...,n} of cardinality at least [an?] such that
MAX(y i)eCsy iy _yo VK] < 2D72(1 =)™V |7,

By Lemma 4.2.3 (ii) (note that n'/2D~1 > || 3" | fill > 1/\ || f1]| and hence
n > D?*/X? > k?(k* — 1)) we find a k-tuple (ji,. .., jx) such that

)
Jj1 € A(a’)ﬁ’ i forall6=2,...,k
S
EA(J: k1.0 foralléd=1,...,k—-1
| U1d2) € Cogsgir -5 (150k) € Cppjnn 0

The conclusion of the theorem will follow from Proposition 4.2.2 (ii) and

(4.9) (similarly as in (i)). O
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4.4 Local unconditional structures in subspaces
of lg (X )

Let {e;}; be the standard unit vector basis in ly. For all positive integers n and

k, the space 3" (X) can be (algebraically) identified to X @ I} @ ... ® I3, via
k

1 yeenyip=1

We will consider on X ® I ® ... ® [J the norm induced by 2 (X). Thisis a
N e

k
cross-norm, since if ¢ € X and uy = ) .

[3 then

no Q)

=1 @y € €05, ue =) 0 a6, €

TOUR...Qup = x®(2a53)ei1)®u2...®uk
i1=1
= Z($®a£i)€zl®UQ®Uk)
ir=1

= Z(aﬁj)x®eil®u2®...uk)

i1=1

_ Z Z () (2)‘ (k)gg@en@...@eik)

i1=1 =1

and hence
1/2
le@u®...0uw| = || (Z ZW . a W)
= LN 1/2 1/2
= | (Z Jas)| ) (Z o] )
= fzllwall - - flull-

Also, if {f1, ..., fm} is a l-unconditional sequence in X then {f; ®e;, ®...®
€y }i=1,..msi1,...ix=1,..n 1S 1-unconditional in X @ 5 @ ... @ [3.

k

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Indeed, if {€;,..ix }iir,..in 15 & sequence of signs, then

1Y Y gu.awlfive®.. .®e)|=

=1 iy,..ip=1

n m

=1 D Oleu . wf)®en®.. eyl =

11ye-nip=1 =1

n m 1/2 n m 1/2
_ ( 1 6 ikfjnxz) s( 3 llijllz) _
Hyeein=1  j=1 i1,eip=l  g=1

= > O fee®. ®el=

iy ip=1 j=1
m k27
= 1) D fi®en®.. el
J=1 d1,..nig=1
We have analogous identifications for each of the tensor spaces I ® X ®

Lh®...0l,. .., .. .85 ®X, resulting in the same type of properties.
k—1 k

Before we pass to the main result of this section, we recall some necessary
information.

Let X be a Banach space. For any positive integer [, let K;(X) > 1 be the
smallest constant K such that for every 1-unconditional normalized sequence of
vectors {z;}%, € X, with 1 < m <, one has

K 'm'/? < Z:L’zH < Km'/?2,
i=1
We say that X has property (H) if K(X) := sup; K;(X) < co. This notion was
introduced by Pisier in [P] and studied by Nielsen and Tomczack-Jaegermann
in [N-T].
For an n-dimensional Banach space X we have, as it was proved in [N-T],

Proposition 1.2 (see also [K-T3], Proposition 4.3),
dx < cK,, (Rad,(X))*, (4.12)

where ¢ is an universal constant.

We can now prove the main result of this section.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Theorem 4.4.1 Let X be a Banach space not isomorphic to a Hilbert space.

(i) If X has cotype r, for some 2 < r < o0, then, for all k > 2, there ex-
ists a subspace Y in lo(X) which admits a k-dimensional 1-unconditional

decomposition and Uy_1(Y) = 0.

(ii) There ezists a subspace Z in lo(X) such that Z has unconditional finite

dimensional decomposition but Up(Z) = oo for all k > 1.

(iii) If X has cotype r, for some 2 <r < 00, then I3(X) has at least countably

many mutually non-isomorphic subspaces.

Proof (i) Let k& > 2 arbitrarily fixed.

Since X is not isomorphic to a Hilbert space we can find finite dimensional
subspaces of X, {X,},>1, such that the euclidean distances dyx, , co.

In order to get the result it is enough to show that if Z is a finite dimensional
Banach space, with the cotype r constant C,(Z), then, if dz is sufficiently large
we can obtain a subspace Y C [5(Z) having a k-dimensional 1-unconditional
decomposition and satisfying Uy 1(Y) > adlz/ 4 with a depending on k,r and
C,(Z) only. Having proved this finite dimensional statement we can conclude
as follows: for all n > 1, denote by Y, a subspace of I5(X,) which has a k-
dimensional 1-unconditional decomposition and satisfies U, _1(Y,,) > a di(/f, with
a depending on k,r and C,(X) only and set Y = (3_, ., ®Y,);, C lo(X). Then
Y, is 1-complemented in Y, for all n > 1, while sup,>;Up_1(¥,) = co. Since
having local unconditional structure of order < k — 1 passes to complemented
subspaces, we will obtain Uy_1(Y") = oo.

To prove the quantitative estimate above, let dim Z = n. By (4.12) there ex-

ist a universal constant ¢ > 0 and 1-unconditional normalized vectors fi,..., fmn

in Rad,(Z), with 1 < m < n, such that either

13" £ill > edf*m!, (4.13)
=1
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or

I i fill < e dgtm . (4.14)
i=1

If ¥ =span{fi,..., fm} C Rad,(Z), then F is a m-dimensional space with
a l-unconditional normalized basis.

In the case that (4.13) is satisfied, set W; = (FI'®...0") & ... ®
|

, k
Q... Q17 QF) where on each tensor space entering in the definition of W,
2 2 g
| .

k
we consider the cross-norm induced by l;”k (F). Thus W; is isometric to a

subspace of l3(F). Since F C Rad,(Z) and Rad,(Z) can be identified to a
subspace of 12" (Z), we obtain that W is isometric to a subspace of [5(Z).

By an earlier remark, each of the tensor spaces entering in the definition of
W) has its natural tensor basis 1-unconditional. Also, looking at the cotype r
constant of Wy, we have (see [T]) C.(W1) < C,.(la(2)) = C.(Z).

Thus Theorem 4.3.1 (i) (we assume that dz is large enough, since this is the
case for which we will use the result, and hence CdIZ/ 4 > k\/—k—f———-l) yields the

existence of a subspace Y of W satisfying
U1 (Y) > adf”,

with a depending on &, and C,(Z) only.
In the second case, that is (4.14) is true, the proof is similar, by consid-

ering the subspace Wy of [5(Z) defined by Wo = (FRII'®...Q1") @& ... &
k-1
('®...QI"®F)® 17" . Then we use Theorem 4.3.1 (ii).
k1

(ii) In the case X has cotype 7, for some 2 < r < oo, consider, for each
k > 2, the subspace Y} of l5(X) obtained in (i).

Let Z = (3450 ®Ya), C lo(X). For every k > 2, Y}, is 1-complemented in
Z and Uy_1(Y},) = oo. Tt follows that Ug_1(Z) = oo for all k¥ > 2. Since each of
the spaces Y} has a k-dimensional 1-unconditional decomposition we infer that

Z has a l-unconditional finite dimensional decomposition.
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Suppose now that X does not have finite cotype, which is equivalent to X
containing {7 ’s uniformly.

Let {E,}. be a sequence of subspaces of X such that dim E, = n and
d{E,,I%) < 2. Since a “random” [n/2]-dimensional subspace of I} has the
Gordon-Lewis constant of maximal order (see [F-J]), there exists, for all n, a
[n/2]- dimensional subspace Y, of E, satisfying GL(Y,) > ¢\/n, with ¢ > 0 an

absolute constant. By [B|, Proposition 1.3, we have, for all k£ > 1,
VEULY,) > GL(Y,) > ¢v/n, foralln > 1.

If welet Z = (3,5, ®Ya), C l2(X), then clearly Z has a l-unconditional
finite dimensional decomposition. For every n > 1, Y, is 1-complemented in Z,
while sup, Up(Y,,) = oo, for k = 1,2.... This shows that U (Z) = oo, for all
k> 1.

(iii) Let X be a Banach space of finite cotype not isomorphic to a Hilbert
space. For each k > 2, let Y, be the subspace of l5(X) obtained in (i). For
s >t > 2 we have U,_1(Y;) = oo, while U, 1(Y:) < U(Y;) < oo. Therefore
l2(X) contains infinitely many mutually non-isomorphic subspaces. a

Theorem 4.4.1 provides now the following characterization of a Hilbert space.
Corollary 4.4.2 For a Banach space X the following are equivalent:

(i) X is isomorphic to a Hilbert space.

(i) For every subspace Y of Io(X) there exists k > 1 such that Up(Y') < oo.

(iii) For every subspace Y of lo(X) admitting an unconditional finite dimen-

sional decomposition there exists k > 1 such that Up(Y) < co.

(iv) For every subspace Y of lo(X) admitting an unconditional finite dimen-
sional decomposition there exists k > 1 such that Y admits an uncondi-

tional decomposition into k-dimensional subspaces.
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4.5 Final remarks

We can continue the study of local unconditional structure of higher order for
Banach spaces which admit an unconditional finite dimensional decomposition,
in the direction of some recent results of Casazza and Kalton [C-Kal.

Their main result states that, for a space X with an unconditional decompo-

sition {Z }x such that sup, dim Z; < oo, X has local unconditional structure if

dim Zk
=1

and only if there is an unconditional basis { fi;} on each Zj so that (fi;)k.;
is an unconditional basis for X.

By the use of Proposition 4.2.2 it seems possible to obtain a generalization
of this result in the following form: under the same assumptions as above,
the condition Us(X) < oo is actually equivalent to X having an unconditional

decomposition into s-dimensional subspaces, where s > 1 is a positive integer.
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