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Abstract

The aim of the first part of this thesis is to propose a method of constructing 

explicit complex Banach spaces not isomorphic to their complex conjugates 

as subspaces of a natural large class of Banach spaces. As a consequence, 

such constructions provide examples of real Banach spaces which admit at least 

two non-isomorphic complex structures. In particular, it is shown that Lp, for 

1 <  p < 2, and (J2n © lrn)i2, for some rn /*  2, contain this type of subspaces.

The second part of the thesis establishes the following new characterization 

of a Hilbert space in terms of unconditionality: a Banach space X  is isomorphic 

to a Hilbert space if and only if for every subspace Y  of h {X )  there is k > 1 such 

that Y  can be decomposed as an unconditional sum of ^-dimensional subspaces. 

A consequence of our construction is that h {X )  contains at least countably 

many mutually non-isomorphic infinite dimensional subspaces, when X  is a 

non-hilbertian Banach space with a finite cotype.
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Chapter 1

Introduction

This is a dissertation in Geometric Functional Analysis devoted to the study of 

structural properties of infinite dimensional Banach spaces.

Among all Banach spaces, the Hilbert space I2 is the “nicest” and most “reg­

ular” . It has lots of symmetries and, in particular, all of its infinite dimensional 

subspaces are isomorphic to the entire space. This is not true anymore even 

for such classical spaces as lp, Lp (p ^  2), whose subspaces admit much more 

diversity.

In general terms, we concentrate on constructing Banach spaces which have 

“few” symmetries while they also have a very decent structure. We are looking 

for arguments which allow us to obtain these constructions as subspaces of 

arbitrary Banach spaces or at least inside Banach spaces from certain large 

classes of spaces. This would support the idea th a t phenomena of this type are 

not merely accidental but that they reflect a common behavior.

We describe now the results of the thesis and we comment on their place in 

the already existing literature.

In Chapter 2 we discuss the motivation for the problems considered in this 

dissertation and we present some fundamental facts in the Banach space theory.

The first topic of this dissertation, described in Chapter 3, is devoted to

1
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constructing Banach spaces on which no good comparison between its linear 

structure over real numbers and over complex numbers can be made.

In considering isomorphism of complex Banach spaces, a natural question is 

whether real isomorphic spaces are complex isomorphic. The constructions we 

exhibit in Chapter 3 not only yield a negative answer to this question but also 

provide examples of real Banach spaces which admit at least two non-isomorphic 

complex structures.

There are two types of known examples of real Banach spaces with more than 

one complex structure, one constructed by J. Bourgain [Bo] (with a variant by 

S. Szarek [SI]) and the other by N. Kalton [Ka].

In Bourgain’s example, the space X  is an ^-direct sum X  — (]Tfe © Xk)i2, 

where Xk are suitable finite dimensional spaces obtained by considering cer­

tain random norms on C N. Szarek’s variant of this example has the finite 

dimensional spaces Xk  obtained (again by random methods) as proportional 

dimensional subspaces of for certain <& \  2 and n k /*  oo. It should be 

noted that by this method it is not possible to obtain an example of the same 

type with X k C for qk < 2.

The space tha t Kalton constructed is a twisted sum of Hilbert spaces i.e., X  

has a closed subspace E  so tha t E  and X / E  are Hilbertian, while X  itself is 

not isomorphic to a Hilbert space. His example is a variant of the Kalton-Peck 

space [Ka-P] and is constructed with a complex twisting function.

The purpose of Chapter 3 is to propose a method of constructing real Banach 

spaces with at least two non-isomorphic complex structures (in fact we can 

easily get a continuum of such structures) as subspaces of a natural large class 

of Banach spaces, thus showing that the phenomena from [Bo], [Si], [Ka] can be 

found in a more general situation. In particular, we prove tha t Lp, for 1 <  p < 2, 

and (Y fn © lrn )£2 > f°r some r„ 2, contain this type of subspaces. This latter 

example complements the results by Bourgain and Szarek.

As we mentioned before, the Bourgain-Szarek argument does not yield ex-

2
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plicit examples, it relies on probabilistic methods. Our method allows us also 

to exhibit a constructive version of their example.

The heart of our argument is based on a comparison of different convergence 

behavior of certain series in the chosen space. The proofs are based on successive 

perturbations and appropriate restrictions of the operators involved in order to 

simplify their representations.

Similarly as for twisted sums, the spaces obtained here admit unconditional 

decompositions into 2-dimensional subspaces, while they do not have an uncon­

ditional basis.

This latter remark leads us to the second topic of this dissertation, discussed 

in Chapter 4, which is connected to the existence of unconditional basis or 

unconditional finite dimensional decompositions in Banach spaces.

The first known example of a Banach space without an unconditional basis 

which still has an unconditional decomposition into 2-dimensional subspaces is 

the already mentioned Kalton-Peck space [Ka-P]. This fact was observed by 

Johnson, Lindenstrauss and Schechtman in [ J-L-S]. Their technique was fur­

ther refined by Ketonen [Ke] and Borzyszkowski [B], who used it for subspaces 

of Lp, and subsequently generalized in the work of Komorowski and Tomczak- 

Jaegermann [K], [K-Tl], [K-T2], [K-T3], where a general method of construct­

ing subspaces without unconditional basis (or even without local unconditional 

structure) was developed. Among other results, in [K-Tl] it is proved that every 

Banach space either contains I2 or a subspace without an unconditional basis. 

This theorem was later used by Gowers in the solution to the homogeneous 

space problem [G]: an infinite dimensional Banach space which is isomorphic 

to all its infinite dimensional closed subspaces must be isomorphic to a Hilbert 

space.

Chapter 4 of this dissertation is concerned with a higher-dimensional gener­

alization of the classical notion of unconditional basis and its relation with some 

subspaces of h{X) ,  for X  a non-hilbertian Banach space. This work continues

3
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and, in part, generalizes the series of constructions that were done before in the 

framework of arbitrary Banach spaces ([K-Tl], [K-T2], [K-T3]).

The main result of this chapter provides the following new characterization 

of a Hilbert space in terms of unconditionality: a Banach space X  is isomorphic 

to a Hilbert space if and only if for every subspace Y  of h { X)  there is k >  1 such 

that Y  can be decomposed as an unconditional sum of k-dimensional subspaces.

The main step consists of constructing, for X  a  non-hilbertian Banach space 

with a finite cotype, and for all integers k > 2, a subspace of h { X)  which has 

a fc-dimensional unconditional decomposition and for which k is the minimal 

number with such property. Similar constructions were previously done for 

subspaces of Lp, 1 < p < 2 (in [B]).

Another consequence of this construction is that h ( X )  contains at least 

countably many infinite dimensional subspaces, when A  is a non-hilbertian 

Banach space with a finite cotype.

Our argument has roots in the techniques introduced in [J-L-S] and devel­

oped later in the literature, as we mentioned above. In particular, we employ 

many ideas from the tensor product presentation in [K-T3]. The essential idea 

is summarized in Proposition 4.2.2, which is a version of Proposition A in [B] 

and generalizes Proposition 1.1 in [K-Tl]. This result will be our main criterion 

for recognizing that a space with a special structure does not have higher-order 

local unconditional structure. The proof of Proposition 4.2.2 is slightly different 

and shorter than the one presented in [B] and, in addition, gives an important 

estimate.

4
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Chapter 2 

Preliminaries in the Banach 

space theory

2.1 M otivation  and fundam ental n otion s

We will start with some basic definitions in functional analysis.

A normed space is a  pair (X, || • ||) where X  is a vector space over R  or C 

and || • || : X  —> {r € R  | r > 0} satisfies

(i) |ja:jj — 0 iff x  =  0

(ii) ||Ax|| =  |A||| x  11 for all x  G X  and scalars A

(iii) ||a: +  y\\ < ||r || +  ||y|| for all x, y  € X .

A normed space is called a Banach space if every Cauchy sequence is con­

vergent: if (xn)n>i C X  is such th a t ||xn — xm\\ —» 0 as m in{n,m } —> oo then 

(^n)n>i converges to some point Xq in X  (i.e., ||a:n — a:o|| —> 0).

If X  and Y  are two normed spaces over the same field we define a linear 

operator from X  to Y  to be a map T  : X  —> Y  such that T(XiX\ + X^xz) =  

XiTxi + X2T x 2 , for all x\, X2 G X  and scalars Ai, A2. A linear operator T  : X  —>

5
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Y  is bounded if there exists M  > 0 such that

||Tx(| <  M ||x ||

for all x  E X .  The smallest constant M  satisfying the above inequality is 

denoted by \\T\\.

Two normed spaces X  and Y  are said to be isomorphic if there is a one-to- 

one operator from X  to Y  such that T  and T,~1 are both bounded.

If X  and Y  are two isomorphic normed spaces, the Banach-Mazur distance 

between X  and Y  is

d ( X , Y )  = inf{ ||T ||||T_1|| | T  : X  —> Y  isomorphism}.

The norm of an operator T  : X  —+ Y  depends on the linear structure con­

sidered on X  and Y ; it is important whether they are real Banach spaces or 

complex Banach spaces. A very natural question is the following : if X  and Y  

are complex Banach spaces which are real isomorphic, does this imply that they 

are complex isomorphic? The content of Chapter 3 of this dissertation revolves 

around this topic.

For a real normed space (X,  || • ||) it is not always the case tha t X  admits a 

complex structure, th a t is there exists a multiplication of the elements of X  by 

complex scalars which is compatible with the norm

||Ax|| =  |A |||x || , V r e I ,  V A g C

(or compatible with a norm ||| • ||| equivalent to || • ||). Consider, for example, 

the trivial case X  — (R 2n+1, || • H2 ), for any n — 1, 2 ,. . . .  If X  admits a complex 

structure then, denoting by {ej}j  a basis for X ,  treated as a complex space, we 

get that {ej , iej}j  is a basis for the real space X , contradicting with the fact 

that X  has odd dimension.

However, if X  is a real normed space then the cartesian square X  ® X,  

endowed with the norm ||(x, y)|| =  ||x ||x  +  IMIx or any other equivalent norm,

6
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always has a structure of a complex normed space, with respect to  the multi­

plication

If (X , || • ||) is a real normed space, the complex structures on X  correspond 

(in the one-to-one correspondence) to  the R-linear isometries A  on X  such that 

A 2 — —I. For one implication take A x = ix; conversely, if such an isometry 

exists, define (a + ib)x =  ax +  bAx and consider on X  the equivalent norm

By using probabilistic methods, S. Szarek was able to construct in [Si] an 

infinite dimensional space which does not admit a complex structure. As a con­

sequence of the previous discussion, his space is not isomorphic to the cartesian 

square Z  © Z  of any Banach space Z.

All real Banach spaces discussed throughout Chapter 3 will admit a structure 

of complex Banach space. The question we will concentrate on is whether we can 

obtain at least two non-isomorphic (of course we mean non-complex isomorphic) 

complex structures for such a space.

In the theory of Banach spaces there are results which are true for the real 

Banach spaces only. The following theorem will not only exemplify this but also 

will allow us to introduce in a natural way the notion of the complex conjugate 

of a Banach space, which will play a central role in the sequel.

T h e o rem  2.1.1 (Mazur-Ulam) Every isometry F  (i.e. a mapping preserving 

the distance) from a real normed space X  onto a real normed space Y , with 

F (0) =  0, is linear.

(■a + ib)(x, y) = (ax -  by, ay +  bx)

and the norm (equivalent to || • ||)

|||(x ,y)||| =  snp9e[0M ||(xcos#, y sin#)||.

|||x ||| =  1/271 || (cos 0)x +  (sin 9)Ax\\d6.

7
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For a complex Banach space X  define X ,  the complex conjugate of X ,  to 

be the Banach space with the same elements and norm, the same addition of 

vectors, while the multiplication by scalars is given by A 0  x  =  Xx, for A G C 

and x  G X .

Obviously X  and X  are identical as real spaces. However, the identity map 

I  : X  — > X  is an isometry which is clearly not complex linear, hence such a 

naive extension of the Mazur-Ulam theorem is not true.

As we have already mentioned, X  and X  are identical as real spaces and 

X  and X, treated as complex spaces, provide two complex structures for this 

real space. In many cases the spaces X  and X  are (complex) isomorphic. For 

example, when X  has an unconditional basis {ej}j,  the natural map J  : X  — > 

X  given by J{J2j tj^j) =  E j  tj © ej is an isomorphism between X  and X.

The purpose of Chapter 3 is to propose a method of constructing complex 

Banach spaces not isomorphic to their complex conjugates, and hence having at 

least two non-isomorphic complex structures. Also, such constructions provide 

examples of complex Banach spaces which are isomorphic as real spaces and 

non-isomorphic treated as complex spaces.

We will now pass to some more specific definitions and notations from the 

Banach space theory, that can be found e.g., in [L-Tl] and [T], together with 

some other terminology not explained here.

A sequence {ej}j> 1 in a Banach space X  is called a  (Schauder) basis if 

every vector x  G X  has a unique representation x = E j> i  aj ej  as a sum °f a 

convergent series. A Schauder basis represents a sort of a “coordinate system” . 

We say that {ui}i>i C X  are successive blocks of if each vector ui is

of the form ui =  Ey=p,+i aj ei> {aj}j>i scalars and 0 <  pi < P2 < ■ ■ ■ an 

increasing sequence of integers.

For a basis {ej}j>i in a Banach space X  let Pn : X  —» X  be the projection 

defined by Pn %ei )  =  E ”=i ai ev  for n > 1. It can be easily shown

that supn ||-Pntl < co. The number supn ||Pn|| is called the basis constant of

8
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The existence of a basis in a Banach space does not give much information 

on the structure of the space. In order to study in more detail the structural 

properties of a Banach space one needs to consider bases with certain additional 

properties, among the most important being the unconditional basis.

A basis {ej}j>i in a Banach space X  is unconditional if there exists a constant 

C > 0 such that

for all x  =  . ajej <E X  and all signs p,j =  ±1 (j =  1,2, . . . ) .  The infimum

of such constants C is called the unconditional constant of As an

example, the Haar basis is unconditional in Lp[0,1], for 1 < p < oo and it is not 

unconditional for lq [0 ,1].

Comparing to the case of {ej}j>i being only a basis of X ,  in the case of 

unconditional basis we have s u p ^ ^  .̂..} ||PCT|| < oo, where {P<t}ctC{i.2,...} are the 

natural projections associated to the unconditional basis {ej}j>i, defined by

Another often used observation concerning unconditional bases is the fol­

lowing: if {ej}j>i is an unconditional basis with the unconditional constant C 

then, for every x  = Ylj> i ai ej and every choice of bounded scalars { X j } j > i ,  we 

have

(in the case of a real Banach space we can take C  instead of 2C).

A  Banach space X  with a Schauder basis can be viewed as a sum of one­

dimensional spaces. It is sometimes useful to consider coarser decompositions of 

X , with the components into which we decompose being subspaces of dimension 

larger than 1.

Let AT be a Banach space. A sequence {Zk}k>i of closed subspaces of X  

is called a Schauder decomposition of X  if every vector x  6 X  has a unique

9
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representation x  =  Ylk zk as a sum °f a convergent series such th a t Zk E Zk for 

every k — 1 ,2, . . . .  In this case we define the support of x  with respect to the 

decomposition {Zk}k to be suppx =  {k \ Zk ^  0}. If dim Zk < oo, for all k > 1, 

we say that X  has a finite dimensional decomposition.

A decomposition {Zk}k is called C-unconditional for some constant C  > 0, 

if for all x = Y2kzk e  X  and pk =  ±1 (k = 1,2, . . . )  one has WYlk^kW  <  

C II J2k ZA\- The infimum of such constants C  is denoted by unc { Z k}.

It is well-known that even if a Banach space has an unconditional decompo­

sition into 2-dimensional subspaces it is still possible that X  may fail to have an 

unconditional basis. The first example of such phenomenon is the Kalton-Peck 

space ([Ka-P]).

In the context of arbitrary Banach spaces, it was proved by Komorowski and 

Tomczak-Jaegermann ([K-Tl], [K-T2]) that every Banach space either contains 

I2 or a subspace without an unconditional basis which still has an unconditional 

decomposition into 2-dimensional subspaces.

Motivated by these results, it is natural to investigate properties related to 

unconditionality in Banach spaces which admit an unconditional finite dimen­

sional decomposition.

In connection with the problem of constructing spaces with an unconditional 

basis, some new parameters have been introduced in the literature. An impor­

tant example is the local unconditional structure of a Banach space. This is a 

localization of the notion of unconditional basis.

A Banach space X  has local unconditional structure if there is C > 1 such 

that for every finite dimensional subspace E  C X  there exists a Banach space 

F  with a 1-unconditional basis and operators u : E  —* F  and u> : F  —» X  such 

that the natural embedding : E  —> X  admits a factorization i% = uju and

I M I I M I  <  c.
As it turns out, the arguments which appear in the literature regarding the 

construction of spaces without unconditional basis can be modified to obtain

10
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that such spaces have a stronger property, namely they don’t  have local uncon­

ditional structure.

Regarding the unconditional decomposition into fc-dimensional subspaces, 

the natural analog of the local unconditional structure can be also defined for 

a Banach space. The purpose of Chapter 4 of this dissertation is to study this 

type of property in general Banach spaces.

2.2 M ore specific con cep ts and facts

Let us discuss another type of Schauder basis, which is used mainly in connection 

with duality problems, namely shrinking basis.

Let {xn}n be a Schauder basis in a Banach space X .  We say that {xn}n is 

shrinking if, for every x* £ X*, the norm of ^*spa5{a.i}oo tends to  0 as n  —̂ oo. 

An example of a shrinking basis consists of the unit vector basis in lp, for all 

1 < p < oo. On the other hand, for X  =  l\ or X  — C (0 ,1) there is no basis 

which is shrinking.

It is a known fact ([L-Tl]) that { xn}n is a shrinking basis if and only if the 

biorthogonal functionals {£*}„ associated to the basis {xn}n, defined by the 

relation x*n(xm) =  h™ for all n , m >  1, form a Schauder basis of X*.

A sequence {xn}n in a Banach space X  is called w-null if it converges to 

0 in the weak topology, that is x*(xn) —» 0 as n —► oo, for all x* £ X*.  

Clearly a shrinking basis is w-null. Indeed, for any x* £ X*,  |a;*(xn)| <

II®" II IK spanfxdsJ -* 0 as n  -> 0.
In order to verify whether a basis in a Banach space is shrinking, an useful 

result is the following proposition, due to R. C. James [J]. We present the proof 

for the sake of completeness, and also for illustrating the use of the classical 

“gliding-hump” argument, which will appear often in the sequel.

In general terms, the “gliding hump” argument is typically used in situations 

in which we have vectors in a Banach space X  whose expansions with

11
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respect to the basis (or with respect to certain Schauder decompositions of 

X) start arbitrarily far. In this situation we are able to approximate an infinite 

subset of the initial vectors with some other vectors (ys)s>i whose corresponding 

expansions are now disjoint.

Proposition 2.2.1 Let X  be a Banach space with a Schauder basis {xn}n>i. 

Suppose that there exist 0 = ii < i,2 < ■ ■ ■ < ik < ■ ■ ■ such that, denoting by 

Zk = span {xn : ik +  1 < n <  ik+i}, {Zk}k>i forms an unconditional finite 

dimensional decomposition for X .

i f  { i j  „>! is not a shrinking basis then we can find 5 > 0 and normal­

ized vectors in X , successive blocks with respect to the decomposition

{Zk}k>i, such that

| | ^ a ^ | |  > 5 ] T |a ;|,
i i

for all finite sequences o f scalars {a;}/.

Remark. It immediately follows from the triangle inequality that

6 H -  II Y1am  ̂-
i i i

for all {a/}/>i E l\. In particular, the subspace span {wi} is isomorphic to l\.

Proof. For all s >  1, denote by Ps : X  —> X  the natural projection onto 

span ^ZkJ k<s-

Since {xn}n>i is not a shrinking basis there exist x* € X*, with ||a;*|| =  1, 

an e E (0,1) and, for s =  1, 2, . . . ,  a normalized vector us E span {rrn}n>s so that

|rr*(us)| >  e, Vs =  1, 2 ,----

The following inductive argument is based on the “gliding-hump” procedure. 

Let Si =  1 and let k\ be such that ||«S1 — P/qitsJI <  e/2. Let u)\ =  Pkxusi 

and then |x*(wi)| > e/2.

12
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Choose now s2 large enough such that Pk1uS2 — 0 (it is sufficient to  take 

s2 > ki + 1) and take k2 such that ||uS2 — Pk2uS2\\ < e/2. Letting w2 =  Pk2u s2 

we obtain |x*(w2 )| > e/2.

Inductively, we can construct {u);}z>i successive blocks with respect to the 

decomposition {Zk}k>i and satisfying

Fix an arbitrary finite sequence of scalars {a*};. Choose {&i}i, with \0i\ =  1, 

such that | '^2i@iaix *(wi)\ — Yli \aix *(wi)\- Then

where K  is the unconditional constant of the decomposition {Zk}k> 1-

The vectors {w/}z> 1 satisfy the conclusion, except that they are not nor­

malized (we have 1 +  e/2 > \\wi\\ >  1 — e/2, for all Z == 1,2, . . . ) .  To this end

Let us mention now some few more notations that will be used in the sequel. 

Let (Xn) be a sequence of Banach spaces and let 1 <  p < 0 0 . We denote 

by (J2„ ® Xn)l the space of all sequences (xn) in TLXn such that the following 

expression representing the norm is finite

For simplicity, when p =  1 instead of (%2n ® X n)h we use the notation Yln ® X n. 

Also, if X n =  X  for all n we will write lp( X ) instead of (X^n ®^0zp- For a 

natural number n, by lp(X)  we denote the space of all n-tuples (£j)”=1 endowed 

with the corresponding norm.

For a Banach space X  denote by L 2(X)  the set of all measurable functions 

/  : [0,1] —> X  with the property that | | / | |2 is integrable with respect to the

substitute them with {wz/||wz||}z>i. □

13
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Lebesgue measure on [0,1]. The Rademacher functions { r^ ; on [0,1] are defined 

by Ti(t) = sgnsin2*7rf, for i = 1 ,2, . . . .  Denote by Radn(df) the subspace of 

L 2 {X) consisting of the functions of the form /(f) =  Xa<n Xi(t)xi, with Xi £ X  

for i < n.

We will require in the sequel several well known facts about the above spaces. 

Namely, it is clear that Radn(X) contains X  as a subspace and it is isometric 

to a subspace of l%n (X)  via the map

Rad„(X) + Zf (X)

i < n  \  i < n  J

where above we considered all sequences of signs (ei)i<n.

Finally, we will turn our attention to the tensor product of normed spaces, 

which proves to be an important technical tool in functional analysis.

If X  and Y  are vector spaces then we can define the algebraic tensor product 

of X  with Y,  X  ® Y  to be the space whose elements have a representation as 

finite sums of elementary tensors i ® Vk, with Xk € X , G Y , where 

the elementary tensors satisfy

(x +  x') ® y =  x  ® y + x’ <S> y

x ® (y + y') = x  ® y + x  <8> y

X(x 0 y )  = X x ® y  = x ®  X y,

for all x, x' G X ,  y, y' G Y  and scalars A.

Such an object can be obtained by using a quotient construction. An impor­

tant feature of this construction is the universality result stating that bilinear 

maps defined o n l x f  (that is maps which are linear in both the first and 

second variable) can be uniquely extended to linear maps on X  ® Y .

The situation considered in this dissertation is the tensor product X \  <g>. . .  <g> 

X m, where Xi  are Banach spaces (i =  1 , . . . ,  m).  We say tha t a norm || • ||

14
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on the tensor product X \ ® . . .  ® X m is a cross-norm if ||xi <g> . . .  ® xTO|| =  

HxjIIxj • . . .  • ||xm|Um, for all Xi € X t, i =  1 , . . . ,  m. If each of the spaces X t 

is finite dimensional with algebraic basis then { /j^  ® . . .  <g>

is an algebraic basis in X \  ® . ■ • ® X m, which will be called the natural tensor 

basis.

There are many examples of tensor products spaces used in the theory of 

Banach spaces, including the injective tensor product and the projective tensor 

product, but in this dissertation we will use only certain simple tensor product 

spaces. A characteristic example consists of 1%®X endowed with the cross-norm 

induced by the space X ) via the map

q ( X )  <—-> % ® X

( x i , . . . ,x n) <— >• ex ® xi +  . . .  +  en ® x n,

where e i , . . .  ,en form the standard unit vector basis in 1%.

15
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Chapter 3 

Subspaces of Lp with more than 

one complex structure

3.1 In trod u ction

We will first present a construction of infinite dimensional subspaces of 1P1 © 

lP2 © lp3 © lPi © lP5 (1 <  Ps < ■ ■ ■ < Pi <  oo) whose Banach-Mazur distance to 

their complex conjugates is arbitrarily large (Proposition 3.2.2 and Corollary 

3.2.3).

Then, by “glueing” together such spaces (i.e., we consider their Z2-direct 

sums) we get the desired constructions of spaces non-isomorphic to their com­

plex conjugates (Theorem 3.3.1, Corollary 3.3.2 and Theorem 3.4.2). Moreover, 

as we will see later, these examples provide the existence of real Banach spaces 

which admit not only two, but a continuum of non-isomorphic complex struc­

tures.
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3.2 Subspaces o f lPl © lP2 © lP3 © lP4 © lP5 not-w ell 

isom orphic to  th eir  com plex  conjugates

Let W, V  be Banach spaces having finite dimensional decompositions {W ©  

and {Vj}j respectively. Let T  : W  — > L b e a  bounded linear operator. We say 

that T  is block-diagonal with respect to { W ©  and {Vj)j if for every k there 

exists a finite set Bk C {1,2, . . .} such that

r

max Bk < minBi \/k, 1 e  {1,2, . . .} with k < I,

|  suppT w k C B k Vwk € Wk, VA; € {1, 2 , . . .}

where supp TWk is taken with respect to the decomposition {V©-6j.

The following general observation will be often used in the sequel.

P ro p o sitio n  3.2.1 Let W, V  be Banach spaces having decompositions into 2- 

dimensional spaces {Wk}k and {V© respectively. Let Wk =  s p a n © ^ ,  w2,k}, 

for k = 1,2, . . . ,  and Vj = span{nij, u2©  for j  =  1,2 , . . . ,  and suppose that 

{wi^, w2,k}k is a w-null normalized basis in W  and {v ij ,  ^2, ©  is a normalized 

basis in V . Let T  : W  —»• V  be a bounded linear operator.

Then, for every e >  0, there exist a subsequence Lq C (1 ,2 , . . . }  and To : 

W °  =  span{W © €/0 —>■ V  a block-diagonal operator with respect to { W © ej0 

and {Vj}j such that

\\T\w° ~  Toll <  e-

P ro o f. Denote by {«© , w2j©  and { © ,  © © • the biorthogonal functionals 

in W* and V* associated to {uq,fc, W2,©  and {v ij ,  v2©  respectively. Then, 

since { v \ j ,v 2©■ is a normalized basis in V, we have

limn? i{Twi k) =  limn]' ( T u ©  =  0, for all k =  1, 2 , . . .  
j j

and similarly for u ©

17
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On the other hand, since {wi>k, w2:k}k is u>-null

limu{ A T w x k) =  limu{ ATw2,k) =  0, for all j  =  1, 2 , . . .k k

and similarly for vh -

Let e > 0. Let C denote the basis constant of the basis {w \<k, W2 ,k)k- 

By a  classical gliding-hump argument we can find a subsequence I0 of 

{1,2, . . .} and a block-diagonal operator To : W °  =  span {IW —> V  such

that the columns of T0 are approximated by the correspondent columns of T. 

We can then write T\w° — T0 = '■ ^  anc^

Uk : W°  —> V  satisfying, for every k  G Jo,

Sk(whi) =  0, if I A k, and ||-Sa:(^i,fc)|| < (1/2C) e/2k+1

S k(w2,i) =  0, for all I € Iq

and similarly

Uk{w2 ,i) =  0, if I A  K  and \\Uk(w2,k)\\ < (1/2C) e/2k+1

Uk{wu ) =  0, for all I e  J0.

Observe that \\Sk || <  e / 2 k+1 for k  G I q. Indeed, for all x  =  Y !te iSatwi,t +

h w 2,t) e  W°

IIS^II =  IIStfatTOinil < A + i  M  

< ^ ^ l 2 C W  =  ^ fT !N |.

Similarly ||C4|| <  e / 2 k+l  for k  G I 0. Thus

||T,tvo -  Toll < ^  (e/2k+1 +  e/2k+1) <  e. 
fce/o

□

We will now pass to the main construction of this section, which will play a 

central role throughout the present chapter.

Let p  =  {(pi,p2, \ 1 < p 5 < . . .  < Pi < oo}.

18
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For every p — (pi, ...,p5) e  p and i V G N w e  will construct a Banach space 

Xp}yTI as follows: we will define 2 -dimensional subspaces Zk of lpi 0  . . .  © lps 

(depending on N  and 77) which will form an unconditional decomposition for 

X n,t) — span {Zk}k>1 -

Fix p e p  and N  e  N. For i =  2 , . . . ,  5 set a* =  1 /p» — l /p i- i ,  and let 

a  = min {a2, , 0 5 }. Fix a positive integer A > 2 0 7 / 0:4 +  5.

Denote by { f jyk}k the natural basis of lPj (j  =  1 , . . . ,  5). Define the vectors 

Xk and yfc spanning Z k (k = 1 , 2 , . . . )  by the formulas

Dc =  fi,k + 7 1 / 3, k + 7 2 / 4, fc +lzfb,k

Vk =  h,k  + 7 2 / 4, k +*7 3 / 5^

where 7 1  =  Â “2q3, 7 2  -  N ~ ^ a3+a^  and 7 3  =  iV-A(a3+a4+a5)_

It is easy to see that for any scalars s and t  we have

m ax(|s|, |£|) <  \\sxk + tyk\\ < 4(|s| +  \t\).

It follows that the decomposition {Zk}k>i is 1-unconditional and Xi,y%, x2, 

7/2 , •• • form a Schauder basis i n X ^ ^  (and also in X This is a shrinking basis 

(and hence w-null), since otherwise we can find (by Proposition 2.2.1) S > 0 and 

successive normalized blocks {wi}i (with respect to the decomposition {Zk}k> 1) 

such that for every finite sequence of scalars {ai}i

W ^ a m W  > A ^ | a z|.
1 1

The contradiction occurs when we observe that {wi}i> 1 satisfy an upper P5- 

estimate. Indeed, if we denote by Qs : 1P1 0  . . .  © lP5 —► lPs the canonical 

projection ( 5  =  1 , . . . ,  5), the fact that are normalized implies

HQsW/ll <  1 , for s — 1 , . . . ,  5 and I — 1, 2 ,----

Since {w;}/> 1 are successive blocks with respect to the decomposition {Zk}k> 1 

it follows that, for each 1 < I < 5, {Qswi}i are successive blocks in lPs. Thus,
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for every finite sequence of scalars {ai}i

= ||Qi(J3 am)\\ +... + iiq5(X; am) ||
i> i i> i i> i

=  || ^ a i Q m W  +  • • • +  || Y 2 aiQswi\\
i> i i> i

(
\  1/P1 /  \  1/P5

| > r ' J  + --- + ( X > r )
/  \ VP5

< 5 f EZ!“'!") ■

The next result, concerning the behavior of linear operators acting from 

X ^ ,v to Xjv,rj, will be essential for the proof of Theorem 3.3.1.

P ro p o sitio n  3.2.2 Let y  € p and N  be a positive integer.

Let I  C {1,2, . . .} he an infinite set and let Y  be the subspace of Xj^tV defined 

b y Y  = span {Zk}kei- Consider T  : Y  — > X ^ ^  a block-diagonal operator (with 

respect to {Zk}k<=i and {Zk}k>l) with ||T|| <  1. Then

(i) There exists a finite set J  C I  such that

maxdlTTfcU, ||Ttyfc||} <  24iV~a , fo r  all k e  J \  J.

(ii) Let {//}/>i be a family of disjoint subsets of I  with the property that \L\ = 

N , for all I > 1. Let x t =  X]fceJi <p(fc)xfc; & ~  T lke i ,T (k )yk satisfy 

Ylkep \ai(k )\P2 ~  1; f or I ~  1)2,—  Then there exists a finite subset 

Jo C {1,2,...} such that

max{||Txi||, \\Tyi\\} <  57N ~ a, fo r  all I G {1, 2,...} \  J0.

Remark. The proof Proposition 3.2.2 will still work if we consider X n iV as a 

subspace of 1P1 ©9 lP2 ©g . . .  ©g lP5, for some q >  1 (note that, in this case, X ^  

is the same vector space as before endowed with an equivalent norm).
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C oro llary  3.2.3 Let p £  p and N  be a positive integer. Then

d(XK„ , X N„) >

P ro o f of C o ro lla ry  3.2.3 Let T  : X n>v —-> X be an isomorphism satisfying 

||T|| =  1/2. By Proposition 3.2.1 there exist an infinite dimensional subspace 

Y  — span {Zk}kei °f X ^ jTj and To ; Y  — ► X a block-diagonal operator with 

respect to {Zk}kei and {Zk}k>i such that

2| |^ - 'i]| ll^H -  ^  INI’ for a11 x e Y - (3 1 )

By Proposition 3.2.2 (i) we can find k0 £ I  such that ||Toa;fc0|| <  24iV~a , which, 

combined with (3.1), concludes the corollary. □

Remark. In the same circle of problems, we should mention the result of Szarek 

[S2] showing tha t in the finite dimensional case there is an n-dimensional com­

plex space Y  such that d(Y ,Y ) > cn, with c an absolute constant.

Let us comment more on this result. In the local theory the set B  =  Bn = 

{X | X  normed space , d i mX =  n}, endowed with the Banach-Mazur dis­

tance, is usually called the Minkowski compactum. By a result of F. John [Jo], 

d(X, 1%) < n 1/2 for every X  £ Bn and thus, if X , Y  £ Bn we have d(X, Y ) < n. 

We should also recall that, by the result of Gluskin [Gl], the diameter of Bn, 

suPx,yeBn d {X ,Y ),  is asymptotically of order n. This remarkable fact can be 

also seen as a consequence of the Szarek’s result.

P ro o f  of P ro p o s itio n  3.2.2. Because T  is block-diagonal with respect to 

{Zk}kei and {Zk}k>i, for every k E I  there exist a finite set Bk C {1,2, . . .} 

and sequences of scalars uk =  (u k(j)J  , vk =  (vk ( j) j  , wk =  (w k(j)J , sk =

( sk ( j such that
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max Bk <  mini?;, Vfc, I £ I  with k < I 

' T x k =  Y , j e B k ( u k t i )  © x j  +  v k { j )  © y j )  =  Y , 3t B k ( M j ) x j  +  v k ( J ) y j )  

k T Vk =  1 2 je B k ( w k t i )  © ^i  +  s k { j )  © % )  =  J 2 3e B k ( ™k ( j ) x j  +  s k ( J ) y j ) .

We start off with the complex conjugate sequences in the definitions of each 

■Ufc, vk, wk, Sk for convenience only, since this will produce later a simplification 

of writing.

Taking into account the definitions of Xj and yj we can write, for all k  € I

T yk = Y 1  +  Y 2  Sk^ ) h , j  + Y 2
j£Bk j&Bk jeBk

+  Y 2  72 W -? )  +  Sk^ ) )  U,j +  Y Z  73 h j -  (3-2)
jeBk j<EBk

We will only prove the estimates in (i) and (ii) involving yk s (the others 

can be obtained similarly). The proof of (i) is presented in a few steps.

Let Qt : lpi © ... © lP5 -— ► lpt be the canonical projection (t = 1 , . . . ,  5).

Step 1. We show first that there exists a set A\  C / ,  \A\\ < N  such that

Till Y 2  Wfc(2’)/3jll <  3N ~ a, for all k  £ I  \  A x. (3.3)
jeBk

Indeed, let A \  be the set of all k £ I  such th a t 7 x|| YljeBk wk{j)f3,j\\ >  3N ~a, 

and assume th a t |^4i| > N.  Then choose a subset A  of A\ of cardinality N  and 

consider the vector y — Vk- We have

| | y | |  _  j y l / P 2  _j_ j y l / p 4 - 4 ( a 3 + a 4 ) _|_ j y l / p s - A f a s + a ^ + a s )  <  3 j y V P 2

and

N T 's / l l  >  I I Q s r j / H  =  | |  £  W i ) . / y !  >  3 n - ‘ n ' ' ” .

keA tcBfc
Since ||Ty|| <  ||T|| ||y|| <  ||y||, we get the contradiction.
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In a similar manner as above we can obtain A 2,A 3 C I, \A2\, |A3| <  N  

satisfying

7 2 1| ^ 2  (wk(j) +  sk(j)) f 4J\\ < 3N ~a, for all k 6 I  \  A 2 (3.4)
j&Bk

7 3 1| (Wk(j) +  isk(j)) h,j\\ < 3N ~ a, for all k 6 I  \  A3. (3.5)

Combining (3.2), (3.3), (3.4) and (3.5) we find a  set A  C / ,  with \A\ < 3N  

such that

l|T»li <  II x ;  m U ) f u \ \  +  II Y 1  st ( } )h i \ \  +  Vfc e  I  \  A  (3.6)

Step 2. By considering elements of the form x = YlkeAXk  ̂ with A  C / ,

|A| =  N, we can obtain in an analogous way as (3.3) a set A4 C I, with 

|A4| <  N  such that

|| J ]  vk( j ) f 2>j || <  4JV"“ , for all k € /  \  A4. (3.7)
Jen*

Step 3. This is a stronger estimate than (3.3) (and could have been proved

directly instead of (3.3)). We show th a t there is a subset A6 C I,  with |A6| < N 3

such that

|| J 2  < 3iV-ab  for all k € /  \  A6. (3.8)
j£Bk

For the proof take a vector y =  YlkeA Vki with A a subset of cardinality N 3 of

the set of all k £ I  such that |j Y^jeBk Wk(j)f3 ,j\\ > 3Ar_Q3. Then

||y|| =  (N 3)1/P2 +  jV_4 â3+a4i(At3)1,/p4 +  jy - A(“3+a4+c>:5)̂ jy3̂ 1/p5 <  3(j\/'3)1/P2 

and

IITj/l l  >  I I Q s U / l l  =  T i l l  X T  E  “ ‘ O O / s j I I  >  N - ^ N — i N 3)1̂  =  S t J V 3 ) 1^ ,

k&Ai^Bk

contradiction.
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As a remark, note th a t since is dominated by (as the unit

vector bases in lpi and lP3, respectively) we also have the estimate analogous to 

(3.8)

II J ]  ™ U )/iJ ll <  3 for all * e /  \  A e. (3.9)
j&Bk

Step 4. We show th a t there exists a set As C / ,  |As| < N x such that 

II +  ^ 0 0  “  wk(J) ~  sk(j)) h j \ \  < 5N~ai, Vk e l \  A 5. (3.10)
ieBfe

Indeed, let A 5 be the set of all k £ I  such that

II +  VkW  ~  Wk(•?)~  Aill  >

and assume th a t |As| >  N x. Then pick a subset A  of As of cardinality K  := N x 

and consider the vector 2  =  X)fc€q(xfc ~~ Vk)- We have

IÎ IJ =  +  K 1//p2 +  N ~ 2a3 f { 1 / P 2 + a s  - j-  J\[-Ma3+a4+o:s)^r2J{1̂ P2+a:i+a‘i+a5

while

||r z || >  | |q 4Tz|| =  7 2 II£  £  (uk(j) +  Vk(j) -  Wk(j)  -  Sk(j)) fa,j\\
k<aAj<=Bk

>  jY“4(Q3+a4) gjy-a4^1/P2+03+Q4

But this contradicts ||TT|| <  ||,z|| since, by the choice of A,

^ - 4(0:3+0 4 ) jy -a4 j^l/p2+a3+ai

>  m a x { A f 1/,p2 n ~ 2cl3 K 1^ 2 ^ 3 N ~ x l a 3 + Q 4+ “ 5) ^  1 / P 2 + « 3 + 0 4 + q s  |

Notice that the above inequality is equivalent to

max {j\r4+a4A«3+Q4) jy5+2a3/<*4 j. <  <  jyA+(A-4)a3/as+(A-5)a4/as

which is satisfied since A >  5 +  2 a 3/ a 4.
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Step 5. By considering elements of the form z  =  J2keA(x k +  iyk)1 with 

\A\ large enough, and taking into account that T z  =  Y2keA (T xk + iQ  T y k) ~  

J2keA (Txk — iT y k ), one can find a finite set A 7 C /  such that

II (uk(j) +  sk(j) + iv k(j) -  iwk{j)) f 5J\\ < 5N ~ a , Vk £ I  \  A t . (3.11)
j e B k

Since pi > p2 > P3 > P4 > Ps it follows tha t is dominated by { /3 j}̂ .,

{ /4,j}p  Combining this with (3.7), (3.10), (3.8), (3.11) we obtain a

finite set 7f'(= A 4 U A 5 U A 6 U A 7) such that

|| J ]  sk(j) f 2J|| <  12i\T“ , for all k E /  \  A'. (3.12)
ieSfc

Using (3.9) and (3.12) in (3.6) we get a finite set J(=  A  U A') satisfying

\\Tyk\\ < 24N ~a, for all k € I  \  J.

(ii) Let J  C /  be the subset constructed in (i). By ignoring a finite number of 

sets from the family we can suppose th a t // C /  \  J  for all I > 1. In

particular, for each I £ {1, 2,...} we have

\\QiTyk\\ < 24N ~ a

 ̂ \\Q2T yk\\ < 24N ~ a,

for all k E I[.

Looking at Tyi we can write, for each I > 1,

i r a i  =  \ \ J 2 ai(k )Q^T Vk\\ + II 5 > /(* 0 Q 2:ryfc|| +  | |( g 3 +  q 4 +  Q5)Tm\\
keli keh

<  24N - a ( \ai(k)\pi)1/pi +  ( ^  |a/(A:)|P2)1/p2 J +
V  key keh J

+.||(<?3 +  Qa +  Q$)Tyi\\

< 48N - a +  ||Q3Ty(|| +  ||Q4^ | |  +  ||Q5̂ | | .

We show th a t there exists a subset A  C {1, 2,...}, \A\ < N  such that 

IIQsT^H < 3N~a, VI £ {1,2,...} \  A.
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Indeed, let A  be the set of all I G {1, 2,...} satisfying ||Q3T|/j|| > 3N~a, and 

assume that |A| >  N . Choose a subset A q of A  of cardinality N  and consider 

the vector y  =  YlieAo We have

IMI =  || yk||
ieA0 key

=  ( E  E  M * o n 1/M+ 7 2 < E  E  M * o n ‘/w + 7 > ( E  E  M v n 1'*
leA0 keh i£A0 keh ieA0 keh

< jv1/M +  ( 7 2  (N 2)l/P4~ 1/P 2 +  7 3  (jV2)1/ps- 1/p2) ( E E  |aI(fc) | P 2 ) 1/P2

£e-40 fceii
— _/V1/P2 +  N~2(°‘3+a* ' ) 7  ^y—(A-2)(a3+a4+a5) y l /> 2

This contradicts ||Tj| < 1 since

||T?/|| > HQsTyll =  || £  Q3T ^ || > Z N ^ N 1̂ .
ieA0

Arguing similarly for QfTyi and QfTyi we obtain the conclusion. □

Remark. The proof of Proposition 3.2.2 doesn’t  require /  to be infinite, just 

to have a certain (large) cardinality. However, the fact that X n>T} is infinite 

dimensional is crucial when we consider arbitrary operators defined on X n >ti, 

since this will allow us to approximate them by block-diagonal operators.

3.3 Subspaces o f 1 <  p  < 2, w ith  at least tw o  

non-isom orphic com plex  stru ctu res

Theorem  3.3.1 Let (rn ) n > 1  be a strictly decreasing sequence of real numbers, 

with rn > 1 for all n, and let q G [1, ling^oo rn] . There exists a subspace X  of 

(E n> i ® lrn)iq which is not isomorphic to its complex conjugate. Furthermore, 

we can construct the subspace X  such that, as a real space, it has a continuum 

of non-isomorphic complex structures.

Proof. For each m  = 1 ,2, . . .  we will define X m as one of the spaces X NiT) 

discussed before for the following choice of the parameters involved. Let rjm —
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( ^ 5 m + l >  ^5771+2) • • • i P 5777+ 5 )  ^  P -  Set

r 1 1 1 1
a m =  mm < —---------------- , . . . , -------------------

I, D>777-|-2 5̂777+1 D>777+5 5̂t77+4

(This definition of a m corresponds to a  from the main construction in Section 

3.2, and it hopefully will not get confused with the notation « 2 , • ■ •, <25 used 

there). Finally, fix a natural number N m >  (456 • m ) 2̂ arn. Now, let X m =  

Wvm>Vm be the space defined in Section 3.2, treated as a subspace of lT5rn+1 ©q 

/r5ra+2 (Bq ■ ■ • ©q lr5m+5 (see remark after Proposition 3.2.2).

Similarly as in Section 3.2, for every m  =  1,2, . . . ,  let Qtjrn : l r5m+1 ©?^5m+2©g 

- • ■ ®q lrsm +5 lr5m+t be the canonical projection, where t  =  1 , . . . ,  5.

We will show tha t the space X  =  (^m >i ® ^ m ) iq is not isomorphic to its 

complex conjugate X  =  (£]m>i ® X m)iq-

Suppose that T  : X  — 7 X  is an isomorphism with ||T|| <  1/4. Denote by 

a =  ||T_1|j and by Pj : X  — > X j  the projection of X  onto its j - t h  term.

The proof is based on successive passing to appropriate subspaces in order 

to simplify the representation of the isomorphism T.

Fix an arbitrary m >  1. Recall that X m =  span { Z k}k>i- 

Let s >  m. We will show that

VL C {1,2, . . .} infinite set Ves > 0 3 k £ L  such tha t

\\PsT z k\\ <  es ||zfc||, Vzfc £ Z k. (3.13)

If not we can find es > 0, an infinite set 1 and, for each j  >  1, normalized

elements Zj £ Zkj satisfying

e. <  | | P , T z , | |  ( =  (\\Ql ,,P,Tz,\\-  +  . . .  +  .

By passing to a subsequence of j ’s (apply Proposition 3.2.1 to  the operator 

PsT |span{Zfc }j>i ) we maY assume that (PsT z j ) j>  1 are successive blocks in X s. 

Also, after taking a further subsequence, we get t  £  ( 1 , . . . ,  5} such that

\\Qt,sPsTzj\\ >  for all j  >  1.
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After relabeling we may consider t  — 1. To obtain the contradiction observe 

that, for all positive integers M
M M M

5M l/rr,„„ > >  | | f t r ( ^ 2j)||X, > ||QI, , ( ^ P , T Zy)|| > ~ M 1/r5-+1.
j  = 1 j  = l j= 1

Now a standard argument easily shows that for s > m

VX C {1, 2, . . .} infinite set Ves > 0 3L s C L  infinite set such that

\\PsTx\\ < es||x||, Vx G span{Zfc}fceLs. (3-14)

Indeed, fix L and es. By successive applications of (3.13) we can construct by 

induction infinite subsets L = L[ D L'2 D  L!z D . . .  and a sequence of integers 

k[ < k/2 < k'?j < . . .  such that fc) €  L' \  L '+1 for j  = 1 ,2 , . . .  and

llPaT^-H < es/2J HzjII, for all zj G Z k>..

Then let Ls = {k[, k'2J . . .}.  Since the decomposition {Z k}keLs is 1-unconditional 

in X m, it is easy to see that

\\PsTx\\ < es\\x\\, for all x G span {Z k}keLs-

Applying (3.14) inductively for s — rn +  1, m  +  2 , . . .  we obtain that for 

every sequence {es}s>m, es \  0 there exist infinite sets of positive integers 

Lm+x D Lm+2 D ... D L s D  ... such that

I!P ,T  I span {zk}keLs || < es, for all s > m.

Letting I  =  {k j} j>m to be a diagonal sequence, so that kj G Lj for j  > m, 

we have

\\PST  | }j>s || < €*, for all s >  m.

Let Ym = span{Zk}ke/ C X m. Perturbing the operator T\ym we obtain an 

operator (denoted again by) T  : Ym — »■ X  satisfying

PST  | span{zfc.}3>, =  0, for all s > m
J (3.15)

^ ||x || <  ||Tx|| <  l ||x ||, for all x G Ym.
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Let denote by Rm : X  — > (]Cs>m ® X s)tq the natural projection. We will 

show that there exists an infinite subset I  C I  so that, after further perturba­

tions of T, we have

RmT \  spzn{Zk}k j  =  0
(3.16)

A ||x || <  ||Tx|| < ||x||, for all x E span { Z k} kei

To this end, it is enough to prove that for all 5 > 0 and every infinite set 

L  C I  there is k E L so that

\\RmTzi\\ < $11*11, for all zx E Zx.

Suppose th a t the above statement is not true and hence we can find $ > 0, 

an infinite set L  C /  =  and, for each I E L, normalized elements zi E Zi

such that

\\RmTziW > 5.

If L  =  {l i , l2, . . . ,  l t , ■ ■.} with l i  < l 2 <  . . .  <  It <  . . .  then, by (3.15), we have 

supp RmTz^ D  supp RmTzi2 D . . .  D supp R mT zXt D . . . ,  where the support is 

considered with respect to the decomposition {X s}s>m. After a gliding hump ar­

gument we may assume that (RmTz\)iei  are successive blocks in (X^s>m ® X s)iq 

with respect to the decomposition {ATs}s>m. Since r 5m+i > . . .  >  r $TTl+5 >  q 

it is now clear that we can find real scalars { a i } Xei  such that z =  YlieL aiZl *s 

convergent in Ym while RmTz =  YlieL ai^ m T zi is divergent in X ,  showing that 

the above assumption is false. Therefore we have (3.16).

By applying successively Proposition 3.2.1 we may also assume that the 

operator T  : span { Z k} kej —+ X  satisfies, besides (3.16),

P\T  : span {Zfc}fc6j  — > X \  is block — diagonal
(3.17)

PmT  : span { Z k} k€f  — > X m is block — diagonal.
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Applying Proposition 3.2.2 (ii) to PmT  : span {Zk}kej  — ► X m we find J0 C

I, \I0\ = Nm with the property that, considering y  =  J2kei0

\\PmTy\\ < 57N~a™ Nm1/r&m+2 < b7N~am/2Nm1/r5m+2.

Thus we can write

II ( P i  +  . ..  +  Pm--,)Ty\\ >  | j r 9 || -  | jp m r 9 || >  ( i  -  5 7

Assume l/(8 a) — 57Arr/" ’"'/2 > 0. There exists s <E {1,..., m  — 1} such that

iip.n,n > ^ i i ( p ,  +... + p ^vvw  > ^

Since 1 / (m  — 1) >  Nmam^  and, by our assumption, l/(8o ) >  57JVmCIm'/2, the 

last quantity from above is larger than or equal to 57iVm1//rSm+1. This is a 

contradiction since

\\P3Ty\\ = \ \Y ,P s T y k \ \< \ \J 2 Q i ,s P s T y k\\ + . . .  + \ \ J 2 Q ^ P s T y k\\ 
fce/o fce/o

<  2Nm1/TSs+1 +  . . .  +  2 Nm1/r5s+5

where, at the last inequality, we used (3.17) and

\\Qt<sPsTyk\ \ < \ \ P sT y k\ \ < \ \ y k\ \ < 2 ,  Vk e  I0, Vt =  1, . . . , 5.

Hence we must have a > 1/456 N%T^2 > m, for all m  > 1, proving that X  

is not isomorphic to its complex conjugate.

We will indicate how we can obtain continuum non-isomorphic complex 

structures on X .  For a set A  C {1,2, . . .} denote by X ^  the Banach space 

defined by X (A) =  {Y. m>i ®^m)iq where

v  _  J Xm’ if m ^ A  
1[ X m, if m  e  A.

It is well known that there exists a family of cardinality continuum of infinite 

subsets of positive integers {At}f£R such that \At C\As\ < oo, for t  /  s. Indeed,
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identifying N  with the set of all rational numbers, we let A t to be an arbitrarily 

fixed infinite sequence of rational numbers converging to t, for every t G R.

Now notice that any two Banach spaces from the family { X ^ } teR are not 

isomorphic. Indeed, let A , B £ {A}teR and let T  be an isomorphism between 

and X^BK Denoting A° fl B  =  {rii,n2, n ; , ...} we can repeat the whole 

argument for T \x n and get jj'T_1|| >  n/, for alN  >  1. □

Remark. The proof of Theorem 3.3.1 yields, for the case q = 2, a constructive 

version of the Bourgain-Szarek example.

Corollary 3.3.2 For 1 < p < 2, the space Lp contains a real subspace having 

a continuum of non-isomorphic complex structures.

Proof. Let {rn}„>i be a strictly decreasing sequence of real numbers such that 

p < rn <  2, for all n. It is well known that i f l < p < g < 2  then Lp contains 

an isomorphic copy of lq. Also, Lp is isomorphic to an lp sum of infinitely many 

copies of Lp, (XI ©Tp)Zp- Then Lp has a subspace isomorphic to (]Cn>i © Ln)*p- 

The conclusion follows now from Theorem 3.3.1. □

3.4 A n oth er Banach space w ith  at least tw o  

non-isom orphic com p lex  stru ctu res

The following fact is well known.

Lem m a 3.4.1 Let {<7n}n>i be a sequence of real numbers with qn > 1, for all 

n, and let E  be a M-dimensional subspace of ( J fn>1 ®lq„)i2- Then

d(E, iff) < M ^,

where f3 =  sup„ |1 fqn — 1/2}.
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Proof. Denoting by Pj the natural projection of (]Cn>i ont°  its j- th

term, we have E  C (X)n> 1 ®PnE)i2 and, by the result of Lewis [Le],

d(PnE , l f mPnE) < (dimPnE) IV-m-VsI <  M \i/qn~i/2\  ̂ for all n  > L

Thus

d (E jM ) < d { C ^ ® PnE )h M )  <
n>l

□

We can now prove the main result of this section.

T heorem  3.4.2 There exists a sequence r „ / 2  such that (X)n>o®^„)z con­

tains a real subspace with a continuum of non-isomorphic complex structures.

P roof. The sequence {rn}n>o will be defined inductively. We will also con­

struct inductively a sequence of positive integers Denoting by 7jm =

(r5m_!, r 5m_2, . . . ,  r 5m_5) for all m  > 1, we will then define X NrnjVm as one of the 

spaces discussed in Section 3.2. Set a m =  min{ 1 / r 5m _ 2 — 1/rsm_ i , . . . ,  l / r 5m _ 5  — 

l / r 5m—4} (this definition of a m corresponds to a  from the construction in Sec­

tion 3.2). We start the inductive construction with 771 =  (rq, r 3, . . . ,  r 0) such

that 2 > r 4 > . . .  >  r 0 >  1. Having defined rji, Ah, . . . ,  ?7m-i, Nm- i  and

Vm = (Dim-1 , r 5m-2 , • • •, Dim-s) we take N m e  {1, 2, . . .} such that

[iYamj1/r5m_ 2 - 1 /2 >  10Qm (3.18)

Setting Mm — [Ar"m] we can then choose ?7m+i =  (r5m+4 , . . . ,  r 5m) such that 

2  'C' r 5m + 4  ''> ■ ■ - t -1 T̂ rn q  r̂ jyi—'i q  . . .  q  7’5ffJ. 5 and

M Prhm-l/2 <  2 . (3.19)

Notice that the sequence {rn}n>o converges to 2, since by (3.18) and (3.19)

we have
1 1 In 2  In 2  „ „

0  < ------- --  <  -—r-j- <  -———-  , for all m  > 1 .
r5m 2  In m 1 0 0 m
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Let X m — X ^ mtXhn be the space defined in Section 3.2, treated as a subspace

° f  t 5m_1©2ir5m- 2©2- • ■©2irBm- B- W e wiU sh°W tlla t the  SPaCe X  =  (E m > l 

is not isomorphic to its complex conjugate.

Suppose that T  : X  — » X  is an isomorphism with ||Tj| <  1/2. Denote by 

a =  ||T_1|| and by Pj : X  — > X j  the projection of X  onto its j- th  term.

Let m > 1 be arbitrarily fixed. Recall that X m =  span {Z k}k>i- A similar 

argument as in Theorem 3.3.1 (see (3.14)) shows that we can find an infinite 

set of positive integers / ( — Im) and an operator (denoted again by) T  \ Y m — 

span {Zk}kei — * X  such that

{ PST  =  0, Vs =  1 , . . . ,  m — 1

A||a:|| <  \\Tx\\ < ||x||, Vx 6 Ym.

We may also assume that PmT  : span {Z k}kei —*■ X rn is a block-diagonal 

operator (apply Proposition 3.2.1). By Proposition 3.2.2 (i) we may extract a 

subset K  C / ,  with |RT| =  M m such that

\\PmTyk\\ < 24iV~am, for all k e  K,

where yk G Z k is one of the basis vectors defining Z k, for k E K .  In particular 

{Vk}keK are 1-unconditional. Let R m : X  — >• ( E s>m ® X s)i2 be the natural 

projection. Since T  = PmT  +  R mT,  for every choice of signs {ek}keK we can 

write

l|iUr(£>|fc)|| > 4-1153£*wl|-|la.T(53£*S'‘)ll
keK a keK keK

>  <3 -2 0 >
a keK

We have two cases. Assume first that 1 / 4a 11 Y2keKyk\\ >  24MmAr““m. 

Since by Lemma 3.4.1 any Mm -dimensional subspace E  of (Es>m ® X s)i2 C 

( E s>5m ® ^ ) / 2 satisfies

d(E, itf”1) = d{E j™ m) <  Mm1/r5m_1/2 <  2,
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using the parallelogram identity, estimate (3.20) and our hypothesis we obtain

Y 2  \\R rnTyk\ \2 >  -  7 ^ -  || Y 2  C k R m T y k f  >  ^ j^ ll Y 2 y k W2'
keK {tk)keK keK keK

Since \\RmTykW < \\Tyk\\ < ||yfc|| <  2 for all k e  i f ,  we get

keK

Thus, by (3.18),

a > — M i/r5m~2 1/2 >  m.-  jg m -

The second case is l/4 a || YlkeKVk\\ < 24MmA ^Qm <  24MrnA ^am//2. Then 

we have

o >  ~ A f y i V “" /2 || £ > | |  >  >  m .
keK

Thus a >  m  in this case as well. Since m is arbitrary, it means that spaces 

X  and X  are not isomorphic. The fact tha t X ,  as a real space, has continuum 

non-isomorphic complex structures follows in the same manner as in Theorem 

3.3.1. □

3.5 F inal rem arks

As we already mentioned in Chapter 2, a space which is non-isomorphic to its 

complex conjugate cannot admit an unconditional basis. As a consequence of 

our construction, the spaces obtained here have a stronger property than being 

without unconditional basis.

Comparing to  constructions of subspaces without unconditional basis, like 

the ones discussed in Chapter 4 of this dissertation, in the present case of isomor­

phisms of the complex conjugates many fewer linear operators are available, and 

no criterion of a similar type as Proposition 4.2.2 is known. Thus it is not clear 

how to  construct spaces with at least two non-isomorphic complex structures 

as subspaces of arbitrary Banach spaces X ,  or at least inside h{X ).
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If we allow ourselves to  look for quotients of subspaces (which is essentially 

different than subspaces) of h (X )  then there is the following characterization of 

a real Hilbert space in terms of the cardinality of its complex structures.

T heorem  3.5.1 ([M-T]) A real Banach space X  is isomorphic to a Hilbert space 

if and only if every infinite dimensional quotient of every subspace of h {X )  

admits a unique, up to an isomorphism, complex structure.

It is clear th a t constructions of spaces non-isomorphic to their complex con­

jugates are more difficult if we require the space to be close, in a sense, to a 

Hilbert space. By refining the arguments of this chapter it seems possible to 

obtain spaces which are very close indeed to 1%, namely weak Hilbert spaces (see 

[P]), and still not isomorphic to their complex conjugates.
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Chapter 4

Unconditional Decompositions 

in Subspaces of Z2PO

4.1 In trod uction

As we already mentioned, the essential idea of the construction is summarized in 

Proposition 4.2.2, which is our main criterion for recognizing th a t a space with 

a special structure does not have higher-order local unconditional structure.

Using this criterion we will then describe an abstract setting in which it is 

possible to construct subspaces of tensor product spaces without the higher- 

order local unconditional structure (Theorem 4.3.1). This will enable us to 

obtain Theorem 4.4.1 and to provide the characterization of a Hilbert space 

from Corollary 4.4.2.

Comparing to the situation from Chapter 3, in this chapter there are no 

major differences between the cases of real Banach spaces and complex Banach 

spaces. A choice of a particular field of scalars (real or complex) may affect only 

the absolute constants which appear in the estimates. To fix our attention we 

will assume th a t all the Banach spaces involved are real Banach spaces.
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4.2 Local unconditional stru ctu re o f order k

Definition 4.2.1 A Banach space X  has local unconditional stj'ucture of order 

< k if there is C > 1 such that for every finite dimensional subspace E  C X  

there exist a Banach space V  and operators u : E  —> V, w : V  —» X  such that 

— wu, |M| ||iy|| <  C and V  has a 1-unconditional decomposition {Vj}j<jV; 

for some positive integer N , with dimVj <  k, for j  < N . Here %e is the natural 

embedding i^  : E  X . The infimum of such constants C is denoted by Uk(X).

This definition generalizes the local unconditional structure (or l.u.s.t.) de­

fined in Chapter 2. Clearly, if a space X  has a ^-dimensional unconditional de­

composition then Uk{X) < oo. For an arbitrary Banach space X  these different 

types of local unconditional structure are related via the following inequalities

Ux{X) > U2(X)  >  . . .  > Uk(X)  >  . . . .

The following result generalizes [K-Tl], Proposition 1.1 (see also [K-T2]) 

and is a version of a criterion due to Ketonen [Ke] and Borzyszkowski [B].

P ro p o sitio n  4.2.2 Let k > 2. Let Y  be a Banach space of cotype r, for some 

r < oo, with the cotype constant Cr(Y). Suppose that there exists s < k — 1 such 

that US(Y) < oo and that Y  has a X-unconditional decomposition {Ziji, with 

dim Zi =  k for all i, for some A >  1. Then there exists an operator T  : Y  —> Y 

such that

(i) T(Zi)  C X , for i = 1,2, . . . ,

(ii) IITH < A2M  US{Y), where M  depends on s ,r  and Cr(Y) only,

(iii) infM ||T \z t — d^ZiW >  for i = 1 , 2 , . . . ,  where the infimum is taken over 

all real scalars p.

P ro o f  Assume US(Y)  < oo. It is enough to construct a sequence of operators 

Tn : Y  —> Y  such that, for all n, the operator Tn satisfies (i), (ii) and

infp \\Tn\Zi -  v h M  > ^ 5 , for i =  1 , . . . ,  n.
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The existence of the operator T  will then follow by a diagonal construction.

Namely, pass to an infinite subsequence L\ C N  such that the limit over 

n, lim{Tn |Zl | n  G L{)  exists (since dim Z\ = k, we may take the limit in an 

arbitrary norm on the space of operators, for example in the operator norm). By 

induction, for i > 2, pick an infinite subsequence L; C Li- 1  such that the limit 

lim{Tn |Zj | n  G Li) exists. Let then L =  {L, h,  • • •} be an infinite (increasing) 

subsequence of N  such that k G L { for all i. Clearly, for every i, the limit over 

n, lim{Tn |^  \ n G L )  exists. Define the operator T  : span {Z iji —> span {Ziji 

by TjZi = lim{Tn |z . | n  G L), for all i. It is easy to see tha t T  satisfies all the 

required conditions.

Fix n and e > 0. Let Y n = span {Zi}i<n. Since US(Y) < oo, as it was proved 

in [B], Proposition 3.1 (although the actual formulation was slightly weaker), 

there exist a space V  with a finite 1-unconditional decomposition {Vi)i<n and 

operators u : Y n -+ V , w : V  -» Y  such that j  = wu: ||u||||it;|| <  (1 +  e)Us(Y), 

dim V/ <  s for all Z < N  and, for every positive integer m, the decomposition 

{riVi}i<mj<N is M-unconditional in span {riVi}i<mj<N = Radm(C) C L 2{V), 

with M  depending on s, r and Cr(Y)  only. Above j  : Y n —> Y  stands for the 

canonical inclusion map.

Let Pi be the natural projection from Y  onto Zi , for i = 1,2, —  Also, by 

Qi : V  —+ V  denote the natural projection from V  onto Vi (I < N).

For a sequence of signs 0  =  {@i) i<n , with 9i — ±1 if I < N ,  define an 

operator A© : V  —>■ V  by A0 =  Y^i<n

For i — 1,2, . . .  choose a sequence of signs 0 i =  {@i(i)}i<N such that

k 2
supe infM \\PiwAe uPi -  (j,IZi|| <  infM \\PiwAeiuPi -  (xIZi||. (4.1)

Define now Tn : Y  —> Y  by Tn = ^ = 1  PiwA&iuPi.

Fix an arbitrary y E Y .  Since unc{Z;}j <  A we get

n

\\Tny\\ =  || J 2  PiwAeiuPi(y)||
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n «i n

< supo^JI ^T V ^PilllH I / ||£]ri(*)Ae.uPi(j/)||d£
i=i ■'° i=i

/■l «
<  A |H | (  /  || ^ ^ ( ^ A e . w P l ? / ) ! ! 2̂ ) 172.

'o i=i

For each i =  1, . . .  ,n  write uPi(y) G V as uPi(y) =  Y I k n  v i { ^ ) i with vi(i) G V; 

for I =  1 , . . . ,  N. Then, since unc{riV/}i<n>/<jv < M  in L 2 (V),

\\Tny\\ < A |H |( f  || J 2 r t ( t)  ( J 2 0 i ( i ) v i ( i ) ) \ \ 2d t ) 1/2
; =  l  i < n

= MM\([ \ \ ^ 2 Y l 9l^ ri^ Vl^ 2dt^ /2
i= 1 /<iV

/ i «

i = l  K f f

=  X M \ H \ { [  W ' f 2 r i ( t ) u P i ( y ) \ \ 2d t ) 1/2 
d°  i=i

<  A M | | t o | | | | m | | {  11| ^ n ( * ) P i ( s ) | | 2* ) 1/2
t= l

<  A2M (l +  e)Ws(y)||y ||.

Hence we have (ii) satisfied.

Before we prove (in’), recall tha t for any {xj} j  in an m-dimensional Banach 

space we have (as a consequence of Auerbach lemma)

supe.=±1 II J 2  ei X> II -  h  E  11 '̂II• (4-2)fib

Returning to our proof, fix an arbitrary i G {1 , . . . ,  n}. Consider the k 2- 

dimensional space H  of all linear operators on Zi with the operator norm and 

consider the quotient space H /H 0, with H0 = span [Izt]- For each R  G H, let 

R  be the canonical image of R  in H /H q.

Define Ri : Zi -+ Zi by Ri =  PiwQiuPi. Since dim Ri(Zi) < s < k

||RZ|| =  inf^ \\Ri -  fiIZi\\ >  ^||Pj|l> for £ =  1 , . . .  ,n.  (4.3)
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This is clearly true for \n\ < ||i?j||/2, and in the case |/i| >  ||i?;||/2 it is 

sufficient to notice that, since RifZf] is s-dimensional, there is an x  E ker Ri 

such that |jxj| =  1 .

By (4.1), (4.2) and (4.3) we now have

k2 — 1
infM \\Tn \Zi -  n h i  II >  fc2  suPe inf^ \\PiwAeuPi -  fiIZi ||

= ~t2~sup̂ =±i II wzrf Y1 Ĥ H
1<N 1<N

□

Let us also state the following lemma which can be obtained in a similar 

way as [K-T3], Lemma 3.4.

L em m a 4.2.3 Let k  > 2  be an integer, a  E [ ^ r S  1), n > k2(k2 — 1) and let 

I  = {1 , . . . ,  n) .

(i) For a l l i i , . . . ,  ik+i E I  and S =  1 , . . . ,  k - 1 ,  let kl(0X...,;fc+1, X ?A i3,..,u+i>. . . ,

{ 0 be subsets of I ,  each of cardinality at least [an]. Then there exist 

j i , . . . ,  jk+i E I  such that

h  € < L . . Jfc+1, • • • > h+i  6  A ?u-,h,o ’ for all 5 =  1 , . . . ,  k  -  1 .

(ii) For allix , . . . ,  ik E I  and 5 =  1 , . . . ,  k -  1, let A (̂  _ijc, ^ , . . . ,

ife_i o subsets of I , each of cardinality at least [an]. Also, for all 

* • ■ j 'Ik E l ,  let C 0 ,1 ,̂...,%̂? 7 • • • ? ^ 22,-.-,u —i,o ^  subsets of I  x Z,

each o/ cardinality at least [an2]. Then there exists j i , .■■,jk E I  such 

that

h  E ^ (o i,..aV  ■■■’h e  4 ? , . u fc-i,o for all 5 =  1 , . . . ,  A; -  1

and

e  C 0,J3,—Jfc) • • • > (jhjJfc) E
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P ro o f  (i) Consider, for all S =  1 , . . . ,  fc — 1, the following subsets of I  x . ̂ . x I
k+1

n

h,s =  [ J  < , H 1 x { * 2 } x . . . { % i }

n

h s  =  U  { * * }  x  A { h , o , i 3, . . . , ik+1 x  O s }  X . . .  { i k + i }
i i ,j3,...,ijc+i =  l

0+1,<5 Ol} X . . .  X {?fc} X

Each set from the collection of k2 — 1 sets {/;,<s}i=i,...,fc+i; <s=i,...,fc-i has cardi­

nality larger than or equal to [cm] ■ n k. Since a  > (k2 — 1 ) / k 2 and n > k2(k2 — 1) 

we have

r i k2 — 2 . ^  k2 -  2

i 1=2 ~ 2 \ 1

^  , e - i  2 , ,
5  ( n p — p r r r ) " - 1

n 1 >  0.
k2(k2 — 1)

Hence [an]nk > (k2 — 2) /{k2 — 1) n k+1, which implies

k2 -  2
k2 -  1

fc+i

It follows that

n  7  ̂ 0.
i=l,...,fc+l; <5=l,...,fc—1

Taking j u  . . .  , j k+1 € I  so that ( j i , .. . , j k+x) G ni=i,...,fc+i; s=i,.,.,k-i h s  we obtain 

the conclusion.

(ii) Consider the following k2 — k subsets of I  x  . . .  x  I
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h,6 =  U  x {*2} x . . .  { i k}

n

h,s =  U  {ii} x • • • x { 4 -i}  x 4 ^ , 0 , 

for all <5 =  1 , . . . ,  k — 1. Also let

J \ 2  =  {(*1) • • • Afc) £ /  x . . .  x I  | (A, z2) € Co,t3,...,iJ^"""V
k

J 13 — {(A) • • ■) A) € I  x x /  I ( ii , 3̂) € C,j2,o,i4,...,tfc}
k

J\k  { (®i j • • • Afc) ^ /  x  . ^. x  /  | (A , ifc) G C'i2,...,tfc„1,o}-
k

Each of the k2 — 1 sets from above has cardinality at least | J  x . . . x J |.
k

The conclusion is satisfied for j i ,  ■ ■. , j k £ I  such that

e f n  hs)  n  (  n
\ Z = l , . . . , f c ;  5 = l , . . . , f c - l  /  \ Z = l , . . . , f c - l  /

□

4.3 M ain con stru ction

The next result describes a method of constructing subspaces of tensor product 

spaces without local unconditional structure of order <  k.

T h eo rem  4.3.1 Let X > 1 and D  >  Xk^/k2 — 1. Let F  be an n-dimensional 

Banach space with a X-unconditional normalized basis

(i) Suppose that >  n lt2D. Consider k + l  tensor product spaces X \  =

F®q ® ®  1*, x 2 =  i%®F®q 0 . . . ®  . . . ,  Xk+i =  ® ® q ®F,
k k—1 fc
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each endowed with a cross-norm. Suppose that the natural tensor basis in 

each Xi is C\-unconditional, for some C\  >  1. Set X  = X \  © . . .  ® X^+i 

and let Cr(X) be the cotype r constant of X ,  for some 2 < r  < oo. 

Then there exists a subspace Y  C X ,  which admits a k-dimensional C\- 

unconditional decomposition, such that Uk^\{Y ) > a \ ~ lC f 2D.

(ii) Suppose that || Y^= i Ml — n 1̂ 2/D . Consider k tensor product spaces X \  = 

F ® F ® . . . ® V f ,  X 2 = l% ® F ® V f® .. .® % , . . . ,  X k = l% ® . . .® q ® F ,
..........y v..............................j s...............................y ....... -v   "V '

k—1 h~ 2 k~~ 1
each endowed with a cross-norm. Suppose that the natural tensor basis in

k
each Xi is C\-unconditional, for some C\ > 1. Set X  =  Xi®.  . .©X^©/^ 

and let Cr( X ) be the cotype r constant of X , for some 2 < r < oo. 

Then there exists a subspace Y  C X ,  which admits a k-dimensional C\- 

unconditional decomposition, such that Uk- i ( Y )  > a C f 2D 1//2.

Here a > 0 depends on k ,r  and Cr(X) only.

P ro o f  (i) Set a — (k2 — 1 ) /k 2. By [K-T3], Lemma 3.3 (i) there exists D 2 <

no < n  and a subset I  C {1, . . . ,  n} with |/ | =  n 0 such that

iei
and for any real scalars c i , . . . ,  cno there exists a subset S  C I, with |5 | >  [cm0] 

such that

11 y > /,H >  m ax |cj|(l -  a 1/2)nl/2X~lD. (4.4)* i€Siei
W ithout loss of generality we may assume that F ’ := span{/;}ie/ is the original 

space F  (and in particular n  =  n0 and I  =  {1 , . . . ,  n}).

Let {ej}”=1 be the standard unit basis in 1%.

For ik+i = let Zilv..iijc+1 be the /c-dimensional subspace of

X  =  X i © . . .  © X k+i spanned by the vectors x j^  >ik+i, . . . ,  ik+i defined as 

follows:
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'  T(l)
»l,...,*fc+1 

t(2)

T(fc)

1 0 0 

0 1 0

0 0 0

0 1 

0 1

1 1

fh  <8> ei2 

e-h ® f i2

'Xk+l

' l k+ 1

fik+1

Consider the space Y  — s p a n C X .  The Ar-dimensional 

decomposition is C\ unconditional since, by our assumptions,

{ f h  <8> e.•»2 ■'U+l . • • •> {ei

unconditional in X \ , . . . ,  X^+i, respectively.

Also, for all A, - • •, ik+i =  1,, • ■,n and scalars s1;. . . ,  Sk we have

max ( |s i | , . . . ,  \ sk\)  <  ||sixS11J_iifc+1 +  . . .  +  sfcxSJ!))...iifc+1|| < 2(|si| +  . .. +  |sfc|). (4.5)

Let T  : Y  —> Y  be an operator obtained in Proposition 4.2.2, for the case 

s — k  — 1. On each write the operator in the matrix form

with respect to the basis {a^...iffc+1}5=i,...,fc, T \z il,...> 

is, for all A , . . . ,  ik+i =  1 , . . . ,  n and S = 1 , . . . ,  k

f 5)

■fe+i
n , —, i k + i

uii That
i , j = 1

T ( x ' Z . , n J  =  oST****?’l15 ^ h , - , i k + i  t  t  ^kS

Notice th a t for all «i , . . . , ik+i  = I , . . .  , n  w e  have

h , - ~ , i k + i  (k)
hX h , ~ ; i k  + 1 '

max ({ !» " ... 85
1

4k4
(4.6)

Indeed, fix arbitrary i i , . . . ,  ik+i, and let

a.n , - - ; X k + l
i j

— a 11 >

n,-..,ik+1 
a i j  1

if i = j  

if i jx j.

Observe that then [aij}i,j is the matrix of the operator T  | z iyt.„. %k + 1 Z11 h

with respect to the basis {Zi^...iifc+1}<5=i,...,fe- Then (4.6) follows from (4.5) and 

Proposition 4.2.2 (iii).
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Fix arbitrary i2, . . . , ik+i =  1, . .  -, n and S = 2 , . . . ,  k.

We have, by the cross-norm property,

w it, XnLifc+1il ^  W {J2eii)®  fi5® ■■■®eik+iW
xi—1 £ i=1

n

+  1 1 E  en ) ® en <8> ••• ® Zik ® f ik+11
i i = l

2 |[ ^  eh |1 =  2n1/2. 
1 1 = 1

Thus

2n1/2|jr || >  I I U X X W , ) !
n = l

71

-  II Z_J '• l <5 + • • • + a H ^
u —l

eifc+l I> II au'"’Zk+1fn ® et2 ® ..
11=1

and so
n

l l E “ »  *+'/i,ll < 2 n 1/2||r | | .  (4.7)
11 = 1

By (4.4) there exists a subset A ^ i2t ifc+i C {1 ,. . . ,  n }  of cardinality at least 

[an] such that

max. c , w  K V -’ifc+1| • (1 -  a l /2)n l ' 2\ - l D  <  I n 1' 2 ||T||.

Thus, for every i2, . . . ,  ik+i =  1, . .  - n and <5 =  2 , . . . ,  k we have

maXneAw |aiV""’fc+1| < 2IW1(1 -  a 1/2)_1A||T||.

A similar argument shows that for arbitrary i \ . . . ,  =  1 , . . . ,  n and

5 € {1, 3 , . . . ,  k} we obtain a set ik+i C {1, . . . ,  n} of cardinality at least

[an] such that

ma3W w \a2s'"’lk+1\ <  2I>_1( 1 -  a ^ r ^ H T H .
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After k steps, for A , . . . ,  ik-i, h+\ — 1, ■ ■ - ,n  and S =  1 , . . . ,  k  — 1 we get 
. ( * ) C {1, . . .  ,n}, with |^ S ...iifc_1>0,ifc+1l > M .  such that

maxikeAw law'",,fc+1l ^  2D 1(1 ~  al /2) 1M\T \\-

We can repeat once more the procedure of obtaining (4.7) (starting this time

< 2n 1/2, for 8 =  2 , . . . ,  k) to  get, for allah(5)

A , . . . ,  ik =  1 , . . . ,  n  and 8 =  2 , . . . ,  k, a set 0 C {1 , . . . ,  n} of cardinality

at least [an] such that

m a x .  € #  | 7 i r i t + 1 l <  2D - \1  -  a 1 / 2 ) _ 1 A | | T | | ,‘fc+l 0

ali ■fcl *15 — . . .  — an , - - - , t k + i
kSwhere 7 15’’

By Lemma 4.2.3 (i) (note that n >  D 2 > k2(k2 — 1)) we can find a A; +  1-tuple 

(ii,---,jfc+i) such that

b <= 4 (5)■A ^ oj2,—Jk+i

b  (= d (5)

i («)

for all <5 =  2 , . . . ,  k

for all 8 =  1 , . . . ,  k — 1 

for all 8 =  2 , . . . ,  k.

i(S)

j k + l  G ^ j 1,...,jk,0

From the inequalities defining A^-2j_ j  , ■ ■ ■, o Lliis yields

{!<• " " I  : i #  j}  < 2J3 -‘ (1 -  a ^ r ' A I U Imax -

and, for all 8 =  2 , . . . ,  k,

n, — ,3k+l I
+  £ k l  " +,I +  £ | « :

i^5
< 2 ( 2 k - l ) D ~ 1{ l - a 1/2) - 1X\\T\\.

Thus, by (4.6) we obtain \\T\\ >  c D \  *, where c =  (1 — a l^2)/8k4(2k — 1) 

depends on k only. In the same time, by Proposition 4.2.2 (ii) we have ||T|| < 

C 2MUk~i(Y).  This finally yields Z4_i(Y) > c D X ^ C ^ M - 1.
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(ii) Set again a  =  (k2 — 1 ) /k 2.

For this case, the role of the relation (4.4) will be played by Lemma 3.3 (ii) 

from [K-T3], which states that for every sequence of real numbers c i , . . .  ,cm 

there exists a subset S  C {1,.. ., m}, with |>S| >  [am], such that

( 4 .8 )
i = l

Consider, for z1;. . . ,  ik =  1, . . .  ,n,  the £;-dimensional subspace of

X  =  X i  © . . .  © X k © IV? spanned by the vectors . . . ,  ik defined as

follows:

r 
—

'■h
 

i—i

"IS
* 1 0 0 . . 0 D - V2 ~

r (2)
U , * f c =

0 1 0 . . 0 D - V  2

r «
<1

0 0 0 . . 1 £>-1/2

fiU ^  e*2

2̂1 2̂2 fi

Let Y  =  span C X .  By our assumptions {Z h  forms

a CA-unconditional decomposition of Y.

If T  : Y  —> Y  is an operator from Proposition 4.2.2 write, on each Zilv..>ifc,

T \ z ix,...,ik =  [ap That  is; for all • • • ,ik =  1, • • • ,n  and 8 =  1 , . . . ,  k

( i ) i l , - , i k X k) 
k5 X■

Similarly as in (4.6) we get 

max ( (K V ”’** -  asY"’n 

Fix arbitrary i2, ■.., ik = 1 We have

n  n  n

|| x-JJ.„>ifc || <  || ^  /q  © ei2 © . . .  ® eifc || +  £>“ 1/21| J ]
21=1 21 = 1

=  || fh  II +  D~l/2n l/2 < 2n1/2D ~ l/2. (4.10)
n = i

■'ik i
U=1
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Hence
n

2 n ^ D - ' ! 2 \\T\\ >
i i = l

= ii i t , ( +  ■ • • +alk r ikx?L,ik) ii•
n —1

By (4.8) we get, for all <5 =  2 , . . . ,  k

n

2 n 1/2D~l/2 ||T|| >  || J 2  aisY"'ik eh ® ® fu  ® ® e*fc II
1 1 = 1

=  ( £ 1 4  ’‘ i2 )1/2
11 =  1

> ( l - a ) 1/ 2n 1 /2  max w |a*V"’,fc| (4.11)
1 0^2--.^

and thus, for a certain subset A ik C {1, . . .  ,n} with > m >

max (4) I4 V '’,1  <  2 D _ 1 / 2 ( 1  -  a ) - 1 /2 ||T||.

Similarly, for all , 2 3 , . . . ,  ik — 1, ■ •.,  n and 5 £ {1 ,3 , . . . ,  k} we can obtain

^i?o i3 ik ^  ( 1 , • - •, n} a set of cardinality at least [an] such that

<  2 £ > _ 1 / 2 ( 1  -  a ) - 1' 2 ||T||

and, after k steps, for all i \ , . . . ,  %u-\ =  1, . . . ,  n and <5 =  1, . . . ,  k — 1 one can 

choose )ife i 0 C (1 , . . .  ,n}, with ol ^  such that

maxiktAw \a7k"'lk\ < 2D~1/2(l -  a ) - 1 /2  ||T||.

In an analogous way to (4.10) and (4.11) (estimating || i2= i ^ i ^  4  —
/q\

J | |  from above, then using the boundeness of T  and (4.8)) we get, for all

h , ■ - - Ak — 1,. ■ ■, n, a certain subset C o,i3 ,...,tfc C {1 , . . . ,  n} x {1, . . . ,  n}  such

that \ C 0.i3,...,ik \ >  [an2] and

max{il;I2)ec 0>i3„...ifc ^  2 i r 1/2(l -  a ) - 1 /2  | |r | | ,
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where we denoted, for all the choices of the parameters involved,

lis aiV" 15 + ■ ■ ■ +  a*1,-■•,*& _*i,—,**,
k \ V16 . . .  — a

Indeed, we have for all *3 , . . . ,  ife =  1 , . . . ,  n

Tl TV TV TV TV
11 E ( 4 ‘L A - 4 L . J i i  <  i £ / <, ! i £ « . l  +  i i £ « . l # E A

h ,i2=l 21 = 1 12=1 
<  2 nD ~l

1 1 — 1 12=1

and then

2nD~l \\T\\ >  || £  - » g h v

11
712 eu>  b ~1/2!I £

*1 ,*2 = 1

> D~1/2{ 1 -  a ) 1/2n max(jlji2)6 Co,i3 ,...,jfe

After k — I similar steps we obtain, for all ?2, . . . ,  ik-i =  1 , . . . ,  n, a subset

^*2,—,*fc-i,0 C , n}  of cardinality at least [an2] such that 

max(i1)ifc)ecia>...,ijk_1,o \lik" 'lk\ < 2D~1/2(l -  a)~l/2 ||T||.

By Lemma 4.2.3 (ii) (note that n l/2D~l > || XT=i /*ll ^  1/A ||/ i || and hence 

n > D 2/X2 > k2(k2 — 1)) we find a £;-tuple (ji, - • • ,jk)  such that

h d (<5)J l  fc /10,j2,-,jk

3k e  A

for all S =  2 , . . . ,  k

for all 5 =  1 , . . . ,  k — 1

(j 1, 3 2 ) £  Co UuJk)  € C j2, — , j k - 1 ,0 -

The conclusion of the theorem will follow from Proposition 4.2.2 (ii) and

(4.9) (similarly as in (i)). □
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4.4  Local unconditional stru ctu res in subspaces

of 12{ X )

Let {ei}i be the standard unit vector basis in l2. For all positive integers n and 

k, the space l2k{X)  can be (algebraically) identified to X  ® l2 ® ■ ■ ■ ® l2: via
v v >—----- '

k
n

We will consider on X  0  l2 0  . • - 0  l2 the norm induced by l2k (X). This is a
 ̂ *—"V " "n,_v

k
cross-norm, since if x  € X  and u\ =  X™=i a!i^en *= ^2 > • • • Wfc =  Z)”fc=i e*fc e  

then
n

x ® ui 0  . . .  ® = x  0  Q ^e^) ® u 2 . . . ® u k
*1 = 1

n

=  ^  (x (g) a-^e^ 0  u2 0  . . .
il~l

n

=  ^  (a-fx ® ei l ® u 2 ® . . .  «fc) 
u=i

and hence

| |x® tq 0  . . . ®Ufc||

Also, if { /x , . . . ,  / m} is a 1-unconditional sequence in A  then { f j  ® 0 . . .  ® 

eijj=i,-~,m;ii,...,tfc=i,-..,n is 1-unconditional in X  ® l2 ® . . .  <g> l2. ---- - -V ,. .......  ✓
k

50

J 2 - - - Y 1  • • • ah?x ® eh ® • • • ® e*J
U = 1 *fc=l

(n n  \  1 /2

E - E k A A W P
n = i  tfc=i /

/  n \  /  n \  V2

= w  - ( E k ’i j
= W K || . . . |K | | .
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Indeed, if {ej,ii,...,tfc}j,n,.-.,*fc is a sequence of signs, then
m  rn

it ® en ® ® eik)\\ =
j =1 ii,...,ik=l  

n m

=  II J2  C52ej>n,- ,iJi )®eh ® ••• ® e ifc|| =
*i,—,*k=i j =i

n m  \  1 /2 /  n m

£  ll£<*. -Jill2 < £  ll £  All2
•ii-i'fc=l j=l /  \n,-,/k=l j =1

n m

= II £  £  /i)  ® en ® ® e*J =
i l , . - , i f c = l  j = 1 

m  n

=  II S  ® •■•®eiJI-
j —1 ii,...,ik=l

We have analogous identifications for each of the tensor spaces 1% (& X  <g> 

1% <S> • • ■ ® ^2 ? • • • > ^2 ® ® ^2 resulting in the same type of properties.
^ ..................V  ^  v  ■ " V-  ^

Jfe-1 fc

Before we pass to  the main result of this section, we recall some necessary 

information.

Let X  be a Banach space. For any positive integer I, let K i{X ) > 1 be the 

smallest constant K  such that for every 1-unconditional normalized sequence of 

vectors {xi}lL1 € X ,  with 1 < m  < I, one has
m

K ^ m 1/2 <  || y ~ \ j | |  <  K m 1/2.
i=1

We say that X  has property (H) if K ( X )  := sup^ K i(X ) < oo. This notion was 

introduced by Pisier in [P] and studied by Nielsen and Tomczack-Jaegermann 

in [N-T],

For an n-dimensional Banach space X  we have, as it was proved in [N-T], 

Proposition 1.2 (see also [K-T3], Proposition 4.3),

dx < c K n ( Radn( X ) ) \  (4.12)

where c is an universal constant.

We can now prove the main result of this section.
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T heorem  4.4.1 Let X  be a Banach space not isomorphic to a Hilbert space.

(i) I f  X  has cotype r, for some 2 < r < oo, then, for all k > 2, there ex­

ists a subspace Y  in h (X )  which admits a k-dimensional 1-unconditional 

decomposition and Uk-i(Y)  =  oo.

dimensional decomposition but Uk{Z) — oo for all k > 1.

(iii) I f  X  has cotype r, for some 2 < r < oo, then h (X )  has at least countably 

many mutually non-isomorphic subspaces.

P ro o f  (i) Let k > 2 arbitrarily fixed.

Since X  is not isomorphic to a Hilbert space we can find finite dimensional 

subspaces of X ,  {Xn}n>i, such th a t the euclidean distances dxn oo.

In order to get the result it is enough to show that if Z  is a finite dimensional 

Banach space, with the cotype r constant CT(Z), then, if dz  is sufficiently large 

we can obtain a subspace Y  C h (Z )  having a fc-dimensional 1-unconditional 

decomposition and satisfying U k - i ( Y )  > a d ^ 4, with a depending on k, r and 

CT(Z) only. Having proved this finite dimensional statement we can conclude 

as follows: for all n > 1, denote by Y n a subspace of l2 (X n) which has a k-  

dimensional 1-unconditional decomposition and satisfies U ^ i ( Y n) > ad](4, with 

a depending on k, r and CT(X)  only and set Y  =  (Y^n>i ®^n)z2 C h (X ) .  Then 

Y n is 1-complemented in Y ,  for all n > 1, while supn>1 U k - i ( Y n ) =  oo. Since 

having local unconditional structure of order < k — 1 passes to complemented 

subspaces, we will obtain U k - i ( Y )  = oo.

To prove the quantitative estimate above, let dim Z  — n. By (4.12) there ex­

ist a universal constant c > 0 and 1-unconditional normalized vectors f i , . . . ,  / m 

in Rad„(Z), with 1 <  m  < n, such that either

(ii) There exists a subspace Z  in h{X ) such that Z  has unconditional finite

m
(4.13)
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or m
(4.14)

i = 1

If F  = s p a n { / i , . . . ,  f m} C Rad„(Z), then F  is a m-dimensional space with 

a I-unconditional normalized basis.

In the case that (4.13) is satisfied, set W x =  (F  <g> I™ ® . . .  0  Z™) © . . .  0
"S/*1 ....,,in"ri-/
fc

(Z™ <g>. . .  ® I™ ®F) where on each tensor space entering in the definition of W x 
    '

k
we consider the cross-norm induced by I™ (F). Thus W\ is isometric to a 

subspace of h(F). Since F  C Radn(Z) and Radn(Z) can be identified to a 

subspace of {Z), we obtain that W\ is isometric to a subspace of h(Z).

By an earlier remark, each of the tensor spaces entering in the definition of 

W\ has its natural tensor basis 1-unconditional. Also, looking at the cotype r 

constant of W x, we have (see [T]) Cr{Wx) <  Cr (Z2(^)) =  Cr(Z).

Thus Theorem 4.3.1 (i) (we assume that dz  is large enough, since this is the 

case for which we will use the result, and hence cd^4 > k^Jk2 — 1) yields the 

existence of a subspace Y  of W\ satisfying

Uk- X{Y) >  a d f ,

with a depending on k, r and Cr(Z ) only.

In the second case, that is (4.14) is true, the proof is similar, by consid­

ering the subspace W 2 of h(Z)  defined by W 2 = (F  ® IT <g> . . .  <S> I™) 0  . . .  0
V-------------------V  ---------'

k- 1

(Z™ ® . . .  <g> IF ®F)  © l™k. Then we use Theorem 4.3.1 (ii).
>-----—V------- '

k - 1

(ii) In the case X  has cotype r, for some 2 <  r  <  0 0 , consider, for each 

k > 2, the subspace Yk of h{X)  obtained in (i).

Let Z  =  (Sfc> 2  ®Yk)i2 C h{X) .  For every k  >  2, Yk is 1-complemented in 

Z  and Uk~\(Yk) =  0 0 . It follows that lik- \{Z )  =  0 0  for all k > 2. Since each of 

the spaces Yk has a ^-dimensional 1-unconditional decomposition we infer that 

Z  has a 1-unconditional finite dimensional decomposition.
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Suppose now th a t X  does not have finite cotype, which is equivalent to  X  

containing s uniformly.

Let {E n}n be a sequence of subspaces of X  such th a t dim E n =  n and 

d(En, l^f) < 2. Since a “random” [n/2]-dimensional subspace of l7̂  has the 

Gordon-Lewis constant of maximal order (see [F-J]), there exists, for all n, a 

[n/2]- dimensional subspace Yn of En satisfying GL(Yn) > c^/n, with c > 0 an 

absolute constant. By [B], Proposition 1.3, we have, for all k > 1,

Vkl4k(Yn) > GL(Yn) > c\/n, for all n > 1.

If we let Z  — (]Cn>i ®yn)i2 C h( X) ,  then clearly Z  has a 1-unconditional 

finite dimensional decomposition. For every n > 1, Yn is 1-complemented in Z,  

while supnUk(Yn) =  oo, for k =  1,2. . . .  This shows that Uk{Z) =  oo, for all 

k > 1.

(iii) Let X  be a Banach space of finite cotype not isomorphic to a Hilbert 

space. For each k > 2, let Y^ be the subspace of h ( X )  obtained in (i). For 

s > t > 2 we have IAS-\{YS) =  oo, while Us^i(Y t) < Ut{Yt) < oo. Therefore 

h{X)  contains infinitely many mutually non-isomorphic subspaces. □

Theorem 4.4.1 provides now the following characterization of a Hilbert space. 

C oro lla ry  4.4.2 For a Banach space X  the following are equivalent:

(i) X  is isomorphic to a Hilbert space.

(ii) For every subspace Y  of ̂ ( X )  there exists k  > 1 such that Uk(Y) < oo.

(iii) For every subspace Y  of h { X)  admitting an unconditional finite dimen­

sional decomposition there exists k > 1 such that Uk(Y) < oo.

(iv) For every subspace Y  of h { X)  admitting an unconditional finite dimen­

sional decomposition there exists k > 1 such that Y  admits an uncondi­

tional decomposition into k-dimensional subspaces.
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4.5 F inal rem arks

We can continue the study of local unconditional structure of higher order for 

Banach spaces which admit an unconditional finite dimensional decomposition, 

in the direction of some recent results of Casazza and Kalton [C-Ka],

Their main result states that, for a space X  with an unconditional decompo­

sition {Zk}k such that sup*, dim Zk < oo, X  has local unconditional structure if 

and only if there is an unconditional basis on each Zk so that (fkj)k,j

is an unconditional basis for X .

By the use of Proposition 4.2.2 it seems possible to obtain a generalization 

of this result in the following form: under the same assumptions as above, 

the condition US(X)  < oo is actually equivalent to X  having an unconditional 

decomposition into s-dimensional subspaces, where s >  1 is a  positive integer.
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