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Abstract

The computation of the 2-D motion field from a sequence of images is one of the 

key tasks of many vision systems. Analysis and interpretation of flow fields is in 

general a complex task. One of the most interesting problems is to locate critical 

points in the motion field. The main theme of this thesis is the identification of criti­

cal points in motion fields, which have a physical significance for the corresponding 

application. The discrete Hodge Helmholtz decomposition is a vector decomposi­

tion algorithm which is used in this thesis for locating critical points in a motion 

field.

Automatic processing of meteorological satellite data is a major field of re­

search. In this context we propose a robust method for automatically detecting and 

tracking a hurricane eye over a sequence of satellite images. The hurricane eye is a 

rotational center and is detected as a critical point in the motion field extracted from 

a hurricane image sequence.

The ridge and valley structure in a fingerprint image can be represented as a 

vector field. In this thesis, we develop a technique to detect the point of maxi­

mum curvature in the fingerprint ridge structure. This is done by analyzing the 

corresponding vector field and identifying the critical point that corresponds to the 

maximum curvature point. This point serves as a reference point for the registration 

of fingerprint images.

Cardiac optical mapping is a relatively new technique for imaging the electrical 

activity on cardiac tissue. We present different techniques for the analysis of these 

optically mapped videos. Wavefront morphology and its relation to propagation 

velocity is studied and physical parameters of the cardiac tissue are predicted. We 

also compare two different techniques for velocity vector analysis.
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Chapter 1 

Introduction

The 3-D velocity field in a scene can be observed as a 2-D motion field in a sequence 

of images. This 2-D motion field is the projection of the 3-D velocity field onto the 

image plane. Optical flow computation is an important area of research in computer 

vision. It provides information about the motion and structure of objects. Work in 

computer vision embraces two broad categories: rigid or slightly deformed bodies, 

and fluids. A considerable amount of research has been done in the area of rigid 

bodies [5], [6], [7], [8], [9] as well as for fluid motion [10], [11], [12],

The extraction of higher level descriptors from a flow, field is a very important 

task in fluid motion and vector analysis. This problem is essential in meteorology, 

for instance, to identify and track depressions or convective clouds in satellite im­

ages. The knowledge of all these points is thus precious to understand and predict 

the flows of interest. Critical points also allow a compact representation of the flow 

which is very useful in both experimental and theoretical fluid mechanics. The in­

terpretation of flow visualization images and the identification of critical points like 

vortices is an important research area in computer vision, as discussed in [13] and 

[14], Another application of motion interpretation is discussed in [15], where an 

image is segmented into regions of coherent motion.

The major theme of this thesis is the analysis of vector fields obtained from im­

ages or image sequences. We identify critical points in the vector field, which have

1
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a physical significance for the particular set of images. The work in this thesis is 

divided into three different parts. In this chapter I present the motivation and the 

contributions of this work along with an overview of the structure of this disserta­

tion.

1.1 Hurricane Eye Tracking

The wide range of remotely sensed data allows one to characterize natural phenom­

ena through different physical measurements. A major advantage of environmental 

remote sensing is the regular spatial and temporal sampling. Using remotely sensed 

data, the short range evolution of atmospheric processes can be characterized. How­

ever the amount of data received from satellites is huge (approximately one terabyte 

a day [16]). Computer vision algorithms can be used to organize this huge amount 

of information and automatically interpret satellite images. This would lead to in­

creasing the reliability of weather surveillance and would facilitate the assimilation 

of data for numerical weather prediction models.

Spatio-temporal analysis of meteorological images is an important aspect of 

weather analysis. One of the essential problems is to identify and track hurricanes 

in satellite images.

A hurricane is like a vortex. It has a distinct central region (called the hurri­

cane eye) around which the remainder of the cloud mass tends to swirl. It is known 

that the wind speed near the eye of the hurricane has a minima when compared to 

surrounding areas. This is in contrast to most of the vortex models. Due to this pe­

culiarity, detection of the hurricane core is a difficult problem. Another complexity 

in the tracking of hurricane features arises from the fact that clouds are deformable 

in nature.

Almost all current systems for meteorological image data analysis use feature 

matching for tracking purposes. As an example, Mukherjee and Acton [17] predict

2
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motion vectors describing the motion of clouds using feature points on the boundary 

of the cloud segments. They use points of inflection on the contour describing 

a cloud as the feature points. A correspondence between consecutive frames is 

performed to obtain motion vectors. However, feature matching in general is not 

suitable for satellite images as they span a large spatial region. Thus a technique 

which performs tracking on satellite images without using explicit feature matching 

has a definite advantage over other techniques.

In this thesis a hurricane eye tracking method is presented for a sequence of 

geostationary satellite images. Given a sequence of satellite images of a hurricane, 

the objective is to locate the position of the eye accurately in all the frames. Our 

technique can be applied to the prediction and tracking of the path of a hurricane 

using data from meteorological satellites.

1.1.1 Fingerprint Matching

Among all biometric techniques, fingerprint based identification is the most mature 

and proven method [18]. One of the key steps prior to matching two fingerprint 

images is to calculate a pose transformation for the alignment of the two images. A 

unique reference point is required for the registration of the images. Singular points 

of the fingerprint ridge structure have been used for this purpose. However not all 

fingerprint images have a valid singular point as the part containing the singular 

point might not have been imaged in some cases.

Most of the singular point detection techniques are based on the orientation field 

representing the ridge structure of the fingerprint. Such methods use local features 

like the Poincare index [19]. These techniques are very sensitive to the quality of 

the fingerprint image and a small amount of noise in the orientation field can lead 

to erroneous singular points being detected.

Jain et al. [20] used the point with maximum curvature on the ridge structure

3
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as a reference point. A multiresolution analysis is proposed in [20] as a robust 

method to locate reference points. However, this method is sensitive to fingerprint 

rotation. Moreover, the curvature computed from the orientation field would depend 

significantly on the noise content in the field.

We propose a technique for fingerprint reference point detection using the dis­

crete Hodge Helmholtz decomposition (DHHD) algorithm. This procedure is ro­

bust to noise in the orientation field and can locate the point of maximum curvature 

irrespective of the fingerprint orientation.

1.1.2 Cardiac Optical Mapping Analysis

Ventricular fibrillation (VF), also known as cardiac arrest, is a highly irregular ar­

rhythmia originating in the ventricles (the lower chambers of the heart). VF causes 

nearly 250,000 deaths annually in the United States alone [21].

However the mechanism of VF, and the characteristic electrical phenomena ob­

served during VF are not fully understood and is an extensive area of research in 

the cardiac electrophysiology community. Optical mapping is a relatively new tech­

nique developed to study the behavior of electrical impulses in the cardiac tissue. 

An extracted animal heart is stained with a voltage sensitive dye. This causes the 

heart to emit fluorescence when electrical waves propagate on the cardiac tissue. 

Using the optical mapping method, direct observations of the cardiac electrical ac­

tivity can be made at high spatio-temporal resolution. The analysis of these cardiac 

electrical patterns is generally done visually. Quantitative analysis of optical map­

ping data has not been a major area of research until recent years.

A parallel stream of research is the understanding and modelling of the ionic 

basis of the electrical phenomena observed in the cardiac tissue. Ionic models to 

simulate the cardiac tissue have been developed [22]. These provide a system of 

equations governing the propagation of electrical impulses in the heart muscles.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Numerical methods (e.g. finite element based techniques) are used to solve the 

system of equations proposed by the models.

Based on studies of these electrical models, the existence of spiral wavefronts 

on the cardiac tissue during VF has been demonstrated [23], Wavefront curvature 

is an important parameter of wave propagation. The curvature of a wavefront may 

cause slowing of the propagation and conduction block. Wavefront curvature is also 

important for defining the properties of spiral waves which are responsible for some 

types of cardiac arrhythmias.

Various aspects of electrical wave propagation in cardiac tissue have been stud­

ied using simulated models. Kay and Gray [24] developed a technique for measur­

ing the curvature of a wavefront from a data frame of electric potentials obtained by 

electric models. In [25], velocity vectors for the propagation of electrical impulses 

are estimated using data from simulation models. The velocity vector field is used 

to study the conduction properties of the cardiac tissue during fibrillation.

The quantitative analysis of the cardiac videos is still a relatively new field, and 

most of the existing techniques are still manual. Their analysis is dependent on 

the pattern recognition skills of the cardiologist. We believe that the quantitative 

analysis of these videos will lead to significant improvement in understanding the 

phenomena of fibrillation and promote the analysis of these videos using techniques 

from computer vision. The objective of our work is to use techniques developed by 

cardiologists for synthetically generated data, and then to combine them with image 

processing techniques so that they can be used for the analysis of actual optical 

mapping data.

1.2 Major Contributions

This thesis focuses on the detection of critical points of a motion field for two 

specific problems, where the critical point has a physical significance. We also

5
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develop algorithms for the analysis of cardiac optically-mapped videos.

• We develop a framework to localize and track the vortex (eye) of the hurri­

cane. This technique does not require feature matching. Another advantage 

is that the segmentation of the eye does not require manual initializations.

• A technique for robust fingerprint reference point detection is developed. The 

new technique for reference point detection is relatively insensitive to noise 

in the orientation field and is capable of locating a reference point irrespective 

of the rotation or scaling of the image.

•  A technique to detect and parametrically represent the isopotentials on the 

optically-mapped cardiac video is developed and a curvature velocity analysis 

for electrical waves on the cardiac tissue is performed.

1.3 Thesis Organisation

The remainder of the thesis is organized as follows. Review of related literature for 

hurricane eye tracking and for the fingerprint reference point location are provided 

in Chapter 2. In Chapter 3 we discuss cardiac optical mapping and some techniques 

used for analyzing cardiac electrical propagation. The proposed algorithm for ap­

plication of DHHD to hurricane eye tracking and to fingerprint reference point lo­

cation is discussed in Chapter 4. The framework for quantitative analysis of cardiac 

videos is presented in Chapter 5. Chapter 6 contains the conclusions of this thesis, 

followed by some suggestions for future work.

6
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Chapter 2 

Review of Related Work: I

The analysis of video sequences showing the evolution of fluid phenomena has 

attracted a great deal of attention from the computer vision community. The ap­

plications concern domains such as experimental visualization in fluid mechanics, 

environmental sciences (oceanography, meteorology, etc.), or medical imagery. An­

alyzing fluid motion is essential in a number of domains and can rarely be handled 

using generic computer vision techniques. We first provide a review of motion es­

timation techniques, focusing on the estimation of dense velocity maps from image 

sequences.

However, just the velocity field is far from being the ultimate goal of an analysis. 

Differential or integrated information from the velocity field is more valuable for 

concerned experts [26]. For example, it is essential to characterize fluid flows to 

extract the vorticity fields, the streamlines, or the singular points of the flows. All 

these features may be estimated indirectly from the velocity field by differentiation 

or by integration. The irrotational and the solenoidal components of the velocity 

fields provide information about the vorticity and the divergence of the fields and 

the location of the singular points of major interest (namely sources, sinks and 

vortexes). The Hodge Helmholtz decomposition is a very effective technique for 

locating such critical points.

We use the Hodge Helmholtz decomposition for the analysis of motion fields

7
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extracted from images and use it to identify critical points in the field. These points 

have a physical significance in the corresponding application. We use the DHHD 

algorithm to detect the hurricane eye in a hurricane image sequence. This is seg­

mented out using a level set segmentation algorithm. We also analyse the orien­

tation field representing a fingerprint image using the DHHD method to identify a 

reference point.

In this chapter, we review the techniques used in Chapter 4 of this thesis. A 

review of motion detection techniques, especially the techniques developed for de­

tecting fluid motion, is presented in Section 2.1. Section 2.2 gives an overview of 

the DHHD algorithm and its implementation. We use the DHHD algorithm for the 

hurricane eye detection and fingerprint reference point detection. Level set tech­

nique and its implementation is described in Section 2.3. We use a level set based 

segmentation method to extract the region corresponding to the eye of the hurri­

cane. Section 2.5 reviews techniques for fingerprint analysis and reference point 

detection. Section 2.6 summarizes this chapter.

2.1 Dense Motion Field Estimation for Fluid Flows

In the analysis of the hurricane video sequence, as well as while studying the car­

diac video sequence (described in Chapter 3), the motion is similar to fluid motion 

activity. The computation of the apparent image velocity by processing sequences 

of images is one of the fundamental problems in computer vision. A very good 

review of various optical flow estimation techniques is presented in [7]. Here, I 

present a review of motion estimation techniques, focusing on techniques designed 

especially for fluid motion.

8
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2.1.1 Block Matching Algorithm

The Block Matching Algorithm (BMA) is the most common motion estimation 

method and is used in most video coding standards (MPEG, H.261/262/263). The 

basic assumption involved here is that a block of pixels undergoes the same trans­

lational motion from one frame to the next. Each frame is partitioned into square 

blocks of size m  x m.  Searching boundaries are defined by A/, and A„ and are 

centered at the corresponding block center. The block is shifted inside the search 

area and a matching measure is calculated for each position of the block. The posi­

tion which gives the best value of the matching function is chosen as the position of 

the block in the next frame. Examples of match measure functions are normalised 

cross-correlation, absolute mean difference and mean squared difference. We use 

the following matching function:

= , y i y ] i / t + i ( z + ^ y + ^ ) - i t { x , y ) \  (2 .i)
M<Ah.M<Ah m n

For each block a displacement vector is obtained using Eqn. (2.1). The BMA 

has been used for cloud detection in [27]. The advantage of BMA over optic flow 

based techniques (discussed next) is their ability to handle large displacements. 

Large displacements can be detected using a large search area although this comes 

at a price of increased computational complexity.

2.1.2 Optic Flow Motion Estimation

The seminal work of Horn and Schunck [5] on optic flow calculation is one of the 

most cited in the field of motion estimation. Optic flow resorts to the minimization 

of an objective functional composed of two terms. The optical flow cost function is 

of the form:

C =  f  / i [V £ (x ,y ,t )  - v ( x , y , t ) +  d E ^X’y, t) } + a f 2[\Vv{x, ,y,t)\] (2.2)
J  Q

9
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where v is the unknown velocity, Q is the image plane, E  is the image bright­

ness, f i  and / 2 are two penalty functions. The first component in Eqn. 2.2 is called 

the data term. It is based on a brightness constancy assumption, i.e. visible points 

conserve their intensity in the course of a small displacement. This can be repre­

sented as:

|  =  +  ^  0 (2.3)
at ot

The penalty function is generally chosen as the least square estimate, i.e. min­

imize ( v E ( x ,  t) ■ v(x,  t) +  — j  . There might be regions in the image where 

the brightness constancy assumption does not hold, like occlusion boundaries or re­

gions with multiple motions. As discussed in [8], penalty functions obtained from 

robust statistics can be used which reduce the influence of outliers. These modified 

penalty functions are used to detect multiple motions in the same scene.

The second term in Eqn. 2.2 is a regularization term which enforces smoothness 

of the solution. This is required to constrain the system of equations. To gain 

accurate estimates, this region should be sufficiently large to constrain the solution. 

However, the larger the region of integration, the more likely it is to contain multiple 

motions (this is known as the generalized aperture problem). A framework to handle 

this problem, using robust statistics is proposed in [8] and [28].

The differential nature of the brightness constancy equation makes it unsuitable 

for use when a large displacement occurs between consecutive frames. To handle 

large displacements, the brightness conservation is expressed in an integrated way:

E (x  +  d (x) , t  +  A t) — E (x , t )  «  0 (2.4)

where A t  is the interval between consecutive frames and d(x ) is the displacement.

Due to the great deal of spatio-temporal distortions that intensity patterns exhibit 

in images of fluids and the compressible nature of fluids, standard methods like 

optic flow are not well adapted for these problems. A second contradictory scenario

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



occurs because of motion which is not parallel to the visualization plane, i.e. fluid 

elements entering or exiting the image slice. Another problem might arise due to 

oversmoothing. Divergence and vorticity are known to be large in certain regions 

of the fluid flow, and the first order regularization might lead to oversmoothing and 

hence loss of important characteristics of the flow field.

2.1.3 Fluid Motion Estimation Techniques

To overcome the above problems, dense motion field estimators for fluid flows have 

been studied extensively by the computer-vision community. Recently functionals 

dedicated to fluid images have been proposed. Corpetti et al. propose a scheme 

for fluid motion extraction from image sequences in [10] and [29], They incorpo­

rate a data-term based on the continuity equation of fluid mechanics instead of the 

usual brightness constancy assumption in Eqn. 2.2. Additional improvements are 

obtained by considering tailor-made regularization terms preserving the concentra­

tions of divergence and vorticity.

Image brightness for a fluid is usually related to its density. The density p obeys 

the following continuity equation:

+  div(pF) =  0 (2.5)

where V  is the three dimensional velocity field. By analogy the brightness continu­

ity equation is:

^  +  div(£t>) =  0 (2.6)
at

An integrated version of the constraint is considered, so that it can be used to 

estimate large displacements:

E ( x  -f d(x) , t  -I- A t) =  E(x,  t )exp(—divd(x)) (2.7)

We see that the brightness is scaled by a factor of exp(—divd(x)). The term 

E(x , t )exp (—divd(x)) decreases (respectively, increases) for motion with positive

11
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(respectively, negative) divergence. For zero divergence, it equals the brightness 

constancy constraint.

The assumption of the global conservation of density might be physically vio­

lated in some cases such as presence of sinks and sources, 3-D motion nonparallel 

to the image plane etc. Hence, a soft penalty function is used, which will limit 

the impact of various violations of the continuity equation on the overall motion 

estimate.

To avoid oversmoothing, a second-order regularization is used. The regulariza­

tion term is the second term in Eqn. 2.2. The constraint used here is different from 

the standard smoothness constraint, which is generally used for regularization. The 

basic form used is:

The estimation of the dense displacement field is carried out on a multiresolu­

tion framework. At a given resolution, the displacement field obtained from the 

previous resolution is refined. The approximate solution obtained is added to the 

estimated motion field and passed to the next resolution.

Another approach to measuring fluid flow from image sequences is presented 

in [11]. The approach draws upon principles from fluid mechanics for the motion 

recovery algorithm. The algorithm is constrained by the conservation of mass con­

tinuity equation:

Ex and Ey are the spatial partial derivatives of the image brightness E. ux and vy 

are the partial derivatives of the velocity components.

Such information derived from the physical behavior of fluids is used to mo­

tivate a flow-recovery algorithm. The Rankine model of flows is used in [14] to 

obtain a parametric description of the critical points in motion fields. The Rankine

f  \Vdiv(d)\2+ \Vcurl{d)\2 
Jn

(2 .8)

Exu T EyV + E u x T Ei)y -I- Et — 0 (2.9)

12
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vortex is mathematically described by:

Vr = 0

Vg -  ujr (r <  r0)

(2 .10)

(2 .11)
Vg = u r-f  (r > r0)

where r = radius from the rotation axis (z-axis), lj -  angular velocity of any fluid 

particle within r0. Vr is the radial component of the velocity and Vg is the angular 

velocity. The velocity field associated to a source/sink in the plane is modelled 

using a similar scheme.

2.1.4 Structure and Nonrigid Motion Tracking from 2D Images

Cloud motion is a special case of fluid motion and consists of very complex motion 

dynamics. Zhou et al. [30] and [31] use a combination of local and global models 

to obtain accurate cloud-top structure and motion.

The local motion analysis performs nonrigid motion tracking within a small area 

and aims to capture small nonrigid details. The image is divided into small blocks 

and an affine motion model for each block is estimated by evaluating an error of fit 

function (since the affine motion model takes into account transformations such as 

rotation, scaling, shearing etc). The assumption is that local motion associated with 

each region can be approximated by an affine transformation of the corresponding 

region in the previous frame.

The structure and motion recovered after the local motion analysis may have 

sharp discontinuities. It also ignores interaction between neighboring areas. Thus 

the global constrains are essential to limit possible nonrigid behaviors and to reg­

ularize the locally recovered parameters. The global shape model provides extra 

constraints which incorporate prior knowledge about a shape’s smoothness and its 

resistance to deformation. The local and global constrains are used iteratively to 

obtain an accurate description of the motion field.

13
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The results shown in [30] do match the motion vectors of the actual image. 

However the prediction in the area of the hurricane eye is not very good. This is 

because the fluid dynamics in the eye is very complex and cannot be tracked by the 

affine motion model.

In the analysis of hurricane video, we have tried various flow detection algo­

rithms. However, the performance of our technique is satisfactory with a BMA 

estimated motion field. Hence we have used the BMA while presenting the results 

for the hurricane eye tracking method.

2.2 Discrete Hodge Helmholtz Decomposition (DHHD)

Higher level descriptors of a vector field, which convey meaningful information 

about the field, are an important area of study. This analysis leads to qualitative 

description of the vector field. In this section, we discuss various techniques that 

are used to detect singular points in a vector field with emphasis on the DHHD.

2.2.1 Critical Point Detection Techniques

Rao and Jain [13] presented a scheme to locally approximate the flow using 2-D 

linear differential equations which is then used for the analysis of the flow field. 

The phase portraits depicting these differential equations represent the trajectory of 

the particles of the fluid (phase portraits represent the solution curves for the system 

of equations). Critical points like source/sink and rotational centers are obtained by 

analyzing the phase portraits. A non-linear least squares technique was used to 

estimate a first-order flow model from the oriented flow field.

A similar analysis was developed by Ford and Strickland [32], Here the motion 

field in a local window is represented by an affine model:

u(x,y)
. v ( x , y )

14

=  A X +  b (2 .12)
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Here X  =  (x, y ) is the pixel location, u(x, y ) and v(x,  y) are the velocity com­

ponents at the corresponding pixel locations and A  is the 2 x 2 affine matrix. The 

elements of A  vary for each pixel location. Critical points can be determined ac­

cording to the eigenvalues of matrix A.  The relationship between the phase portrait 

structure and eigenvalues of A  is presented in Fig. 2.1.

Eigenvalues of A Jordan form Type Phase portrait

2, * 2 , , and both of 

them are real number

'2 , 0 ' 
0 2 ,

have same

, and 2, and 2 , 

sign

Node

'2, O' 
0 2 ,

have oppos

, and 2, and 2 , 

ite sign

Saddle
A #

w

2, — 2-,

2, 0  

0 2,
Star-node

'2 , I '  

0 2,

improper

node

<r *

2 , = a±i f i

'0  - f i

f i  0
, a - 0 Center

a  - f i
Jfi a

. a * 0 Spiral

i

<------^

V

-------- »»-

Figure 2.1: Eigenvalues of the matrix A  and corresponding phased portraits [1].

Cohen and Herlin [33] presented a method for approximating an orientation 

field and characterizing the stationary points of the trajectories using an arbitrary 

polynomial phase portrait. The Poincare index (Eqn. 2.35) is used to locate and 

characterize the critical points. Nogawa et al. [12] proposed a technique for the

15
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analytic modelling of the flow field and used the Cauchy theorem of residues to 

detect vortices. The Cauchy residue theorem evaluates an integral along a closed 

curve. This integral is independent of its path, and determined only by the residues 

of singular points inside the curve. After the critical points have been identified, a 

Rankine vortex model is used to obtain a parametric representation of the field.

The linear model described by Rao and Jain [13] can handle only one critical 

point. The nonlinear phase portrait model, used in [32] and [33], can handle multi­

ple critical points, but these models are computationally expensive. The approach 

of Nogawa et al. [12] is very sensitive to noise. These inherent problems have led 

to exploration of different techniques for the analysis of vector fields.

2.2.2 DHHD

The Hodge-Helmholtz decomposition is a technique used to decompose a contin­

uous vector field into a curl-free component, a divergence-free component and a 

harmonic remainder. The technique has been extended to discrete vector fields in 

[34] and to 3D discrete fields in [35]. A field £ is decomposed as:

£*= i cF + £df  +  £hr  (2.13)

where £cf is the curl-free component, ( df  is the divergence-free component and 

£hr  is the harmonic remainder. Associated with the first two components, we have 

potential functions E  and W :

£cf  = V £ ; £df  =  V x W  (2.14)

Here E  is a scalar potential and W  a vector potential. The harmonic remainder

satisfies V • £hr  =  0 and V x £hr  =  0. V, V- and V x  represent the gradient,

the divergence and the curl operators, respectively. For a function (fi, the gradient, 

divergence and curl operators are defined by:

16
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V 0  x, y, z) = — x + — y +  —  z 
ox oy oz

V • <f>(x,y) =
dx  

V x 6 =

+
dy dz

x  y z
A A A
dx dy dz
4*x 4*z

(2.15)

(2.16)

(2.17)

Here -' X I  Yy and (j)z are the x, y  and z  components of the function, cf). x, y and z

represent unit vectors along the coordinate axis.

A method for dense motion field estimation in fluid images using the Helmholtz 

decomposition is described in [26], The goal of the approach is to perform a direct 

approximation of the two potential functions E  and W  (Eqn. 2.14) from the bright­

ness constancy constraint equation. This is in contrast to the normal procedure of 

calculating the flow field first used in the techniques in Section 2.1.3.

Fig. 2.2 is an example of how DHHD works. A synthetic field is decomposed 

into its curl-free and divergence-free components. The corresponding harmonic 

remainder is shown in Fig. 2.3. The magnitude of the harmonic field is 0.59% 

of the original vector field. The procedure to analyze the decomposed field and 

its corresponding potential functions in order to predict singularities in the motion 

field is described next.

A M

mm
Input motion field

! ! { $ & / / / a

Divergence free part Curl free part

it

If/ / /  s-***
ill KW{X

/ I, M I
~~Z-W,'0

ffarm onT c' V etnkiTlder

Figure 2.2: Decomposition of a synthetic field into its curl-free and divergence-free com­
ponents.

Previous versions of DHHD in [34] and [35] have been implemented using ir­

regular grids for the analysis of the discrete vector fields. Guo et al. demonstrated 

in [36] that the use of regular grids greatly simplifies the computational complexity

17
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H arm o n ic  r e m a in d e r  (m odified)

Figure 2.3: Harmonic remainder from DHHD.

of the algorithm and preserves sufficient accuracy. A regular triangular grid is used 

in their implementation of DHHD for the analysis of motion fields.

The input to DHHD is a vector field £ with M  x N  vectors. An M  x N  grid is 

defined, with (M — 1) x ( N —l) rectangles, such that each vertex has a corresponding 

motion vector. Each of these rectangular blocks is divided into two triangular blocks 

to obtain a regular triangular grid. The velocity vectors have to be redefined for the 

new grid. Each triangular block is assigned a motion vector equal to the average 

of the motion vector at its three vertices. The new vectors are labelled £&, where 

k €  [1 , 2 , . . . ,  2 x (M  — 1) x (N  — 1)]. The curl-free and the divergence-free 

potential functions, of (2.14), at the nodes of this triangular mesh are represented 

by:

E i E m +i

E  =
e 2 E m +2

_ Em E 2m

'  W i W M+1

W  =
w 2 Wm +2

W M W 2M

E n

(2.18)

W(N—l)*M+2

W n *m

(2.19)

Concatenating the matrices columnwise, we get vectors E? =  ( E \ , E%, • • •, E m * n ) ']
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and W'  =  {W\, W 2) ■ ■ ■, W m * n ) T ■ The curl-free component of the field is the 

projection of the original field £ onto the space of curl-free fields. It can be obtained 

by minimizing the distance between £ and V E  over the entire image domain (Q). A 

similar algorithm is used to calculate the divergence-free field V x W.  The distance 

can be expressed by:

£>(£) = / J | V . E - { | | 2<iS), B(H>) =  / „ | | V x H > - f | | 2«  (2.20)

The minimum distances, D(E)  and D( W)  are found by considering the partial

derivatives and ■ Finite element method (FEM) analysis is used to

solve for the elements of E'  and W ' , as described in [36]. The minimization of the 

distance functions in Eqn. 2.20 is simplified to:

f  V < f c | | V £ - | | | d f i  =  0 (2 .2 1 )
J n

This simplifies over the finite grid to:

£  V&* ■ (V £ )fe =  £  V<f>ik ■ £k (2.22)
Tic Tk

where Tk is a triangular element on the image domain, and V 4>ik =  (yt, — ya,Xb—x a) 

and (xa, ya) are the coordinates of the grid points. Expanding both sides of Eqn. 

2 . 2 2  we obtain:

Ai Ef  = B,  A 2W ' = C  (2.23)

A i and A 2 are L  x L  sparse matrices (L = M  * TV), which are independent of the

input vector field (but depend on basis functions defined over the grid in the FEM 

analysis, i.e. depends on V</0. B  and C  are L  x 1 vectors determined by the motion 

field £ and can be calculated from the right side of Eqn. 2.22.

Reorganizing back to the matrix form, we obtain E  and W.  Now V x W  and 

V E  can be calculated using simple vector operations:

V E  and ( W ) x =  [ (VW)y, ~ ( V W ) X] (2.24)

19
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Finally, the harmonic remainder is computed as:

R  = V E  -  (V x W) (2.25)

VE

(a) Detection of source and sink

(b) Detection of rotational center 

Figure 2.4: Detection of singular points.

Critical points like sources, sinks and rotational centers can be characterized 

on the basis of certain properties of the potential functions. A critical point is a 

point where the velocity of the flow is zero. At an extremum point of the potential 

function E,  we have f f  =  0 and ^  =  0. Thus, V E  is zero at this point, or 

the curl-free component of the field is zero. Hence, an extremum in the curl-free 

potential surface corresponds to a critical point in the curl-free field. The criteria 

for detecting a critical point are:

•  Point p is a source (velocity field diverges outwards from this point) if E(p)  

is a minimum

20
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•  Point p is a sink (field vectors converge to this point) if E(p)  is a maximum.

•  A point p is an anticlockwise rotational center if W(p)  is a maximum

• Point p  is a clockwise rotational center if W(p)  is a minimum

Some synthetic fields and their corresponding potential functions are shown in 

Fig. (2.4). This demonstrates how the potential functions can be used to identify 

critical points in a field.

2.3 Contour Tracking Using Level Set Method

Image segmentation and object extraction are among the most well addressed topics 

in computational vision. Curve propagation techniques have been used to address 

the task of image segmentation. The central idea behind such an approach is per­

form image partition through planar curves/surfaces.

In this section, I present an overview of the level set method and its application 

to image segmentation and modeling. The level set method is a numerical technique 

for tracking interfaces and shapes. Level set method falls into the category of active 

contour techniques like snakes [37] since the contour can be given any desired shape 

by applying a halting criteria synthesized from the image data.

2.3.1 Traditional Techniques for Tracking Interfaces

The basic problem in curve propagation is to track the motion of an interface (a 

dynamic boundary) as it moves in a direction normal to itself with a given speed F.

One of the standard techniques for curve tracking is the marker technique. A 

number of markers are placed at close intervals on the curve. Each marker at time 

instant (or iteration number) n  represents the point (x™, y f )  on the moving front. 

A numerical algorithm that can estimate (a;"+1 ,y "+1) from the previous position 

is used to track the front. The position of the markers at any instant of time is
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then used to reconstruct the front. Snakes [37] have a similar formulations as the 

boundary or contour is represented in a parametric form.

Figure 2.5: Overlapping of boundaries. Only “Edge” markers correspond to the 
propagating interface.

The marker based technique is a fast and effective scheme to track the motion 

of curves for simple motion. However, this technique runs into problems when 

tracking complex motion patterns, e.g. motion which involves the overlapping of 

boundaries (a topological change in the moving front). It is very difficult to keep 

track of which markers still belong to the boundary and which are inside. This prob­

lem can be attributed to the fact that the marker method uses a local representation 

of the curve instead of a global one.

2.3.2 Formulation of Level Sets to Represent an Interface

Level set methods fall into a different category of tracking techniques, where the 

properties of the contour are defined on a fixed cartesian grid. The level set method 

tries to overcome the problems that traditional tracking methods run into. The basic 

idea of level sets is to represent the propagating interface as the zero level set of 

some higher dimensional function 4> (e.g. for a 2D problem we evolve a 3D function 

to solve the tracking problem). Let x(t)  be a point on the curve 7 (t) at time t. The 

constraint that has to be satisfied is:

(2.26)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This constraint implies that the set of points where <p(x, t) = 0 represents the 

current position of the curve). The set of points which satisfy (j>(x, t) =  0 are called 

the zero level set of the function 4>{x(t)). 0  is initialized as:

<j)(x,t = 0) = ± d  (2.27)

where d is the distance of point x  from the curve j ( t  =  0 ) (the initial curve). 

The convention for the sign is that the distance is negative (positive) if point x  is 

inside (outside) the initial curve. A sample distance function for a circular curve is 

shown in Fig. 2.6. It shows a plot of the signed distance function over all image 

pixels. Note that points within the circular curve are negative while those outside 

are positive.

Fix*]

(a) Distance function from side (b) View from top

Figure 2.6: The signed distance function defined for a circular curve.

Using the chain rule on the constraint Eqn. (Eqn. 2.26), we have:

<fit + V4>(x(t),t) ■ x  (t) =  0 (2.28)

(f>t is the partial derivative of the distance function. The direction normal to the 

front is represented by n. The normal is defined as n — V(f>/|V</>|. Since x (t) is 

the velocity of point x, x (t) ■ n — F  is the speed in the outward normal direction.
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Substituting these we get the evolution equation for the curve as:

<Pt + F\V(f>\ = 0 (2.29)

For a two dimensional curve the above initial value partial differential equation 

is equivalent to:

& +  +  ^ 1/2 =  0  

<D(x,y.t=2>
'■ "  k

;y

- .....<m >
X

X
4 > ( x ,y , t= l )

.... . . . .

<l>(x.y.t—<>) 4 M )

V .... . . . . . /  x
: > > y 

o ? - — <i>=oV 'j ‘
' X

Figure 2.7: Propagating front embedded as zero level set

The value of the level set function is stored in each grid point. As the curve 

moves, the values are updated. Fig. 2.7 shows a circular curve expanding outwards. 

At time instant t =  0, it is a small circle and the corresponding level set is marked 

on the signed distance function. As the curve evolves, the zero level set moves 

upward on the cone representing the signed distance function.

2.3.3 Some Advantages of the Level Set Formulation

Intuitively, the conversion of a curve tracking problem into a surface tracking prob­

lem seems to be adding unnecessary complexity to a simple problem. However, in 

this case the addition of an extra dimension simplifies the analysis to a great extent.
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The evolution Eqn. (Eqn. 2.29) ensures that the function c f>(x, /,) remains a smooth 

function and does not develop any singular points. The evolution equation ensure 

that as long as the the speed F  is smooth, <t>(x, t) remains smooth as well. However 

the curve 7 (t) (or equivalently the level surface 4> =  0 ) can break, merge or form 

sharp corners.

Level sets also facilitate the easy calculation of the geometrical properties of the 

interface. For example, the expression for the curvature of the front is:

_  V</>   ( p x x ^ i / — %(t>x4>y 4 >x y  +  4>y y 4 >x  ^

( € + f y ) v  2 (230)

The final shape recovered by the snake method [37] depends significantly on the

initial seeding points. This is because the energy functionals used in for the snake

evolution are non-convex and hence have multiple local minima. Therefore, an ini­

tial guess which is reasonably close to the desired shape is essential for convergence 

to a satisfactory solution. For level set methods, the convergence to the final shape 

is relatively independent of the shape initialization as described by Malladi et al. 

[38].

2.3.4 Approximating the Level Set Equation

The mathematical basis for solving the level set equations are drawn from the hy­

perbolic conservation laws. The overall speed function can be decomposed as 

F  =  Fpr0p + Fcurv +  Fadv where Fprop =  F0 is the speed with which the curve 

expands in the normal direction, F ^ y  =  —en is the curvature dependent speed and 

Fadv = U(x , y , t )  ■ n  is the speed with which the front is being passively advected. 

The advection component tends to shift the entire contour along a particular direc­

tion while the other two velocity terms determine the shape of the evolving contour. 

Note that U(x,  y, t) is a time and position dependent velocity field and n  is the nor­

mal to the front. Substituting these values in the speed function of Eqn. 2.29, the
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level set evolution equation can be rewritten as:

(2.31)

The simplest approach is to use the central difference operator to approximate each 

of the derivatives. The following equation is a complete first-order convex scheme 

to approximate the level set evolution ([39]):

Here is an approximation to the curvature expression in Eqn. 2.30 (using 

central differences). The difference operatiors are given by:

This scheme takes into account the entropy conditions, which are necessary to 

handle the cases when the contour forms sharp corners or overlaps.

2.3.5 Efficient Front Propagation Schemes

The level set evolution Eqn. (2.33) involves 0 ( N 3) calculations (where N  is the 

number of points on the grid). The narrow band and fast marching approaches 

are aimed to reduce the computational complexity of the level set evolution.

Since the vicinity of the zero level set is the main region of interest in the evolu­

tion of </>, the signed distance function is calculated only in the domain of a narrow 

band around the current position of the front. Outside the domain, the distance is 

defined as ± m a xD is t. m axD ist is the distance of the outermost point on the nar­

row band from the front. The computational advantage gained over here is because

f t ? 1 = cf>l + A t  ( max(D^<f>, 0 ) 2 +  m in(D ± x<(>, 0) 2 (2.32)

+max ( Dijv(f), 0) 2 +  m i n ( f i ^ ,  0 ) 2 j

(fri+lj 4*1,3 
A x  

(frij ~  0 i - l tj 
A x
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the points outside the narrow band (i.e. points which do not influence the shape of 

the curve) are not updated. The narrow band structure is shown in Fig. 2.8. The 

dark dots are points within the narrow band while the hollow dots are points outside 

the narrow band which are all considered to be m a xD ist away from the front.
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Figure 2.8: The narrow band shown on a grid [2],

The level set Eqn. 2.33 is updated only at points within the narrow band. 

The narrow band is re-initialized as the interface nears the edge of the band. Re­

initialization is such that the zero level set boundary is at the center of the new band. 

Now 0 ( k N 2) computations are required for tracking the interface, where k is the 

number of cells in the narrow band grid defined.

The fast marching method is applied when the speed F  is either always positive 

or always negative. This implies that information always flows only in one direction 

(from smaller values of T  to larger values in the case where F  is positive). If a 

solution is built outward from the smallest value of T,  an iterative implementation 

is not required and the solution is constructed in a single pass. The fast marching 

and narrow band schemes can be combined to yield a computationally efficient 

evolution technique with complexity of order 0 ( N 2).
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2.3.6 Application of Level Sets to Shape Detection

Level set methods have been applied to problems in image processing with appli­

cations in image segmentation and shape modelling [38]. The basic approach is to 

define initial fronts inside the region of interest. These are then evolved using the 

level set approach. The speed function is determined by the image characteristics. 

A characteristic that is required for such a speed function is that it must stop at the 

object boundary. This is achieved by using information about the image gradient. 

The speed function is multiplied by the term kj,  which serves as a stopping criteria:

Figure 2.9: Detection of arterial structure.

Here Ga represents a Gaussian filter with standard deviation o. The term V G a * 

I(x,  y) is usually close to zero but when the image gradient changes rapidly it has a 

large value. Therefore k[(x,  y) is approximately unity except near the sharp bound­

aries where it has a small value.

If we multiply the speed function with the filter ki (x ,y) ,  we are essentially 

retarding the front at the boundaries. The modified equation of evolution is given 

by:

4>t + K i  ■ F|V<^| =  0 (2.34)

Thus, assuming that the shape we are trying to detect has a distinct boundary,
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this method provides an efficient means to stop the evolving curve when the bound­

ary is reached. The advantage here is that no previous information about the shape 

boundary is required for the segmentation. The initialization just consists of identi­

fying a point within the region of interest. An example of segmentation using level 

set evolution with image gradient dependent speed function is shown in Fig. 2.9.
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Figure 2.10: Level set segmentation demonstration
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Fig. 2.10 depicts a level set segmentation of a ring like structure. Figs. 2.10(a), 

2.10(d), 2.10(g), 2.10(j) in the leftmost column represent the segmented area after 

200, 1800, 3500 and 5000 iterations, respectively, of the fast marching method. 

The corresponding signed distance functions are shown in Figs. 2.10(b), 2.10(e), 

2.10(h), 2.10(k). The plane in the middle is the x  — y plane. Points of intersection 

with this plane correspond to the zero level set of the surface. Points inside the 

curve have a negative distance function and are below the zero plane. Figs. 2.10(c), 

2.10(f), 2.10(i), 2.10(1) show the same distance function viewed from top. The clear 

area in these images is the x  — y plane visible because the signed distance function 

is below the plane at these points. The shaded region is the signed distance function 

covering the x  — y  plane. The segmenting curve is shown to be the same as the 

intersection of the signed distance function with the x  — y plane.

In this thesis, we use the level set segmentation method for segmenting the eye 

of the hurricane. The initial seed point for this algorithm is provided by the DHHD 

algorithm. These are described in further detail in Chapter 4.

2.4 Canny Edge Detection

The Canny operator is a commonly used edge detector. It takes as input a gray 

scale image, and produces as output an image showing the positions of tracked 

intensity discontinuities. The Canny operator works in a multi-stage process [40]. 

First of all the image is smoothed by Gaussian convolution. Then a simple 2-D 

first derivative operator is applied to the smoothed image to highlight regions of 

the image with high first order spatial derivatives. Edges give rise to ridges in the 

gradient magnitude image. The algorithm then tracks along the top of these ridges 

and sets to zero all pixels that are not actually on the ridge top so as to give a 

thin line in the output, a process known as non-maximal suppression. This gives 

a thin output edge. Finally, hysteresis is used as a means of eliminating streaking.
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Streaking is the breaking up of an edge contour in the output image, caused by the 

spatial derivative output fluctuating above and below the defined threshold. The 

tracking process exhibits hysteresis controlled by two thresholds: T\ and T2 with 

Ti > T2. Tracking can only begin at a point on a ridge higher than T\.  Tracking 

then continues in both directions out from that point until the height of the ridge falls 

below T2. This ensures that edges are not broken up into multiple edge fragments.

We use the Canny edge detector to locate isopotential contours on the optically 

mapped image. This is described in further detain in Chapter 5.

2.5 Fingerprint Analysis

Fingerprint recognition is an important problem in computer vision and biometrics. 

Fingerprints have been widely used for personal identification [41], The informa­

tion carrying features in a fingerprint are the line structures called ridges and valleys. 

In Fig. 2.11 the black lines are the ridges while the white regions are the valleys.

As described in [42], fingerprint identification can be divided into three essen­

tial tasks, namely, fingerprint acquisition, fingerprint classification and fingerprint 

matching.

Fingerprints are acquired by the impression of fingers on different kind of sen­

sors e.g. optical, thermal and capacitive sensors. The traditional technique of inked 

fingerprints is also in use. Fingerprint classification assigns a particular image into 

a certain category according to its global ridge and furrow configuration. This is es­

sential for arranging fingerprint images in a database. Matching determines whether 

two fingerprint images are of the same finger.

A feature extraction process analyzes the fingerprint image to extract salient 

features for use in matching. Several fingerprint features are shown in Fig. 2.11. 

Local discontinuities in the ridge flow, called minutiae are typically used for this 

purpose. Ridge endings (points where a ridge ends abruptly) and ridge bifurca-
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Figure 2.11: A typical fingerprint image.

tions (points where a ridge diverges into multiple branches) are examples of such 

points. There are distinct singularities in the flow too, like core and delta points

[43]. These points are used for the classification operation. They have also been 

used as reference points for the alignment of different images of the same finger

[44]. Feature extraction systems use image processing based enhancement methods 

to compensate for poor image acquisition [45].

Fingerprint matching techniques can be placed into two categories: minutiae- 

based and correlation based. Minutiae-based techniques first find minutiae points 

and then map their relative placement on the finger. However, there are some asso­

ciated difficulties. It is difficult to extract the minutiae points accurately when the 

fingerprint is of low quality. Also, this method does not take into account the global 

pattern of ridges and furrows. The correlation-based method is able to overcome 

some of the difficulties of the minutiae-based approach. However, it has some short­

comings of its own. Correlation-based techniques are affected by image translation 

and rotation. Matching different sized (unregistered) minutiae patterns is another 

problem. These methods require the precise location of a reference point to register 

the images prior to matching.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5.1 Reference Point Detection

A fingerprint recognition system needs to determine the pose transformation be­

tween the input fingerprint and the template. This requires reference points for 

image registration (the alignment of different samples). The singular points of the 

ridge structure, such as core and delta points, are often used as reference points.

The Poincare index is widely used to detect the number of core and delta points 

in the fingerprint image [19], [46]. Poincare index at a pixel ( i , j )  is the summation 

of all differences in orientations of successive pixels along a square shaped curve 

centered around the pixel (i , j) .  The Poincare index at pixel ( i , j )  can be represented 

as:

5(k) is the difference in the local orientation field between consecutive pixels 

along a closed digital curve with N  pixels. The Poincare index is zero at non­

singular points. The Poincare index is 1/2 for a core shaped singular point while it 

is —1/2 for a delta shaped singular point.

However some fingerprint images might be just partial images, with the singu­

lar points left outside the imaged area. Another limitation is that these methods are 

very sensitive to the noise in the orientation field. A small perturbation in the orien­

tation field may result in false singular point detection. Thus methods based on the 

Poincare index of the orientation field work well only for good quality fingerprint 

images. As described in [47], the point with the maximum curvature on a convex 

ridge is an apt choice for a reference point for all types of fingerprints.

A method for the maximum curvature reference point location is described by

Poincare( i , j ) (2.35)

5(k) if |<?(Jfc)| < tt/2
7r +  6(k) if 5(k) < —7t/2 
7r — 5(k) otherwise

where A (k) (2.36)
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Jain et al. in [20]. The orientation field is extracted and smoothed (low pass fil­

tered) over a local neighbourhood. They used a 5 x 5 mean filter for the smoothing. 

An image containing just the sine component of the smoothed orientation field is 

considered (i.e. sin (6(i , j ))  where 9 ( i , j ) is the angle of orientation field at pixel 

location (i , j )). This is followed by a multiresolution analysis of the difference of 

the sine image integration over two defined regions of the orientation field. The 

geometry of the regions for integration have been formulated empirically. The re­

gions were designed to capture the maximum curvature in concave ridges and do 

not yield accurate results for arch type fingerprints. Rotation of fingerprint image 

also leads to an erroneous detection in this case.

Another algorithm for detecting of reference points has been proposed in [47]. 

First an orientation field is extracted and smoothed. This yields an orientation field 

which is continuous and smooth except for singular areas. The reference point de­

tection is based on the hierarchical analysis of the orientation field coherence. The 

orientation field coherence indicates the consistency of the local orientation in a 

neighbourhood along the dominant orientation. Orientation coherence in high cur­

vature areas is poorer than that in smooth areas. Thus, a point with local minimum 

coherence at both coarse and fine scales is identified as a reference point. This 

algorithm tends to be sensitive to the smoothing kernels used for smoothing the 

orientation field as well as on the size of the finest level block.

In this thesis, we have developed an algorithm based on the DHHD technique, 

which identifies the point with maximum curvature on the fingerprint image. Our 

method is robust to noise and to scaling and rotation of the image. The details of 

the proposed technique is presented in Chapter 4.
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2.6 Summary

In this chapter we presented a comprehensive review of existing techniques for me­

teorological image analysis and fingerprint reference point detection. Techniques 

for locating critical points using motion fields were discussed. The deficiencies 

in these techniques were discussed which might be used to improve upon the cur­

rent methods. We also provided a review of the techniques (level set method and 

DHHD) that are used in our algorithm. The work presented in this chapter has been 

accepted for publication [48].
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Chapter 3 

Review of Related Work: II

Ventricular fibrillation (VF) or cardiac arrest is a frenzied and irregular disturbance 

of the heart rhythm that quickly renders the heart incapable of sustaining life. The 

heart beat rate during VF can exceed 350 beats per minute (bpm), which is about 

5 times the normal heart rate of 72 bpm. For a normal heart, its muscular con­

traction is smooth and coordinated due to a single wave of electrical excitation that 

signals the cells to contract. During fibrillation, higher frequency circulating activa­

tion waves are observed which cause small and out-of-phase localized contractions. 

Cardiac arrest causes nearly 250,000 deaths annually in the United States alone [21] 

and most of these sudden cardiac deaths are attributed to ventricular fibrillation.

Although a major problem in the modem world, the high frequency electrical 

activity occurring in the cardiac tissue during VF is still poorly understood. The 

only known therapy for VF at present is to apply a large electrical shock to the 

fibrillating heart and then wait for the heart to resume normal beating. Some con­

sequences of the incomplete understanding of the phenomena, which caused failed 

antiarrhythmic drug trials are described in [21].

The mechanism of VF, and the characteristic electrical phenomena observed 

during VF are not fully understood and is an extensive area of research in the cardiac 

electrophysiology community. To gain a better understanding of the electrical wave 

propagation in the cardiac tissue, mapping techniques are the most common tool.
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The concept of mapping rhythmic activation of the heart dates back to the begin­

ning of last century. Initially mapping was performed using single probes to record 

activation in different regions of the heart. The 1960’s and 70’s saw the develop­

ment of computerized mapping of the human heart. Most of the recent advances in 

cardiac mapping have focused on improving multisite recording techniques within 

the heart. These methods simultaneously record electrical activation from several 

hundreds of sites and have contributed significantly to the understanding of atrial 

and ventricular arrhythmia’s. [3] provides a review of such techniques. However, 

the multisite contact mapping suffers from several limitations, such as the technical 

problems associated with amplification, gains, sampling rates and signal-to-noise 

ratio.

Motivated by the above-mentioned limitations of contact based mapping, the 

last few years have seen the development and use of voltage-sensitive dyes as a 

means to map cardiac activation. The technique is briefly described in Section 3.1. 

We describe the optical mapping apparatus and the role of cardiac optical mapping 

in understanding of various phenomena. Analysis of cardiac activation maps is 

discussed in Section 3.2 while Section 3.3 describes the application of models for 

the simulation of cardiac tissue. Finally we present an overview of the Canny edge 

detector in Section 2.4.

3.1 Cardiac Optical Mapping

An intact animal heart (such as frog, dog and pig) is extracted and pinned onto 

a dissection dish and stained with a voltage sensitive dye. Chemical motion in­

hibitors are used to reduce mechanical movement of the heart. The heart is paced 

using electrodes to induce different phenomena. The heart is illuminated using 

monochromatic light sources. The small changes in the fluorescent signal, due to 

excitation of the dye, is the signal of interest.
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Voltage-sensitive dyes, when excited, provide an optical signal that mimics an 

action potential and thus allows the visualization of how electrical activation is 

propagating in any region under view. This allows for the precise visual evalua­

tion of the propagation of a wave of excitation and measurement of its properties. 

Voltage-sensitive dyes bind to the cell membrane with high affinity and fluoresce 

light in direct proportion to transmembrane voltage. These dyes must be excited 

by light to induce fluorescence. The most common excitation light sources are 

tungsten-halogen lamps, mercury arc lamps and argon ion lasers. The precise shape 

of the emission spectra of the voltage sensitive dyes (and therefore the optical ac­

tion potential) does not correspond to any absolute voltage, and only relative po­

tential change is detected by this method. Optical mapping techniques use imaging 

devices, such as a photodiode array or a charge-coupled device video camera, to ac­

quire the image sequences. A typical setup for optical mapping of cardiac electrical 

impulses is shown in Fig. 3.1.

P e r fu s a te  c o n ta in in g  
v o lta g e - s e n s it iv e  d y e

E m issio n
F ilterL ens

D ichroic
M irror

Heart
DetectorE xcita tion

F ilter

Light
S o u rc e

Optics

Figure 3.1: A cardiac optical mapping system (from [3])

Photodiode arrays and CCD cameras are the photodetectors used in these setups. 

The silicon photon diode detectors have a fast response time and signal acquisition
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is relatively noise free because they have a low dark current (the amount of signal 

when no light is present). However, the number of photodiodes in an array is limited 

(about 50 x 50). To increase the sampling region, CCD cameras are used which 

provide higher spatial resolution of 128 x 128 pixels, as discussed in [49].

The emission filter and dichroic mirror serve as filters for monitoring the voltage 

sensitive dye used. The cutoff wavelength of the filter is dependent on the emission 

spectra of the dye.

Witkowski et al. [50] mention that commercial CCD cameras have a read noise 

level which is two orders of magnitude above that required to detect voltage sensi­

tive dye intensity variations. Another significant issue is that the electrophysiologi- 

cal events in cardiac tissue occur in a time interval of the order of 1 ms. This calls 

for very high frame rates, if the optically mapped sequence of images is to cap­

ture the temporal detail of the event. Hence, direct use of commercially available 

products is not possible. An image acquisition system is described in [50], which 

achieves these specifications.

Fig. 3.2 shows video frames from optically mapped sequences. As can be 

observed, electrical impulses on a normal pig heart Fig. 3.2(a) tend to follow a 

regular pattern. During fibrillation, the electrical impulses are more haphazard as 

seen in Fig. 3.2(b). The ability to visualize the spread of excitation in intact hearts 

allows for comparisons between recorded dynamics and numerical simulations, as 

discussed by Christini and Glass [51].

Optical mapping was proposed with just surface recordings in mind. Newer 

techniques which can be used for visualizing the electrical activity from inside 

cardiac muscle via fluorescence measurements are described in [52]. Here, fluo­

rescence measurements are performed in the transillumination mode, in which the 

light is placed behind the tissue and fluorescence emitted from the opposite side is 

collected. This is in contrast to the more common epi-illumination mode, in which

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(b) Pig heart undergoing fibrillation

Figure 3.2: Sample frames from the optically mapped video sequence.

the light source and photodetector are aimed at the same surface (as shown in Fig. 

3.1).

3.1.1 Optical Mapping for Understanding Cardiac Arrhythmias

In optical mapping, the membrane potential is registered at every recording site 

over a sequence of time. Therefore, it is possible to relate complex propagation 

patterns to voltage changes occurring at the cellular and subcellular level. Studies 

performed at the level of the single cell have shed important insight into the nature 

of intracellular propagation within cells and as well as between cells. The role of 

cell-to-cell coupling, structural discontinuities, and tissue anisotropy in propagation 

of the electrical impulses were interpreted through cardiac mapping [53],

Application of optical mapping techniques to the study of cardiac fibrillation 

has given experimental proof of several theories of wave propagation in excitable 

media [3] such as the high-frequency reentrant sources that underlie fibrillation and 

generate spiraling waves that propagate throughout the ventricles in complex pat-
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terns. Optical recording of the cardiac wavefront during reentry has demonstrated 

that conduction speed depends upon the curvature of the spiral wave, i.e., a greater 

degree of conduction slowing is noted in the presence of a more pronounced curva­

ture.

Spiral waves were identified on the cardiac tissue, using optically mapped im­

ages of a fibrillating rabbit heart. Spiral waves occur in several systems, such as 

brain and retina. A particular perturbation of the excitation wave may result in 

spiral wave activity [23].

3.1.2 Application of Image Processing

In this section we review some of the image processing techniques that have been 

used in the context of cardiac optical mapping. Image processing techniques to 

enhance the quality of CCD images is a significant area of study. Common issues 

that can be tackled using image processing techniques are denoising of images, 

compensating for phase shifts and motion artifacts.

Phase shift: The CCD camera based optical imaging is more severely limited 

in temporal than spatial resolution. A phase correlation method is used in [54] 

to correct for the phase shift in time caused by propagation of the wave. This 

is followed by Gaussian filtering and median filtering for denoising. The phase 

correction before the spatial averaging leads to sharper features and better quality 

optical maps.

Denoising: A wavelet based image denoising technique was used by Witkowski 

et al. to improve the quality of the acquired optical map images.

Motion artifacts: Another application is for correcting of motion artifacts. One 

of the constraints of optical mapping is the deformation of the intensity and shape 

of optical potential due to cardiac muscle contraction (since the relative location 

of the tissue to the camera and light sources changes). Although chemical motion
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inhibitors are used to prevent mechanical motion of the cardiac tissue, there is still 

some residual motion. Moreover, these chemicals are very expensive and hence 

alternative motion artifact cancellation techniques are an active topic of research. 

Motion artifacts due to cardiac motion are tackled in [55]. Image registration is 

used to align the sequence of digital images taken from the optical recorder. Op­

tical alignment of a frame with the reference frame is obtained by maximizing a 

mutual information image similarity measure. This ensures that each location in 

the image represents an intensity measurement of the same tissue location through­

out the recording procedure.

Locating singular points: Optical mapping videos have been analysed by Guo 

et al. [56]. Here, the optical flow field is extracted from the optically mapped 

video sequences. The DHHD algorithm is then applied to this extracted field to 

decompose the field into purely curl-free and purely divergence-free components as 

described in Section 2.2. These decomposed components are analysed for locating 

critical points (like sources, sinks etc.) in the motion fields. These critical points are 

essential for understanding the abnormal propagation of cardiac electrical signals. 

As an example, rotors (or spirals) in the cardiac tissue can be captured directly using 

this framework. The critical points detected by the algorithm were shown to match 

well with manual analysis of the video data.

The quantitative analysis of the cardiac videos have started receiving attention 

lately. Until now most of the existing techniques have been qualitative. Their anal­

ysis is dependent on the pattern recognition skills of cardiologist. We believe that 

the quantitative analysis of these videos will lead to significant improvement in un­

derstanding the phenomena of fibrillation and aim to analyze the videos using tech­

niques from computer vision. We demonstrate the efficacy of the techniques pro­

posed in [56] to the location of features of interest in the cardiac electrical patterns 

observed in the videos. This techniques are compared to the algorithm proposed by
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[57] and are shown to perform better.

3.2 Analysis of Cardiac Activation Maps

One of the areas in the study of cardiac elctrophysiology is the visualization of car­

diac arrhythmias. Isochronal cardiac activation maps are frequently used to study 

cardiac arrhythmias. They are constructed from local activation times associated 

with spatial locations. Each isochrone represents the leading edge of a cardiac ac­

tivation wavefront at subsequent intervals of time. One significant disadvantage 

inherent in the isochronal maps is the excessive smoothing in regions of cardiac tis­

sue that are sampled sparsely. To capture a particular feature of interest, the tissue 

has to be sampled at a finer resolution than the relevant feature.

Another parameter used to characterize wavefronts is conduction velocities, 

which contains information on the speed and direction of a propagating wavefront. 

These are measured using catheters (a tubular medical device for insertion into 

canals or vessels). An advantage of vector maps is that vectors measured using 

a catheter would only smooth data over a small area. At present, for clinical pur­

poses cardiologists generally rely on isochronal maps to infer patterns in the cardiac 

activation sequence.

Fitzgerald et al. [58] performed a psychometric comparison of cardiac veloc­

ity vector mapping and isochronal mapping techniques. Comparative recognition 

of synthetic arrhythmia patterns presented as vector field and isochronal activation 

maps were investigated. The key goal was to study what types of maps provide 

the best quantity and quality of information with fewest number of measurements. 

It was shown that for simple arrhythmias, performance of cardiologists in select­

ing critical points was superior with vector maps to isochronal maps. For more 

complex arrhythmias, there was no significant difference in performance between 

vector and isochronal maps. However, arrhythmia features were clearer with vector
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maps, proving that the velocity vector maps offer distinct insight into the clinical 

study of arrhythmias. These results show that a vector field representation can char­

acterize propagation qualitatively and quantitatively, and is an effective alternative 

to isochronal mapping, especially in the case of complex rhythm patterns like those 

observed in fibrillation. (Conduction velocity vectors are not used in clinical prac­

tice at this time). In Section 5.2, we compare two velocity vector map analysis 

techniques.

3.2.1 Velocity Vector Maps

Velocity vectors, representing the velocity of potential on the cardiac surface are 

generally extracted using direct measurement on the cardiac surface with electrode 

arrays. The traditional method of calculating velocity is to first manually identify 

the direction of propagation and then measure location of an activation front and 

divide the distance traveled by the time interval. The inherent assumption here is 

that the wavefront travels in a direction perpendicular to the electrodes. However, 

this is not always the case, especially for complicated wavefronts, leading to spu­

rious speed estimates. If meaningful insights are to be gained from velocity vector 

maps, accurate representation of the propagation of electrical waves is required. To 

address this issue, Bayly et al. [59] propose an alternative technique for the esti­

mation of conduction velocity vectors. A polynomial surface T ( x , y )  is fit to the 

space-time (x , y, t ) coordinates of active points, (x, y) is the spatial location of an 

electrode site and t represents the time it was recorded as active. The fitted surface 

describes activation time as a function of position, i.e. each section is equivalent 

to an isochronal contour. The gradient is always normal to the isochrone and thus 

defines the direction of propagation. The speed and direction of propagation is now 

calculated using the gradient of the local polynomial surface. This polynomial sur­

face method is more robust in dealing with missing or bad data from electrodes and
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more robust to noise in the measurements. Morley and Vaidya [25] used the local 

velocity vectors calculated from the isochronal maps to illustrate the conduction 

properties of the mouse heart tissue during fibrillation.

Fitzgerald et al. [57] use velocity vector fields from cardiac mapping data for 

studying conduction features in cardiac tissue. These vectors are measured us­

ing intracardiac catheters. Mathematical operators such as the divergence and curl 

are used to analyze the vector fields and locate certain arrhythmia features without 

any need of human intervention (techniques based on isochronal maps rely on the 

pattern recognition skills of the cardiologist for locating arrhythmia features). Di­

vergence of the vector field is used to locate extopic foci and wavefront collisions. 

The curl is used to identify central obstacles in reentrant circuits. The curl oper­

ator, however, fails to provide accurate localization for human arrhythmias. This 

study shows that velocity vector maps are a viable alternative (and possibly a better 

method) for studying cardiac activation.

3.3 Simulation of Cardiac Tissue

Another area of research is to understand the mechanism of electrical wave propa­

gation in cardiac tissue [60] through simulation. Ionic models are used to simulate 

the cardiac tissue and study the propagation of electrical impulses there in. Distri­

bution of membrane channels, the change in conductance of these channels etc. are 

some of the parameters included in the model. Such generic models of excitable 

media have been developed in 2- and 3-dimensions. Various electrical phenom­

ena are simulated using these cardiac models to gain a better understanding of the 

electrical basis of cardiac phenomena like VF.

To give an idea about how the cardiac tissue is modelled, we present the model 

used in [24]. For an isotropic cardiac sheet, the transmembrane potential Vm is
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given by:

(3.1)

Cm is the membrane capacitance while D  is the diffusion coefficient. I lon is the 

total current flowing through the membrane, which is described using models for 

the sodium and potassium ion currents.

One such study demonstrated that the impulse propagation is dependent on tis­

sue properties and the geometry of the excitation wavefront [4], Wavefront curva­

ture is an important property of spiral waves, which are known to cause some types 

of cardiac arrhythmias. The steady state velocity of a wave (Vo) is determined by 

the properties of the excitable tissue on which the wave is propagating. A first- 

order approximation of the relation between the curvature of a wavefront (K ) and 

its propagation speed (V ) has been derived for a continuous isotropic medium in 

[61] and is given by:

Here D  is the diffusion coefficient of the medium and is characteristic to a 

medium. When the excitation wavefront is curving outwards, the conduction ve­

locity is lower than Vo because the local excitatory current distributes over a larger 

membrane area. When the excitation front is curving inwards, the excitatory cur­

rent converges in front of the propagating wave resulting in a velocity larger than 

Vo. Eqn. (3.2) also predicts that above a critical curvature K CT =  Vo/D, propaga­

tion will not occur. This is called conduction block. The basic mechanism relating 

wavefront curvature to velocity of propagation in an excitable medium is illustrated 

in Fig. 3.3.

The effect of curvature on wave velocity have been considered only rarely in 

heart tissue until recently. This is explained by the small radii at which wavefront 

curvature significantly affects conduction. Beaumont et al. [23] have proposed a 

technique to study wavefront morphology for arbitrarily shaped waves. —30 mV

V{ K)  =  Vo — D K (3.2)
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Figure 3.3: Effect of wavefront geometry on propagation velocity [4],

isopotentials of a spiral wave are parametrized by fitting a cubic smoothing spline 

to piecewise polynomial segments of the isopotential. This parametrized represen­

tation is used to calculate the curvature of the wavefront using standard differential 

geometric techniques. The point of zero curvature is used as a reference point to 

track the tip of the spiral as it meanders.

Kay and Gray [24] used voltage measurements to predict the curvature field 

in a wavefront. Their method is an extension of [23] for application to arbitrarily 

shaped wavefronts obtained from 2-D media. They locate isopotential points on the 

grid, fit these points to smooth splines to obtain a parameterized representation of 

the contour and then calculate the curvature using differential geometric properties 

of this contour. The use of splines is essential as the waves during arrhythmia are 

arbitrarily shaped. This framework provides a method to measure the curvature 

vector field of each individual wavefront within a dataset. These measurements are 

used for a quantitative analysis of the interaction between curvature and velocity.

Our aim is to combine the techniques used in studying electrical patterns in 

simulated models with image processing techniques in such a way that they can be 

useful to analyze cardiac optically mapped data. We present a technique to predict 

the curvature of an arbitrary shaped wave in a optically mapped image.
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3.4 Summary

In this chapter, we presented a literature survey of the cardiac optical mapping 

method. We also discussed some image processing algorithms for processing op­

tically mapped data. We then presented some techniques used to study properties 

of electrical waves using simulated cardiac tissue models and discussed how we 

intend to use techniques developed by such studies for the analysis of cardiac opti­

cally mapped data.
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Chapter 4

Applications of the Discrete Hodge 
Helmholtz Decomposition to Image 
and Video Processing

In this chapter we explore two novel applications of the DHHD to image process­

ing problems. Hurricane tracking is an important meteorological application. The 

eye of the hurricane represents a rotational center, which is shown to be robustly 

detected using DHHD. This is followed by an automatic segmentation and track­

ing of the hurricane eye using a level set based segmentation method, which does 

not require manual initializations. Results are presented using two actual hurricane 

videos.

We also consider the application of DHHD to fingerprint analysis. Identifica­

tion of reference points, like whorls in the ridge structure, is an important problem 

in fingerprint matching. DHHD is used as a mathematically well founded and el­

egant method for this analysis. The new technique for reference point detection is 

relatively insensitive to noise in the orientation field. Our reference point detection 

method is not affected by the rotation and scaling of the fingerprint image. The 

DHHD based method is shown to detect reference points correctly for 96% of the 

images in the database used.

The subsequent discussion is organized as follows. A brief review of the liter­

ature on the application of image processing techniques to meteorology is given in
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Section 4.1. Section 4.2 discusses motion estimation from a hurricane image se­

quence and the subsequent eye location and tracking results. Fingerprint analysis 

is described in Section 4.3. Details of the extraction of the orientation field and 

experimental results are also provided here.

4.1 Cloud Motion Tracking

Computer vision algorithms can be used to automatically interpret satellite images. 

This would lead to increasing the reliability of weather surveillance and could facil­

itate the assimilation of data from satellites for numerical weather prediction mod­

els. Image processing is widely used for the enhancement and analysis of remotely 

sensed data [62]. A review of some of the existing systems for image processing of 

meteorological images is presented here.

A major problem in meteorological data analysis is shape recognition and de­

tection [63], General techniques involve shape extraction followed by point cor­

respondence [17], [64], [65]. Mukheijee and Acton [17] present a cloud tracking 

algorithm. Here the clouds are first segmented in the image using scale space clas­

sification methods. A set of feature points are then identified on the contour of the 

extracted cloud. Points of inflection on the contour are generally used as feature 

points. These inflection points are assumed to remain stable over a brief interval of 

observation and matching these corresponding inflection points between consecu­

tive frames would yield the motion vectors. To establish a correspondence between 

feature points in consecutive frames, a cost function which enforces path and shape 

coherence is minimized. As mentioned in [66], feature matching is suitable for 

smaller sized images, but is not efficient for satellite images which span a large spa­

tial area. For large scenes, several features have to be extracted within the image and 

matching them is computationally expensive. Also, identification of multiple fea­

ture points is a complex procedure on its own. Thus methods like [17] have a very

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



limited application and might not work for all kinds of remotely sensed images.

Systems for cloud tracking and characterization using satellite images have been 

developed. Rain clouds are tracked in [64] using algorithms based on the matching 

of morphological skeletons. Tracking and characterization of convective clouds is 

developed by Papin et al. in [67] and [68]. A level set segmentation method is used 

to extract the cloud shapes and to track them over a sequence of frames. Tempera­

ture measurements from infrared image sequences are available for the correspond­

ing images and are used in the segmentation and characterization of clouds. Cloud 

characterization techniques are in general based on multi-spectral and textural in­

formation. A Bayesian estimation framework associated with Markov random field 

model is used to label the clouds.

Zhou et al. [30] proposed a scheme to perform structure and nonrigid motion 

analysis from 2D image sequences of hurricane images without correspondence. 

They use two image sequences of the same cloud structure (obtained from two dif­

ferent GOES satellites) to generate stereo information. Their technique is described 

in further detail in Section 2.1.4. These techniques have applications to meteorol­

ogy in general. Weather prediction and cloud modelling are some of the areas where 

image processing techniques have been used.

In this thesis we present a scheme for tracking the eye of the hurricane over a 

sequence of frames. Only one set of 2D monocular images are used for the track­

ing. Our method does not require any other information about the event (e.g. tem­

perature distribution) and just uses the visual channel of the satellite data for the 

tracking.

4.2 Proposed Scheme for Hurricane Tracking

Hurricanes are tracked by meteorologists by making use of various data like hurri­

cane wind speed, the path the hurricane has followed over the past few days, satellite
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tracking data and the pressure distribution in the region. Satellite data is particularly 

useful for the detection and monitoring of these storms over remote oceanic areas. 

The principal sources of data in addition to weather satellites are reconnaissance 

aircraft, coastal radars, and measurements from ships, buoys, and land stations. In 

this thesis, we present a method to track the hurricane using satellite images.

An overview of the proposed scheme is presented here. We extract the mo­

tion field in a hurricane sequence (from two consecutive frames) using the block 

matching algorithm. DHHD is applied to this motion field and is used to locate the 

rotational center, which is the eye of the hurricane. After eye detection, we track 

the motion of the eye over a sequence of frames. General segmentation techniques 

require manual initialization, after which the contour evolves to segment the desired 

shape. However, our method is automatic and does not require human intervention 

for initialization. This procedure for hurricane eye tracking does not require any 

form of feature extraction or matching, which is a significant advantage for satellite 

images that span a large spatial area.

The hurricane eye tracking between frames exploits the property of relative con­

tinuity in between frames. The location of the eye is assumed to be approximately 

constant between consecutive frames. The final segmented shape in a frame is 

used for providing the initial points for the level set segmentation in the subsequent 

frame. [30] developed a method to estimate accurately the nonrigid motion and the 

cloud structure in a hurricane. Our algorithm can locate the hurricane eye with only 

an approximate representation of the motion field, obtained using the simple Block 

Matching Algorithm (BMA). Hence, complex motion estimation for the nonrigid 

motion involved in a hurricane is not required.

4.2.1 Initial Processing

•  Smoothing: Gaussian smoothing is performed on the images to remove un-
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wanted noise.

y  ^  ^  s  s  S  S  S  r

Figure 4.1: Motion field in a anticlockwise rotating hurricane sequence extracted 
using the BMA.

•  Motion Detection: Two consecutive frames in a hurricane sequence are taken 

(/„ and / n+1). Motion is estimated using the block matching algorithm (Sec­

tion (2.1.1)). The image frame is divided into square blocks of a fixed size 

(8 x 8 in our case). The displacement of this block is detected by searching in 

a scan area (16 x 16) in the destination frame. The mean absolute difference 

is used as the searching criteria and is given by:

 ̂ m n

5 =  m in( -Y ]  V  \In(i, j )  -  I n+X{i + u , j  + u)|) (4.1)
m  ■ n  L '

» = i  j = i

In our implementation m  =  n =  8 and u, v range from —8 to 8. The block

with the smallest difference 5 is assumed to be the new position of the ref­

erence block. Motion estimation using the Hom-Schunck optical flow algo­

rithm [5] and a affine motion model [69], [70] are also performed. However, 

block matching is the simplest of the aforementioned methods, and provides 

satisfactory results, so we just present the results obtained using this partic­

ular algorithm. Other algorithms have higher computational complexity [71]
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and are generally not implementable in real time. The field extracted is shown 

in Fig. 4.1.

• Motion Field Decomposition: The DHHD is applied on the extracted field. 

The field is clearly not smooth and does not give an accurate prediction of 

the complex motion involved in the hurricane. However, our implementation 

of DHHD is quite robust and gives satisfactory results while locating the ro­

tational center of this field, even with the rough estimate of the motion field. 

Since we are trying to detect a rotational center in this particular application, 

only the divergence-free component of the field is of importance to us. The 

divergence-free potential obtained is shown in Fig. 4.2. Since the video se­

quence shows the hurricane rotating in an anticlockwise direction, we get a 

distinct maxima. We need to locate the extremum points on this potential 

surface.

Figure 4.2: The divergence-free potential function with a distinct maximum and 
corresponding contours.

Locating the Extremum Point

The rotational center is located using the following property of the divergence-free 

potential function:

Pixal coordinates 50 Plxal coordinates
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• A point is an anticlockwise rotational center if the potential surface has a 

maximum at that point;

•  If the potential surface attains a minimum at a point, the point is a clockwise 

rotational center.

However, a simple location of minimum/maximum magnitude would yield er­

roneous results. This can be seen in Fig. 4.2, where the minimum magnitude does 

not correspond to a point of extremum. To locate the extremum point, the gradient 

of the divergence-free potential is calculated. For a continuous surface, we should 

have ^  ^  =  0. Since we have a discrete grid, we might not get exactly zero at

the extremum. Hence, we search for points which satisfy:

d W  dW  
+ < 4 (4.2)

dx dy

These points are the possible critical points. The value of 4 is chosen empirically. 

A very small value might cause some critical points to be left undetected whereas 

a very large value will cause far too many points to be considered as a possible 

critical point. More than one point satisfying Eqn. 4.2 is found. A point which 

has elements of opposite sign in all directions is chosen as the extremum point. An 

example of the gradient values at a point of extremum is shown in Table 4.1. This 

point represents a point within the eye of the hurricane.

-14.687 -6.5946 5.3749
-10.756 -2.2753 8.6554
-5.8657 2.0644 10.705

Table 4.1: Gradient values around an extrema point. Here -2 .2753 is the extrema 
point.

To find out the direction of rotation (clockwise or anti-clockwise), the second 

derivative, is considered. A positive value for the extrema point (min­

ima) will indicate a clockwise rotation and a negative value (maxima) will indicate
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anticlockwise rotation. Now, we describe the segmentation and tracking algorithms 

used.

4.2.2 Segmentation of the Eye

The level set algorithm has been discussed in Section 2.3. Here we use the level 

set algorithm to segment the eye of the hurricane, after the initial estimate to locate 

the eye has been obtained. The rotational center estimate from the DHHD is used 

as the seed point for the level set algorithm. The algorithm evolves from the initial 

seed point to extract the shape of the hurricane eye.

4.2.3 Tracking of the Eye

To reduce the computational time for our algorithm, we exploit the continuity of 

the image frames. Instead of performing DHHD to locate the initial seed point in 

every frame, we assume that the position of the hurricane eye would be relatively 

constant between consecutive frames. A point which has been detected to be within 

the eye in frame n  is used as the initial seed point for the level set segmentation in 

frame n +  1. The precise details of the implementation used is given below.

4.2.4 Implementation and Experiments 

Data Used

Image sequences of hurricane Luis (September 1995) and hurricane Isabel (Septem­

ber 2003), obtained from the NASA GOES (Geostationary Operational Environ­

mental Satellite) satellites have been used for the experiments. Both sequences 

show the hurricane rotating in an anticlockwise direction. The Hurricane Luis se­

quence has a smaller eye compared to the Hurricane Isabel video sequence. The 

Luis sequence has 200 frames while the Isabel sequence has 83 frames. The frames 

are separated by about 12 minutes in time.
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The images are first smoothed using a 4 x 4 Gaussian filter, and then the motion 

field is estimated using the block matching technique. This motion field is then fed 

into the DHHD subroutine and we extract the divergence-free field and the potential.

We assume the following convention for the signed distance function in our 

implementation of the level set method. Points inside the curve are assigned a neg­

ative distance while the outer points are positive. The initial estimate from DHHD 

(corresponding to the rotational center) turns out to be well within the eye of the 

hurricane. This extremum point indicated by the DHHD algorithm, and three other 

points in its neighborhood at a distance of 5 pixels each, are used as the initial points 

for the level set algorithm. As these points are inside the eye, we need to evolve 

the curve outwards. Hence, a fast marching method can be used (speed function 

is only in one direction). We initially use a narrow band fast marching technique 

for evolving the curve, which gives us a rough estimate of the boundary. The final 

step of the segmentation procedure is about 10 iterations of the original level set 

method, which gives us a smooth and accurate final curve. The results are shown in 

Fig. 4.3. N iter iterations of the fast marching step give satisfactory segmentation of 

the eye. N iter depends on the size of the eye. For the video sequence Isabel, which 

has a bigger eye, N iter =  550 gives good results; whereas for the Hurricane Luis 

sequence, 300 iterations are sufficient.

The consecutive frames in the sequences do not have a significant burst of mo­

tion. Hence, the location of the eye can be assumed to be approximately the same 

in consecutive frames. The continuity is exploited in the initialization of points for 

the eye segmentation in the next frame. 3 points in frame N , which have a signed 

distance function less than <pmax are chosen as the initial points in frame N  + 1. 

4>max is an empirically chosen threshold which ensures that the initial points chosen 

are well within the boundary in frame N ,  and hence will be inside the eye in frame 

N  + 1. Points which are in the eye of the hurricane but close to the boundary in
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Figure 4.3: Level set extraction of the hurricane eye after 15 iterations (left) and 
after 300 iterations of the fast marching method(right).

frame N  might not be inside the eye in frame N  +  1, thus leading to faulty ini­

tialization. The threshold 4>max makes sure that such points are not chosen as the 

initialization points.

<f>max depends on the size of the true boundary we are trying to segment. For the 

Isabel sequence cfrmax — —7, whereas for the Luis sequence (with a smaller eye), 

4>max =  -4 .5 . Thus, we do not need to perform the DHHD step for every frame. 

Initialization points for the eye segmentation can be obtained using the continuity 

criteria, which increases the computational speed. However, this technique might 

fail if the discontinuity between frames is large. In the Isabel sequence, there is a 

large movement on every 9th frame. So we perform DHHD to get new initial points 

once every 9 frames. The Luis sequence shows smooth transition between frames 

and DHHD is performed every 25 frames to obtain new initialization points.

The DHHD algorithm has been implemented in Matlab, while the level set 

tracking is a C program. For the 83 frames of the Isabel sequence, we call the 

BMA and DHHD 10 times and the level set program 83 times. The total time taken 

by BMA and DHHD combined is about 392 seconds while the level set program 

requires 649 seconds for its 83 calls. All these experiments have been performed 

on a Pentium 4 3.2 GHz machine with 1 GB of RAM.
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Figure 4.4: Hurricane eye tracking using level set segmentation: Sequence of im­
ages from the Hurricane Luis sequence, with the eye segmented.

A series of segmented frames are shown in Fig. 4.4. As can be observed from 

these sequences, the performance of the tracking algorithm is indeeed accurate. We 

have not found any work on hurricane tracking which is similar to this paper, and 

hence a comparative study has not been possible.

Every 20th frame of the segmented hurricane Isabel sequence is taken and aver­

aged to generate Fig. 4.5. This shows the path the eye (and the hurricane in general) 

takes over a period of 17 hours.

Figure 4.5: Eye tracking over 100 frames
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4.3 Algorithm for Fingerprint Reference Point De­
tection

DHHD is able to identify singular points in a motion field. Hence a point of max­

imum curvature can be detected in the orientation field of a fingerprint using our 

algorithm. We present a new algorithm for locating a reference point, which is 

defined as the point with maximum curvature in the ridge structure. Most of the 

methods based on the orientation fields are highly sensitive to the noise content in 

the field. We present a new method for reference point detection, which is robust 

to the noise in the orientation field. Moreover, our technique is not affected by the 

rotation or scaling of the fingerprint image.

Some preprocessing is initially done on the image followed by orientation field 

extraction. The reference point detection is accomplished by the application of 

DHHD on this orientation field. The steps involved are described in further detail 

below.

4.3.1 Preprocessing

The fingerprint image in consideration is preprocessed before analysis. An excellent 

source for fingerprint image enhancement is described in [45]. It discusses methods 

to improve the clarity of ridge structures of fingerprint images. The steps used in 

our implementation are:

• Normalization: An input fingerprint image is normalized so that it has a pre­

specified mean and variance. This process spreads the gray scale range of 

the given image over the entire spectrum of gray scales. Normalizing im­

ages makes it much easier to compare different images as all of them have 

the same range of gray scale. However it does not change the clarity of the 

ridge and valley structures. Normalization is a pixelwise operation and can
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be described as:

f n o r T n i ^ i  V)
m  +  i f  I (x ,  y) > M

otherwise,Mo
o l { I 0{ x , y ) - n )2

<t-2
(4.3)

where In0rm(x,y)  is a pixel in the normalized image, I0(x,y)  is a pixel in 

the original image, /x0 and <7q are the desired mean and variance while /x and 

cr2 are the mean and variance of the original image. We use Mo =  100 and

On 100.

The effect of normalizing is show in Fig. 4.6.

1

(a) Original image (b) Normalized image

Figure 4.6: The result of normalization

•  Noise Removal: Some images may be noisy. In the subsequent processing, 

we need to compute the intensity gradient of the image. This stage will be 

significantly affected by the amount of noise in the image. Hence, noise 

removal is a crucial step. A 4 x 4 median filter is used to filter the image. The 

orientation pattern estimated using a noisy image and its filtered version are 

shown in Fig. 4.7.
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Figure 4.7: Orientation field extracted from a noisy fingerprint image (left) and 
from the same image after denoising (right).

4.3.2 Orientation Field Extraction

A directional field is used as a coarse representation of the fingerprint ridge structure 

and represents the local orientation of the ridge-valley structures. The direction field 

is in principle perpendicular to the gradients in a fingerprint image. They can be 

derived from the gradients by performing some kind of averaging operation on the 

gradients. The averaging is necessary because gradients are at a pixel level while 

direction field orientation is at a much coarser level. The averaging of gradients to 

obtain the directional field is discussed in [72].

First, the intensity gradient of the image is computed as:

This definition of the gradient makes sure that the first element of the gradient 

vector is always positive. This convention is used to take care of the fact that in the

dl(x,y)
dx91{x,y)
dy

(4.4)

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.8: Gradient directions for a ridge

directional field, opposite directions indicate equivalent orientations.

The next step is to average the gradients over a block to obtain a single gradient 

direction for each block. However, a direct averaging of gradient vectors is not 

possible as gradients in opposite directions will cancel out upon summation. This 

is caused by the fact that local ridge valley structure remains the same if rotated 

by 180 degrees. The gradient orientation can be thought of being distributed in the 

cyclic space ranging from 0 to 7r. Hence the averaging is equivalent to calculating 

the 7r periodic cyclic mean.

A solution to this problem is to double the angle of the gradient vector before 

averaging. Since the gradient vectors that cancel out differ by n, doubling the angle 

ensures that all vectors are aligned in the same direction. Vectors which are per­

pendicular (angle between the vectors is i t / 2 ) are oriented in opposite directions 

upon doubling, and hence cancel out. The length of the vector is also squared be­

fore averaging. This doubling of angle and squaring of length can be represented 

mathematically as:
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{Gx +  j  ■ Gy)2 — (G2X — G2) +  j  ■ (2GxGy) (4.5)

Eqn. (4.5) can be interpreted as if the gradient is a complex number and we are tak­

ing a square of a complex number. This is because doubling the angle and squaring 

the length of a vector is equivalent to squaring the complex number. The vectors 

obtained above are now averaged over a W  x W  block. We use W  =  16 in this 

work. Hence, the average squared gradients Gsdx and Gsdy are given by:

sdx J2w(Gl ~ G2)
sdy . 12w(2Gx ■ Gy) _

The average gradient direction is now given by:

Segmentation

A fingerprint image might contain regions with irrelevant information like dirt and 

smudges left on the acquisition device from previous acquisitions. The objective of 

segmentation is to locate the region of interest in the fingerprint image. The orienta­

tion field is randomly oriented in regions that do not contain the ridge structure and 

hence segmentation is important before further analysis. This can also be thought 

of as a foreground/background separation. We use a method of segmentation based 

on the concept of certainty level of orientation field estimation. This method was 

proposed by Jain et al. in [73].

After the orientation field is estimated, a certainty level of the orientation field 

at each pixel is calculated as follows:

(4.7)

where — |  < $  <  The ridge valley field can be extracted from $  as:

(4.8)
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Here we use the same notation as in Eqn. 4.6. The certainty level of the orienta­

tion field in a block W  quantifies the extent to which the pixel gradient orientations 

agree with the block gradient orientation. For each pixel, if C L  is below a cer­

tain threshold Ts, then the pixel is marked as a background pixel. A result of the 

segmentation method is shown in Fig. 4.9.

Orientation field overlapped with original image

Figure 4.9: Orientation field superposed on the region of interest in a fingerprint 
image.

The range of 6, the angle representing the orientation field direction, is < 

e < f .  Therefore, the extracted motion field has a discontinuity of ir. This dis­

continuity in the orientation field can be observed in the circled part in Fig. 4.7 

and in Fig. 4.10. This will cause DHHD to fail as the direction of flow is reversed 

abruptly.

To eliminate this discontinuity, the squared directional field is taken [74], The
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100 Pixel coordinates 2 0 0 250

Figure 4.10: Discontinuity in orientation field for a fingerprint image.

motion vectors are now represented as:

£x = Re{(sin9  +  j  x cos9)2} = sin29 — cos29 =  cos(29) 
t;y =  Im {(s in 9  +  j  x cos(9))2} =  2  x sin9  x cos9 =  sin(29)

which does not have the step of ir.

Squared directional field

\ ,
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r n -

I I I ,

iv  *  iv

'  ^  A- w '' /  T
'r' V t  ' n

(4.10)

Figure 4.11: Squared orientation field, discontinuity is removed.

We are interested in the points with the maximum curvature in this orientation 

field. DHHD is now applied onto the squared directional field. We are trying to 

identify the point with the maximum curvature and hence only the divergence-free 

field and the potential are considered. The potential function should have an ex-
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Figure 4.12: Divergence-free potential function and corresponding contours for a 
fingerprint image.

trema at the point of maximum curvature, hence identifying the point. This poten­

tial surface is shown in Fig. 4.12. To locate the extremum point, the gradient of the 

divergence-free potential is calculated as described in Section 4.2.1. An extracted 

reference point is shown in Fig. 4.14.

4.3.3 Experimental Results
Database used

The FVC2000 database is used to test our algorithm. It can be obtained in the DVD 

provided with [18]. The database has 4 different data sets of fingerprints, each 

collected using different sensor technologies. Details can be found in Table 4.2. 

Each data set has 8  different images of the same finger, and there are images of 110 

fingers (880 fingerprints in all). We use the images of 50 fingers from each data set 

to test our methods. Further details about the database are described in Table 4.2.

Sensor type Image size Resolution
DB1 Low-cost Optical Sensor 300 x 300 500 dpi
DB2 Low-cost Capacitive Sensor 256 x 364 500 dpi
DB3 Optical Sensor 448 x 478 500 dpi
DB4 Synthetic Generator 240 x 320 about 500 dpi

Table 4.2: Properties of the FVC2000 database
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(a) DB1 (b) DB2

(c) DB3 (d) DB2

Figure 4.13: Sample fingerprints from the four databases.

Reference points, detected for different images of the same finger, are shown in 

Fig. 4.14. We use the same criteria as in [47] for performance measurement. The 

distance between the DHHD predicted reference point and the manually detected 

reference point is considered as the metric of the performance of our algorithm. The 

following criteria are used:

•  If the detected point is within 10 pixels of the manually detected reference 

point, the localization is considered accurate.

•  If the detected point is 20 pixels away, we assume detection with tolerable 

error.

•  The detection is classified as an error if the distance between the detected and
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manually identified points is greater than 2 0  pixels.

Our database consists of 500 dpi images. For a 500 dpi image, 20 pixels corre­

spond to an 1 mm of physical distance.

R eference  point

Delected reference point

(b)

Figure 4.14: Reference point identified in two different images of the same finger.

There are some image sets where the reference point is not included in the fin­

gerprint. If the reference point is detected to be at the border, as shown in Fig. 4.16, 

it is considered to be a correct detection. If it is elsewhere, as in Fig. 4.15, a faulty 

detection is reported.

The results are shown in Table 4.3. We get correct detection in 96.25% of the 

cases, which is comparable to the 94.79% correct detection rate in [47]. There are 

37 images where the reference point has not been imaged in the fingerprint.
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E rro n e o u s  d e te c tio n  o f  re fe re n c e  point

R e fe re n c e  poin t n o t inc luded

Figure 4.15: Faulty detection of reference point, when actual reference point is not 
included in the fingerprint.

The algorithm has been implemented in Matlab. The entire algorithm (time 

includes preprocessing, field extraction and DHHD) takes 3.1 seconds on a 3.2 

GHz Pentium 4 3.2 Ghz machine with 1GB of memory.

Distance (pixels) Number of fingerprints Percentage Results from [47]
<  io 1355 84.69 81.07

>  1 0  and <  2 0 185 11.56 13.72
> 2 0 60 3.75 5.21

Table 4.3: Distance between reference point predicted by DHHD and point pre­
dicted manually.

Detected reference point

R e f e r e n c e  p o in t in c lu d ed  in fin g erp rin t R e f p o in t n o t  in c lu d e d  in fin g erp rin t

Figure 4.16: Images of the same finger with and without reference point, and the 
detected reference points.
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4.4 Summary

In this chapter we presented an algorithm for the automatic tracking of the eye of 

a hurricane in a sequence of satellite images. The motion between two consecutive 

frames was estimated using a block matching algorithm and then DHHD was used 

to identify the center of rotation (the hurricane eye). The estimate of the eye was 

then used to initialize a level set algorithm which tracked the eye over consecutive 

video frames.

We also developed a technique for the robust detection of reference points in 

fingerprint images. DHHD is shown to be able to identify reference points in fin­

gerprints. First the orientation field is extracted from the fingerprint image, after 

which DHHD is applied to the extracted field for critical point identification (the 

point with maximum curvature).
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Chapter 5 

Cardiac Video Analysis

In this chapter we present the overall framework used to analyze the cardiac videos. 

We start with a description of the cardiac optically mapped video sequence in Sec­

tion 5.1. Velocity vector maps of electrical wave propagation on the cardiac tissue 

are gaining importance. We compare the method proposed in [56] to that discussed 

in [57] and point out cases in which the method developed in [56] is superior. This 

comparison is presented in Section 5.2. Techniques used to measure the curvature 

of a wavefront in the cardiac video are described in Section 5.3. An approximation 

to ECG signals can be extracted from the optically mapped video. This is discussed 

in Section 5.4. Finally a summary of the chapter is presented in Section 5.5.

5.1 Cardiac Video Description

Details of the system used to obtain the videos which we are using can be found 

in [50] and have been described in Section (3.1). The characteristics of the four 

videos used for analysis have been briefly described in Table (5.1). To give an 

idea about the area of cardiac tissue imaged, 25cm2 corresponds to approximately 

25% of the epicardial surface of a pig heart. Sample frames from each video have 

been shown in Fig. 5.1. The setup used for obtaining such videos is shown in Fig. 

3.1. The videos are obtained using di-4-ANEPPS as the voltage sensitive dye and 

light sources of 500 ±  40 nm while a filter passing wavelengths above 590 nm is
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used. The voltage sensitive dye is injected into the heart to observe the propagation 

of the electric waves. Voltage sensitive dyes are good probes for the detection of 

millisecond membrane potential changes and hence provide an excellent method to 

observe cardiac electrical activity with good temporal and spatial resolution.

Video 1 Video 2 Video 3 Video 4
Subjects Left ventricle 

of an isolated 
mouse heart

Left ventricle 
of an isolated 
rat heart

Left ventricle 
of an isolated 
pig heart

Left ventricle 
of an isolated 
pig heart

Phenomena observed Pacing Pacing Normal beat­
ing

VF

Video length (frames) 999 2733 999 2303
Frame rate (fps) Unknown 838 838 838

Image Size (pixels) 157 x 146 157 x 146 150 x 132 157 x 159
Target area (cm2) Unknown 1 x 1 5 x 5 5 x 5

Table 5.1: Description of videos

(a) Fibrillating pig heart (b) Normal pig heart

(c) Paced mouse heart (d) Mouse heart paced at
sinus node

Figure 5.1: Sample frames from different videos

One essential point regarding the video is its frame rate. The video was cap­

tured using a CCD camera operating at 838 frames per second. Such a high frame
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rate is essential to capture the temporal details of the electrical activity. For the 

motion estimation from the video sequence, we use the optic flow algorithm pro­

posed in [5] and discussed in Section (2.1). The standard mathematical model used 

to find the optic flow is based on the brightness constancy assumption (Eqn. 2.3). 

The high frame-rate video sequence, which we are using, does actually satisfy this 

assumption. In other video applications, the violation of the brightness constancy 

assumption is common and is generally handled using robust statistics [8 ]. How­

ever, a simple optical flow implementation serves our purpose.

5.1.1 Preprocessing

As can be seen from the sample frames in Fig. 5.1, the images are really noisy. 

Some standard image processing techniques are used to improve the image quality 

prior to further processing.

Denoising comprises of smoothing the images to remove the noise. However 

it is important to avoid distorting the boundary of the waves as we will perform 

a curvature analysis (curvature of a wavefront depends on the shape of the wave 

contour). Simple Gaussian filtering tends to blur the edges in an image. To prevent 

this, we use a Wiener filter which performs linear adaptive smoothing based on the 

local image variance (the regions with a larger variance are smoothed to a lesser 

extent). This helps in preserving edges and other high frequency features in the 

image. A brief description of the operation of a Wiener filter follows.

The filter estimates the local mean (/i) and variance (cr2) around each pixel in 

an N  x M  neighbourhood rj [75]:

The Wiener filtered image is given by:

(J(ni,n2) -  n) (5.2)

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here v 2 is the noise variance which is estimated as the average of all the local 

variances.

Temporal averaging is not used here as it was observed that this operation 

blurred the waveform shape. After smoothing using a Wiener filter based on the 

statistics estimated from a 5 x 5 neighborhood, the contrast in the image is en­

hanced using histogram equalization. The histogram equalization operation trans­

forms the input image such that the histogram of the gray level values of the output 

image matches a desired histogram. Further details can be found in [76]. Results of 

preprocessing are shown in Fig. 5.2.

(a) Original image (b) After image smoothing (c) After image smoothing and
histogram equalization

Figure 5.2: Preprocessing results.

5.2 Comparison of Techniques for Cardiac Velocity 
Vector Analysis

Cardiac activation maps were discussed in Section 3.2. Here we focus on techniques 

for the analysis of velocity vector maps. Guo et al. [56] estimated a motion field 

from a video sequence of an optically mapped heart. The vector field obtained 

corresponds to the cardiac action potential velocity map. Previous studies of cardiac 

vector maps used data obtained from direct measurement on the cardiac tissue ([59]) 

or derived the vector maps from the isochronal maps ([25]). The analysis of a
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cardiac optical map to extract the velocity vector field is a novel approach.

A sample motion field, extracted using the optic flow motion estimation algo­

rithm, is shown in Fig. 5.3. This represents a vector map of cardiac electrical 

activity, and can be used to analyze various features of conduction.

O r i g i n a l  M o t i o n  F i e l d

140

120

100

80

60

40

20

0 20 40 60 80 100 120

Figure 5.3: Original motion field extracted from video sequence.

In [56], the estimated motion field is decomposed into its curl-free and divergence- 

free components using DHHD. The divergence-free component of the field in Fig. 

5.3 is shown in Fig. 5.4(a). The analysis of the corresponding potential functions 

(described in Section 2.2) is then used to predict the critical points in the motion 

field. This technique has been used to identify singularities in cardiac videos in 

[56]. The critical points detected using the DHHD based algorithm match well 

with manual analysis of the video data.

Although it is difficult to visually distinguish the purely rotational component 

(i.e., the divergence-free component) from the input motion field (Fig 5.3), the de­

composed divergence-free component (Fig. 5.4(a)) clearly shows that the pure ro­

tational component in the pacing signals cannot be ignored.

We applied the algorithms proposed by Fitzgerald et al. [57] to the velocity 

vector field extracted from the cardiac videos to perform a comparitive analysis of
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D ivergence free com ponent of the  field
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(a)

AMdme value of curl of the attracted motion field

Figure 5.4: (a) Divergence-free component of original motion field, (b) Magnitude of the 
curl of the original field, shown as a color map.

the two vector map analysis techniques. The divergence operator is applied to the 

extracted motion field (Fig. 5.3). The divergence is shown as a color map in Fig. 

5.5. The red areas corresponds to areas of maximum divergence. These are points 

on the cardiac tissue from which electrical waves are originating. Such points are 

called ectopic foci. The color of the region gives a distinct picture of the size of the 

area in question. As can be seen in Fig. 5.5, both the curl-free component of the 

original field and the divergence of the original field are able to locate sources and 

sinks in the motion field.

We see that the critical points corresponding to the curl-free component are
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located by both the techniques. However in this case the technique proposed by 

Fitzgerald et al. [57] has a slight advantage. It uses a simple divergence oper­

ator on the velocity field to predict the critical points. The divergence operator is 

computationally much cheaper than performing the DHHD decomposition and then 

analyzing the resulting potential function to locate the critical points.

D ivergence  of ex trac ted  m otion field

(a) Divergence shown as color map
C u r l  f r e e  c o m p o n e n t  o f  t h e  f i e l d

20 60 80 100 12040

(b) Curl-free component

Figure 5.5: (a) The divergence of motion field shown as a color map with the curl-free 
field obtained using DHHD is superimposed on the color map. (b) The curl-free component 
of the field.

It is stated in [57] that the curl operator applied to the vector field is relatively
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ineffective. The curl of the motion field is shown in Fig. 5.4(b), while the cor­

responding divergence free field obtained using DHHD is shown in Fig. 5.4(a). 

Simple visual analysis reveals rotational centers for the divergence free field, while 

the rotational features cannot be observed in the curl image. Taking this into con­

sideration, the DHHD based method has a distinct advantage over the simple diver­

gence/curl based method. Although computationally more expensive, it can locate 

critical points in both the rotational and the irrotational parts of the field. The rota­

tional critical points provide important clues for describing and understanding the 

abnormal propagation of the cardiac electrical signals and hence are very important 

for the understanding of cardiac dynamics.

5.3 Wavefront Curvature Measurement

The study of the mechanisms of initiation and dynamics of spiral waves in myocar­

dial tissue are an important research area. Such studies provide a better understand­

ing of the origin and development of the most dangerous cardiac arrhythmias and 

eventually lead to therapeutic advances. Wavefront curvature is an important pa­

rameter in cardiac arrhythmias. The wavefront curvature determines the velocity of 

propagation of the wave. This phenomenon was discussed in Section 3.3. Convex 

waves are known to propagate slower than concave waves as was shown in Fig. 3.3.

5.3.1 Extracting Isopotential Contours

Isochronal maps are contour maps in which each contour gives the location of the 

wave front at constant time intervals. Isopotential contours, on the other hand, 

join all points on the cardiac tissue which are at the same electrical potential at a 

particular instant of time. We need to estimate the isopotential at each frame of 

a cardiac optically mapped video. The extraction procedure is as follows. Given 

the cardiac videos, we perform the preprocessing as described in Section 5.1.1.
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Curvature vec to rs  calculated using the spline approximation of the segm en ted  contour

Figure 5.6: Preprocessed frames.

A global image threshold is calculated using Otsu’s [77] method. The threshold 

divides the image histogram into two regions such that the inter region variance is 

maximized. This threshold is then used to convert the graylevel image into a binary 

image. Now the Canny edge detector (Section 2.4) is used to extract thin edges 

from the image. These edges are an approximate representation of an isopotential 

contour on the cardiac surface. A frame from the optically mapped video of a 

fibrillating pig heart and its corresponding isopotential is shown in Fig. 5.7.

(a) Processed image (b) Extracted isopotential

Figure 5.7: A sample frame from optically mapped video and its extracted isopo­
tential.

We need to estimate the curvature of these isopotential contours. The extracted
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isopotential contour is comprised of discrete pixels and a direct estimation of cur­

vature from the pixel values itself will lead to an inaccurate estimation of the cur­

vature. Parameterizing the contour prior to using differential geometric techniques 

to calculate the curvature yields a much better estimate of the curvature. Once the 

discrete pixel coordinates, representing the contour nodes have been identified by 

the Canny edge detection method, we fit cubic smoothing splines to the node points 

to obtain a parametric representation of the contour.

5.3.2 Parameterizing the Isopotential Segments

The Canny edge detection algorithm returns a list of the coordinates of the nodes 

which belong to the isopotential contour. However the list is in raster format {i.e. 

each point in the edge is defined by its pixel coordinates) and needs to be rearranged 

in a sequential order of spatial contiguity before we can fit splines. Another goal 

is to assign a distance function to each node, indicating its relative position in the 

segment. We start with the first point, say po (the point marked “initial point” in 

Fig: 5.8), in the list returned by the Canny detector and assign a distance of 0 to 

this initial point. A search for eight connected neighbours is performed among the 

points belonging to the isopotential edge, starting from the point to the immediate 

right of po- The search for neighbours is performed in the clockwise direction. The 

first detected neighbour is added to a new list, called ArrangedList, and the distance 

is incremented by one if it is 4-connected; otherwise, the distance is incremented by 

2. Thus ArrangedList grows in “direction 1” in Fig: 5.8. The point is then removed 

from the list of isopotential node points. This process is continued until we cannot 

find a neighbouring point (i.e. when we reach “Point 2” in Fig: 5.8).

Once this happens, the search returns to the initial point po and searches for 

neighbours again. This is to take into account contours that might be broken at 

one end (the nodes lying along “direction 2” in Fig: 5.8). For each node which is
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I n i t i a l  p o i n t

P o i n t  3

■ P oin t 2

Figure 5.8: Rearrangement of contour points.

identified in this loop, it is assigned a negative arc length (progressively decreasing 

as we move away from po). This search for neighbours is continued until we cannot 

find any new neighbouring points (i.e. when we reach “Point 3” in Fig: 5.8).

A new segment is started after this and we repeat the above process. This is 

continued till all points in the original list have been considered. Segments with too 

few nodes are removed from ArrangedList. In our implementation, all segments 

with fewer than 25 nodes are eliminated.

The x  and y coordinates of the isopotential nodes identified by the procedure 

described above are stored in a list [xi, yi, Ui], i =  1 . . .  N.  Here Ui is the cumulative 

arc length.

Isopotentials are arbitrarily curved, especially during complex rhythms, where 

they may have long, straight sections as well as highly curved sections. We would 

like to emphasize here that while performing the spline fitting, sections with higher 

curvature require a greater tolerance than for sections which are relatively straight. 

A region of higher curvature (higher curve complexity) is shown in boxed region of 

Fig. 5.9. We used the technique described in [24] for estimating the local complex­

ity of the curve. For each node, a square window is defined around the node. The 

number of isopotential nodes within this square K n is used as an estimate for the 

complexity of the local shape. The tolerance of the spline fits is set to ^/0.05Kn.
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R e g io n  o f  h ig h  c o m p le x i ty  

Figure 5.9: Demonstration of regions of curve with higher complexity.

To further minimize the error of fit for a segment centered at a node p, a weight 

is assigned to each segment node as described in [24]:

upf  + 1  . _ 1 ^  /c. ^
'w(%) j. , \2  i 11 ’  ̂ I ; - - -) -tn (5.3)max[o — (Ui — uPY  +  lj

Here Tn is the number of consecutive node points which are used to obtain the 

spline representation i.e. solve Eqn. 5.5. 6 is defined as 6 = max[(iii — up)2]. The 

parametric representation C  of a segment of nodes (from node i =  1 to i =  N )  is 

given by the vector:

C  =  X (u) : U\ <  u < un  (5.4)

Here X(tt) =  [x(u),y(u)\ are the continuous functions that give the indices at 

any location on the segment. Cubic smoothing splines [78] are fitted to the list of 

ordered node segments (xj, yi,Ui) to generate x(u) and y(u). A  spline is fit to the 

points Ui, Xi to generate x(u). Given the data points (u^Xi) with ut — [u\ , . . . ,  Uj\] 

a smoothing spline minimizes:

p^^Wi\xi  — x(ui)\2 +  X /  \Dmx(u)\2du (5.5)
i i

Here p is the smoothing parameter while W{ are the positive weights and D m 

represents the derivative. x(u) are the node points on the best fit spline. In 

Eqn. 5.5, the left term represents an error measure between the data points and

the predicted points while the right term is a roughness measure. The minimization

approach used in [79] is to make the roughness measure as small as possible subject
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to the condition that the error measure is no bigger than the prescribed tolerance. 

The y(u) coefficients are formulated similarly.

A sequence of cardiac optically mapped frames are shown in Fig. 5.10. In each 

frame, the parametrized spline representation of the isopotential is superposed on 

the image. The parametrized representation is smooth (unlike the contour obtained 

from the Canny operator) and hence compatible with applying differential geomet­

ric operators to calculate the curvature.

Figure 5.10: Detected isochronal segments in a sequence of frames. Spline approximation 
of the segmented contour are superposed on the corresponding frame.
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5.3.3 Curvature Calculation

Once a parametrized representation of the isopotential segment has been obtained, 

the curvature can be calculated using standard differential geometric techniques 

[80], The tangent of a parametrized segment is given by calculating its normalized 

first derivative with respect to its arclength:

-  d X (u ) /d u  .  ̂ | rp / v
=  77c ; /  , , ,  , =  T*(UP  +  Tv(u ) j  (5-6)\dX[u)/du\

The curvature vector is the derivative of the tangent T(u)  with respect to the 

arclength:

K (u p) = b =  b(Kx (up)i + K y(up)j)  (5.7)

where up is the arclength at node p  and b is the scale factor for normalization 

in the central difference (6  =  1 /A x ,  and A x  is the physical distance between two 

pixels). The curvature vector points to the center of curvature. Curvature is calcu­

lated in this way for each node along the isopotential. A frame with its parametrized 

isopotential and curvature vectors marked on the isopotential segment is shown in 

Fig. 5.11.

Figure 5.11: Curvature vectors calculated from parametrized isopotential.
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5.3.4 Calculation of Velocity

We use the methods described by Kay and Gray [24] to obtain a measurement of 

the wavefront velocity. The first step for this is to identify which nodes of the 

isopotential belong to the wavefront. In terms of the node voltage Vm, nodes with a 

positive dVm/d t  belong to a wavefront. Carrying over this analogy to the intensity 

of a pixel (the intensity of a pixel is proportional to the voltage at that pixel), we 

use the following criteria to classify a pixel on the isopotential as a wavefront node: 

It (m, n ) — n) > 0 and n) — I t (m, n) >  0. Since spatial smoothing

has been performed in the preprocessing step, we do not need to consider smoothing 

before calculating the difference. However, we use the two difference measures to 

increase the robustness of wavefront node detection. Unless both terms are positive, 

a node is not classified as belonging to the wavefront.

To detect the velocity, we use the conventional assumption that wavefront ve­

locity is normal to the wavefront. The normal to an isopotential at node p is given 

in terms of the tangent unit vector of the parametrized segment at node p:

b  = —M x (u p) +  y(up) (5.8)
T y{Up )

where M  is the slope and B  is the intercept of the normal. x (u p) and y(up) are 

obtained by evaluating Eqn. 5.4 at up.

To calculate the velocity, we consider the isopotentials of two frames n  and 

n + 1. The isopotential in frame n  is parametrized using cubic splines and its normal 

is calculated. Nodes belonging to the wavefront are identified in the isopotential 

segments of both frames. For each wavefront node in frame n  we search along

the direction of the normal for corresponding nodes belonging to the wavefront of

frame n  +  1. If such a point is found, the velocity is calculated as:

Y  (X"+1 ~  x n ) A x  ■ ( y n + 1  ~  yn) A y ~
A t  1 A t  3
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(xn+i, yn+i) and (xn. yn) are the corresponding wavefront nodes in frame n + 1 

and frame n. A x  and A y  are the x  and y physical displacement between neigh­

bouring pixels and A t  is the time between two consecutive frames. However in 

certain cases, there might not be a one to one matching between points, i.e. due to 

deformation of the wave the movement along the perpendicular assumption might 

be violated.

The curvature of such a point is calculated using Eqn. 5.7. Once all nodes on 

the wavefront have been processed, we plot the velocity versus curvature values. 

Fig. 5.12 is an example of such a plot.

C urvature  vs Velocity

'T'o.s

C urvature  (cm*1)

Figure 5.12: Wavefront velocity vs. wavefront curvature.

A straight line is fit to the data in a least squares sense as shown in Fig. 5.12. 

We get the following equation for the line:

V ( K )  =  0.13 — .0077K  (5.10)

These detected parameters are quite close to the actual parameter values for 

cardiac tissue. In [24], a typical value of Vo is mentioned to be 0.39m / s  and a dif­

fusion coefficient D = 7.6 x 10_3cm2/m s. The close match in detected parameters 

proves the efficacy of our technique for the analysis of wavefront morphology from 

cardiac optical maps.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) Fibrillating heart
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(b) Normal heart

Figure 5.13: Intensity vs. Time plot at a single pixel location for a pig heart.

5.4 Information Extraction from Optical Maps

We developed some other algorithms which might help in the interpretation of op­

tical maps. One of them is to estimate the action potential variation with time at a 

particular location on the cardiac tissue. Since the pixel intensity is related to the 

action potential at that location, we plot the pixel intensity over time to estimate the 

action potential variation. Since the images obtained are very noisy, this plotting of 

intensity values should be done after the images have been smoothed. Figs. 5.13(a) 

and 5.13(b) show the pixel intensity vs. time plot for a fibrillating and a normal
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heart, respectively. It is clear that the optically mapped data allows clear estimation 

of the main action potential characteristics. The heart rate for a normal heart can 

be obtained by analyzing Fig. 5.13(b). Fig. 5.13(a) shows an irregular pattern, 

corresponding to the irregular heart beats when a heart is undergoing fibrillation.

5.5 Summary

In this chapter we presented a framework for analyzing cardiac videos. Initially an 

overview of the image enhancement operations for the optical maps was described. 

Kernels which retain the edges of images while performing the necessary smooth­

ing are preferred. Two different methods for analyzing cardiac velocity vectors are 

compared and their pros and cons are described. We compared the performance 

of the two techniques on velocity vectors extracted from cardiac video frames and 

concluded that the technique proposed in [56] is more effective than the methods 

given in [57]. Finally a scheme to perform wavefront morphological studies on car­

diac wavefronts is developed. A method to accurately estimate the curvature of an 

isopotential on the cardiac video image is developed. This is followed by calcula­

tion of the velocity of propagation of the wave on the cardiac video. The results 

from the curvature-velocity analysis are quite accurate in predicting the physical 

parameters of the cardiac tissue.
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Chapter 6 

Conclusions and Future Work

In this thesis, we have presented the DHHD as a tool for the analysis of motion 

fields which occur in image and video processing . This technique was applied 

to three problems in image processing —  hurricane tracking, fingerprint reference 

point identification and identification of critical points in a cardiac optically mapped 

video.

Intelligent analysis of satellite data is a very important meteorological applica­

tion. In this context, we developed a method to track the eye of a hurricane over 

a sequence of satellite image frames. The only data we use is the satellite visual 

channel images (most other techniques use multiple channels like visual, infrared, 

etc). In this application, motion between two consecutive frames was estimated us­

ing a block matching algorithm and then DHHD was used to identify the center of 

rotation (i.e. the hurricane eye). The estimated location of the eye was then used to 

initialize a level set algorithm which tracked the eye over consecutive video frames. 

Thus, an automated system for hurricane eye tracking was developed.

In the fingerprint application, the DHHD is used to identify reference points in 

fingerprints. Reference points are essential for registration of fingerprint images 

before matching. First the orientation field is extracted from the fingerprint image, 

after which DHHD is applied to the extracted field for critical point identification 

(the point with maximum curvature). The technique developed is robust against

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



noise and against rotation of the fingerprint images.

We also developed a framework for analyzing cardiac optically mapped videos. 

We have combined techniques developed by cardiologists (using simulated cardiac 

models) with image processing techniques to develop methods for the analysis of 

cardiac optical maps. A scheme for studying the morphological structure of a wave- 

front, and its relation to propagation velocity has been developed in this thesis. Es­

timation of physical parameters of the cardiac tissue using this model was quite 

accurate. We also compared two different methods for analyzing cardiac velocity 

vectors. The performance of the two techniques was evaluated on velocity vectors 

extracted from cardiac video frames. We demonstrated that the technique proposed 

in [56] is more effective than the methods given in [57] as the former is able to 

identify rotational centers in the motion field which the latter is can not predict ac­

curately. Some other methods were also proposed to retrieve useful information 

from optical mapping data.

Although the algorithms proposed in this thesis show promising results, there 

are issues which might be improved with further work. A few potential directions 

of future work are:

• The hurricane tracking algorithm requires periodic initialization using DHHD. 

At present, the initialization period is specified manually. In future work, a 

technique for automatically determining the initialization period for a given 

video sequence could be developed.

• Other channels of data from the satellites, viz. visual, infrared, etc can be 

combined with the information from the visual channel to get a more com­

plete hurricane tracking scheme.

• Fingerprints have another ridge structure called delta, where ridges from dif­

ferent directions merge. Detection of the delta structures using the curl free
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field should be an interesting area for future study.

• The isopotential detection algorithm using the Canny edge detector might 

return an edge which is not closed. When the isopotential segment is not 

closed, the end points of the segment cannot be parametrized using the spline 

fitting technique. A segmentation method which would ensure that the Canny 

edge detector returns a closed contour would be another possible direction for 

further study.

• The analysis of 3D cardiac waves can be performed by parametrizing the 

surface of a wave by fitting 4th order spline surfaces.
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Appendix A 

Code for DHHD

The D H H D  algorithm is a central theme of this thesis. Here we provide an implementation of the 
algorithm in Matlab. The given algorithm takes as input parameter, a vector field and decomposes it 
into three components.

function [curl_free,div_free, har_rem]=dhhd(mv)
%% Rearrange the input vector field into its components
m v _ x = m v (:,:,1); %x-Coordinates of grid
m v _ y = m v (:,:,2); %y-Coordinates of grid
m v _ u = m v (:,:,3); %x-component of vector
m v _ v = m v (:, :,4) ; %y-component of vector

%% Plot original motion field 
figure;
quiver(mv_x,mv_y,mv_u,mv_v); 
axis tight
title ('Original Motion Field')
%% generate the curl-free and divergence-free curl_free_potntial 
%% functions
[curl_free_pot,div_free_pot]=potential_calculation...
(m v _ x ,mv _ y ,m v _ u ,m v _ v );
%% display the curl-free potential function E 
figure;
meshc(mv_x,mv_y,curl_free_pot); 
title ('curl free potential function');
%% display the divergence-free potential function W 
figure;
meshc(mv_x,mv_y,div_free_pot);
t i t l e ('divergence free potential function');
%% generate the curl-free field 
[uu_E,vv_E]=gradient(curl_free_pot);
%% display the curl-free field 
figure;
quiver(mv_x,mv_y,uu_E,vv_E); 
axis tight
title ('Curl free component of the field');
%% Store curl free field 
cu rl_free(:, :, 1) = uu_E; 
curl_free(:, :, 2) = vv_E;
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%% CODE FOR COLOURED PLOTS 
figure;
surf(mv_x,mv_y,div_free_pot,'FaceColor','interp', . . .

'EdgeColor','n one ', . . .
'FaceLighting','phon g') 

axis tight 
v i e w (-50,30)
title ('Divergence free potential');
%camlight left 
hold_state = ishold; 
hold on;
a = ge t(gca,'zlim');
zpos = a(l); % Always put contour below the plot.
%% Get D contour data
[cc,hh] = contour3(mv_x,mv_y,div_free_pot, 7) ; 
for i = 1:length(hh)

zz = get(hh(i),'Zdata');
set(hh(i),'Zdata',zpos*ones(size(zz)));

end
figure;
surf(mv_x,mv_y,curl_free_pot,'FaceColor','interp',...

'EdgeColor','n on e', . . .
'FaceLighting','phon g')

axis tight
title ('curl free potential') 
v i e w (-50,30) 
camlight left 
hold_state = ishold; 
hold on;
a = get(g ca, 'zlim');
zpos = a(l); % Always put contour below the plot.
%% Get D contour data
[cc,hh] = contour3(mv_x,mv_y,curl_free_pot, 7) ; 
for i = 1:length(hh)

zz = g et(hh(i),'Zdata');
set(hh(i),'Zdata',zpos*ones(size(zz)));

end

%% generate the divergence-free field 
[tmp_u,tmp_v]=gradient(div_free_pot); 
uu_W=tmp_v; vv_W=-tmp_u;
%% display the divergence-free field 
figure;
quiver(mv_x,mv_y,uu_W,vv_W);% axis ij; a x i s ([-box, box,-box,box] 
t i t l e ('Divergence free component of the field'); 
axis tight
%% Store the divergence free field 
d i v _ f r e e (:,:,1) = uu_W; 
d i v _ f r e e (:,:,2) = vv_W;

%% calculate the magnitude field of the input motion field 
mag0=sqrt(mv_u.~2+mv_v. ~ 2 );
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%% find the largest magnitude of the input motion field 
max_magO=max(max(magO));
%% add the curl-free field and the divergence-free field 
Ul=uu_E+uu_W; Vl=vv_E+vv_W;

%% calculate the magnitude field of the added motion field 
ma gl= s q r t ( U 1 ."2+V1.*2);
%% find the largest magnitude of the added motion field 
max_magl=max(max(magi));
%% calculate the scaling factor, r in the thesis 
ratio=max_magO/max_magl;
%% solve for the harmonic remainder 
ru=mv_u~ratio*Ul; rv=mv_v-ratio*Vl;
%% display the harmonic remainder 
figure;
quiver(mv_x,mv_y,ru,rv); 
axis tight
t i t l e ('Harmonic remainder');
%% Store harmonice remainder 
h a r _ r e m (:,:,1) = ru; 
h a r _ r e m (:,:,2) = rv;
^ < ^ 9- ^ O - < ! h ' i ^ 9- ^ ^ ^ Q - 9- ^ Q - < ^ Q - Q - O , Q . g o o Q g o o o ( 5O O Q o q o o o o o „ Q o o o o o o o Q Q o . g . o , o . g . g , o o . o o g 0 o
' O ' S O O O ' O O O O O O ' O ' O O O O O ' O ' O O O O ' O ' O ' S O ' O ' 5 ‘5 ' 6 ' 0 ' 0 0 0 0 ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

function [potE,potW]=potential_calculation(mv_x,mv_y,mv_u,mv_v)
%% potE: the curl-free potential function W
%% potW: the divergence-free potential funciton W
%% m v _ x : horizontal coordinates of the grids
%% m v _ y : vertical coordinates of the grids
%% m v _ u : horizontal components of the input motion field
%% mv__v: vertical components of the input motion field
[M,N]=size(mv_x); Sl=construct_Sl(mv_x,mv_y); %
%% construct the element matrix SI 
[sa,sb]=size (SI);
S r = S l (2:sa,2:sb) ;
ISr=inv(Sr); 
potE=zeros(M,N); 
potW=zeros(M,N);
[B, C]=construct_BC(mv_x,mv_y,m v_ u ,m v _ v );
%% construct the two vector B and C 
B r = B (2:sa ); Cr=C(2:sa); Er=ISr*Br;
%% solve for the (L-l)xl vector Er 
Wr=ISr*Cr;
%% solve for the (Lxl)xl vector Wr 
E _ p o t = [0;E r ] ;
%% reconstruct the Lxl vector E 
W _ p o t = [0;W r ] ;
%% reconstruct the Lxl vector W 
potE=reshape(E_pot,M,N);
%% re-organize the MxN potential surface E 
potW=reshape(W_pot,M,N) ;
%% re-organize the MxN potential surface W 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
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function Sl=construct_Sl(mv_x,mv_y)
%% mv_x: horizontal coordinates of the grids 
%% mv_y: vertical coordinates of the grids 
%% S I : the element matrix SI 
%% generate the Node Table 
m e s h = m e s h _ p o i n t s (m v _ x ,m v _ y );
%% generate the Grid Table 
triangle=triangle_definition(mv_x,mv_y);

%% generate the Basis Gradient Table 
gradphi=phi_gradient(triangle,mesh);
M= siz e(mesh,1); Sl=zeros(M,M);
%% calculate the element matrix SI 
for i=l:M

%% search for the neighboring triangles and neighboring 
%% nodes of a reference node
[neighbor_triangle neighbor_point]=get_neighbor(i,triangle) 
L=length(neighbor_triangle) ; 
for k=l:L

t=neighbor_triangle(k) ; 
tri=triangle(t,:); 
order_in_triangle=find(tri==i); 
del_phi01=gradphi(t,order_in_triangle,1); 
del_phi02=gradphi(t,order_in_triangle,2); 
for j=l:3 mm=tri(j);

del_phill=gradphi(t, j, 1) ; 
del_phil2=gradphi(t, j, 2) ;
SI(i,mm)=S1(i,mm)+del_phi01*del_phill + ... 
del_phi02*del_phil2;

end;
end;

end;

2 . a . a - 2 - 2 - 2 - B . 2 - S - 2 . S . a - 2 - 2 - B - f i . a - 9 - 2 - 9 . 2 - S . 9 - S . a . S - 9 . S . S . S . 9 - 9 - 9 - S . 9 - S . 2 - 2 - 2 - S . 2 - 2 . S . 2 - 2 - B - S . 2 - 2 - S . 2 - S . 2 - S . 9 - 2 - 9 - 2 - 2 - S . e . 2 . S -  ' o ' o ' o ' o ' o ' o ' o ' o  o " a  o ' o ' o ' S  o ' o ' o  o o ' o ' o ' o ' o ' o ' o ' o ' o ' o ' o ' o ' o  o " o  o  o " o  o  o " o  o ' S ' 5  o  o " 5  o ' o ' S ' 6  o ' o ' o  o  " o  o  o ' o ' S  0 ' S  o  o  o

function [B,C]=construct_BC(mv_x,mv_y,mv_u,mv_v)
%% mv_x: horizontal coordinates of the grids
%% mv_y: vertical coordinates of the grids
%% mv_u: horizontal component of the input motion field
%% mv_v: vertical component of the input motion field
%% B: vector B
%% C: vector C
%% generate the Node Table
mesh=mesh_points(mv_x,mv_y); %% generate the Grid Table 
triangle=triangle_definition(mv_x,mv_y);

%% generate the Average Vector Table 
%changed mv_x(l,2) mv_y(2,l)
de lta _ x = m v _ x (1,2)- m v _ x (1,1); d elt a_ y = m v _ y (2,1)- m v _ y (1,1); 
UV=triangle_uv(triangle,mesh,mv_x(1,1),m v _ y (1,1),.. 
delta_x,delta_y,mv_u,mv_v) ;
%% generate the Basis Gradient Table 
gradphi=phi_gradient(triangle, m e s h ) ;
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M=size(mesh,1); B=zeros(M,1); C=zeros(M,1);
%% calculate the vectors B and C 
for i = l :M

%% search for the neighboring triangles and neighboring nodes 
%% of a reference node i
[neighbor_triangle neighbor_point]=get_neighbor(i, triangle) ; 
L=length(neighbor_triangle); 
for k=l:L

t=neighbor_triangle(k) ; 
tri=triangle(t,:); 
order_in_triangle=find(tri==i) ; 
del_phi01=gradphi(t,order_in_triangle, 1) ; 
del_phi02=gradphi(t,order_in_triangle,2);
B(i)=B(i)+del_phi01*UV(t,1)+del_phi02*UV(t,2);
C(i)=C(i)-del_phi01*UV(t,2)+del_phi02*UV(t, 1) ;

end;
end;

Q . Q . ^ 9 ^ Q ~ Q - Q ~ Q ~ Q ~ 9 ~ 2 - ^ Q - 9 ~ Q ~ 5 ~ Q , Q , Q , o o . q . o ^ o ^ Q , q , q , q . o , o , o , q , q , o . o . Q . o , q , o o , g , Q , o o Q . Q , o , o , q , Q . o o Q , o g , o , Q , o , Q , o , o . Q , g , o , Q . Q ,
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function xy=mesh_points(mv_x,mv_y)
%% generate the Node Table
%% mv_x: horizontal coordinates of the grids 
%% mv_y: vertical coordinates of the grids 
%% xy: the coordinates of all nodes 
sz=size(mv_x);
M N = p r o d (sz ); 
xx=reshape(mv_x,MN,1); 
yy=reshape(mv_y, MN, 1) ; 
xy=zeros(MN,2);

for i=l:MN
xy (i,1)=mv_y(i); 
x y (i ,2)= m v _ x (i );

end;
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function triangles=triangle_definition(mv_x,mv_y)
%% generate the Grid Table, which defines the grid topology 
%% mv_x: horizontal coordinates of the grids 
%% m v _ y : vertical coordinates of the grids 
%% triangles: Nodes of all triangular meshes,
%% i.e., the grid topology 
[M, N] =size (mv_x) ; 
period=(M-l); 
total_tri=2*period*(N-l) ; 
triangles=zeros(total_tri,3); 
for i=l:N-1

for j=l:period
k=(i-1)*period+j;
st a r t =fl oor ((k-1)/period)* M+m od(k— 1,period)+1; 
triangles(2*k-l,:)= [start,start+M+1,start+M]; 
triangles(2*k,:) =[start,start+1,start+M+1];
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end;
end
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function UV = ...
triangle_uv(triangle,mesh,start_x,start_y,delta_x, delta_y,uu,vv 
%% generate the Average Vector Table 
%% triangle: the Grid Table 
%% mesh: the Node Table
%% start_x: start coordinate in horizontal direction
%% start_y: start coordinate in vertical direction
%% delta_x: step in horizontal direction
%% delta_y: step in vertical direction
%% u u : horizontal component of the input motion field 
%% v v : vertical component of the input motion field 
%% U V : The resulted Average Vector Table 
M=size (triangle,1); UV=zeros(M,2);

for i=l:M
locl=mesh(triangle 
loc2=mesh(triangle 
loc3=mesh(triangle 
ind_ yl=floor((loci 
ind_ xl=floor((loci 
ind_ y2=floor( (loc2 
ind_ x2=floor((loc2 
ind_y3=floor( (loc3 
ind_ x3=floor((loc3 
UV(i,1 ) = (uu(ind_yl 
+uu(ind_y3,ind_x3 

UV (i,2) = (vv(ind_yl 
+vv(ind_y3,ind_x3

end;

(if 1 ) ,
(if 2) ,
(if 3) ,
(1) -start.
(2) -start.

,y) /delta_y) +1; 
x)/delta_x)+1;

(1)-start_y)/delta_y)+1;
(2)-start_x)/delta_x)+1;
(1)-start_y)/delta_y)+1;
(2)-start_x)/delta_x)+1;
,ind_xl)+uu(ind_y2,ind_x2) 
) ) /3;
,ind_xl)+vv(ind_y2,ind_x2) 
) ) /3;
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function gradphi=phi_gradient(triangle,mesh) 
%% generate the Basis Gradient Table 
%% triangle: the Grid Table 
%% mesh: the Node Table
%% grad phi : the resulted Basis Gradient Table 
M=size(triangle, 1); 
gradphi=zeros(M,3,2); 
area2=get_area2(triangle(1,:),mesh);
%% calculate the 2*triangle_area 
A B = z e r o s (3,2);
for i=l:M yO=mesh(triangle(i,1),1) ; 

xO=mesh(triangle(i,1),2) 
yl=mesh(triangle (i,2),1) 
xl=mesh(triangle (i,2),2) 
y2=mesh(triangle(i,3),1) 
x2=mesh(triangle (i,3),2)
A B (1,1)=yl-y2;

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AB (1,2)=x2-xl;
AB (2,1)=y2-y0;
AB (2,2)=x0 -x2 ;
AB(3,l)=yO-yl;
A B (3,2)=xl-xO; 
for j=l:3

for k = l :2
g r a d p h i (i , j,k )=-AB (j,k );

end;
end;

end; gradphi=gradphi/area2;
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function [neighbor_triangle,neighbor_point]= ... 
get_neighbor(node,triangle)
%% get the neighboring triangles and neighboring nodes of a node 
%% node: the reference node 
%% triangle: the Grid Table
%% neighbor_triangle: the neighbor triangles of the reference node 
%% ne ighbor_point: the neighbor points of the reference node 
M=size(triangle,1); 
ne ighbor_triangle=[] ; 
for i=l:M

temp=triangle(i, :) ; 
if find(temp==node) >0

neighbor_triangle=[neighbor_triangle i ] ;
end;

end;
neighb or_ poi nt= [];
N=length(neighbor_triangle); 
for i=l:N

temp=triangle(neighbor_triangle(i),:); 
for j=l:3

if find(neighbor_point==temp(j))>0 
continue;

else
ne ighbor_point=[neighbor_point t e m p (j)];

end;
end;

end;
neighbor_point=sort(neighbor_point);

function area2=get_area2(triangle,mesh)
%% calculate the 2*triangle_area of a triangle 
%% triangle: the Grid Table 
%% mesh: the Node Table 
%% a r e a 2 : the resulted 2*triangle_area 
x0=mesh(triangle(1) , 1)
y0=mesh(triangle(1) , 2 ) 

xl=mesh(triangle (2),1) 
yl =mesh(triangle(2) , 2 )
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x 2= mes h ( t r i a n g l e (3) , 1) ; 
y 2 = m e sh( tri ang le(3 ) , 2 ) ;

a r e a 2 = a b s ((xl-xO)* (y2-y0)- (x2-x0)* (yl-yO));
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