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A B S T R A C T

This thesis presents techniques to measure the human arm’s me-

chanical impedance using a rehabilitation robot, drawing applica-

tions to telerehabilitation and patient motor function assessment.

Conventional teleoperation system stability analysis and control

assumes the human operator remains passive and injects no net

energy into the system. The validity of this assumption is evalu-

ated by mathematically analyzing the passivity of empirical arm

impedance models. The results show that the arm is passive when

relaxed but may become active when participants rigidly hold their

arm in place. This non-passive behaviour originates from the cen-

tral nervous system’s position control response.

A novel, cost-effective impedance measurement technique is also

presented, in which an expensive commercial force sensor is re-

placed by a virtual sensor incorporating a model of the robot’s

dynamics and kinematics. The technique is validated on a mass-

spring system of known impedance and applied to the human arm.
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1
I N T R O D U C T I O N

Ageing populations are causing a growing demand for movement
rehabilitation therapy following stroke, joint injury, or other health
complications resulting in motor impairment. Rehabilitation robots
are a promising solution to address this mounting need and enable
patients’ motor abilities to improve further and faster than what
is achievable by conventional therapy alone. As robots can produce Rehabilitation robots

are useful in both
therapy and motor
function assessment

precise and repetitive motions to train patients’ movements, numer-
ous robotic solutions to rehabilitate the arm, wrist, fingers, and gait
have been developed over the past two decades. These technologies
have been shown to yield therapeutic benefits comparable to those
obtained in traditional physiotherapy programs. The robots can
also readily collect precise force and position data while interact-
ing with the patient, offering a promising paradigm to supplement
traditional clinical motor performance scales based on human ob-
servation with highly reproducible, objective, and quantitative mea-
sures of patient motor performance to assist clinicians in designing
optimal therapy interventions.

This thesis develops techniques to accurately measure the me-
chanical impedance of the human arm from force and movement
data collected by a rehabilitation robot. Mechanical impedance is
the dynamic relationship between force and motion, encompassing Mechanical

impedance is the
dynamic
relationship between
force and motion

the familiar concepts of inertia, viscosity, and stiffness. Impedance
may be calculated by using a robot to apply force or position per-
turbations to the arm, measuring the resulting motions and inter-
action forces, and fitting an impedance model to this force-position
data through system identification procedures. Knowledge of the
arm’s impedance is important to design therapeutic human-robot
interaction systems and track motor function recovery.

1.1 outline

Chapter 1 provides a brief overview of the field of rehabilitation
robotics. Conventional clinical motor ability assessments are con-
trasted against robotic assessments common in the literature. The
need for accurate human arm impedance measurement is estab-
lished and a summary of previous work is provided.

1



1.2 publications 2

Rehabilitation robots can enable a therapist and patient to collab-
oratively perform therapy exercises over a distance through a tele-
rehabilitation system. Conventional approaches to analyze the sta-
bility of robotic teleoperation systems assume that a human always
behaves passively during his interactions with the robot, injecting
no net mechanical energy into the system. Chapter 3 tests the valid-
ity of this assumption by identifying models of the human arm’s
endpoint impedance during a relaxed grasping task and mathe-
matically assessing the models for passivity. Our results agree with
previous findings that the relaxed human arm is passive and extend
this conclusion to the case where a dynamic, second-order repre-
sentation of arm impedance is considered in lieu of a simple static
model.

Chapter 4 investigates whether the passivity assumption also
holds for a rigid grasping (i.e., posture maintenance) task. The
data shows that the rigid arm can generate energy and be active. We
demonstrate how this non-passive behaviour originates from the
position-control dynamics of the central nervous system (CNS) and
discuss the challenges that these dynamics introduce into the arm
impedance modelling problem. Finally, we outline how Llewellyn’s
absolute stability criterion—a teleoperation design approach that
traditionally assumes human operator passivity—may be reformu-
lated to account for a non-passive (or overly-passive) human oper-
ator.

Accurate robotic measurements of limb impedance can offer clini-
cians detailed insight into the neuromusculoskeletal properties of
a patient’s arm. Unfortunately, the high cost of the robotic systems
and their associated sensors presents a financial barrier to this tech-
nique being used in the clinic. Therefore, Chapter 5 introduces a
novel arm impedance measurement technique in which human-
robot interaction forces are measured by a virtual sensor incorpo-
rating a model of the robot’s kinematics and dynamics in lieu of
an expensive commercial force sensor. The technique is validated
on a mass-spring system of known impedance and subsequently
applied to the human arm.

Finally, Chapter 6 summarizes the research findings and suggests
future directions.

1.2 publications

A condensed version of Chapters 3 and 4 was published in the
2013 IEEE World Haptics Conference, Daejeon, South Korea [1]. A
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second paper at the same conference featured a version of the en-
ergy integral passivity analysis in these chapters to motivate addi-
tional research beyond the scope of this thesis [2]. An adaptation of
Chapter 5 was published at the 2013 IEEE International Conference
on Rehabilitation Robotics, Seattle, WA, USA [3].

1.3 contributions of this thesis

This thesis makes several new contributions to the field of human
arm impedance measurement and human operator passivity anal-
ysis:

1. Use of Savitkzy-Golay filters in impedance identifica-
tion. Identifying a dynamic arm impedance model requires
effective techniques for noise-filtering and differentiation of
measured signals. To our knowledge, we are the first to use
Savtizky-Golay filters for this task. These filters are noise-
robust and can obtain optimal performance with minimal tun-
ing.

2. Human arm dynamics modelling. Chapter 4 features di-
agrams of the coupled human-robot dynamics during a re-
laxed and rigid grasping task. We consider how the position
control response of the CNS influences total impedance of the
human arm in a rigid grasping task, which has often been
neglected in previous studies (e.g., [4] and [5]).

3. Passivity analysis with a two-dimensional dynamic model.
Previous work in analyzing human arm passivity has mod-
elled the arm as a static stiffness and only considered the case
when the arm is relaxed [6]. We capture the arm’s impedance
by a dynamic second-order model and analyze passivity for
both the cases when the subject relaxes his arm and when he
rigidly holds it in a fixed position. We derive analytical con-
ditions with straightforward physical interpretations that the
model parameters must satisfy for passivity.

4. Empirical demonstration of non-passive behaviour. We,
to our knowledge, are the first to use a mathematically rig-
orous passivity-based framework to empirically demonstrate
that the human operator can inject energy into a teleoperation
system. This demonstrates a need to develop new approaches
to teleoperation system design and stability analysis that do
not assume human operator passivity.
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5. The effect of task instruction and perturbation signal

design on human arm passivity. By analyzing the time his-
tory of the arm’s energy absorption, we demonstrate that
non-passive behaviour can be traced to the position-control
dynamics of the CNS. Using this information, we discuss how
the nature of the task a human executes and the perturbation
signals applied to identify arm impedance can elicit passive
or active behaviour.

6. Development of a virtual force sensor. The virtual sens-
ing technique of Chapter 5 represents, to our knowledge, the
first time dynamic arm impedance identification has been per-
formed without a physical force sensor. The virtual sensing
technique presented in this chapter can readily be adapted to
other fields requiring an economical approach to measuring
human-robot interaction forces.



2
B A C K G R O U N D A N D M O T I VAT I O N

This chapter motivates our research in arm impedance measure-
ment by providing an overview of prior successes and challenges
in the field of rehabilitation robotics. Section 2.1 introduces the
distinction of assistive versus therapeutic robotics. Section 2.2 dis-
cusses the motivation for robotic therapy (RT), with an emphasis
on robotic assessment of patients’ motor abilities. The state of the
art clinical motor function assessment scales are reviewed in Sec-
tion 2.3, followed by proposed robotic assessment methodologies
in Section 2.4. Robotic measurement of mechanical impedance is
highlighted in Section 2.5.

2.1 classification of rehabilitation robots

Modern robotic rehabilitation technologies can be divided into two
broad categories [7]:

1. Assistive robots help impaired individuals perform activities of
daily living (ADLs). These devices can be subclassified as ma- Assistive vs.

therapeutic roboticsnipulation aids such as robotic arms mounted to a wheelchair
or desk to assist in reaching for objects, mobility aids includ-
ing smart wheelchairs with navigation assistance or mobile
robots to run errands around the home, and cognitive aids
such as robots that provide visual and verbal cues to coach
individuals with dementia through daily activities.

2. While assistive robots help individuals cope with impairment,
therapeutic robotics address the underlying cause of motor dys-
function by administering physical or cognitive therapy exer-
cises. These devices may also be used to diagnose disorders
or monitor recovery and will therefore be the primary focus
of this literature review.

Rehabilitation robotics emerged from the design of robotic or- Historical origin of
therapeutic
rehabilitation
robotics

thotics and prostheses, so the earliest work in the field emphasized
the development of assistive robots. Researchers first began to in-
vestigate robotics as a therapy tool in the late 1980s. In 1988, Khalili
and Zomlefer developed a robotic system to flex and extend the
knee for movement rehabilitation [8]. Three years later, Dijkers et al.

5



2.2 motivations for therapeutic robotics 6

introduced robotic free-reaching movement therapy for the upper
limb using a Universal Machine Intelligence RTX robot to position
a button at various locations for patients to touch [9]. The early
1990s saw the development of several robots for upper-limb ther-
apy, including the influential MIT-MANUS [10–12], MIME [13, 14],
and ARM Guide robots [14, 15]. The 2000s brought a proliferation
of rehabilitation robotic systems, including exoskeletons for gait
training [16], devices to retrain ankle movement [17], and therapeu-
tic robots for the hand and fingers [18, 19]. Robots have also found
application in cognitive therapy, including robotic vehicles to con-
duct therapy with autistic children [20] and robotic pets designed
to have a positive emotional effect on patients [21].

2.2 motivations for therapeutic robotics

The development of therapeutic robotics has been motivated by
three main factors: therapy assistance, telerehabilitation, and motor
function assessment.

2.2.1 Therapy Assistance

Incidences of stroke are rising as the population ages. Stroke is the
leading cause of disability in Canada, with over 300,000 people (1%
of the population) coping with impairment as a result [22]. This
mounting demand for rehabilitation therapy, coupled with pres-
sures for cost-containment in the health-care system, has lead to
patients being discharged from a rehabilitation hospital prior to
attaining their full motor recovery potential [23].

Therapeutic robotic technologies have therefore been developed
to complement traditional physiotherapy programs for enhanced
motor recovery. The precise impact of RT on motor recovery re- Robots help meet a

growing demand for
rehabilitation
therapy

mains unclear, as large-scale randomized clinical trials comparing
different rehabilitation therapies are expensive and difficult to con-
trol [7, 24]. However, it is clear that RT is at least as effective as
conventional therapies for improving function in the specific move-
ments targeted by the therapy [7, 14, 24, 25]. Furthermore, adverse
side effects from RT are rare, and the introduction of robots has not
met with negative reactions from patients or increased their likeli-
hood to withdraw from therapy programs [12, 24, 26]. Researchers
often note that patients enjoy the novelty of RT tasks when asked
for feedback during therapy trials.
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RT has also proven beneficial to assist in interventions that would
otherwise be physically taxing on the therapist, with gait train-
ing being a prime example of a therapy that can now be read-
ily administered by a single clinician working with a robot rather
than a team of therapists executing physically-demanding tasks
[7, 25]. RT can also facilitate higher therapy intensities—patients Robots aid

conventional
therapies and enable
new interventions

may work with a rehabilitation robot outside of the hours when
therapists are available, and robots can perform many more ex-
ercise repetitions in a single therapy session than is possible by
conventional human-administered therapy. This is especially sig-
nificant for stroke survivors as the brain appears to be “primed”
for motor relearning during the acute and subacute phases after
stroke1 [22], and failure to deliver intense therapy during this pe-
riod may permanently limit recovery. Finally, robots can deliver
new modes of therapy that cannot be performed without robotic
assistance. In error-augmentation therapy, for instance, a patient’s
movement errors are amplified by a robotic force field as a means
of training the CNS to correct abnormal movement patterns [27].

2.2.2 Telerehabilitation

Telerehabilitation enables a therapist and patient to cooperatively
perform rehabilitation exercises when they are separated by a dis-
tance. The simplest telerehabilitation systems incorporate motion
capture and videoconferencing technologies to allow a therapist to
coach a patient through rehabilitation exercises [28], but the ad-
dition of actuated robotic devices enables force feedback for cus-
tomized kinaesthetic training.

Robotic telerehabilitation systems can be divided into two types
[29]:

1. In unilateral telerehabilitation, only the patient interacts with Unilateral vs.
bilateral
telerehabilitation

a robot. The therapist uses a computer interface to remotely
assign therapy protocols on the robot’s control computer and
receive data on the patient’s performance. Two salient exam-
ples include the web-based JavaTherapy system developed by
Reinkensmeyer et al. [30] and a hand and fingers rehabili-
tation system developed by Burdea et al. with the Rutgers
Master force feedback glove [31].

1 Stroke survivors are classified into three stages: acute during the few hours im-
mediately following the cerebrovascular accident, subacute until a few weeks after
the incident, and chronic thereafter.
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2. In bilateral telerehabilitation, the patient and therapist each
use a robot to interact with each other through a shared vir-
tual environment. As each user manipulates the handle of
his robot, that motion is translated to an object that is com-
monly grasped in the virtual environment. The resulting in-
teraction forces are calculated and fed back to each robot.
In this manner, the patient and therapist can cooperatively
perform a therapy task. This enables the therapist to natu-
rally evaluate the patient’s motor abilities through kinaes-
thetic feedback, akin to conventional hand-over-hand therapy
in the clinic. Notable examples of this technology include the Remote

hand-over-hand
therapy

work of Carignan and Olsson, who used two InMotion2 reha-
bilitation robots to enable two individuals to cooperatively lift
a plank [32]. These robots were connected via the Internet, but
physically in the same location. Kim et al. [33] performed a
similar collaborative lifting using a pair of PHANToM™ hap-
tic devices linked between the USA and the UK.

Although robotic telerehabilitation is still in its infancy, it holds
promise to substantially increase the quality of outpatient therapy
programs. Telerehabilitation could allow outpatients who live in Telerehabilitation

enhances outpatient
therapy

remote areas or who have limited transportation options to still
receive personalized care from their therapist. Patient recovery is
frequently hampered by a lack of motivation to continue therapy
upon discharge from a rehabilitation hospital [34]. The opportu-
nity to engage with a therapist (as opposed to performing a series
of “homework” exercises without supervision) promises to increase
patients’ commitment to their therapy regimens. Finally, therapists
can remotely monitor patients’ progress and adapt therapy inter-
ventions as necessary to maximize motor recovery.

2.2.3 Motor Function Assessment

A final motivation for therapeutic robotics is objective and quanti-
tative evaluation of patients’ motor function. Physical therapy is a
lengthy process that is guided by clinical evaluations of a patient’s
motor performance. Current techniques to evaluate the severity of
impairment (discussed in more detail in Section 2.3) rely on a hu-
man expert scoring a patient’s function on an established ordinal
ranking system. Since these assessments rely on observation, their Conventional motor

function
assessments have
several shortcomings

accuracy and consistency may vary across clinicians. Furthermore,
the evaluations are time-consuming to administer, can be insensi-
tive to small but important changes in performance, and offer little
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insight into the root causes of motor dysfunction. This creates a
need for development of more sensitive methods to consistently
and objectively evaluate patient recovery.

As a patient interacts with a rehabilitation robot, the device can
readily collect data including positions, velocities, and forces, offer-
ing a promising paradigm to supplement traditional clinical assess-
ments of human arm stiffness with highly sensitive, reproducible,
and objective measures. Balasubramanian et al. [35] observe that Robots accurately

quantify motor
function with high
sensitivity

robots are more sensitive to small improvements in motor perfor-
mance than traditional clinical measures, and feedback on these
incremental gains can increase patient motivation. Furthermore,
these devices can easily track recovery over time, are amenable
to providing feedback both as knowledge of results and knowl-
edge of performance,2 and can provide insights into mechanisms
of motor function by combining movement data with electromyo-
graphy (EMG) signals. Casadio et al. [36] further note that robotic
assessment can provide immediate online feedback during a train-
ing session and does not suffer from the floor and ceiling effects (in
which the patient’s motor performance exceeds or falls short of the
range distinguishable by the assessment) of clinical scales that rely
on coarse rankings of motor performance. Robots are also capable
of collecting substantial amounts of movement data in a shorter
period of time than possible with traditional assessments [11].

As will be illustrated in subsequent chapters, the arm impedance
measurement techniques developed in this thesis find application
both in telerehabilitation and motor function assessment. The latter
is discussed in more detail in the following two sections.

2.3 clinical assessments of motor function after stroke

Although robots promise to offer improved motor function assess-
ment techniques, clinical scales relying on a trained human ob-
server are still the only widely-accepted motor performance assess-
ment tools. A brief introduction of several of the most common
clinical measures of motor function following stroke is provided
below. Where available, Pearson’s or Spearman’s r coefficients and
intraclass correlation coefficients (ICCs) are provided as a measure
of the scale’s reliability. These three statistical values measure the
strength of correlation or agreement between two datasets, with a

2 Knowledge of results provides feedback on how effectively a patient completed a
task, such as how quickly and smoothly she retrieved an item from a shelf. In
contrast, knowledge of performance provides feedback on the individual movements
performed during the task, such as joint velocities and displacements.
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value of one indicating perfect positive correlation and values near
zero indicating poor correlation.

2.3.1 Fugl-Meyer Assessment

The Fugl-Meyer Assessment (FMA) was developed in 1975 as a tool
to evaluate motor function, balance, sensation, and joint pain in
hemiplegic3 patients. Today, it remains one of the most useful and
popular assessments of motor function following stroke.

The FMA prescribes a detailed series of joint movements the pa-
tient must perform, as well as reflex and sensation tests that are ad-
ministered with therapist assistance. Each task is scored on a three-
point system ranging from zero (minimum) to two (maximum). The
FMA contains subsections devoted to the upper extremity, the lower
extremity, balance, sensation, position sense, range of motion, and
joint pain [37].

This assessment has demonstrated strong interrater reliability
(r = 0.86− 0.99) [38] and test-retest reliability (ICC = 0.81− 0.97)
[39] and moderate responsiveness to change in motor function [40].
Perceived shortcomings of the scale include its susceptibility to
floor and ceiling effects, and its limited emphasis on fine motor
control of the hand and fingers [40, 41].

2.3.2 Chedoke-McMaster Stroke Assessment

The Chedoke-McMaster Stroke Assessment (CMSA) was developed
to assist in classifying individuals into various stages of motor re-
covery, to predict rehabilitation outcomes, and to measure clinically
important changes in physical function [42]. The assessment con-
sists of two portions: an impairment inventory that evaluates the
presence and severity of common physical impairments and the
activity inventory that assesses the client’s functional ability, with
emphasis on gross motor function and walking. This assessment
was found to have excellent intrarater, interrater, and test-retest re-
liability (ICC = 0.97− 0.99) [42].

2.3.3 Motor Assessment Scale

While the FMA and CMSA evaluate patients’ abilities to perform iso-
lated movements, the Motor Assessment Scale was developed as a

3 Hemiplegia refers to paralysis on one side of the body. The less severe diagnosis,
hemiparesis, describes a marked weakness on one side of the body.
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task-oriented scale to assess patients’ abilities to perform functional
tasks such as balanced sitting, transferring out of bed, walking, and
hand motion [43]. It has been found to have high interrater corre-
lation (r = 0.95) and test-retest correlation (r = 0.98) [43], but cer-
tain items on the test have proved challenging to score accurately.
Research also suggests that the FMA is superior to the Motor As-
sessment Scale at discriminating between levels of motor recovery
in early stages of recovery and among more severely disabled pa-
tients [44].

2.3.4 Wolf Motor Function Test

The Wolf Motor Function Test (WMFT) also evaluates functional task
performance. The patient is asked to perform common tasks as
quickly as possible (e.g., turning a key in a lock, picking up a paper
clip, or placing their hand on a box), and scores are assigned based
on completion time [45]. The test was later modified to include a
qualitative six-point Functional Ability Scale (FAS) to evaluate not
only how quickly the task is executed but also the quality of coor-
dination and movement fluidity. Both the WMFT and the FAS have
been shown to have high overall interrater reliability (r = 0.97), al-
though the test-retest reliability for particular tasks was found to
be low [46].

2.3.5 Arm Motor Ability Test

Not all of the assessments in the WMFT are actual functional tasks—
several of them simply require the patient to reach in a certain
direction or position his arm at a particular location. As a patient’s
ability to execute gross movements does not necessarily correlate
to an ability to perform ADLs, the Arm Motor Ability Test (AMAT)
was developed to exclusively measure ADL performance [47]. Sub-
jects are asked to execute activities such as putting on a sweater,
combing their hair, or using a telephone and are assigned scores
for functional ability and quality of movement on six-point scales.
While the AMAT has been shown to have good interrater reliability
(r = 0.97− 0.99) and test-retest reliability (r = 0.93− 0.99) [48], it is
more difficult to administer and less sensitive to change compared
to the WMFT [46].
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2.3.6 Functional Independence Measure

Of the clinical scales that assess ADL performance, the Functional
Independence Measure (FIM) is one of the most popular and thor-
oughly researched [49]. The FIM ranks patients on a seven-point
scale as they perform tasks such as eating, dressing, grooming, and
navigating stairs. The test also evaluates patients’ ability to transfer
themselves to bed, to a chair, into a bathtub, etc., considers their
sphincter control, and evaluates their communication and social
cognition [41]. The FIM excels at classifying the level of care that
patients require and is also used to evaluate outcomes in rehabilita-
tion. However, it is less effective at tracking changes in an individ-
ual patient’s performance over time [49] and does not assess ADL

performance in community environments [41]. Some researchers
assert it is susceptible to influence by a patient’s personality, de-
pression, or attitudes of dependence [12].

2.3.7 Modified Ashworth Scale

The Modified Ashworth Scale (MAS) is the most widely used clin-
ical measure of muscle tone and spasticity. Muscle tone refers to
a muscle’s resistance to stretch due to a continuous partial acti-
vation of the muscle, even when it is at rest. Hypertonia, a com-
mon disorder in stroke survivors, is an increased resistance to pas-
sive4 movement and may or may not be accompanied by spasticity.
Spasticity is generally defined as a muscle disorder which causes Tone, hypertonia,

and spasticityvelocity-dependent increase in the stretch reflex, but the precise na-
ture of spasticity is debated [50], with some clinicians using the
terms “tone” and “spasticity” interchangeably [51].

The MAS ranks patients on a six-point scale (Table 2.1) to quantify
resistance as the joint is passively moved through its range of mo-
tion at various speeds [11]. While some consider the MAS to have The reliability of the

MAS is doubtedmoderate to good reliability for isolated muscle groups [52,53], oth-
ers contend that the scale has doubtful reliability and cannot be
used to assess individuals with low muscle tone, creating a need
for development of more accurate means of assessing a limb’s re-
sistance to movement [11, 54].

4 In a clinical context, passive movement of a patient’s joint refers to movement that
is externally-imposed rather than initiated by the patient. This is distinct from the
mathematical concept of passivity defined for a teleoperation system in Chapter 3.



2.4 robotic assessment of motor function 13

Table 2.1: Grading for the Modified Ashworth Scale (reproduced from
[53]).

Grade Description

0 No increase in muscle tone
1 Slight increase in muscle tone, manifested by a catch and re-

lease or by minimal resistance at the end of the range of mo-
tion when the affected part(s) is moved in flexion or extension

1+ Slight increase in muscle tone, manifested by a catch, fol-
lowed by minimal resistance throughout the remainder (less
than half) of the range of motion

2 More marked increase in muscle tone through most of the
range of motion, but affected part(s) easily moved

3 Considerable increase in muscle tone, passive movement dif-
ficult

4 Affected part(s) rigid in flexion or extension

2.4 robotic assessment of motor function

With the exception of the MAS, the clinical assessment scales dis-
cussed in the previous section generally demonstrate good reliabil-
ity, with correlation coefficients often exceeding 0.9. As Bosecker
et al. observe, clinical assessment scales are still the “gold stan-
dard” for rehabilitation assessment [7], and robotic engineers must
demonstrate that quantitative robotic tests of physical performance
not only match, but also exceed the performance of traditional clin-
ical assessments to justify the additional cost outlay, training invest-
ment, and perceived safety risks.

Part of the reason why traditional scales are typically found to
yield reproducible assessments is that they generally involve coarse
ordinal rankings to facilitate straightforward classification of a pa-
tient’s motor abilities. While there may not be a marked need for
more reliable assessment techniques, robotics could offer increased
assessment resolution, accurately detecting smaller improvements
in performance. Furthermore, some clinical scales can take close to Most clinical scales

are reliable, but
robotic assessment is
more sensitive

an hour to administer and may require a team of trained profes-
sionals, whereas robots can potentially perform assessments much
more rapidly. This opens the door to conducting “online” assess-
ments and allowing patients’ therapy programs to be optimally
modified based on rapid and immediate feedback of their perfor-
mance.

There is a plethora of robotic metrics used to quantitatively as-
sess patient motor performance in the literature. Lacking standard-
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ized protocols, experimenters have developed measures uniquely
suited to their particular robotic system and topic of investigation.
As a result, the literature shows great variability in the complexity A wide variety of

robotic assessment
techniques exist

of motor performance metrics and in the insightfulness of the data
they generate. This variability has caused some researchers to cite
the need for the development of universal assessment protocols [7],
while others assert that training and assessment procedures must
be customized to a given task and robotic system to yield meaning-
ful data, making the development of universal protocols impracti-
cal [36].

Regardless of one’s perspective on the matter, there are common
themes in the performance metrics used to assess performance
of reaching tasks in the literature. A sample of the most popular
classes of motor performance metrics is given below.

2.4.1 Movement Smoothness

Measurements of movement smoothness are based on the under-
standing that large-scale human reaching motions are composed
of a series of smaller submovements that blend together to achieve
the desired trajectory, speed, and accuracy. While this idea was pro-
posed over a century ago, the velocity profiles of submovements
were first quantitatively observed by Krebs et al. using the MIT-
MANUS [55]. They subsequently demonstrated that as stroke pa-
tients recovered, their submovements grew larger (requiring fewer
submovements to complete a given reaching task) and blended to-
gether more smoothly [56]. While the researchers found that dif-
ferent mathematical submovement models would give slightly dif-
ferent smoothness measurements for the same set of motion data,
they also found that changes in movement smoothness as the pa-
tient progressed were robust to selection of different models.

Several methods of assessing movement smoothness exist in the
literature. Krebs et al. analyzed the peaks and curvature of the ve-
locity profile [12], and in subsequent studies mathematically fit di-
lated and scaled versions of a constant submovement velocity pro-
file to the velocity data [55]. Casadio et al. [36] simply counted the
number of peaks in the velocity profile of a reaching motion. Bala-
subramanian et al. [35] assessed the frequency composition of the
motion (with less energy in the high frequencies corresponding to
a smoother movement), Daly et al. [57] analyzed the correlation be-
tween the subject’s velocity profile and an idealized minimum-jerk
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velocity profile, while Finley et al. [58] assessed smoothness via the
mean to peak speed ratio.

2.4.2 Movement Accuracy

The accuracy with which patients can position the robot’s end ef-
fector is another common measure of motor performance. This may
include measuring the patient’s distance from a desired target [57]
or assessing the deviation of the patient’s reaching trajectory from
an ideal straight-line path [36,58–60]. The latter metric may be fun-
damentally flawed for large reaching motions, however, as there is
evidence that healthy individuals used curved trajectories to reach
for distant targets [61].

2.4.3 Movement Velocity

Measurement of mean and peak velocities in a reaching task is also
a popular performance metric [15,35,58,59] since healthy individu-
als generally perform reaching tasks more quickly than those with
impairment. Kahn et al. [14] observed that maximum reaching ve-
locity is a particularly useful metric as it is simple to measure, func-
tionally relevant, and sensitive to change across a broad spectrum
of impairment levels.

2.4.4 Movement Synergy

Movement synergy refers to coordinating the motion of multiple
joints through simultaneous activation of various muscles in or-
der to achieve smooth motor control. Movement synergy is readily
assessed by means of an exoskeleton [62] or visual imaging sys-
tem [60] that can record the motions of multiple joints simultane-
ously. Finley et al. [58] analyzed how smoothly a subject’s shoulder
and elbow angles were coordinated during reaching tasks by col-
lecting hand position data with a planar robot and using a simple
two-link model of the human arm to solve the inverse kinematics.
Others use deviation from an ideal straight trajectory as a measure
of movement synergy under the assumption that less coordinated
muscle activation patterns will give rise to more circuitous trajecto-
ries [35].
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2.4.5 Amount of Robotic Assistance

A patient’s motor control can also be assessed by comparing the
portion of a reaching task he can perform independently with the
portion he requires assistance forces from the robot to complete.
This may be done by measuring the mechanical work done by
the robot [36] or by discretizing the reaching trajectory and tally-
ing which segments were performed independently versus with
robotic assistance [59].

2.4.6 Range of Active Motion

A simple measure of motor recovery readily measured by a robot is
the patient’s range of independent motion. This measure is also fre-
quently included in conventional, non-robotic assessments of mo-
tor function. Range of motion was a key performance metric in
studies with the ARM guide [15].

2.4.7 Force Control

While kinematic measures are most commonly used to assess mo-
tor function, some researchers have analyzed dynamic force data
as well. Colombo et al. compared the directions of the normalized
forces patients applied during an unconstrained reaching task with
those of healthy individuals using the MEMOS robot, but found
that this measure improved during rehabilitation for only half of
the patients in their study [59]. Lum et al. used the MIME robot
to measure the average angle between the patient’s force vector
and their direction of motion, with smaller angles indicating better
motor control [13]. Bosecker et al. measured shoulder strength us-
ing the force sensor on a rehabilitation robot and successfully used
the results to estimate the subject’s score on the Motor Power (MP)
scale [11].

2.5 mechanical impedance measurement

A final important application of robotic motor peformance assess-
ment is measuring the mechanical impedance of various joints and
limbs in the human body. Robotic measurement of limb impedance
was initially conceived as a means to investigate how the CNS con-
trols movement by developing models of the human arm incor-
porating CNS position control components [63–65]. Other studies
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focused on impedance measurement as a means of characterizing
arm dynamics to design human-robot interaction systems [6, 66].

As previously mentioned, abnormal muscle tone and spastic-
ity are common problems encountered in the rehabilitation clinic.
Since both tone and spasticity describe a limb resisting movement
imposed by an external force, they are directly related to the con-
cept of mechanical impedance.

This thesis focuses on impedance measurement for the following Motivation for
impedance
measurement

reasons:

1. Unreliability of the Modified Ashworth Scale. Of all
the clinical scales previously discussed, the reliability of the
MAS for measuring muscle tone and spasticity is most heav-
ily doubted. Robots hold promise as a means to accurately
measure impedance in order to monitor the effectiveness of
therapies intended to restore normal tone and reduce spastic-
ity.

2. Insights into motor control. Developing accurate models
of the impedance of the arm can provide insight into how the
CNS controls movement, laying the foundation for a better
understanding of motor dysfunction.

3. Application to telerehabilitation. In a telerehabilitation
system, empirical investigations into impedance of the thera-
pist and patient’s limbs can provide data useful in improving
system performance.

4. Straightforward robotic implementation. Many clinical
assessments of motor function focus on measuring ADL per-
formance, but the development of a robot capable of simulat-
ing a sizeable variety of complex ADLs with multiple degrees
of freedom (DOFs) is fraught with mechanical and economic
challenges. Impedance measurement, however, can be imple-
mented with any backdrivable robot capable of force and po-
sition sensing with minimal additional costs.

2.5.1 Biomechanical Origins of Impedance

On a basic level, the arm’s neuromusculoskeletal structure may be
compared to a robot. Biological receptors akin to joint encoders or Comparing the

arm’s structure to a
robot

force sensors receive data on the arm’s position, velocity, and forces.
They relay this data through wiring known as afferent neurons to
the CNS, which acts as the arm’s control system. The CNS processes
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this data and issues motor commands via efferent neuron wiring
to the muscles, which serve as the arm’s actuators. The muscles
apply torques to the joints of the skeletal system, causing the arm
to follow the control signal from the CNS.

The arm’s mechanical impedance arises from two sources: Two sources of arm
impedance

1. Intrinsic physical properties. This refers to the stiffness,
viscosity, and inertia inherent to the arm’s tissues and skeletal
structure.

2. Involuntary reflex responses. A reflex is an immediate and
involuntary motor response to a specific stimulus. In the stretch
reflex for instance, when the CNS detects that a relaxed mus-
cle has been suddenly stretched (e.g., by a robot applying
a perturbation force to the arm), it causes the muscle to con-
tract and oppose the applied stretch. This process occurs auto-
matically, without any cognitive intervention from the human.
See [67] for examples of additional reflex types.

The CNS is also responsible for impedance modulation, which is
essential to maintaining posture, achieving stability, and rejecting
disturbances as humans interact with their environment [68]. Hu- Two mechanisms for

impedance
modulation

mans are able to vary their mechanical impedance by two primary
mechanisms [69, 70]:

1. Arm configuration. Impedance depends on skeletal geome-
try. For example, the arm has high impedance along the fore-
arm’s axis when the elbow is rigidly extended, and this value
decreases as the elbow is flexed. The total impedance the arm
presents at its endpoint may therefore be modulated by ad-
justing the configuration of the arm.

2. Muscular cocontraction. Since muscles can only pull and
not push on a joint, they operate in agonist and antagonist
pairs (Fig. 2.1). Contraction of the agonist muscles causes the
joint to rotate in one direction whereas contraction of the an-
tagonist muscles causes rotation in the opposition direction.
If both groups are cocontracted simultaneously, they will tend
to stabilize the joint and increase the overall limb impedance.

The complexity of the musculokskeletal system makes modelling The human arm
presents modelling
challenges

the human arm for impedance measurement a particularly chal-
lenging task. As represented in Fig. 2.1, the arm contains both
monoarticular muscles which act on a single joint and biarticu-
lar muscles that span multiple joints. Biarticular muscles couple
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elbow joint 

monoarticular elbow muscle pair 

biarticular shoulder-elbow muscle pair 

monoarticular shoulder muscle pair 

shoulder joint 

Figure 2.1: Schematic of biarticular vs. monoarticular arm muscles
adapted from [66]. The muscles appear in agonist-antagonist
pairs.

the motions of various joints together, making it challenging to
isolate impedance contributions from individual joints or muscle
groups [68]. While it is common to model joints as independent
hinges, this is a stark oversimplification [71]—the shoulder, for in-
stance, is a complex of multiple joints with several degrees of free-
dom. Furthermore, since impedance varies with position and mus-
cle contraction level, it is challenging to measure in a repeatable
manner. In addition, the mechanical complexities of the human
hand and arm can cause the response to an applied perturbation to
include force components that are not directly opposed to the ap-
plied displacement, requiring the use of matrices rather than scalars
to fully describe impedance.

2.5.2 Measurement Approaches

Mechanical impedance is typically measured via system identifica-
tion methods in which experimenters apply position or force per-
turbations to the joint or limb under investigation and observe the
resulting force and motion response. Subjects are typically asked to
completely relax their muscles or exert a constant force while the
measurement is performed. A variety of approaches are taken to Arm impedance

should not vary
during measurement

prevent the subjects from voluntarily varying their impedance dur-
ing the measurement procedure, including simply instructing the
subject to relax [72], surprising the subject by applying the pertur-
bation at an unexpected time [73], performing very short measure-
ments during which the subject has no time to voluntarily modu-
late their impedance [74], or applying a series of perturbations with
randomly-oriented directions [68, 75].
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The pioneering work in robotic impedance measurement for the
upper limb was performed by Mussa-Ivaldi et al. [63], who used a
planar robot to impose step position perturbations on a human sub-
ject’s hand, allowing the static endpoint impedance (i.e., stiffness)
of the arm to be calculated in two Cartesian dimensions. McIntyre
et al. [76] adapted this technique to measure changes in stiffness
in response to external loading forces. Gomi et al. [64], Dolan et
al. [66], and Tsuji et al. [77] extended the approach to identify a
second-order impedance model encapsulating not only the arm’s
stiffness, but also the dynamic impedance components of inertia
and viscosity. Burdet et al. [73] measured the stiffness of the arm in
the presence of unstable force fields and found that the CNS stabi-
lizes planar reaching motions by optimizing impedance. Bennet et
al. [78] applied position perturbations to the elbow joint to measure
its stiffness in the joint domain, and Lacquanti et al. [79] applied
pseudorandom torque to measure elbow and wrist stiffness during
a catching task.

The use of second-order impedance models is still common in the
literature. For instance, Kuchenbecker et al. [80] modelled the hu- Second-order models

are common in the
literature

man wrist as a mass-spring-damper system and found that while
grip force and wrist impedance are correlated with each other, the
relationship was unique for each test subject. Hajian and Howe [74]
used a second-order model to investigate the impedance of the hu-
man finger. However, higher-order models have also been investi-
gated in an attempt to achieve a more comprehensive representa-
tion of the human arm [81].

While this gray-box identification approach offers the appealing
simplicity of mapping parameters of the human arm to a simple
and well-understood mechanical model, this simplification comes
at the cost of modelling accuracy. Summarizing the results of sev-
eral studies, Perreault et al. [71] concede that second-order model-
ing approaches may be “reasonably accurate” for fixed postures
and small perturbations, but they are unlikely to hold in more
complex situations. For example, stiffness measurements have been
found to vary with the amplitude of the applied perturbation, and
nonlinear stiffness components have been observed when stretch
reflexes are excited by the applied perturbations.

This has prompted several researchers to employ stochastic po-
sition or force perturbations to identify non-parametric models of Non-parametric

models have higher
versatility

arm impedance or admittance [68, 75]. These system identification
approaches make no assumptions of model structure other than
that the system responds linearly for small perturbations. Others
have extended these techniques to analyze impedance in three di-
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mensions [82,83]. Detailed models of the arm’s neuromusculoskele-
tal structure have been identified to distinguish impedance contri-
butions of the arm’s intrinsic biomechanics from those caused by
its involuntary reflex responses [4].

Customized mechatronic systems for arm impedance measure-
ment have also been designed to deliver high-bandwidth pertur-
bations in multiple measurement planes [68] and enable rapid on-
line data collection by applying perturbations using a rotating cam
mechanism [18].

Although impedance measurement has numerous technical chal-
lenges, the development of accurate measurement techniques can
establish more effective patient monitoring and intervention assess-
ment, enable insightful investigation of human motor control, and
open the door to new rehabilitation robotic technologies. These ap-
plications will be explored in the following chapters.
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R E L A X E D A R M I M P E D A N C E M E A S U R E M E N T
A N D PA S S I V I T Y A N A LY S I S

3.1 introduction

Stability is the most crucial performance characteristic of a tele-
rehabilitation system. The therapist’s and patient’s robots must never
make sporadic movements or exert erroneous forces that could
cause injury or compromise therapy effectiveness. Conventional ap- Conventional

teleoperation system
control and stability
analysis assumes
human operator
passivity

proaches to analyzing the stability of a bilateral teleoperation sys-
tem assume that the human operator does not inject energy into
the system and behaves in a passive manner. Does this assumption
hold for various tasks a therapist or patient may execute?

To answer this question, this chapter presents identified models
of the human arm’s endpoint impedance during a relaxed grasping
task. These models are assessed for passivity over the frequency
range characteristic of human motion. Section 3.2 introduces the
conventional human operator passivity assumption and explains
why it should be questioned. Section 3.3 mathematically formal-
izes the concept of passivity and introduces the arm modelling
approach. Section 3.4 describes the design of the arm impedance
identification experiments and Section 3.5 presents the data anal-
ysis. The results, which appear in Section 3.6, confirm that the re-
laxed human arm behaves as a passive system. The implications of
these results are discussed in Section 3.7, followed by concluding re-
marks in Section 3.8. The subsequent chapter investigates whether
the passivity assumption is also valid for a rigid grasping (posture
maintenance) task.

Combined versions of this chapter and the following chapter have been published:
M. Dyck, A. Jazayeri, and M. Tavakoli, “Is the human operator in a teleoperation
system passive?” in IEEE World Haptics Conference, Daejeon, Korea, 2013, pp. 683–
688.
Another publication featured a version of the energy integral passivity analysis in-
cluded in these two chapters to motivate teleoperation research beyond the scope
of this thesis: A. Jazayeri, M. Dyck, and M. Tavakoli, “Stability analysis of teleop-
eration systems under strictly passive and non-passive operator,” in IEEE World
Haptics Conference, Daejeon, Korea, 2013, pp. 695–700.

22
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3.2 background and motivation

A teleoperation system consists of a human operator, a remote envi-
ronment, and a teleoperator comprising the master and slave robots,
their controllers, and a communication channel (Fig. 3.1). In bilat- Structure of a

teleoperation systemeral teleoperation, the slave robot mimics the motions of the mas-
ter robot held by the human operator, and the human operator re-
ceives haptic feedback of the contact forces between the slave and
environment. In robotic telerehabilitation, the therapist (the human
operator) uses a robotic interface (the master device) to control a
home-based therapeutic robot (the slave device) in contact with the
patient’s impaired limb (the environment).

Human 
operator:
Therapist

Master robot:
Therapist’s 

device

Communication 
channel and
robot control

Slave robot:
Patient’s 
device

Environment:
Patient’s 

impaired limb

Teleoperator

Teleoperation system

Figure 3.1: Schematic of a teleoperation system in the context of tele-
rehabilitation.

The stability of a bilateral teleoperation system may be inves-
tigated by applying the passivity (Raisbeck’s or scattering-based)
criterion or the absolute stability (Llewellyn’s) criterion to the tele-
operator [84, 85]. In both frameworks, passivity of the teleoperator’s
terminations, i.e., the human operator and the environment, is assumed.
This is a convenient assumption that makes it possible to perform The passivity

assumption
simplifies stability
analysis

stability analysis of a teleoperation system without knowledge of
the typically uncertain, time-varying and/or unknown dynamics
of two of its subsystems—the human operator and environment.

While it may be reasonable to assert that most physical environ-
ments do not contribute energy to the teleoperation system, is the
same true for the human operator who deliberately manipulates
the master robot? The human operator passivity assumption is con-
ventionally justified by a paper published by Hogan [6]. The paper Hogan’s analysis of

arm stiffness has
been used to justify
the passivity
assumption

is based on the work of Mussa-Ivalidi et al. [63], who used a pla-
nar robot to impose step position perturbations on human subjects’
hands and measure the resulting restoring forces. They used this
data to calculate the static stiffness of the arm in two Cartesian
dimensions. Subjects were instructed to relax their arm and avoid
voluntarily intervening as the robot perturbed their hand. In his
paper, Hogan extended this analysis by separating the measured
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stiffness into an active and a passive component. He found that
the active component was negligibly small in comparison to the
passive component, demonstrating that the relaxed human arm be-
haves as a passive system. While Hogan’s finding has profoundly
impacted teleoperation system stability analysis, several important
questions remain unanswered:

• Hogan demonstrated that the human arm’s static stiffness
is indeed passive, but is passivity still maintained when a
dynamic impedance model including inertia and viscosity is
used for a more complete characterization of arm impedance?

• Is passivity maintained if the arm is not relaxed, but executes
a motor control task instead?

• How does the experimental protocol used to identify the arm
impedance influence the passivity analysis? Can different robot-
applied perturbation signals elicit passive or non-passive be-
haviour from the human arm?

• Can we quantitatively measure how passive or active a hu-
man operator is and take advantage of this information to
improve teleoperation system performance?

These questions will be the focus of both this chapter and the
one to follow.

3.3 mathematical preliminaries

3.3.1 Passivity and Stability Analysis

The concept of passivity of a system is formally defined below.

definition 3 .1: Consider the following inequality for a system with
input signal U(t) .

= [u1(t) u2(t) . . . un(t)]T and output signal Y(t) .
=

[y1(t) y2(t) . . . yn(t)]T: Mathematical
definition of
passivity∫ t

0
Y(τ) ·U(τ)dτ ≥ β + δ

∫ t

0
U(τ) ·U(τ)dτ, (3.1)

1. If there exists a constant β such that this inequality holds for all
t ≥ 0 with δ = 0, the system is said to be passive. The constant β

accounts for the system’s initial energy at t = 0.

2. Furthermore, if the inequality holds for all t ≥ 0 with a constant
δ > 0, the system is input strictly passive with excess of passivity
(EOP) equal to δ [86].
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3. If the inequality holds for all t ≥ 0 with a constant δ < 0, the sys-
tem is input non-passive1 with shortage of passivity (SOP) equal
to λ = −δ.

The transfer matrix of any passive multiple-input multiple-output
(MIMO) linear time-invariant (LTI) system is positive real as defined
below.

definition 3 .2: [87, 88] An n× n rational transfer function matrix
Z(s) is positive real if: Passivity of a

transfer matrix
1. all finite poles of all elements of Z(s) are in Re{s} ≤ 0,

2. any pure imaginary pole jω0 of any element of Z(s) is a simple pole,
and the residue matrix lims→jω0(s− jω0)Z(s) in the case that ω0

is finite, and limω→∞ B(jω)/jω in the case that ω0 is infinite,2 is
positive semidefinite Hermitian, and

3. for all real positive frequencies ω for which jω is not a pole of any el-
ement of Z(s), the matrix H(jω)

.
= Z(jω) + ZT(−jω) is positive

semidefinite.

The concepts of EOP and SOP may also be related to a system’s
transfer matrix through the following theorem.

theorem 3 .1: [90] Consider a MIMO system with an n× n transfer
matrix Z(s), where the poles of all elements have negative real parts. The EOP or SOP of a

transfer matrixsystem is input strictly passive with EOP of δ > 0 if and only if H(jω) =

ZT(−jω) + Z(jω) ≥ 2δI, where I is the identity matrix. Similarly, for
an input non-passive system with SOP of λ > 0, H(jω) ≥ −2λI.

Definitions 3.1 and 3.2 suggest two ways of assessing the arm’s
passivity:

integral approach The first directly calculates the energy ab-
sorbed by the arm according to (3.1). For the human arm modelled
as an impedance in a teleoperation system, the input and output
signals are velocity and force, respectively. Therefore, the integral∫ t

0 Fh(τ) · Ẋ(τ) dτ is numerically evaluated for the duration of a
trial. Assuming β = 0, if this integral increases over time, energy
is being absorbed by the arm indicating passive behaviour. If the
integral decreases, the arm is generating energy and being active.

1 The term “input non-passive” will be shortened to “non-passive” or “active” in
subsequent use.

2 Any improper element of Z(s) is said to have at least one pole at the point at
infinity and must satisfy this condition [89]. Unlike finite-valued complex poles,
poles at the point at infinity need not occur in complex conjugate pairs.
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While this approach provides clear insight into passivity or activ-
ity for a specific set of force and velocity signals, it cannot be used to
draw incontrovertible conclusions about the arm’s passivity. To rig-
orously prove that the arm is passive with this approach, one would
need to evaluate the energy absorption integral for all possible in-
put and output signals over all time.

impedance model approach The second approach uses Def-
inition 3.2 to mathematically examine the passivity of an identified
transfer matrix model of the arm’s impedance. This allows the pas-
sivity analysis to be generalized to arbitrary inputs and outputs,
but requires a model to be identified accurately.

3.3.2 Arm Impedance Modelling

The human arm’s endpoint impedance may be represented in a
Cartesian plane by the following model: Cartesian model of

human arm
impedanceMẌ(t) + BẊ(t) + K (X(t)− X0) = −Fh(t), (3.2)

where X(t) = [x(t) y(t)]T is the hand position, X0 = [x0 y0]T

is the hand’s equilibrium position commanded by the CNS, and
Fh = [ fx(t) fy(t)]T is the force the hand exerts on the robot. These
position and force vectors are measured in a Cartesian coordinate
frame originating at the subject’s shoulder, as shown in Fig. 3.3.
The matrices

M .
=

[
mxx mxy

myx myy

]
, B .

=

[
bxx bxy

byx byy

]
, and K .

=

[
kxx kxy

kyx kyy

]
, (3.3)

which represent the hand inertia, damping, and stiffness, respec-
tively, contain real-valued constants for the Cartesian plane of mea-
surement. This planar model is sufficient to capture the relative
contributions of the shoulder, elbow, and biarticular muscles to
the overall limb impedance without necessitating the experimental
complexity of a full three-dimensional measurement [91].

Equation 3.2 is derived from a simplified representation of the
arm’s neuromusculoskeletal structure as Dolan et al. detail in [66],
but it may also be interpreted as a second-order Taylor-series lin-
earization of an arbitrary nonlinear impedance model. Therefore,
the model can accurately describe the lumped effects of impedance
contributions from the arm’s intrinsic physical properties and in-
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voluntary reflex responses only for small perturbations about the
constant equilibrium position X0.

This second-order model was selected for three reasons. First, it
has been previously shown to successfully capture the endpoint
impedance of the relaxed arm (e.g., [66] and [77]). Second, this
model is particularly amenable to assessing passivity as the param-
eters afford direct physical interpretation. Finally, it encompasses
the stiffness model in Hogan’s influential paper on human operator
passivity, which may be obtained by setting the M and B matrices
to zero [6].

For passivity analysis, the relation between the power-conjugate
variables of force and velocity is required. Taking the Laplace trans-
form of (3.2) and defining Fh(s)

.
= L{Fh(t)} and V(s) .

= L{ d
dt (X(t)−

X0)} = L{ d
dt X(t)} allow the impedance to be represented by a

transfer matrix: Transfer matrix
model of human arm
impedance

Z(s) =


mxxs2 + bxxs + kxx

s
mxys2 + bxys + kxy

s
myxs2 + byxs + kyx

s
myys2 + byys + kyy

s

, (3.4)

with Fh(s) = Z(s)V(s).

3.4 experimental protocols

3.4.1 Experiment Setup

Human arm impedance measurements were performed with a 2-
DOF planar rehabilitation robot (Fig. 3.2) manufactured by Quanser,
Inc. (Markham, Ontario, Canada). The robot’s capstan drive mech- Robot specifications

anism makes it readily back-drivable with low friction and iner-
tia. At its end-effector, the robot can exert forces in excess of 50 N
throughout its semicircular workspace, and the motors’ optical en-
coders provide a Cartesian resolution of better than 0.002 mm in
position measurement. Position control was provided by a joint-
domain proportional-derivative controller. Details of the robot’s
kinematics and dynamics are provided in Appendix A. A 6-DOF

force/torque sensor (Gamma Net, ATI Industrial Automation, Apex,
NC, USA) connected to the distal link measured human-robot inter-
action forces. All data logging and robot control actions occurred
with a 1 kHz sampling frequency.
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Figure 3.2: The upper-limb planar rehabilitation robot used in the exper-
iments. The system’s emergency stop button is shown at the
left.

3.4.2 Data Collection

For arm impedance identification, data was collected from six parti-
cipants3 with no history of motor impairment, one of whom was
left-handed and one of whom was female. Participants ranged in
age from 23 to 38 years, with an average age of 28.2 years. All sub-
jects provided informed consent to the experimental procedures,
which were reviewed and approved by the University of Alberta
Research Ethics Board (Study ID: Pro00033955). A copy of the Con-
sent Form is included in Appendix B.

In each trial, the participant sat in front of the robot with his or
her right forearm strapped to a support (Fig. 3.3). The participant’s
elbow was supported against gravity by a sling attached to a 2 m
rope connected to the ceiling. All data was collected at a shoulder-
height test location (x = 0 cm, y = 52 cm) in the coordinate frame
aligned at the participant’s shoulder joint. A belt restrained the
participant’s torso to prevent translation of the upper body, which

3 As will be discussed in more detail in Section 4.4, participants’ activity or passivity
depends on the task they perform. However, for a given task, every participant was
found to show the same characteristics of passive or active behaviour. A sample
size of six subjects was therefore sufficient to capture the salient characteristics of
human operator passivity or activity in our experiments.
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sling 

emergency stop button 

force/torque sensor 

forearm support 

shoulder restraint belt 

x 
y 

Figure 3.3: Experimental apparatus for impedance measurements on the
relaxed arm. The origin of the Cartesian coordinate frame is
shown at the subject’s shoulder.

would have undermined the accuracy of the arm position measure-
ments.

Each participant was instructed to relax his or her arm while the
robot applied position perturbations to the hand, just as a human
operator in a teleoperation system might relax his arm to enhance
perception of force feedback from the environment. Position pertur-
bations were used in lieu of force perturbations to ensure that the
participant’s hand did not drift away from the test location while
data was collected, keeping X0 in Equation 3.2 constant. The parti-
cipants were instructed to rest their hand on the forearm support
without voluntarily squeezing the robot’s handle, since gripping
can amplify the arm’s impedance [64]. The following two types of
perturbation signals were applied.

sinusoidal perturbations Each of the robot’s joints was set
to track a reference position comprising the sum of ten sinusoids
with frequencies from 0 to 3 Hz. This bandwidth was selected to
avoid triggering instabilities in the robot’s position controller or ex-
citing resonances in the mass-spring system used to validate the
impedance identification technique. Each joint moved through an
angular range of 4◦, causing the robot’s end-effector to remain
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within a circular region 2 cm in diameter. Each trial was 50 s in
duration.

underdamped perturbations Inspired by the work of Dolan
et al. [66], the robot applied step-like, rapidly-rising, underdamped
position perturbations to the subject’s hand. As in Dolan’s work,
these perturbations were generated by passing a 5 mm position
step signal through the underdamped system

G(s) =
ω2

n
s2 + 2ζωns + ω2

n
(3.5)

with a damping ratio ζ = 0.1 and natural frequency ωn = 15 s−1.
Hand displacements of up to 11 mm were observed during the
transient portion of the motion. Two perturbations were applied in
each of 8 directions spaced evenly at 45◦ intervals around a circle,
for a total of 16 perturbations per trial.4 To reduce any subcon-
scious intervention on the part of the participant, the 16 pertur-
bations were applied in random order. For the same reason, each
perturbation’s duration (1.5–2.0 s) and onset time (2.0–7.0 s after
the previous perturbation) were selected randomly. Following each
perturbation, the robot’s position controller gently moved the parti-
cipant’s hand back to the test location such that each subsequent
perturbation was delivered from the same initial position.

A total of four sinusoidal perturbation trials were performed for
each of the six participants. An additional four underdamped per-
turbation trials were collected from two participants. Segments of
typical data are shown in Fig. 3.4.

3.5 analysis

3.5.1 Data Preprocessing

Identifying the arm impedance model of (3.2) requires accurate
records of Ẋ(t) and Ẍ(t). Finite-differencing and low-pass filter- Finite-differencing

and state-variable
filtering failed to
yield accurate
derivatives

ing of position data was found to be insufficiently noise-robust for
this task, as the low-pass filter’s cutoff frequency needed to be indi-
vidually tuned for each dataset to obtain reasonable results. There-
fore, the state-variable filter differentiation approach employed in

4 Additional experiments were performed with two underdamped perturbations
evenly spaced in 16 directions about a circle, for a total of 32 perturbations per
trial. However, doubling the number of perturbation directions was not found to
change the identified impedance values.
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Figure 3.4: Typical force and position signals for the relaxed arm with (a)
sinusoidal perturbations and (b) underdamped perturbations.
The force sensor measures the force exerted by the human on
the robot. Dashed lines indicate the position perturbation sig-
nals input to the robot’s controller. Signals have been low-pass
filtered for noise suppression.
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the arm impedance identification experiments of Dolan et al. [66]
was implemented. In this technique, an ideal differentiator is cas-
caded with a second-order transfer function whose parameters are
selected to mirror the frequency-domain properties of the position
data. Unfortunately, the identified impedance values were found
to be very sensitive to the selection of these transfer function pa-
rameters, and the approach affords no straightforward means of
identifying an “optimal” parameter set.

We developed a more robust differentiation approach that used
a Savitzky-Golay filter [92] to remove noise from all measured sig- Derivatives were

calculated with a
Savitzky-Golay filter

nals and calculate their derivatives. To the best of our knowledge,
this is the first time these filters have been employed in the context
of human arm impedance identification. This non-causal filtering
technique fits a smooth Nth-order polynomial to a window of W
consecutive data points. By ensuring W � N, the least-squares
fitting process smooths out any random fluctuations in the unfil-
tered signal. The polynomial is evaluated and differentiated at the
center of the window to yield both the smoothed signal and its
time derivatives at the corresponding time instant. The window is
subsequently advanced forward by one sampling interval, and the
algorithm is repeated until the entire signal has been processed by
the filter. The filter’s normalized 3 dB cutoff frequency can be esti-
mated from the formula [93]

fc =
ωc

π
∼=

N + 1
1.6W − 4.6

where W ≥ 51 and N <
W − 1

2
. (3.6)

Through empirical evaluation, a filter with N = 6 and W = 101
was found to yield optimal results.

To enhance the noise-suppression characteristics of the Savitzky-
Golay filter, its three outputs (i.e., the smoothed signal and its
first and second derivatives) were passed through a zero-phase
5th-order Butterworth low-pass filter (MATLAB function filtfilt).
The cutoff frequency was set at 5 Hz as the data collected in this A Butterworth

low-pass filter was
added for enhanced
noise suppression

study was found to have negligible content at higher frequencies.
Fig. 3.5 shows the magnitude response of combined Savitzky-Golay
smoothing and Butterworth low-pass filtering operations (herein re-
ferred to as the “smoothing filter”) and the combined Savitzky-Golay
first and second derivative and Butterworth low-pass filtering op-
erations (termed the “first derivative filter” and “second derivative fil-
ter”). The smoothing filter maintains a magnitude response near
unity over the 5 Hz bandwidth of the movement data, but drops to
zero at higher frequencies for noise suppression. Similarly, the dif-
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ferentiation filters closely match the ideal differentiator responses
at low frequencies but decay to zero at higher frequencies.
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Figure 3.5: Combined frequency response magnitude for the smoothing
filter and differentiation filters, each formed by a combination
of Savitzky-Golay filtering and zero-phase Butterworth low-
pass filtering. The ideal differentiator responses are depicted
by thin dashed lines.

Fig. 3.6 validates these filters for a 10 s segment of x-axis position
data. This Cartesian position signal is calculated from joint encoder
data using the robot’s forward kinematics. The top plot shows
the position signal and the double-integrated (MATLAB function
cumtrapz) acceleration from the second-derivative filter. The two
signals agree exceptionally well. The middle plot demonstrates that The Savtikzy-Golay

filter calculates
derivatives with
excellent accuracy.

the velocity signal from the first derivative filter likewise agrees
with the integrated acceleration from the second-derivative filter.
Finally, the bottom plot indicates that the acceleration signal from
the second-derivative filter agrees with the acceleration measured
by an accelerometer (ADXL-203, Analog Devices, Norwood, MA,
USA).

3.5.2 Impedance Identification

The matrices M, B, and K and equilibrium position X0 were iden-
tified by linear least-squares regression. Prior to identification, the
force signal Fh(t) and position signal X(t) were passed through the
smoothing filter for noise suppression. The velocity Ẋ(t) and ac-
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celeration Ẍ(t) were obtained from the first and second derivative
filters.

Inertial impedance contributions arose from both the inertia of The mass of the
wrist support was
removed from the
identified inertia

the human arm and the inertia of the wrist support with mass
Λ = 194 g. To remove the effects of the wrist support from the
identified impedance, impedance was identified by applying the
least-squares procedure to

(M + ΛI) Ẍ(t) + BẊ(t) + K(X(t)− X0) = −Fh(t), (3.7)

where I is the 2× 2 identity matrix.
Appendix C provides MATLAB code to preprocess the raw data

and identify model parameters.

3.5.3 Validation of Identification Technique

The data collection and impedance measurement techniques were
validated against the mechanical mass-spring system described in The identification

technique was
validated against a
mass-spring system
of known impedance

Appendix D. The robot’s end-effector was connected to an inertial
payload and a planar array of linear mechanical springs (Fig. 3.7).
Since this system did not include mechanical dampers, the impe-
dance model of (3.2) reduces to

MẌ(t) + K (X(t)− X0) = −Fh(t), (3.8)

where X0 is the equilibrium position of the spring configuration
and M and K have the simplified structure

M .
=

[
m 0

0 m

]
, K .

=

[
kxx ks

ks kyy

]
. (3.9)

Note that the inertia matrix is diagonal with equal elements and
the stiffness matrix is symmetric.

The robot applied underdamped5 position perturbations (5 mm
steady-state amplitude) to the mass-spring system with six differ-
ent impedance configurations. Although a two-dimensional spring
array has a nonlinear stiffness field, the stiffness could be approx-
imated by (3.8) – (3.9) for small perturbations. Table 3.1 lists the
theoretical stiffness (comprising kxx, kyy, ks, and X0 values calcu-
lated from independent measurements of the spring constants as

5 Sinusoidal perturbations estimated the mass-spring system impedance with simi-
lar accuracy—these result are discussed in detail in Chapter 5.
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inertial payload 

spring array 

force sensor 

Figure 3.7: Measuring the impedance of a spring array and an inertial
payload that simulate the human arm.

Table 3.1: Theoretical impedance values for the mass-spring system.

Impedance

Config.
Stiffness Values (N/m) X0 (mm) Inertia Value (kg)

kxx kyy ks x0 y0 m

1 443.86 232.34 16.74 393 -55 0.293

2 427.08 273.83 37.87 407 35 0.539

3 310.43 306.69 -101.75 448 61 0.786

4 402.95 262.68 -69.14 418 -53 1.031

5 260.70 404.66 -73.49 343 29 1.279

6 233.32 464.70 -17.40 420 -8 1.527
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discussed in Appendix D) and inertia (comprising m values mea-
sured by weighing the payloads) for each of the six configurations.

The identified X0 values were always within 21 mm of the the-
oretical equilibrium positions. Fig. 3.8 demonstrates that the tech-
nique estimated the stiffness and inertia matrix elements with good
accuracy. The fact that kyy and m were always slightly overesti-
mated indicates the presence of some systematic error, but this is
anticipated due to unmodelled system dynamics such as friction
and approximations inherent in calculating the theoretical stiffness
value from empirically-determined spring constants.6 Nevertheless,
the identification technique generally captures the impedance of
the mass-spring system well.
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Figure 3.8: Comparison of identified and theoretical impedance param-
eters for the mass-spring system with underdamped per-
turbations. Standard error bars are smaller than the data
points. Data points in perfect agreement with theoretical val-
ues would lie on the straight line.

6 A more detailed discussion of the sources of error in the mass-spring system
impedance measurement is provided in Section 5.3.
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3.5.4 A Note on Sampling Interval

In arm impedance identification literature, it is common to record
data at sampling rates of 1 kHz or above [18, 80, 83, 94]. Since the A high sampling

rate did not
compromise
identification
accuracy

arm’s bandwidth is much smaller, this may raise concerns about
oversampling. For instance, a sampling interval that is too small
can over-emphasize noise in the identification signals and make
model determination more sensitive [95]. Therefore, the identifica-
tion was repeated with the signals downsampled to 100 Hz. This
was found to have negligible impact on the identified impedance
models, verifying that oversampling had not compromised the mod-
els’ accuracy.

3.6 results

In this section, the arm impedances identified with sinusoidal per-
turbations for the six participants are presented and used to plot
impedance ellipses to compare our findings with previous studies.
The data is subsequently analyzed for passivity and compared and
contrasted against the impedances identified with underdamped
perturbations for two of the subjects.

3.6.1 Sinusoidal Perturbations

Table 3.2 shows the impedance matrices for each subject identified
with sinusoidal perturbations. The first 40 s of each data set was
used for identification, while the final 10 s were used to validate
the model through the variance accounted for (VAF) test statistic:

VAF = 100×

1−
var

(
fh(t)− f̂h(t)

)
var ( fh(t))

 , (3.10)

where fh(t) is the x or y component of Fh(t) measured by the force
sensor and f̂h(t) is the corresponding external force component pre-
dicted by the identified impedance model. A VAF of 100% indicates
that the model describes the data perfectly, while lower scores in-
dicate a progressively poorer model fit. The fact that the VAF val-
ues were typically above 97% and never below 92% indicates that
the second-order Cartesian model in (3.2) described the data very
well. Standard errors were small in comparison to parameter mag-
nitudes, indicating good reproducibility across trials. As expected
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for the relaxed arm, the equilibrium positions X0 coincided with
the test location at (x = 0 cm, y = 52 cm).

3.6.1.1 Impedance Ellipses

To visualize the identified impedances, the M, B, and K matrices
in (3.3) may be separated into a symmetric and an antisymmetric
component as

Ks =

[
kxx

kxy+kyx
2

kyx+kxy
2 kyy

]
, Ka =

[
0 kxy−kyx

2
kyx−kxy

2 0

]
, (3.11)

such that K = Ks + Ka (and similar for M and B). The antisym-
metric portion Ka is described by the magnitude of its off-diagonal Symmetric and

antisymmetric
impedance

elements. The symmetric portion Ks may be visualized by multi-
plying a rotating unit displacement[

x

y

]
=

[
cos(t)

sin(t)

]
0 < t ≤ 2π (3.12)

(or one of its derivatives for damping and inertia) by the symmetric
matrix component and plotting the resulting force vectors [63,66]. If Generation of an

impedance ellipsethese vectors are plotted so that their tips meet at the same location,
their tails will lie on an ellipse as shown in Fig. 3.9.

x

y

(a)

fx

fy
λmax

λmin

θ 

(b)

Figure 3.9: Generating an impedance ellipse: (a) a rotating unit vector is
multiplied by the symmetric component of an impedance ma-
trix to produce (b) restoring force vectors whose origins form
an impedance ellipse. The forces are only collinear with dis-
placements applied along the ellipses’ major and minor axes.
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The ellipse’s major axis is the direction of highest impedance and
its minor axis is the direction of lowest impedance. The restoring
force vectors will only be collinear with perturbation applied along
the ellipse’s major or minor axes, which are called the eigenvectors
of the symmetric inertia, damping, or stiffness matrix. The corre-
sponding impedance values along these directions are known as
the eigenvalues λmax and λmin of the matrix.

The ellipse is characterized by three parameters: its area, shape,
and angle. The enclosed area A is proportional to the symmetric Three ellipse

parametersmatrix’s determinant and represents the overall magnitude of the
symmetric impedance component. The shape R is the ratio of the
ellipse’s major and minor axes. Higher shape values indicate larger
anisotropy in the force field. Finally, the orientation θ is the angle
between the ellipse’s major axis and the x-axis. For a symmetric
impedance matrix

Z =

[
zxx zs

zs zyy

]
, (3.13)

these parameters may be calculated as follows [66]:

λmax,min =
1
2

[
zxx + zyy ±

√
(zxx + zyy)2 + 4(z2

s − zxxzyy)

]
(3.14)

A = πλminλmax (3.15)

R =
λmax

λmin
(3.16)

θ = atan
(

λmax − zxx

zs

)
. (3.17)

Fig. 3.10 shows the inertia, damping, and stiffness ellipses for
Partipicant P1’s data in Table 3.2 along with his arm configuration
during the relaxed grasping task. Impedance ellipses for the re- Ellipse

characteristics agree
with previous
studies

maining subjects are shown in Fig. 3.11. The corresponding ellipse
parameters are listed in Table 3.3. The ellipse orientation and shape
were quite consistent across subjects. However, as seen in previous
studies, the size of the ellipses varied substantially from one parti-
cipant to the next. In agreement with Tsuji et al. [77], the major axes
of the inertia ellipse was roughly oriented along the forearm axis,
while the major axis of the stiffness ellipse was generally oriented
towards the shoulder. As Dolan et al. found [66], the damping el-
lipse angle was oriented between the stiffness and inertia ellipses
in a majority of cases and, in agreement with Tsuji et al., was gener-
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ally oriented more closely to the stiffness ellipse. Thus, we can con-
clude that while the overall magnitude of arm impedance may vary
between individuals, there are common patterns in its anisotropic
properties across participants.
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Figure 3.10: Impedance ellipses and arm configuration for Participant P1.
For size comparison, the reference circle at left shows the el-
lipse that would be generated by an isotropic inertial, damp-
ing, or stiffness force field with the indicated impedance val-
ues along the x and y directions.

Table 3.3: Ellipse parameters from the data in Table 3.2 for the six parti-
cipant’s relaxed arms. Area A is in square-newtons, angle θ is
in degrees, and shape R is dimensionless.

Participant
Inertia Damping Stiffness

A R θ A R θ A R θ

P1 5.1 4.1 126.7 176.8 2.3 110.9 14139.5 4.0 107.3

P2 3.5 4.1 134.0 144.3 2.4 118.6 12251.8 4.1 112.8

P3 5.4 3.9 132.3 162.9 2.9 118.1 10981.1 4.0 109.6

P4 5.1 4.5 128.6 111.3 3.5 116.4 11554.9 7.5 108.5

P5 5.5 4.2 123.5 159.8 3.2 107.7 17693.1 5.2 102.1

P6 3.9 3.9 125.1 76.2 3.0 103.7 4892.9 6.5 106.9
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 1.5 kg
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Figure 3.11: Impedance ellipses from the data in Table 3.2 for the six parti-
cipant’s relaxed arms. The reference circle at the top shows
the ellipse that would be generated by an isotropic inertial,
damping, or stiffness force field with the indicated impe-
dance values along the x and y directions.
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3.6.1.2 Passivity Analysis

As was discussed in Section 3.3.1, the arm’s impedance may be
analyzed through the model-based approach or the integral ap-
proach. For the model-based approach, we can determine whether Analytical passivity

conditionsthe impedance is passive (i.e., whether the identified transfer ma-
trix is positive-real) by applying the following theorem.

theorem 3 .2: Consider transfer matrix Z(s) of the form in (3.4). Let
ka

.
=

kxy−kyx
2 and ma

.
=

mxy−myx
2 . Then, Z(s) is positive real if and only if

all of the following conditions are satisfied:

ka = 0 (3.18)

kxx ≥ 0 (3.19)

kxxkyy ≥ kxykyx (3.20)

ma = 0 (3.21)

mxx ≥ 0 (3.22)

mxxmyy ≥ mxymyx (3.23)

bxx ≥ 0 (3.24)

4bxxbyy ≥ (bxy + byx)
2. (3.25)

Proof. The transfer matrix Z(s) is positive real if and only if it satis-
fies the three parts of Definition 3.2.

1. All finite poles of all elements of Z(s) are in Re{s} ≤ 0.

Since

Z(s) =


mxxs2 + bxxs + kxx

s
mxys2 + bxys + kxy

s
myxs2 + byxs + kyx

s
myys2 + byys + kyy

s

,

each element has a finite pole at s = 0 and a pole at infinity.
The pole at s = 0 has zero real part, so the first part of the
definition is satisfied.

2. Any pure imaginary pole jω0 of any element of Z(s) is a simple pole,
and the residue matrix lims→jω0(s− jω0)Z(s) in the case that ω0

is finite, and limω→∞ B(jω)/jω in the case that ω0 is infinite, is
positive semidefinite Hermitian.
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The poles of all elements are simple poles. The residue ma-
trix for the pole at s = 0 is

lim
s→0

(s)Z(s) = lim
s→0

mxxs2 + bxxs + kxx mxys2 + bxys + kxy

myxs2 + byxs + kyx myys2 + byys + kyy


=

[
kxx kxy

kyx kyy

]
.

To be Hermitian, we must have kxy = kyx, giving rise to con-
dition (3.18):

ka = 0.

Since this matrix is Hermitian if ka = 0, being positive semidef-
inite is equivalent to having nonnegative leading principal
minors. This yields conditions (3.19) and (3.20):

kxx ≥ 0, and

kxxkyy − kxykyx ≥ 0⇒ kxxkyy ≥ kxykyx.

The residue matrix for the pole at infinity is

lim
ω→∞

Z(jω)

jω
= lim

ω→∞

mxx +
bxx

ω
− kxx

ω2 mxy +
bxy

ω
−

kxy

ω2

myx +
byx

ω
−

kyx

ω2 myy +
byy

ω
−

kyy

ω2


=

[
mxx mxy

myx myy

]
.

Following the same reasoning as for the pole at s = 0, this
leads to conditions (3.21) – (3.23):

ma = 0,

mxx ≥ 0, and

mxxmyy ≥ mxymyx.

3. For all real positive frequencies ω for which jω is not a pole of any
element of Z(s), the matrix H(jω)

.
= Z(jω) + ZT(−jω) is posi-

tive semidefinite.
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We find

H(jω) = Z(jω) + ZT(−jω)

=

 2bxx 2ma jω + bxy + byx +
2ka

jω

−2ma jω + bxy + byx −
2ka

jω
2byy

 .

It is straightforward to show that H(jω) is Hermitian, so in
order for the matrix to be positive semidefinite its leading
principal minors must be nonnegative. The first principal mi-
nor yields condition (3.24):

2bxx ≥ 0⇒ bxx ≥ 0.

Taking advantage of the restriction that ka = 0 and ma = 0,
the second principal minor simplifies to

4bxxbyy − (bxy + byx)(bxy + byx).

For this expression to be nonnegative, it must satisfy condi-
tion (3.25):

4bxxbyy ≥ (bxy + byx)
2.

Theorem 3.2 affords straightforward physical interpretation. The
sets of conditions (3.18) – (3.20), (3.21) – (3.23), and (3.24) – (3.25),
state that the diagonal elements of the stiffness, inertia, and damp-
ing matrices must be positive for passivity. This means that the Physical meaning of

passivity conditionsforces generated by the arm’s impedance should oppose imposed
motion (i.e., dissipate mechanical energy, a passive behaviour) rather
than amplify it (i.e., generate energy). Conditions (3.18) and (3.21)
indicate that the stiffness and inertia matrices must have zero an-
tisymmetry. It can be shown that the symmetric portions of the
inertia and stiffness matrices may be associated with passive force
fields that are conservative and have zero curl. The antisymmet-
ric portions of these matrices, however, give rise to force contribu-
tions with non-zero curl, indicating that the hand could continu-
ously generate power by following an appropriate closed-loop tra-
jectory [6]. No antisymmetry condition is imposed on the damping
matrix since damping forces are always dissipative and can never
be associated with a conservative force field.
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Hogan has argued that antisymmetry in the relaxed arm is the
result of intermuscular feedback with unequal gains [91]. This phe-
nomenon can occur in healthy subjects and could be especially pro-
nounced in patients with motor control pathologies. However, in
practice, random measurement and identification errors will always
cause an identified stiffness and inertia to have antisymmetric com-
ponents, even when data is collected from the mass-spring system
which is known to be passive. Therefore, one must compare the rel-
ative magnitudes of the forces arising from the symmetric and an-
tisymmetric components of stiffness and inertia to assess whether
any antisymmetry in the identified matrices is an accurate reflec-
tion of the arm’s biomechanics or merely the result of identification
error. If the antisymmetric force contributions are sufficiently small,
they may be attributed to random errors and neglected in the pas-
sivity analysis. Fig. 3.12 plots the magnitude of the symmetric and
antisymmetric force components for Participant P1’s stiffness ma-
trix in Table 3.2. The plot clearly shows that the force contributions Antisymmetric

stiffness and inertia
forces are negligibly
small

from the antisymmetric stiffness are negligibly small compared to
the forces from the symmetric portion of the stiffness. The plot for
the participant’s inertia matrix (not shown) is similar.

50 N

(a) (b)

Figure 3.12: Force contributions from the (a) symmetric and (b) antisym-
metric components of the stiffness matrix for Participant P1,
whose antisymmetry was found from (3.26) to be 11.5%. The
forces are plotted in response to 1 m unit displacements. The
arrow shows the length of a 50 N force vector.

The relative contribution of the antisymmetric stiffness may be
quantified by the ratio of the magnitude of the off-diagonal term
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of the antisymmetric stiffness matrix ka =
|kxy−kyx |

2 to the maximum
and minimum eigenvalues of the symmetric stiffness matrix zmin

.
=

ka/λmax and zmax
.
= ka/λmin. A single antisymmetry measure is

then given by the geometric mean of these values [63, 66]:

zmean =
√

zminzmax. (3.26)

The same approach may be used to quantify antisymmetry in the
inertia matrix. Fig. 3.13 shows that zmean values for the stiffness ma-
trix were under 15% for all participants. In [6] and [63], which only
considered stiffness and neglected higher-order dynamics, zmean

values of this size (Fig. 3.13b) were found to give rise to antisymmet-
ric stiffness forces that were small in comparison to those originat-
ing from the symmetric stiffness term. This was confirmed in our
study—Fig. 3.12 verified that Pariticipant P1’s stiffness antisymme-
try of 11.5% gave rise to small antisymmetric force contributions,
and the corresponding stiffness force plots for other participants,
although not shown, were similar. Fig. 3.14 demonstrates that anti-
symmetry in the inertia matrices was even smaller than the stiffness
matrices. Therefore, only the symmetric components of stiffness
and inertia were considered in the passivity analysis throughout
this thesis.
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Figure 3.13: Percent antisymmetry in (a) the identified relaxed arm stiff-
ness matrices of the six participants, and (b) the stiffness data
of Mussa-Ivaldi et al. (Table II in [63]), which were considered
sufficiently small to be neglected.
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The arm was considered passive if the impedance Z(s) in (3.4), The impedance
models and energy
integrals for
sinusoidal
perturbations
confirmed the
relaxed arm is
passive

comprising the identified Ms, B, and Ks, satisfied the eight condi-
tions in Theorem 3.2. The results of this passivity analysis are also
recorded in Table 3.2. All of the data sets were found to be passive.
This agrees with Hogan’s analysis, and extends his results by estab-
lishing that a relaxed grasping task is passive when a full dynamic
model of impedance is employed in lieu of static stiffness alone.

This finding was confirmed by the integral approach. Fig. 3.15

shows a typical plot of the energy absorbed by each subject’s arm
over the course of a trial. The integral continually rises, demonstrat-
ing that the arm is absorbing rather than generating energy.
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Figure 3.14: Percent antisymmetry in the identified relaxed arm inertia
matrices of the six participants.
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Figure 3.15: A plot of the energy absorbed by each participant’s relaxed
arm during a typical trial with sinusoidal perturbations.

3.6.2 Underdamped Perturbations

Table 3.4 shows the impedance matrices identified for two parti-
cipants with underdamped perturbations. Recall that the under-
damped trials applied two sets of eight perturbations evenly spaced
around a circle, for a total of sixteen perturbations. To calculate
VAF values, a model was identified using only the first eight per-
turbations and validated against the remaining eight perturbations.
These VAF values were always above 88%, demonstrating that the
identification procedure yielded models that described the data
well.

The models were identified a second time using all sixteen per-
turbations to achieve even greater accuracy. The VAF values in Ta-
ble 3.4 are those from the models identified with eight perturba-
tions, while the impedance parameters are those of the models
identified with sixteen perturbations.

The fact that the VAF values are slightly lower than obtained with Underdamped
perturbations
yielded an
acceptable, but
slightly lower VAF

sinusoidal perturbations reflects the fact that the underdamped per-
turbations yielded less data for the identification procedure, mak-
ing it more difficult to identify an accurate impedance model. Since
each perturbation lasted a maximum of 2 s, a maximum of 16 s of
identification data was available when the model was identified
with eight perturbations as opposed to 40 s in the sinusoidal per-
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turbation case. Furthermore, the underdamped perturbations may
have been less persistently exciting than a signal comprised of mul-
tiple sinusoids. Nonetheless, the VAF values are still sufficiently
high to verify that the models did describe the arm well.

Fig. 3.16 shows the impedance ellipses for the underdamped per- Underdamped
perturbations
increased identified
damping magnitude
but did not affect
ellipse shape or
orientation

turbation data, with the corresponding ellipse parameters listed in
Table 3.5. Comparing this table against Table 3.3, we see that the
underdamped perturbations generally caused the damping magni-
tude to increase (indicated by a larger damping ellipse area), while
the inertia and stiffness magnitudes decreased. The ellipses’ shapes
and orientations were not substantially affected by the different per-
turbation types.

Most importantly, Table 3.4 confirms that the relaxed arm impe- The impedance
models and energy
integrals confirmed
the relaxed arm is
passive

dance was still found to be passive when underdamped perturba-
tions were used. Passivity is confirmed by the energy integral plots
in Fig. 3.17, which indicate that the arm absorbed energy over the
course of each trial.

 1.5 kg
10.0 Ns/m
 75.0 N/m

y

 x

 

 

Inertia

Viscosity

Stiffness

(P1) (P4)

Figure 3.16: Impedance ellipses from the data in Table 3.4 for the two
participant’s relaxed arms.
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Table 3.5: Ellipse parameters from the data in Table 3.4 for the two parti-
cipants relaxed arms. Area A is in square-newtons, angle θ is in
degrees, and shape R is dimensionless.

Participant
Inertia Damping Stiffness

A R θ A R θ A R θ

P1 2.9 5.9 125.6 385.7 1.7 101.4 13026.4 5.4 105.7

P4 3.6 4.6 135.7 165.0 3.1 118.0 10994.4 6.0 114.9
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Figure 3.17: A plot of the energy absorbed by each participant’s relaxed
arm during a typical trial with underdamped perturbations.
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3.6.3 Excess of Passivity

Knowing that the arm is indeed passive in a relaxed grasping task,
does it also satisfy the more stringent requirement of being input
strictly passive with an excess of passivity? To answer this question,
we considered the impedance transfer function

Z(s) =


mxxs2 + bxxs + kxx

s
mss2 + bxys + ks

s
mss2 + byxs + ks

s
myys2 + byys + kyy

s

, (3.27)

where ms
.
=

mxy+myx
2 and ks

.
=

kxy+kyx
2 . As justified in Section 3.6.1.2,

this transfer matrix excludes stiffness and inertial antisymmetry
from the passivity analysis. Theorem 3.1 states that this transfer
matrix has an EOP of δ if and only if H(jω)

.
= Z(jω) + ZT(jω) ≥

2δI. For a system that is merely passive with no EOP—such as the
mass-spring model of (3.8)—this inequality can only be satisfied
for δ = 0.

Using the identified impedances in Table 3.2 and Table 3.4, the The relaxed arm has
an excess of
passivity

maximum value of δ was found such that the inequality held for
all frequencies. As listed in Table 3.6, values ranging from 4.3 to 7.2
were obtained for different participants, indicating that the relaxed
arm is not only passive, but also shows a sizeable EOP. Chapter 4

illustrates how this passivity excess may be exploited to improve
the performance of a teleoperation system.

Table 3.6: EOP values for the relaxed arm.

Perturbation Type Participant EOP (δ)

Sinusoidal

P1 5.7
P2 5.3
P3 6.1
P4 5.6
P5 6.3
P6 4.3

Underdamped
P1 7.2
P4 6.4
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3.7 discussion

The results not only confirm Hogan’s finding that the human arm
behaves as a passive system during a relaxed grasping task, but
also extend this result to the case where a second-order dynamic
model of the arm’s endpoint impedance is considered in lieu of
static stiffness alone. Hogan’s passivity analysis simply considered The results extend

Hogan’s findings to
include a dynamic
impedance model

whether the identified stiffness matrices had non-neglible antisym-
metric components. This chapter built upon this approach by pro-
viding a rigorous mathematical derivation of analytical conditions
that the elements of a second-order mass-spring-damper impedance
model must satisfy in order for it to be passive.

Intuitively, it makes sense that the relaxed arm should behave
as a passive system. When an individual completely relaxes his
arm, it by and large acts as “dead weight” that resists any imposed
motions—a passive behaviour. While it is true that the inherent
spring-like properties of muscular tissues and involuntary reflex re-
sponses could cause the arm to momentarily generate energy even
when it is relaxed (this can be seen in the small, momentary de-
creases in the energy integral plotted in Figs. 3.15 and 3.17), these
energy contributions are evidently sufficiently small such that the
relaxed arm’s overall behaviour is passive.

The comparison of the sinusoidal and underdamped perturba-
tions demonstrated that the design of perturbation signals can in-
fluence the magnitude of the identified impedance. Since both per-
turbation types had similar performance when estimating the impe-
dance of the mechanical mass-spring system, these fluctuations are
not the result of the perturbations introducing inaccuracies into the
identification procedure. Rather, it seems that the apparent end- Reflex activity may

account for
impedance
variations with
different
perturbation types

point impedance of the arm actually does vary depending on how
it is perturbed. It is reasonable to conclude that the abrupt, step-
like underdamped perturbations could trigger higher levels of re-
flex activity compared to the slowly-varying sinusoidal perturba-
tions, which likely accounts for the differences in the measured
impedance.

3.8 summary

This chapter empirically confirmed previous work demonstrating
that the relaxed human arm behaves as a passive system. This find-
ing was extended to the case of a second-order dynamic impedance
model and confirmed both through analysis of the impedance ma-
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trices and direct calculation of the energy absorbed by the arm.
While the the use of sinusoidal versus underdamped perturbations
to excite the arm for identification was found to influence the mag-
nitude of the identified stiffness, damping, and inertia, passivity
was maintained regardless of the type of perturbation used.

Although these results seem to lend credence to the common
assumption of human operator passivity in a teleoperation system,
it is crucial to emphasize that the participants in this study simply Does the passivity

assumption also
hold for more
complex tasks?

relaxed their arm while it was in contact with a robot. In a practical
telerehabilitation system, the human operator would be required
to execute much more complex motor control tasks. For instance,
a therapist might exert resistive forces against a patient to build
muscle strength. The validity of the passivity assumption when the
human operator resists motion will be investigated in the following
chapter.



4
R I G I D A R M I M P E D A N C E M E A S U R E M E N T A N D
PA S S I V I T Y A N A LY S I S

The previous chapter established the need to revisit the conven-
tional assumption of human operator passivity in teleoperation sys-
tem control and stability analysis. We verified that the assumption
holds when the operator relaxes his arm, but is it also valid for
more complex tasks?

This chapter investigates the passivity assumption for the case
of rigid grasping, in which the participants maintain their hands at
a set location in the face of destabilizing force perturbations. In a
telerehabilitation context for instance, a therapist may administer
strength training [96] by rigidly grasping the master robot to resist
motion as the patient pushes against the slave robot.

Section 4.1 presents the experimental protocols. Section 4.2 dis-
cusses the data analysis, with results shown in Section 4.3. The
arm is found to be active during a rigid grasping task with under-
damped force perturbations. The implications of these results are
discussed in Section 4.4. Section 4.5 outlines how Llewllyn’s abso-
lute stability criterion may be reformulated to apply to a human
operator with shortage of passivity. Concluding remarks are pro-
vided in Section 4.6.

4.1 experimental protocols

Data was collected from the same six participants of the previous
chapter. As in the relaxed grasping experiments (see Section 3.4.1),
each participant’s arm was strapped to the robot’s forearm support
and supported by a sling. Perturbations were delivered at a test
location 52 cm anterior to the shoulder. Unlike the relaxed grasp-
ing trials, a computer monitor displayed a circle representing the
robot’s handle position (i.e., the participant’s hand position) and
a circle corresponding to the test location. Using this visual feed- The participants

consciously opposed
movement away
from a prescribed
test location

back, each participant attempted to keep his or her hand centered
at the test location while the robot exerted force perturbations. If
the robot moved the hand away from the test location, the parti-
cipant was to move his or her hand back to the test location as
quickly as possible.

57
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Since the participants resisted the robot’s motion, force pertur-
bations were applied in lieu of position perturbations to prevent
the interaction forces from exceeding safe levels. The perturbations
were generated in open loop by translating the commanded Carte-
sian force into required motor torques through the robot’s Jacobian
transpose matrix. Two types of perturbations were applied:

underdamped perturbations Similar to the underdamped
position perturbations in the previous chapter, the robot applied a
series of 16 underdamped force perturbations in directions equally
spaced at 45◦ increments around a circle. The perturbations were
applied in random order, with random duration (1.5–2.0 s) and
onset time (2.0–7.0 s after the previous perturbation). These pertur-
bations were generated by passing a 2 N force step signal through
the underdamped system in (3.5). Peak interaction forces measured
during the transient phase of motion were approximately 6 N.

sinusoidal perturbations In parallel with the sinusoidal
position perturbations in the previous chapter, the applied force
signals in the x and y directions each comprised a sum of ten sinu-
soids with frequencies from 0 to 3 Hz and a peak amplitude of 6 N.
Each trial was 50 s in duration.

Four underdamped peturbation trials were collected from each
of the six participants, and additional sets of four sinusoidal per-
turbation trials were collected from three of the participants. A
segment of typical data from each perturbation type is shown in
Fig. 4.1.

4.2 analysis

The arm’s impedance was estimated by fitting the data to the same
second-order Cartesian model (3.7) that was used for the relaxed
arm. There is an important distinction in the physical meaning of
the identified values of M, B, K, and X0 between the relaxed and
rigid grasping tasks.

In both the relaxed and rigid grasping tasks, the data used to
identify human arm impedance is collected from a closed-loop sys-
tem (Fig. 4.2). The force sensor measures the total force the human
exerts on the robot, Fh = F∗h − ZhX, where F∗h is the human’s volun-
tary force contribution, Zh the human arm’s impedance, and X the
hand’s displacement from the test location.
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Figure 4.1: Typical force and position signals for the rigid arm with (a)
underdamped perturbations and (b) sinusoidal perturbations.
Dashed lines indicate the force perturbation signals the robot
is commanded to exert on the human. The force sensor mea-
sures the force exerted by the human on the robot. The measured
and perturbation force signals correspond to Fh and F∗r , respec-
tively, in Fig. 4.2b.
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Figure 4.2: System dynamics diagram for (a) a relaxed grasping task
with position perturbations (robot is closed-loop position con-
trolled) and (b) a rigid grasping task with force perturba-
tions (robot is open-loop force controlled). Human and robot
impedances are Zh and Zr, respectively. The force sensor mea-
sures Fh.
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During a relaxed grasping task as in Fig. 4.2a, the robot’s position
controller Cr tracks a reference perturbation signal X∗r , causing the
robot to apply a force F∗r to its end-effector and move to position X.
Since the human does not consciously intervene in a relaxed grasp-
ing task, his voluntary force contribution F∗h is zero. We therefore
have When the arm is

relaxed, we can
directly identify ZhFh = −ZhX. (4.1)

Since both Fh and X are measured, Zh can be identified directly
from the closed-loop data according to (3.7).

In the rigid grasping task, on the other hand (Fig. 4.2b), the hu-
man is instructed to minimize displacements (X∗h = 0) in the face
of robot-exerted force perturbations F∗r . These forces act on the ad-
mittance of the human arm and move the hand away from the
test location to a position X. Informed by visual feedback, the CNS

(modeled by position controller Ch in Fig. 4.2b) responds by caus-
ing the human to consciously exert a force F∗h to counteract this
motion. A negative feedback loop from −Fh to X thus exists, with
Z−1

h in the feedforward path and Ch in the negative feedback path,

such that X
−Fh

=
Z−1

h
1+Z−1

h Ch
. This expression simplifies to When the arm is

rigid, we can only
identify the
combined effects of
Zh and Ch

Fh = −(Ch + Zh)X. (4.2)

In other words, the identification results for a rigid grasping task
are influenced by both the physical properties of the arm (Zh, which
arises from the arm’s intrinsic mechanics and involuntary reflex re-
sponses) and additional dynamics introduced by the human’s vol-
untary position control response (Ch). While the identified model
may still be termed an “impedance” since it relates a position in-
put to a force output, the position control dynamics of the CNS are
subsumed into the identified impedance matrices.

As in the previous chapter, the raw data was passed through the
smoothing filter to remove noise and derivatives were calculated
from the first and second derivative filters (see Section 3.5). The val-
ues of M, B, K, and X0 were identified by applying least squares
regression to (3.7). Passivity was assessed through both the impe-
dance model approach of Theorem 3.2 and the integral approach
of (3.1). As justified in Section 3.6.1.2, antisymmetric components
of the stiffness and inertia matrices were ignored when applying
the impedance model approach.
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4.3 results

4.3.1 Underdamped Perturbations

The impedance matrices identified with underdamped perturba-
tions are shown in Table 4.1. The elements of the stiffness matrices
were generally larger for rigid grasping compared to the relaxed
grasping stiffness in Table 3.2, which was expected as arm stiffness
increases with grip strength [77]. The arm equilibrium positions X0

were very close to the test location.
These parameters were identified from the first eight perturba-

tions of each dataset and used to calculate the VAF on data from the
remaining eight perturbations. The VAF values never exceeded 50%
and, in a few cases, fell below 10%. This demonstrates that the iden- VAF values were low

for underdamped
perturbations due to
CNS position
control dynamics

tified models did not accurately capture the dynamics of the rigid
grasping task. The parameters also have larger standard errors com-
pared to the relaxed grasping case, indicating a higher inter-trial
variability. As will be discussed later, these modelling inaccuracies
are due to complex—and possibly nonlinear and time-varying—
dynamics introduced by the CNS position control response that can-
not be fully captured by an LTI model.

Fig. 4.3 shows typical plots of the energy absorbed by each parti- Passivity analysis
through the integral
approach showed the
arm was active for
underdamped
perturbations

cipant’s arm calculated over the the course of a single trial with
underdamped perturbations. In stark contradiction with the con-
ventional assumption of human operator passivity, the integral is
clearly decreasing, indicating the arm is generating energy and be-
having actively. The final column of Table 4.1 indicates that applica-
tion of Theorem 3.2 likewise found the identified rigid arm models
to be active. It is important to note that these rigid grasping impe-
dance models were found to be active even though antisymmetric
components of stiffness and inertia—which are potential sources
of activity—were excluded from the passivity analysis. Caution
should be exercised in drawing conclusions based on these rigid
grasping impedance models, however, as the limited model valid-
ity makes it impossible to conclusively demonstrate passivity or
activity through the impedance model approach.
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Figure 4.3: Plot of the energy absorbed by each participant’s rigid arm
during a typical trial with underdamped perturbations. Nega-
tive values indicate that energy is being generated.

4.3.2 Sinusoidal Perturbations

Table 4.2 shows the impedance values identified for the three parti-
cipants who performed rigid grasping with sinusoidal perturba-
tions. Again, the stiffness is larger than in the relaxed grasping
case. More importantly, the VAF values for these trials are noticeably Models identified

with sinusoidal
perturbations
showed higher VAF

improved over the underdamped perturbation case, ranging from
62.9% to 80.4%. The standard errors are also smaller, indicating less
inter-trial variability. This indicates that the models identified with
the sinusoidal perturbations came closer to capturing the arm’s dy-
namics than those identified with underdamped perturbations.

Analyzing passivity through the integral approach in Fig. 4.4 Passivity analysis
through the integral
approach confirmed
the arm was passive
for sinusoidal
perturbations

clearly shows that the energy absorbed by each participant’s arm
over a typical trial steadily increased, demonstrating passive be-
haviour. In contrast, Table 4.2 indicates that the impedance model
approach found these models to be active. Although the sinusoidal
perturbation models achieved higher VAF scores than the under-
damped perturbation models, this discrepancy indicates that they
still did not fully describe the arm’s dynamics. This model identi-
fication error caused the model-based passivity approach to yield
inaccurate results that were not supported by the integral analysis.
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Figure 4.4: Plot of the energy absorbed by each participant’s rigid arm
during a typical trial with sinusoidal perturbations.

4.4 discussion

Table 4.3 summarizes the passivity analyses in the current and pre-
ceding chapters. The relaxed arm was found to be passive regard-
less of the type of perturbation used. For rigid grasping, energy
integral analysis showed passive behaviour for sinusoidal pertur-
bations and active behaviour for underdamped perturbations. The
impedance model approach found the rigid arm to be active for
both perturbation types, but these results are erroneous due to the
limited model validity.

Table 4.3: Summary of passivity analysis for relaxed and rigid grasping
tasks.

Task Analysis Approach
Sinusoidal

Perturbations

Underdamped

Perturbations

R
e

l
a

x
e

d

G
r

a
s
p

i
n

g

Impedance Model Passive Passive

Integral Passive Passive

R
i
g

i
d

G
r

a
s
p

i
n

g

Impedance Model
Active
(limited model validity)

Active
(limited model validity)

Integral Passive Active
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4.4.1 Energy Absorption Analysis

Further insights into these results may be obtained by analyzing the
arm’s energy absorption over the course of a single underdamped
perturbation. Fig. 4.5a shows a typical plot of the energy Parti-
cipant P1’s arm absorbed during a single underdamped perturba-
tion in a relaxed grasping task. The distance of the hand from the
test location (i.e., the magnitude of the two-dimensional displace-
ment vector) is plotted on the right axis. We observe that when
the arm is relaxed, its impedance causes it to resist motion away The relaxed arm

resists motion and
behaves passively

from equilibrium, absorbing energy when the position perturba-
tion displaces it from the test location. When the perturbation’s
oscillations cause the hand to move back towards the test location,
there is a small decrease in the arm’s energy. This is the result of
the spring-like component of the arm’s stiffness releasing poten-
tial energy that was stored when the arm was initially perturbed
away from the test location. Nonetheless, the total energy absorbed
clearly increases over the duration of the perturbation, confirming
that relaxed grasping is a passive task.

Fig. 4.5b shows the same plot for the rigid grasping task with the
underdamped force perturbations with 2 N steady-state amplitude.
As the participant cannot anticipate when the force perturbation
will be applied, his reaction time (approximately 150 ms [97]) pre-
vents him from voluntarily resisting motion immediately after a
perturbation is applied. Therefore, his arm absorbs energy as it is
involuntarily displaced away from the test location. Once the parti- The rigid arm

absorbs energy when
initially displaced
from test location
and generates
energy during the
return movement

cipant realizes that his hand has been perturbed from its target
position, he consciously exerts force to overcome the robot’s force
and move his hand back to the test location as quickly as possible.1

This movement requires the participant to generate energy, caus-
ing the stored energy to decrease substantially. For the remainder
of the perturbation, the arm’s energy undergoes smaller fluctua-
tions while the participant consciously exerts the force required to
maintain his hand at the test location.

Classifying the rigid grasping task as “active” or “passive” de-
pends on whether the energy generated in the return to the test lo-
cation outweighs the energy absorbed when the hand was initially
displaced away from the test location. Fig. 4.5c shows the absorbed
energy for an additional rigid grasping task with Participant P1,
in which the steady-state amplitude of the force perturbation was

1 Recall that the participant was instructed to prevent his hand from deviating from
the test location, and not merely to slow down any motion imposed upon his hand
without regard for where his hand came to rest.
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Figure 4.5: Typical plots of absorbed energy (solid line, left axis) and hand
displacement from the test location (dashed line, right axis) for
a single underdamped perturbation applied at t = 0 s in (a)
relaxed grasping, (b) rigid grasping (2 N perturbation), and (c)
rigid grasping (8 N perturbation). Plots show the magnitude of
the two-dimensional displacement vector. Data was collected
from Participant P1. The arm is assumed to have zero stored
energy prior to the onset of the perturbation.
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increased from 2 N to 8 N. In this case, the robot applies a large per-
turbation which moves the hand away from equilibrium at a high
velocity. This causes the energy initially absorbed by the hand to The arm’s passivity

or activity depends
on the balance of
energy absorption
and generation for a
given task

be larger than the energy generated when the participant returns
his hand to the target position, such that the overall task is passive.
For the 2 N force perturbation case, however, the robot perturbs
the hand away with less force, resulting in a slower movement ve-
locity than the 8 N case. The energy absorbed by this process is
less than the energy generated during the return movement, and
the task is found to be active. This explains why Fig. 4.3 shows
that Participants P3 and P6 generated more energy than the other
participants. Table 4.1 indicates that these two participants had rel-
atively lower impedances. Their hands were therefore displaced
further from the test location when each perturbation was applied,
requiring them to expend a larger amount of energy to overcome
the perturbation and return their hands to the test location.

This reasoning also accounts for why the integral approach found
the rigid arm to be active for underdamped perturbations but pas-
sive for sinusoidal perturbations. With underdamped force pertur-
bations, the participant consciously initiates a movement in the op-
posite direction of each perturbation, requiring the arm to generate
energy and behave actively. With sinusoidal perturbations, however,
it is much more difficult for the participant to consciously oppose
the force perturbations by executing a deliberate position control
response. Unlike the discrete underdamped perturbations, the di-
rection of the continuous sinusoidal perturbations is never constant.
By the time the participant has detected the perturbation direction Sinusoidal

perturbations
diminish the CNS
position control
dynamics and
suppress activity

and determined the direction in which he must move his hand to
overcome it, it is very likely that the direction of the perturbing
force has already changed. Unable to initiate proper movements
to overcome each unique segment of the perturbations, the parti-
cipant will instead resort to minimizing displacements by simply
increasing the overall impedance of his arm through muscular co-
contraction. The CNS position controller therefore plays a relatively
smaller role, causing the arm to behave more like a passive dead
weight.

According to (4.2), the identified impedance is the total of the
arm’s physical impedance and the dynamics contributed by the
position control response of the CNS. The arm impedance model The CNS dynamics

are not accurately
captured by the LTI
second-order model
structure

of (3.2) inherently assumes that the 2-dimensional position control
dynamics of the CNS can be captured by an LTI second-order model.
This is evidently not the case, as the rigid arm models identified
with underdamped perturbations in Table 4.1 have high intertrial
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variability and low VAF. When sinusoidal perturbations are used
in lieu of underdamped perturbations, the contributions of Ch in
(4.2) to the total limb impedance are smaller than those of Zh. As
a result, the second-order model can come closer to describing the
system dynamics, explaining the slightly improved VAF by the mod-
els in Table 4.2. These models are still invalid, however, since they
describe an active system when the integral analysis plainly shows
the rigid arm to behave passively with sinusoidal perturbations.
Thus, even though the CNS dynamics are suppressed by sinusoidal
perturbations, they are not completely eliminated.

4.4.2 One-Dimensional Perturbations

An additional experiment was therefore performed with Participant
P2 in an effort to derive an arm impedance model that could ac-
curately capture the CNS position control response. We simplified
the perturbations to confine motion to a single direction, enabling Can the CNS

dynamics be
succesfully modelled
in one dimension?

us to employ more general model structures that may be able to
capture the CNS position control dynamics. Underdamped pertur-
bations were delivered along the y-axis in Fig. 3.3, centered at
the same test location (x = 0 cm, y = 52 cm) used in in the 2-
dimensional experiments. A high-gain proportional controller re-
stricted the robot from moving off the y-axis. Underdamped force
perturbation signals were generated by passing a ±2 N random bi-
nary sequence (RBS) force signal through the underdamped system
in (3.5). Five trials were performed, each lasting 50 s, with the first
40 s of data being used for identification and the final 10 s of data
for model validation. Typical force and position data are shown in
Fig. 4.6.

The Prediction Error Method (PEM) (refer to [95] for details) was
used to identify a variety of discrete-time transfer function models
from the data, but all of the identified models performed poorly
under validation tests. Improved results were obtained by directly
identifying a continuous-time transfer function from the sampled
data via the Simplified Refined Instrumental Variable (SRIV) method
described in [98] and incorporated in the MATLAB function tfest.
In brief, this approach involves assuming a transfer function struc-
ture with known orders in the numerator and denominator. The
assumed model structure yields differential equations in which the
measured input and output signals and their derivatives are related
by unknown constant parameters. As numerical differentiation can
be noise-prone, these equations are low-pass filtered by a state vari-
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Figure 4.6: Typical force and position signals for the rigid arm with one-
dimensional underdamped force perturbations. Dashed lines
indicate the force signals the robot is commanded to exert.

able filter. The parameters that minimize the error between the mea-
sured output signal and the model’s predicted output signal are
subsequently calculated from the filtered equations by applying in-
strumental variable regression.

Through rigorous experimentation, a transfer function with four
poles and three zeros was found to yield the best fit.2 The VAF val-
ues listed in Table 4.4 indicate that the accuracy of the identified
model varied widely from one trial to the next, but were gener-
ally too low for the identified models to be considered valid. This
is confirmed by Fig. 4.7, which compares the measured force val-
ues from the final 10 s of Trial 1 with the forces predicted by the
corresponding identified model. Although the model captures the
general trends in the measured force signal, there are still large
discrepancies between the measured and predicted signals.

The PEM and SRIV methods permit identification of very general
LTI model structures, but both techniques failed to identify valid Even in one

dimension, the CNS
position control
dynamics are
non-LTI

rigid grasping arm impedance models even when motion was re-
stricted to one dimension. This indicates that the dynamic impe-
dance contributions of the CNS cannot be accurately captured by
an LTI model, making it extremely challenging to perform model-
based passivity analysis.

2 Note that tfest restricts the number of poles to be greater than or equal to the
number of zeros.
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Table 4.4: VAF by 1D rigid grasping impedance models.

Trial VAF

1 43.6
2 69.1
3 -2.9
4 27.3
5 70.1
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Figure 4.7: Comparison of measured and estimated force signals for the
rigid arm with one-dimensional perturbations.

4.4.3 The CNS Causes Activity

In both the two- and one-dimensional cases, the rigid arm impe-
dance models had low VAF values due to the CNS dynamics. This
highlights a dilemma in evaluating the validity of the human oper-
ator passivity assumption. In order to rigorously demonstrate that
the human arm may be active in certain tasks, we would ideally
like to derive a valid human arm impedance model that shows ac-
tivity. Due to the complexity of the CNS position control response,
it is extremely challenging to identify a model that can account for
the CNS dynamics. Even if sinusoidal perturbations are used to at- The CNS dynamics

are required for
active behaviour but
make it difficult to
identify accurate
impedance models

tenuate these dynamics, or if the experiments are simplified to one
dimension to permit identification of more general model struc-
tures, the rigid arm impedance cannot be accurately represented
by an LTI model. Valid identification results may only be obtained
when, as in Chapter 3, the participant relaxes his arm and thereby
completely eliminates the CNS position control response. However,
the energy absorption integrals demonstrate that it is precisely the CNS
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position control that is the source of active behaviour. If the identification
experiment is designed to eliminate the CNS control by relaxing the arm,
accurate models can be identified but the active behaviour disappears.

Although the integral approach is less rigorous, Fig. 4.3 confirms The integral
approach
consistently shows
the rigid arm is
active for
underdamped
perturbations

that the every participant’s arm generated energy during the rigid
grasping trials with underdamped perturbations. These results are
intuitive: when the human operator voluntarily moves the master
robot in a teleoperation system, he causes a displacement in the
direction of his applied force. In other words, he does mechanical
work on the robot, which by definition requires him to generate
energy.

The rigid grasping task in this paper consisted of merely resist-
ing disturbance forces to maintain the hand at a particular position.
Yet even for this simple task, the human operator was found to
inject energy into the system. In many practical teleoperation ap-
plications, the human operator is required to complete much more
complex movements. The assumption of human operator passivity
needs to be carefully re-examined in these contexts.

4.4.4 Shortage of Passivity

We calculated the arm’s SOP during the rigid grasping task with
underdamped perturbations. Since the impedance models for this
task were not accurate, SOP was not evaluated from Theorem 3.1.
Instead, it was measured directly from the definition of passivity
in (3.1) by finding the largest value of λ such that the following
inequality held over the course of an entire trial:∫ t

0
F(τ) · Ẋ(τ)dτ ≥ β− λ

∫ t

0
Ẋ(τ) · Ẋ(τ)dτ, (4.3)

where the arm’s initial energy β at the start of the trial is assumed
to be zero. Average values of λ from the four trials for each of the
participants are recorded in Table 4.5.

4.5 reformulation of llewellyn’s criterion

Given that human operator passivity should not be assumed a pri- How may Llewllyn’s
criterion be modified
for a human
operator with SOP
or EOP?

ori but rather evaluated on a task-by-task basis, how should tele-
operation system design be modified to account for shortage or
excess of passivity? This section outlines how Llewellyn’s absolute
stability criterion—which conventionally assumes human operator
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Table 4.5: SOP values for the rigid arm with underdamped perturbations

Participant SOP (λ)

P1 8.6
P2 8.4
P3 6.5
P4 8.4
P5 15.4
P6 10.8

passivity—may be extended to the case of a human operator with
SOP or EOP.

Llewellyn’s criterion is only valid for motion in one dimension,
such that the human arm is modelled by a single-input single-
output (SISO) impedance transfer function. Although this thesis
identified arm impedance in 2 DOFs for a more complete character-
ization of arm dynamics, the identification and passivity analysis
techniques that were presented may be readily simplified to one-
dimensional models. In the 1-DOF case, Definition 3.2 simplifies as
follows:

lemma 4 .1: For a SISO transfer function with n = 1, Condition 3 in
Definition 3.2 simplifies to Re Z(jω) ≥ 0, ∀ω ∈ R. In other words, the
Nyquist diagram of a passive transfer function lies entirely in the right
half plane (Fig. 4.8a).

Im 

Re 

(a)

Im 

Re 

Im 

Re 
δ 

(b)

Im 

Re 

Im 

Re 
-λ 

(c)

Figure 4.8: Regions of the complex plane containing the Nyquist dia-
grams of (a) a passive system, (b) an input strictly passive
system with EOP of δ, and (c) an input non-passive system
with SOP of λ.

Also, the transfer matrix’s excess or shortage of passivity can be
evaluated through a simplified version of Theorem 3.1:
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lemma 4 .2: Consider a SISO system with transfer function Z(s), where
all poles have negative real parts. The system is input strictly passive with
EOP of δ > 0 if and only if Re Z(s) ≥ δ, such that the Nyquist diagram
of Z(s) lies to the right of the vertical line at δ (Fig. 4.8b). Similarly, for
an input non-passive transfer function with SOP of λ > 0 the Nyquist
diagram is in Re Z(s) ≥ −λ (Fig. 4.8c).

To investigate stability of a teleoperation system, the teleoperator
is modelled as a two-port network terminated by the human oper-
ator and the environment (Fig. 4.9). The two-port network is abso- Definition of

absolute stabilitylutely stable when the coupled system is stable for any passive but
otherwise arbitrary terminations (zt1 and zt2 in Fig. 4.9a). Absolute
stability of the two-port network is equivalent to the driving-point
impedance (Za1 in Fig. 4.9b) seen from one port of the two-port
network being passive when the termination of the second port is
passive.

t2t1 1 2

1 2

(a)

t21 2

1 2

(b)

Figure 4.9: (a) A teleoperation system modelled as a two-port network.
(b) The driving-point impedance Za1 = V1/I1 when port 2 is
terminated to a passive impedance zt2.

Llewellyn’s criterion is used to check absolute stability:

theorem 4 .1: [85] Consider a two-port network modelled by its impe-
dance parameters as: Llewellyn’s criterion[

V1

V2

]
=

[
z11 z12

z21 z22

] [
I1

I2

]
.
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This network is absolutely stable if and only if

1. z11 and z22 have no poles in the right half of the complex plane,

2. Pure imaginary poles of z11 and z22 are simple and have positive
residues, and

3. For all real positive frequencies ω,

Re z11(jω) ≥ 0

Re z22(jω) ≥ 0

2 Re z11(jω)Re z22(jω)− Re{z12(jω)z21(jω)}
− |z12(jω)z21(jω)| ≥ 0.

The two-port network impedance parameters may be replaced by any im-
mittance parameters.

In [2], our research group has shown that Llewellyn’s criterion
may be extended to the case of a termination with SOP or EOP as
follows:

theorem 4 .2: Consider a two-port network system modelled as an
impedance matrix. Assume that port 2 of the two-port network is ter- Modified Llewellyn’s

criterionminated to an impedance zt2 that satisfies −a ≤ Re zt2(s) ≤ b, where
a and b are real numbers with b > 0 and b > −a, and that port 1 of
the two-port network is terminated to another passive impedance. Then,
the necessary and sufficient condition for stability of the coupled system
(comprising the two-port network and two terminations) is

1. z11 and z22 have no poles in the right half of the complex plane,

2. Pure imaginary poles of z11 and z22 are simple and have positive
residues, and

3. For all real positive frequencies ω,

Re z11(jω) ≥ 0

Re z22(jω) ≥ a

2 Re z11(jω)Re z22(jω)− Re{z12(jω)z21(jω)}
− |z12(jω)z21(jω)| − 2a Re z11(jω) ≥ 0.

The two-port network impedance parameters may be replaced by any im-
mittance parameters. Note that a will be positive if zt2 has SOP and nega-
tive if it has EOP.
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This theorem may be used to design a teleoperation system that
will be stable even if one of its terminations—the human operator—
is non-passive. Furthermore, if the human operator shows EOP, this Theorem 4.2 can be

used to maintain
stability under SOP
and improve
transparency under
EOP

theorem is less conservative than Llewellyn’s criterion, allowing the
robot controllers to be designed with higher gains to improve the
system’s transparency—the accuracy with which forces and motions
of the slave robot match those of the master device. In [99], our
group has shown in simulation studies that EOP values as small as
δ = 0.9 can yield noticeable improvements in transparency. Since
the relaxed arm was found to have much larger EOP of 4.3–7.2 (Ta-
ble 3.6), Theorem 4.2 can be expected to substantially improve tele-
operation system transparency for times when the human operator
relaxes his arm to better perceive feedback forces from the environ-
ment.

4.6 conclusions

Conventional approaches to analyzing the stability of a teleopera-
tion system using passivity-based criteria or Llewellyn’s criterion
necessarily assume that the human operator behaves passively. The
results of this chapter demonstrated that this assumption does not
hold for all tasks the human operator may execute and should be
explicitly evaluated for the specific task in question using a method
similar to the one presented here.

Analysis of the arm’s energy absorption integral indicated that
non-passive behaviour can be traced to the CNS position control
dynamics. Since a severely-impaired patient has little voluntarily
movement control and Chapter 3 confirmed that the relaxed human
arm is passive, it may be reasonable to model the patient’s limb by
a passive impedance for certain applications in telerehabilitation
system design. The therapist, on the other hand, should not be as- The patient may be

passive, but the
therapist is not

sumed to be passive when she voluntarily manipulates the master
device to administer therapy exercises. For 1-DOF telerehabilitation
systems, the telerehabilitation system may instead be designed to
satisfy the modified version of Llewellyn’s criterion presented in
Theorem 4.1. Another approach is to introduce passivity observers
and controllers into the telerehabilitation system to maintain sta-
bility in the presence of non-passive behaviour [100]. This work
demonstrates a need for research into novel approaches to teleop-
eration system design and stability analysis that are capable of re-
laxing the requirement of human operator passivity.



5
A V I RT U A L S E N S O R F O R I M P E D A N C E
M E A S U R E M E N T

The arm impedance measurement techniques previously reported
in the literature (see Chapter 2) have relied on a force sensor to
measure the human-robot interaction forces. The single exception Previous impedance

measurement
techniques required
physical force
sensors

is the work of Mussa-Ivaldi et al. [63], which only measured the
arm’s static stiffness; they simply calculated the static human-robot
interaction forces from the joint torques with knowledge of the
robot’s kinematics. Prior work in quantifying the arm’s dynamic
impedance, however, has required a force transducer to measure the
changing interaction forces.

Given the cost-containment pressures faced by rehabilitation clin-
ics, the relatively high retail cost of robotic therapy and diagnostic
tools has presented a barrier to their widespread clinical use [101].
Commercial multi-DOF force/torque sensors typically retail for sev-
eral thousand dollars due to their intricate strain-gauge design and Commercial force

sensors are
prohibitively
expensive for use
with economical
rehabilitation robots

precise calibration (e.g., a 6-DOF force/torque sensor from ATI In-
dustrial Automation or JR3, Inc. costs approximately 6,000 USD).
Unfortunately, these sensors have not become more affordable over
the past decade and no low-cost alternative technology has ap-
peared on the horizon. According to a recent survey of therapists,
a complete upper limb rehabilitation robotic system should ideally
retail for no more than 6,000 USD [102]. While this target may be
unrealistic in the present market for a comprehensive, multi-DOF re-
habilitation robotic system, it underscores the importance of reduc-
ing the cost of this technology, especially when designing simpler,
economical robotic devices for use in the patient’s home. Thus, at
least for the present, conventional multi-DOF force/torque sensors
are not suitable for inclusion in low-cost rehabilitation robotic sys-
tems.

This chapter contributes to previous work by developing and The virtual sensor
estimates forces
through the robot’s
kinematics and
dynamics

evaluating an economical arm impedance measurement technique
that does not require a physical force sensor. Instead, an accelerom-
eter retailing for less than 15 USD is used to estimate interaction
forces through a virtual sensor (or “soft sensor”) derived from the

A version of this chapter has been published: M. Dyck and M. Tavakoli, “Measur-
ing the dynamic impedance of the human arm without a force sensor,” in IEEE
International Conference on Rehabilitation Robotics, Seattle, WA, 2013.
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robot’s kinematics and dynamics. The data collection protocols in
this chapter are similar to the sinusoidal perturbation experiments
in Chapter 3. The mass-spring system was used to develop and
validate the virtual sensing technique, and the method was subse-
quently applied to data collected from the human arm in a relaxed
grasping task.

This chapter is organized as follows: Section 5.1 presents rele-
vant mathematical formulae and introduces the experimental ap-
paratus and data collection protocols, data analysis techniques are
developed in Section 5.2, results are discussed in Section 5.3, and
concluding remarks follow in Section 5.4.

5.1 methods and materials

As in previous chapters, the arm’s endpoint impedance is mea-
sured in two Cartesian dimensions. However, the techniques pre-
sented in this chapter can be readily extended to robots capable of
performing impedance measurement in three or more DOFs.

While robot control literature provides several methods for esti-
mating external disturbance forces in real time (see [103] and [104]
for examples), these causal, observer-based techniques suffer from
convergence delays. Preliminary experiments with disturbance ob-
servers revealed that the magnitude of these delays compromised
impedance measurement accuracy. In the context of patient motor
recovery assessment, impedance identification may be performed
offline, utilizing non-causal analysis approaches for improved esti-
mation accuracy.

5.1.1 Mathematical Preliminaries

When a horizontal 2-DOF revolute-joint planar robot is subjected
to an externally-applied force Fext

.
= [ fx fy]T at its end-effector, its

movement is described by the following dynamics equation1 [105]:

I(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + Fr(Θ̇) = τr + JT(Θ)Fext (5.1)

where I(Θ) is the robot’s 2× 2 inertia matrix, C(Θ, Θ̇) is the 2× 2
Coriolis/centrifugal force matrix, Fr is a 2 × 1 friction force vec-
tor, and JT(Θ) is the robot’s Jacobian transpose matrix. Vectors
Θ .

= [θ1 θ2]T and τr
.
= [τ1 τ2]T represent joint angles and torques,

1 Time arguments of τr, Fext, and Θ and its derivatives are omitted to simplify
notation.
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respectively. With knowledge of robot kinematics and dynamics,
isolating Fext in this equation enables the external force to be calcu-
lated from records of the robot’s motion in lieu of direct measure-
ment by a force sensor: Estimation of

external force
through robot
kinematics and
dynamics

Fext =
(

JT(Θ)
)−1 (

τr − I(Θ)Θ̈− C(Θ, Θ̇)Θ̇− Fr(Θ̇)
)

. (5.2)

Following the pattern of previous chapters, the human arm impe-
dance was represented by the second-order Cartesian model (3.2):2

MẌ + BẊ + K (X− X0) = −Fext,

where

M .
=

[
mxx mxy

myx myy

]
, B .

=

[
bxx bxy

byx byy

]
, and K .

=

[
kxx kxy

kyx kyy

]
,

denote the inertia, damping, and stiffness matrices of the human
arm.3

The simplified version in (3.9) captures the impedance of the
mass-spring system used to develop and validate the virtual sen-
sor technique:

MẌ + K (X− X0) = −Fext,

with

M .
=

[
m 0

0 m

]
, K .

=

[
kxx ks

ks kyy

]
.

5.1.2 Experimental Protocol

Impedance measurements were performed with the 2-DOF planar
robot previously discussed, with the kinematics and dynamics pre-
sented in Appendix A. A two-axis accelerometer (ADXL-203, Ana-
log Devices, Norwood, MA, USA) was attached at the robot’s end-
effector to measure Cartesian accelerations. To compare the impe-
dance measurements from the virtual force sensor with those yielded

2 Fh in (3.2) is replaced in this chapter by Fext for notational consistency with (5.1).
Time arguments are omitted.

3 In this chapter, Cartesian positions were measured in the coordinate frame shown
in Fig. 5.1, which originated at the robot’s base. They could equally be expressed
in a coordinate frame originating at the subject’s shoulder—as was done in the
previous chapters—with no loss of generality.
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by a conventional force measurement approach, a commercial 6-
DOF force/torque sensor (50M31A3-125 DH, JR3 Inc., Woodland,
CA, USA) was also mounted on the robot’s end-effector.

The impedance measurement technique was first developed and
validated by measuring the impedance of the mass-spring system
(Appendix D) intended to simulate a human arm with known iner-
tia and stiffness. The technique was then applied to data collected
from an actual human arm.

5.1.2.1 Impedance Measurement for a Mass-Spring System

The robot’s end-effector was connected to an inertial payload and
the planar spring array. By changing the number, stiffness, and ar- The mass-spring

system was used to
develop and validate
the virtual sensing
technique

rangement of the springs included in the array, five different stiff-
ness fields were obtained. For each of these spring arrangements,
five different payloads were attached to the robot, creating a total of
25 unique impedance configurations. Table 5.1 lists the theoretical
values of the K matrices (comprising kxx, kyy, ks, and X0 values cal-
culated from independent measurements of the spring constants)
and M matrices (comprising m values measured by weighing the
payloads).

Table 5.1: Theoretical impedance values for mass-spring system.

Stiffness

Matrix

Stiffness (N/m) X0 (mm) Inertia

Matrix

Inertia (kg)

kxx kyy ks x0 y0 m

K1 421.57 213.35 -18.87 364 -9 M1 0.539

K2 476.38 248.71 -16.02 375 -8 M2 0.786

K3 239.54 421.29 -12.52 394 53 M3 1.031

K4 190.26 406.39 -2.08 390 36 M4 1.279

K5 373.81 377.10 73.16 332 -61 M5 1.527

To measure the impedance of each of the 25 configurations, the
robot’s end-effector was perturbed about the equilibrium position
of the spring array. Each of the robot’s two joints was set to track
a reference position comprising the sum of ten sinusoids with fre-
quencies from 0 to 2 Hz using the proportional-derivative controller.
The bandwidth of this perturbation signal was selected to match
the experimental conditions under which the robot dynamic model
was identified and validated and to avoid exciting a mechanical
resonance in the mass-spring system at 4 to 5 Hz. (Preliminary in-
vestigations revealed that the sustained resonant vibrations excited
by higher-frequency excitation signals caused the identified impe-
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dance to be overestimated.) Each joint moved through an angular
range of 10◦, causing the robot’s end-effector to remain within a
circular region of 5 cm diameter. Three trials lasting 50 s each were
performed for each of the 25 impedance configurations, yielding 75

trials in total.

5.1.2.2 Impedance Measurement for the Human Arm

For arm impedance identification, data was collected from a 23-
year-old right-handed male with no history of motor impairment
(Participant P1 in the previous chapters). The participant sat in
front of the robot and rested his dominant hand on a hemispheri-
cal handle connected to the force sensor (Fig. 5.1). The interaction
forces in this experiment were sufficiently small to allow the parti-
cipant to simply rest his hand on the robot’s handle without the
need to forcibly grip the device and potentially alter the arm’s
impedance characteristics. The handle was positioned 50 cm an-
terior to the shoulder in the sagittal plane intersecting the shoul-
der joint. As in previous experiments, the participant’s elbow was
supported against gravity by a sling and a belt restrained the parti-
cipant’s torso to prevent translation of the upper body. Measure-
ments were performed in a horizontal plane approximately 10 cm
below the shoulder joint.4 Since Chapter 3 demonstrated that the
second-order Cartesian model in (3.2) could accurately capture the
dynamics of the relaxed arm, the participant was instructed to re-
lax his arm and avoid voluntarily exerting force while the robot
perturbed his hand. This mirrored clinical protocols for evaluating
muscle tone, as patients are likewise instructed to relax when as-
sessments like the Modified Ashworth Scale (Section 2.3.7) are ad-
ministered. Five trials were performed as the robot perturbed the
hand in exactly the same manner as the mass-spring system.

4 In the experiments of previous chapters, the height of the robot was adjusted to
ensure perturbations were always delivered in the horizontal plane intersecting
the subject’s shoulder. This controlled for variations in the arm’s impedance with
elevation, facilitating unbiased comparison of the impedance matrices obtained
for different subjects. The equipment required to securely position the robot at
different elevations was not available at the time the experiments in this chapter
were performed, so the impedance measured for Participant P1 in this chapter
should not be expected to match the values measured for the same subject in a
different plane in Chapter 3.
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sling 

belt 

emergency  
stop button 

handle 

force sensor and 
accelerometer 

Figure 5.1: Experimental apparatus for arm impedance measurement
with a virtual force sensor. The origin of the Cartesian coor-
dinate frame is shown at the robot’s base.

5.2 analysis

During the data collection experiments, the human and the position-
controlled robot formed a closed-loop system with the block dia-
gram shown in Fig. 5.2. In this diagram, Zr and Zh represent the The human and

robot form a
closed-loop system

impedances of the robot and the human (or the mass-spring sys-
tem) respectively, and Cr is the robot’s joint position controller. The
endpoint of the arm (or the mass-spring system) was modelled in
Cartesian space by (3.2) (or (3.8)) while the robot was modelled
in joint space by (5.1). The two domains are related by the robot’s
forward kinematics T and Jacobian-transpose JT.

The robot’s position controller tracks a joint-domain perturbation
signal Θr, causing the robot to exert a torque τr that moves its joints
to position Θ (close to Θr). The joint position is translated into a
Cartesian end-effector position X through the robot’s forward kine-
matics T, where the motion acts on the impedance Zh of the hu-
man arm’s endpoint to generate a reaction force −Fext measured
by the force sensor (note that Fext is defined as the force the hu-
man exerts on the robot). This force is translated into a joint-domain
torque through the robot’s Jacobian-transpose JT. This equivalent
interaction torque together with the controller’s torque output τr

acts on the robot’s admittance Z−1
r to complete the closed-loop sys-

tem. Since Fext = −ZhX, and both Fext and X are measured, Zh can
be identified directly from closed-loop data according to (3.2).

If Fext is not directly measured by a force sensor, the only other
way it may be obtained is to use records of the robot’s position
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Zr
-1(·)

Cr (·)

Zh (·)

Θr

+ τ r
_

X

+

+R
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ot
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T (Θ)

Θ 
H
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Figure 5.2: Dynamics of the impedance measurement system. The robot
and the human (or the mass-spring system) impedances are
Zr(·) and Zh(·) respectively, and Cr(·) represents the robot’s
position controller. These blocks are written as operators since
they need not necessarily be modelled as LTI. The force sensor
measures Fext, the force exerted by the human on the robot,
which may also be estimated through the robot’s kinematics
and dynamics.

Θ and command torque τr to work backwards through the robot’s Eliminating a
physical force sensor
requires an accurate
robot dynamic model

dynamics Zr and calculate Fext from the relation −JT Fext + τr =

Zr(Θ), which is equivalent to (5.2). Therefore, elimination of the
force sensor comes at the cost of requiring an accurate model of
robot kinematics and dynamics.

5.2.1 Data Preprocessing

Estimating arm impedance Zh without direct measurement of Fext An accelerometer
measured
accelerations; a
Savitzky-Golay filter
and Butterworth
filter calculated
velocities

is not trivial because the calculation of Fext from (5.2) requires accu-
rate records of Θ̇ and Θ̈. As previously discussed in Section 3.5.1,
finite-differencing and low-pass filtering of encoder data was found
to be insufficiently noise-robust for this task. Instead, the accelerom-
eter was introduced to allow direct measurement of acceleration.
Furthermore, a Savitzky-Golay filter with N = 6 and W = 151 was
used to remove noise from all measured signals and calculate first
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time derivatives.5 The filter’s two outputs (i.e., the smoothed sig-
nal and its derivative) were passed through a zero-phase 5th-order
Butterworth low-pass filter (MATLAB function filtfilt) with a
4.5 Hz cutoff frequency. As in Section 3.5.1, this yielded a “smooth-
ing filter” and a “differentiation filter” that were each composed of
Savitzky-Golay smoothing or differentiation and Butterworth low-
pass filtering operations.

5.2.2 Identification Methods

Prior to identifying impedance models, all recorded signals (i.e., Θ
from the joint encoders, Ẍ from the accelerometer, Fext from the
force/torque sensor, and the joint torque τr) were passed through
the smoothing filter to suppress noise. The Cartesian position tra-
jectory of the robot’s end-effector was calculated from encoder data
using the robot’s forward kinematics. Table 5.2 summarizes the two
methods described below that were used to obtain the human-robot
interaction force:

method 1 : virtual sensor The interaction force Fext was cal-
culated from (5.2), with Θ̇ obtained from the differentiation filter
and Θ̈ calculated from the accelerometer’s reading of Ẍ according
to

Θ̈ = (J(Θ))−1 (Ẍ− J̇(Θ, Θ̇)Θ̇
)

. (5.3)

method 2 : physical sensor Fext was directly measured by
the commercial force/torque sensor attached to robot’s end-effector.

Table 5.2: Signal origins in each impedance identification method.

Signal Method 1 (Virtual Sensor) Method 2 (Physical Sensor)

X Forward kinematics Forward kinematics

Ẋ Differentiation filter Differentiation filter

Ẍ Accelerometer Accelerometer

Θ Joint encoders Joint encoders

Θ̇ Differentiation filter (Not used)

Θ̈ Equation 5.3 (Not used)

τr Recorded from robot controller (Not used)

Fext Equation 5.2 Commercial force sensor

5 A Savitkzy-Golay filter could also be used to calculate second derivatives, elimi-
nating the need for the accelerometer.
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5.2.2.1 Identification of Mass-Spring System Impedance

The impedance of the mass-spring system was identified by fitting
records of Fext, X, and Ẍ to (3.8) via linear least squares to obtain
M, K, and X0. A segment of typical identification data for the mass-
spring system is shown in Fig. 5.3. The first 40 s of each dataset
were used for identification, while the final 10 s were used to vali-
date the identification results through the VAF test statistic in (3.10).

5.2.2.2 Identification of Human Arm Impedance

A handle with mass Λ = 135 g was present at the robot’s end- Effects of handle
inertia must be
removed

effector during data collection for the human arm. To remove the
effects of this handle from the identified inertia matrix, the human
arm’s inertia, damping, and stiffness matrices were identified by
applying the least-squares procedure to

(M + ΛI) Ẍ + BẊ + K (X− X0) = −Fext, (5.4)

where I is the 2× 2 identity matrix. The Cartesian velocity signal Ẋ
was obtained from the differentiation filter. Interaction forces were
calculated by applying the same two methods used for the mass-
spring system. Again, the data sets were split into identification
and validation portions and the VAF was calculated.

5.3 results

The bottom row of Fig. 5.3 demonstrates that the force estimated The virtual sensor
estimated forces
accurately

by the virtual sensor agreed favourably with that measured by the
physical sensor. This enabled the proposed virtual sensor identifica-
tion approach (Method 1) to yield impedance estimates comparable
to those obtained with the physical sensor (Method 2) as discussed
below.
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Figure 5.3: A six-second segment of typical noise-filtered identification
data for the mass-spring system with K5 and M5 as given in
Table 5.1. The source of each signal is listed in Table 5.2. In
the bottom row, the solid line shows the Cartesian force sig-
nal by the physical sensor and the dashed line indicates the
corresponding force estimate of the virtual sensor.
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5.3.1 Results for the Mass-Spring System

Table 5.3 shows the identified mass-spring system parameters ob-
tained by Method 1 and Method 2. To simplify the presentation,
each entry represents the average and standard deviation of 15 tri-
als. For instance, the stiffness values for K1 are the average values
obtained for the three trials performed for spring configuration K1

with each of the five inertial payloads M1 through M5. Similarly,
the inertia values reported for M1 are averages of the three tri-
als performed for M1 under each of the five spring arrangements.
Identified equilibrium positions X0 are omitted from the table for
brevity as they were always within 18 mm of theoretical values.
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Figure 5.4: Comparison of identified and theoretical impedance param-
eters for the mass-spring system with sinusoidal perturba-
tions. Data points in perfect agreement with theoretical values
would lie on the dotted line.

Fig. 5.4 plots these identified parameters against their theoretical Both methods
yielded comparable
impedance estimates
reasonably close to
theoretical values

values listed in Table 5.1. This figure shows that Method 1 and
Method 2 yielded parameter estimates that were comparable to
each other, demonstrating the feasibility of the virtual sensor ap-
proach (Method 1) for arm impedance measurement. Furthermore,
both techniques produced parameter estimates reasonably close to
theoretical values. The errors between the identified and theoretical
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parameters are shown in Table 5.4. Each entry is calculated as the
difference between the identified and theoretical values:

error = identified value− theoretical value.

Table 5.4: Error in identified impedance values for the mass-spring sys-
tem. Entries are the difference between the identified parameter
and the corresponding theoretical values listed in Table 5.1.

Stiffness

Matrix

Error in Stiffness Values (N/m)
Method 1 Method 2

kxx kyy ks kxx kyy ks

K1 -82.86 -43.68 -4.10 -37.42 -23.39 4.62

K2 -93.60 -49.78 -10.80 -37.65 -33.27 0.49

K3 -71.95 -14.84 -10.40 -35.52 -8.56 -5.08

K4 -86.11 -27.87 -12.58 -36.68 -8.98 1.76

K5 -73.52 -5.35 -3.80 -43.43 4.73 3.05

Inertia

Matrix

Error in Inertia Values (kg)
Method 1 Method 2

m m

M1 0.048 -0.005

M2 0.067 0.013

M3 0.081 0.026

M4 0.123 0.044

M5 0.128 0.056

While the agreement between the identified and theoretical in-
ertia values was very strong, the agreement was lower for stiffness
values. The discrepancy between measured and theoretical stiffness
values is partially due to approximations inherent in obtaining the- Sources or error in

measuring stiffnessoretical stiffness values from empirically-determined spring con-
stants. The springs’ stiffness values were measured by fixing one
end of the spring and having the robot slowly stretch the spring at
the opposite end. The spring’s extension was calculated from the
robot’s joint encoder readings and the strain gauge force sensor de-
scribed in Appendix E was used to measure the force the spring
exerted during the calibration procedure. This force-position data
was subsequently fit to a linear model to determine the empirical
spring constant. This procedure incurred some error, however, as
the springs did not show a perfectly linear force-displacement re-
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lationship for small extensions since the hooks on the end of the
springs underwent deflection when the load force was initially ap-
plied.

Additional sources of error in measuring stiffness may have arisen
from the system modelling approach. A two-dimensional array of
ideal linear springs presents a nonlinear stiffness field (see Ap-
pendix D), so there is some linearization error incurred in mod-
elling the stiffness by the linear model of (3.8) for small displace-
ments. Furthermore, this model does not consider forces due to
friction and damping in the springs, which also contribute to stiff-
ness values being overestimated.

Comparing the two identification methods against each other,
the virtual sensor approach yielded stiffness parameters that were
slightly higher and inertia values that were slightly lower than
those obtained with the physical sensor. The error values listed in
Table 5.4 show that the physical sensor’s estimates were closer to
theoretical values. These discrepancies are the result of the limited
accuracy of the robot dynamics model obtained by system identifi-
cation procedures. For instance, (5.1) does not consider forces aris-
ing from bending of the robot’s electrical cables, Coulomb friction,
and elasticity in the robot’s capstan cable drive mechanism. Equa-
tion 5.1 may therefore be augmented to include a residual error
force Ferr that accounts for any differences between the estimated Parameter

discrepancies are
due to a residual
error force seen by
the virtual sensor

robot dynamics obtained through system identification (Î(Θ), Ĉ(Θ, Θ̇),
and F̂r(Θ̇)) and their true values:

Î(Θ)Θ̈ + Ĉ(Θ, Θ̇)Θ̇ + F̂r(Θ̇) = τr + JT (Fext + Ferr) . (5.5)

While a force sensor can accurately measure Fext directly, calcu-
lating the external force through (5.2) actually yields the sum of
Fext + Ferr. This error in the estimated force caused Method 1 to
slightly underestimate inertia and overestimate stiffness relative to
Method 2. Of all the identified parameters, the relative discrepancy
between Methods 1 and 2 is the largest for kxx. This indicates that
Ferr contributed larger errors to the x-component of the estimated
force than to the y-component—a reasonable finding since elastic
forces in the force sensor and accelerometer cables caused the robot
to have the highest resistance to motion along the x direction.

While the standard deviations yielded by Method 1 were larger
than those obtained by Method 2, they were still very small in
comparison to their corresponding mean values. This indicates that
the virtual sensor identification method showed excellent intertrial
reproducibility. The k values identified for each stiffness matrix did
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not change as the inertial payload varied, nor did the identified in-
ertia values change with various spring configurations. Thus, both
methods could effectively distinguish impedance contributions from
the spring array and the inertial payload.

With Method 2, VAF values for both the x and y components of High VAF values
show good model fitFext were consistently over 99%, demonstrating that the identified

parameters described the impedance of the mass-spring system ex-
ceptionally well. Average VAF values obtained using Method 1 for
each of the twenty-five impedance configurations are recorded in
Table 5.5. Method 1 always yielded models with VAF values above
83%, with the VAF being well over 92% in the vast majority of cases.
This demonstrates that the proposed virtual sensor method also
estimated the mass-spring system impedance with good accuracy.

Table 5.5: VAFx, VAFy by Method 1.

Stiffness Max. Stiffness Inertia Matrix

Matrix Direction M1 M2 M3 M4 M5

K1 x 97.5, 93.5 97.5, 93.1 97.5, 92.6 97.4, 92.0 97.2, 92.1

K2 x 97.4, 95.5 97.7, 95.2 97.7, 94.9 97.5, 93.6 97.5, 94.2

K3 y 88.7, 96.7 88.2, 96.7 87.6, 96.6 86.8, 96.6 84.9, 96.7

K4 y 88.9, 97.1 88.2, 97.1 87.8, 97.3 83.5, 96.2 84.8, 96.9

K5 N/A 97.4, 96.1 97.3, 95.7 97.1, 95.6 97.1, 95.4 96.9, 95.2

The VAF values obtained by Method 1 also provide insight into
the design of robotic devices that are well-suited to measuring
impedance without a physical force sensor. As seen from Table 5.1
and indicated in Table 5.5, the stiffness matrices K1 and K2 had a
much higher value in the x direction than the y direction. The op-
posite was true for K3 and K4, while K5 had kxx ≈ kyy. The VAF

values obtained by Method 1 were always larger for the force com-
ponent in the direction of greater stiffness. This occurred because
the interaction force between the robot and the spring array system
was larger in the direction of higher stiffness. When Fext is large, it
overshadows any residual error forces contributed by inaccuracies
in the robot dynamics (Fext � Ferr). Therefore, a robot intended The robot should

have low impedance
to maximize
estimation accuracy

for impedance measurement with a virtual force sensor should be
designed to have low impedance (e.g., it can be a back-drivable
haptic device) such that the robot’s motions are dominated by the
externally-applied force rather than its intrinsic dynamics. In this
case, any error in the identified dynamic matrices will give rise to
force contributions that are small in comparison to the force exerted
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by the human arm, enabling a highly accurate identification of the
arm’s impedance.

5.3.2 Results for the Human Arm

Parameter values and standard deviations from the five human
participant trials are presented in Table 5.6. As with the mass-spring
system, Methods 1 and 2 yielded very close inertia estimates. The Both methods yield

comparable values
for the human arm

viscosity and stiffness estimated by Method 1 were slightly larger
but still close to those obtained by Method 2. VAF values are over
90% for both methods, confirming that the simple second-order
model in (3.2) accurately captured the arm’s dynamics for the re-
laxed grasping task in this chapter.

The inertia and viscosity values estimated for the human arm are
comparable to those obtained in Chapter 3 (albeit in a different co-
ordinate frame) and to the results of previous studies with similar
experimental conditions by Dolan et al. [66] and Tsuji et al. [77].
The stiffness values are notably smaller, however. The high VAF val-
ues indicate that this discrepancy cannot be attributed to inaccurate
identification. Of course, much of this difference is simply the re- Reasons for lower

stiffness values
compared to
previous studies

sult of each study collecting data from different participants whose
arms have different physical properties. Furthermore, the lower ap-
parent endpoint stiffness may be due to the low-bandwidth, slowly-
varying perturbation signals used to identify arm dynamics in this
work. As discussed in Appendix A, flexibility in the robot’s capstan
drive mechanism enabled the robot dynamics model to be accu-
rately identified only over the frequency range of 0 to 2 Hz, and the
perturbation signal used to identify the impedance of the human
arm was necessarily limited to the frequencies over which the robot
dynamics model was valid. Furthermore, the mass-spring system
had a mechanical resonance between 4 and 5 Hz, causing exces-
sive vibrations that compromised identification accuracy when the
system was excited in this frequency range. In contrast, Dolan et al.
and Tsuji et al. both applied rapidly-rising step perturbations to the
arm. The effective stiffness they measured may have been higher be-
cause these perturbations excited additional high-frequency impe-
dance dynamics in the arm. Another potential contributing factor
was that, in this chapter, arm impedance was measured in a hori-
zontal plane approximately 10 cm below the shoulder, whereas in
Chapters 3 and 4 and the experiments of Dolan et al. and Tsuji et
al. the arm’s impedance was measured in the plane intersecting the
shoulder. Indeed, Dolan found that lowering the plane of measure-
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ment 14 mm with respect to the shoulder could cause small varia-
tions in the measured endpoint impedance [106]. Since forces from
the arm’s stiffness made smaller contributions to Fext in our study,
the discrepancy between Methods 1 and 2 is higher for estimates
of stiffness than for inertia or viscosity.

5.4 conclusions and future work

The results demonstrate that arm impedance can be accurately mea-
sured without a force sensor if the human-robot interaction forces
are calculated using a virtual force sensor incorporating a valid
model of the robot’s kinematics and dynamics. Although this tech- The virtual sensor is

a viable technique
for economical force
sensing

nique necessarily entails a slightly higher estimation error com-
pared to direct force measurement, it is a viable approach to add
impedance measurement functionality to existing robotic devices
without the need for potentially costly force/torque sensors. In a
telerehabilitation scenario for instance, this approach could enable
a rehabilitation therapist to remotely monitor a patient’s arm impe-
dance using an economical home-based rehabilitation robot.

This chapter focused on identifying a second-order Cartesian
model of human arm impedance to demonstrate the feasibility of
a virtual sensor approach for arm impedance measurement. The
model was valid only for low frequencies due to bandwidth con-
straints imposed by the robot dynamics model and mechanical res-
onances in the mass-spring system used to validate the virtual sen-
sor technique. Nevertheless, this virtual sensor technique may be
extended to analyze the arm’s impedance over a larger frequency
range by applying it to a robot with a dynamic model valid at high
frequencies. As reflexive contributions to arm impedance have been
found to become significant only at frequencies above 5 Hz [94],
this could enable separate analysis of intrinsic and reflexive contri-
butions to limb impedance following a technique similar to [4] or
[107]. The virtual sensor approach could also be extended to other
robotic therapy or assessment tasks that require offline analysis of
force signals. For example, this approach could be used to mea- The virtual sensor

has numerous
potential
applications

sure impedance while the participant voluntarily co-contracts his
muscles, to identify more complex models of neuromusculoskele-
tal system dynamics with the aid of higher-frequency perturbation
signals, to quantify the mechanical work done during a therapy
exercise, or to administer patient strength testing.



6
C O N C L U S I O N

This thesis set out to develop techniques to accurately measure the
mechanical impedance of the human arm within a rehabilitation
context. Chapter 2 established two motivations for measuring arm
impedance: (1) characterizing human-robot interaction for the de-
sign of telerehabilitation systems, and (2) overcoming the limited
reliability and sensitivity of conventional observation-based clini-
cal evaluations of muscle tone and spasticity.

6.1 impedance measurement for passivity analysis

Chapter 3 presented empirical techniques to measure the impe-
dance of the relaxed arm. By deriving closed-form conditions that
the impedance model parameters must satisfy for passivity, we
showed that the relaxed arm is passive. This conclusion was con-
firmed by analysis of the arm’s time history of energy absorp-
tion, and it agrees with the conventional assumption in teleoper-
ation/telerehabilitation research. The chapter extended previous
work in relaxed arm passivity analysis to the case of a dynamic,
second-order impedance model.

Chapter 4 performed a similar analysis for a rigid grasping task.
Integral analysis revealed that the CNS position control response
makes the rigid arm active for underdamped perturbations with a
2 N steady-state amplitude. In contrast, the rigid arm behaved pas-
sively for sinusoidal perturbations which suppressed the position
control dynamics. A one-dimensional analysis of the arm’s impe-
dance revealed that the CNS contributes non-LTI dynamics, making
it challenging to identify an accurate impedance model for the rigid
arm and necessitating that passivity be analyzed through the en-
ergy integral approach. This chapter demonstrated a need to revisit
the passivity assumption in teleoperation control. One solution is
to extend Llewellyn’s absolute stability criterion to the case of a
non-passive human operator.

96
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6.2 impedance measurement with a virtual sensor

Chapter 5 introduced a virtual force sensor that reproduced impe-
dance measurements obtained by a commercial force sensor with
good accuracy for a fraction of the cost. This virtual sensor is a
suitable technique to add impedance measurement functionality
to economical robots intended for use in the patient’s home. The
approach could also be easily extended to other technologies that
require offline analysis of human-robot interaction forces.

6.3 future work

The findings of this thesis lay a foundation for several future stud-
ies:

1. Enhanced teleoperation system design. In Chapter 4, we
discussed how the human operator’s EOP can be used to im-
prove transparency in teleoperation system design with a mod-
ified version of Llewellyn’s criterion. Rather than simply as-
suming that the human operator impedance is unknown but
passive, there is a need to develop new, effective approaches
to teleoperation system design that are robust to non-passive
operators and can take advantage of knowledge of the human
operator impedance model to improve performance.

2. Impedance identification with a CNS model. In Chapter 4,
we argued that the CNS position control dynamics play an
integral role in the overall impedance characteristics of the
rigid arm but cannot be accurately identified by an LTI model.
The identification experiments presented in this thesis could
be extended to identify nonlinear and/or time-varying mod-
els that may be able to capture the rigid arm’s impedance
more effectively. Such models could be useful in understand-
ing how neural control is relearned over the course of various
rehabilitation therapies.

3. Exploiting reaction time. Fig. 4.5 indicated that a parti-
cipant could not consciously respond to a perturbation dur-
ing the first 100-200 ms after it was applied due to the de-
lay introduced by his reaction time. During this interval, the
CNS position control response is essentially “turned off.” In
another study, this delay was exploited to identify the one-
dimensional impedance of a participant’s hand during a mo-
tion task without the confounding effects of the CNS [97]. By
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performing impedance identification on the first 100-200 ms
of data immediately after the onset of a perturbation and com-
paring this impedance to that identified from the data there-
after, one could determine exactly how the the CNS contribu-
tions modify the arm’s impedance properties.

4. Joint-domain passivity analysis. Are the passivity charac-
teristics of the arm different in the joint domain compared
to the Cartesian domain? The answer to this question influ-
ences the design of teleoperated robotic exoskeletons, which
require a joint-domain model of the human arm. If an optical
tracker recorded the shoulder and elbow joint angles during
our identification experiments, or if the arm’s Jacobian were
used to translate measured Cartesian data into the joint do-
main, the passivity analysis presented in this thesis could be
extended to the joint domain. This could help in identifying
which muscle groups tend to be responsible for passive or ac-
tive behaviour under different tasks. Furthermore, it may fa-
cilitate identification of alternative joint-level impedance mod-
els that provide additional insight into motor recovery over
their Cartesian counterparts. For instance, Galiana et al. [107]
proposed a parallel-cascade nonlinear single-joint impedance
identification approach that separately quantifies impedance
contributions from the joint’s intrinsic mechanics and its re-
flex responses. This model provides clinicians with useful in-
sight into the recovery of reflex responses in stroke survivors.

5. Measuring impedance in a force control task. In this
thesis, participants were required to either completely relax
their arms or execute a position control task. These techniques
could be extended to identify impedance as participants per-
form a force control task. The dynamics of this scenario would
be similar to those shown in Fig. 4.2a with an additional CNS

control loop added to adjust the human’s voluntary force F∗h
based on feedback of the human-robot interaction force Fh.

6. Investigating the relationship between impedance and

clinical pathologies. Since atypical muscle tone and spas-
ticity both cause the limb to exhibit an abnormal relationship
between force and displacement, they are related to the limb’s
mechanical impedance by definition. However, the precise na-
ture of this relationship remains unclear—indeed, this may be
part of the reason why the precise definition of these patholo-
gies remains a topic of debate among clinicians.
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A clinical study to thoroughly characterize the limb impe-
dance of individuals with abnormal muscle tone and spas-
ticity holds potential to answer questions such as:

• How are the reflex responses of spastic individuals quan-
titatively different from those of healthy subjects?

• How does the impedance of spastic or hypertonic indi-
viduals compare with that of healthy individuals over
different frequency ranges?

• Can robotic impedance measurements be used to accu-
rately define and diagnose the conditions of abnormal
tone and spasticity?

Such a study could begin by using the rehabilitation robot
to identify the impedance of another robot programmed to
exhibit abnormal force-position patterns prior to extending
the technique to patients [108].

7. Evaluation of impedance width. Colgate and Brown pro-
posed that the performance of a haptic device may be eval-
uated by its impedance width—the range of impedances it is
able to present to the user [109]. Could a similar measure be
used to assess the motor function of the human arm? The
arm’s impedance width could be measured by using a robot
to identify impedance models for a relaxed and rigid grasp-
ing task and analyzing the mathematical distance between
the two. Individuals with hypertonia or spasticity would be
unable to fully relax their arms while individuals with limp
muscles due to flaccid paralysis may be unable to make their
arms rigid. In both scenarios, the patients’ impedance width
would be narrowed compared to that of healthy individuals.
Compared to current clinical evaluations of arm impedance,
this may prove to be a more comprehensive and insightful
measure of motor ability.
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A
A P P E N D I X : R O B O T K I N E M AT I C S A N D
D Y N A M I C S

All experiments in this thesis were performed with a 2-DOF pla-
nar upper-limb rehabilitation robot manufactured by Quanser, Inc.
(Markham, ON, Canada). The robot was controlled using QUARC,
Quanser’s real-time control software that runs in a MATLAB and
Simulink environment (The Mathworks, Natick, MA, USA). This
software provided low-level access to the robot’s sensors (i.e., joint
encoder counts, force sensor readings, and accelerometer voltages)
and facilitated sending command current to the motors in real time.
This Appendix presents the robot’s derived kinematics and identi-
fied dynamics.

a.1 forward and inverse kinematics

The robot’s two motors move the end effector through a capstan
drive mechanism (Fig. A.1a). The forward kinematics relate the robot’s Forward kinematics

relate joint space to
Cartesian space

joint angles to its end-effector position measured in the Cartesian
coordinate system originating at the robot’s base. From Fig. A.1b,
it is straightforward to show that the forward kinematics relations
are

x .
= hx(θ1, θ2) = d1 cos(θ1) + d2 sin(θ2) (A.1)

y .
= hy(θ1, θ2) = d1 sin(θ1)− d2 cos(θ2),

with link lengths d1 = 10′′ and d2 = 10.5′′.
The mechanical structure of the robot’s links places the following

physical limits on its joint angles:

−55◦ ≤ θ1 ≤ 90◦ (A.2)

0◦ ≤ θ2 ≤ 145◦

θ1 − (θ2 − 90◦) ≥ 35◦.

The first two restrictions prevent the links from colliding with the
physical stops at the extremities of the capstan disc. The final re-
striction ensures that the links do not collide with each other. Com-
bining these restrictions with the forward kinematics in (A.2) yields
the robot’s reachable Cartesian workspace, shown in Fig. A.2.
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End effector 
(handle) 

Motor 1 

Capstan disc 

Motor 2 

(a)

x 
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Figure A.1: The rehabilitation robot in (a) its zero joint angle position and
(b) with its links displaced from the zero position. Joint angles
θ1 and θ2 are measured relative to the dotted lines and are
positive in the direction indicated. The Cartesian position of
the robot’s end effector is measured in the (x, y) coordinate
system shown.
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Figure A.2: The robot’s reachable Cartesian workspace.

The robot’s Jacobian, which translates velocities from the joint
domain to the Cartesian domain, is calculated from the forward
kinematics as follows:

J .
=


∂hx

∂θ1

∂hx

∂θ2

∂hy

∂θ1

∂hy

∂θ2

 =

[
−d1 sin(θ1) + d2 cos(θ2)

d1 cos(θ1) + d2 sin(θ2)

]
. (A.3)

The robot’s inverse kinematics translate a given Cartesian position
into equivalent joint angles. A closed-form inverse kinematics so- Inverse kinematics

relate Cartesian
space to joint space

lution may be obtained by geometric analysis. Consider the robot
positioned as in Fig. A.3. Applying the law of cosines to 4ABC,
and noting that AB = d1 and BC = d2, we obtain

α = acos

(
d2

1 + d2
2 − AC2

2d1d2

)

β = acos

(
AC2

+ d2
1 − d2

2

2d1AC

)

We can also see that

γ = atan2(y, x), and

AC =
√

x2 + y2,
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where atan2(·) denotes the four-quadrant arctangent. Since θ1 =

β + γ and θ2 = θ1 + α− 90◦, the inverse kinematic relations are:

θ1 = acos

(
x2 + y2 + d2

1 − d2
2

2d1
√

x2 + y2

)
+ atan2(y, x) (A.4)

θ2 = θ1 + acos
(

d2
1 + d2

2 − x2 − y2

2d1d2

)
− 90◦.

θ1 

θ2 

β 

α 

γ 

x 

y 

A 

B 

C 

Figure A.3: Solving the robot’s inverse kinematics.

a.2 robot dynamics

Recalling Section 5.1.1, a horizontal revolute-joint 2-DOF planar robot Dynamics relate
motor torque to joint
motion

moving in free space has the following dynamics:

I(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + Fr(Θ̇) = τr (A.5)

where I(Θ) is the 2× 2 inertia matrix, C(Θ, Θ̇) is the 2× 2 Cori-
olis/centrifugal force matrix, Fr is a 2× 1 friction force vector, and
Θ and τr are 2× 1 vector of joint angles and torques, respectively.
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The robot’s dynamic matrices are adapted from those derived for
the PHANToM™ haptic device in [110]:

I(Θ) =

[
α1 − 1

2 α2 sin(θ1 − θ2)

− 1
2 α2 sin(θ1 − θ2) α3

]
(A.6)

C(Θ, Θ̇) =

[
0 1

2 α2 cos(θ1 − θ2)θ̇2
1
2 α2 cos(θ1 − θ2)θ̇1 0

]

Fr(Θ̇) =

[
α4θ̇1

α5θ̇2

]

where αi are constant parameters.
System identification experiments were performed to identify α1

to α5. Each of the robot’s two joints was set to track a signal com-
prising ten sinusoids to move the joint through a 40◦ range such
that the robot’s end effector covered the majority of its workspace.
The bandwidth of the perturbation signal was limited to 0 to 2 Hz
as higher-frequency excitations were found to compromise identifi-
cation accuracy, likely due to elasticity in the robot’s capstan drive
mechanism.

A Savitzky-Golay filter (see Section 3.5) with order N = 6 and
window size W = 151 was used to filter encoder noise from the
recorded signals Θ and τr and to calculate time-derivatives Θ̇ and
Θ̈. For additional noise suppression, the filtered signals and their
derivatives were subsequently passed through a zero-phase 5th-
order Butterworth lowpass filter (MATALB function filtfilt). The
parameters αi were then identified by applying linear least-squares
regression to (A.5).

Six trials were performed, each lasting 50 s in duration. The first
40 s of data from each trial were used to identify parameters by
linear least-squares. The identified model was validated against the
final 10 s of data by applying the VAF test statistic in (3.10). The
following identified parameters consistently yielded VAF values in
excess of 99% for τ1 and 90% for τ2. Fig. A.4 compares the recorded
joint torque with the joint torque predicted by the model for the
same trajectory on a separate set of validation data, demonstrating
that the model fits the data well.
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Table A.1: Identified robot dynamic parameters with standard deviations.

Parameter Value

α1 0.06929± 0.00003
α2 0.04217± 0.00007
α3 0.04416± 0.00004
α4 0.06510± 0.00176
α5 0.07389± 0.00072
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Figure A.4: Validation of robot dynamics identification. Recorded joint
torque is compared against the joint torque predicted by the
model for the same joint trajectory.
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A P P E N D I X : PA RT I C I PA N T I N F O R M AT I O N
L E T T E R A N D C O N S E N T F O R M

This Appendix presents the Participant Information Letter and Con-
sent Form used to obtain informed written consent from the indi-
viduals who volunteered to participate in the study.
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Measuring the mechanical impedance of the upper limb using a rehabilitation robot 
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This study focuses on developing techniques to measure the arm impedance of healthy individuals using 
data collected by a robot. We intend to develop measurement techniques that will supplement 
traditional clinical assessments of human arm stiffness with highly sensitive, reproducible, and accurate 
quantitative measures. The techniques we develop will eventually be evaluated on individuals with 
motor impairment in a future project beyond the scope of this study.  
 
Eligibility 
 
To participate in this study, you must not have been diagnosed with neurological or musculoskeletal 
ailments that could cause your arm to have different biomechanical properties than those of healthy 
individuals. 
 
Study Procedures 

 
Part One: Background data collection (estimated time: 5 minutes) 
 
All data collection will be completed in the Advanced Controls Laboratory (ECERF W4-050, University of 
Alberta). 
 
When you arrive at the laboratory, you will be given an opportunity to review this document and ask us 
questions about the study. If you decide to participate, we will proceed to collect the following 
background data: your height, weight, dominant hand, gender, and age. This information will be used to 
check whether the arm impedance measurements we obtain for our participants show any trends with 
respect to these factors. We will also measure the length of your right forearm and upper arm, which is 
used in the calculation of your arm’s stiffness. For this reason, please wear short sleeves when you 
come to the laboratory. 
 
Part Two: Arm impedance measurements (estimated time: 90 minutes) 
 
To measure your arm’s impedance, you will be seated in front of the robot with your right arm resting 
on a forearm support attached to the robot (Fig. 1). Your arm will be secured to the forearm support 
with nylon safety straps, and a fabric sling suspended from the ceiling will support the weight of your 
arm against gravity.  

 
In each measurement trial, the robot will gently jiggle your arm by applying a series of small position 
perturbations (no larger than 3 cm) or force perturbations (no larger than 8 N) to your hand. Trials will 
be performed with your hand positioned at different locations. In total, approximately 45 trials will be 
completed, each lasting from one to two minutes.   
 
Note that slight modifications may be made to the experimental procedure based on what we learn as 
we analyze the data from our first few participants. For instance, we may ask you to relax your arm in 
some trials and hold it stiff in others. Sometimes we may ask you keep your arm in one position while 
the robot jiggles it, and other times we may ask you to move your hand along a path.  
 
In addition to the force and motion data collected by the robot, we will record videos of the robot 
jiggling your arm using a camera mounted to the ceiling. (This video will not contain any direct facial 
images and no sound will be recorded.)  
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Figure 1: Experiment setup for arm impedance measurement 
 
Benefits  
 
Beyond the opportunity to have hands-on experience with a brand new robotic technology, there are no 
direct benefits available to you for participating in this study. However, we hope that this study will help 
the scientific community to better understand how to accurately measure the impedance of the human 
arm, enabling clinicians to more effectively track patients’ motor recovery and design therapy programs 
that will help maximize motor recovery. 
 
There are no financial costs or benefits involved in participating in this research. 
 
Risk 
 
We have taken every measure possible to ensure your safety and minimize any risks involved in 
participating in this study. However, you should be aware of the following potential risk factors: 
 

• You may find your arm becomes tired. If this should occur, please let us know so that we can 
pause the data collection so that you may rest and relax your arm. 

• There is always a small chance that the computer used to program the robot could crash during 
the experiment. This would not cause the robot to move in an unsafe manner.  

• If appropriate safeguards had not been put in place, the robot would be capable of producing 
sudden motions or exerting large forces which could potentially injure your arm. However, we 
have taken multiple precautions to minimize the chance of this occurring: 

1. The robot's control software was programmed to ensure it interacts with humans in a 
gentle manner. For instance, we have implemented processes to prevent quick 
movements and have included safety checks to immediately turn off the robot’s motors 
if sudden unexpected motion is detected. 
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2. We have electrically restricted the robot’s motors so that the robot cannot apply forces 
higher than 20 N, which is about the force your arm feels when you pick up a full 2 L 
carton of milk. 

3. The robot is positioned so that your torso is outside of the area it can reach. It is also 
clamped to the table top to ensure it does not move out of this position.  

4. Finally, you will be given an emergency stop button to hold in your left hand. Should you 
feel any discomfort while interacting with the device, a push of this button will instantly 
turn off the robot. 

 
Voluntary Participation 
 
Your participation in this study is completely voluntary—you are under no obligation to participate. 
Should you wish to opt out of the study at any point without penalty, you may do so by verbally 
informing us. We will not collect any additional data from you if you choose to withdraw after 
participating in the study. However, we may continue to use any data that we have already collected.  
 
Confidentiality & Anonymity 
 
After we analyze the data collected in this study, the results will be included in my MSc thesis, published 
in scientific journals, and shared at scientific conferences. These results will be presented in an 
anonymous manner so that you will not be personally identifiable. If you agree to participate in this 
study, we will assign you a participant number. All data that is collected—and any results we publish—
will be labeled by participant number without reference to your name.  
 
The digital data collected in this study (i.e., force and position measurements and video data) will be 
stored on password-protected computers in our laboratory. Hard-copy data (i.e., handwritten tables 
with your height, weight, age, etc.) will be stored in a locked filing cabinet in our laboratory. Only Dr. 
Mahdi Tavakoli, myself, and the Research Ethics Committee will have access to this raw data. We do not 
plan to destroy the data collected in this study as we may use it future research projects.  
 
If you would like to receive a copy of the published research papers produced from this study, please 
mention your interest to us.  
 
Further Information 
 
If you have any further questions regarding this study, please do not hesitate to contact Matthew Dyck 
(work: 780-492-3368, cell: ) or Dr. Mahdi Tavakoli (work: 780-492-8935). 
 
The plan for this study has been reviewed for its adherence to ethical guidelines by a Research Ethics 
Board at the University of Alberta. If you have concerns about this study or questions regarding 
participant rights and ethical conduct of research, please contact the Research Ethics Office at 780-492-
2615. This office has no direct involvement with this project. 
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Consent Statement 
 
I have read this form and the research study has been explained to me. I have been given the opportunity 
to ask questions and my questions have been answered. If I have additional questions, I have been told 
whom to contact. I agree to participate in the research study described above. I will receive a copy of this 
consent form after I sign it. 
 
 
____________________________________________________  ___________________ 
Participant’s Name (printed) and Signature    Date 
 
 
____________________________________________________  ____________________ 
Name (printed) and Signature of Person Obtaining Consent  Date  
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C
A P P E N D I X : M AT L A B C O D E S F O R I M P E D A N C E
I D E N T I F I C AT I O N

The following MATLAB functions were written to identify the second-
order two-dimensional Cartesian impedance model from experi-
mental data. The first code was used for sinusoidal perturbations,
while the second was used for underdamped perturbations.

c.1 sinusoidal perturbation code

1 function [M,B,K,X0,VAF_1,VAF_2] = sinusoidalID(logs)
2 % SINUSOIDALID Preprocesses arm impedance data collected with sinusoidal
3 % perturbations and identifies a second−order two−dimensional Cartesian
4 % impedance model
5 % Input:
6 % logs The raw data matrix recorded by the robot. Each row
7 % corresponds to a signal as detailed under "Extract
8 % data" below.
9 % Outputs:

10 % M 2x2 inertia matrix
11 % B 2x2 damping matrix
12 % K 2x2 stiffness matrix
13 % X0 2x1 equilibrium position vector
14 % VAF_1 VAF for x component of force
15 % VAF_2 VAF for y component of force
16

17 %% Delcare constants
18

19 T = 0.001; % Sampling time [s]
20 tstart = 12; % Data start time [s]
21 tsplit = 52; % Estimation/validation split time [s]
22 tstop = 62; % Data stop time [s]
23

24 % Filter parameters
25 N = 6; % Order of polynomial fit for Savitzky−Golay filter
26 W = 101; % Window length for Savtizky − Golay filter
27 fc = 5; % Cutoff frequency for LPF
28

29 %% Extract data
30

31 time = logs(1,tstart/T:tstop/T)'; % time [s]
32 x = logs(2,tstart/T:tstop/T)'; % x and y positions [m]
33 y = logs(3,tstart/T:tstop/T)';
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34 ax = logs(18,tstart/T:tstop/T)'; % x and y accelerometer readings ...
[m/s^2]

35 ay = logs(19,tstart/T:tstop/T)';
36 q1 = logs(6,tstart/T:tstop/T)'; % joint angles [rad]
37 q2 = logs(7,tstart/T:tstop/T)';
38 Fx = logs(10,tstart/T:tstop/T)'; % x and y strain gauge reading [N]
39 Fy = logs(11,tstart/T:tstop/T)';
40 tau1 = logs(14,tstart/T:tstop/T)'; % command torques [N/m]
41 tau2 = logs(15,tstart/T:tstop/T)';
42

43 %% Implement Savitzky−Golay filter
44

45 [~,g] = sgolay(N,W); % see: doc sgolay
46 HalfWin = (W+1)/2 − 1; % half window for filtering
47 lim = length(x) − (W+1)/2; % last data point that can be processed by an ...

S−G filter
48

49 %% Apply Savitzky−Golay filter to data
50

51 % Preallocate variables for faster execution speed. Filtered variables
52 % are denoted by a 'T' suffix. A number after a T indicates the order
53 % of the derivative.
54

55 xT = zeros(lim,1);
56 yT = zeros(lim,1);
57 axT = zeros(lim,1);
58 ayT = zeros(lim,1);
59 tau1T = zeros(lim,1);
60 tau2T = zeros(lim,1);
61 FxT = zeros(lim,1);
62 FyT = zeros(lim,1);
63 xT1 = zeros(lim,1);
64 yT1 = zeros(lim,1);
65 xT2 = zeros(lim,1);
66 yT2 = zeros(lim,1);
67 q1T = zeros(lim,1);
68 q2T = zeros(lim,1);
69 q1T1 = zeros(lim,1);
70 q2T1 = zeros(lim,1);
71 q1T2 = zeros(lim,1);
72 q2T2 = zeros(lim,1);
73

74 % Convolve data with S−G filter coefficients
75

76 for n = (W+1)/2:lim,
77 % Zero−th derivative (smoothing only)
78 xT(n) = dot(g(:,1), x(n − HalfWin: n + HalfWin));
79 yT(n) = dot(g(:,1), y(n − HalfWin: n + HalfWin));
80 q1T(n) = dot(g(:,1), q1(n − HalfWin: n + HalfWin));
81 q2T(n) = dot(g(:,1), q2(n − HalfWin: n + HalfWin));
82 axT(n) = dot(g(:,1), ax(n − HalfWin: n + HalfWin));
83 ayT(n) = dot(g(:,1), ay(n − HalfWin: n + HalfWin));
84 tau1T(n) = dot(g(:,1), tau1(n − HalfWin: n + HalfWin));
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85 tau2T(n) = dot(g(:,1), tau2(n − HalfWin: n + HalfWin));
86 FxT(n) = dot(g(:,1), Fx(n − HalfWin: n + HalfWin));
87 FyT(n) = dot(g(:,1), Fy(n − HalfWin: n + HalfWin));
88 % 1st differential
89 xT1(n) = dot(g(:,2), x(n − HalfWin: n + HalfWin));
90 yT1(n) = dot(g(:,2), y(n − HalfWin: n + HalfWin));
91 q1T1(n) = dot(g(:,2), q1(n − HalfWin: n + HalfWin));
92 q2T1(n) = dot(g(:,2), q2(n − HalfWin: n + HalfWin));
93 % 2nd differential
94 xT2(n) = 2*dot(g(:,3), x(n − HalfWin: n + HalfWin));
95 yT2(n) = 2*dot(g(:,3), y(n − HalfWin: n + HalfWin));
96 q1T2(n) = 2*dot(g(:,3), q1(n − HalfWin: n + HalfWin));
97 q2T2(n) = 2*dot(g(:,3), q2(n − HalfWin: n + HalfWin));
98 end
99

100 % Convert differentials into first and second derivatives
101 xT1 = xT1/T;
102 yT1 = yT1/T;
103 xT2 = xT2/(T*T);
104 yT2 = yT2/(T*T);
105

106 q1T1 = q1T1/T;
107 q2T1 = q2T1/T;
108 q1T2 = q1T2/(T*T);
109 q2T2 = q2T2/(T*T);
110

111 % Remove initial data points which were not processed by the S−G filter
112 n = (W+1)/2+1;
113

114 xT = xT(n:end);
115 yT = yT(n:end);
116 q1T = q1T(n:end);
117 q2T = q2T(n:end);
118 axT = axT(n:end);
119 ayT = ayT(n:end);
120 tau1T = tau1T(n:end);
121 tau2T = tau2T(n:end);
122 FxT = FxT(n:end);
123 FyT = FyT(n:end);
124 xT1 = xT1(n:end);
125 yT1 = yT1(n:end);
126 q1T1 = q1T1(n:end);
127 q2T1 = q2T1(n:end);
128 xT2 = xT2(n:end);
129 yT2 = yT2(n:end);
130 q1T2 = q1T2(n:end);
131 q2T2 = q2T2(n:end);
132

133 % Truncate time vector to the same length
134 time = time(n:lim);
135

136 % LPF Savtizky−Golay filtered signals
137 [B,A] = butter(5,fc/500); % 5th−order Butterworth filter
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138

139 xT = filtfilt(B,A,xT); % zero−phase filtering
140 yT = filtfilt(B,A,yT);
141 q1T = filtfilt(B,A,q1T);
142 q2T = filtfilt(B,A,q2T);
143 axT = filtfilt(B,A,axT);
144 ayT = filtfilt(B,A,ayT);
145 tau1T = filtfilt(B,A,tau1T);
146 tau2T = filtfilt(B,A,tau2T);
147 FxT = filtfilt(B,A,FxT);
148 FyT = filtfilt(B,A,FyT);
149 xT1 = filtfilt(B,A,xT1);
150 yT1 = filtfilt(B,A,yT1);
151 q1T1 = filtfilt(B,A,q1T1);
152 q2T1 = filtfilt(B,A,q2T1);
153 xT2 = filtfilt(B,A,xT2);
154 yT2 = filtfilt(B,A,yT2);
155 q1T2 = filtfilt(B,A,q1T2);
156 q2T2 = filtfilt(B,A,q2T2);
157

158 %% Least−squares regression
159

160 % Form output and regressor matrices
161 Force = −[FxT, FyT];
162 n = length(FxT);
163 R = [xT2 yT2 xT1 yT1 xT yT ones(n,1)];
164

165 % Split matrices in identification and validation sets
166 sp = (tsplit−tstart)/T;
167 Fid = Force(1:sp,:);
168 Rid = R(1:sp,:);
169

170 Fval = Force(sp+1:end,:);
171 Rval = R(sp+1:end,:);
172 timeval = time(sp+1:end,:);
173

174 % Identify model parameters by pseudoinverse
175 P = pinv(Rid)*Fid;
176

177 % Extract impedance matrices
178 M = P(1:2,:)'; % inertia
179 B = P(3:4,:)'; % damping
180 K = P(5:6,:)' ; % stiffness
181 X0 = −inv(K)*P(7,:)'; % equilibrium position
182

183 %% Validate identification results
184

185 F_est = Rval*P; % Estimated forces for validation data
186

187 % Calculate VAF values
188 VAF_1 = 100*(1−(var(Fval(:,1)−F_est(:,1))/var(Fval(:,1))));
189 VAF_2 = 100*(1−(var(Fval(:,2)−F_est(:,2))/var(Fval(:,2))));
190
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191 % Plot model validation results
192 figure(1)
193 subplot(2,1,1)
194 plot(timeval,Fval(:,1),timeval,F_est(:,1))
195 title('Validation of model')
196 ylabel('Fx [N]')
197 legend('Measured Force','Model output')
198 subplot(2,1,2)
199 plot([Fval(:,2) F_est(:,2)])
200 ylabel('Fy [N]')
201 xlabel('Time [s]')

c.2 underdamped perturbation code

1 function [M,B,K,X0,VAF_1,VAF_2] = underdampedID(logs)
2 % UNDERDAMPEDID Preprocesses arm impedance data collected with underdamped
3 % perturbations and identifies a second−order two−dimensional Cartesian
4 % impedance model
5 % Input:
6 % logs The raw data matrix recorded by the robot. Each row
7 % corresponds to a signal as detailed under "Extract
8 % data" below.
9 % Outputs:

10 % M 2x2 inertia matrix
11 % B 2x2 damping matrix
12 % K 2x2 stiffness matrix
13 % X0 2x1 equilibrium position vector
14 % VAF_1 VAF for x component of force
15 % VAF_2 VAF for y component of force
16

17 %% Delcare constants
18

19 T = 0.001; % Sampling time [s]
20 tstart = 16; % Data start time [s]
21

22 % Filter parameters
23 N = 6; % Order of polynomial fit for Savitzky−Golay filter
24 W = 101; % Window length for Savtizky − Golay filter
25 fc = 5; % Cutoff frequency for LPF
26

27

28 %% Extract data
29

30 time = logs(1,tstart/T:end)'; % time [s]
31 x = logs(2,tstart/T:end)'; % x and y positions [m]
32 y = logs(3,tstart/T:end)';
33 ax = logs(18,tstart/T:end)'; % x and y accelerometer readings [m/s^2]
34 ay = logs(19,tstart/T:end)';
35 q1 = logs(6,tstart/T:end)'; % joint angles [rad]
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36 q2 = logs(7,tstart/T:end)';
37 Fx = logs(10,tstart/T:end)'; % x and y strain gauge reading [N]
38 Fy = logs(11,tstart/T:end)';
39 tau1 = logs(14,tstart/T:end)'; % command torques [N/m]
40 tau2 = logs(15,tstart/T:end)';
41 xr = logs(12,tstart/T:end)'; % x and y step reference signals [m]
42 yr = logs(13,tstart/T:end)';
43

44 xr0 = xr(1);
45 yr0 = yr(1);
46

47 %% Implement Savitzky−Golay filter
48

49 [~,g] = sgolay(N,W); % see: doc sgolay
50 HalfWin = (W+1)/2 − 1; % half window for filtering
51 lim = length(x) − (W+1)/2; % last data point that can be processed by an ...

S−G filter
52

53 %% Apply Savitzky−Golay filter to data
54

55 % Preallocate variables for faster execution speed. Filtered variables
56 % are denoted by a 'T' suffix. A number after a T indicates the order
57 % of the derivative.
58

59 xT = zeros(lim,1);
60 yT = zeros(lim,1);
61 axT = zeros(lim,1);
62 ayT = zeros(lim,1);
63 tau1T = zeros(lim,1);
64 tau2T = zeros(lim,1);
65 FxT = zeros(lim,1);
66 FyT = zeros(lim,1);
67 xT1 = zeros(lim,1);
68 yT1 = zeros(lim,1);
69 xT2 = zeros(lim,1);
70 yT2 = zeros(lim,1);
71 q1T = zeros(lim,1);
72 q2T = zeros(lim,1);
73 q1T1 = zeros(lim,1);
74 q2T1 = zeros(lim,1);
75 q1T2 = zeros(lim,1);
76 q2T2 = zeros(lim,1);
77

78 % Convolve data with S−G filter coefficients
79

80 for n = (W+1)/2:lim,
81 % Zero−th derivative (smoothing only)
82 xT(n) = dot(g(:,1), x(n − HalfWin: n + HalfWin));
83 yT(n) = dot(g(:,1), y(n − HalfWin: n + HalfWin));
84 q1T(n) = dot(g(:,1), q1(n − HalfWin: n + HalfWin));
85 q2T(n) = dot(g(:,1), q2(n − HalfWin: n + HalfWin));
86 axT(n) = dot(g(:,1), ax(n − HalfWin: n + HalfWin));
87 ayT(n) = dot(g(:,1), ay(n − HalfWin: n + HalfWin));
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88 tau1T(n) = dot(g(:,1), tau1(n − HalfWin: n + HalfWin));
89 tau2T(n) = dot(g(:,1), tau2(n − HalfWin: n + HalfWin));
90 FxT(n) = dot(g(:,1), Fx(n − HalfWin: n + HalfWin));
91 FyT(n) = dot(g(:,1), Fy(n − HalfWin: n + HalfWin));
92 % 1st differential
93 xT1(n) = dot(g(:,2), x(n − HalfWin: n + HalfWin));
94 yT1(n) = dot(g(:,2), y(n − HalfWin: n + HalfWin));
95 q1T1(n) = dot(g(:,2), q1(n − HalfWin: n + HalfWin));
96 q2T1(n) = dot(g(:,2), q2(n − HalfWin: n + HalfWin));
97 % 2nd differential
98 xT2(n) = 2*dot(g(:,3), x(n − HalfWin: n + HalfWin));
99 yT2(n) = 2*dot(g(:,3), y(n − HalfWin: n + HalfWin));

100 q1T2(n) = 2*dot(g(:,3), q1(n − HalfWin: n + HalfWin));
101 q2T2(n) = 2*dot(g(:,3), q2(n − HalfWin: n + HalfWin));
102 end
103

104 % Convert differentials into first and second derivatives
105 xT1 = xT1/T;
106 yT1 = yT1/T;
107 xT2 = xT2/(T*T);
108 yT2 = yT2/(T*T);
109

110 q1T1 = q1T1/T;
111 q2T1 = q2T1/T;
112 q1T2 = q1T2/(T*T);
113 q2T2 = q2T2/(T*T);
114

115 % Remove initial data points which were not processed by the S−G filter
116 n = (W+1)/2+1;
117

118 xT = xT(n:end);
119 yT = yT(n:end);
120 q1T = q1T(n:end);
121 q2T = q2T(n:end);
122 axT = axT(n:end);
123 ayT = ayT(n:end);
124 tau1T = tau1T(n:end);
125 tau2T = tau2T(n:end);
126 FxT = FxT(n:end);
127 FyT = FyT(n:end);
128 xT1 = xT1(n:end);
129 yT1 = yT1(n:end);
130 q1T1 = q1T1(n:end);
131 q2T1 = q2T1(n:end);
132 xT2 = xT2(n:end);
133 yT2 = yT2(n:end);
134 q1T2 = q1T2(n:end);
135 q2T2 = q2T2(n:end);
136

137 % Truncate remaining vectors to the same length
138 time = time(n:lim);
139 xr = xr(n:lim);
140 yr = yr(n:lim);
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141

142 % LPF Savtizky−Golay filtered signals
143 [B,A] = butter(5,fc/500); % 5th−order Butterworth filter
144

145 xT = filtfilt(B,A,xT); % zero−phase filtering
146 yT = filtfilt(B,A,yT);
147 q1T = filtfilt(B,A,q1T);
148 q2T = filtfilt(B,A,q2T);
149 axT = filtfilt(B,A,axT);
150 ayT = filtfilt(B,A,ayT);
151 tau1T = filtfilt(B,A,tau1T);
152 tau2T = filtfilt(B,A,tau2T);
153 FxT = filtfilt(B,A,FxT);
154 FyT = filtfilt(B,A,FyT);
155 xT1 = filtfilt(B,A,xT1);
156 yT1 = filtfilt(B,A,yT1);
157 q1T1 = filtfilt(B,A,q1T1);
158 q2T1 = filtfilt(B,A,q2T1);
159 xT2 = filtfilt(B,A,xT2);
160 yT2 = filtfilt(B,A,yT2);
161 q1T2 = filtfilt(B,A,q1T2);
162 q2T2 = filtfilt(B,A,q2T2);
163

164 %% Calculate differential signals
165

166 % Calculate r, the magnitude of the command step perturbation signal
167 r = sqrt((xr−xr0).^2+(yr−yr0).^2);
168

169 % Normalize r such that all non−zero values are set to
170 % one.
171 r(r>0) = 1;
172

173

174 %% When does the ninth perturbation start?
175

176 % We want to use the first 8 perturbations for identification and the
177 % remaining 8 perturbations for validation. Therefore, we must identify
178 % the sample that correponds to the beginning of the 9th perturbation.
179

180 diffr = diff(r); % diffr signal equals 1 when a perturbation
181 % starts and −1 when a perturbation stops
182

183 diffr(diffr<0) = 0; % set −1 values of diffr to zero
184 indices = find(diffr); % return indices of non−zero entries of diffr
185 p9 = indices(9); % find the 9th index
186

187 %% Separate data into estimation and validation sets
188

189 timee = time(1:p9−1);
190 FxTe = FxT(1:p9−1);
191 FyTe = FyT(1:p9−1);
192 xTe = xT(1:p9−1);
193 yTe = yT(1:p9−1);
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194 xT1e = xT1(1:p9−1);
195 yT1e = yT1(1:p9−1);
196 xT2e = xT2(1:p9−1);
197 yT2e = yT2(1:p9−1);
198 re = r(1:p9−1);
199

200 timev = time(p9:end);
201 FxTv = FxT(p9:end);
202 FyTv = FyT(p9:end);
203 xTv = xT(p9:end);
204 yTv = yT(p9:end);
205 xT1v = xT1(p9:end);
206 yT1v = yT1(p9:end);
207 xT2v = xT2(p9:end);
208 yT2v = yT2(p9:end);
209 rv = r(p9:end);
210

211 %% Remove unwanted data points
212

213 % We only want to use data for perturbations away from the equilibrium
214 % position−−not for movements back to equilibrium or for rest periods at
215 % equilibrium. We therefore discard any samples for which the
216 % corresponding value of r is zero.
217

218 timee(re==0) = [];
219 FxTe(re==0) = [];
220 FyTe(re==0) = [];
221 xTe(re==0) = [];
222 yTe(re==0) = [];
223 xT1e(re==0) = [];
224 yT1e(re==0) = [];
225 xT2e(re==0) = [];
226 yT2e(re==0) = [];
227

228 timev(rv==0) = [];
229 FxTv(rv==0) = [];
230 FyTv(rv==0) = [];
231 xTv(rv==0) = [];
232 yTv(rv==0) = [];
233 xT1v(rv==0) = [];
234 yT1v(rv==0) = [];
235 xT2v(rv==0) = [];
236 yT2v(rv==0) = [];
237

238 %% Least−squares regression
239

240 % Form output and regressor matrices
241 Fe = −[FxTe, FyTe];
242 n = length(FxTe);
243 Re = [xT2e yT2e xT1e yT1e xTe yTe ones(n,1)];
244

245 % Identify model parameters by pseudoinverse
246 P = pinv(Re)*Fe;
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247

248 % Extract impedance matrices
249 M = P(1:2,:)'; % inertia
250 B = P(3:4,:)'; % damping
251 K = P(5:6,:)' ; % stiffness
252 X0 = −inv(K)*P(7,:)'; % equilibrium position
253

254 %% Validate identification results
255

256 n = length(FxTv);
257 Rv = [xT2v yT2v xT1v yT1v xTv yTv ones(n,1)];
258

259 FxTest = −Rv*P(:,1); % Estimated forces for validation data
260 FyTest = −Rv*P(:,2);
261

262 % Calculate VAF values
263 VAF_1 = 100*(1−var(FxTv−FxTest)/var(FxTv));
264 VAF_2 = 100*(1−var(FyTv−FyTest)/var(FyTv));
265

266 % Plot model validation results
267 figure
268 subplot(2,1,1)
269 plot([FxTv FxTest])
270 title('Validation of model')
271 ylabel('Fx [N]')
272 legend('Measured Force','Model output')
273 subplot(2,1,2)
274 plot([FyTv FyTest])
275 ylabel('Fy [N]')
276 xlabel('Time [s]')



D
A P P E N D I X : D E S I G N O F S P R I N G A R R AY

The impedance identification techniques presented in this thesis
were validated against known inertial and stiffness fields from end-
effector payloads and a two-dimensional spring array. This Ap-
pendix details the design of the spring array and the calculation
of its theoretical stiffness fields.

d.1 spring array construction

The spring array consisted of a 15.5′′ × 15.5′′ plywood frame sus-
pended above a 21′′ × 31′′ plywood base by four posts made of
1
2
′′

threaded rod (Fig. D.1). The rods allowed the frame’s height to
be adjusted for various force sensors that were connected to the
robot’s end effector. Eight screw eyes were affixed to the corners
and sides of the frame to provide attachment points for extension
springs. The frame was designed to be sufficiently large such that
the springs would always remain in tension as the robot perturbed
the system. An aluminium disc with eight holes spaced at 45◦ inter-
vals on a circle 2.25 cm in diameter was affixed to the robot’s end
effector to allow the springs to be connected to the robot (Fig. D.2).

d.2 calculation of stiffness field

Different stiffness fields were obtained by varying the number, stiff-
ness, and locations of the springs in the array. For each combination
of springs, the theoretical stiffness was calculated as follows.

Consider an array of n linear springs connected to the robot’s end
effector. Let the ith spring have stiffness ki and relaxed length `i, and
let it be attached to the spring array frame at location Ri

.
= [xi yi]

T.
Then, the total external force Fext

.
= [ fx fy]T applied to the robot’s

end effector when it is at position R .
= [x y]T is

Fext(R) = −
n

∑
i=1

ki (|R− Ri| − `i)
R− Ri

|R− Ri|
(D.1)

= −
n

∑
i=1

ki

(
1− `i√

(x− xi)2 + (y− yi)2

)[
x− xi

y− yi

]

135
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Figure D.1: Photograph of robot connected to the spring array.

Figure D.2: Close-up photograph of disc used to connect springs to the
robot’s end effector.
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This is a nonlinear function of x and y. For small displacements The stiffness is
approximately linear
for small
perturbations

about the equilibrium position of the spring array, (D.1) may be
expanded as a Taylor series about the equilibrium position R0 of
the spring array:

Fext(R) = Fext(R0) +∇F

[
δx

δy

]
+ . . . (D.2)

where δx .
= x− x0 and δy .

= y− y0. Since the spring array exerts no
net force on the robot at its equilibrium position, Fext(R0) is zero.
Hence, for small displacements, Fext(δR) = K δR, where K is given
by the gradient of Fext(R):

K =


∂ fx

∂x
∂ fx

∂y
∂ fx

∂y
∂ fy

∂y

 . (D.3)

For each spring configuration, the theoretical value of K was
calculated in MATLAB by evaluating (D.1) in a region about the
equilibrium point of the spring configuration and numerically cal-
culating the gradient of Fext at the equilibrium point. The code is
provided on the following page.
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1 function [K,X] = fxystiffness(kp,lp)
2 % FXYSTIFFNESS Calculate stiffness matrix and equilibrium position
3 % for a given configuration of springs in the spring array.
4 %
5 % K = fxystiffness(kp,lp) computes the stiffness matrix at the
6 % equilibrium point of a spring array defined by vectors kp and lp.
7 %
8 % kp = [k1 k2 k3 k4 k5 k6 k7 k8]' is a vector of spring constants (N/m)
9 % lp = [l1 l2 l3 l4 l5 l6 l7 l8]' is a corresponding vector of relaxed

10 % spring lengths (m)
11 %
12 % The labelling convention and coordinate system is shown below:
13 %
14 % d1
15 % |−−−−−−−−−|
16 %
17 % k1 k2 k3
18 % −− +−−−−−−−−−−−−−−−−−−+
19 % | | |
20 % d2 | | |
21 % | | |
22 % −− k8 | + origin | k4 Robot's Cartesian coordinates:
23 % | | |−−−> +y
24 % | | |
25 % | | |
26 % +−−−−−−−−−−−−−−−−−−+ v
27 % k7 k6 k5 +x
28 %
29 % If fewer than eight springs are connected, set the spring constant
30 % for any ommitted springs to zero in kp. Leave the corresponding
31 % lengths in lp as arbitrary non−zero values to avoid a division by zero
32 % error.
33 %
34 % Assumptions:
35 % Springs are always in tension
36 % Springs are linear (F = −kx) throughout the workspace
37 % The frame is perfectly rectangular
38

39 %% Declare constants
40

41 d1 = 0.183; d2 = 0.175; % frame dimensions [m] (see diagram above)
42 h = 0.00015; % grid spacing [m]
43 ri = [−d2 −d1; % vector of attachement points (x,y) for k1 − k8
44 −d2 0;
45 −d2 d1;
46 0 d1;
47 d2 d1;
48 d2 0;
49 d2 −d1;
50 0 −d1;];
51

52 %% Calculate spring force
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53

54 % The meshgrid command is used to generate a grid of points (r values) for
55 % calculating the spring force. Note that the grid is only generated over
56 % a small portion of the frame's area to ensure springs are always in
57 % tension. The meshgrid command produces a dy matrix whose values increase
58 % from left to right and a dx matrix whose values increase from top to
59 % bottom to parallel the coordinate system defined in the diagram above.
60 [dy,dx] = meshgrid(−d1/3:h:d1/3,−d2/3:h:d2/3);
61

62 % Cycle through all points in the grid and calculate the total force the
63 % spring array applies at each point.
64

65 [limx,limy] = size(dx);
66 Fx = zeros(limx,limy); % initialize x−component of force
67 Fy = zeros(limx,limy); % initialize y−component of force
68

69 for i = 1:limx % for each position along the x axis
70 for j = 1:limy % for each position along the y axis
71 for k = 1:8 % for each spring
72 % Calculate r − ri
73 p = [dx(i,j)− ri(k,1) ;
74 dy(i,j) − ri(k,2)];
75 % Add force contribution from the current (i.e. k^th) spring
76 % to Fx and Fy
77 Fx(i,j) = Fx(i,j) − kp(k)*(1−lp(k)/norm(p))*p(1);
78 Fy(i,j) = Fy(i,j) − kp(k)*(1−lp(k)/norm(p))*p(2);
79 end
80 end
81 end
82

83 %% Calculate stiffness fields
84

85 % The stiffnes matrix elements are obtained from the gradients of Fx and
86 % Fy. A negative sign is added since F = −k*x.
87 [kxy,kxx] = gradient(−Fx,h);
88 [kyy,kyx] = gradient(−Fy,h);
89

90 F = sqrt(Fx.^2+Fy.^2); % total force magnitude
91

92 % Find the equilibrium location where force is a minimum. First, use the
93 % min function to search the columns of F, then use min again to search
94 % the resulting row vector (yminF) and find the minimum value (minF).
95 % xminI and yminI are the indices of the equilibrium point; xminL and
96 % yminL are the cooresponding Cartesian coordinates.
97 [yminF, xminI] = min(F);
98 [minF, yminI] = min(yminF);
99 xminI = xminI(yminI);

100 xminL = dx(xminI,yminI);
101 yminL = dy(xminI,yminI);
102

103 % So the equilibrium position is...
104 X = [xminL yminL];
105
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106 % The stiffness matrix is given by the values of the stiffness elements
107 % at the equilibrium point.
108 Kxx = kxx(xminI,yminI);
109 Kxy = kxy(xminI,yminI);
110 Kyx = kyx(xminI,yminI);
111 Kyy = kyy(xminI,yminI);
112

113 % So the stiffness matrix is...
114 K = [ Kxx Kxy;
115 Kyx Kyy];



E
A P P E N D I X : D E S I G N O F S T R A I N G A U G E S E N S O R

A strain gauge sensor was designed, fabricated, and calibrated to
measure human-robot interaction forces. This 2-DOF sensor was ini-
tially conceived as an inexpensive alternative to a commercial load
cell. (Refer to Chapter 5 for a discussion of economic drawbacks of
using commercial load cells with rehabilitation robots.)

The sensor used a bending beam sensing element. While this de-
sign facilitates straightforward and inexpensive fabrication, it func-
tions as a torque sensor rather than a force sensor—the sensor’s volt-
age output scales both with the applied force and the lever arm
length between the strain gauges and the point where the force is
applied. The sensor was used during preliminary experiments with The lever arm length

between the strain
gauges and applied
force must be known
for proper
calibration

the spring array, where the point of application of spring forces
was constant and could be accounted for in the sensor calibration.
However, the sensor was not suitable for measuring forces during
human subject trials. The subject’s hand applied forces with an un-
known distribution over the length of a handle attached to the can-
tilever beam, rendering it impossible to properly account for the
distance between the strain gauges and the point of force applica-
tion.

All measured force signals reported in this thesis were therefore
recorded with a commercial 6-DOF load cell capable of distinguish-
ing between forces and torques. However, the design of the strain
gauge sensor is included here as a reference for future sensor de-
velopment research.

e.1 operation principle

A bonded resistance strain gauge consists of a resistive wire fila- Force causes
resistance changement (approximately 0.025 mm thick [111]) directly bonded to the

strained surface by a thin layer of epoxy resin. When the surface is
deflected from the strain caused by an applied force, the filament is
stretched (compressed), causing its resistance to increase (decrease).
This change in resistance is proportional to the force exerted on the
surface.

The Wheatstone bridge circuit provides an effective means of The Wheastone
bridge senses
resistance change

sensing this resistive change. Fig. E.1 shows a Wheatstone bridge
configuration to measure the bending strain in a cantilever beam. If

141
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no strain is applied to the gauges, the bridge is perfectly balanced
and Vout in Fig. E.1b is zero. When a force is applied to a cantilever
beam as shown in Fig. E.1a, gauges 1 and 3 are stretched causing
an increased resistance, while gauges 2 and 4 are compressed and
their resistance decreases. This creates an imbalance in the bridge,
such that Vout becomes positive.

A full-bridge circuit comprises four identical strain gauges. In
partial-bridge circuits, some of these strain gauges may be replaced
by resistors of the equal resistance. However, the full bridge pro-
vides the advantages of higher sensitivity, compensation against
temperature drift, and rejection of axial strain [112].

1
3

2
4

(a)

1 4

32

in

out

(b)

Figure E.1: A single DOF bending-beam load cell based on the Wheatstone
bridge. (a) Positions of four strain gauges to measure bending
force applied to the cantilever beam. (b) The corresponding
full Wheatstone bridge circuit.

In the configuration of Fig. E.1, Vout is linearly proportional to
the bending strain εB. The bending strain at a given point in the
beam is related to the applied force by the equation

εB =
MB

ZE
=

F× L
ZE

, (E.1)

where Z is the beam’s section modulus (a property of the beam’s
cross section), E is Young’s Modulus of Elasticity (a property of the
beam’s material), and MB = F× L is the bending moment. Hence, Strain is

proportional to both
F and L

if the lever arm length L between the strain gauges and the point
of application of the force is known, the gauges may be used to
measure F directly. If this distance is unknown, one can only isolate
the total bending moment, MB.



appendix 143

e.2 fabrication

The cantilever beam was made from a 5 1/2′′ length of hollow 3/4′′

square uncoated aluminium tubing (Fig. E.2). Square aluminum
plugs 5/8′′ long with female threads along their central axes were
inserted in each end to allow the sensor to be connected to the robot
and the spring array. Each of these plugs was held in place with
eight screws spaced along the perimeter of the aluminium tubing.
Eight bonded-resistance strain gauges (SGD-7/350-LY13, Omega
Engineering Inc., Stamford, CT) were affixed at the center of the
beam in two full Wheatstone bridge configurations—one bridge
for sensing force along each orthogonal axis.1

Figure E.2: Photograph of cantilever beam with strain gauge sensors.

1 A video detailing the strain gauge mounting procedures is available at
http://youtu.be/s4Bq8MvwbyU.

http://youtu.be/s4Bq8MvwbyU
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e.3 signal acquisition

Fig. E.3 shows the block diagram of the sensor’s signal acquisition
system. A DC power supply equipped with an LM7805 voltage
regulator chip provided the 5 V DC signal to power the two Wheat-
stone bridge circuits. The millivolt outputs from each of the bridges
were transmitted through a shielded cable to commercial strain
gauge preamplifiers (OM5-WBS-1-C, Omega Engineering Inc.) and
amplified to a [0,5] V range. To enhance the sensor’s resolution
by exploiting the full [-10,10] V input range of the 12-bit analog-to-
digital converters on the robot’s data acquisition card, the preampli-
fier outputs were passed through a second amplifier and DC level
shifter circuit. Finally, the amplified signals were low-pass filtered
( fc = 48.2 Hz) for anti-aliasing and noise suppression. The signals
were then read by the robot’s analog data acquisition card (Stroke
Rehab USB, Quanser Inc.).

Strain Gauge
Bridge

Amplifier and 
Level Shifter

Data 
Acquisition 

Card

Low Pass 
Filter

Commercial 
Preamplifier

DC Supply
(Voltage 

Regulated)

5 V

[-30,30] mV  [0,5] V [-10,10] V

[-10,10] V

Figure E.3: Block diagram for each DOF of the strain gauge signal acquisi-
tion system.

Fig. E.4 shows the circuit topology for the amplifier, level shifter,
and low-pass filter used to process signals from the sensor’s x-axis.
An op-amp summing amplifier is used to remove DC offset and
amplify the input signal. Two Sallen-Key filters are cascaded to
produce a 4th-order active low-pass filter. The op-amp supply volt-
ages are provided by voltage regulator chips with passive RC filters
( fc = 10 Hz) for ripple suppression. The voltage regulators ensured
that the circuit’s gain did not vary with fluctuations in supply volt-
age.

e.4 calibration

The sensor was calibrated by affixing it to an immovable base and
using masses to apply a known force to its free end. Calibration
forces ranged from -50 N to 50 N, exceeding the typical range of
forces encountered in impedance measurement experiments.
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Fig. E.5 shows the force-voltage relation for the sensor’s two axes.
The equations of the best-fit lines with standard errors are

Fx = (−8.56± 0.03)Vx + (0.54± 0.06), R2 = 0.9996, (E.2)

Fy = (−8.15± 0.06)Vy + (2.3± 0.1), R2 = 0.9989.

The R2 values near unity demonstrate that force-voltage relation is
highly linear over its operating range. For each experiment, the
slopes of these best-fit lines were used to convert voltage mea-
surements to force. However, the y-intercepts of these lines were
tuned on an experiment-by-experiment basis to account for chang-
ing force zero offsets that may be introduced by different hardware
attached to the sensor.
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Figure E.5: Calibration of the strain gauge sensor.

Equation (E.1) shows that the sensor’s output depends on the
distance L between the strain gauges and the point of application
of the applied force. During the calibration experiment, the spring The calibration

equations must be
scaled for different
lever arms

array attachment disc (Fig. D.2) was connected to the sensor and
the masses were suspended from this disc. This configuration had
a lever arm of L0 = 6.88 cm. If the force is applied at a different
location, the force calculated by (E.2) must be scaled by the appro-
priate distance L:

Factual =
L0

L
Fcalculated (E.3)

Each axis had a root mean square (RMS) noise of 0.01 N. Crosstalk
between the sensor’s two axes was sufficiently small to be neglected:
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when the force on one axis was increased from 0 to 20 N, the force
on the orthogonal axis changed by less than 0.5 N.

e.5 coordinate conversion

The sensor measured forces in the (xs, ys) coordinate system shown
in Fig. E.6. The following relation converted the measurements
in the sensor coordinate frame to the Cartesian world coordinate
frame originating at the robot’s base:[

Fx

Fy

]
=

[
sin(θ2) cos(θ2)

− cos(θ2) sin(θ2)

] [
Fxs

Fys

]
. (E.4)

x 
y 

θ2 

xs 

ys 

θ2 

Figure E.6: Conversion of strain gauge sensor coordinates (xs, ys) to robot
world coordinates (x, y).
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