
Improving the reliability of reinforcement learning
algorithms through biconjugate Bellman errors

by

Andrew Patterson

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Statistical Machine Learning

Department of Computing Science

University of Alberta

© Andrew Patterson, 2024



Abstract

In this thesis, we seek to improve the reliability of reinforcement learning algo-

rithms for nonlinear function approximation. Semi-gradient temporal differ-

ence (TD) update rules form the basis of most state-of-the-art value function

learning systems despite clear counterexamples proving their potential insta-

bility. Gradient TD updates have provable stability under broad conditions,

yet significantly underperform semi-gradient approaches on several problems

of interest. In this thesis, we present a simple modification to an existing

gradient TD method, prove that this method—called TDRC—remains stable,

and show empirically that TDRC performs comparatively with semi-gradient

approaches. Taking advantage of the connection between Fenchel duality and

orthogonal projections, we justify the use of nonlinear value function approx-

imation using gradient TD updates and show that these methods continue

to inherit improved reliability over semi-gradient approaches in the nonlinear

function approximation setting. We then extend this method to value-based

control with neural networks and empirically validate its performance com-

pared to semi-gradient methods. Finally, we propose two novel statistically

robust losses—the mean Huber Projected Bellman error and the mean abso-

lute Projected Bellman Error—and derive a family of off-policy gradient TD

algorithms to optimize these losses for both prediction and control.

ii



Preface

Most parts of this thesis are based on published works written in collaboration

with others.

Chapter 3 is a large subset taken from a work published in the Journal of

Machine Learning Research [Patterson et al., 2022b]. My major contributions

include ideation and scoping, writing theoretical proofs about the geometry

of the objective landscape and the connection to convex conjugates, all ex-

perimentation and analysis of results, and a share of the writing of the final

manuscript. My advisors, Martha White and Adam White, were heavily in-

volved in the writing of the manuscript as well as ideation and scoping of

the project. In addition, Martha wrote the theoretical proofs regarding error

bounds.

Chapters 4 and 5 are based on a published paper written with several

coauthors [Ghiassian et al., 2020] which introduces one of the primary algo-

rithms of study in this thesis, TDRC. My major contributions to this work

include ideation and scoping, inventing the TDRC and QRC algorithms, the

theoretical motivation for TDRC, all code used within the project, the em-

pirical design and analysis for the prediction setting, the empirical design for

the control setting, and the high-level structure of the convergence proof. My

co-first author, Sina Ghiassian, wrote much of the final draft and analyzed the

empirical results in the nonlinear control setting. Shivam Garg was responsible

for the proof of convergence of the TDRC algorithm.

Finally, Chapter 6 is based on a paper published in the journal Transac-

iii



tions on Pattern Analysis and Machine Intelligence [Patterson et al., 2022a].

My major contributions to this work include ideation and scoping, the theoret-

ical motivation and the connection to biconjugates, all theoretical results and

proofs, all empirical design and analysis in the control setting, the empirical

design in the prediction setting, and the writing of the final document. My

coauthor, Victor Liao, was responsible for the code and empirical analysis in

the prediction setting. My advisor, Martha White, played a large role in the

writing of the final document as well as the ideation and scoping.

iv



Acknowledgements

This thesis is the product of five years of collaboration with a fantastic group of

scientists, researchers, inventors, and careful thinkers. It is impossible to track

the many influences of a supportive lab, where just the right word at just the

right time can trigger a cascade of new ideas or perspectives. However, there

are several people who played a consistent role in my research and growth.

First, I would like to thank my advisor, Martha White, who I have worked

with since my undergraduate studies. Martha is a natural teacher and mentor

who was willing to train me from barely understanding the introductory RL

textbook to the completion of this thesis. Martha has adapted her mentorship

over the past eight years, from a technical teacher to a research advisor and

finally to helping me carve out a place in our field. Many of my views of

mentorship and teaching have been shaped by—and are modelled after—that

which I received from Martha.

I would also like to thank Adam White for his ongoing mentorship and

collaboration. Adam has been involved in nearly every project that I have

worked on to the betterment of the project. Adam is a clear-minded scientist

who can see right to the heart of a project and produce a compelling story

for the work. My approach to science and research closely model what I have

learned from Adam; grumpy skepticism and all!

Finally, I would like to thank my family: my life partner, Katie; my parents;

and (most importantly) my two kittens, Moose and Maple. Katie provided

support and a fresh perspective as she too developed into a scientist alongside

v



me. Her insights into statistical best practices and empiricism significantly

shaped my approach to science. My parents provided much needed encour-

agement throughout the degree, allowing me to take my mind off work every

December to start the next year refreshed. I was inspired by Moose’s curiosity

and playfulness and comforted by Maple’s warmth and affection.

vi



Contents

1 Introduction 1
1.1 Learning value functions . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Objectives for Learning Value Functions 8
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Objective functions for learning values . . . . . . . . . . . . . 11
2.3 Known challenges with existing objectives . . . . . . . . . . . 14
2.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Generalized Projected Bellman Errors 18
3.1 Biconjugate Bellman Errors . . . . . . . . . . . . . . . . . . . 18
3.2 A generalized projected Bellman error . . . . . . . . . . . . . 20
3.3 The quality of the solution . . . . . . . . . . . . . . . . . . . . 26
3.4 The quality of the solution under different weightings . . . . . 29
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Gradient Temporal Difference with Regularized Corrections 33
4.1 Gradient TD Methods . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Connection to biconjugate errors . . . . . . . . . . . . . . . . 34
4.3 The two modes of TDC . . . . . . . . . . . . . . . . . . . . . . 36
4.4 The TDRC algorithm . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 TDRC convergence . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Experiments in off-policy prediction . . . . . . . . . . . . . . . 44

4.6.1 TDRC performs well across problems. . . . . . . . . . . 45
4.6.2 TDRC is insensitive to its configuration parameters. . . 47

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Q-Learning with Regularized Corrections 52
5.1 Extending to non-linear control . . . . . . . . . . . . . . . . . 53
5.2 Experiments in non-linear control . . . . . . . . . . . . . . . . 54

5.2.1 QRC performs consistently well across environments. . 56
5.2.2 QRC is more reliable than DQN. . . . . . . . . . . . . 61

vii



5.2.3 QRC outperforms saddlepoint methods. . . . . . . . . 66
5.2.4 Using the same function class for both learners consis-

tently performs well across environments. . . . . . . . . 68
5.3 Reliability and empirical science . . . . . . . . . . . . . . . . . 71
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Statistically Robust Bellman Errors 77
6.1 The mean Huber Bellman error . . . . . . . . . . . . . . . . . 79
6.2 Limiting the function class of the Huber Bellman error . . . . 83
6.3 Empirical analysis of the fixed-points . . . . . . . . . . . . . . 85
6.4 Algorithms for the Huber Bellman error . . . . . . . . . . . . 90
6.5 Empirical analysis in off-policy prediction . . . . . . . . . . . . 91
6.6 Experiments in nonlinear control . . . . . . . . . . . . . . . . 92

6.6.1 Experiments in classic control environments . . . . . . 92
6.6.2 Experiments in Minatar . . . . . . . . . . . . . . . . . 94
6.6.3 Omitting target networks . . . . . . . . . . . . . . . . 96
6.6.4 Ablating design decisions . . . . . . . . . . . . . . . . . 98

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusion 102
7.1 Future research directions . . . . . . . . . . . . . . . . . . . . 103
7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Algorithms 118

B Proofs 120
B.1 Biconjugate proofs . . . . . . . . . . . . . . . . . . . . . . . . 120

viii



List of Tables

6.1 Average performance on Minatar . . . . . . . . . . . . . . . . 96

ix



List of Figures

2.1 The visualization above characterizes the true vπ, the PBE2

solution, and how projections operate on successive approxima-
tions. Assume the estimate of vπ starts from v in red. The
Bellman operator pushes the value estimate out of the space of
representable functions represented by the plane. The projec-
tion brings the approximation back down to the nearest repre-
sentable function on the plane. This process is repeated over
and over until the value estimates converge to the blue dot at
the base of the black line. Subsequent updates push the ap-
proximation to vπ out of the space of representable functions
and the projection back onto the plane. The true value in this

case is outside V , with the VE2 being the distance between the

v at PBE2 = 0 and vπ. Note the projection of vπ onto V need

not be equal to PBE2 solution. . . . . . . . . . . . . . . . . . 13

3.1 The visualization above shows how the PBE2 solution can result
in arbitrarily bad VE2 under some behaviors. The vertical axis

measures VE2 and the horizontal axis different behavior policies.
The blue line above is the same as the visualization used in
Kolter [2011] to demonstrate issues with minimizing PBE2. We

extend this demonstration show that the BE2 solution (green)
exhibits low error and, as the size of Hθ grows, the bound on

the VE2 improves. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Investigating the VE2 of the fixed-points of PBE2 and BE2 un-
der db, dπ, and m on a 19-state random walk. All errors are
computed closed form given access to the reward and transi-

tion dynamics. The fixed-point of the PBE2 with emphatic
weighting consistently has the lowest error across several state

representations (light color); while the fixed-point of the PBE2

under db has the highest error (dark blue). Results are averaged
over one million randomly generated policies and state repre-
sentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

x



4.1 The square root of the PBE2 for the TDC algorithm across mul-
tiple levels of the secondary stepsize multiplier, η. The solid
line denotes the mean performance over 200 independent sam-
ples for each level of η and the shaded regions correspond to
95% percentile bootstrap confidence intervals. The shape of
the sensitivity curve for the first two domains is opposite that
of the final three domains. That is, the strategy for selecting η
changes per-domain. . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The square root of the PBE2 for the TDC algorithm over time
and across multiple levels of the secondary stepsize multiplier,
η. Darker colors (blue) are small values of η and brighter colors
(red) are large values of η. As in Figure 4.1, the first two do-
mains favor agents with a large value of η while the final three
domains favor agents with a small value of η. . . . . . . . . . 39

4.3 Estimated values of the TD error, δ over time for multiple lev-
els of the secondary stepsize multiplier, η. Darker colors are
small values of η and brighter colors are large values of η. The
primary stepsize was swept independently for every level of η,
such that each curve represents near-ideal performance for each
given choice of η. . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Top: The normalized average area under the RMSPBE learning
curve for each method on each problem. Each bar is normalized
by TDRC’s performance so that each problem can be shown in
the same range. All results are averaged over 200 independent
runs with standard error bars shown at the top of each rectan-
gle, though most are vanishingly small. TD and VTrace both
diverge on Baird’s Counterexample, which is represented by the
bars going off the top of the plot. HTD’s bar is also off the
plot due to its oscillating behavior. Bottom: Stepsize sensitiv-
ity measured using average area under the RMSPBE learning
curve for each method on each problem. HTD and VTrace are
not shown in Boyan’s Chain because they reduce to TD for
on-policy problems. . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Sensitivity to the regularization parameter, β. TD and TDC
are shown as dotted baselines, demonstrating extreme values of
β; β = 0 represented by TDC and β → ∞ represented by TD.
This experiment demonstrates TDRC’s notable insensitivity to
β. Its similar range of values across problems, including Baird’s
counterexample, motivates that β can be chosen easily and is
not heavily problem dependent. Values swept are: β ∈ 0.1 ∗
{20, 21, . . . , 25, 26}. . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



4.6 Relationship between TDRC and TD performance across differ-
ent reward scales for different values of beta. On the x-axis we
show the scale of the rewards for the terminal states of the ran-
dom walk, on the y-axis we show a range of values of β. Each
dot represents the number of standard deviations away from TD
that TDRC’s performance is across 500 independent runs for
that particular value of β. For each dot, TDRC and TD choose
the stepsize with the lowest area under the RMSPBE learning
curve; with stepsizes swept from α ∈ {2−5, 2−4, . . . , 20}. As the
scale of the rewards increases (left to right on the x-axis), the
variance of the secondary weights, h, also increases; effectively
requiring a larger value of β. This figure demonstrates that
TDRC with β = 1 remains relatively insensitive to the scale of
the rewards except in extreme cases when the variance of the
rewards from transition to transition is quite large. . . . . . . 50

5.1 Top: Best hyperparameters across domains. Bottom: Best
hyperparameters per -domain. The performance of several off-
policy control algorithms with neural network function approx-
imation on four simulation domains. The top subplot uses a
voting procedure to select a single hyperparameter setting for
each algorithm, used across all four domains. This gives a sense
of idealized performance of each algorithm without domain-
specific tuning. The bottom subplot tunes hyperparameters
per-domain, giving a sense of idealized performance when each
algorithm can tune hyperparameters for each specific domain.
The performance of each algorithm in the bottom subplot should
be greater or equal to the corresponding performance in the top
subplot on average over timesteps. In every domain, at least one
algorithm reaches a performant and stable final policy. QRC is
among the top-performing algorithms in every domain, where
all other algorithms have at least one domain where they per-
form notable worse than the rest. In Cartpole, the three ε-
greedy based methods (QRC, QC-LL, and Q-learning) suffer
from a fixed-entropy behavior policy which causes performance
to plateau at a slightly worse average value than the policy gra-
dient method SBEED whose policy becomes near deterministic
by the end of learning. . . . . . . . . . . . . . . . . . . . . . . 58

xii



5.2 Distribution of average returns over hyperparameter settings for
each benchmark domain. The vertical axis represents the aver-
age performance of each hyperparameter setting (higher is bet-
ter) and the width of each curve represents the proportion of hy-
perparameters which achieve that performance level, using a fit-
ted kernel density estimator. The solid horizontal bars show the
maximum, mean, and minimum performance respectively and
the dashed horizontal bar represents the median performance
over hyperparameters. QRC in blue generally performs best
and exhibits less variability across hyperparameter settings. . 60

5.3 The performance distribution over runs for the best performing
hyperparameter settings for each algorithm on Lunar Lander.
The horizontal axis represents the average episodic return over
the last 25% of steps. The vertical axis for each subplot rep-
resents the proportion of trials that obtained a given level of
performance. The plot shows the empirical histogram and ker-
nel density estimator for the performance distribution over 100
independent trials. Mass concentrated to the right indicates
better performance. . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Sensitivity to stepsize parameter. Distribution of the return per
episode for the last 25% of episodes across choice of stepsize.
Each row of this figure corresponds to the performance on each
algorithm across domains for one value of the stepsize param-
eter. Each subplot is exactly like Figure 5.3: the distribution
of performance for all four algorithms using a particular step-
size parameter value on a single domain. The highlighted plots
in each column represent the best performing stepsize param-
eter value. QRC consistently exhibits a narrow distribution of
performance where the bulk of the distribution is on the upper
end of the performance metric (towards the right is better). Q-
learning and QC-LL both have wide performance distributions
on all domains and exhibit bimodal distributions on Mountain
Car. SBEED tends to exhibit bimodal performance often, with
a non-trivial proportion of runs which fail to learn beyond ran-
dom performance. . . . . . . . . . . . . . . . . . . . . . . . . 64

xiii



5.5 Control methods on Mountain Car with neural network function
approximation. Each method takes one update step for every
environment step and uses η = 1. Top Left: Average number
of steps to goal. Top Right: Sensitivity to stepsize showing
area under the learning curve for each value of α. Bottom
Left: Magnitude of the secondary weights for each algorithm.
Q-learning is included as a flat line at zero, as Q-learning is
effectively a special case of QRC where the secondary weights
are always 0. Bottom Right: Mean and standard deviation
of the maximum action-value for each step of learning. QC
exhibited massive growth in action-values throughout learning
and Q-learning exhibited periodic spikes of instability. . . . . 66

5.6 Comparing gradient correction-based updates (QRC) and sad-
dlepoint methods (GQ, GQ-Grad). GQ-Grad utilizes the gra-
dient of v as features for the secondary variable, h. Allow-
ing the saddlepoint methods to estimate h(s) by using a linear
function of the gradients of the primary variable yields slightly
higher performance. Nonetheless, saddlepoint methods suffer
from wide performance distributions with the bulk of the dis-
tribution being further left than the gradient correction-based
updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 How to represent h: ablating the choice of basis function for
the secondary variable, by comparing a shared network with
two heads (QRC), two separate networks (QRC-Sep), and one
network for the primary variable and a linear function of the
primary variable’s gradients for the secondary (QRC-Grad). . 70

5.8 Average performance over 200 agents with 95% bootstrap per-
centile confidence intervals represented as a shaded region about
the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.9 Individual performance of 20 randomly selected individual agents
for both DQN (top row) and QRC (bottom row). . . . . . . . 74

5.10 Tolerance intervals with α = 0.05 and β = 0.9 for both DQN
and QRC. For context, the mean performance across individuals
is also shown as a solid line for both algorithms. . . . . . . . 75

6.1 Objectives and fixed-points on the above described MDP. Dot-
ted lines are drawn at the minima. The fixed-points of the

robust objectives are much better proxies for the VE2. Note

that the |VE| (not shown) has a similar fixed-point to the VE2,
so the HBE and |BE| also well approximate the fixed-point of
the |VE|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiv



6.2 Visualizing the loss surface for the PBE2 (blue), the HPBE
(red), and an approximation of the loss followed by the TDRC
algorithm (black). TDRC does not define a valid projection,
but we can compute the �2 regularized solution for h for each
θ, to plot the idealized loss surface. The HPBE is a squared
projected loss, but the projection under the Huber flattens the
surface for large residuals, characteristic of the flat regions of
the Huber function. TDRC has a less sharp surface for a local
region near the fixed-point, but ultimately suffers from using a
squared loss for very large residuals. . . . . . . . . . . . . . . 86

6.3 Evaluating the quality of the fixed-points of each objective func-

tion according to the VE2 and |VE| across several prediction
problems. Error is plotted relative to the best representable
value function. The robust losses are better in the hard aliasing

domains, the HBE is slightly better in Outlier, and the BE2 is
better on the classic random walks. . . . . . . . . . . . . . . 88

6.4 Evaluating the quality of fixed-points for the projected Bellman
errors with three different projection sets. The more saturated
colors (left) correspond to no projection; the less saturated col-
ors (right) correspond to using H = V . The interim colors
represent an intermediary projection which uses five additional
features to fit the Bellman residual. . . . . . . . . . . . . . . 90

6.5 VE2 averaged over 100 independent trials for each stepsize in
prediction domains. The mean squared algorithms generally
performed well across environments—even the adversarially cho-
sen environments—suggesting the difficulty in minimizing the
|BE|. The Huber algorithms performed best across many envi-
ronments, often displaying less sensitivity to the choice of step-
size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Performance distribution over 100 random seeds for the best
hyperparameter setting chosen per-algorithm and per-domain.
The performance measure is the average return over the last
25% of steps. QRC-Huber consistently has approximately nor-
mal and narrow distributions around high-performance returns.
DQN has inconsistent behavior, with bimodal performance on
Mountain Car and Lunar Lander, and long-tailed performance
on Acrobot and Cartpole. SBEED has inconsistent performance
with high-variance on several domains and long-tailed perfor-
mance on CliffWorld and Mountain Car. . . . . . . . . . . . . 95

xv



6.7 Learning curves for the best hyperparameter configuration for
each domain, averaged over 100 random seeds. Shaded regions
indicate one standard error. QRC-Huber is the only algorithm
which is consistently among the best performing algorithms for
every environment. DQN exhibits notable instability in both
the Cartpole and Mountain Car environments, while QRC suf-
fers from its squared loss in the adversarially designed Cliff-
World environment. The SBEED algorithm consistently per-
forms suboptimally on every domain except Cartpole, with no-
tably worse performance on Lunar Lander. . . . . . . . . . . 95

6.8 Ablating the impact of the target network refresh rate (1, 50 and
500) on the performance of the nonlinear control algorithms. A
refresh rate of 1 means no target networks are used. DQN re-
quires target networks to achieve above random performance on
Cart-pole and to reduce the bimodality of its performance on
Mountain Car. Even with target networks, DQN still exhibits
large skew and bimodality in its performance distributions, indi-
cating instability. The gradient methods QRC-Huber and QRC
both perform better without target networks (the bottom row). 97

6.9 Ablating the impact of the threshold parameter for the Huber
loss function for the QRC-Huber algorithm across the bench-
mark domains. For three of the domains, QRC-Huber is robust
to the choice of threshold parameter with a default value of
τ = 1 being a good choice. However, the Mountain Car domain
shows high bimodality in performance distribution across mul-
tiple random initializations of the neural network for smaller
values of the threshold parameter. . . . . . . . . . . . . . . . 98

6.10 Comparing algorithms on benchmark control domains with the
area under the learning curve as the performance metric. By
including early learning in the performance metric, we get a
sense of the sample complexity of each algorithm. QRC-Huber
tends to perform favorably across all four domains compared
to QRC and DQN, exhibiting much more narrow performance
distributions that are often centered around higher rewards than
the competitor algorithms. . . . . . . . . . . . . . . . . . . . 99

xvi



Chapter 1

Introduction

Building reliable and scalable artificial learning systems is a long-standing

goal—and open problem—of reinforcement learning. As we seek to automate

increasingly complex and critical tasks, we have an increasing need for systems

that have predictable performance. Reliability impacts both the deployment

and academic study of artificial learning algorithms, with unreliable systems

substantially increasing the cost of both disciplines.

Stability and reliability are both loosely defined in the context of rein-

forcement learning. This thesis will focus on the consistency of a learning

system that is faced with many sources of variation, such as different starting

conditions, stochastic streams of data, or variations in deployment scenarios.

Definition 1 Reliability - A learning system is considered reliable in a given

environment if the agents produced by that system achieve similar performance,

regardless of random initialization of the agents or random influences from the

environment.

Many current state-of-the-art learning systems in reinforcement learning

have been shown to be unreliable. Minute changes in configuration parame-

ters can lead to substantially different outcomes and behaviors [Islam et al.,

2017, Machado et al., 2018, Henderson et al., 2018, Nagarajan et al., 2019, En-

gstrom et al., 2019, Patterson et al., 2023], as can differing implementations of

the same conceptual architectures. Multiple agents produced from the same

learning system can behave so differently, we can wrongly conclude—with sta-

tistical significance—that these agents must have come from different learning

1



systems [Henderson et al., 2018]. Finally, in some cases, taking a learning

system that is well-configured for a particular problem and deploying it on a

seemingly highly-related problem can lead to abject failure of all agents pro-

duced by the system [Machado et al., 2018, Obando-Ceron and Castro, 2021,

Patterson et al., 2023].

These examples of unreliability are in no way inevitable, nor are they funda-

mentally insurmountable. Through careful configuration, the same algorithms

that have been described as unreliable have made breakthroughs in solving

games designed for humans [Mnih et al., 2013], flying weather balloons in the

stratosphere [Bellemare et al., 2020], and controlling cooling systems in data

warehouses [Wang et al., 2023]. With the use of pre-existing data, these sys-

tems can be pre-trained to avoid much of the instability before deployment

[Schwarzer et al., 2021], and this data can be used to carefully tune the con-

figurable parameters of these complex learning systems [Wang et al., 2022].

These approaches, however, often shift the challenge of learning into a chal-

lenge of configuration, system engineering acumen, and data curation. That

is, we place some of the burden of learning on the system’s designer instead of

the learning system itself.

The need for consistent learning systems is present both in engineering—

where inconsistency can lead to added deployment cost—and science—where

inconsistency leads to a lack of reproducibility of claims. It is unsurprising,

then, that calls for improving the state of reproducibility in reinforcement

learning research have heavily overlapped with empirical demonstrations that

many reinforcement learning systems are unreliable [Henderson et al., 2018,

Engstrom et al., 2019, Patterson et al., 2023, Obando-Ceron and Castro, 2021,

Colas et al., 2018, Agarwal et al., 2021, Pineau et al., 2020]. A common recom-

mendation amongst most—if not all—of these works is to improve the statisti-

cal and analytical tooling that we use to understand these unreliable methods,

ultimately accepting the premise that these methods need be unreliable. There

is, however, an alternative approach: we can strive to produce learning sys-

tems that are inherently more reliable. Naturally, these two approaches need

not be mutually exclusive; we can improve our analytical tools for unreliable

2



systems while simultaneously improving the reliability of our systems. In fact,

these are likely synergistic.

1.1 Learning value functions

Value functions are at the root of many RL systems in some capacity. Broadly,

a value function evaluates a state—or a state-action pair—and approximates

the average sum of rewards that will be observed in the future from that state

while following a given policy. The value function can be used directly for

action selection such as in Q-learning methods [Watkins, 1989, Mnih et al.,

2013], as a control variate for variance reduction such as in policy gradient

methods [Huang and Jiang, 2020, De Asis and Sutton, 2018], as a component

to a model [Schlegel et al., 2021, Sutton et al., 2011, Jaderberg et al., 2016], or

as a critic to learn parameterized policies [Bhatnagar et al., 2009, Degris et al.,

2012, Liu et al., 2018]. While certainly some value-function free RL methods

exist—such as REINFORCE [Williams, 1992]—they are typically constructed

from Monte Carlo estimates which are inherently high-variance [Mandel et al.,

2014, Thomas and Brunskill, 2016, Jiang and Li, 2016] and can inhibit online,

life-long learning [Sutton and Barto, 2018]. These Monte Carlo estimates are

typically replaced by model-based [Mannor et al., 2007, Paduraru, 2013] or

doubly robust alternatives [Thomas and Brunskill, 2016, Jiang and Li, 2016,

Xu et al., 2021], bringing us back to the need for value functions.

Fundamental improvements in value function learning can have a signifi-

cant impact across nearly all reinforcement learning systems. As such, many

algorithms have been developed to improve the methods by which we learn

value functions. This includes a variety of variance reduction improvements

for off-policy temporal difference algorithms [Precup et al., 2000, Munos et al.,

2016, Mahmood et al., 2017]; gradient TD methods with linear function ap-

proximation [Sutton et al., 2009, Mahadevan et al., 2014, Liu et al., 2016, Ghi-

assian et al., 2020] and nonlinear function approximation [Maei et al., 2009];

and algorithms using approximations to the mean squared Bellman error (BE2)

[Dai et al., 2017, 2018, Feng et al., 2019].

3



In online learning, the value function is learned concurrently as the agent

interacts with the environment. In its most basic form, online learning occurs

synchronously, interwoven between environment interactions. This form of

online learning is natural in simulated settings, where the simulator pauses

between interactions giving the agent time to update its value function and

plan its next action. Another common alternative approach to online learning

is to decouple learning and behavior, for instance by retaining a buffer of

experience by which the agent updates its value function asynchronously from

the environment interaction. In this work, we will consider only simulated

environments where the simulator’s clock pauses while the agent performs

updates.

When the agent’s behavior differs from the policy being evaluated, this is

known as the off-policy policy evaluation problem. A common application of

off-policy learning is when an agent learns many value functions or policies in

parallel, for instance to learn option models [Sutton et al., 1999], build predic-

tive representations of state [Littman and Sutton, 2002, Tanner and Sutton,

2005, Sutton et al., 2011, White, 2015, Schlegel et al., 2021], or use auxiliary

predictions to improve its state representation [Jaderberg et al., 2016]. In a

parallel learning setting, it is natural to estimate the future reward achieved

by following each target policy until termination from the states encountered

during training—the value of taking excursions from the behavior policy.

In this thesis, I study the problem of online, off-policy policy evaluation and

control. Reinforcement learning systems are composed of many complemen-

tary components, such as function approximators, models, resampling buffers,

exploration methods, and update rules for the value function. Some combina-

tions of these components can lead to unstable learning systems [Sutton and

Barto, 2018, van Hasselt et al., 2018, Piché et al., 2023, Zhang et al., 2021, Fan

et al., 2020, Fellows et al., 2023]. As an example, current popular update rules

are provably unstable based on choices made for other components within the

system, namely the function approximator and how samples are generated.

This thesis will study update rules which are provably stable under general

conditions, allowing greater freedom to openly explore other components of

4



the learning system without inducing instability or divergence.

1.2 Objective

In this thesis, I aim to improve the reliability of deep reinforcement learning

algorithms. Specifically, I address the following question:

Can we improve the reliability of off-policy, value-based deep reinforce-
ment learning methods without sacrificing performance?

The term reliability has no concrete, agreed upon definition in the rein-

forcement learning literature. In this thesis, when I call a learning method

“reliable”, I mean learning methods that consistently perform well under ran-

dom influences; such as stochasticity in the stream of experience, or random

initial conditions of the learning system. Implicit to this question is the need

to demonstrate that existing methods are not reliable according to this defi-

nition. The community has begun to establish that existing systems are often

reliable only when extensively tuned, and possibly not even then.

The goal of this work is to improve reliability of reinforcement learn-

ing methods, it is not necessarily to produce a new algorithm—or class of

algorithms—that universally out-perform existing methods. In fact, we would

expect that the algorithms proposed in this thesis would typically underper-

form existing methods for (at least) two reasons. First, if we knew ahead of

time that a given problem was easy to solve—say the data is on-policy and the

features are rich—then we should expect that an anti-conservative algorithm

can perform quite well, while a conservative algorithm will be less sample ef-

ficient. Secondly, because we do not want to rely on prior knowledge of the

problem, the algorithms proposed in this thesis will first need to use some

data to establish the degree to which they can behave conservatively or anti-

conservatively. In essence, we will shift some of the work previously handled

by extensive algorithm configuration into the algorithm itself, to be adaptively

learned by data.

5



1.3 Contributions

This section describes the three primary contributions of this thesis, relating

each contribution back to our stated goal of improving the reliability of deep

reinforcement learning algorithms.

Generalized projected Bellman errors (Chapter 3)

This work focuses on the question:

Which objective should we minimize in order to obtain the best value
function estimate for our given parameterized estimator class?

In this chapter, we generalize the mean-squared projected Bellman error (PBE2)

through the use its biconjugate. This generalization allows us to reason about

the role of the projection in the PBE2 and consider if there are alternative

projections that allow our methods to take into consideration the limitations

of their function class. The use of biconjugates enables the use of saddlepoint

and gradient-based optimization methods to minimize the newly reframed ob-

jective. These optimization strategies have provable stability guarantees under

broad conditions, which will enable us to derive theoretically sound and sta-

ble algorithms for off-policy policy evaluation. One such class of algorithms

are the gradient TD family, including GTD2 and TDC [Sutton et al., 2009],

which are already known to be stable. The tooling provided by the biconjugate

framework allows for novel insights about the performance differential between

GTD2, TDC, and semi-gradient methods, where gradient TD methods tend

to sacrifice sample efficiency for stability.

Gradient Temporal Difference Learning with Regularized Correc-

tions (Chapter 4)

The previous chapter asks: “What should we optimize?” This chapter then

asks: “How should we optimize it?” In this chapter, we provide an empiri-

cal investigation into the performance differential between gradient-based and

semi-gradient methods, yielding insights into why gradient TD methods have

appeared difficult to use in the past. We then propose a new gradient TD

6



method, TDRC, and empirically investigate its performance in off-policy pre-

diction, showing that it closes the gap in performance between gradient and

semi-gradient methods, while retaining most of the ease-of-use of semi-gradient

methods.

Q-Learning with Regularized Corrections (Chapter 5)

We perform an empirical investigation into the performance of QRC, showing

that gradient TD-based methods improve reliability without sacrificing per-

formance in nonlinear control. We show that reliability and performance do

not depend on the use of target networks for QRC, allowing us to completely

remove target networks and avoid tuning this set of configuration parameters.

Finally, we discuss two analytical strategies to investigate the reliability of

reinforcement learning algorithms and show that QRC is reliable under both

strategies, while semi-gradient alternatives are not.

Statistically Robust Bellman Errors (Chapter 6)

This chapter considers two additional objective functions that build on the

biconjugate Bellman error presented in Chapter 3. By constraining the space

of functions considered by the objective, we can reframe two different statisti-

cally robust Bellman errors in a way that is amenable to online optimization.

Similar to the TDRC algorithm presented in Chapter 4, we can propose novel

families of algorithms to optimize the statistically robust Bellman errors that

are provably stable. Unlike the TDRC algorithm—and other prior gradient

TD methods—the algorithms proposed in this chapter are robust to high-error

states that are rarely visited under a given policy, such as falling off a cliff in

the CliffWorld environment while following a near-optimal policy. We motivate

both conceptually and empirically that these new losses, and the algorithms

that minimize them, can provide increased reliability over prior gradient TD

methods in certain environments, and rarely harm performance outside those

cases.

7



Chapter 2

Objectives for Learning Value
Functions

In this section, we introduce the notation used throughout this thesis and

discuss existing strategies to approximate vπ, the true value function for a given

policy. We will define the typical objective whose unique minimizer is vπ, but

cannot be estimated from samples. We then discuss several proxy objectives

proposed throughout the literature and a couple of known counterexamples

which demonstrate conditions for which these objectives are poor proxies.

2.1 Background

We model an agent’s interactions with its environment as a Markov Decision

Process, (S,A, P, R, γ). At each time-step t, the agent observes state St ∈ S,
selects an action At ∈ A according to policy π : S → Δ(A), transitions

to the next state St+1 ∈ S according to transition function P : S × A →
Δ(S), and receives a scalar reward signal Rt+1 and discount γt+1 ∈ [0, 1]. The

discount depends on the transition (state, action and next state), and encodes

termination when γt+1 = 0 [White, 2017].

This cycle of interaction between an agent and its environment continues

forever. We assume there are always naturally occurring regularities in the

agent’s stream of experience. Commonly, an agent might reach a special ter-

minal state and be teleported back to a starting state; such a recurrence is

typically called an episode. However, there are many other forms of regular,

8



episodic recurrences in the experience stream such as when the experiment-

designer intervenes based on conditions unknown to the agent, and resets the

agent to a starting state—often called episode cutoffs or soft-terminations.

Further, not all instances of recurrence need to result in disruption of the

agent; for instance, an agent that controls the lights in a home automation

system and is subject to the natural recurrence of sunlight day over day.

The behavior of an agent is controlled by its policy, typically denoted

π(A|S) or b(A|S) depending on context. One can evaluate the quality of

behavior by tracking the accumulation of (weighted) reward—called the re-

turn—obtained by that behavior over time. Concretely, we define the return

at time t, denoted Gt ∈ R as

Gt
def
= Rt+1 + γt+1Rt+2 + γt+1γt+2Rt+3 + γt+1γt+2γt+3Rt+4 + . . .

= Rt+1 + γt+1Gt+1.

We can estimate the value of a behavior using a value function vπ : S → R

for policy π. The value vπ(st) describes the expected return an agent would

obtain starting from state st onward and behaving according to π onward.

Formally, we define vπ as

vπ(s)
def
= Eπ [Gt | St = s] , for all s ∈ S (2.1)

where the expectation operator Eπ [·] reflects that the distribution over future

actions is given by π.

Often, we wish to estimate v̂(s) ≈ vπ
def
= Eπ [Gt | St = s] using actions

sampled from a distribution other than π. This is known as the off-policy

learning problem because actions are sampled “off” of, or away from, the

target policy, π. We will call the distribution that observed actions are sampled

according to the “behavior” policy, b. In the special case that b = π for all

states and actions, we call this the on-policy learning problem.

In this thesis, we will typically assume the agent does not directly observe

the state st, but instead receives an observation vector o ∈ O ⊂ R
d where,

O = {Ω(s) ∀ s ∈ S}. The mapping Ω : S → O describes some process

by which underlying states are transformed into observations viewed by the

9



agent; for example, sensors taking measurements of the world. This process

is unknown to the agent. The mapping, Ω, may not be injective, multiple

states may map to the same observation vector, however the mapping must

be surjective, every observation vector in the set O must be realizable by

some state in S. As a result of surjectivity, O is a countable set whenever S
is a countable set allowing the use of summations over the space instead of

integrations. Throughout this thesis, we will present the material assuming a

countable S for ease of exposition. However, in nearly all cases, results trivially

hold for continuous, measurable spaces with the appropriate shift from sums

to integrals. We will explicitly note where this is not trivial.

Finally, we are interested in problems where the value of each state cannot

be stored in a table, for instance because there are infinitely many states.

Instead, we will approximate the value with a parameterized function. The

approximate value function v̂(st) can have arbitrary form, though in this work

we require that it is everywhere differentiable with respect to its parameters

w ∈ R
d. We will consider value functions of a fixed feature mapping φ : O → Φ

from observations to features, though for convenience will typically denote

these features as vectors x ⊂ R
d. Where we can do so unambiguously, we will

use the shorthand x = φ(st) to denote the composition of the observation and

feature-generating functions, x = (φ ◦ Ω)(st).
An important special case is when the approximate value function is linear

in the parameters and in features of the state. The value of the state can then

be approximated with an inner product: v̂(st) = w�xt ≈ vπ(st). Another typ-

ical parameterization for v̂(st) is a neural network, where w consists of all the

weights in the network. In the case of neural network function approximation,

we typically assume that the feature-generating function φ is the identity. Al-

ternatively stated, neural network function approximation typically takes the

raw observation vectors o as input.

10



2.2 Objective functions for learning values

We start by clearly specifying our target objective, the mean-squared value

error. We will then show how this objective is difficult to use for online learn-

ing using samples. To address this limitation, we will define several proxy

objectives that have been used throughout the literature. Much of this section

builds on Sutton and Barto [2018, Chapter 11], though rewritten in our own

notation. One notable deviation from Sutton and Barto [2018] is the use of the

overline to denote “mean squared” as in PBE. In this work, we will not always

discuss squared errors and so use the overline simply for “mean”—consistent

with the statistics literature—and a superscript two for “squared”, as in PBE2.

Perhaps the most commonly used metric for evaluating the quality of a

value function estimate is the mean squared value error (VE2):

VE2(w)
def
=

∑
s∈S

d(s)(v̂(s)− vπ(s))
2. (2.2)

The mean denotes that we average the squared residuals, v̂(s) − vπ(s), over

states with weighting d(s). The usual choice of d(s) is the state visitation

frequency under the behavior policy, giving higher weight to states that the

agent visits most frequently.

Unfortunately, the VE2 cannot be used as an objective to be optimized

with gradient descent. The gradient of the VE2,

∇wVE
2(w) = 2

∑
s∈S

d(s) (v̂(s)− vπ(s))∇wv̂(s)

requires that we already know vπ(s), yielding a circular dependency: in order

to learn vπ, we must already know vπ. We could, however, replace vπ(s) with

samples, obtaining the mean squared return error (RE2):

RE2(w)
def
=

∑
s∈S

d(s)Eπ

[
(v̂(s)−Gt)

2 | St = s
]

(2.3)

which uses samples of Gt in place of vπ. Because they share the same gradient,

11



RE2(w) and VE2(w) share the same minimizer

∇RE2(w) =
∑
s∈S

d(s)Eπ [(v̂(s)−Gt)∇v̂(s) | St = s]

= 2
∑
s∈S

d(s) (v̂(s)− Eπ [Gt | St = s])∇v̂(s)

= 2
∑
s∈S

d(s) (v̂(s)− vπ(s))∇v̂(s) = ∇VE2(w).

In practice, the RE2 is rarely used because it requires obtaining samples of

entire returns. This restricts algorithms minimizing the RE2 to offline updates,

updating only at the end of episodes. Samples of Gt are also notoriously high

variance [Thomas and Brunskill, 2016, Jiang and Li, 2016], a problem which

is amplified in the off-policy setting. Despite these limitations, the fact that

the RE2 provides an unbiased estimator for argminw VE2(w) makes this an

appealing proxy objective to pursue.

A natural alternative is to take advantage of the fact that the fixed-point of

the Bellman operator (T v) is unique and is the true value function, vπ. That

is, the recursive relationship v = T v is uniquely satisfied by v = vπ. We define

the Bellman residual as

Δ(s)
def
= T v̂(s)− v̂(s)

where T v̂(st) = Eπ [Rt+1 + γt+1v̂(St+1) | S = s] is the Bellman operator. The

mean squared Bellman error then squares these residuals and takes the weighted

average over states,

BE2(w)
def
=

∑
s∈S

d(s)Δ(s)2 =
∑
s∈S

d(s)Eπ [δ(w) | S = s]2 (2.4)

where we write δ(w) to be explicit that this is the TD error for the parameters

w. The BE2 is minimized when v̂ = T v̂, implying that v̂ = vπ. However,

in the function approximation setting the minimizer of the BE2 may not be

realizable, resulting in some residual errors. The resulting value function trades

off between accurately estimating vπ and providing a useful bootstrapping

target for every state.

The final commonly used proxy objective is the mean squared projected

Bellman error; the PBE2. Similar to the BE2, the PBE2 minimizes an average

12



Figure 2.1: The visualization above characterizes the true vπ, the PBE2 so-
lution, and how projections operate on successive approximations. Assume
the estimate of vπ starts from v in red. The Bellman operator pushes the
value estimate out of the space of representable functions represented by the
plane. The projection brings the approximation back down to the nearest
representable function on the plane. This process is repeated over and over
until the value estimates converge to the blue dot at the base of the black
line. Subsequent updates push the approximation to vπ out of the space of
representable functions and the projection back onto the plane. The true value

in this case is outside V , with the VE2 being the distance between the v at

PBE2 = 0 and vπ. Note the projection of vπ onto V need not be equal to PBE2

solution.

Bellman residual. Unlike the BE2, the PBE2 first projects the Bellman residual

onto the space spanned by the features, X, eliminating sources of error which

cannot be represented. The PBE2 is defined as

PBE2(w)
def
= ‖v̂ − ΠVT v̂‖2d (2.5)

where ΠV is the orthogonal projection onto the vector space V = span(X).

Note that orthogonality in this Hilbert space is defined by the weighted inner-

product < x, y >d= x�Dy where D = diag(d).

There has been much discussion, formal and informal, about using the

BE2 versus the PBE2. There is a clear relationship between the BE2 and the

PBE2 through the triangle inequality [Scherrer, 2010] when the projection ΠV

is orthogonal

‖v − T v‖2d︸ ︷︷ ︸
BE2

= ‖v − ΠVT v‖2d︸ ︷︷ ︸
PBE2

+ ‖T v − ΠVT v‖2d︸ ︷︷ ︸
Projection Penalty

. (2.6)

This penalty causes the BE2 to prefer value estimates for which the projection

does not have a large impact near the solution. The PBE2 can find a fixed

13



point where applying the Bellman operator T v moves far outside the space of

representable functions, as long as the projection back into the space stays at

v.

2.3 Known challenges with existing objectives

Despite the potential utility of the BE2, it has not been widely used due to

difficulties in optimizing this objective without a model. The BE2 is difficult to

optimize because of the well-known double sampling problem for the gradient.

To see why, consider the gradient

∇wBE
2(w) =

∑
s∈S

d(s)∇wΔ(s)2

= 2
∑
s∈S

d(s)Δ(s)Eπ [∇wδ(w) | S = s]

= 2
∑
s∈S

d(s)Δ(s)Eπ [γ∇wv̂(S
′)−∇wv̂(s) | S = s]

= 2
∑
s∈S

d(s)Eπ [δ(w) | S = s]Eπ [γ∇wv̂(S
′)−∇wv̂(s) | S = s] .

To estimate this gradient for a given S = s, we need two independent samples

of the next state and reward. We use the first to get a sample δ(w) and

the second to get a sample of γ∇wv̂(S
′) − ∇wv̂(s). The product of these

two samples gives an unbiased sample of the product of the expectations.

If we instead only used one sample, we would erroneously obtain a sample of

Eπ [δ(w)(γ∇wv̂(S
′)−∇wv̂(s)) | S = s] which is the gradient of a mean squared

TD error,

TDE2(w)
def
=

∑
s∈S

d(s)Eπ

[
δ(w)2 | S = s

]
. (2.7)

It has been well-established that solutions to the TDE2 provide poor approx-

imations to vπ [Sutton and Barto, 2018, Patterson et al., 2022b].

The linear PBE2, on the other hand, is practical to optimize under linear

function approximation; algorithms such as TD converge to the minimum

of the PBE2 when they converge [Sutton et al., 2009, Maei, 2011]. Other

algorithms, such as the gradient TD family of methods [Antos et al., 2008,

Sutton et al., 2009], have guaranteed convergence to the minimum of the PBE2

14



under general conditions. Unfortunately, the PBE2 is hard to optimize for

the nonlinear setting due to the linear projection. Prior attempts to extend

GTD to the nonlinear PBE2 [Maei et al., 2009] resulted in an algorithm that

estimates a local linearization of the projection, resulting in a Hessian-vector

product.

2.4 Algorithms

The most widely used value function learning algorithm is also one of the old-

est: temporal difference (TD) learning. The continued popularity of TD stems

from both (a) the algorithm’s simplicity and empirical performance, and (b)

the lack of technical tools required to improve it. TD, however, does not follow

the gradient of any known objective function [Baird, 1995, Antos et al., 2008],

and without a clear objective for TD, it is difficult to characterize its behavior.

Related residual gradient algorithms directly optimize a known objective, the

mean squared Bellman error (BE2), but suffer from the double sampling prob-

lem [Baird, 1995, Scherrer, 2010] resulting in a biased proxy-objective instead:

the mean squared temporal difference error (TDE2). Without a strategy to

optimize the BE2 in the absence of a simulator, it was difficult to pursue the

BE2 as an alternative.

Several alternative strategies have been proposed to minimize the BE2.

For instance, one could minimize the TDE2, while simultaneously estimating

a bias correction term [Antos et al., 2008]. Using this estimate, one can make

bias-corrections to offset the error induced by using statistically dependent

samples. Alternatively, one could change the update used in the residual

gradient methods in order to use independent samples of a quantity that can

be sampled repeatedly given a sufficient large buffer [Feng et al., 2019]. A final

alternative strategy is to estimate part of the gradient update, replacing the

bias induced by dependent samples with an approximation bias that we can

more easily control [Sutton et al., 2009, Dai et al., 2018]. The gradient TD

family of algorithms—including TDC and GTD2—was derived using this last

approach.

15



In parallel, several works began improving the stability of semi-gradient

TD methods, applying mitigation strategies to avoid stability issues with the

learning system. These mitigations include delaying the propagation of infor-

mation when using bootstrapped estimates with target networks [Mnih et al.,

2015, Fan et al., 2020], clipping rewards [Hessel et al., 2018b], clipping errors

and gradients [Mnih et al., 2015, Van Hasselt et al., 2016], or careful manipu-

lation of the reward function [Brockman et al., 2016, Young and Tian, 2019].

These mitigation strategies attempt to avoid instability in the learning system

by careful problem-specific tuning of their various configuration parameters.

Although the use of target networks has become near-ubiquitous in mod-

ern learning systems, it is unclear what impact their use has on the system.

Target networks can provide stability to the learning system by reducing the

variance of the learning target [Fan et al., 2020, Piché et al., 2023, Fellows

et al., 2023], though the impact of this variance reduction on convergence re-

mains unclear. Additionally, by reducing the rate that new information is used

in bootstrapping, target networks tend to harm sample efficiency [Kim et al.,

2019, Hernandez-Garcia and Sutton, 2019, Piché et al., 2023]. Finally, many

learning systems have been shown to be sensitive to the hyperparameters used

to configure the target network, with frequent synchronization leading toward

stability issues and infrequent synchronization significantly slowing learning

[Obando-Ceron and Castro, 2021, Piché et al., 2023].

2.5 Summary

In this chapter, we briefly covered the necessary background to provide the

context for the work in the rest of this document. We defined the reinforce-

ment learning problem setting and established notation. Perhaps the most

important discussion is our definition of states, observations, and features,

which will play an important role later as we define our objective functions.

Previous work, including prior publication of this work, have typically used

observations and features interchangeably. However, in this thesis we will con-

sider observations as coming from the environment and features as internal to

16



the agent. The agent can freely use both observations and features constructed

from those observations to inform its value function estimates, but the agent

cannot take advantage of the underlying states as these are unobserved.

Finally, this chapter covers previous objective functions used for value func-

tion learning. Much of this chapter closely follows Chapter 11 of Sutton and

Barto [2018]. We highlight minor differences in terminology as compared to

prior work and highlight the drawbacks with existing objective functions. The

next chapter will unify two of the present objective functions, the BE2 and the

PBE2 and use this unification to address some drawbacks with each.

17



Chapter 3

Generalized Projected Bellman
Errors

In this chapter, we develop a framework for (bi)conjugate Bellman errors

lightly extending the work done by Dai et al. [2017]. The use of biconju-

gates provides a general framework that unifies many prior proxy objectives,

such as the BE2 and the PBE2. The biconjugate objectives avoid the problem

of double sampling, allowing us to later construct gradient-based algorithms

which minimize these objectives.

Using the equality of the biconjugate with the original function, allows

the lossless rewrite the BE2 in a form that is amenable to online learning.

When the maximizer h∗ is not feasible, or when there is approximation error

in estimating the maximizer, then we obtain an approximation to the BE2.

We show in Section 3.2 that the approximation due to representability leads

exactly to the PBE2 under certain conditions on h.

3.1 Biconjugate Bellman Errors

For a real-valued function f : R → R, the conjugate is f ∗(h) def
= supx∈R xh −

f(x). This function f ∗ also has a conjugate, f ∗∗, which is called the biconjugate

of f . Further, for any function f that is proper, convex, and lower semi-

continuous, the biconjugate f ∗∗(x) = f(x) for all x by the Fenchel-Moreau

theorem [Fenchel, 1949, Moreau, 1970]. In the unique special case of the

square function, the conjugate and biconjugate are the same; that is f(x) =

18



f ∗(x) = f ∗∗(x) = x2. Throughout this section, we will take advantage of the

fact that the conjugate and biconjugate of the square function are the same—

allowing us to reformulate the Bellman error using only the conjugate. In later

chapters, we will require the full biconjugate for our formulation.

Let V be the space of parameterized value functions and F the space of

all functions mapping O → R. To reformulate the BE2, we will use the fact

that the conjugate of the square function is y2 = maxh∈R 2yh − h2 and the

fact that the maximum can be brought outside the sum (interchangeability),

as long as a different scalar h can be chosen for each state s. Then the BE2

can be rewritten as

BE2(w) =
∑
s∈S

d(s)Δ(s)2 
 Let Δ(s)
def
= Eπ [δ(w) | S = s]

=
∑
s∈S

d(s)max
h∈R

(
2Δ(s)h− h2

)

 conjugate

= max
h∈F

∑
s∈S

d(s)
(
2Δ(s)h(s)− h(s)2

)

 interchangeability.

It is clear to see that the conjugate of the square function attains its maximum

when the inner variable h = y. Therefore, using the optimal h∗(s) = Δ(s)
def
=

Eπ [δ(w) | S = s],∑
s∈S

d(s)
(
2Δ(s)h∗(s)− h∗(s)2

)

 Conjugate at h∗(s)

=
∑
s∈S

d(s)
(
2Δ(s)2 −Δ(s)2

)

 Substitute h∗(s) = Δ(s)

=
∑
s∈S

d(s)Δ(s)2

= BE2

it is clear that for h(s) = h∗(s) this reformulation is simply a rewriting of the

BE2. Dai et al. [2018] use a similar reformulation of the BE2, except instead

of using h(s) to track the Bellman residual, they track the one-step Bellman

operator, h(s) ≈ Eπ [T v̂(s) | S = s]. As a result, their reformulation is equiv-

alent up to an affine transformation resulting in slightly different gradients for

each v̂(s) and h(s) than our reformulation. The algorithm proposed in Dai

et al. [2018], SBEED, then will be highly related to the algorithms proposed in

19



this thesis, typically differing only in minute design decisions such as tracking

Bellman residuals instead of Bellman backups.

Empirically, the choice to estimate Bellman residuals appears to have major

performance implications [Patterson et al., 2022b]. With the Bellman residual,

we can take advantage of our prior knowledge: samples of the Bellman residual

(i.e. TD errors) generally have zero mean and are of the same magnitude

as one-step rewards. With bootstrapped values, we often have no a priori

estimate of their mean or their magnitude. Using this prior knowledge allows

designing smarter update rules and improved modeling decisions.

With biconjugates, we replace the requirement for two independent sam-

ples with a single sample and a regressor. Alternatively, one could draw two

dependent samples then transform the estimate into the BE2 by cancelling out

the bias term with a secondary estimator [Antos et al., 2008]. We can rewrite

the BE2 as a function of both w and h, BE2(w) = maxh∈F L(w, h). Then

the strategy of Antos et al. [2008] uses L(w, h) = TDE2(w) − ‖h(w) − T v̂‖2d.
Note that, similar to SBEED, the secondary function here tracks the one-step

Bellman update.

A final alternative approach is to use a non-parametric estimator for h. For

example, a reservoir of transitions can be stored and Eπ [δt | St = s] is approx-

imated using a weighted average over δt in the buffer, where the weighting

is proportional to similarity between that state and s. This is the strategy

taken by the Kernel BE2 [Feng et al., 2019], precisely to reduce bias in h and

so better approximate the BE2. When learning online, this non-parametric

approach is less practical; either a large buffer needs to be maintained, or a

sufficient set of representative transitions identified and stored.

3.2 A generalized projected Bellman error

As highlighted in [Sutton and Barto, 2018, Chapter 11.6], the BE2 is not

learnable. There, an entity is considered learnable if it can be uniquely defined

given observable data. Given two identical data streams, the best-in-class value

estimate v ∈ V for both data streams should likewise be identical. For the BE2,

20



this is not the case. If each stream is generated by a different unobservable

process, then the best-in-class v is different. The agent, however, has no way

to know this.

A simple example pair of MDPs succinctly highlight the problem. The first

is a two state MDP where the agent deterministically transitions from state A

to B̃ and stays in state B̃ with 50% probability, or returns to A. The second

is a three state MDP, but two of the states are aliased and indistinguishable

with the given observations. The second MDP shares the same structure,

from state A the agent deterministically transitions to one of the aliased

states (collectively, state B̃ = {B,B′}). Then with 50% probability, the agent

transitions between the two aliased states within B̃ or transitions from B̃ back

to A. Each state has equal probability of occurrence across MDPs, and the

transition dynamics between observable states A and B̃ are equivalent.

Although both MDPs produce identical streams of experience, the solu-

tion to the BE2 differs for each MDP. Yet, if the agent cannot identify which

MDP is producing its experience, then the agent cannot identify the BE2

minimizer for its given MDP. That is, the issue of learnability is an issue of

identifiability—the BE2 does not emit a unique minimizer conditioned on the

stream of observed data. According to the proxy objective, the BE2, each

minimizer is equally good. According to our true objective, the VE2, only one

of these minimizers is the best. The other potential minimizers can be notably

worse. Determining the unique minimizer of the BE2 requires unobservable

information; namely the true underlying states. Note that despite the partial

observability, both streams of experience are valid Markov processes; this issue

of identifiability need not result from breaking the Markov assumption.

In the above example, partial observability means that the agent can only

observe a part of the state for learning v̂. However, the biconjugate formulation

of the BE2 requires that the agent observe the whole state for evaluating h(s).

This suggests a contradiction: the agent can learn a limited value function

using only partial observations of the state, but may propose a sequence of

loss functions which can observe the entirety of the state. Naturally, the input-

space for h should be similarly restricted to only observable information. We

21



can define the set of such functions:

H def
= {h = f ◦ x | where f is any function on the space produced by x}

where x : O → X produces the same features used for v̂. We call the resulting

BE2 an Identifiable BE2, written as:

Identifable BE(w)
def
= max

h∈H
E
[
2Δ(s)h(s)− h(s)2

]
.

Notice that H ⊆ F , and so the solution to the Identifable BE may be different

from the solution to the BE2. In particular, we know the Identifable BE(w) ≤
BE2(w) because the inner maximization is more constrained.

Optimizing this Identifable BE, however, is not typically possible as we

will often not be able to perfectly represent any function of the features. In-

stead, we are typically constrained to a class of parameterized functions of the

features—for instance the set of all linear functions, or the set of all neural

networks of a given architecture. Each of these function classes form a subset

Hθ ⊆ H, with θ the vector of parameters defining the vector space Hθ. This

subset further constrains the proxy objective.

To analyze the impact of parameterized h, we first define an orthogonal

projection operator ΠHθ,d which projects any vector u ∈ R
|S| onto convex

subset Hθ ⊆ R
|S| under state weighting d:

ΠHθ,du
def
= argmin

h∈Hθ

‖u− h‖d. (3.1)

Note the weighting d here is critical for defining an orthogonal projection in

the Hilbert space weighted by d. For all projections, we will assume a weighted

Hilbert space and will drop the subscript d to simplify notation.

We define the generalized PBE2 as

PBE2(w)
def
= ‖ΠHθ

(T v̂ − v̂)‖2d (3.2)

where each choice ofHθ results in different projection operators. This view pro-

vides some intuition about the role of approximating h—different projections

will trade off Bellman error across different states. If the function approxima-

tor has high Bellman error in a given state, but that error is projected to zero,

22



then no further approximation resources will be used for that state. In the

case of full observability and the set for h is the set of all functions, then no

errors are projected and the values are learned to minimize the Bellman error.

If Hθ = V , the same space is used to represent h and v, then we obtain the

projection originally used for the PBE2.

We now show the connection between this PBE2 and the BE2. In the

finite state setting, we have a vector u ∈ R
|S| composed of entries us = Δ(s).

Because ΠHθ,d is an orthogonal projection, u = ΠHθ,du + ũ = h + ũ, where

h = ΠHθ,du and ũ is the component in u that is orthogonal in the weighted

space: h�Dũ = 0 for D
def
= diag(d). Then we can write the conjugate form for

the BE2, now with restricted Hθ ⊂ F

max
h∈Hθ

∑
s∈S

d(s)
(
2Δ(s)h(s)− h(s)2

)
= max

h∈Hθ

∑
s∈S

d(s)
(
2u(s)h(s)− h(s)2

)

 rewriting u(s) = Δ(s)

=
∑
s∈S

d(s)
(
2u(s)h(s)− h(s)2

)

 where h = ΠHθ,du

=
∑
s∈S

d(s)
(
2[h(s) + ũ(s)]h(s)− h(s)2

)

 because u(s) = h(s) + ũ(s)

=
∑
s∈S

d(s)
(
2h(s)2 − h(s)2

)
+ 2

∑
s∈S

d(s)ũ(s)h(s)

=
∑
s∈S

d(s)h(s)2 + 2
∑
s∈S

d(s)ũ(s)h(s)

=
∑
s∈S

d(s)h(s)2 
 where
∑
s∈S

d(s)ũ(s)h(s) = 0 because

= ‖ΠHθ,d(T v̂ − v̂)‖2d h is orthogonal to ũ, under weighting d

= PBE2(w)

By restricting Hθ to be a Hilbert space, we can ensure that the projection

operator ΠHθ,d is an orthogonal projection. Naturally, this assumption is eas-

ily satisfied by linear functions with a fixed basis and with bounded weights.

Many classes of neural networks have been shown to be expressible as repro-

ducing kernel Hilbert spaces (see Bietti and Mairal [2019] for a nice overview),

including neural networks with ReLU activations as are commonly used in RL.

Therefore, this is not an overly restrictive assumption.

23



There are many feasible choices for estimating h. Likely the simplest is to

use the same approximator for h as for the values. For example, this might

mean that h and v̂ use the same features such as two heads on a shared neu-

ral network. However, we could feasibly consider a much bigger class for h,

because h is only used during training, not prediction. Because, we typically

want v̂ to be efficient to query, we might use a more compact parameter-

ized function approximator for v̂ while h uses a more computationally costly

function approximator, updated asynchronously between agent-environment

interaction steps.

Connecting to previous objectives. In this section we show how the

generalized PBE2 lets us express the linear PBE2 and nonlinear PBE2 by se-

lecting different sets, H. First let us consider the linear PBE2. To connect the

generalized PBE2 to the linear PBE2, we start by restating the original con-

struction of the linear PBE2 [Sutton et al., 2009], then show the connection to

the saddlepoint formulations developed for the linear PBE2 [Mahadevan et al.,

2014, Liu et al., 2016, Touati et al., 2018]. From there, it is straightforward to

show the connection between the saddlepoint formulation and our biconjugate

formulation—which itself forms a saddlepoint [Dai et al., 2017, 2018].

Define the set of all linear functions on x as L = {f : S → R : f(s) =

x(s)�w,w ∈ R
d}. In the linear setting where V = H = L, then we can define

the PBE2

PBE2(w) = ‖v̂ − ΠLT v̂‖2d
= ‖b−Aw‖2c−1

= Ed [δx]
�
Ed

[
xx�]−1

Ed [δx]

where

A
.
= Ed

[
x(x− γx′)�

]
b

.
= Ed [Rx]

C
.
= Ed

[
xx�]
24



and the notation Ed [Y ] =
∑

s∈S d(s)Y (s) denotes the expectation of Y over

states, distributed according to state distribution d.

Rewriting this linear PBE2 using biconjugates is straightforward. The

biconjugate for the two-norm is

1
2
‖y‖C−1 = max

θ
y�θ − 1

2
‖θ‖2C,

with optimal θ = C−1y. Correspondingly, we get

1
2
‖b−Aw‖2C−1 = max

θ∈L
(b−Aw)�θ − 1

2
‖θ‖2C.

And finally, the inner optimization of the biconjugate becomes

θ∗ = argmin
θ∈L

Ed

[
(Δ(s)− x(s)�θ)2

]
,

which is a simple least squares optimization. The solution to which is

θ∗ = C−1(b−Aw)

= Ed

[
xx�]−1

Ed [xδ] .

This result is alluded to in the connection between the NEU and the KBE2 in

Feng et al. [2019, Corollary 3.5], but not explicitly shown.

This connection also exists with the nonlinear PBE2, but with a surprising

choice for the parameterization of h: using the gradient of the value estimate

as the features. The nonlinear PBE2 is defined as [Maei et al., 2009]

nonlinear PBE2(w)

= Eπ [δ(w)∇wv̂(s)]
�
Eπ

[
∇wv̂(s)∇wv̂(s)

�]−1
Eπ [δ(w)∇wv̂(s)] .

This corresponds to the linear PBE2 when V = L, because ∇wv̂(s) = x(s).

Define set Gw = {f : S → R : f(s) = y(s)�θ, θ ∈ R
d and y(s) = ∇wv̂(s)}.

Notice that this function set for h changes as w changes. Then we get that

θ∗nl = argmin
h∈Gw

Ed

[
(Δ(s)− h(s))2

]
satisfies θ∗nl(s) = ∇wv̂(s)

�θ∗nl where θ
∗
nl = Ed

[
∇wv̂(s)∇wv̂(s)

�]−1
Ed [δ(w)∇wv̂(s)].

25



Plugging this optimal h back into the formula, we get that

max
h∈Gw

Ed

[
2Δ(s)h(s)− h(s)2

]
= Ed

[
2Δ(s)θ∗nl(s)− θ∗nl(s)

2
]

=
(
Ed

[
2Δ(s)∇wv̂(s)

�] )θ∗nl − Ed

[
(θ∗nl)

�∇wv̂(s)∇wv̂(s)
�θ∗nl

]
= 2E[δ(w)∇wv̂(s)]

�θ∗nl − (θ∗nl)
�
E[∇wv̂(s)∇wv̂(s)

�]θ∗nl

= 2nonlinear PBE2(w)− nonlinear PBE2(w)

= nonlinear PBE2(w)

This nonlinear PBE2 is not an instance of the generalized PBE2, as we have

currently defined it, because the H changes with w. It is possible that such a

generalization is worthwhile, as using the gradient of the values as features is

intuitively useful. Further, interchangeability should still hold, as the exchange

of the maximum was done for a fixed w. Therefore, it is appropriate to explore

an H that changes with w, and in our experiments we test H = Gw.

In summary, in this section we introduced the generalized PBE2 and high-

lighted connections to the linear PBE2 and BE2. The generalized PBE2 pro-

vides a clear path to develop value estimation under nonlinear function approx-

imation, providing a strict generalization of the linear PBE2. Two secondary

benefits are that the generalized PBE2 provides a clear connection between

the BE2 and PBE2, based on a difference in the choice of projection (H), and

resolves the identifiability issue in the BE2.

3.3 The quality of the solution

Naturally, identifiability is only a small part of our desired properties. A proxy

objective that uniquely identifies one value function is not useful unless that

unique value function is useful according to our original objective, the VE2.

This criterion parallels the long-standing question about the quality of the

solution under the linear PBE2 versus the BE2. In this section, we revisit this

question now in context of the generalized PBE2.

Objectives based on Bellman errors perform backwards bootstrapping, where

the value estimates in a state s are adjusted both toward the value of the next

26



state and the value of the previous state. In the case of the BE2, backwards

bootstrapping can become an issue when two or more states are heavily aliased

and these aliased states lead to successor states with highly different values.

Because the aliased states look no different to the function approximator,

they must be assigned the same estimated value. For each of these aliased

states, backwards bootstrapping forces the function approximator to balance

between accurately predicting the successor values for all aliased states, as well

as adjusting the successor values to be similar to those of the aliased states.

The PBE2, on the other hand, projects the error for the aliased states,

ignoring the portion of the Bellman error that forces the function approximator

to balance the similarity between the aliased state value and the successor

state value. This allows the function approximator the freedom to accurately

estimate the values of the successor states without trading off error in states

which it cannot distinguish.

To make this concrete, consider the following 4-state MDP from Sutton

et al. [2009]. State A1 and A2 are aliased under the features for V . For the

linear PBE2, H = V , and so the states are also aliased when approximating h.

For the BE2, they are not aliased for h. A1 transitions to B and terminates

with reward 1. A2 transition to C and terminates with reward 0. The linear

PBE2 results in the correct values for B and C—1 and 0 respectively—because

it does not suffer from backwards bootstrapping. The BE2, on the other hand,

assigns them values 3
4
and 1

4
, to reduce Bellman errors at A1 and A2. A

generalized PBE2 with other H �= V would suffer the same issue as the BE2

in this example, unless the projection ΠH mapped errors in the aliased states

to zero.

On the other hand, the linear PBE2 can find solutions where the Bellman

error is very high, even though the projected Bellman error is zero. Consider

the plane of value functions that can be represented with a linear function

approximator. The Bellman operator can take the values far off of this surface,

only to be projected back to this surface through the projection operator. At

the fixed-point, this projection brings the value estimate back to the original

values and the distance that the value estimate moved on the plane is zero, thus

27



Figure 3.1: The visualization above shows how the PBE2 solution can result

in arbitrarily bad VE2 under some behaviors. The vertical axis measures VE2

and the horizontal axis different behavior policies. The blue line above is the
same as the visualization used in Kolter [2011] to demonstrate issues with

minimizing PBE2. We extend this demonstration show that the BE2 solution

(green) exhibits low error and, as the size of Hθ grows, the bound on the VE2

improves.

the PBE2 is zero. The PBE2 can be zero even when the BE2 is large. Kolter

[2011] provides an example where the solution under the PBE2 can be made

arbitrarily far from the true value function. We expand on this example in

Figure 3.1, and show that the solution under the linear PBE2 can be arbitrarily

poor, even though the features allow for an ε accurate value estimate and the

solution under the BE2 is very good.

Figure 3.1 illustrates the relationship between the VE2 our various proxy

objectives—the linear PBE2, the BE2, and the generalized PBE2 for various

Hθ—on a simple toy problem. This toy problem, proposed by Kolter [2011],

provides a clear counterexample for the use of the linear PBE2 as a proxy for

the VE2. For a particular combination of behavior policy, target policy, and

discount factor, the solution to the linear PBE2 has unbounded error under

the VE2. We extend this figure to include the BE2 and the generalized PBE2,

where each sub-figure shows the generalized PBE2 with a projection onto a

different set, Hθ, increasing from left to right. When the size of the set Hθ

is only marginally larger than V , the generalized PBE2 and the linear PBE2

behave similarly. As the size of Hθ approaches F , the generalized PBE2 and

the BE2 behave similarly, and it is well-established that the BE2 bounds the

VE2 [Tsitsiklis and Van Roy, 1997, Maillard et al., 2010].

28



3.4 The quality of the solution under different

weightings

The use of the biconjugate reformulation allows us to easily generalize the

function class H onto which the PBE2 projects. This projection plays the role

of emphasizing and de-emphasizing states in the average error [Schoknecht,

2003]. In this section, we consider an alternative generalization of the PBE2

where we directly alter the weighting over states d. In particular, we consider

three weightings previously used in the literature: the steady-state distribu-

tion given by the target policy dπ, the steady-state distribution given by the

behavior db, and the effective state weighting produced by emphatic TD dm.

We empirically investigate the quality of the solution under the PBE2 and

BE2 with these three different weightings. The solution quality is measured by

the VE2 under db and dπ. We compute the fixed-point of each objective on a

19-state random walk with randomly chosen target and behavior policies. To

isolate the impact of representation on the fixed-points, we investigate several

forms of state representation where vπ is outside the representable function

class. We include the Dependent features from Sutton et al. [2009], randomly

initialized sparse ReLU networks, tile-coded features, and state aggregation.

The random-walk has 19 states with the left-most and right-most state

being terminal. The reward function is zero everywhere except on transitioning

into the right-most terminal state where the agent receives +1 reward, and on

the left-most terminal state where the agent receives -1 reward. The discount

factor is set to γ = 0.99.

We run each experimental setting one million times with a different ran-

domly initialized neural network, random offset between tilings in the tile-

coder, and randomly sampled target and behavior policy. The policies are

chosen uniformly randomly on the standard simplex. The neural network

is initialized with a Xavier initialization [Glorot and Bengio, 2010], using 76

nodes in the first hidden layer and 9 nodes in the final feature layer. Then 25%

of the neural network weights are randomly set to zero to encourage sparsity

between connections and to increase variance between different randomly gen-

29



Figure 3.2: Investigating the VE2 of the fixed-points of PBE2 and BE2 under
db, dπ, and m on a 19-state random walk. All errors are computed closed form
given access to the reward and transition dynamics. The fixed-point of the

PBE2 with emphatic weighting consistently has the lowest error across several

state representations (light color); while the fixed-point of the PBE2 under
db has the highest error (dark blue). Results are averaged over one million
randomly generated policies and state representations.

erated representations. The tile-coder uses 4 tilings each offset randomly and

each containing 4 tiles. The state aggregator aggressively groups the left-most

states into one bin and the right-most states into another, creating only two

features.

Figure 3.2 shows the normalized log-error of the fixed-points of the PBE2

and BE2 under each weighting. A normalized error between [0, 1] for each

representation is obtained by (1) computing the best value function repre-

sentable by those features minv∈V VE2(v) under db or dπ and (2) subtracting

this minimal VE2 and normalizing by the maximum VE2 for each column

(across objectives and weightings for a fixed representation). The fixed-points

are computed using their least-squares closed form solutions given knowledge

of the MDP dynamics. Plotted is the mean error across the one million ran-

domly initialized experimental settings. The standard error between settings

is negligibly small.

Interestingly, the fixed-points corresponding to weighting db consistently

30



have the highest error across feature representations, even on the excursion

VE2 error metric with weighting db. The PBE
2 under emphatic weighting, m,

consistently has the lowest error across all feature representations, though is

slightly outperformed by PBE2 with weighting dπ for the VE2 with weighting

dπ. In these experiments, the BE2 appears to have no advantages over the

PBE2, meaning that the more restricted H for PBE2 produces sufficiently

high quality solutions.

3.5 Summary

This chapter established the framework of biconjugate Bellman objectives that

form the basis of our extension into sound value function learning algorithms

with nonlinear function approximation. We show a clear relationship between

biconjugate Bellman errors and projected Bellman errors, where biconjugate

Bellman errors are a strict generalization of the projected variants. This gen-

eralization allows us to specify a broad range of objectives with varying prop-

erties. We empirically explore the behavior of the fixed-points of the most

promising objectives when faced with a limited function approximation class,

showing that the relationship between these proxy biconjugate objectives and

the true target objective, the VE2, is not always clear.

Similar to the projected Bellman error, the biconjugate Bellman error al-

lows us to avoid issues of double sampling by replacing a sample with an

optimization. Because this inner optimization is estimated with limited data

and function approximation capacity, we will only ever approximate the pro-

jected Bellman error. By contrast, the biconjugate Bellman error allows us to

define an objective over both the inner and outer optimizations; a min-max

objective over both θ and w. This allows us to characterize the entire space

of this saddlepoint optimization, even when using an approximation for the

inner optimization.

Finally, we show that the use of the biconjugate error resolves the issue

of learnability suffered by the BE2. Because the biconjugate error can be

seen as a form of projection, the primary learning process for w is informed

31



by a secondary process θ that resides in a parametric function class. The

BE2, on the other hand, informs the primary learning process w, with an

unrealizable process h that depends on privileged state information of the

partially observable MDP. The use of biconjugates gives a general tool to

construct a wide range of Bellman errors which are learnable. In the next

chapter, we will define sample-based algorithms that minimize the biconjugate

Bellman error.

32



Chapter 4

Gradient Temporal Difference
with Regularized Corrections

In this section, we describe an algorithm to minimize the biconjugate Bellman

error. Because we care about the continual learning setting, we prefer algo-

rithms whose computation and memory are linear in the number of features.

We build on the temporal difference (TD) learning algorithm [Sutton, 1988]

and the gradient TD family of algorithms [Sutton et al., 2009], which are all

online, off-policy learning algorithms.

We start by reviewing the gradient TD family of algorithms, namely TDC

and GTD2, and show that these algorithms minimize the biconjugate Bell-

man error for a particular choice of projection set, H. Then, we demonstrate

empirically that TDC has two modes of operation, requiring either extensive

tuning or domain knowledge in order to achieve good performance. Using this

bimodal perspective of TDC, we derive a new algorithm which minimizes the

biconjugate Bellman error which we call the temporal difference with regular-

ized corrections algorithm, or TDRC. We investigate the performance of the

TDRC algorithm, showing that it performs as well as TD in cases that TD

converges, and performs as well as TDC otherwise.

4.1 Gradient TD Methods

Prior methods sought to approximate the gradient of the PBE2 in order to

achieve convergence through stochastic gradient descent on a known objec-

33



tive. There are several ways to approximate and simplify these gradients, each

resulting in a different algorithm. The two most well-known approaches are

TD with Corrections (TDC) and Gradient TD (GTD2). Both require dou-

ble the computation and storage of TD, and employ a second set of learned

weights θ ∈ R
d with a different stepsize parameter ηαt, where η is a tunable

constant. The updates for the TDC algorithm otherwise are similar to TD:

wt+1 ← wt + αtρtδtxt − αtρtγ(θ
�
t xt)xt+1

θt+1 ← θt + ηαt

[
ρtδt − (θ�t xt)

]
xt. (4.1)

The GTD2 algorithm uses the same update for θt, but the update to the

primary weights is different:

wt+1 ← wt + αtρt(xt − γxt+1)(θ
�
t xt). (4.2)

The Gradient TD algorithms are not widely used in practice and are con-

sidered difficult to use. Attempts to improve Gradient TD methods have

largely come from re-deriving GTD2 using a saddlepoint formulation of the

PBE2 [Mahadevan et al., 2014]. This formulation enables us to view GTD2

as a one-time scale algorithm with a single set of weights [w, θ] using a sin-

gle global stepsize parameter. In addition, this formulation allows combining

GTD2 with acceleration techniques like Mirror Prox [Mahadevan et al., 2014]

and stochastic variance reduction methods such as SAGA and SVRG [Du

et al., 2017]. Unfortunately, GTD2 endowed with Mirror Prox has never been

shown to improve performance over vanilla GTD2 [White and White, 2016,

Ghiassian et al., 2018]. Current variance reduction methods like SAGA are

only applicable in the offline setting, and extension to the online setting would

require new methods [Du et al., 2017].

4.2 Connection to biconjugate errors

To see why (at least) two classes of algorithms arise, consider the gradient for

the generalized PBE2, for a given h(s) ≈ Eπ [δ(w) | S = s] with a stochastic

34



sample δ(w) from S = s:

−∇wδ(w)h(s) = h(s)[∇wv̂(s)− γ∇wv̂(S
′)].

This is the standard saddlepoint update. The key issue with this form is that

any inaccuracy in h has a big impact on the update of w, and h can be

highly inaccurate during learning. Typically, it is initialized to zero, and so it

multiplies the update to the primary weights by a number near zero, making

learning slow.

The gradient correction update is preferable because it relies less on the

accuracy of h. The first term uses only the sampled TD-error.

Δw ← δ(w)∇wv̂(s)− h(s)γ∇wv̂(S
′)

where Δθ ← (δ(w) − h(s))∇θh(s) just like the saddlepoint update. But, the

update is biased because it assumes it has optimal h∗ ∈ H for part of the

gradient. To see why, we extend the derivation for the linear setting.

−∇wδ(w)h(s) = h(s)[∇wv̂(s)− γ∇wv̂(S
′)]

= h(s)∇wv̂(s)− h(s)γ∇wv̂(S
′)

= (h(s)− δ(w) + δ(w))∇wv̂(s)− h(s)γ∇wv̂(S
′)

= δ(w)∇wv̂(s) + (h(s)− δ(w))∇wv̂(s)− h(s)γ∇wv̂(S
′)

This resembles the gradient correction update, except it has an extra term

(h(s) − δ(w))∇wv̂(s). In the linear setting, if we have the linear regression

solution for h∗ with parameters θ, then this second term is zero in expectation.

This is because ∇wv̂(s) = x(s), giving

Eπ [(h(s)− δ(w))∇wv(s, w) | S = s] = x(s)x(s)�θ − x(s)Eπ [δ(w) | S = s]

and so in expectation across all states, because θ = E[x(S)x(S)�]−1
E[x(S)δ],

we get that

E[(h(S)− δ(w))∇wv(S,w)]

= E[x(S)x(S)�]E[x(S)x(S)�]−1
E[x(S)δ(w)]− E[x(S)δ(w)]

= E[x(S)δ(w)]− E[x(S)δ(w)] = 0.

35



Therefore, given the optimal h ∈ H for H the set of linear functions, this term

can be omitted in the stochastic gradient and still be an unbiased estimate of

the full gradient.

Unlike the saddlepoint update, however, the gradient correction update

is no longer a straightforward gradient update, complicating analysis. It is

possible, however, to analyze the dynamical system underlying these updates.

The joint update is rewritten as a linear system that is then shown to be a

contraction that iterates towards a stable solution [Maei, 2011]. The extension

to the nonlinear setting is an important open problem.

4.3 The two modes of TDC

The TDC algorithm is widely considered to have better performance compared

to GTD2 [Sutton et al., 2009, White and White, 2016, Ghiassian et al., 2018,

2020]. This improved performance, however, appears to be predominately

due to a domain-specific tuning parameter, the secondary stepsize. Through

careful, domain dependent, tuning of the secondary stepsize, the TDC algo-

rithm exhibits two modes of operations: TD-mode and GTD-mode. Because

TDC—temporal difference learning with corrections—is exactly the TD algo-

rithm with a gradient correction, when the correction factor is zero then TDC

becomes exactly TD.

The second mode, GTD-mode, occurs when the secondary stepsize is high.

For a sufficiently small stepsize, and enough samples, the secondary estimator

h should well-approximate the expected TD error, h(s) ≈ Eπ [δ | s]. For a large
stepsize, say a stepsize near 1, h(s) no longer provides a good estimate of the

average TD error. Instead, the estimator places greater emphasis on tempo-

rally recent TD errors and heavily down-weights prior TD errors. In effect, the

biased estimate more closely resembles h(s) ≈ δt(s). Making this replacement

in the TDC update rule yields the biased residual gradient method, GTD.

The bimodality of TDC’s behavior has colored the conclusions drawn from

many prior works. Previous empirical investigations have initialized the sec-

ondary weights to zero, θt=0 = 0, and tuned the secondary stepsize per prob-

36



Figure 4.1: The square root of the PBE2 for the TDC algorithm across mul-
tiple levels of the secondary stepsize multiplier, η. The solid line denotes the
mean performance over 200 independent samples for each level of η and the
shaded regions correspond to 95% percentile bootstrap confidence intervals.
The shape of the sensitivity curve for the first two domains is opposite that
of the final three domains. That is, the strategy for selecting η changes per-
domain.

lem. On simple problems, such as random walk domains, a fast and potentially

unstable update performs best—such as the TD algorithm or TDC with near-

zero correction factor. In these domains, prior works reported TDC with a

small secondary stepsize [Sutton et al., 2009, White and White, 2016, Ghias-

sian et al., 2018]. In more challenging domains, such as Boyan’s chain [Boyan,

2002] and Baird’s counterexample [Baird, 1999], highly stable and slower up-

dates perform best—such as the GTD2 algorithm or the TDC algorithm with

a highly adaptive correction factor. These effects are particularly prevalent

when the experiments are run for only a limited number of learning steps.

We can empirically test this hypothesis—that TDC exhibits two behavior

modes depending on its secondary stepsize—by investigating TDC’s sensitivity

as we slowly sweep the secondary stepsize from very small to very large. Most

37



prior works have used the same set of domains to test gradient TD methods,

so we can adopt these same choices for our empirical investigation. We go into

more detail about the domains later in Section 4.6

Before we can run this experiment, we first need to deal with the strongly

confounding factor of the primary stepsize. We should expect every level of the

secondary stepsize to interact with our choice of primary stepsize—choosing

a large primary stepsize likely requires choosing a similarly large secondary

stepsize, and so on. We deal with this confounding factor in two ways. First,

instead of directly sweeping the secondary stepsize, we sweep a multiplicative

factor of the primary stepsize, β = ηα for primary stepsize α and secondary

stepsize β. Secondly, for every level of η, we tune α independently. In this

way, we observe the idealized performance of TDC for each level of η.

Figure 4.1 shows the performance of TDC at multiple levels of the sec-

ondary stepsize multiplier, η. We define performance, here, as the square root

of TDC’s objective function, the PBE2. We average this performance mea-

sure over 25k learning steps for each individual agent, then average again over

200 individual agents. The shaded region shows 95% confidence intervals over

agents, computed using percentile bootstrap confidence intervals.1

In the two challenging domains, Baird’s counterexample and Boyan’s chain,

we see that TDC typically prefers more stable updates with significantly worse

performance using small η and better performance with large η. There is an

interesting artifact in Boyan’s chain where sufficiently tiny η suddenly starts

performing well again. We will see in Figure 4.2 that this is an artifact of using

such a small number of learning steps. Increasing the length of the experiment

gives a sensitivity similar to Baird’s counterexample.

The remaining three domains—all forms of an off-policy 5-state random

walk—have an opposite sensitivity curve. In these domains, TDC tends to

significantly prefer smaller values of η, with a sharp performance drop as η

increases.

1In this case, the performance metric was approximately normal allowing us to compute
less conservative confidence intervals. Because the intervals are already tight, for consistency
we will use percentile bootstrap intervals throughout this thesis.

38



Figure 4.2: The square root of the PBE2 for the TDC algorithm over time
and across multiple levels of the secondary stepsize multiplier, η. Darker colors
(blue) are small values of η and brighter colors (red) are large values of η. As
in Figure 4.1, the first two domains favor agents with a large value of η while
the final three domains favor agents with a small value of η.

Figure 4.2 provides a different view of the same data. Here, we expand

over the time axis, showing the average performance at every level of η over

time. Darker colors (blue) represent small values of η and lighter colors (red)

represent large value of η. In Baird’s counterexample, we observe large oscil-

lations in performance for small values of η. This is unsurprising, we know the

TD algorithm diverges in Baird’s counterexample and so should expect TDC

in TD-mode to behave similarly. The curves for Boyan’s chain illustrate the

drawbacks of such short experiments, we selected a large primary stepsize for

small values of η resulting in very fast learning with a high plateau. Because

the experiment is short, the plateau accounts for only a small amount of the

average loss over time. The random walks, where TDC prefers TD-mode, show

a smooth degradation of performance as η grows larger. In all three cases, ev-

ery learning curve converges to the same point given enough data, but the

smaller choices for η tend to converge more quickly.

39



Figure 4.3: Estimated values of the TD error, δ over time for multiple levels
of the secondary stepsize multiplier, η. Darker colors are small values of η
and brighter colors are large values of η. The primary stepsize was swept
independently for every level of η, such that each curve represents near-ideal
performance for each given choice of η.

Finally, Figure 4.3 shows the evolution of h(s) = δ̂ ≈ Eπ [δ | s] for each

choice of η. As hypothesized, in all cases the small values of η (blue) stay in

a small region around zero, while large values of η (red) tend to stray much

further from zero. In the cases that the primary estimator, v̂, converges, then

all estimates of δ tend towards zero. This highlights that the modality of TDC

can shift with time, as the primary estimator converges. Unfortunately, once

the primary estimator has reached a point near convergence, the estimate is

ambivalent to the presence (or lack thereof) of the gradient correction term—

gradients and their corrections are already near zero.

These results imply that TDC is generally a poor learning algorithm. In

order to use TDC effectively, we need to know ahead of time which mode to

use. However, if we knew this, we would be able to select a better algorithm

than TDC. If TDC favors TD-mode for our problem, we would typically be

better off using TD; likewise, if TDC favors GTD-mode, we would typically

40



be better off using GTD2. In this way, we have off-loaded an important part

of the learning problem onto a problem of configuration. Instead, we would

far prefer an algorithm which uses experiential data to select the appropriate

mode adaptively.

4.4 The TDRC algorithm

In this section, we introduce the TDRC algorithm which applies a simple

modification to the TDC algorithm in order to adaptively switch between

modes of operation using experiential data. We take advantage of the fact

that h(s) is estimating the moving target Eπ [δt | s] for both GTD2 and TDC.

As w converges, δt approaches zero and consequently θ goes to 0 as well. This

suggests that an unconstrained linear regression estimate is not necessarily the

most efficient choice. In fact, using ridge regression—�2 regularization—can

provide a better bias-variance trade-off: it can significantly reduce variance

without incurring any asymptotic bias.

This highlights a potential reason that TD frequently outperforms TDC

and GTD2 in experiments: the variance of θ. If TD already performs well, it

is better to simply use the zero variance but biased estimate θt = 0. Adding �2

regularization with parameter β, i.e. β‖θ‖22, provides a way to move between

TD and TDC. For a very large β, θ will be pushed close to zero and the update

to w will be lower variance and more similar to the TD update. On the other

hand, for β = 0, the update reduces to TDC and the estimator θ will be an

unbiased estimator with higher variance.

The resulting update equations for TDRC are

θt+1 ← θt + α
[
ρtδt − (θ

�
t xt)

]
xt − αβθt (4.3)

wt+1 ← wt + αρtδtxt − αρtγ(θ
�
t x)xt+1. (4.4)

The update to w is the same as TDC, but the update to θ now has the

additional term αβθt which corresponds to the gradient of the �2 regularizer.

The updates only have a single shared stepsize, α, rather than a separate

stepsize for the secondary weights θ. We find empirically that this choice is

41



effective, and that the new configuration parameter β sufficiently controls the

magnitude of the secondary weights.

While there are many approaches to control the magnitude of the estima-

tor, θ, we use an �2 regularizer because (1) using the �2 regularizer ensures the

set of solutions for TDRC match TD; (2) the resulting update is asymptot-

ically unbiased, because it biases towards the known asymptotic solution of

θ; and (3) the strongly convex �2 regularizer improves the convergence rate.

TDC convergence proofs impose conditions on the size of the stepsize for θ

to ensure that it converges more quickly than the “slow-learner” w, and so

increasing convergence rate for θ should make it easier to satisfy this condi-

tion. Additionally, the �2 regularizer biases the estimator θ towards θ = 0,

the known optimum of the learning system as w converges. This means that

the bias imposed on θ disappears asymptotically, changing only the transient

trajectory.

4.5 TDRC convergence

In this section, we prove the convergence of the TDRC algorithm using a stan-

dard stability argument for stochastic dynamical systems [Borkar and Meyn,

2000]; the same strategy used by other gradient TD methods [Maei, 2011, Sut-

ton et al., 2009]. The argument first handles the stochasticity in the update

rule by showing that successive applications of the update are systematically

unperturbed by the noise in the system on average. Then the only systematic

changes in the dynamical system stem from the expected update, or the mean-

path update. Because this mean-path update can be shown to be a first-order

linear system, we can analyze the spectrum of the system’s defining matrix

and show that it is a contraction.

Theorem 2 (Convergence of TDRC) Consider the TDRC update, with a

TDC-like stepsize multiplier η ≥ 0:

θt+1 = θt + ηαt

[
ρtδt − θ�t xt

]
xt − ηαtβθt, (4.5)

wt+1 = wt + αtρtδtxt − αtρtγ(θ
�
t xt)xt+1, (4.6)

42



with stepsizes αt ∈ (0, 1], satisfying
∑∞

t=0 αt = ∞ and
∑∞

t=0 α
2
t < ∞. As-

sume that (xt, Rt,xt+1, ρt) is an i.i.d. sequence with uniformly bounded sec-

ond moments for states and rewards, A + βI and C are non-singular, and

that the standard coverage assumption [Sutton and Barto, 2018] holds, i.e.

b(A|S) > 0 ∀S,A where π(A|S) > 0. Then wt converges with probability one

to the TD fixed point if either of the following are satisfied:

(i) A is positive definite, or

(ii) β < −λmax(H
−1AA�) and η > −λmin(C

−1H), with H
def
= A+A�

2
. Note

that when A is not positive definite, −λmax(H
−1AA�) and −λmin(C

−1H) are

guaranteed to be positive real numbers.

In this thesis, we will present a high-level proof sketch and relegate most

details to Ghiassian et al. [2020]. We start by combining the TDRC update

equations into a single timescale update, u
.
= [θ�w�]:

ut+1 = ut + αt(Gt+1ut + gt+1)

with Gt+1
def
=

[
−η(xtx

�
t + βI) ηρtxt(γxt+1 − xt)

�

−ρt(γxt+1x
�
t ) ρtxt(γxt+1 − xt)

�

]
and gt+1

def
=

[
ηρtRt+1xt

ρtRt+1xt

]
.

Assuming the excursion setting, that is all expectations over states are with

respect to db, then we define G = Edb [Gt] and g = Edb [gt] and rewrite the

above equation as

ut+1 = ut + αt (Gut + g +Mt+1)

where Mt+1 is the stochastic noise sequence. Let the filtration

Ft
.
= σ(ut,M1, . . . ,ut−1,Mt), then the sequence (Mt,Ft) is a Martingale dif-

ference sequence (MDS) by construction.

In order to use the proof strategy of Borkar and Meyn [2000], it remains to

show that (i) the function h(u) = Gut + g is Lipschitz in ut and there exists

the limit h∞(u) = limc→∞
h(cu)

c
for all u ∈ R

2d, (ii) the stepsize sequence αt

satisfies
∑

t αt = ∞ and
∑

t α
2
t ≤ ∞, (iii) the origin is a globally asymptotically

stable equilibrium for the ODE u̇ = h∞(u) and (iv) the ODE u̇ = h(u) has a

unique globally asymptotically stable equilibrium.

43



That the function h is Lipschitz is straightforward to show. The condition

on stepsizes can be achieved through appropriate construction of stepsize se-

quences. The challenge remains in showing that conditions (iii) and (iv) hold

for mean-path TDRC. The basic strategy is to show that the real parts of the

eigenvalues of G are strictly negative. In the case of TDC (when β = 0), this

is straightforward because −G is a symmetric matrix. In the case of TDRC

(when β > 0), the regularizer in only the secondary weights causes a spiraling

behavior in the iterates, represented by eigenvalues with an imaginary com-

ponent. Unfortunately, this spiraling behavior requires particular special care

and is where a majority of the complexity of the proof lies.

4.6 Experiments in off-policy prediction

We first establish the performance of TDRC across several small linear pre-

diction tasks where we can carefully sweep configuration parameters, analyze

sensitivity, and average over many runs. Our goal in this section is to provide

evidence for three claims:

1. TDRC has similar performance to TD when TD performs well.

2. TDRC does not diverge in cases when TD diverges.

3. TDRC is insensitive to its configuration parameters compared to TD and

GTD methods.

We conduct our investigation in three different toy settings. These prob-

lems are designed with varying degrees of state aliasing and target/behavior

policy disagreement in order to test these methods under particular component

axes. The first problem, Boyan’s chain [Boyan, 2002], is a 13 state Markov

chain where each state is represented by a compact feature representation.

This encoding causes wide generalization during learning, while still allow-

ing vπ to be perfectly represented. Methods with poor bootstrapped estimates

will suffer from high transient bias during learning, which we expect to present

itself as slow learning.

44



The second problem is the well-known star counterexample from Baird

[1995]. In this MDP, the target and behavior policy are very different result-

ing in large importance sampling corrections. The extreme aliasing between

very different states in the MDP, alongside large importance sampling ratios,

cause semi-gradient methods to diverge on this problem. Baird’s Counterex-

ample has been used extensively to demonstrate the soundness of Gradient TD

algorithms, so provides a useful test bed to demonstrate that TDRC converges

empirically.

Finally, we include the five state random walk MDP and feature represen-

tations from Sutton et al. [2009]. Two of the three feature representations—

tabular and inverted features—allow perfect representation of vπ, with tabular

features providing the least generalization across states and inverted features

providing the most generalization across states. The third representation—

dependent features—cannot perfectly represent vπ, requiring methods to trade

off error across heavily aliased states. Like Hackman [2013], we used an off-

policy variant of the problem. The behavior policy chooses the left and right

action with equal probability and the target policy chooses the right action

60% of the time.

4.6.1 TDRC performs well across problems.

We start by providing empirical evidence in support of the first claim, TDRC

has similar performance TD when TD performs well. In order to concretely

measure this claim, we define “similar performance” as converging to a PBE2

that is within 10% of TD’s PBE2 after 3000 online updates. We say that TD

“performs well” whenever it converges—meaning across this set of problems

we expect TD to only perform poorly on Baird’s counterexample domain.

To provide context for TD and TDRC’s level of performance, we include

several related baseline algorithms—motivating that both TD and TDRC are

indeed performing well on these problems. The GTD2 and TDC gradient TD

methods [Sutton et al., 2009] are both conceptually similar to TDRC—with

TDRC differing from TDC only in its regularization of the secondary weights.

Hybrid TD [Hackman, 2013], or HTD, is a related gradient TD method that—

45



α = 2−x α = 2−x α = 2−x α = 2−x α = 2−x

Figure 4.4: Top: The normalized average area under the RMSPBE learning
curve for each method on each problem. Each bar is normalized by TDRC’s
performance so that each problem can be shown in the same range. All results
are averaged over 200 independent runs with standard error bars shown at the
top of each rectangle, though most are vanishingly small. TD and VTrace both
diverge on Baird’s Counterexample, which is represented by the bars going
off the top of the plot. HTD’s bar is also off the plot due to its oscillating
behavior. Bottom: Stepsize sensitivity measured using average area under
the RMSPBE learning curve for each method on each problem. HTD and
VTrace are not shown in Boyan’s Chain because they reduce to TD for on-
policy problems.

similar to TDRC—takes advantage of TD’s unreasonably good performance

across several domains, while incorporating the stability of gradient TD meth-

ods. VTrace [Espeholt et al., 2018] is an off-policy learning algorithm built

on TD which decreases the variance due to importance sampling updates via

clipping.

In order to ensure each method reliably converges within this time-frame,

we use the Adagrad optimizer [Duchi et al., 2011] which accelerates early

learning, while causing stepsizes to monotonically decrease over time. We first

consider idealized performance for each method, using an extensive grid-search

over the stepsize parameter for TD, TDRC, VTrace, and HTD; as well as a

grid-search over both the primary and secondary stepsizes for GTD2 and TDC.

All other configuration parameters—such as the regularization parameter for

TDRC—are kept to their default values.

Figure 4.4 shows the PBE2 for each method relative to TDRC; a relative

PBE2 near one means a method performed similarly to TDRC and a relative

PBE2 near two means that method performed roughly two times worse. On

the first four problem settings—those where TD performs well—we see that

TDRC consistently performs near-identically to TD, providing strong evidence

46



to support our claim. On the fifth problem, Baird’s counterexample, we see

TD’s performance is far off the chart as expected. The gradient TD meth-

ods typically performed well on Baird’s counterexample with TDRC learning

slightly slower than TDC.

The ordering over methods is generally as we would expect. GTD2 tended

to learn slowly in each domain, leading to a worse final performance in our

relatively short timescale of 3000 online updates. Because GTD2 directly

minimizes the biconjugate objective, it tends to make highly conservative

updates—only modifying its v̂ estimate once it has an accurate internal es-

timate of the TD error. All other investigated methods depend on direct

samples of the TD error and so tend to be much less conservative, each at

different levels. TD, VTrace, and HTD are insufficiently conservative and

can still diverge in settings such as Baird’s counterexample, while TDC tends

to be more conservative than TDRC and so learns more slowly on problems

with friendly conditions. TDRC tends to provide a sensible balance between

conservative and anti-conservative updates.

4.6.2 TDRC is insensitive to its configuration parame-
ters.

Having shown that TDRC performs similarly to TD when TD performs well,

we now focus on the third primary claim in the online, off-policy prediction

setting: “TDRC is insensitive to its configuration parameters.” In the previous

section, we illustrated the idealized performance of TDRC alongside several

baselines, motivating that TDRC can perform well when well-configured. This

claim, however, is uninteresting in isolation if we have succeeded only in shift-

ing from a learning problem to a configuration problem.

In this section, we investigate the primary configuration parameters of the

TDRC algorithm across all five problem settings. We show that TDRC is

insensitive to its primary stepsize in comparison to any of the previously in-

vestigated baseline algorithms. We show that TDRC smoothly interpolates

between TD and TDC depending on its regularization parameter, with in-

termediate values of the regularization parameter frequently out-performing

47



β = 2x β = 2x β = 2x β = 2x β = 2x

Figure 4.5: Sensitivity to the regularization parameter, β. TD and TDC are
shown as dotted baselines, demonstrating extreme values of β; β = 0 repre-
sented by TDC and β → ∞ represented by TD. This experiment demonstrates
TDRC’s notable insensitivity to β. Its similar range of values across problems,
including Baird’s counterexample, motivates that β can be chosen easily and is
not heavily problem dependent. Values swept are: β ∈ 0.1∗{20, 21, . . . , 25, 26}.

both TD and TDC. And finally, we use a modified version of the random walk

problems to highlight that TDRC only exhibits sensitivity to its regularization

parameter in extreme instances of this MDP.

In Figure 4.5 we investigate performance across a range of β ∈ 0.1 ∗
{20, 21, . . . , 25, 26}. We also include two extreme values of β, TDC (β = 0)

and TD (large β). Ideally, performance should quickly improve for any non-

negligible β with a large flat region of good performance in the parameter

sensitivity plots for a wide range of β. Intuitively, TDRC should not be sen-

sitive to β as both extremes—TDC and TD—generally perform well on most

problems. Picking a β > 0 should generally enable TDRC to learn faster—like

TD—by providing a lower variance correction. However, a default choice of β

cannot be too large in order to ensure we avoid the divergence issues of TD.

Empirically, we observe in Figure 4.5 that even small values of β—for in-

stance β = 0.1—tend to significantly outperform TDC across problems. In

two cases, TDRC splits the difference between TDC and TD (Random Walk

with Tabular or Dependent features) and in three cases, TDRC outperforms

both TD and TDC (Random Walk with Inverted Features, Boyan’s chain and

Baird’s counterexample). Notably, the settings where TDRC matches or out-

performs TD and TDC are those with more complex feature representations,

suggesting that the regularization parameter helps TDRC learn an h that is

less affected by harmful aliasing in the feature representation. Finally, Fig-

ure 4.5 also suggests that β = 1.0 was in fact not optimal, and we could have

obtained even better results in the previous section, typically with a larger

48



β. These improvements, though, were relatively marginal over the choice of

β = 1.0.

Naturally, the scale of β should be dependent on the magnitude of the

rewards because the gradient correction term is tracking the expected TD er-

ror. To understand the impact of reward magnitude on performance across

multiple values of β, we test TDRC on a set of modified random walk envi-

ronments. We design a set of small experiments to understand how changes

in the environment cause the scale of h to change, and how that relates to

the performance of TDRC across several values of β. The scale of h changes

whenever the size of the TD error or scale of the features change.

For these experiments, we increase the range of the TD error by making

the initial value function v̂t=0 = 0 and manipulating the magnitude of the

rewards. We run this experiment on the five state random-walk domain with

each of the feature representations, and change only the rewards in the termi-

nal states by a multiplicative constant. We compute the mean and standard

deviation of TD’s performance across 500 independent runs and compute the

number of standard deviations TDRC’s mean performance is from TD’s mean

performance. Finally, we let the reward vary by order of magnitudes, with the

multiplicative constant taking values {10−2, 10−1, . . . , 103}. For each scaling,

we test multiple values of β ∈ {2−5, 2−4, . . . , 24} and for each of these instances

we select the best constant stepsize from {2−5, 2−4, . . . , 2−1}.
In Figure 4.6, we show the range of β for which TDRC’s performance is

as good, or nearly as good, as TD’s performance as the magnitude of the

rewards increases. As hypothesized, the range of acceptable β decreases as the

reward magnitude increases; however, the range of β only appreciably shrinks

for a pathologically large deviation between rewards and initial value function.

This demonstrates that, while β is problem dependent, its range of acceptable

values is robust to all but the most pathological of examples across several

representations. One strategy to avoid the need to tune β is to employ an

adaptive target normalization, such as Pop-Art [van Hasselt et al., 2016], in

order to control the magnitude of rewards and keep β equal to one.

49



Tabular Inverted Dependent

Figure 4.6: Relationship between TDRC and TD performance across different
reward scales for different values of beta. On the x-axis we show the scale of
the rewards for the terminal states of the random walk, on the y-axis we show
a range of values of β. Each dot represents the number of standard deviations
away from TD that TDRC’s performance is across 500 independent runs for
that particular value of β. For each dot, TDRC and TD choose the stepsize
with the lowest area under the RMSPBE learning curve; with stepsizes swept
from α ∈ {2−5, 2−4, . . . , 20}. As the scale of the rewards increases (left to
right on the x-axis), the variance of the secondary weights, h, also increases;
effectively requiring a larger value of β. This figure demonstrates that TDRC
with β = 1 remains relatively insensitive to the scale of the rewards except in
extreme cases when the variance of the rewards from transition to transition
is quite large.

4.7 Summary

In this chapter, we introduced the temporal difference learning with regularized

corrections algorithm (TDRC), which is a simple modification of TDC from

Sutton et al. [2009]. The construction of this algorithm came from two pre-

dominant insights. First, from Chapter 3, the use of the biconjugate Bellman

error establishes that the internal secondary parameters used with gradient TD

methods should track the expected TD error, conditioned on features. We can

constrain this internal process to a smaller function class, which has the effect

of “projecting away” a larger share of the TD error transiently. The second

insight, established in this chapter in Section 4.3, is that the TDC algorithm

prefers to be configured like TD most of the time, but sometimes prefers to

be configured like a gradient TD method. Combining these two insights led to

the use of a ridge regression estimator for the secondary set of parameters of

the TDC algorithm, using the more aggressive projection to improve stability

of the algorithm. This modification takes advantage of the fact that the bias

50



due to regularization only impacts the transient behavior of the algorithm, but

not the asymptotic solution.

We empirically validated this algorithm by first testing it in the suite of

diagnostic MDPs previously used to evaluate gradient TD methods. These

simple toy problems tested the performance of TDRC under varying degrees

of state aliasing or limited function approximation capacity, varying degrees of

off-policy data, and on a particular combination of these that provably leads

to the divergence of semi-gradient TD methods. We consistently found that

TDRC performed well across each of these conditions, typically performing as

well as the best baseline or within a narrow margin of the best baseline in

every case. By contrast, no other algorithm exhibited consistent performance

across this entire test bed. TD performed exceptionally in all cases but Baird’s

counterexample, while gradient TD methods performed poorly in all cases

except Baird’s counterexample.

In the next chapter, we will extend TDC to the control problem and in-

troduce the use of neural network function approximation for gradient TD

methods.

51



Chapter 5

Q-Learning with Regularized
Corrections

In this chapter, we extend the TDRC algorithm to both nonlinear function

approximation and control. We call this algorithm Q-learning with regularized

corrections (QRC) because, like TDRC, we use a gradient correction update

that is estimated with a nonlinear regularized regression. Finally, we propose

a complete learning system by embedding the QRC update rule into the DQN

learning system [Mnih et al., 2013], replacing the original Q-learning update

and removing target networks.

We empirically investigate the performance of the QRC algorithm, show-

ing that it performs well across three classic control environments as well as

a more complex simulation environment. Our results provide strong evidence

that the QRC algorithm is empirically more reliable than semi-gradient alter-

natives, such as DQN, even with the exclusion of target networks. This chapter

uses a nonstandard evaluation of performance, comparing the distribution of

performance over multiple individual agents to baselines, showing the reliabil-

ity of gradient TD methods across many ablations. Finally, we introduce a new

analytical strategy for evaluation reinforcement learning algorithms, focusing

on agent-centric performance and providing a novel view of reliability.

52



5.1 Extending to non-linear control

We start with the extension of the TDRC algorithm to neural network func-

tion approximation. Recall with linear function approximation, the expected

TD error is estimated using linear regression with �2 regularization: θ�xt ≈
Eπ [δt | St = s]. With neural networks, we estimate this expected TD error

using an additional head on the network updated with a regularized mean-

squared objective and tracking δt as its target.

Because this internal process is secondary to value function learning, we

want to avoid degrading the performance of the value function estimates sim-

ply to improve estimates of Eπ [δt | St = s]. To accomplish this, we prevent

gradients from the secondary head—the head which tracks δt—from passing

gradients of its squared error back to the feature-learning layers of the neural

network. This choice is made for simplicity, and to avoid any issues when

balancing between two losses of differing magnitudes. This choice also makes

the connection to TD more clear as β becomes larger, as the update to the

network is only impacted by w.

The next step is to extend the algorithm to action-values. For an input

state s, the network produces an estimate q̂(s, a) and a prediction δ̂(s, a) of

Eπ [δt | St = s, At = a] for each action. The weights θt+1,At for the head cor-

responding to action At are updated using the features produced by the last

layer xt, with δ̂(St, At) = θ
�
t,At

xt:

θt+1,At ← θt,At + α
[
δt − θ

�
t,At

xt

]
xt − αβθt,At (5.1)

For the other actions, the secondary weights are not updated since we did not

get a target δt for them.

The remaining weights wt, which include all the weights in the network

excluding θ, are updated using

δt = Rt+1 + γq(St+1, a
′)− q(St, At) (5.2)

wt+1←wt+αδt∇wq̂(St, At)−αγδ̂(St, At)∇wq̂(St+1, a
′)

where a′ is the action that the policy we are evaluating would take in state St+1.

For control, we often select the greedy policy, and so a′ = argmaxa q(St+1, a)

53



and δt = Rt+1 + γmaxa q(St+1, a) − q(St, At) as in Q-learning. This action a′

may differ from the (exploratory) action At+1 that is actually executed, and so

this estimation is off-policy. There are no importance sampling ratios because

we are estimating action-values and all updates are conditioned on the action.

5.2 Experiments in non-linear control

In this section, we empirically evaluate the performance of the QRC algorithm

on several simulation environments. Having established TDRC’s high perfor-

mance in the linear function approximation setting in Section 4.6, we jump

directly to nonlinear function approximation in this section. We compare

QRC’s performance to two other gradient-based nonlinear control algorithms,

Greedy QC with locally linear projections [Maei et al., 2009] and SBEED [Dai

et al., 2018]. We additionally include semi-gradient Q-learning as a baseline.

In these experiments, we provide evidence for the following claims:

1. QRC performs well across all tested domains when evaluated with ide-

alized performance with respect to its configuration parameters.

2. QRC is insensitive to its configuration parameters, allowing consistent

performance without domain-specific tuning.

3. QRC is stable across a wide range of stepsizes.

We chose simulation domains with a sufficiently small state dimension to

efficiently compare algorithms across many random neural network initial-

izations, while still providing statistically sound evidence. Despite their small

state dimension, we require domains with sufficiently complex learning dynam-

ics in order to tease out differences between each algorithm and parameter con-

figuration under investigation. We chose three classic control domains known

to be challenging when approximation resources and agent-environment inter-

actions are limited: Acrobot [Sutton, 1996], Cartpole [Barto et al., 1983], and

Mountain Car [Moore, 1990]. We also used Lunar Lander [Brockman et al.,

2016] to investigate performance in a domain with a dense reward function

and moderately higher-dimensional state.

54



The network architectures were as follows. For Acrobot and Mountain Car,

we used two layer fully-connected neural networks with 32 units in each layer

and a ReLU transfer. The output layer has an output for each action-value and

uses a linear transfer. For the Cartpole and Lunar Lander domains, we used the

same architecture except with 64 units in each hidden layer. We use a shared

network with multiple heads for all algorithms unless otherwise specified. In

experiments with policy-gradient-based methods the parameterized policy uses

an independent neural network. We do not use target networks.

We swept consistent values of the hyperparameters for every experiment

across all algorithms. Specifically, we swept the stepsize parameter over a wide

range α ∈ {2−12, 2−11, . . . , 2−7} for every algorithm. For algorithms which

chose a stepsize on the boundary of this range—for instance, GQ often chose

the smallest stepsize—we performed a one-off test to ensure that the range

was still representative of the algorithm’s performance. All algorithms used

mellowmax, with τ swept in the range τ ∈ {0, 10−4, 10−3, . . . , 100}, including
0 to allow algorithms to choose to use a hard-max. Algorithms based on the

SBEED update have an additional hyperparameter η which interpolates be-

tween the gradient correction update and a residual gradient update. For all

experiments we swept values of η ∈ {10−3, 10−2, 10−1, 100} and the ratio be-

tween the actor and critic stepsizes ν ∈ {2−4, 2−3, . . . , 21}, often giving SBEED

algorithms twenty-four times as many parameter permutations to optimize

over compared to other algorithms. Likewise, we allowed saddlepoint methods

(GQ) to optimize over the regularization parameter β ∈ {0, 0.5, 1, 1.5}, to give

them an opportunity to perform well.

The remaining hyperparameters were not swept, but instead set to reason-

able defaults. We used a replay buffer to store the last 4000 transitions, then

sampled 32 independent transitions without replacement to compute mini-

batch averaged updates. Every algorithm used the ADAM optimizer [Kingma

and Ba, 2015] for all experiments with the default hyperparameters, a momen-

tum term of β1 = 0.9 and a squared-gradient term of β2 = 0.999. We addition-

ally tested Stochastic Gradient Descent and RMSProp and found that most

conclusions remain the same, so choose not to include these results to focus

55



the presentation of results. For each of the four domains we use a discount

factor of γ = 0.99 and cutoff long-running episodes at 500 steps for Acrobot

and Cartpole and 1000 steps for Mountain Car. On episode cutoff events, we

do not make an update to the algorithm weights to avoid bootstrapping over

this imaginary transition and on true episode termination steps we update

with γ = 0.

We use a non-conventional performance measure to more fairly report al-

gorithm performance. A common performance metric is to report the cumula-

tive reward at the end of each episode, running each algorithm for a consistent

number of episodes. This choice causes algorithms to have different amounts

of experience and updates. Some algorithms use more learning steps in the

first several episodes and achieve higher asymptotic performance because they

effectively learned for more steps. We instead report the cumulative reward

from the current episode on each step of the current episode. For example in

Mountain Car, if the kth episode takes 120 steps, then we would record -120

for each step of the episode. We then run each algorithm for a fixed number

of steps instead of a fixed number of episodes, so that each algorithm gets

the same number of learning steps and a consistent amount of data from the

environment. We record performance over 100,000 steps, recorded every 500

steps—rather than every step—to reduce storage costs.

To avoid tuning the hyperparameters for each algorithm for every problem,

we start by investigating a single set of hyperparameters for each algorithm

across all four benchmark domains. We evaluate the hyperparameters accord-

ing to mean performance over runs, for each domain. We then use a Condorcet

voting procedure to find the single hyperparameter setting that performs best

across all domains.

5.2.1 QRC performs consistently well across environ-
ments.

In this section, we provide evidence that QRC performs consistently well

across environments, generally outperforming other related gradient-based ap-

proaches and significantly outperforming a typical semi-gradient baseline. We

56



compare each algorithm under two idealized conditions. The first highlights

the performance of every algorithm when configuration parameters can be ex-

tensively tuned across all potential domains of interest—for the purposes of

this experiment, these are the four simulation domains. This simulates the set-

ting where we have partial information about the application domains where

our algorithm may be deployed, but we do not know exactly the properties of

the domain at configuration time.

The second setting illustrates the idealized performance of each algorithm

when configuration parameters can be extensively tuned for each domain

specifically. This simulates the setting where we know exactly the domain

where an algorithm will be deployed ahead-of-time, and have a sufficiently

large interaction budget in order to perform tuning runs of the algorithm on

that domain. Both settings are idealized ; in most deployment scenarios, one

would not have sufficient interaction budget to extensive tune their algorithm

to the exact domain where it will be deployed. Because it is inordinately

challenging to provide unbiased estimates of idealized performance, we ensure

QRC receives a much smaller tuning budget than the other algorithms—if our

hypothesis that QRC is less sensitive is true, this should only negligibly harm

QRC’s performance.

The top subfigure in Figure 5.1 shows the learning curves for each algorithm

with the single best performing hyperparameter setting across domains. To

select this singular hyperparameter configuration, we use a Condorcet voting

procedure (particularly Black’s ranked-choice vote) with each domain produc-

ing a ranking of each hyperparameter configuration for each seed. Hyperpa-

rameters were ranked according the area under the learning curve for a given

seed. By allowing each domain to cast multiple ranked-choice votes—i.e. one

vote per seed—this procedure inherently captures uncertainty due to variation

in the ordering over hyperparameter configurations. In fact, a closely related

procedure has been linked to performing a ranked hypothesis test [].

QRC was the only algorithm to consistently be among the best performing

algorithms on every domain and was the only algorithm with a single config-

uration that could jointly solve all four domains. Although SBEED was given

57



Figure 5.1: Top: Best hyperparameters across domains. Bottom: Best
hyperparameters per -domain. The performance of several off-policy control
algorithms with neural network function approximation on four simulation
domains. The top subplot uses a voting procedure to select a single hyperpa-
rameter setting for each algorithm, used across all four domains. This gives a
sense of idealized performance of each algorithm without domain-specific tun-
ing. The bottom subplot tunes hyperparameters per-domain, giving a sense
of idealized performance when each algorithm can tune hyperparameters for
each specific domain. The performance of each algorithm in the bottom sub-
plot should be greater or equal to the corresponding performance in the top
subplot on average over timesteps. In every domain, at least one algorithm
reaches a performant and stable final policy. QRC is among the top-performing
algorithms in every domain, where all other algorithms have at least one do-
main where they perform notable worse than the rest. In Cartpole, the three
ε-greedy based methods (QRC, QC-LL, and Q-learning) suffer from a fixed-
entropy behavior policy which causes performance to plateau at a slightly
worse average value than the policy gradient method SBEED whose policy
becomes near deterministic by the end of learning.

58



twenty-four times as many hyperparameter combinations to optimize over, its

performance was consistently worse than all other benchmark algorithms. This

suggests that the voting procedure was unable to identify a single hyperpa-

rameter setting that was consistently good across domains. QC-LL performed

well on the two simpler domains, Acrobot and Cartpole, but exhibited poor

performance in the two more challenging domains. We note, also, that our

QC-LL implementation had a markedly slower runtime than other algorithms,

requiring approximately double the wall clock time to complete experiments.

The bottom subfigure of Figure 5.1 shows the learning curves for per-

domain idealized performance of each algorithm. We again tune over the

same set of hyperparameter configurations, however in this plot we select the

best hyperparameter configuration independently for each domain. Each hy-

perparameter configuration is ranked using the average over seeds of the area

under the learning curve using 100 seeds for every configuration, domain, and

algorithm tuple. We find that QRC generally outperforms all other meth-

ods except in the case of Cartpole, where the policy gradient method SBEED

plateaus at a slightly higher performance than the value-based methods. This

is because SBEED’s policy becomes near deterministic, while the value-based

methods use a fixed ε-greedy behavior policy which can be harmful in the

Cartpole domain.

There are many challenges associated with reporting idealized performance

of an algorithm that has many configuration parameters [Jordan et al., 2020,

Patterson et al., 2023]. Figure 5.1 tells us how each algorithm can perform

given a fairly large budget to tune configuration parameters. By contrast,

Figure 5.2 shows how well each algorithm does over its entire space of config-

uration parameters. The distributions over performance show how the perfor-

mance differs when we are uncertain about the optimal configuration of each

algorithm. An algorithm which is more sensitive to configuration would have

unfavorable degradation when we have not identified the optimal configura-

tion, while less sensitive algorithms will degrade gracefully and will have a

large proportion of runs centered around near-optimal performance.

For computational budget reasons, we reuse the same data as for Figure 5.1

59



Figure 5.2: Distribution of average returns over hyperparameter settings for
each benchmark domain. The vertical axis represents the average performance
of each hyperparameter setting (higher is better) and the width of each curve
represents the proportion of hyperparameters which achieve that performance
level, using a fitted kernel density estimator. The solid horizontal bars show
the maximum, mean, and minimum performance respectively and the dashed
horizontal bar represents the median performance over hyperparameters. QRC
in blue generally performs best and exhibits less variability across hyperpa-
rameter settings.

to plot the performance distributions in Figure 5.2. We can view the grid-

search data as a form of bucket sampling from a quota; we define each bucket

as a unique cross-product between configuration settings for each parameter,

and we collect a strict quota of 100 samples per bucket. As a consequence of

discretization, we lose the ability to capture potential performance variability

in between measurements. We implicitly assume, then, that the performance

of each algorithm is relatively smooth and that our discretization approach

has sufficiently high-fidelity to capture all regions of interest. A positive con-

sequence of bucket sampling is that it allows the use of a repeated measures

empirical design, allowing us to ignore unrelated variation such as variance

in performance due to the environment, stochastic policies, or sampling from

a replay buffer. This allows us to focus our attention to the variability due

exclusively to configuration.

In Figure 5.2, we observe that QRC is typically far less sensitive to its

configuration parameters than the baseline algorithms. Generally, QRC has

a large proportion of the configurations which achieve near-best performance,

suggesting that minor suboptimality in configuration has negligible impact on

performance. By contrast, SBEED is typically highly sensitive to configura-

60



tion with only a small proportion of configurations achieving a reasonable level

of performance and the bulk of configuration setting achieving a performance

level no better than a random uniform policy. Neither QC-LL nor Q-learning

have a clearly identifiable pattern across domains, suggesting that their config-

uration parameters—and even their sensitivity—are highly domain-dependent.

5.2.2 QRC is more reliable than DQN.

One of the central claims of this thesis is that gradient-based methods are

more reliable than their semi-gradient counterparts. In this section, we pro-

vide both direct and indirect evidence to support this claim in the nonlinear,

control setting. We start by investigating an indirect resultant of stability:

the variability of QRC’s performance over experimental trials. We expect a

stable algorithm to have low variability across trials. Then, we investigate

internal processes within our QRC agents, providing a direct measurement of

stability and showing that QRC is indeed more reliable than its semi-gradient

counterpart, DQN.

As in the previous sections, we start with the idealized case where we have

extensively tuned configuration parameters for each algorithm. In Figure 5.3,

we show the performance distribution over experimental trials—also called

“agents”, “seeds”, or “independent runs” in the literature—where the x-axis

shows various levels of performance (right-side is better performance) and the

y-axis shows the proportion of experimental trials which attained that level

of performance. In particular, we show the performance distribution for the

Lunar Lander environment, picked because it provides a clear demonstration

of this particular form of analysis. The bars in Figure 5.3 show the binned,

observed performance values, while the solid curves show a gaussian kernel

density estimator fit to the raw observations.

By analyzing the shape of the distributions in Figure 5.3, we can begin to

understand the stability properties of each investigated algorithm. We observe

that—on this domain—both QRC and Q-learning have fairly consistent per-

formance, centered around a near-optimal policy (Lunar Lander is considered

“solved” when an agent achieves a return of 100). A very small share of QRC

61



agents failed to solve this domain within the given time constrains, as did a

slightly larger share of Q-learning agents. By contrast, very few QC-LL agents

achieved a satisfactory level of performance with nearly all agents performing

suboptimally by the end of the experiment. Importantly, QC-LL agents con-

sistently learned to stop crashing the lander module—a situation which leads

to large negative rewards—but typically burned a lot of fuel in order to do so.

Finally, we observe that no SBEED agent managed to solve this domain with

a large share of agents settling on a very low-performing policy and a small

share of agents finding catastrophic policies that consistently crash the lander

module.

Figure 5.3: The performance distribution over runs for the best performing
hyperparameter settings for each algorithm on Lunar Lander. The horizontal
axis represents the average episodic return over the last 25% of steps. The
vertical axis for each subplot represents the proportion of trials that obtained a
given level of performance. The plot shows the empirical histogram and kernel
density estimator for the performance distribution over 100 independent trials.
Mass concentrated to the right indicates better performance.

This resultant effect of stability—the performance variability—is neatly il-

lustrated for idealized configuration parameters and on the singular simulation

environment, Lunar Lander. A natural next step is to expand the scope of

our analysis. We do this two-fold, by investigating performance variability

across each of our four simulation environments and by investigating variabil-

ity across multiple levels of the stepsize parameter. We choose to expand over

stepsizes because the choice in stepsize has the largest impact in performance.

It is also natural to conjecture that stepsizes have a strong interaction with

stability; one would expect a large stepsize to lead to chasing noise and in-

hibiting convergence, while an overly small stepsize would have consistent, but

62



poor, performance.

In Figure 5.4 we plot the performance distribution for every algorithm, for

every level of the stepsize parameter, and for every environment. Naturally,

this leads to many plots in a small space, but importantly each of the 24 sub-

plots follows the exact same structure as Figure 5.3. The bolded distributions

are those for the best stepsize, while the faded distributions show the per-

formance variability for stepsizes off of the ideal configuration; that is, every

environment has exactly four bold distributions, one for each algorithm.

We notice a key trend in Figure 5.4, both QRC and QC-LL tend to

have consistent and stable performance for appropriately chosen stepsize—

particularly for sufficiently small stepsize. While, QC-LL tends to be stable,

the number of stepsizes that lead toward stability appears quite narrow, where

QRC is stable for every stepsize below a given domain-dependent threshold.

For every environment, there is a choice of stepsize for which Q-learning ap-

pears stable and reasonable high-performance, suggesting that given sufficient

tuning resources Q-learning can be made to work well on these environments.

However, for most of these environments, stepsizes that are off from optimal—

even by a single level—often exhibit a substantial degradation in performance,

stability, or both. Notice, for example, Q-learning on the Mountain Car envi-

ronment. Every stepsize apart from the optimal stepsize has highly bimodal

performance, with some runs failing to outperform a uniform random baseline.

There is an unfortunate limitation with the investigation in Figure 5.4. Be-

cause we measure an emergent property of stability (or instability), we suffer

from some potential confounding factors. For example, look at the perfor-

mance of the QC-LL algorithm for any given environment; particularly Moun-

tain Car. As the stepsizes grow larger (towards the bottom of the plot) we

notice the variability in performance grows. This naturally seems to imply

that QC-LL becomes unstable for these stepsizes—and, in fact, this is true!

However, as the stepsizes grow smaller (towards the top of the plot), we notice

again that the variability in performance grows. If we again take this to imply

that QC-LL is suffering from instability, in this case we would be wrong. Here,

QC-LL is instead suffering due to issues of sample efficiency and the fact that

63



Figure 5.4: Sensitivity to stepsize parameter. Distribution of the return per
episode for the last 25% of episodes across choice of stepsize. Each row of this
figure corresponds to the performance on each algorithm across domains for
one value of the stepsize parameter. Each subplot is exactly like Figure 5.3:
the distribution of performance for all four algorithms using a particular step-
size parameter value on a single domain. The highlighted plots in each column
represent the best performing stepsize parameter value. QRC consistently ex-
hibits a narrow distribution of performance where the bulk of the distribution
is on the upper end of the performance metric (towards the right is better). Q-
learning and QC-LL both have wide performance distributions on all domains
and exhibit bimodal distributions on Mountain Car. SBEED tends to exhibit
bimodal performance often, with a non-trivial proportion of runs which fail to
learn beyond random performance.

our experiment is run for a fixed budget of environment steps. With a smaller

stepsize, QC-LL simply is not able to perform enough updates to overcome

the effects of a small stepsize. This effect is exaggerated by some random

influences, such as the number of steps before an agent observes its first infor-

mative reward, causing a wide range of performance across experimental trials.

Nonetheless, despite the limitation of an indirect measure, these plots remain

highly informative of the consistency of performance of each algorithm—which

truly is what a practitioner would care about.

One way to avoid the confounding factors in Figure 5.4 is to measure

stability in a more direct way. Unfortunately, there is no widely accepted

definition of stability and so it is hard to propose a universal measure. In

this thesis, we’ve typically defined stability in the dynamical system sense: a

system is stable if it asymptotically approaches a fixed point or a fixed region—

in many cases, this is equivalent to “convergence” of the system. Using this

64



idea of stability, we use the soft-divergence measure proposed in van Hasselt

et al. [2018] to evaluate the internal properties of our agent in Figure 5.5.

Interestingly, in the top row of subplots of Figure 5.5, we see that all three

evaluated algorithms have approximately the same performance on this domain

(Mountain Car). Yet the bottom row tells an entirely different story.

Let us start with the bottom-right subplot of Figure 5.5. In this plot,

we measure the soft-divergence of the value function for each of three agents;

QC, QRC, and Q-learning. Each solid line represents the average over 100

experimental trials and shaded regions correspond to the standard deviation.

The horizontal dashed line at 100 is the magnitude of the largest observable

discounted return on this domain, with discount factor γ = 0.99. We say

soft-divergence occurs when the value estimate of the agent exceeds this the-

oretically maximal magnitude. Both of the gradient-based agents, QC and

QRC, exhibit only small degrees of soft-divergence over time, while the semi-

gradient method, Q-learning, quickly suffers from excessively large degrees of

soft-divergence. Under this measure of stability, we would strongly conclude

that semi-gradient Q-learning is highly unstable on the Mountain Car domain;

while we might conclude that the gradient-based methods are both stable.

However, the bottom left subplot of Figure 5.5 suggests that soft-divergence

of the values may not tell the complete story of the gradient TD methods’

stability. Because gradient TD methods have a secondary internal learning

process, we could likewise define a measure of instability for this process.

This, however, is challenging because we have no fixed theoretical baseline of

magnitude. Because we know the secondary learner is tracking the TD error,

we can reason about the expected range of TD errors for this environment

when an algorithm is performing stably. In Mountain Car, the agent receives

a reward of -1 per timestep and uses a discount factor of γ = 0.99. From this,

we’d expect that TD errors should remain around ±1 at their largest, and

naturally we would expect these decay over time. In the bottom-left subplot

of Figure 5.5 we see that QC is performing quite differently than expected—

the magnitude of the second weight vector is far larger than the expected 1

and this magnitude is continuing to grow at a rapid rate over time. QRC, on

65



max
a

q̂(St, a)

(×103)

(×103) (×103)

α = 2−x

hh

Figure 5.5: Control methods on Mountain Car with neural network function
approximation. Each method takes one update step for every environment step
and uses η = 1. Top Left: Average number of steps to goal. Top Right:
Sensitivity to stepsize showing area under the learning curve for each value of
α. Bottom Left: Magnitude of the secondary weights for each algorithm. Q-
learning is included as a flat line at zero, as Q-learning is effectively a special
case of QRC where the secondary weights are always 0. Bottom Right:
Mean and standard deviation of the maximum action-value for each step of
learning. QC exhibited massive growth in action-values throughout learning
and Q-learning exhibited periodic spikes of instability.

the other hand, maintains a fairly consistent and low-magnitude estimate over

time. From this, we might conclude—unsurprisingly—that the regularization

of the secondary learner helps QRC maintain stability of both internal learning

processes.

5.2.3 QRC outperforms saddlepoint methods.

In this section, we revisit the decision to base QRC on a gradient-correction

method as opposed to a saddlepoint method. Although we provide empirical

and conceptual motivation for this choice in Section 4.4, it is worth reconfirm-

ing its validity as we move both from linear to nonlinear and from prediction

to control. Recall that a primary motivation to use gradient-correction meth-

ods is that they make far less conservative updates than saddlepoint methods,

66



relying directly on a sample of the instantaneous TD error as opposed to a

slow moving estimate of the TD error. Perhaps in nonlinear control we observe

sufficient instability to justify the use of conservative updates, suggesting we

would prefer to pursue saddlepoint methods. We show in this section that the

less conservative gradient correction strategy remains more sample-efficient

than saddlepoint methods, while retaining sufficient stability even with neural

network function approximation.

We use the same approach as in Figures 5.3 and 5.4 to elucidate both the

performance and stability—albeit indirectly—of two saddlepoint algorithms

compared to QRC. Because we want to provide evidence to support the claim

that saddlepoint methods tend to perform poorly, we need to ensure that our

choice of saddlepoint update is representative. It is uninteresting to provide

evidence towards this claim by deriving poor saddlepoint methods! Towards

this goal, we investigate both the naive greedy GQ algorithm and a less naive

GQ algorithm where the secondary learner uses the gradient of the primary

learner as its feature representation; a choice supported by Section 3.2.

Unsurprisingly, in Figure 5.6, we observe that the naive saddlepoint algo-

rithm, greedy GQ, tends to perform poorly across all environments. Counter-

intuitively, the performance of this algorithm typically degrades as the step-

sizes increase, suggesting that the poor performance may be due to stability.

Though it is not visualized here, further investigation suggests that greedy GQ

here suffered from the same issue as QC in Figure 5.5: there was latent insta-

bility in the secondary learner. Because GQ relies entirely on the secondary

learner to provide signal for the primary, this internal instability resulted in

very slow learning performance. Unfortunately, greedy GQ cannot benefit

from regularization of the secondary weights in the same way as QRC; regu-

larizing GQ’s secondary weights to be near zero inhibits the primary learner

from learning, due to its sole reliance on the secondary weights to provide a

learning signal!

The second saddlepoint method, GQ-Grad, uses the gradient of the primary

learner as a feature representation for the secondary learner. The secondary

learner, then, is a simple linear function of these features. This strategy has the

67



Figure 5.6: Comparing gradient correction-based updates (QRC) and saddle-
point methods (GQ, GQ-Grad). GQ-Grad utilizes the gradient of v as features
for the secondary variable, h. Allowing the saddlepoint methods to estimate
h(s) by using a linear function of the gradients of the primary variable yields
slightly higher performance. Nonetheless, saddlepoint methods suffer from
wide performance distributions with the bulk of the distribution being further
left than the gradient correction-based updates.

nice property that low magnitude gradients result in a low magnitude estimate

of the expected TD error, providing a similar effect as the regularization used

by QRC. Empirically, we observe in Figure 5.6 that this choice significantly im-

proves performance over the naive greedy GQ algorithm across every domain.

In two cases, Acrobot and Cartpole, this saddlepoint method performs compa-

rable to QRC. However, we observe that the GQ-Grad algorithm still exhibits

a minor degree of instability—combined with low sample efficiency—in both

Mountain Car and Lunar Lander. As a result, Figure 5.6 provides evidence to

support our claim that gradient-correction methods tend to outperform sad-

dlepoint methods, even with neural network function approximation and in

the control setting.

5.2.4 Using the same function class for both learners
consistently performs well across environments.

In this section, we perform a final ablation of the design decisions made when

combining the QRC learning rule with neural network function approximation.

There is a major choice to be made, the conceptual consequences of which were

of primary focus in Chapter 3. How do we approximate the secondary set of

68



weights for QRC?

The theory in Chapter 3 suggests three sensible choices. The first—and

perhaps the most simple—is to ensure both the value function estimator and

the secondary estimator share the same function approximation space. There

are two ways to accomplish this, either by allowing both Q̂ and h to have their

own independent neural networks with equivalent architecture, or to make

both Q̂ and h different heads to the same neural network torso. Intuitively, we

might expect this second choice to have greater sample efficiency gains at the

cost of sharing function approximation resources to accomplish two possible

competing goals.

The second sensible choice is to allow the secondary estimator a larger

function class than Q̂. In doing so, we effectively bring the PBE2 to be a closer

approximation to the BE2 and in-turn protect against challenges associated

with the PBE2 [Kolter, 2011]. There are again multiple ways to accomplish

this. In this work, we choose to build on the shared heads approach and

extend the space for h by designating some share of the hidden units in the

penultimate layer of the neural network to be used only by h. The net effect

is that the function class for Q̂ is now a strict subset of that used for h and

the degree of difference is controlled by the number of hidden units earmarked

for h.

The final sensible choice is to use the gradients of the neural network pa-

rameters as features for the secondary head. That is, we first compute the

gradient of the PBE2 for a given sample, then we learn a linear function of

that gradient to track δ. Unfortunately, this approach comes with a substan-

tial computational cost. To alleviate this cost, we make the simplification of

using only the gradients of the penultimate layer of the neural network, im-

plicitly assuming that these gradients are the most informative for controlling

changes to the value function at any given instant.

To compare the effectiveness of each strategy, we use the same methodology

as in the previous several subsections. We tune the configurable parameters

independently for every algorithm and for every problem, then we plot the

performance distribution for each level of the stepsize parameter—identifying

69



Figure 5.7: How to represent h: ablating the choice of basis function for the
secondary variable, by comparing a shared network with two heads (QRC),
two separate networks (QRC-Sep), and one network for the primary variable
and a linear function of the primary variable’s gradients for the secondary
(QRC-Grad).

this parameter as that which best explains changes in performance. The results

of this ablation are shown in Figure 5.7 with three algorithms: QRC where the

secondary estimator is a second head on a shared network, QRC-Sep where

both estimators have their own neural network of equivalent architecture, and

QRC-Grad where the secondary estimator uses the gradients of the PBE2 for

the penultimate layer.

Surprisingly, we find very little difference between methods across our four

problems and even across most levels of the stepsize parameter. Perhaps the

most noticeable difference between methods is the left-skew of QRC-Sep, sug-

gesting that a small proportion of runs are performing worse than the bulk of

the distribution. This aligns with our hypothesis that QRC-Sep is less sample

efficient, it turns out these lower performing runs were still improving perfor-

mance at the time that the experiment was terminated due to limiting the

experiment to a small number of environment interactions. Comparing the

differences in mean between each of the best performing configurations, we

find no detectable, statistically significant difference between methods. This

is actually a freeing finding; all three are fine choices, allowing us the freedom

to pick that which is most conceptually simple and computationally efficient.

70



5.3 Reliability and empirical science

The reliability and empirical science of reinforcement learning systems are

deeply intertwined. An unreliable system is difficult to study empirically,

requiring a large number of samples and sophisticated analytical techniques

to deal with the variation in results [Colas et al., 2018, Agarwal et al., 2021,

Patterson et al., 2023]. Empirical methodologies designed for reliable systems,

but applied to unreliable systems, produce irreplicable conclusions and fallible

insights [Islam et al., 2017, Henderson et al., 2018, Patterson et al., 2023].

The predominant approach to breaking this cycle has been to design and

recommend empirical strategies which are better suited for studying unreliable,

high-variance systems. The natural starting point to improving our statistical

insights is to simply collect more data; it is impossible to determine if a system

is reliable if that system has not been run sufficient times to track variation in

performance. Many studies have highlighted the critical need to collect more

data, making appeals to the assumptions underlying statistical tests [Colas

et al., 2018, Machado et al., 2018, Colas et al., 2019], showing wide confidence

regions about the mean [Henderson et al., 2018, Jordan et al., 2020, Agarwal

et al., 2021, Patterson et al., 2023], or even directly describing the unreliability

of empirical conclusions [Islam et al., 2017, Sajed et al., 2018, Pineau et al.,

2020, Patterson et al., 2023].

Complementing the call for increased data, several studies have designed

better empirical methodologies and statistical analysis techniques to handle

the varied data stemming from unreliable learning systems. Much of the mo-

tivation is to reconcile the high cost of obtaining more data with improved

analysis. One proposed approach is to throw out half of the data, that be-

longing to the best instances and the worst instances equally, and report the

average over the remaining samples [Agarwal et al., 2021]. Confidence inter-

vals about this statistic, the interquartile mean (IQM), have been shown to

be tight and conservative. Another complementary approach is the use of

bootstrapped statistics to compute distribution-agnostic confidence intervals,

recognizing that unstable learning systems tend to produce non-normal per-

71



formance data [Colas et al., 2019, Henderson et al., 2018, Jordan et al., 2020,

Agarwal et al., 2021, Patterson et al., 2023]. Finally, strategies for combin-

ing data from multiple environments to form more robust statistics have been

shown to reduce the total empirical cost, while producing reliable conclusions

[Whiteson et al., 2011, Jordan et al., 2020, Patterson et al., 2023].

In this section, we will explore the relationship between reliable algorithms

and reproducible empirical research. We will discuss statistical analysis tech-

niques to evaluate the reliability of reinforcement learning systems, using com-

monly collected performance data. We will show that hyperparameter config-

uration plays a large role in the reproducibility of empirical research, and

that unreliable learning systems add a degree of complexity to this challenge.

Throughout these discussions, we will primarily compare the QRC algorithm

to the DQN algorithm [Mnih et al., 2013], showing that QRC is a prototypical

example of a reliable learning algorithm.

Evaluating reliability. Early in this thesis we defined a reliable learning

system as a system that produces individual agents that consistently achieve

similar performance, despite different random influences on each individual

agent. In this way, reliability is focused on individual agents behaving sim-

ilarly, even when each agent starts from different initializations and expe-

riences different streams of experience. By contrast, conventional empirical

methodologies seek to understand differences in populations of agents often

by comparing a population-level statistic between two populations, such as

their average performance.

In this section, we start by illustrating why population-level statistics can

be misleading and how increasing the number of samples can exaggerate this

problem. We show that, despite recent attention to improved confidence in-

terval techniques, uncertainty metrics do not resolve this issue. We highlight

that even the most naive strategy of evaluating every agent individually can

help avoid being misled by aggregate statistics. Then we conclude with a

proposed aggregate statistic, the tolerance interval, that captures both indi-

vidual variation and uncertainty, making this a powerful tool for scientifically

72



Figure 5.8: Average performance over 200 agents with 95% bootstrap per-
centile confidence intervals represented as a shaded region about the mean.

understanding the reliability of learning systems.

The fallacy of the average agent. Let us revisit the experimental method-

ology of Section 5.2. We will focus on three classic control environments: Ac-

robot, Cartpole, and Mountain Car. For now, we will assume that we have

well-configured both algorithms of interest—QRC and DQN—choosing hyper-

parameter settings for each individual environment that maximize the perfor-

mance of each of these algorithms after 200k steps of interaction. Specifically,

we will use the best configuration found from the experiments in Section 5.2.

Unlike Section 5.2, however, we will now run every agent for 1.5M steps of

interaction, or roughly 7 times longer, and we will run both algorithms 200

times each, generating 200 individual agents for each environment.

We report the average performance of each agent in Figure 5.8. With

200 individuals for every condition—algorithm and environment—the average

performance curves are relatively smooth, and the confidence intervals are

quite small. In fact, the confidence intervals are barely visible in all three

cases. Certainly, it is clear that DQN performs poorly on average in two of

the three environments, however, we might wrongly conclude that both QRC

and DQN are consistent in all three environments.

Based on Figure 5.8, we would misleadingly—but correctly—claim that

DQN achieves approximately 250 return on average in Cartpole and -300 re-

turn on average in Mountain Car for a bulk of the learning curve. If instead

we investigate the individual performances of these agents in Figure 5.9, we

find that individual agents produced by the DQN algorithm are often sporadic

73



Figure 5.9: Individual performance of 20 randomly selected individual agents
for both DQN (top row) and QRC (bottom row).

with some agents performing well over time, other agents performing poorly

over time, and most agents bouncing between these two. QRC, on the other

hand, consistently produces agents that perform well.

An important takeaway from Figures 5.8 and 5.9 is that unreliability is not

an inevitability. While it is important to develop improved analytical strategies

and empirical methodologies to study unreliable algorithms such as DQN, it

is possible to simultaneously improve the reliability of our methods through

further algorithm development. Both learning systems, in this case, are highly

related with the only difference being the update rule. Both algorithms were

configured with the most naive configuration strategy, grid search, where DQN

had the advantage of tuning an additional configuration parameter, the target

network refresh rate.

Tolerance intervals. Unfortunately, the plots in Figure 5.9 are incredibly

difficult to compare quantitatively. It is clear qualitatively that there is a

difference between QRC and DQN, but these “spaghetti” plots obfuscate sev-

eral details. Perhaps the most notable limitation is that these plots rely on

a subsample of the data, only 20 out of 200 agents are represented. What

74



Figure 5.10: Tolerance intervals with α = 0.05 and β = 0.9 for both DQN
and QRC. For context, the mean performance across individuals is also shown
as a solid line for both algorithms.

if, when investigating all 200 individual agents, some instances of QRC also

perform sporadically? Or perhaps a majority of DQN’s individual agents are

entirely consistent, but the limitations of the plotting mechanism exaggerate

a few particularly chaotic individuals?

To address these concerns, we can use a form of statistical interval called a

tolerance interval to provide an aggregate summary of the individual agents.

Similar to a confidence interval, the tolerance interval allows us to reason about

our uncertainty in our data; what if we collected more individual agents, would

our conclusions change? Unlike a confidence interval, the tolerance interval

captures the underlying variation across the individuals in our sample, much

like a prediction interval. The tolerance interval answers the question: Given a

1−α confidence level, what range of performance values captures β proportion

of my individual agents? Concretely, a (α = 0.05, β = 0.9) tolerance interval

captures 90% of individual performance values with 95% confidence.

In Figure 5.10 we show the (α = 0.05, β = 0.9) tolerance interval for both

DQN and QRC across our three classic control domains. As we might expect

from Figure 5.9, QRC’s tolerance interval is tight across all three environments

suggesting that at least 90% of the time, an agent produced by the QRC

algorithm will perform near-optimally on these environments. Similarly, on

Acrobot, the tolerance interval for DQN suggests that DQN reliably produces

agents that solve this domain. On Cartpole and Mountain Car, however, we

are unable to predict ahead of time how an agent produced by DQN will

perform. In fact, the tolerance interval indicates that a DQN agent could

75



perform anywhere from the worst possible performance to the best possible

performance in either domain. From Figure 5.10, we can strongly conclude

that DQN is not a reliable algorithm on Cartpole and Mountain Car.

5.4 Summary

In this chapter, we introduced the Q-learning with regularized corrections al-

gorithm (QRC), which is a simple modification of the TDRC algorithm studied

in Chapter 4. We described a strategy to use the QRC algorithm alongside

neural network function approximation for the problem of off-policy control,

by embedding this update rule in a DQN-like learning system, replacing the

q-learning update rule and obviating the need for target networks. We empiri-

cally validate the performance of this control algorithm by comparing idealized

performance with respect to configuration parameters (stepsizes, buffer param-

eters, etc.) of SBEED [Dai et al., 2018], DQN [Mnih et al., 2013], and nonlinear

QC [Maei et al., 2009]. Finally, we investigate the reliability of each of these

methods by investigating the empirical distribution of their performance over

repeated runs, capturing variation due to initial conditions and stochasticity

in the data-generating process.

In the next chapter, we will revisit the biconjugate objectives defined in

Chapter 3 and use this reformulation to propose two new statistically robust

biconjugate objectives. We will then use the insights from TDRC and QRC

to derive algorithms to minimize these robust objectives, then empirically

investigate their performance compared to QRC and DQN.

76



Chapter 6

Statistically Robust Bellman
Errors

In this chapter, we introduce a robust Bellman objective which allows us to

control the tradeoff of high magnitude errors across states. We will build on the

biconjugate reformulation of the Bellman error established in Chapter 3, al-

lowing us to derive algorithms with provable stability guarantees under broad

conditions. The algorithms derived in this chapter are built on TDRC and

QRC from Chapter 4, inheriting TDRC’s reliability by being gradient-based

methods. The algorithms introduced in this chapter achieve an even greater

degree of reliability through the use of novel statistically robust Bellman ob-

jectives.

Many algorithms in reinforcement learning are built on objectives that use

squared errors. Squared errors, however, tend to magnify incorrect predictions;

encouraging the function approximator to expend limited representation re-

sources on states and actions that induce the highest Bellman error. High

magnitude Bellman errors can occur during the learning process and can per-

sist at convergence due to state aliasing or irreducible noise in the observations.

This focus on large Bellman errors can be particularly undesirable in con-

trol. As an example, consider the CliffWorld domain. The agent starts in one

corner of a grid and seeks to walk alongside a cliff to reach the opposite corner

on the same wall. If the agent steps into the cliff, it receives a high-magnitude

negative reward and must start again. The agent otherwise receives -1 reward

per step until it reaches the goal and the episode terminates. In order to

77



successfully solve this domain, the agent need only learn that actions which

step into the cliff yield more negative return than actions which step toward

the goal. Representing the exact magnitude of this expected negative return

is unnecessary. Squared errors do just the opposite: by squaring large errors,

they expend their limited representation capacity focusing on those states.

As a result, the representation may suffer for other states and actions pro-

viding a suboptimal ordering over actions. Further, during the optimization,

these high-magnitude errors can introduce transient instability in the learning

process.

This challenge has been addressed heuristically through a variety of ap-

proaches in RL, which include clipping rewards [Hessel et al., 2018b], errors

[Mnih et al., 2013], and gradients [Van Hasselt et al., 2016]; careful manipu-

lation of the reward function [Brockman et al., 2016, Young and Tian, 2019];

and variance reduction methods [Wang et al., 2016, Hessel et al., 2018a]. Some

approaches, such as manipulating the reward function, require extensive do-

main knowledge and are not generally possible for all problem settings. Other

approaches, such as clipping, inhibit analyzing the fixed-point of the update.

Error clipping in Q-learning algorithms—often referred to as minimizing a

Huber loss—is built on a semi-gradient update which does not follow the gra-

dient of any loss function. This makes analysis of the fixed-point challenging,

leaving open the question: what is the effect of clipping the error on TD-like

algorithms?

Huber-like losses have become commonplace in deep reinforcement learning

implementations [Raffin et al., 2021, Dhariwal et al., 2017, Mnih et al., 2013].

Although these implementations often claim to be minimizing a Huber loss,

the iterative weight update does not minimize any known loss function. They

apply the Huber function to the TD error, pτ (Rt+1 + γt+1vwold
(St+1)− vw(St)),

with a fixed target network vwold
. This update more closely resembles that of a

mean Huber TD error, rather than Bellman error, because the Huber is inside

the expectation: Eπ [pτ (δt) | St = s] �= pτ (Eπ [δt | St = s]). Further, the target

network causes the objective to change with time. Analytically, the fixed-

point of this DQN update remains an open question. Empirically, clipping

78



the magnitude of the TD errors has led toward better learning stability on

certain problem settings [Mnih et al., 2013], however this insight is inconsistent

when validated across a wider test bed of problem settings [Obando-Ceron and

Castro, 2021]. By instead defining a Huber BE objective, we can concretely

characterize the loss surface and solutions of the proposed objective.

6.1 The mean Huber Bellman error

In this section, we define the mean Huber Bellman error, HBE, as well as

the mean absolute Bellman error, |BE|. The HBE depends on a configuration

parameter τ which allows the Huber error (HBE) to smoothly interpolate

between the squared error (BE2) and the absolute error (|BE|). All three

Bellman errors share the same fixed-point in the tabular setting—and more

generally when vπ belongs to the parameterized function class—but can have

notably different fixed-points under limited function approximation.

The HBE is straightforward to specify,

HBE(w)
def
=

∑
s∈S

d(s)pτ (Eπ [δ(w) | S = s]) (6.1)

where pτ (·) is the Huber function [Huber, 1964],

pτ (x)
def
=

{
x2 if |x| ≤ τ

2τ |x| − τ 2 otherwise

for some parameter τ > 0. In a region about the origin, the size of which is

controlled by τ , the Huber function behaves as the square function. Outside

this region, the Huber function becomes the absolute value. The threshold

parameter, τ controls the inflection point between the square and absolute

functions. Similarly, we can define the |BE|:

|BE|(w) def
=

∑
s∈S

d(s)|Eπ [δ(w) | S = s] |. (6.2)

Both robust objectives, as well as the BE2, rely on an average over states,

weighted according to distribution d. Typically, this distribution is the steady-

state distribution of the MDP when following the behavior policy; that is

79



d = db. However, as we saw in Chapter 3, this is not the only choice of state

distribution that we can make.

Implicitly, the statistic of the residuals that we choose to measure—the

Huber function, the absolute function, or the square function—also impacts

the effective weighting over states. The square function increases the effective

weighting proportional to the magnitude of the residual; if the error in a given

state is large, then that state is given more effective weight in the total loss.

By contrast, the absolute function gives no additional effective weighting to

a state based on the magnitude of its error. Naturally, the Huber function

interpolates between these two based on its threshold parameter.

Although the HBE is straightforward to specify, it is not necessarily straight-

forward to optimize. The difficulty is obtaining a sample of the gradient of

this objective for the same reason as the BE2: the double sampling issue. Due

to the chain rule and the nonlinearity of | · | and pτ (τ) ·, both the |BE| and
HBE will suffer from the same issue as the BE2.

To facilitate optimizing the HBE and |BE|, we reformulate the objec-

tives using biconjugates using the same strategy as in Chapter 3. Because

the three functions we want to reformulate—the absolute, Huber, and square

functions—are all proper, convex, and lower semi-continuous, this equivalence

allows us to reformulate these losses using biconjugates to avoid the double

sampling issue without changing the solutions to these losses or even the loss

surface.

The absolute value has a well known biconjugate maxh∈[−1,1] xh. It is easy

to see that this biconjugate is indeed equivalent to the original function, that

is |x| = maxh∈[−1,1] xh. Whenever the input x is positive, the maximization is

realized at h = 1 and so the biconjugate takes value x. Whenever the input

x is negative, the maximization is realized at h = −1 and so the biconjugate

again takes value x.

The biconjugate for the Huber function is less readily available. Though it

is a relatively straightforward result to obtain, to the best of our knowledge,

it is new and so worth providing formally. We derive the biconjugate form for

the Huber error in the following proposition.

80



Proposition 3 The biconjugate of the huber function is f ∗∗
τ (x) =

maxh∈[−τ,τ ] xh− 1
2
h2.

We provide a proof of this proposition in Appendix B.1.

Like the Huber function itself, the biconjugate of the Huber function adopts

properties from both the square and absolute value functions. The Huber

function’s biconjugate differs from the squared function’s biconjugate only in

its use of a constrained optimization. These constraints are similar to those

used by the absolute value function, though in the case of the Huber function

they are inequality constraints.

We can now provide the biconjugate forms for |BE| and HBE:

|BE|(w) def
= max

h∈Hsign

∑
s∈S

d(s)h(s)Δ(s)

HBE(w)
def
= max

h∈Hclip

∑
s∈S

d(s)(2h(s)Δ(s)− h(s)2)

Hsign is the set of all functions hsign : S → {−1, 1} and Hclip the set of all

functions hclipτ : S → [−τ, τ ]. Notice that for both the HBE and |BE|, we
have a constrained optimization problem for h, which differs from the BE2.

It is also worth noting that, like the BE2, the biconjugate form of the |BE|
and HBE depend on functions whose domain are the underlying states of the

MDP, S. Similar to the BE2, this leads to a contradiction: the function h

can use the underlying states to evaluate the agent, while the value function

is limited to functions of the observations O. We will resolve this limitation,

creating identifiable versions of the |BE| and HBE in Section 6.2.

To gain some intuition on how these objectives differ, consider a two-state

MDP where both states are aliased with a single observation. The agent starts

in the first state and deterministically transitions to the second state, where

the agent remains with high probability or terminates the episode with low-

probability. Because the length of each episode varies greatly and because the

first state is visited infrequently, the distribution of TD errors becomes skewed

by large errors in the first state. Updating the prediction to decrease the high

error in the first state harms the prediction in the second state due to the state

81



aliasing. Because the true value function is not representable, the minimizer

of each objective must trade off prediction error in each state.

Figure 6.1: Objectives and fixed-points on the above described MDP. Dotted
lines are drawn at the minima. The fixed-points of the robust objectives are

much better proxies for the VE2. Note that the |VE| (not shown) has a similar

fixed-point to the VE2, so the HBE and |BE| also well approximate the fixed-
point of the |VE|.

Figure 6.1 visualizes this trade-off among objectives. Surprisingly, even

when our goal is to minimize a mean squared VE, the mean absolute BE

provides the closest solution among the Bellman objectives. The HBE provides

a close approximation as well as a better optimization surface. The BE2, on

the other hand, defines a poor fixed-point, highly skewed by large errors in the

first state of the MDP.

Differences from supervised learning. In both supervised learning and

reinforcement learning, we learn some statistic of our targets that is condi-

tioned on our input data. Classically, in supervised learning, this might be

E[y | x] for inputs x and target y. In supervised learning, robust losses are

used to mitigate issues with high-variance, stochastic targets. With the ab-

solute loss producing an unbiased conditional median estimator that is highly

robust to outlier values, and the Huber function providing a more generalized

M-estimator.

In the reinforcement learning setting, the target for Bellman errors is itself

an expectation and has no variance. Instead, the robust Bellman losses impact

the accumulation of error across states. In the tabular setting, or generically

when vπ is realizable, all three Bellman errors share the same solution: the true

82



expected return. That is, with sufficient function approximation capacity, the

choice between robust losses and the squared loss does not impact the learned

solution. The same is not true of supervised learning; using a robust loss fun-

damentally changes the statistic being estimated, regardless of approximation

capacity.

Another notable deviation from supervised learning is the nested expec-

tations found in Bellman errors. These nested expectations lead to a double

sampling issue in all three objectives, where gradients of the objective are

composed of a product of expectations. This product of expectations does not

appear in supervised learning, allowing supervised learning to take stochastic

gradients through the robust losses trivially. In reinforcement learning, we

instead must find some alternative strategy for obtaining gradient samples for

the robust losses. In the previous section, we achieve this by reformulating the

robust objective through the use of biconjugates, as we did with the squared

loss in Chapter 3.

6.2 Limiting the function class of the Huber

Bellman error

In practice, we will generally have parameterized functions v and h, and so

the biconjugate objectives will no longer perfectly obtain the maximum h∗(s).

One source of error is from approximation due to limited computation and a

finite number of samples. Another source of error is due to limitations of the

chosen parameterized function class. This limitation of the function class can

actually be seen as a projection on the Bellman errors, previously highlighted

for the BE2 [Patterson et al., 2022b] and in Chapter 3, which we show in this

section for the HBE.

In the finite state setting, we can represent the parameterized function

h ∈ Hθ as a vector u ∈ R
|S| composed of entries Eπ [δ(S) | S = s]; thus the

vector u = T vw − vw. The orthogonal projection of x onto Hθ is defined as

ΠHx
def
= argmin

h∈Hθ

‖x− h‖d

83



for convex subset Hθ, where d : S → [0, 1] is a weighting over states. For the

Huber loss, we further restrict Hθ to get Hclip = Fclip ∩ Hθ. Because Fclip

is convex and contains 0 in its interior for τ > 0, because Hθ is convex by

assumption, and because the intersection of convex sets is convex, then there

exists a projection, ΠHclip,d.

Despite changing the projection from ΠH for the PBE2 to ΠHclip
for the

HPBE, both objectives share the same fixed-point when H = V , because the

TD fixed-point has zero PBE2 and further projection has no effect.

Theorem 4 Let V be a convex set of functions, vw, where PBE2(w)
def
=

‖ΠV,d(T vw − vw)‖2d. Let Fclip,v
def
= Fclip ∩ V. Then the solution is the same for

the PBE2 and the HPBE when τ > 0. Further, this solution has zero error

under both objectives.

Proof: Let w∗ be the solution to the PBE2. Then

HPBE(w∗) = ‖ΠFclip,v(T vw∗ − vw∗)‖2d
≤ ‖ΠFclip,vΠV(T vw∗ − vw∗)‖2d
≤ ‖ΠV(T vw∗ − vw∗)‖2d = 0

The first inequality follows from the fact that projecting onto the set V first

and then projecting further to Fclip cannot have a smaller norm than project-

ing directly to ΠFclip,v. The second inequality follows from the fact that the

projection is a contraction under d, again by definition.

Further, for any w when PBE2(w) > 0 then HPBE(w) > 0. We show this

by contradiction. Assume that for some w, PBE2(w) > 0 and HPBE(w) = 0.

84



Let Δ = T vw − vw, then

HPBE(w) =‖ΠFclip,vΔ‖2d = 0 
 By assumption

=⇒ ΠFclip,vΔ = 0 
 Positive definiteness of norm

=⇒ Δ ∈ ker(ΠFclip,v) 
 Definition of kernel

=⇒ Δ ∈ N (V) 
 ker(ΠFclip,v) = N (V)

=⇒ ΠVΔ = 0 
 Δ ∈ ker(ΠV) because Δ ∈ N (V)

=⇒ ‖ΠVΔ‖2d = 0

=⇒ PBE2(w) = 0,

yielding a contradiction. The fourth step is because clipping has no effect on

the nullspace, N (V), so any vector that ΠFclip,v projects to 0 is in the nullspace

N (V). Specifically, because Fclip,v ⊆ V and the only vector u that satisfies

〈u, v〉 = 0 for all v ∈ Fclip is the vector u = 0, then ker(ΠFclip,v) = {0}∪ker(ΠV)

and the kernel of a linear map is the nullspace of its domain, which already

includes 0. �
This connection gives insight into why TDRC has empirically demonstrated

better stability, despite being designed to optimize the PBE2—a squared error.

The regularization term in TDRC acts as a soft constraint on h, biasing h

towards low-magnitude values. In fact, this connection is identical to the

connection between �2 regularization and the Lagrangian for certain linear

constraints. We visualize the connection in Figure 6.2.

6.3 Empirical analysis of the fixed-points

Before developing online learning algorithms to minimize the robust Bellman

objectives, we first seek to empirically understand the idealized solutions of

these objective functions in relationship to the squared (projected) Bellman

error. The intuition established in Section 6.1 tells us we should expect sta-

tistical robustness to yield better minimizers in challenging problems with a

large degree of state aliasing. In this section, we design a set of exemplary toy

problems with exaggerated characteristics that highlight differences between

85



Figure 6.2: Visualizing the loss surface for the PBE2 (blue), the HPBE (red),
and an approximation of the loss followed by the TDRC algorithm (black).
TDRC does not define a valid projection, but we can compute the �2 regular-
ized solution for h for each θ, to plot the idealized loss surface. The HPBE
is a squared projected loss, but the projection under the Huber flattens the
surface for large residuals, characteristic of the flat regions of the Huber func-
tion. TDRC has a less sharp surface for a local region near the fixed-point,
but ultimately suffers from using a squared loss for very large residuals.

objectives. Our goal is not to show that any one objective necessarily dom-

inates the others, but rather to highlight differences between objectives via

highly controlled and manipulated problems. Later in Section 6.5, we will in-

vestigate algorithms that optimize these robust objectives on more commonly

used benchmarks.

The empirical methodology in this section follows an exploratory format, as

opposed to more classic hypothesis testing. Instead of fixing a set of problems

and evaluating solution strategies on those fixed problems, we are fixing the

solution strategies and probing them with a different set of problems. As

a result, the learning problems proposed in this section are highly cherry-

picked, each custom-designed with a particular property in mind. We pose

the following research question: “For which set of problem properties does

each objective provide a favorable solution?”

The problems. For each of the following problems, we assume that the state

is fully observable, and the agent constructs some features of this state, say

by a neural network or tile-coding. This feature generating function is fixed

and provided to the agent; for now, we only study the linear mapping from

features to values. This models a common setting where the agent receives a

86



complete Markov state, learns a feature generating function from those states,

then learns a linear value function from those features—e.g. using an end-

to-end neural network learning procedure such as DQN. Although the agent

has access to the true underlying state, we cannot assume that the feature

generating function will always yield useful features which cleanly discriminate

between states of highly different value, especially early in the learning process.

The first two problem settings build on simple MDPs that have state rep-

resentations which aggressively alias multiple states into a single feature. Be-

cause this aliasing skews the TD errors, we expect to find that the robust ob-

jectives perform well compared to the squared Bellman error. HardAlias-1

is an 8-state random walk where the first, third, and final states share a com-

mon feature, and the remaining five states share three features. HardAlias-2

is the 2-state problem from Tsitsiklis and Van Roy [1997], which was origi-

nally designed to highlight the insufficiency of minimizing the squared Bellman

Residual, with lightly modified reward so the optimal value function cannot

be perfectly represented.

The next investigated problem setting (Outlier) we design to highlight the

advantage of the HBE by creating a single outlier state with a large magnitude

return among a large set of states with approximately normally distributed

returns. We use a randomly initialized frozen neural network to generate five

features with a one-hot state encoding as input. The agent starts in a state

that has an ε = 0.01 chance of terminating immediately with -1000 reward, or

a 1− ε chance of entering the middle state of a 49-state random walk.

The final two problems are chosen to highlight a scenario where the BE2

finds favorable solutions compared to the robust objectives, which we expect

will behave more conservatively in this idealized setting. In these problems,

the returns are distributed approximately normally across states and states

are lightly aliased. We use two random walks, the first with N = 5 states

(SmallChain) and the other with N = 19 states (BigChain), with a ran-

domly initialized neural network representation of size N
2
. The agent receives

a reward of −1 or +1 on the left and right-most states respectively.

87



Figure 6.3: Evaluating the quality of the fixed-points of each objective func-

tion according to the VE2 and |VE| across several prediction problems. Error
is plotted relative to the best representable value function. The robust losses
are better in the hard aliasing domains, the HBE is slightly better in Outlier,

and the BE2 is better on the classic random walks.

Analyzing the fixed-points. Figure 6.3 shows the VE2 and |VE| for each
fixed-point, relative to the best realizable value function on each problem.

That is, a value of 10 on the y-axis means that the solution to the given

objective is 10 times worse than the best realizable solution using the same

set of features. This gives a measure of how good of a proxy each Bellman

objective is to the VE2 (bold colors) or |VE| (faded colors).

One very clear outcome of this analysis is that the BE2 can define shock-

ingly poor solutions in the case of harmful state-aliasing. Contrarily, it was

surprisingly difficult to find settings where the BE2 performed favorably to the

same extreme compared to the robust objectives. We additionally found that

it was difficult to design a problem setting where the HBE outperformed both

the BE2 and |BE|. Perhaps this should not be surprising, the HBE smoothly

interpolates between the others for varying values of its configuration parame-

ter, τ . While the HBE does manage to outperform both the BE2 and |BE| on
the Outlier problem, the degree of difference compared to the |BE| is negligible.

A final important takeaway from Figure 6.3 is that both robust objectives

defined fixed-points that were consistently good. On the hard aliasing prob-

lems, the robust objectives were indeed robust to the extreme deviations in the

TD error; in the case of HardAlias-2, the solution to the |BE| outperformed the

88



solution to the BE2 by more than twenty times! In the more benign problems

where the solution to the BE2 shined, the solutions to the robust objectives

were only fractionally lower performing. Knowing nothing about our problem

setting ahead of time, this might suggest one should conservatively prefer a

robust objective to avoid potential catastrophic performance.

Analyzing the projected fixed-points. A major motivation of using the

language of biconjugates to define the robust objectives is the ability to define

our proxy objective without requiring access to the underlying state. In the

last set of results, we did exactly this; we assumed access to the underlying

state to define each objective, but artificially limited the agent to only use

a limited set of features to estimate its value function. For this experiment,

we remove this access to privileged information, defining each objective using

only the set of features.

In Figure 6.4 we show the relative VE2 of each fixed-point to the best

representable value function. The saturated colors (left-most blue and red

bars) are the fixed-point without projection—that is, these are the same as

shown in Figure 6.3. The unsaturated colors (right-most blue and red bars) are

the fixed-point when both the primary and secondary variables use the same

set of features. Finally, the intermediary colors (middle blue and red bars)

are the fixed-point when the secondary variables are allowed a slightly larger

function class, emulating an intermediate projection somewhere between the

HBE and HPBE (and BE2 and PBE2 respectively).

In most cases, we find that the projected fixed-points provide better proxies

for the VE2 than their non-projected counterparts. We also see empirically

that the fixed-points of the HPBE and PBE2 are exactly equivalent in every

setting, as we would have expected from Theorem 4. A natural conclusion,

therefore, is that the primary role of the Huber function when optimizing these

projected errors will be during the transient optimization, and not in the final

asymptotic solution.

89



Figure 6.4: Evaluating the quality of fixed-points for the projected Bellman
errors with three different projection sets. The more saturated colors (left)
correspond to no projection; the less saturated colors (right) correspond to
using H = V . The interim colors represent an intermediary projection which
uses five additional features to fit the Bellman residual.

6.4 Algorithms for the Huber Bellman error

In this section, we derive gradient-based updates for the HPBE and |PBE|.
For a given h, the gradient with respect to w remains the same:∑

s∈S d(s)h(s)Eπ [∇δ(w) |S = s]. This means that the job of selecting between

the absolute, squared, and Huber Bellman errors rests solely on how we ap-

proximate the secondary variable, h(s).

There are many ways to estimate h for the HPBE and |PBE|. A natural

starting point would be to use the same estimate, h̃θ(s) ≈ Eπ [δ | S = s], as

for the PBE2, then apply the corresponding non-linear function to h̃—sign or

clipping. This gives the following updates for the objectives.

h(st) = sign
(
h̃θt(st)

)

 |PBE|

h(st) = clipτ

(
h̃θt(st)

)

 HPBE

h(st) = h̃θt(st) 
 PBE2

θt+1 = θt + αh

(
δt − h̃θt(st)

)
∇θth̃θt(st) (6.3)

wt+1 = wt + αvh(st) (∇wtv(st)− γt+1∇wtv(St+1)) (6.4)

Notice if we specifically parameterize h̃θ(s) = θ�x(s) and v(s) = w�x(s), then

we recover the GTD2 algorithm with linear function approximation [Sutton

90



et al., 2009]. Because the update for the primary weights is exactly the same as

GTD2 and because the clip function encodes box-constraints on the secondary

weights (and so is closed and convex), convergence of the GTD2-like algorithm

for the HPBE follows directly from Nemirovski et al. [2009].

6.5 Empirical analysis in off-policy prediction

In this section, we empirically analyze the robust off-policy prediction algo-

rithms in each diagnostic MDP.1 Because we focus on the analytical optima in

Section 6.3, and because each of the proposed algorithms are provably conver-

gent, we focus instead on the transient optimization path for each algorithm.

We seek to answer two primary research questions:

1. Are the robust optimization algorithms sample efficient compared to

those that minimize the PBE2?

2. Are the robust algorithms insensitive to their stepsize parameter com-

pared to the PBE2 minimizing algorithms?

In each of these problems, given sufficient data and an appropriate stepsize

schedule, the learned value function should be identical to the analytical op-

tima for the projected objectives found in Section 6.3. In fact, in Baird’s coun-

terexample problem, the optimal solution is identifiable making the asymptotic

behavior of each optimization algorithm identical. Instead, we wish to under-

stand the transient properties of these online learning algorithms. We will

evaluate this both by investigating learning curves during early learning and

also by using constant stepsizes, a common practice in life-long learning sce-

narios. To account for the effect of fixed stepsizes, we will investigate every

algorithm at multiple levels of the stepsize parameter.

In Figure 6.5 we plot the VE2 averaged over time for each level of the

stepsize parameter. Shaded regions show 95% percentile bootstrap confidence

1With the exception of the LongChain environment, which requires a very large number
of samples to visit each endpoint regularly. Because of the high cost and because the fixed-
point experiments suggest little difference in conclusions between SmallChain and BigChain,
we choose to exclude this MDP.

91



Figure 6.5: VE2 averaged over 100 independent trials for each stepsize in
prediction domains. The mean squared algorithms generally performed well
across environments—even the adversarially chosen environments—suggesting
the difficulty in minimizing the |BE|. The Huber algorithms performed best
across many environments, often displaying less sensitivity to the choice of
stepsize.

intervals using 100 experimental trials for every condition. Solid lines show

the saddlepoint algorithms based on GTD2, which tend to perform far more

conservatively than the dashed lines which show the gradient-correction for-

mulation based on TDC. We also notice that algorithms which minimize the

|PBE| typically perform much worse than either of the other objectives. This

is not particularly surprising, as it is well-known that absolute losses are much

more challenging to optimize than their squared counterparts.

6.6 Experiments in nonlinear control

In this section we empirically investigate the QRC-Huber algorithm. We first

compare to several control algorithms in five classic control domains, investi-

gating both learning speeds and stability in performance over different runs.

We then show that QRC-Huber performs better without target networks, high-

lighting that these gradient algorithms may provide an alternative path to

stabilizing DQN without slowing down learning. Finally, we conclude with a

demonstration in a larger environment called Minatar.

6.6.1 Experiments in classic control environments

For the nonlinear control experiments, we investigate three classic control

problems—Mountain Car, Cartpole, and Acrobot—from the Gym suite [Brock-

man et al., 2016], a larger domain with a heavily shaped reward, Lunar Lander,

92



and one additional domain designed to be particularly challenging for squared

error algorithms, Cliff World. For all domains, we use discount factor γ = 0.99

and ε = 0.1 for the ε-greedy policy. The episode is cut off if the agent fails

to reach a terminal state in a pre-specified number of steps. When cut off,

the agent is teleported back to the start state and does not update its value

function, thus preventing the agent from bootstrapping over the teleportation

transition.

We compare the QRC-Huber algorithm with three baseline algorithms from

prior work. Because QRC-Huber builds on the QRC algorithm, we use this

as a baseline to determine the impact of using a Huber Bellman error in place

of a squared Bellman error. All design decisions and other elements of the

update rule are the same between QRC and QRC-Huber. We additionally

compare to SBEED [Dai et al., 2018], the original algorithm stemming from

the conjugate Bellman error work. We modify the SBEED algorithm to use

a direct mellowmax policy based on its estimated value function, instead of a

parameterized policy as in its original implementation, in order to match the

update rules of the other baselines. Finally, we compare to DQN [Mnih et al.,

2013]. Due to DQN being a semi-gradient method, and because its use of a

clipped error is only superficially a Huber error, we expect to find that DQN

exhibits lower stability and higher sensitivity to hyperparameters.

For QRC-Huber, we fix the Huber threshold parameter τ = 1 for all do-

mains. For the QRC methods, we chose not to use target networks—a frozen,

infrequently updated set of weights for the bootstrapping target—so that we

can highlight the stability provided by using true gradient-based methods with

robust losses. DQN and SBEED use targets networks and sweep over multi-

ple refresh rates. DQN additionally sweeps over its Huber clipping parameter

and SBEED sweeps over its objective tuning parameter η and mellowmax

parameter λ. In total, QRC and QRC-Huber tune over 6 hyperparameter

combinations while DQN tunes over 120 and SBEED tunes over 360.

To demonstrate the stability of each algorithm, we report the full distribu-

tion of the performance metric over 100 independent trials for the best stepsize

on each domain. We use the average return achieved over the last 25% of steps

93



as our performance metric. We expect algorithms which exhibit stable perfor-

mance to have a narrow, approximately normal distribution centered around

higher return, whereas we expect algorithms which are unstable to have wide

performance distributions or even multi-modal distributions. Standard learn-

ing curves are reported in Figure 6.7.

Figure 6.6 shows the performance distributions of each tested algorithm.

QRC-Huber exhibits narrow and approximately normal performance distribu-

tions for every domain, suggesting the stability of the algorithm over random

seeds. The QRC algorithm performs reasonably on the Acrobot and Cart-

pole domains, but performs quite poorly on the Cliff World domain. Because

QRC is based on the mean squared Bellman error, the poor performance on

Cliff World is exactly as expected, since this domain was chosen adversarially

to highlight challenges with mean squared errors. While DQN is based on

a clipped loss function that appears similar to the mean Huber Bellman er-

ror, it does not seem to enjoy the same stability as QRC-Huber, with average

performance far worse than QRC-Huber on four of five domains due to high

bimodality or long-tailed performance distributions. The learning curves in

Figure 6.7 further highlight that QRC-Huber is the most robust of the three,

across all five problem setting, either having comparable or notably better per-

formance. The poor performance of DQN on Mountain Car and Cartpole is

counterintuitive; given a sufficient number of learning steps and a large enough

delay between target network updates, DQN can perform well in these envi-

ronments. This results in a fundamental trade-off between stable performance

and sample efficiency. The experiment in Figure 6.7 favors sample efficiency

due to its short length.

6.6.2 Experiments in Minatar

Finally, we demonstrate that QRC-Huber can scale to larger domains using

more complex neural network architectures. We use the Minatar suite of five

miniaturized Atari games which retain much of the complexity of the full Atari

games, while considerably reducing the computational requirements and cost

[Young and Tian, 2019]. We use a convolutional neural network architecture

94



Figure 6.6: Performance distribution over 100 random seeds for the best
hyperparameter setting chosen per-algorithm and per-domain. The perfor-
mance measure is the average return over the last 25% of steps. QRC-Huber
consistently has approximately normal and narrow distributions around high-
performance returns. DQN has inconsistent behavior, with bimodal per-
formance on Mountain Car and Lunar Lander, and long-tailed performance
on Acrobot and Cartpole. SBEED has inconsistent performance with high-
variance on several domains and long-tailed performance on CliffWorld and
Mountain Car.

Figure 6.7: Learning curves for the best hyperparameter configuration for
each domain, averaged over 100 random seeds. Shaded regions indicate one
standard error. QRC-Huber is the only algorithm which is consistently among
the best performing algorithms for every environment. DQN exhibits notable
instability in both the Cartpole and Mountain Car environments, while QRC
suffers from its squared loss in the adversarially designed CliffWorld environ-
ment. The SBEED algorithm consistently performs suboptimally on every
domain except Cartpole, with notably worse performance on Lunar Lander.

with two hidden layers to learn value functions from images. These gradient-

based learning rules without target networks, such as QRC and QRC-Huber,

can outperform semi-gradient learning rules such as DQN, even when DQN is

allowed to additionally tune its usage of target networks.

To avoid domain overfitting and reduce the cost of hyperparameter tuning,

we treat the entire Minatar suite as a single problem setting. As such, each

algorithm must pick one hyperparameter setting to use across all five games.

The other benefit of this design is that it favors algorithms that are insensitive

to hyperparameter choices. We allow all three control algorithms to sweep over

95



a small range of stepsizes and allow DQN to additionally sweep over target

network refresh rates. We set the discount factor γ = 0.99 for all domains and

otherwise use the same design parameters as Young and Tian [2019].

In order to compare performance of each agent, we average scores over each

game using probabilistic performance profiles [Jordan et al., 2020, Barreto

et al., 2010], then report the average scaled performance across the entire

suite with 95% confidence intervals. We run each algorithm with its best

hyperparameter setting for 30 runs on each game allowing comparisons on the

Minatar suite using a total of 150 samples for each algorithm.

Table 6.1: Average performance on Minatar

QRC-Huber 0.53± 0.03
QRC 0.47± 0.02
DQN 0.36± 0.06

In Table 6.1, we report the average scaled return across games in the Mi-

natar suite. Despite having four times the number of hyperparameter com-

binations and the ability to use target networks, DQN performs considerably

worse than either gradient-based algorithm. Because QRC-Huber and QRC

yield approximately normal performance distributions, we use a paired t-test

and find that QRC-Huber has a statistically significant performance increase

over QRC. DQN’s performance profile is notably skewed by a small number of

failing runs, however the difference in performance between DQN and either

gradient-based algorithm is significant according to both a paired t-test and a

much less powerful bootstrap t-test (which allows for a skewed sampling dis-

tribution). That QRC and QRC-Huber perform similarly is unsurprising as

the largest possible reward in any Minatar game is +1, a design decision made

in part because many algorithms—such as DQN—are unstable when learning

from large rewards.

6.6.3 Omitting target networks

A primary motivation for building on gradient TD methods is that they are a

theoretically sound way to obtain stable, convergent TD methods. Target net-

96



Figure 6.8: Ablating the impact of the target network refresh rate (1, 50 and
500) on the performance of the nonlinear control algorithms. A refresh rate
of 1 means no target networks are used. DQN requires target networks to
achieve above random performance on Cart-pole and to reduce the bimodality
of its performance on Mountain Car. Even with target networks, DQN still
exhibits large skew and bimodality in its performance distributions, indicating
instability. The gradient methods QRC-Huber and QRC both perform better
without target networks (the bottom row).

works currently lack theoretical justification, but are believed to empirically

improve the stability of semi-gradient learning rules such as in DQN. Consider-

ing the non-negligible overlap in intended use case between gradient algorithms

and target networks, we test for interactions between these algorithmic tools

by extending the gradient algorithms to include target networks and measuring

the change in performance. In this section, we address the question: “could

gradient-based algorithms benefit from the use of target networks?”.

We introduce target networks into QRC and QRC-Huber and sweep over

the refresh rate—the number of learning steps before the target network weights

are overwritten with the weights of the current network. If the target network

refresh rate is one, then target networks are not used. We report the distribu-

tion of final performance over 100 random seeds, in Figure 6.8. The gradient-

based algorithms perform better without target networks across environments.

Because these algorithms already exhibit high stability, adding target networks

serves only to harm the sample efficiency of the algorithms. DQN always re-

quired target networks in order to solve any of the tested problems, while

requiring environment-specific tuning of the target network parameter.

97



Figure 6.9: Ablating the impact of the threshold parameter for the Huber loss
function for the QRC-Huber algorithm across the benchmark domains. For
three of the domains, QRC-Huber is robust to the choice of threshold parame-
ter with a default value of τ = 1 being a good choice. However, the Mountain
Car domain shows high bimodality in performance distribution across multiple
random initializations of the neural network for smaller values of the threshold
parameter.

On the excluded CliffWorld environment, we found that all algorithms

performed best without target networks. This result is unsurprising given

the simplicity of the environment dynamics: CliffWorld is designed to show

differences in fixed-points, rather than differences during learning. We exclude

Lunar Lander due to the high computational cost of performing extensive

parameter sweeps and because QRC-Huber clearly already outperforms DQN

on Lunar Lander without target networks as shown in Figure 6.6.

6.6.4 Ablating design decisions

In this section, we ablate the threshold parameter of the Huber function, τ , as

well as the stepsize for each algorithm. While most of our domains we could

reasonably pick a default value of τ = 1 and avoid allowing QRC-Huber more

opportunities to tune hyperparameters, this choice significantly impacted the

performance of QRC-Huber on the Mountain Car domain. The choice of τ de-

pends on the magnitude of the TD errors experienced by the algorithm during

optimization—which is driven in-part by the magnitude of the rewards—and

thus is domain-dependent. Similar to QRC, we could consider scaling the mag-

nitude of rewards in a domain-independent way, for instance using the PopArt

algorithm [Hessel et al., 2018b].

In Figure 6.9, we ablate over several choices of threshold parameter for the

98



Figure 6.10: Comparing algorithms on benchmark control domains with the
area under the learning curve as the performance metric. By including early
learning in the performance metric, we get a sense of the sample complex-
ity of each algorithm. QRC-Huber tends to perform favorably across all four
domains compared to QRC and DQN, exhibiting much more narrow perfor-
mance distributions that are often centered around higher rewards than the
competitor algorithms.

QRC-Huber algorithm. We additionally investigate DQN’s threshold param-

eter, however due to the general instability of DQN there was little pattern

to the results, and so we omit them here for ease of visualization. For QRC-

Huber, we see long-tail performance distributions as the threshold parameter is

made smaller, likely due to the lower sample efficiency of the Huber algorithm

when the optimization process is in the flat regions of the loss. On the Moun-

tain Car domain, both QRC-Huber and DQN were significantly impacted by

τ < 2 and saw strongly bimodal performance distributions.

In Figure 6.10, we investigate the performance distribution of every tested

stepsize for each algorithm. The poor performance of DQN—especially in the

Cartpole domain—is surprising; likely stemming from DQN’s incorrect use of

the Huber loss function. A similar effect was noticed in Obando-Ceron and

Castro [2021], where they ablated the choice of using a Huber loss versus a

squared loss for DQN, finding that the squared loss consistently outperformed

the Huber loss across several small control environments. Both of the gra-

dient methods generally perform well across several values of their stepsize,

with the most notable differences occurring in the Cliff World domain where

QRC-Huber tends to significantly outperform QRC (note the wide scale of the

horizontal axis caused by rare failing runs for DQN).

99



6.7 Summary

In this chapter, we introduced the biconjugate forms of the mean absolute

Bellman error (|BE|) and the mean Huber Bellman error (HBE). Rewriting

these errors in terms of their biconjugates allows us to optimize these objectives

using gradient descent without suffering from the double sampling problem.

This rewrite also allows us to constrain the scope of the objective to only

evaluate the agent based on observed data, causing the biconjugate forms to

be learnable in the sense described in Chapter 11 of Sutton and Barto [2018].

While these errors are not necessarily constructed from orthogonal projections,

as in the case of the PBE2, the constrained inner optimization still allows

identifiability.

We empirically evaluated the quality of the solutions for each proposed

objective across several carefully designed diagnostic MDPs. These MDPs al-

lowed us to highlight instances where robust losses define considerably better

solutions than their squared counterparts, while also highlighting instances

where a simple squared objective is preferable. We found that in all cases,

when the solutions defined by the squared losses outperformed those by the

robust losses, the difference in performance was marginal. Conversely, when

the solutions of the robust losses performed better, the difference in perfor-

mance was substantial.

We then derived online learning algorithms to minimize both the |BE| and
HBE using stochastic samples. We built on the TDRC algorithm defined in

Chapter 4, making light modifications to the secondary weights to control

which loss was to be minimized. We empirically evaluated the performance of

these algorithms on the same set of diagnostic MDPs, comparing to the perfor-

mance of gradient TD methods that minimize squared losses. We found that

the gradient TD algorithms that minimize Huber losses performed consistently

well across all diagnostic MDPs, while algorithms that minimize the absolute

loss often performed worse than either their Huber or squared counterparts.

Finally, we derived algorithms for off-policy control that minimize the HBE,

again building on the highly related QRC algorithm presented in Chapter 4.

100



We showed that in all tested environments, QRC-Huber performed compara-

tively or better than any of the squared counterparts QRC-Huber and QRC

both exhibited greater reliability than the semi-gradient methods, and QRC-

Huber displayed additional robustness over QRC in the adversarially designed

CliffWorld environment.

The next and final, chapter of this thesis will summarize the insights from

the prior few chapters. We will revisit the goal posed at the beginning of

this thesis, and discuss how it has been addressed, the remaining gaps, and

promising future directions.

101



Chapter 7

Conclusion

In this thesis, we have pursued a strategy to improve the reliability of off-policy

reinforcement learning with nonlinear function approximation. We found that

seemingly trivial modifications to the existing gradient TD methods lead to

a surprising depth of consequences, ultimately enabling a sound, easy-to-use,

and reliable gradient-based method for learning nonlinear value functions. We

saw, empirically, that this method typically performed as well as unsound

semi-gradient approaches, satisfying our goal of introducing reliable methods

without sacrificing performance. We established that previous semi-gradient

methods were unreliable in simple classic control environments, and that this

lack of reliability ultimately harmed average performance. As a result, replac-

ing these unreliable methods with gradient-based alternatives can ultimately

lead to improved performance—on average—and an increase in trust for online

reinforcement learning.

The first contribution of this thesis investigated which proxy objective func-

tion we should seek to minimize. This contribution lead to a generalization of

the PBE2, the current most commonly used proxy objective in value function

learning, and this generalization lead to several new perspectives on how to

effective optimize the PBE2 with online, nonlinear algorithms.

Using the insights gleaned from the generalized PBE2, the second primary

contribution of the thesis was the temporal difference learning with regularized

corrections algorithm (TDRC). This algorithm takes advantage of the gener-

alized projection set used in the biconjugate PBE2 reformulation of the prior

102



chapter, by imposing soft-constraints on the space of the secondary weights

of the TDC algorithm. We showed theoretically that the TDRC algorithm

provably stable under broad conditions, then we showed empirically that this

stability translates to a significant improvement in reliability across several

domains. We finally proposed a nonlinear control version of the TDRC algo-

rithm, q-learning with regularized corrections, and again showed empirically

that this provably stable algorithm leads to a significant improvement in reli-

ability.

The third and final primary contribution of this thesis revisited the ques-

tion of which objective function we should optimize. In this chapter, we further

generalized the biconjugate Bellman objective to consider two convex statisti-

cally robust losses: the HBE and the |BE|. We provided a detailed empirical

investigation into the fixed-points of these losses, yielding insights into when

statistical robustness leads to improved reliability in off-policy prediction prob-

lems. We then derived and empirically investigate algorithms that minimize

these statistically robust losses, using the gradient-based methods studied in

the previous chapter. We showed that these algorithms were empirically re-

liable, even in cases where gradient-based methods that minimize a squared

loss were not.

7.1 Future research directions

Ultimately, this thesis carves a narrow path in addressing the issue of re-

liable reinforcement learning with nonlinear function approximation. Along

this path, many open questions surfaced which we were unable to adequately

address. In addition, there are many alternative paths we could have taken

to reach this same conclusion. We will discuss a few such open questions and

alternative paths that are promising directions for future work.

Emphatic state-weightings. In Chapter 3, we generalized the mean-squared

projection Bellman error by considering different weightings over states used

when averaging errors. This state distribution ultimately controls the tradeoff

103



of resources within a limitation function approximation class. In Figure 3.2, we

showed the quality of the solutions for various proxy objective functions, mea-

sured by the squared distance of the objective’s solution from the true value

function. One such weighting that we considered was the emphatic weighting

over states, dm [Sutton et al., 2016, Hallak et al., 2016]. Surprisingly, we found

empirically that objectives weighted by dm typically defined better solutions

than objectives weighted by either db or dπ. Unlike objectives weighted by dπ,

there are multiple viable sample-based algorithms which minimize the PBE2

weighed by dm.

In considering potential paths to improve the reliability of reinforcement

learning methods, one promising starting point was to build on emphatic TD

methods. A primary motivation of emphatic TD is its provable convergence,

even in the off-policy and function approximation setting [Sutton et al., 2016]—

the same starting point provided by gradient TD methods. Unfortunately, un-

like gradient TD methods, these theoretical stability guarantees of emphatic

TD are not realized in conventional empirical settings, where emphatic TD’s

high-variance updates can cause divergence in domains like Baird’s counterex-

ample [Ghiassian et al., 2018, White and White, 2016]. Despite these chal-

lenges, the novel empirical insight provided by Chapter 3 heavily motivates

revisiting emphatic TD methods to find novel strategies to reduce variance

and incorporate emphatic TD with arbitrary nonlinear function approxima-

tion.

Controlling internal processes with error tracking. A primary insight

of this work is the relationship between the secondary variables of the gradient

TD methods and the expected temporal difference error. This work places

heavy emphasis on devoting some of the agent’s learning resources to tracking

a statistic of its learning progress. In this work, we use this statistic to help

control the direction of the semi-gradient updates and ultimately improve the

reliability of the learning algorithm. There are, however, many potential uses

for this internal statistic, and, if we are already devoting resources to learning

it, we should use the estimated TD error as completely as possible. Here are

104



a few.

An increasingly common approach to improve the sample efficiency of deep

reinforcement learning algorithms is to keep a priority ordering over data in the

agent’s replay memory [Schaul et al., 2016]. Similar to the choice of function

class for the secondary weights, H (see Chapter 6), the prioritization of data

in a replay buffer ultimately plays the role of reweighting the distribution

of errors used to train the agent [Fujimoto et al., 2020]. This reweighting,

however, cannot be faithfully realized by prioritized experience replay due to

the extreme computational cost of maintaining accurate estimates of a sample’s

priority. This priority function also suffers from potentially high-variance from

environmental sources, potentially allowing a non-trivial degree of reweighting

based on noise which cannot be approximated by our function class; irreducible

error.

Both of these challenges, however, can be addressed using an internal es-

timate of the expected TD error. By using a parametric estimate of the TD

error, the irreducible component of the error is lost in the projection onto

H. This means the remaining component of the error is that which can be

minimized. In addition, using an estimator which is cheap to evaluate—or at

least cheaper to evaluate than the sampling cost of sampled TD errors—can

alleviate the potential for staleness in the priority ordering. In the process of

writing this thesis, we performed preliminary pilot investigations into the use

of the secondary weights as a prioritization mechanism. Early results were en-

couraging and heavily suggested the utility in further pursuit of this direction

of research.

Another clear opportunity is the use of the estimated TD error to form

a control variate for the primary learning process, enabling lower variance

learning targets for the value function update rule. Control variates are a

popular form of variance reduction in the value function approximation liter-

ature [De Asis and Sutton, 2018, Jiang and Li, 2016, Thomas and Brunskill,

2016]. To form a control variate, we require a random variable—say δ—which

shares some variation with the variable of interest—say the return G. We also

require the variable used as a control variate, δ, to have zero mean, which we

105



could achieve through the replacement Z = δ − Eπ [δ | x], where that condi-

tional expectation can be approximated by h(x) ≈ Eπ [δ | x]. It is clear that

δ and G share a large degree of covariance, particularly early in the learning

process. It is unclear if the additional bias due to the approximation of h(x)

overcomes the variance reduction provided by using Z as a control variate.

A final potential utility of the error estimate h(x) is for exploration. If

the agent has an approximation of the amount of error it expects to receive

throughout parts of the state-space, then, perhaps, we can use this error to

drive the agent into parts of the environment where expects to receive the

greatest learning signal. Such measures of learning potential have shown some

promise as intrinsic rewards previously in the exploration literature [White

et al., 2014, Linke et al., 2020].

The relationship between reliable learning algorithms and their hy-

perparameters. A primary challenge faced by this thesis, and really in most

works in empirical reinforcement learning, is dealing with the ever-expanding

space of hyperparameters. A central goal of this thesis was to improve the

reliability of reinforcement learning algorithms, and a major component of

reliability is having a smooth and predictable degradation of performance out-

side that algorithm’s idealized configuration. In addition, a primary goal of

improving the reliability of algorithms is to improve the reproducibility of sci-

entific research. Unfortunately, large hyperparameter spaces and algorithms

that are highly sensitive to their hyperparameters inhibit both of these goals.

Early in this thesis, we defined our problem setting as the continual learn-

ing problem where the agent interacts with its environment indefinitely. Our

experiments, however, naturally had a finite time horizon after which they

were terminated. The hyperparameters selected to evaluate our agents inter-

act heavily with when we elected to terminate our experiments. As a concrete

example, DQN can easily solve the Mountain Car classic control problem if

given sufficient learning steps. DQN tends to favor very small stepsizes and

very long target network refresh rates on this problem, both hyperparame-

ter configurations harming DQN’s sample efficiency. Had we decided to run

106



our experiments for millions of steps, this lower sample efficiency would have

been dominated by the longer period of time after all methods had sufficiently

learned, and differences between methods would have eventually vanished.

Instead, by running Mountain Car for a small number of steps, we forced

algorithms to select aggressive hyperparameters—large stepsizes and smaller

target network refresh rates—which significantly altered our conclusions.

As a research community, we are only just starting to understand this re-

lationship between hyperparameters, reliability, performance, and empirical

design practices. There have been several recent works beginning to shed in-

sight in this direction [Jordan et al., 2020, Eimer et al., 2023, Jayawardana

et al., 2022, Benjamins et al., 2023], including our own work developed along-

side this thesis [Patterson et al., 2023]. Yet the space of open questions in this

area is innumerable. A particular direction of interest is understanding how

hyperparameter configuration occurs in light of never-ending learning, where

hyperparameter selection effectively becomes a zero-shot learning problem or,

alternatively, must be completed entirely online through an agent’s lifetime.

Adaptive capacity neural networks and the BE2. A final, and perhaps

considerably more speculative, interesting direction opened up by the work in

Chapter 3 as well as Schoknecht [2003], is the relationship between the BE2,

the PBE2, and now the generalized PBE2 which can interpolate between these.

Through the use of the triangle inequality, we can clearly articulate the error

that is lost in the projection by the PBE2. Projecting away this error is a

critical component of maintaining identifiability, which is important for value

function learning. However, we can make use of this error as a mechanism

for representation learning. This error describes the component of the value

function which is not currently expressible with our features. Because the

agent has control over its own features, for instance learning them through

the use of a neural network, it has the ability to adapt its features in order to

express a larger space of value functions. This adaptation may simply come

from less aggressive filtration in earlier layers of the neural network, a process

which is known to cause issues with never-ending learning [Lyle et al., 2022a,b,

107



Bellemare et al., 2019], or alternatively as a mechanism to inform the adaptive

growth of capacity through adding new features to the function approximator.

7.2 Summary

This chapter completes the thesis by revisiting the primary objective of the

thesis, and reiterating how each chapter partially addresses that objective. We

conclude with several open research questions and alternative research paths

highlighted by this thesis. We highlighted the potential utility of emphatic

TD algorithms, which as yet are still under-explored for nonlinear function

approximation. We pointed out the utility of tracking an internal estimate of

a learner’s error, and how this information can be used to inform many mecha-

nisms of our complex learning systems. We lamented the challenges associated

with massive-dimensional hyperparameter spaces and continual, online rein-

forcement learning and highlighted several promising directions. And finally,

we speculated on the use of the information projected away by the PBE2 to

inform representation learning, particularly with neural networks.

108



References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville,
and Marc Bellemare. Deep reinforcement learning at the edge of the sta-
tistical precipice. Advances in Neural Information Processing Systems, 34,
2021.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal
policies with Bellman-residual minimization based fitted policy iteration and
a single sample path. Machine Learning, 71(1):89–129, 2008. doi: 10.1007/
s10994-007-5038-2.

Leemon Baird. Residual Algorithms: Reinforcement Learning with Function
Approximation. Machine Learning Proceedings, pages 30–37, 1995. doi:
10.1016/B978-1-55860-377-6.50013-X.

Leemon C. Baird. Reinforcement Learning through Gradient Descent. PhD
thesis, Brown University, 1999.

André M.S. Barreto, Heder S. Bernardino, and Helio J.C. Barbosa. Prob-
abilistic performance profiles for the experimental evaluation of stochastic
algorithms. Conference on Genetic and Evolutionary Computation, page
751, 2010. doi: 10.1145/1830483.1830617.

Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike
adaptive elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-13(5):834–846, 1983.
doi: 10.1109/TSMC.1983.6313077.

Marc Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga,
Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore,
and Clare Lyle. A geometric perspective on optimal representations for re-
inforcement learning. Advances in neural information processing systems,
32, 2019.

Marc G. Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Mar-
los C. Machado, Subhodeep Moitra, Sameera S. Ponda, and Ziyu Wang. Au-
tonomous navigation of stratospheric balloons using reinforcement learning.
Nature, 588(7836):77–82, 2020.

Carolin Benjamins, Theresa Eimer, Frederik Schubert, Aditya Mohan, Sebas-
tian Döhler, André Biedenkapp, Bodo Rosenhahn, Frank Hutter, and Mar-
ius Lindauer. Contextualize Me – The Case for Context in Reinforcement
Learning, June 2023.

Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark
Lee. Natural actor–critic algorithms. Automatica, 45(11):2471–2482,
November 2009. ISSN 00051098. doi: 10.1016/j.automatica.2009.07.008.

109



Alberto Bietti and Julien Mairal. Group invariance, stability to deformations,
and complexity of deep convolutional representations. The Journal of Ma-
chine Learning Research, 20(1):876–924, 2019.

V. S. Borkar and S. P. Meyn. The O.D.E. Method for Convergence of Stochas-
tic Approximation and Reinforcement Learning. SIAM Journal on Con-
trol and Optimization, 38(2):447–469, January 2000. ISSN 0363-0129. doi:
10.1137/S0363012997331639.

Justin A. Boyan. Technical Update: Least-Squares Temporal Difference Learn-
ing. Machine Learning, 49(2):233–246, November 2002. ISSN 1573-0565.
doi: 10.1023/A:1017936530646.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How Many Random
Seeds? Statistical Power Analysis in Deep Reinforcement Learning Experi-
ments. arXiv:1806.08295, July 2018.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. A Hitchhiker’s
Guide to Statistical Comparisons of Reinforcement Learning Algorithms.
arXiv:1904.06979, April 2019.

Bo Dai, Niao He, Yunpeng Pan, Byron Boots, and Le Song. Learning from
Conditional Distributions via Dual Embeddings. International Conference
on Artificial Intelligence and Statistics, page 10, 2017.

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen,
and Le Song. SBEED: Convergent Reinforcement Learning with Nonlinear
Function Approximation. International Conference on Machine Learning,
page 10, 2018.

Kristopher De Asis and Richard S. Sutton. Per-decision Multi-step Temporal
Difference Learning with Control Variates. Conference on Uncertainty in
Artificial Intelligence, July 2018.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic.
arXiv preprint arXiv:1205.4839, 2012.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and
Peter Zhokhov. OpenAI baselines, 2017.

Simon S. Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou.
Stochastic Variance Reduction Methods for Policy Evaluation. International
Conference on Machine Learning, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Meth-
ods for Online Learning and Stochastic Optimization. Journal of Machine
Learning Research, page 39, 2011.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in
Reinforcement Learning and How To Tune Them, June 2023.

110



Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus
Janoos, Larry Rudolph, and Aleksander Ma. Implementation Matters In
Deep Policy Gradients: A Case Study On PPO and TRPO. International
Conference on Learning Representations, page 14, 2019.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir
Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,
Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable Distributed Deep-
RL with Importance Weighted Actor-Learner Architectures. International
Conference on Machine Learning, 2018.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A Theoretical
Analysis of Deep Q-learning. Learning for Dynamics and Control, pages
486–489, 2020.

Mattie Fellows, Matthew J. A. Smith, and Shimon Whiteson.
Why Target Networks Stabilise Temporal Difference Methods.
https://arxiv.org/abs/2302.12537v3, February 2023.

Werner Fenchel. On conjugate convex functions. Canadian Journal of Math-
ematics, 1(1):73–77, 1949.

Yihao Feng, Lihong Li, and Qiang Liu. A Kernel Loss for Solving the Bellman
Equation. Advances in Neural Information Processing Systems 32, pages
15456–15467, 2019.

Scott Fujimoto, David Meger, and Doina Precup. An Equivalence between
Loss Functions and Non-Uniform Sampling in Experience Replay. In Ad-
vances in Neural Information Processing Systems, volume 33, pages 14219–
14230. Curran Associates, Inc., 2020.

Sina Ghiassian, Andrew Patterson, Martha White, Richard S. Sutton, and
Adam White. Online Off-policy Prediction. arXiv:1811.02597, 2018.

Sina Ghiassian, Andrew Patterson, Shivam Garg, Dhawal Gupta, Adam
White, and Martha White. Gradient Temporal-Difference Learning with
Regularized Corrections. International Conference on Machine Learning,
2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. International Conference on Artificial
Intelligence and Statistics, pages 249–256, 2010.

Leah Hackman. Faster Gradient-TD Algorithms. PhD thesis, University of
Alberta, 2013.

Assaf Hallak, Aviv Tamar, Remi Munos, and Shie Mannor. Generalized
Emphatic Temporal Difference Learning: Bias-Variance Analysis. AAAI,
page 7, 2016.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Pre-
cup, and David Meger. Deep Reinforcement Learning that Matters. AAAI,
page 8, 2018.

J. Fernando Hernandez-Garcia and Richard S. Sutton. Understanding multi-
step deep reinforcement learning: A systematic study of the DQN target.
arXiv preprint arXiv:1901.07510, 2019.

111



Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostro-
vski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David
Silver. Rainbow: Combining improvements in deep reinforcement learning.
Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 2018a.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon
Schmitt, and Hado van Hasselt. Multi-task Deep Reinforcement Learning
with PopArt. Proceedings of the AAAI Conference on Artificial Intelligence,
33(1), September 2018b.

Jiawei Huang and Nan Jiang. From Importance Sampling to Doubly Robust
Policy Gradient. International Conference on Machine Learning, page 10,
2020.

Peter J. Huber. Robust estimation of a location parameter. In Breakthroughs
in Statistics, pages 492–518. Springer, 1964.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Re-
producibility of Benchmarked Deep Reinforcement Learning Tasks for Con-
tinuous Control. arXiv:1708.04133 [cs], August 2017.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul,
Joel Z. Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement Learn-
ing with Unsupervised Auxiliary Tasks. International Conference on Learn-
ing Representations, 2016.

Vindula Jayawardana, Catherine Tang, Sirui Li, Dajiang Suo, and Cathy
Wu. The impact of task underspecification in evaluating deep reinforce-
ment learning. Advances in Neural Information Processing Systems, 35:
23881–23893, 2022.

Nan Jiang and Lihong Li. Doubly Robust Off-policy Value Evaluation for
Reinforcement Learning. International Conference on Machine Learning,
May 2016.

Scott M. Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, and Philip S.
Thomas. Evaluating the Performance of Reinforcement Learning Algo-
rithms. International Conference on Machine Learning, June 2020.

Seungchan Kim, Kavosh Asadi, Michael Littman, and George Konidaris. Deep-
Mellow: Removing the Need for a Target Network in Deep Q-Learning.
International Joint Conference on Artificial Intelligence, pages 2733–2739,
August 2019. doi: 10.24963/ijcai.2019/379.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. International Conference on Learning Representations, page 15,
2015.

J Z Kolter. The Fixed Points of Off-Policy TD. Advances in Neural Informa-
tion Processing Systems, page 9, 2011.

Cam Linke, Nadia M. Ady, Martha White, Thomas Degris, and Adam White.
Adapting behavior via intrinsic reward: A survey and empirical study. Jour-
nal of artificial intelligence research, 69:1287–1332, 2020.

Michael L. Littman and Richard S Sutton. Predictive Representations of State.
Advances in Neural Information Processing Systems, pages 1555–1561, 2002.

112



Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek
Petrik. Proximal Gradient Temporal Difference Learning Algorithms. In-
ternational Joint Conference on Artificial Intelligence, page 5, 2016.

Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu.
Action-dependent Control Variates for Policy Optimization via Stein’s Iden-
tity. International Conference on Learning Representations, February 2018.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and Preventing
Capacity Loss in Reinforcement Learning, May 2022a.

Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, and Yarin Gal.
Learning dynamics and generalization in deep reinforcement learning. In
International Conference on Machine Learning, pages 14560–14581. PMLR,
2022b.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew
Hausknecht, and Michael Bowling. Revisiting the Arcade Learning Envi-
ronment: Evaluation Protocols and Open Problems for General Agents.
Journal of Artificial Intelligence Research, 61:523–562, March 2018. ISSN
1076-9757. doi: 10.1613/jair.5699.

Hamid Reza Maei. Gradient Temporal-Difference Learning Algorithms. PhD
thesis, University of Alberta, Edmonton, 2011.

Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup,
David Silver, and Richard S Sutton. Convergent Temporal-Difference Learn-
ing with Arbitrary Smooth Function Approximation. Advances in Neural
Information Processing Systems, pages 1204–1212, 2009.

Sridhar Mahadevan, Bo Liu, Philip Thomas, Will Dabney, Steve Giguere,
Nicholas Jacek, Ian Gemp, and Ji Liu. Proximal Reinforcement Learn-
ing: A New Theory of Sequential Decision Making in Primal-Dual Spaces.
arXiv:1405.6757, 2014.

Ashique Rupam Mahmood, Huizhen Yu, and Richard S. Sutton.
Multi-step Off-policy Learning Without Importance Sampling Ratios.
arXiv:1702.03006, 2017.

Odalric-Ambrym Maillard, Remi Munos, Alessandro Lazaric, and Mohammad
Ghavamzadeh. Finite-Sample Analysis of Bellman Residual Minimization.
Asian Conference on Machine Learning, page 16, 2010.

Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran
Popovic. Offline policy evaluation across representations with applications
to educational games. In AAMAS, volume 1077, 2014.

Shie Mannor, Duncan Simester, Peng Sun, and John N. Tsitsiklis. Bias and
variance approximation in value function estimates. Management Science,
53(2):308–322, 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with
Deep Reinforcement Learning. page 9, 2013.

113



Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, and Georg Ostrovski. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

Andrew William Moore. Efficient Memory-Based Learning for Robot Control.
PhD thesis, University of Cambridge, 1990.

Jean Jacques Moreau. Inf-convolution, sous-additivité, convexité des fonctions
numériques. Journal de Mathématiques Pures et Appliquées, 1970.

Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe
and Efficient Off-Policy Reinforcement Learning. Advances in Neural Infor-
mation Processing Systems, page 9, 2016.

Prabhat Nagarajan, Garrett Warnell, and Peter Stone. Deterministic
Implementations for Reproducibility in Deep Reinforcement Learning.
arXiv:1809.05676 [cs], June 2019.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro.
Robust stochastic approximation approach to stochastic programming.
SIAM Journal on optimization, 19(4):1574–1609, 2009.

Johan S. Obando-Ceron and Pablo Samuel Castro. Revisiting Rainbow: Pro-
moting more insightful and inclusive deep reinforcement learning research.
International Conference on Machine Learning, 2021.

Cosmin Paduraru. Off-policy evaluation in Markov decision processes. 2013.

Andrew Patterson, Victor Liao, and Martha White. Robust losses for learning
value functions. IEEE Transactions on Pattern Analysis and Machine In-
telligence, pages 1–12, 2022a. ISSN 1939-3539. doi: 10.1109/TPAMI.2022.
3213503.

Andrew Patterson, Adam White, and Martha White. A Generalized Projected
Bellman Error for Off-policy Value Estimation in Reinforcement Learning.
Journal of Machine Learning Research, 2022b.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Em-
pirical Design in Reinforcement Learning. In Submission - Journal of Ma-
chine Learning Research, 2023.

Alexandre Piché, Valentin Thomas, Rafael Pardinas, Joseph Marino,
Gian Maria Marconi, Christopher Pal, and Mohammad Emtiyaz Khan.
Bridging the Gap Between Target Networks and Functional Regularization,
September 2023.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière,
Alina Beygelzimer, Florence d’Alché-Buc, Emily Fox, and Hugo Larochelle.
Improving Reproducibility in Machine Learning Research (A Report from
the NeurIPS 2019 Reproducibility Program). arXiv:2003.12206, April 2020.

Doina Precup, Richard S Sutton, and Satinder Singh. Eligibility Traces for Off-
Policy Policy Evaluation. International Conference on Machine Learning,
page 9, 2000.

114



Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian
Ernestus, and Noah Dormann. Stable-Baselines3: Reliable Reinforcement
Learning Implementations. Journal of Machine Learning Research, 2021.

Touqir Sajed, Wesley Chung, and Martha White. High-confidence error esti-
mates for learned value functions. arXiv:1808.09127 [cs, stat], August 2018.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
Experience Replay. International Conference on Learning Representations,
February 2016.

Bruno Scherrer. Should one compute the Temporal Difference fix point or
minimize the Bellman Residual? The unified oblique projection view. In-
ternational Conference on Machine Learning, 2010.

Matthew Schlegel, Andrew Jacobsen, Zaheer Abbas, Andrew Patterson, Adam
White, and Martha White. General value function networks. Journal of
Artificial Intelligence Research, 70:497–543, 2021.

Ralf Schoknecht. Optimality of Reinforcement Learning Algorithms with Lin-
ear Function Approximation. Advances in Neural Information Processing
Systems, page 8, 2003.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand,
Laurent Charlin, R. Devon Hjelm, Philip Bachman, and Aaron C. Courville.
Pretraining representations for data-efficient reinforcement learning. Ad-
vances in Neural Information Processing Systems, 34:12686–12699, 2021.

Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine learning, 3(1):9–44, 1988.

Richard S. Sutton. Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding. Advances in Neural Information Processing
Systems, pages 1038–1044, 1996.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, November 2018. ISBN 978-0-262-35270-3.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs
and semi-MDPs: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112(1):181–211, 1999. doi: 10.1016/
S0004-3702(99)00052-1.

Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar,
David Silver, Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent
methods for temporal-difference learning with linear function approxima-
tion. International Conference on Machine Learning, pages 1–8, 2009. doi:
10.1145/1553374.1553501.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M
Pilarski, Adam White, and Doina Precup. Horde: A Scalable Real-time
Architecture for Learning Knowledge from Unsupervised Sensorimotor In-
teraction. International Conference on Autonomous Agents and Multi-Agent
Systems, page 8, 2011.

Richard S Sutton, A Rupam Mahmood, and Martha White. An Emphatic Ap-
proach to the Problem of Off-policy Temporal-Difference Learning. Journal
of Machine Learning Research, page 29, 2016.

115



Brian Tanner and Richard S. Sutton. TD(λ) networks: Temporal-difference
networks with eligibility traces. International Conference on Machine Learn-
ing, pages 888–895, 2005. doi: 10.1145/1102351.1102463.

Philip S Thomas and Emma Brunskill. Data-Efficient Off-Policy Policy Eval-
uation for Reinforcement Learning. International Conference on Machine
Learning, page 10, 2016.

Ahmed Touati, Pierre-Luc Bacon, Doina Precup, and Pascal Vincent. Conver-
gent Tree Backup and Retrace with Function Approximation. International
Conference on Machine Learning, page 10, 2018.

J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning
with function approximation. IEEE Transactions on Automatic Control, 42
(5):674–690, 1997. doi: 10.1109/9.580874.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learn-
ing with double q-learning. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 30, 2016.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Son-
nerat, and Joseph Modayil. Deep Reinforcement Learning and the Deadly
Triad. arXiv:1812.02648, December 2018.

Hado P van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David
Silver. Learning values across many orders of magnitude. Advances in Neural
Information Processing Systems, pages 4287–4295, 2016.

Han Wang, Archit Sakhadeo, Adam White, James Bell, Vincent Liu, Xutong
Zhao, Puer Liu, Tadashi Kozuno, Alona Fyshe, and Martha White. No
More Pesky Hyperparameters: Offline Hyperparameter Tuning for RL, May
2022.

Marshall Wang, John Willes, Thomas Jiralerspong, and Matin Moezzi. A
Comparison of Classical and Deep Reinforcement Learning Methods for
HVAC Control, August 2023.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. Dueling Network Architectures for Deep Reinforcement
Learning. International Conference on Machine Learning, page 9, 2016.

Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, Cambridge, 1989.

Adam White. Developing a Predictive Approach to Knowledge. PhD thesis,
University of Alberta, 2015.

AdamWhite and Martha White. Investigating practical linear temporal differ-
ence learning. International Conference on Autonomous Agents and Multi-
Agent Systems, 2016.

Adam White, Joseph Modayil, and Richard S. Sutton. Surprise and curiosity
for big data robotics. In Workshops at the Twenty-Eighth AAAI Conference
on Artificial Intelligence, 2014.

Martha White. Unifying Task Specification in Reinforcement Learning. Inter-
national Conference on Machine Learning, page 9, 2017.

116



Shimon Whiteson, Brian Tanner, Matthew E. Taylor, and Peter Stone. Pro-
tecting against evaluation overfitting in empirical reinforcement learning.
2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforce-
ment Learning (ADPRL), pages 120–127, April 2011. ISSN 2325-1867. doi:
10.1109/ADPRL.2011.5967363.

Ronald J Williams. Simple Statistical Gradient-Following Algorithms for Con-
nectionist Reinforcement Learning. 1992.

Tengyu Xu, Zhuoran Yang, Zhaoran Wang, and Yingbin Liang. Doubly Ro-
bust Off-Policy Actor-Critic: Convergence and Optimality. arXiv preprint
arXiv:2102.11866, 2021.

Kenny Young and Tian Tian. MinAtar: An Atari-Inspired Testbed
for Thorough and Reproducible Reinforcement Learning Experiments.
arXiv:1903.03176, June 2019.

Shangtong Zhang, Hengshuai Yao, and ShimonWhiteson. Breaking the Deadly
Triad with a Target Network. In Proceedings of the 38th International Con-
ference on Machine Learning, pages 12621–12631. PMLR, July 2021.

117



Appendix A

Algorithms

For all algorithms, let

ρt =
π(At|st)
b(At|st)

δt = Rt+1 + γt+1v(St+1)− v(st)

θt+1 = θt + αh

(
ρtδt − h̃θt(st)

)
∇θth̃θt(st)

for fixed target policy π and behavior policy b.

GTD2

h(st) = h̃θt(st)

wt+1 = wt + αvh(st) (∇wtv(st)− ρtγt+1∇wtv(St+1))

GTD2-Huber

h(st) = clipτ

(
h̃θt(st)

)
wt+1 = wt + αvh(st) (∇wtv(st)− ρtγt+1∇wtv(St+1))

GTD2-Abs

h(st) = sign
(
h̃θt(st)

)
wt+1 = wt + αvh(st) (∇wtv(st)− ρtγt+1∇wtv(St+1))

TDC

h(st) = h̃θt(st)

wt+1 = wt + αvρt (δt∇wtv(st)− γt+1h(st)∇wtv(St+1))

TDC-Huber

h(st) = clipτ

(
h̃θt(st)

)
wt+1 = wt + αvρt (δt∇wtv(st)− γt+1h(st)∇wtv(St+1))

118



TDC-Abs

h(st) = sign
(
h̃θt(st)

)
wt+1 = wt + αvρt (δt∇wtv(st)− γt+1h(st)∇wtv(St+1))

119



Appendix B

Proofs

B.1 Biconjugate proofs

Proposition 5 The biconjugate of the square function f(x) = 1
2
x2 is f ∗∗(x) =

maxh∈R hx− 1
2
h2.

Proof: Recall the definition of the convex conjugate and correspondingly the
biconjugate:

f ∗(x) = sup
h∈R

{hx− f(h)}

f ∗∗(x) = sup
h∈R

{hx− f ∗(h)}.

Then the conjugate of the square function with dual parameter a,

f ∗(x) = sup
a∈R

xa− 1

2
a2.

Applying the convex conjugate again and we obtain

f ∗∗(x) = sup
h∈R

(
xh− sup

a∈R

(
ha− 1

2
a2
))

.

Clearly, the inner supremum is achieved at a∗ = h, so plugging in the maxi-
mizing value of a, we obtain

f ∗∗(x) = sup
h∈R

(
xh− h2 +

1

2
h2

)

= max
h∈R

(
xh− 1

2
h2

)
.

Finally multiplying by two, 2f(x) = x2 and 2f ∗∗(x) = maxh∈R (2xh− h2),
arriving at the biconjugate of the square function used in Dai et al. [2017] and
Dai et al. [2018]. �

Proposition 6 The biconjugate of the absolute value function f(x) = |x| is
f ∗∗(x) = maxh∈[−1,1] xh.

120



Proof: The proof follows the same format as the proof of the biconjugate for
the square function. Defining the conjugate and biconjugate respectively,

f ∗(x) = sup
a∈R

xa− |a| =
{
0 when |x| ≤ 1

∞ otherwise.

f ∗∗(x) = sup
h∈R

xh− f ∗(h).

Simplifying the biconjugate form, we get

f ∗∗(x) = sup
h∈R

{
xh when |h| ≤ 1

xh−∞ otherwise.

= sup
|h|≤1

xh 
 −∞ is not feasible

= sup
h∈[−1,1]

xh.

Finally, considering the maximizing values of h, we get h = −1 when x < 0
and h = 1 with x > 0 so the biconjugate simplifies to

f ∗∗(x) = sign (() x)x = |x| = f(x)

thus completing the proof. �

Proposition 7 The biconjugate of the huber function is f ∗∗
τ (x) =

maxh∈[−τ,τ ] xh− 1
2
h2.

Proof: Define the huber function as

pτ (τ) a
def
=

{
1
2
a2 if |a| ≤ τ

τ |a| − 1
2
τ 2 otherwise.

Then the convex conjugate is

f ∗(x) = sup
a∈R

xa− pτ (τ) a = sup
a∈R

{
xa− 1

2
a2 if |a| ≤ τ

xa− τ |a|+ 1
2
τ 2 otherwise.

In order to resolve the supremum we must consider four cases, (a) when |a| ≤ τ
and |x| ≤ τ , (b) when |a| > τ and |x| ≤ τ , (c) when |a| ≤ τ and |x| > τ , and
finally (d) when |a| > τ and |x| > τ . Starting with condition (a), we have

sup
|a|≤τ

xa− 1

2
a2 = xa∗ − 1

2
a∗2 =

1

2
x2

because solving for this optimization gives a∗ = x, which is a feasible solution
because |x| ≤ τ . For condition (b), we have two subcases. When 0 < x ≤ τ ,
we have a = τ because

sup
|a|>τ

xa− τ |a| − 1

2
τ 2 = sup

a>τ
(x− τ)a− 1

2
τ 2 = xτ − 3

2
τ 2

121



and when −τ ≤ x < 0, we have a = −τ because

sup
|a|>τ

xa− τ |a| − 1

2
τ 2 = sup

a<−τ
xa− τ |a| − 1

2
τ 2 = −xτ − 3

2
τ 2.

Because −τ ≤ x < 0 we have −xτ − 3
2
τ 2 ≤ 1

2
x2, so the supremum is actually

obtained in condition (a). The symmetric argument holds for the first subcase
of condition (b) as well. Finally, consider condition (c), then

sup
|a|>τ

xa− τ |a| − 1

2
τ 2 = sup

a>τ
(x− τ)a− 1

2
τ 2 = ∞

and symmetrically condition (d),

sup
|a|>τ

xa− τ |a| − 1

2
τ 2 = sup

a<−τ
xa− τ |a| − 1

2
τ 2 = ∞

and the supremum will be ∞ when |x| > τ .
Thus, the conjugate function is

f ∗(x) =

{
1
2
x2 if |x| ≤ τ

∞ otherwise.

Using this to compute the biconjugate, we obtain

f ∗∗(x) = sup
h∈R

hx− f ∗(h) = sup
h∈R

{
hx− 1

2
h2 if |h| ≤ τ

hx−∞ otherwise

= max
h∈[−τ,τ ]

hx− 1

2
h2

where again the constraints on the maximization come from encoding the
infeasibility of |h| > τ . �

122


