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Abstract

Detecting and segmenting brain tumors in Magnetic Res-
onance Images (MRI) is an important but time-consuming
task performed by medical experts. Automating this process
is a challenging task due to the often high degree of inten-
sity and textural similarity between normal areas and tu-
mor areas. Several recent works have explored aligning
a spatial ‘template’ image in order to incorporate spatial
anatomic information, but it is not obvious how this align-
ment should be used. This work quantitatively evaluates the
performance of 4 different types of Alignment-Based (AB)
features encoding spatial anatomic information for use in
supervised pixel classification. This is the first work to
(1) compare several types of AB features, (2) explore ways
to combine different types of AB features, and (3) explore
combining AB features with textural features in a learn-
ing framework. We considered situations where existing
methods perform poorly, and found that combining textural
and AB features allows a substantial performance increase,
achieving segmentations that very closely resemble expert
annotations.

1 Introduction

Radiation Oncologists and many other medical experts
currently spend a substantial portion of their time segment-
ing medical images, and in particular, labeling brain tu-
mors and associated edema in MRI. This labeling is espe-
cially important when planning radiation therapy, and new
treatment techniques such as Intensity-Modulated Radia-
tion Therapy will soon drastically increase the segmenta-
tion workload [1]. The introduction and acceptance of these
types of new technology will thus depend on reducing the
manual time associated with detecting and segmenting tu-
mors.

Over the past 15 years, there has been an immense
amount of research focusing on semi-automatic and fully

automatic methods to perform brain tumor detection and/or
segmentation in MRI, but the tools used in practice still rely
on significant manual interaction. There have been manu-
ally engineered automatic systems designed to perform this
task, but even the most effective of these address simplified
cases (such as the high-contrast ‘enhancing’ pixels [2]), do
not achieve sufficiently accurate results for difficult cases
(ie. an average score across patients of 0.597 in [3], see
Table 2), and depend highly on the local imaging hardware
available to the designer. This is primarily due to the com-
plex nature of the data, and the difficulty in translating com-
plex anatomic knowledge into a series of operations that
have good generalization properties.

There has been significant exploration of this problem
from a Machine Learning (ML) perspective, by formulating
the problem as a pixel classification task (illustrated in Fig-
ure 1). A Machine Learning solution would remove depen-
dencies on the specific imaging hardware used (as it could
be trained from anywhere), and could potentially have bet-
ter generalization properties than manually engineered sys-
tems for this task. However, Machine Learning approaches
applied to this problem have had limited success. This is a
result of the pixel intensities violating the ‘independent and
identically distributed’ (iid) assumption within and between
images, and of the high similarity that can be observed be-
tween some normal pixels and some tumor pixels. The iid
assumption is violated due to the spatial nature of the data,
and the corruption of MRI intensities by noise, inter-slice
intensity variations, an intra-volume intensity bias field, and
differences in the intensities recorded for identical tissues
between volumes. The latter problem is the most severe,
and proposed ML methods often require training data from
the image to be segmented (termedpatient-specifictraining)
[4].

Some recent ML systems have incorporated techniques
to correct (or reduce) these effects to allowinter-patient
training [5, 6, 7], making the methods fully automatic.
However, disambiguating normal and tumor regions with
similar or identical intensity properties remains an unsolved



problem. Incorporating multi-scale or textural information
can aid in discriminating tumors from normal regions [4, 8],
but these types of approaches have limited success since
they do not account for a pixel’s spatial anatomic location.
Recent systems have thus explored the use of a spatially
aligned ‘template’ image to incorporate spatial information
[5, 6, 7, 9, 10]. However, it is not obvious how best to use
the alignment. Each of the Alignment-Based methods so
far have only explored a single type of Alignment-Based
(AB) information, and moreover, none have used learning
to combine AB features with textural information during
classification.

In this work, we seek to quantify the performance of dif-
ferent types of AB features for performing automatic brain
tumor segmentation as a pixel classification problem. This
is the first work to explore (and compare) multiple types of
AB features (we quantified 4 different types), and the first
work that explores combining multiple types of AB fea-
tures. Moreover, this is also the first work that explores
using Machine Learning to combine AB features with tex-
tural features. Our empirical results show that this gives a
substantial improvement over other proposed feature sets,
producing for the first time a fully automatic system that
may actually be used in practice.

Section 2 will briefly introduce the preprocessing steps
we used, outlining our spatial alignment and intensity nor-
malization steps that allowinter-patienttraining and the use
of AB features. Section 3 presents the AB and textural fea-
tures we examined, while Section 4 outlines our segmenta-
tion method. Section 5 presents our quantitative experimen-
tal results.

2 Preprocessing

The preprocessing phase has two purposes: It makes the
intensities of identical tissue types more consistent within
and between images, and spatially aligns the images with a
template image. This was done in a processing pipeline as
in [5]. We used Statistical Parametric Mapping implementa-
tions for the spatial registration and resampling stages [11],
used the T1 single subject template from [12], and used ex-
isting methods for the intensity normalization stages. Our
pipeline consisted of:

1. Noise Reduction (Non-Linear Filtering [13]).

2. Inter-Slice Intensity Variation Correction (Weighted
Regression [14]).

3. Intra-Volume Intensity Bias Field Correction (Non-
parametric Nonuniform intensity Normalization [15]).

4. Alignment of the different modalities (Maximization
of Normalized Mutual Information).

Figure 1. Examples of Input and Desired Out-
put for 4 patients. Top to bottom: T1 images,
T1 images after contrast agent injection, T2
images, Manual Annotations overlayed on T2
images.

5. Linear Alignment of the modalities with the template
(Maximum a Posterioriformulation).

6. Non-Linear Warping of the modalities with the tem-
plate (Maximum a Posterioriformulation).

7. Resampling of the voxels to the template coordinate
system (β-Splines).

8. Inter-Volume Intensity Standardization (Weighted Re-
gression [14]).

Creating this pipeline required a great deal of experimen-
tation. Many steps in this preprocessing pipeline represent
open research problems, and performing these steps can be
complicated significantly by the presence of large tumors
(as opposed to relatively small lesions in [5]). We selected
methods for steps 1-4 and 7 that are not affected by the pres-
ence of tumors. However, template alignment (5-6) can be
affected by the presence of large tumors, since they will
not match corresponding regions in the template. To take
this into account, we increased the regularization parame-
ter (prior) used for these steps, which produced acceptable
alignments without significantly distorting the abnormal ar-
eas. For (8), we used our Intensity Standardization method
[14], that uses left-to-right symmetry to confer robustness
to areas of abnormality. Examples of the input and output
of this pipeline are shown in Figure 2.



Figure 2. Top: Central Slices from 5 Patients
before preprocessing. These images are mis-
aligned, the brains have different shapes, and
there are significant intensity variations be-
tween images. Bottom: Central Slices from
the same volumes after using our preprocess-
ing pipeline for intensity and spatial normal-
ization to reduce these (and other) effects.

3 Features Extraction

We evaluated 4 different types of AB features (shown
in Figure 3). The first AB feature reflected the fact that
by definition brain tumors only occur in the brain: it was
a binary mask of the template image’s brain area, that was
smoothed to reflect uncertainty in the exact position of the
brain boundary in spatially aligned patients. This was ob-
tained from [11], and we hypothesized that smoothing could
potentially be more effective than the distance transform
used in [9], since it means that pixels inside the brain but
near the edge will receive decreased values. This is clearly
advantageous compared to performing a separate automatic
brain extraction step as in [5], which could potentially re-
move tumor pixels near the edge of the brain.

The second type of AB features were spatial likelihoods
for the 3 normal tissue types obtained from [12]. This type
of AB feature was shown to enhance segmentation in [5].
The third type of AB feature was the average intensity maps
from a set of individuals aligned with the template coor-
dinate system (obtained from [12]). We hypothesized that
these could enhance performance since a large difference
from the expected intensity value at a pixel location could
indicate abnormality.

The final AB feature was a characterization of left-to-
right symmetry. Tumors are typically asymmetric around
this axis while normal areas are typically symmetric. The
spatial alignment of the template allowed us to use the tem-
plate’s known line of symmetry as an approximation of the
line of symmetry in an aligned image. We thus charac-
terized left-to-right symmetry by subtracting the intensity
value of the pixel on the opposite the side of the line of
symmetry from the pixel’s own intensity value (recall that
the intensities have already been normalized).

To characterize pixel neighborhood and textural proper-
ties, we used a multi-scale feature representation. This con-
sisted of including, for each feature, the pixel-level feature

Figure 3. AB Features. Row 1: Intensity and
Spatially Normalized Input Images. Row 2:
Normal Tissue Spatial Priors. Row 3: Ex-
pected Intensity Spatial Maps and Smoothed
Spatial Brain Mask (middle). Row 4: Left-to-
right Symmetry (scaled).

value, and the values after filtering the feature image with
two Gaussian filters. For our experiments, we used a stan-
dard deviation of2.25 for the first filter, and4.25 for the
second (the in-plane size of the pixels was1mm by 1mm
after resampling). Figure 4 shows examples of the feature
images generated from this process. These multi-scale fea-
tures directly encode local and neighborhood intensity in-
formation, but their differences form differences of Gaus-
sians (similar to the Laplacian of Gaussian filter [16]), and
thus these feature also implicitly encode local image gradi-
ent information.

4 Segmentation

For pixel classification, we used a soft-margin Support
Vector Machine (SVM) trained using the SVMlight opti-
mization strategy [17]. Since this task can involve millions
of training and testing instances with a relatively small fea-
ture set, we used the linear kernel, which allows more ef-
ficient training than other kernels and allows much more



Figure 4. Examples of Multi-Scale Features.
Top row: T2 image. Bottom Row: T2 left-to-
right symmetry.

Figure 5. Segmentation Process. Top: Input
Images. Bottom: left to right: SVM pixel clas-
sification results with the (PAS) feature set,
the median root image of this result, the se-
lected largest cluster.

efficient classification of new instances (through the use of
the primal formulation).

To take into account dependencies in the labels of spa-
tially adjacent pixels, we post-processed the classification
results by repeatedly applying a median filter to the pre-
dicted discrete class labels, until convergence to the median
root of the classification image. This removes isolated la-
bels, while preserving (and smoothing) the edges of the seg-
mented structures. From the median root, we selected the
largest connected cluster as the final segmentation result (al-
though the most effective feature sets tended to produce a
single connected segmentation). Figure 5 shows an exam-
ple of this segmentation process.

5 Results

In our experiments, the task was to produce a binary seg-
mentation of the (heterogeous) tumor and edema region,
with ground truth defined by an expert radiologist. Our
data set consisted of 10 patients with brain tumors cov-
ering 4 different types of tumors. Moreover, one patient
had a surgical cavity where the tumor had recently been
removed (the correct label for the cavity was edema), and
the data came from two different MRI machines. This di-
verse scenario, combined with the fact that we performed
inter-patient testing (training on 9 patients and testing on
1), makes this a very difficult (but practical) scenario, where
existing methods proposed to perform this task will perform
poorly. Since we sought to quantify the effectiveness of the
different AB features, the preprocessing and segmentation
steps were kept identical, and only the feature set used for
pixel classification was varied. To quantify the quality of
the segmentations, we used the Jaccard similarity measure
between the ground truth and the segmentation results in
terms of true positives (tp), false positives (fp), and false
negative (fn) pixels of the image:

J =
tp

tp + fp + fn
(1)

The feature sets evaluated in this work consisted of an
intensity-only set(), and this feature set augmented with
all combinations of the 4 types of AB features: The spatial
brain mask(B), the normal tissue probabilities(P ), the av-
erage intensities(A), and left-to-right symmetry(S). We
measured each of these at the pixel-level and at multiple
scales. The average test scores for the 10 patients from these
feature sets are shown in Table 1. Since the segmentation
scores for some patients over the different feature sets were
generally higher than for others, we adopted a Student’s t
test ofpaired samples[18], and assumed a difference with
probability0.05 or less was significant.

Among the pixel-level sets with 1 AB feature, the(P )
set performed significantly better than the() set. This was
not surprising and agrees with [5]. Our proposed(A) set
also performed significantly better than the() set, but(B)
and (S) did not. Combining any ofP , A, or S gave
higher scores than each individually, and combining all
three,(PAS), significantly outperformed the best individ-
ual type of AB feature,(P ).

For each feature set, the scores of the multi-scale features
were significantly higher than the corresponding pixel-level
features. This is supported by the literature for the() set,
but learning to combine multi-scale AB features has not
been previously performed. In the multi-scale case,(P ) did
not significantly improve on the multi-scale(), whereas(A)
and(S) did. Combining any ofP , A, orS again resulted in
higher scores than any individually for the multi-scale case,



Table 1. Average Jaccard scores for the dif-
ferent feature sets.

Feature Set Pixel-Level Multi-Scale

() 0.470 0.601
(B) 0.499 0.600
(P) 0.602 0.693
(A) 0.592 0.695
(S) 0.490 0.721
(BP) 0.574 0.705
(BA) 0.578 0.701
(BS) 0.581 0.726
(PA) 0.606 0.719
(PS) 0.621 0.727
(AS) 0.619 0.725
(BPA) 0.581 0.720
(BPS) 0.589 0.728
(BAS) 0.587 0.728
(PAS) 0.627 0.732
(BPAS) 0.593 0.732

and the combination of all three,(PAS), significantly out-
performed the best individual type of AB feature at multiple
scales,(S). Note that symmetry seems to be more effective
when measured at multiple scales. This is likely due to the
robustness to minor asymmetries that could be conferred
through the addition of the coarse-scale features.

Our results support the hypothesis that multiple AB fea-
tures can be advantageous, and that AB features can be
combined with textural features to offer improved results.
Our second experiment compared this idea to several re-
cently proposed feature sets. We evaluated the intensity-
based feature set of [19] (IO), the von Neumann intensity
neighborhood of radius 6 proposed in [4] (vNN ), the use of
the intensities and the 3 normal tissue spatial priors as in [5]
(IPr), the Diagonalized Nearest Neighbor Pattern Match-
ing features at 4 scales as in [10] (using a database of 25
normal brains) (DNN ), and the multi-scale illumination-
and rotation-invariant MR8 textures from [20] (MR8). The
average results from these feature sets are compared to the
multi-scale(PAS) feature set in Table 2. The multi-scale
(PAS) set significantly outperforms each of the other fea-
ture sets except the(MR8) textures, where the probability
of observing the difference was0.10 (as opposed to0.05
or less). Interestingly, theMR8 textures seemed to make
different mistakes than the other methods and due to this,
note also that we could not establish that theMR8 features
significantly outperformed the multi-scale() feature set.

Table 2. Comparison between feature sets
proposed in the literature and the most ef-
fective set evaluated in this work (in bold).

Feature Set Average Score

IO 0.470
vNN 0.598
IPr 0.602
DNN 0.545
MR8 0.636
(PAS) 0.732

Figure 6. Comparison of Manual and Auto-
matic Segmentation for 4 patients. Row 1: T1
image after contrast agent injection. Row 2:
T2 image. Row 3: Expert Segmentation. Row
4: Segmentation with the (PAS) feature set.

6 Discussion

Further exploring the anomalousMR8 feature set is an
interesting direction of future research. It is possible that
more accurate results could be obtained by computing the
MR8 texture features for theP , A, andS features, although
this would constitute a much higher computational expense
than our multi-scale method (48 filtering operations for each
pixel-level feature instead of 2). The difference in the trend
observed across patients for theMR8 features might also
indicate that these textural features might complement other
proposed methods of texture characterization. Another di-



rection of future research could be the use of feature se-
lection. For example, it may not be beneficial to use left-
to-right symmetry at the pixel level due to areas of minor
asymmetry. Our results might also be improved by replac-
ing the median root filter with a Markov Random Field as
used in [7] or a Level Set algorithm as used in [6]. Finally,
the use of other AB features might also improve results, and
we are currently exploring the exploitation of a large data-
base of normal brains for this purpose.

Contribution : This paper presented a fully automatic
method to segment brain tumors and edema. While pre-
vious ML-based systems proposed for this task have ex-
plored a single type of AB information, this paper evalu-
ated 4 different types of AB features, and combinations of
these different types of AB features. This was also the first
work that explored using Machine Learning to combine AB
features with textural features. A very challenginginter-
patienttesting scenario with multiple tumor types was used,
where existing methods are not adequate. Our results indi-
cate that the use of multiple types of AB features can offer
a significant increase in performance (p > 0.95), and that
a further significant performance increase can be gained by
using multi-scale AB features (p > 0.95). We showed that
this latter technique significantly outperforms other recently
proposed feature sets (p = 0.90), and gives results that are
quantitatively and qualitatively very similar to expert anno-
tations.
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