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Abstract 

Genetic code and its origin are one of the most challenging problems in biochemistry and cell 

biology. Studying the genetic code evolution and the logic behind it is an interesting but a very 

complicated problem. The logic of the genetic code from an energetic and probabilistic 

perspective, the occurrence frequency of protein mutations, and statistics of cytotoxicity effects 

on surviving cancer cell have been the main investigated topics in this thesis. The aim of this 

research is to implement the methods rooted in statistics, thermodynamics, and the physics of 

phase transitions in order to better face the challenges that experimental observations from 

genetics, molecular, and cell biology bring to the field of computational biophysics. 

In this thesis, the first aim has been to find an underlying correlation between the Gibbs free 

energy and the naturally occurring frequency of codons and amino acids across extant life forms 

analyzed statistically. Using GAMESS software, the amino acid thermochemistry was estimated. 

For these calculations, we used the Hartee-Fock method with the PM3 basis sets. These energies 

were compared to the codon energies obtaining involving three energetic terms; nearest neighbor, 

stacking and nucleotide Gibbs free energy. The correlation between codon and amino acid 

energies could shed light on the rules behind the codon assignments in the genetic code. 

Unfortunately, only weak correlations were found in our study. Moreover, our investigation 

showed that, in human, amino acids that have a higher redundancy occur more commonly in 

nature, with examples including arginine and leucine. However, the higher abundance amino acids 

were not energetically cheaper to make in nature. In addition, among the dataset we studied such 

as; animal and fungal mitochondrial proteins, human body tissues and various species according 

to the phylogenetic tree of life (from bacteria to homo sapiens), the amino acid occurrence 
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frequency was highly conserved. Also, we attempted to address the entropy reduction paradox in 

the transcription and translation process by accounting for the involvement of macromolecules 

ATP and GTP in these process and affecting the overall thermodynamic energy balance. We also 

investigated the hypothesis whether the amino acids have a higher affinity for their codons or 

anticodons according to the binding energy values obtained using computational docking 

simulations. However, the obtained docking scores showed no correlation between the codons or 

anticodons and the corresponding amino acids, and we have found some paradoxical examples 

that disprove the proposed hypothesis. 

The next goal was to study p53 proteins mutations across a large set of various cancer types. The 

p53 protein has been selected due to its significant role in the cell cycle, cancer initiation, and 

progression. We showed that the highly represented mutants are R-H(79%), R-W(71%), R-

Q(73%), G-S(55%), and R-S(48%) and at least one of these amino acid mutations occurs in 84% 

of the cases. Moreover, the Shannon entropy of p53 mutations has been computed in an effort to 

shed light on the epidemiological findings in terms of five-year-survival rate for cancer patients. 

However, the entropic approach to the analysis of the role of these important somatic mutations 

in cancer did not emerge as a prognostic factor in the analysis of cancer epidemiology data. 

Finally, using the physical concepts of bistability and phase transitions, we were able to model 

the cancer cell response to a number of cytotoxic agents used in cancer chemotherapy. We applied 

the well-known model in the physics of critical phenomena, namely the Ising model and 

represented the two spin states (spin ‘up’ and ‘down’) in the context of cancer cell biology as a 

‘dead’ and ‘alive’ state of cancerous cells, respectively.  We explored both an interacting and non-

interacting case of cancer cells in a culture with the latter corresponding to the well-studied 

“bystander effect”. The proposed model has been tested on 13 different cytotoxic compounds 
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applied to various cancer cell lines in culture. The results were in strong agreement with our model 

showing high consistency among the tested chemotherapy agents. Also the results confirmed the 

prediction that the EC50 value corresponds to the peak of the susceptibility function, which is an 

important characteristic of systems at a critical point. The model has been tested successfully on 

experimental data from both a two-dimensional well-plate cell culture and a three-dimensional 

spheroid model. 
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Chapter 1- Introduction 

1.1 Origin of the genetic code 𝟏1 

The origin of the genetic code has always been an important and extremely complicated question 

in biochemistry, biology, and biophysics. The genetic code, which links codons to amino acids, 

is nearly universal, and its structure is well known. The codons are made of triplets of nucleotides 

(adenine, guanine, uracil/thymidine, and cytosine) [1–4]. In 1961, Crick et al. introduced the 

concept of codons, which are a triplet of nucleotides [5]. Based on this report, within the same 

year, Nirenburg et al. implemented more experiments that paved the way for deciphering the 

genetic code by decoding the codon UUU, which codes for the corresponding amino acid 

phenylalanine [6]. By decoding the structure of the genetic code of Escherichia coli, the non-

random mapping of 64 codons to 20 amino acid and stop codons was recognized [5–13]. With 

relatively minor exceptions, nearly all forms of living organisms contribute the same genetic 

pathways (summarized in chapter 1 Table 2.1) [5,7]. 

The assignment of the 20 amino acids to particular codons and the degeneracy of the genetic code 

(meaning multiple codons correspond to the same amino acid) are fundamentally interesting 

questions since there are about 1084 potential algorithms for a genetic code with three nucleotide 

codons. Therefore, it is important to consider the reasons behind the production of standard amino 

acid assignments, such as evolutionary forces, historical accidents, or chemical constraints. This 

information can help to explain remarkable properties of the genetic code, for example the relation 

1 This section is partially based on an introduction of a paper accepted for publication as: Arbabi Moghadam S., 
Klobukowski M., and Tuszynski, J.A., “A Search for the Physical Basis of the Genetic Code” in BioSystems journal. 
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between hydrophobic amino acids and the codons that have uracil in the second position, and the 

inverse relation between the amino acid degeneracy and the molecular weight [14–17]. Excellent 

reviews on the topic would be found in these references [15,18–24].  

The genetic code is evolvable, and Crick proposed the “frozen accident theory” in order to explain 

its origin [7]. However, as of today, it has been observed that the standard code is not universal, 

and without changing the basic fundamentals, it is subjected to some important modifications 

[4,7,8]. Also, a point mutation in a nucleotide in tRNA, RNA editing, or base modification is 

included in the mechanism of reassignment of codons [4,25–30]. These changes have been 

addressed in three main theories, the ‘ambiguous intermediate theory’ [31,32], ‘codon capture 

theory’ [33,34], and ‘genome streamlining theory’ [35,36]. More detailed studies on this topic are 

provided by these references [4,25–30,37,38]. 

The main theories on the origin, nature, and evolution of the genetic code can be listed as follows: 

the RNA world hypothesis, stereochemical theory, adaptive theory, and coevolutionary theory. 

The RNA world hypothesis postulates that a simple molecule of RNA is at the origin of forming 

the life on the Earth before the DNA and protein’s evolution [39,40]. In the primitive cells, the 

RNA molecule carries the genetic information and can derive the chemical reactions and it also 

has the ability to self-replicate. However, in the next phases of the evolutionary time, the DNA 

molecules contained in living cells within their membranes acquired the function of carrying the 

genetic information necessary to provide instructions how to make proteins within the machinery 

of the cell [39,40]. The stereochemical theory asserts that physio-chemical affinity between the 

amino acids and codons (or anticodons) contributed to the assignment of codons to particular 

amino acids; thus the code is not an evolutionary accident but was determined by physico-
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chemical factors [13,41–44]. Adaptive theory states that selective forces caused the structure of 

the genetic code. The robustness of the genetic code stems from these forces and the mutations 

happen to minimize the physio-chemical alteration of the created amino acid [20,22,23,28,45–

47]. The coevolutionary theory, which is the most popular theory for the origin of the genetic code 

structure, states that the assignment of codons occurred alongside the evolution of the biosynthesis 

pathways for the amino acids, and furthermore an early simpler form of the genetic code included 

only those amino acids which can be formed by prebiotic processes. The basic idea of the 

coevolutionary theory is similar to the Crick’s idea of code expansion; however this theory gained 

more acceptance by introducing the concept of precursor-product pairs of amino acids. It is worth 

mentioning that, notwithstanding the history behind these three mentioned theories and the 

experimental and theoretical evidence obtained so far, none of these hypotheses can be 

definitively proved about the genetic code. There are still some crucial questions regarding the 

origin of the genetic code and adaptation theory which are of fundamental importance and remain 

to be answered. These issues are as follows: the mechanism and basis behind the codon(s) that 

code for their corresponding amino acids, the genetic code’s evolution and the inclusion order of 

amino acids into codons, as well as the theory behind the existence of the 20 standard amino acids 

in the genetic code while there are numerous other 𝛼-amino acids that are not in the code, but are 

involved in the metabolism of living organisms such as humans. These are the fundamental 

questions that scientists have been struggling with since the initial stages of introducing the 

genetic code, which was more than 50 years ago, till today, and it will probably remain unclear 

for another 50 years [4–8,28]. In this thesis, in Chapter 2, we aim to study these problems with a 

probabilistic and energetic view of amino acids and codons and their probability distribution 

across the species in animal and fungal mitochondrial proteins, and human body tissues.  
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Also, it is known that all the information about the building blocks of a living organism is stored 

in a macromolecule called DNA. Messenger RNA, mRNA, is produced by DNA in the 

transcription process. Transfer ribonucleic acid, tRNA, helps the protein synthesis to make peptide 

chains in the translation process in the ribosome. It is interesting to study whether the amino acids 

have a tendency to bind to their codon or anticodon in the ribosome machinery or there are some 

other mediators that affect the process. In Chapter 3, we use computational methods, specifically, 

Steered Molecular Dynamics, SMD and molecular docking simulations, to obtain the binding 

affinity of codons to their corresponding amino acids. The goal is to find if there is any correlation 

between the binding affinity of an amino acid and cognate codons or anticodons. The results can 

be used to shed light on one or more of the above-mentioned theories.  

1.2 p53 mutations 

Tumor protein p53 is a transcription factor that regulates the expression of multiple genes. 

Mutations in p53 are observed in more than 50 percent of human cancers. Tumor protein p53 is 

encoded by the TP53 gene in humans. Somatic mutations of TP53 are reported as one of the most 

frequent changes in human cancer [48,49]. The TP53 gene codes for a protein that has an 

important role in the cell, which inhibits the growth and development of the cell by controlling 

abnormal proliferation and cell division. This protein, called p53, is also known as “Guardian of 

the Genome” due to its significant responsibility for suppressing tumors [50]. There are two types 

of mutations in the TP53, somatic and germline mutations, which are discussed in Chapter 4 in 

detail. The region of the gene sequence where the mutation happens is an important consideration 

for the design of putative activators of mutated p53. p53 protein has four domains, the 

transactivation domain (TA), the proline-rich domain (PR), the DNA binding domain (DBD), and 
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the tetramerization domain (TED). The DNA-binding domain is where most of the p53 missense 

mutations occur and there are six hotspot positions that are the most frequently mutated in cancer 

[51,52]. These mutations occur at codons R175, G245, R248, R249, R273 and R282 in the p53 

sequence [51,53,54]. 

Mutant p53’s can be classified as either contact mutants or structural mutants. Mutations that 

occur in the DNA-binding domain at residues R248 and R273 are examples of contact mutants 

because these residues interact directly with DNA. Mutations that happen in the other hotspot 

positions do not have direct interactions with the DNA and are classified as structural mutants, 

which indirectly affect the p53 binding ability [51,53–55]. The spectrum of the p53 mutations 

varies among cancers types, such as breast, liver, colon, lung, and other common cancers and 

further analysis is needed to understand the functionality of the p53 and the etiology of these 

tumors [48]. Studies show that G:C to T:A mutations happen more frequently in certain cancers 

such as brain, breast, lymphoid malignancies, liver and lung, whereas T:A mutations occur more 

frequently in esophageal carcinomas compared with solid tumors [48]. In this thesis, the aim is to 

study the occurrence frequency of p53 somatic mutations in various cancer types. Furthermore, 

we analyze the distributions of the mutations of p53 in the studied cancers by defining a 

dissimilarity factor to one of the most mutated cancers. In addition, the entropy of these mutations 

and the relationship to the five-years survival rates will be considered for the cancer types.  

1.3 Cancer treatments and Ising model 

The past decades of cancer research have shed light on tumor development and cancer treatments. 

Chemotherapy and radiation therapy are the most common modalities of cancer treatments, which 

in both cases ideally target the damaged cells with less harm inflicted on the normal cells. In 
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chemotherapy treatment, cytotoxic drugs or compounds are used to kill or damage cancer cells, 

via activity against molecular targets, such as a DNA or an over-expressed protein. In 

radiotherapy, only the tumor is targeted, while chemotherapy is generally used systemically as a 

cancer treatment [56–59]. However, research advances in genomics have provided new methods 

for targeted therapies in which the cytotoxic compounds can be combined with antibodies or 

nanoparticles to attack a specific target tissue. Choosing the optimal pharmacological agent, drug 

dose, and interval for the administration of the drug is complicated and depends on various factors. 

Furthermore, to prevent tumor cells to become resistant to the cytotoxic drugs, which stems from 

the various features of the cancerous cells, selecting the cytotoxic agent and the corresponding 

dosage is crucial and needs special attention. Moreover, by diffusion, the transfected cells 

resulting from treatment can be transferred into the nearby untransfected cells, and respectively 

can damage the cells neighboring the tumor site. This process is known as the bystander effect 

[60,61]. The bystander effect refers to the indirect death or lethal damage to cells that are not 

directly affected by therapeutic interventions. This effect is seen in both radiation therapy and 

chemotherapy [61–75]. 

The aim here is to find a model that can explain this dynamic process, both in chemotherapy and 

radiation therapy treatments, and develop a statistical analysis of chemotherapeutic agent effects 

on cancer cells or tumors. In this study, we propose using concepts developed in the physics of 

phase transitions such as and bistability and order parameters. Bistability could be an appropriate 

representation of the cells under the stochastic transition from alive (proliferating cells) to 

dead/senescent (non-proliferating cells). In a system, which is undergoing a phase transition, 

multistability, or to be more specific bistability, is used as a common characteristic. Phase 

transitions are used to analyze the behavior of a system that has more than one distinct equilibrium 



` 

7 

(or stable) state. Two other parameters, called the control parameter and order parameter, are 

critical properties of systems undergoing a phase transition. The control parameter is an external 

factor (a knob), and by changing the value of the control parameter, the critical system responding 

to this change can switch between its distinct states at the transition point. The order parameter 

has a defined value in each of the distinct states of the system and describes the response of the 

system to changes in external conditions. The Ising model is a two-state spin-1/2 model and is 

considered as a powerful, yet very simple, mathematical model of phase transitions. The effect of 

cytotoxicity on cancer cells can be elegantly described by the Ising model by assuming that the 

spin up and down states can be interpreted as alive and dead states in cancer cells, respectively 

[59,61,76–82]. The aim in Chapter 5 is to implement the Ising model to study the response of 

cancer cells exposed to chemotherapeutic agents. In Chapter 5, we study the cytotoxicity effect 

of different compounds in chemotherapy and model this behavior with the use of the Ising model 

of phase transitions. Using the biological data of collaborators in the Netherlands Translational 

Research Center B.V. (Oncolines), we apply the Ising model methodology on various cytotoxic 

drugs and cancer cell lines in a dose-response manner [83,84]. We are also interested in applying 

another well-known and widely-used model of physical systems at criticality, namely the Landau 

theory of phase transition, as well as the susceptibility function to describe the dose-response 

curves in order to reveal the deeper meaning of the commonly used EC50 (extinction coefficient 

such that 50% of the cells become unviable at the corresponding concentration) values that 

determine the sensitivity of the system to external perturbations. This is discussed in detail in 

Chapter 5. 
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Chapter 2 - A Search for the Physical Basis of the Genetic Code 𝟐2 

2.1 Abstract 

DNA contains the genetic code, which provides complete information about the synthesis of 

proteins in every living cell. Each gene encodes for a corresponding protein but most of the DNA 

sequence is non-coding. In addition to this non-coding part of the DNA, there is another 

redundancy, namely a multiplicity of DNA triplets (codons) corresponding to code for a given 

amino acid. In this work, we investigate possible physical reasons for the coding redundancy, by 

exploring free energy considerations and abundance probabilities as potential insights. 

2.2 Introduction 

DNA carries the genetic code, which provides information regarding the proper development and 

well-functioning of any living organism and many viruses [5,7,85–88]. While DNA includes 

genes, that is, regions coding for their corresponding proteins (or protein domains), most of the 

DNA sequence in most eukaryotes is non-coding. This non-coding part of DNA is not involved 

in protein synthesis but is used in other mechanisms (e.g., transcription of functional non-coding 

RNA has an as yet unknown function or no function at all as so-called "junk DNA", and regulation 

of gene expression). In any organism, gene expression is carried out in three steps: (i) transcription 

from a specific gene to messenger RNA (mRNA) (ii) removing the mRNA introns in the splicing 

process, and (iii) translation from mRNA leading to the synthesis of new proteins via ribosomes, 

2 This chapter is partially based on a paper accepted for publication as: Arbabi Moghadam S., Klobukowski M., and 
Tuszynski, J.A., “A Search for the Physical Basis of the Genetic Code” in BioSystems journal. 
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macromolecular complexes responsible for assembling amino acids into the correct sequence [88–

90]. The main focus of this study is not on modeling or exploring molecular mechanisms 

accounting for transcription and translation processes but on investigating typical features of gene 

expression, in particular codon/amino-acid relationships, from energetic and probabilistic 

perspectives. Special attention is also given to codon degeneracy and its implication for protein 

synthesis and expression.  

Amino acids are small organic molecules, which are the building blocks of proteins. Proteins play 

a key role in most of the biological processes, with each protein being a sequence of hundreds of 

amino acids folded into a specific functional 3D structure.  There are twenty naturally-occurring 

amino acids [88,89]. Each amino acid has its own unique physico-chemical properties such as 

hydrophobicity, charge, dipole moment and size. Beside the twenty standard amino acids, some 

non-standard residues exist, which do not participate in peptide synthesis (we are only interested 

in standard amino acids here). Regarding their chemical structure, amino acids share common 

elements with each other including a carboxyl group and an amine group. These two 

groups are attached to a carbon atom called an α-carbon. Each of these amino acids has a specific 

side chain, called an R-group that is linked to the α-carbon (except proline which has a secondary 

amine group and is an imino acid; however, it is commonly classified within the amino acid 

group). R-groups have various features such as shape, size, and charge that allow amino acids to 

be grouped according to the chemical properties of the side chains [4,13,85,88–91].  

Genetic experiments have proven that an amino acid is encoded by a group of three base pairs of 

the DNA called a codon. Codons are transcribed from three base pairs of DNA to three nucleotides 

in messenger RNA, which eventually become translated into the production of specific amino 
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acids via the ribosome [12,85,86]. Since there are four distinct nitrogenous nucleotide bases: 

Adenine (A), Guanine (G), Cytosine (C), and Thymine (T), this results in 43 = 64 permutations, 

i.e., 64 types of codons that can be identified in a DNA sequence [12,85,86]. Sixty-one of these 

combinations represent amino acids while the three remaining ones are stop codons implying the 

end of the transcription process [88,89]. From statistical arguments, one might expect that every 

amino acid is coded by approximately the same number of codons. However, this is not the case: 

some amino acids are coded by only one codon, others are coded by up to six codons. Table 2.1 

provides a list of all the amino acids and the corresponding codons.  

Table 2.1 Amino acid table and their corresponding codons [7]. 

Fi
rs

t L
et

te
r 

Second Letter 

T
hird L

etter 

 T C A G  

T 

TTT Phe 
F 

TCT 

Ser 
S 

TAT Tyr 
Y 

TGT Cys 
C 

TACG 

TTC TCC TAC TGC 

TTA 
Leu 
L 

TCA TAA Stop TGA Stop 

TTG TCG TAG Stop TGG Trp 
W 

C 

CTT 

Leu 
L 

CCT 

Pro 
P 

CAT His 
H 

CGT 

Arg 
R TACG 

CTC CCC CAC CGC 

CTA CCA CAA Gln 
Q 

CGA 

CTG CCG CAG CGG 

A 

ATT 
Ile 
I 

ACT 

Thr 
T 

AAT Asn 
N 

AGT Ser 
S 

TACG 
ATC ACC AAC AGC 

ATA ACA AAA 
Lys 
K 

AGA 
Arg 
R ATG Met 

M ACG AAG AGG 

G 

GTT 

Val 
V 

GCT 

Ala 
A 

GAT Asp 
D 

GGT 

Gly 
G TACG 

GTC GCC GAC GGC 

GTA GCA GAA Glu 
E 

GGA 
GTG GCG GAG GGG 
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Since 1960, molecular biologists have attempted to find out whether the amino acid composition 

was a reflection of the genetic code sequence or a result of natural selection of amino acids 

[92,93]. Based on the assumption that allocation of amino acids to their corresponding codons is 

accidental, random and highly improbable, amino acids which are related to each other would be 

expected to have unrelated codons [28,86]. The genetic code is also expected to be frozen, 

meaning that any change in the genetic code will cause a lot of simultaneous changes in the 

gene/protein sequences and consequently will disrupt thousands of genes [7,85–87]. Therefore, 

from these observations, one can legitimately wonder why only four nucleotides exist in the 

genetic code or why 20 amino acids can be encoded by the standard codon table [94–97]. The 

redundancy of the genetic code implies that most of the amino acids are encoded by multiple 

synonymous codons but there is no ambiguity in the assignment of an amino acid to a codon 

[85,86]. For example, although codons GCT and GCC both specify alanine, which implies 

redundancy, neither specifies another amino acid, which means that there is no ambiguity. Amino 

acids can be classified in many different ways based on their characteristics, e.g., aliphatic, 

aromatic, acidic, basic, polar, hydrophobic, etc. However, since many amino acids belong to 

multiple families, assigning each amino acid to an invariant group is difficult, see Figure 2.1 

[90,98]. 
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Figure 2.1 Venn diagram illustrating the properties of amino acids [99]. 

 

2.3 Methodology 

Our main objective here is to obtain and analyze amino acids’ thermodynamic properties, 

especially the Gibbs free energy with quantum chemistry methods using GAMESS and Gaussian 

software and find out if there is a correlation with codon Gibbs free energy [100–102]. On the 

other hand, the other approach to this study would be to seek a correlation between the free energy 

and the occurrence frequency of amino acids. Shen et al. reported the probability distribution 

(frequency) of all amino acids contained in the Swiss-Prot database, 𝑃AA−SP [103]. The probability 

distribution of amino acids, 𝑃AA−SP, was obtained by averaging over the total number of amino 

acids found within the Swiss-Prot database [103–105]. In addition, occurrence frequency of the 

amino acids was studied in different species. Considering the evolutionary tree of life, some 

species are selected judiciously to provide a spectrum from the simplest species to the most 

complex ones. Using the NCBI databank the occurrence frequency of the amino acids and codons 

for E. coli, Halobacteriales salinarum, Haloferax volcanii, Physcomitrella patens, Arabidopsis 
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thaliana, Paramecium, Porphyria, Cerevisiae, sponge, spider, fruit fly, octopus, starfish, salmon, 

frog, crocodile, snake, pigeon, chicken, elephant, dog, rabbit, chimpanzee and human has been 

obtained, giving an insight into the uniformity of the amino acid abundance frequency across 

diverse species [106,107].  

2.4 Results and discussion 

2.4.1 Calculations of Codon and Amino acids’ Gibbs free energies 

An important quantity characterizing every amino acid (and every nucleotide) is the Gibbs free 

energy, 𝐺AA, required to build their chemical structures. To estimate 𝐺AA, a semiempirical 

quantum chemistry method was applied via the GAMESS program [101,102]. Semi-empirical 

methods are based on an approximate scheme that uses experimental data in order to determine 

many of the integrals involved in the Hartree-Fock method [108–110]. Among available basis sets 

for the semi-empirical Hamiltonians, the parameterized Method 3, PM3, was used [111–114]. 

Note that the PM3 Hamiltonian is parameterized in such a way that the thermodynamic properties 

associated with a large number of molecules can be reproduced. Among all the thermochemistry 

quantities, such as internal energy, 𝐸, enthalpy, 𝐻, Gibbs free energy, 𝐺, and the entropy, 𝑆, we 

are mainly interested in the Gibbs free energy values, which are shown in Table 2.2 for the 20 

standard amino acids. In addition, the last four rows show the thermochemistry of the nitrogen 

bases with sugar and phosphate, so called deoxyadenosine monophosphate, dAMP, 

deoxyguanosine monophosphate, dGMP, deoxycytidine monophosphate, dCMP and 

deoxythymidine monophosphate, dTMP. Using GAMESS,  the energy and the correction to the 

final state will be obtained. However, the final energy will be represented as 𝐺𝐴𝐴 = 𝐺0 + 𝐺.  
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Table 2.2 Thermochemistry of amino acids and four nucleotides at PM3 level calculated by 

GAMESS [101,102]. 

Amino acid 
𝑬𝒄𝒐𝒓𝒓 
kJ/mol 

𝑯𝒄𝒐𝒓𝒓 
kJ/mol 

𝑺𝒄𝒐𝒓𝒓 
J/mol/K 

𝑮𝒄𝒐𝒓𝒓 
kJ/mol 

𝑮𝟎 
kJ/mol 

𝑮𝑨𝑨 = 𝑮𝟎 + 𝑮 
kJ/mol 

Alanine 302.6 305.1 343.2 202.8 -115994.1 -115791.3

Arginine 611.9 614.4 494.1 467.0 -206753.1 -206286.1

Asparagine 383.7 386.2 406.3 265.1 -172350.3 -172085.2

Aspartic acid 349.2 351.7 392.4 234.7 -183455.8 -183221.1

Cysteine 294.8 297.3 374.9 185.5 -133740.5 -133555.0

Glutamic acid 426.1 428.6 434.3 299.1 -197749.3 -197450.2

Glutamine 459.0 461.5 431.8 332.7 -186635.7 -186303.0

Glycine 225.8 228.3 312.6 135.1 -101692.7 -101557.6

Histidine 444.0 446.5 430.8 318.1 -183828.1 -183510.0

Isoleucine 533.6 536.1 417.5 411.6 -158829.0 -158417.4

Leucine 533.7 536.2 412.4 413.2 -158840.8 -158427.6

Lysine 580.4 582.9 460.7 445.5 -175716.4 -175270.9

Methionine 460.5 463.0 429.8 334.8 -162310.6 -161975.8

Phenylalanine 524.7 527.2 445.6 394.3 -189722.0 -189327.7

Proline 391.1 393.6 356.3 287.4 -141579.8 -141292.4

Serine 317.2 319.7 368.2 209.9 -144045.2 -143835.3

Threonine 394.7 397.1 385.1 282.3 -158333.7 -158051.4

Tryptophan 607.9 610.4 493.7 463.2 -229313.3 -228850.1

Tyrosine 542.0 544.4 456.1 408.4 -217818.8 -217410.4

Valine 456.8 459.2 397.7 340.7 -144553.4 -144212.7

Nucleotide 

dAMP 748.0 750.5 667.1 551.6 -391607.7 -391056.1

dCMP 711.9 714.4 658.2 518.2 -377384.2 -376866.0

dGMP 765.9 768.3 695.5 561.0 -419655.6 -419094.6

dTMP 758.2 760.7 680.9 557.7 -402808.7 -402251.0
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In Table 2.3, the base pair stacking energy 𝐺S, and the nearest neighbor energy, 𝐺𝑁𝑁, have been 

reported for each nucleic acid [90,92,115–118]. The experimental stacking energy, 𝐺S, has been 

obtained assuming that equilibrium was set between stacked and unstacked conformations at the 

nick site of a DNA duplex [116,119]. Moreover, the nearest neighbor energy 𝐺𝑁𝑁, is counted 

based on two nearest neighbor base pair doublets. There are ten possible doublets in the DNA 

double strings (5′ − 3′). These are: 𝐴𝐺 = 𝐶𝑇, 𝐴𝐴 = 𝑇𝑇,𝐺𝐺 =  𝐶𝐶, 𝐴𝐶 = 𝐺𝑇, 𝐺𝐴 =  𝑇𝐶, 𝑇𝐺 =

𝐶𝐴, 𝐶𝐺, 𝐺𝐶, 𝐴𝑇, and 𝑇𝐴. Using the nucleotide energies reported in Table 2.2 and 2.3, it is 

possible to work out the Gibbs free energy for all the 64 codons, 𝐺codon, using the following 

relation 

𝐺codon = 𝐺𝑁𝐴 + 𝐺𝑆 + 𝐺𝑁𝑁 (2.1) 

where 𝐺𝑁𝐴 stands for the nucleic acid energy, 𝐺S represents the energy of the melting stability of 

base pair stacks and 𝐺𝑁𝑁 is the energy of nearest neighbor nucleic acid pairs in a DNA strand 

[92,115–118]. As an example, for the arginine codon CGA, the complementary nucleobases 

would correspond to GCT, meaning that the nucleic acid energy 𝐺𝑁𝐴 and the stacking energy 𝐺𝑆 

would be 

𝐺𝑁𝐴 = (2𝐺𝐶 + 2𝐺𝐺 + 𝐺𝐴 + 𝐺𝑇) (2.2) 

𝐺𝑆 = (𝐺𝐶𝐺 + 𝐺𝐺𝐶 + 𝐺𝐴𝑇) (2.3) 

and the nearest neighbor energy reads as  

𝐺𝑁𝑁 = (𝐺𝐶𝐺 𝐺𝐶⁄ + 𝐺𝐺𝐶 𝐴𝑇⁄ ) (2.4) 

where these energies will be discussed in section 2.4.2.  
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Table 2.3 Gibbs free energy for base pair stacking and nearest neighbor in double-stranded 

DNA base-pairs [90,92,115–118]. 

Stacking Gibbs free energy 𝑮𝐒 
(kJ/mol) 

Nearest neighbor Gibbs free energy GNN 
(kJ/mol 

TA -0.5 AA/TT -4.2

TG-CA -3.3 AT/TA -3.7

CG -6.0 TA/AT -2.4

AG-CT -5.4 CA/GT -6.1

AA-TT -4.4 GT/CA -6.0

AT -5.3 CT/GA -5.4

GA-TC -6.9 GA/CT -5.4

CC-GG -8.2 CG/GC -9.1

AC-GT -8.5 GC/CG -9.4

GC -11.3 GG/CC -7.7

TA -0.5

TG-CA -3.3

2.4.2 Energy Correlations 

Using the Gibbs free energies computed in the previous section, we now attempt to find out 

whether any correlation exists between the energy for each amino acid and those for the 

corresponding codons. In addition, in the next step, we aim to find out a possible correlation 

between amino acid energies and empirical probability of their occurrence, as might be expected 

for example from the Arrhenius relation for chemical reactions [120–122]. In Figure 2.2.a, the 

Gibbs free energy of amino acids, 𝐺AA, is plotted versus the Gibbs free energy of the 

corresponding codons, 𝐺codon, and the lowest codon energy of each amino acid is labeled. Some 

of the codon energies are overlaid on each due to being close in value. For example, glycine which 
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has four codons, has the following energies: 𝐺1 = −2411382.5, 𝐺2 = −2411380.3, 𝐺3 =

−2411378.9 and 𝐺4 = −2411378.6 kJ/mol. Despite no visible correlation being found between 

the two sets of values, several observations can be made. As a general tendency, the higher the 

free energy of the amino acids, the lower the free energy of the corresponding codon. This result 

becomes more evident when plotting GAA as a function of  𝐺codon averaged over the possible 

codons coding for the same amino acid in Figure 2.2.b. It is also clear that charged amino acids 

(arginine, lysine, glutamic acid, aspartic acid) are likely to have a lower energy. Also, results 

representing the data for each codon yield a large amount of scatter, even though we have 

combined the values for all codons representing a given amino acid into their average energies as 

plotted in Figure 2.2.b. As shown, the average codon energies are correlated only weakly with the 

average of amino acid energies within the standard deviation. The standard deviations are shown 

by the blue horizontal lines. In Figure 2.2.b, there appear to be two outliers, namely arginine and 

tryptophan. Arginine has the highest redundancy by being encoded by six codons. Tryptophan 

has the lowest amino acid energy. It is an uncommon amino acid and it is special, being encoded 

by only one triplet of base pairs. Also, tryptophan has two rings in the chemical structure and has 

a large number of atoms associated with it, which causes it to have the lowest amino acid energy 

(but the highest in magnitude). Moreover, glycine, which has the smallest number of atoms has 

the highest amino acid energy (but the lowest in magnitude).  
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(a) 

(b) 

Figure 2.2 (a) Gibbs energy of amino acids (𝐺𝐴𝐴)versus Gibbs energy of codons, (𝐺𝑐𝑜𝑑𝑜𝑛) (b) 

Gibbs energy of amino acids (𝐺𝐴𝐴)versus average Gibbs energy of corresponding codons 

𝐺𝑐𝑜𝑑𝑜𝑛 for each amino acid. In both plots, colors green, red and blue refer to the neutral, 

negative and positively charged amino acids. Standard deviations in panel b are shown by blue 



` 
 

 
 
  

19 

horizontal lines. Amino acid Gibbs free energy are calculated using GAMESS software and the 

codons Gibbs energy are calculated using Eq. (2.3). 

To compare and check the accuracy of the obtained energies using GAMESS , another software 

package has been chosen for additional testing. Gaussian software [100], which is one of the most 

popular computational chemistry tools, has been used to calculate the amino acid energies. Using 

the Gaussian program we computed amino acid energies using the density functional theory 

(DFT) employing the B3LYP functional [123–127] and 6-311++G(df, pd) basis set [128–130]. In 

this approach all electrons were included explicitly, and the effects of electron correlation taken 

into account via the density functional theory. This approach can be compared with the results of 

GAMESS software that was mentioned earlier. However, using GAMESS, the semi-empirical 

method, which is based on the Hartree-Fock formalism with some approximations, some of the 

integrals will be disregarded and some approximations will be applied [131–135]. The first 

approximation is that only the valence electrons are treated explicitly and the core electrons are 

removed. Secondly, many difficult integrals are neglected and thirdly, the effects of electron 

correlation are ignored in solving the Schrödinger equation. The errors introduced by these 

approximations are expected to be alleviated by the use of empirical parameters derived by fitting 

of computed results to the corresponding experimental data. The two different approaches that we 

used, the all-electron DFT(B3LYP/6-311++G(df,pd)) used in Gaussian  and the semi-empirical 

method HF/PM3 used in GAMESS, use different definitions of the zero of the total energy [111–

114]. In the all-electron approach the zero of the total energy is evaluated with respect to the 

energy of the same system with all particles (electrons and nuclei) at infinite distances. On the 

other hand, in the semi-empirical calculations the zero of the total energy is evaluated as the heat 

of formation. Therefore, it is expected that there are some differences in the geometric structures 
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which leads to the differences in the energies. Table 2.4 shows the energies obtained in the all-

electron approach and in the semi-empirical method with both GAMESS and Gaussian software. 

Table 2.4 Gibbs energies calculated from GAMESS and Gaussian [100–102]. 

Amino acid 
GAMESS 𝑮𝑨𝑨 

(hartree) 
Gaussian 𝑮𝑨𝑨 

(hartree) 

Alanine -44.4 -323.8

Arginine -79.2 -606.6

Asparagine -66.0 -492.5

Aspartic acid -70.3 -512.4

Cysteine -51.1 -722.0

Glutamic acid -75.8 -551.7

Glutamine -71.5 -531.8

Glycine -39.0 -284.5

Histidine -70.4 -548.8

Isoleucine -60.8 -441.7

Leucine -60.8 -441.7

Lysine -67.3 -497.5

Methionine -62.2 -800.6

Phenylalanine -72.7 -554.8

Proline -54.2 -401.2

Serine -55.2 -399.0

Threonine -60.6 -438.3

Tryptophan -87.8 -686.4

Tyrosine -83.4 -630.1

Valine -55.3 -402.4

Nucleotide 

dAMP -150.1 -1456.3

dCMP -144.6 -1383.9

dGMP -160.8 -1531.5

dTMP -154.4 -1443.1
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Moreover, Figure 2.3 illustrates the comparison between the Gibbs free energy of amino acid and 

four nucleotides using Gaussian  and GAMESS resulting in the linear regression equation given 

by 𝑦 = 1.1𝑥 − 0.1 and the r-squared value is found to be 0.92 (the values are normalized to the 

maximum value of each methods). However, cysteine and methionine, both of which contain 

sulphur in their chemical structure, are the two outliers found in this fitting procedure.  

 

Figure 2.3 Comparison between the amino acid and nucleotide’s Gibbs free energy using 

Gaussian and GAMESS (normalized to maximum energy for each method), the dashed line 

shows the linear regression 𝑦 = 1.1𝑥 − 0.1 with 𝑅2 = 0.92. 

2.4.3 Probability and energy correlation  

In this section, we investigate the correlation between the energy and the occurrence frequency of 

amino acids [136]. Based on this information and the calculated codon energies we have generated 

a plot in Figure 2.4, which shows 𝑃AA−SP versus 𝐺codon. The probability distribution of amino 
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acids in human,  𝑃AA−SP, was obtained by averaging over the total number of amino acids found 

within the Swiss-Prot database [104,105,136]. Also, in Figure 2.4.a, amino acids are plotted using 

three colors based on their charge, such that blue star stands for positive amino acids, red for 

negative amino acids, and the rest are represented in green. From this figure, it is clear that leucine 

with six codons is the most probable amino acid while tryptophan with only a single codon is the 

least probable one. Second and third most probable amino acids are alanine and glycine, 

respectively. The second and third least probable amino acids are cysteine and histidine, whose 

energy is approximately in the middle of the energy range. A weak correlation can be found 

among the probability and the energy of codons. However, it is expected that amino acids with 

lower formation energy are more probable. In other words, the cheaper energy cost amino acids 

by nature are more probable. Figure 2.4.b, shows the plot of 𝑃AA−SP with respect to the Boltzmann 

factor pre-multiplied by the redundancy factor, i.e. 𝑔(𝑥)𝐸𝑥𝑝 (−〈𝐺𝐴𝐴〉
𝑘𝑇

), where 𝑔(𝑥) represents the 

amino acid redundancy of codons and 〈𝐺𝐴𝐴〉 represents the average energy of codons in each 

amino acid (the energy is normalized to the maximum value). By increasing the magnitude of the 

energy, the probability increases. 
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(a) 

 

(b) 

 

Figure 2.4 (a) The probability distribution of amino acids in human, 𝑃𝐴𝐴−𝑆𝑃 versus Gibbs 

energy of codons, 𝐺𝑐𝑜𝑑𝑜𝑛, (b) 𝑃𝐴𝐴−𝑆𝑃 versus the Boltzmann factor taking to account for the 
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corresponding the free energy of amino acids, 𝑔(𝑥)𝐸𝑥𝑝 (−〈𝐺𝐴𝐴〉
𝑘𝐵𝑇

), 𝑔(𝑥) stands for the amino acid 

degeneracy and 〈𝐺𝐴𝐴〉 represents the averaging over the Gibbs energy of codons that code for 

the corresponding amino acid. Electrostatic charge of the amino acids is shown by green 

(neutral), red (negative) and blue (positive) star. 

2.4.4 Investigating amino acid frequency across different species   

To obtain an insight into the consistency of the probability distribution for the occurrence of amino 

acids, we need to compare their abundances in different species. This involves considering the 

evolutionary tree of life [90,98]. Our analysis will aim to show an 

inferred evolutionary relationship within different biological species or other entities based on 

genetic characteristics and physical similarities/differences [90]. Some species are selected and 

analyzed somewhat judiciously to represent a spectrum from the simplest species to the most 

complex ones. The corresponding sequences were extracted from NCBI, a databank of biomedical 

and genomic information (http://www.ncbi.nlih.gov) [106,107]. The species we selected for 

analysis include: E. coli (Bacteria), Halobacteriales salinarum (Archaea), Haloferax volcanii 

(Archaea), Physcomitrella patens (Moss), Arabidopsis thaliana (Plants), Paramecium (Algae), 

Porphyra (Red algae), Cerevisiae (Fungus), sponge, spider (Protostomes), fruit fly (Drosophila 

melanogaster, Insects), octopus (Protostomes), starfish (Acanthaster planci, Echinoderms), 

salmon (Fish), frog (Western clawed frog, Amphibians), crocodile (Reptile), snake  (Python 

bivittatus, Reptile), pigeon (Birds), chicken (Gallus gallus, Birds), elephant (Loxodonta africana, 

Mammals), dog (Canis lupus familiaris, Mammals), rabbit (Mammals), chimpanzee (Pan 

troglodytes, Mammals), human (Mammals). All the sequences for different species are extracted 

from the UniProt data bank [104] and the occurrence frequency of each species amino acids has 
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been calculated such that the sum of the probabilities for each species equals one. In Figure 2.5.a 

and b, the occurrence frequency of leucine and tryptophan are shown and the rest of the amino 

acid plots are shown in Appendix A.1. Despite some fluctuations, especially for Sponge, it seems 

the amino acid distribution is consistent among the species. This is in itself an interesting finding 

indicating that amino acid abundance is a stable attractor in this multi-dimensional space, which 

has not been affected by billions of years of the evolution of life on this planet.  

To summarize, the average probabilities over all species considering the standard deviation versus 

𝑃AA−SP are plotted in Figure 2.5.c. . In addition, to check for the consistency of the obtained 

probabilities over different species, the probability of amino acid collected from Swiss-Prot, 

𝑃AA−SP , is displayed versus the average probability over the species. Clearly, the probabilities are 

consistent and the outliers are within the standard deviation. By taking another approach, 

occurrence frequency of all the amino acids has been plotted for each species in Figure 2.5.d. It 

can be seen that tryptophan is the least probable amino acid among all of the studied species 

(Archaea (Halobacteriales salinarum and Haloferax volcanii) and sponge) and leucine is the most 

probable amino acid in all species (except for Archaea (Halobacteriales salinarum and Haloferax 

volcanii), spider, sponge and octopus). All of the other plots have been shown in Appendix A.2.  
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(c) 

 

(d) 

 
 

Figure 2.5 (a) The occurrence frequency of tryptophan for different species, the average value 

and the standard deviations are (0.011 ± 0.001), (b) The occurrence frequency of leucine for 

different species, the average value and the standard deviations are (0.095 ± 0.005), (c) 

Probability of amino acids obtained from Swiss-Prot database for human versus the average 

probability over all species considering obtained from NCBI database, the standard deviation 
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showed by blue bars, and the amino acids are color coded based on their electrostatic charge, (d) 

amino acid occurrence frequency in E. coli by an increasing order. 

2.4.5 Probability distribution in terms of amino acid degeneracy 

In this section, we inquire whether there might be a correlation between the redundancy and the 

probability of occurrence of each amino acid. Figure 2.6.a, shows the amino acid probability 

distribution, 𝑃AA−SP [104], versus the number of corresponding codons or amino acid degeneracy. 

Clearly, an increase in amino acid degeneracy correlates with an increase in the amino acid’s 

probability of occurrence. As was discussed in section 2.4.3, tryptophan with one codon has the 

lowest probability and leucine with six codons has the highest probability. It is somewhat 

analogous to the lottery rules, the more tickets one buys, the higher the chance to win. Although 

this interpretation might not be precise for methionine with one codon and arginine with six 

codons, it seems to be precise for serine. Figure 2.6.b, also demonstrates the probability of amino 

acids in human in an increasing order. This illustrates the idea that the more codons for a single 

amino acid, the higher the probability of occurrence. In addition, some essential amino acids are 

also distinguished by pink circles in both plots. 
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(a) 

(b) 

Figure 2.6 (a) Amino acid probability of occurrence 𝑃AA−SP, obtained from Swiss-Prot database 

for human versus the amino acid redundancy number, 𝑁, (the number of coons code for each 

amino acid). The linear regression with the equation of 𝑦 = 0.01𝑥 + 0.02 with 𝑁𝑅𝑀𝑆𝐷 = 0.53 

is illustrated with a dashed line. (b) Amino acid probability distribution of human sorted with an 

increasing order of redundancy. In both plots the essential amino acids are circled in pink.  

1 2 3 4 5 6
N

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
A

A
-S

P

Gly  

Cys  

Als  

Asp  

Ser  

Asn  

Glu  

Thr  

Pro  

His  

Gln  

Met  Val  

  Phe  

Tyr  

Ile  

Trp  

Lys  

Arg  

Leu  

Amino Acids
Linear regression F(x)=0.01x+0.02, NRMSD=0.53
Essential amino acids



` 

30 

Next, we delve into the question of whether the frequencies of amino acids are a product of natural 

selection or a random permutation of the genetic code. There are two main hypotheses in this 

regard, called the Darwinian and non-Darwinian models, respectively [4,19,23,91,96,137–139]. 

In the Darwinian model (natural selection), the number of amino acids does not influence the 

probability of occurrence and the most optimum codon will be replaced. On the other hand, in the 

non-Darwinian model, permutations of amino acid would be directly dependent to the genetic 

code and it happens based on the random mutations [19,140]. To address the question of amino 

acid evolution, we calculated the expected probability of amino acids and codons using the 

frequencies of the DNA bases in the sequences for different species. In our dataset containing 

sequences for different species, the probability of adenine is 25.85%, cytosine is 25.7%, guanine 

is 25.92% and thymine 22.53% (only one strand has been considered). Knowing the probability 

of occurrence for A, C, T and G, the codon’s expected frequency can be calculated multiplying 

each nucleotide frequency and then summing up, for example, for histidine, CAT and CAC, the 

random expectation value for frequency would be [(0.25 × 0.25 × 0.22) + (0.25 × 0.25 ×

0.25)] =  0.032. In Figure 2.7, the observed probability of amino acids, obtained by averaging of 

the amino acid probability over the species, is plotted in terms of the expected codon probability. 

It may be concluded that the compared characteristics are correlating well and the outliers are 

within the standard deviation. In other words, the average composition among amino acids shows 

that the amino acids are a reflection of the genetic code in a passive manner. This means that the 

number of triplets coding for an amino acid will determine the frequency of the amino acid instead 

of having an optimal amino acid. This offers another support for the idea that the more codons 

exist for a single amino acid, the higher its probability of occurrence [90]. 
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Figure 2.7 Amino acid observed probability over the species versus the expected probability of 

amino acids. The linear regression of 𝐹(𝑥) = 0.7𝑥 + 0.02 with 𝑅𝑀𝑆𝐷 = 0.6 is demonstrated in 

the dashed line. Blue lines represent the standard deviation on the observed occurrence 

frequency for each amino acid. 

2.4.6 Entropy of amino acid in different species 

It is also interesting to consider the amino acid and codon entropy in different species. Using the 

described database for different species obtained from NCBI database [106,107] (section 2.4.4), 

the entropy values for amino acids and codons, respectively, are calculated based on the 

Boltzmann formula for a probability distribution in the following form 

𝑆𝛼_𝐴𝐴 = −𝜅𝐵∑𝑃𝑖𝑙𝑛𝑃𝑖

20

𝑖=1

 (2.5) 

where 𝑖 = 1, . . ,20 represents the entropy for twenty amino acids for all 18 studied species 

according to the phylogenetic tree of life (𝜅𝐵considered to be 1). Figures 2.8.a and 2.8.b show the 
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entropy of amino acids and codons in different species according to an evolutionary order. We 

expected to see an evolutionary trend, for example, an increasing trend in the entropy of E.coli, a 

simple bacterium to the human, the most complex organism. Comparing the entropy of human 

with E.coli, we can see there is a slight increase in the entropy but there can be found some species 

in between whose entropy values are even higher than that for the human. It should be stated here 

that there is no unambiguous quantitative measure of a given organism’s rank on the evolutionary 

scale. However, we have selected those species that span a wide range of evolutionary 

advancement so their relative position on an approximate evolutionary scale can be located using 

general arguments such that bacteria are less advanced than multi-cellular organisms and humans 

are more advanced than rodents, for example. 

It seems that evolution is a multiscale process and amino acid formation is its lowest scale. Our 

interpretation is that formation of multicellular organism is at a higher scale and it creates greater 

entropy by making differentiated cells. At a yet higher scale organs are formed with their own 

entropy generation. Hence, evolution at the level of amino acid formation did not necessarily 

progress in a linear fashion since it moves to multi-cellular structure organization and then on to 

an organ formation level. Despite an initial increase in the entropy, the process of evolution 

involves formation of more complex structures out of amino acids and other biomolecules later 

on. Therefore, we see that amino acid entropy does not have a monotonically increasing trend 

from E. coli to human. However, the difference in these entropies are very small in magnitude.   
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(a) 

(b)
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(c) 

Figure 2.8 Amino acid entropy (a) and codon entropy (b) calculated for different species using 

Eq. (2.5) where the Boltzmann factor is assumed to be 1. (c) Entropy of codons in terms of 

entropy of amino acids in different species. The species in the range from 3.98 to 4.05 are 

shown as an inset plot on the top. Each species is indicated by a blue star. The dashed line 

shows the linear regression with the equation of 𝐹(𝑥) = 0.21𝑥 + 2.02 and an acceptable 

𝑁𝑅𝑀𝑆𝐷 = 0.11. This shows that by increasing the amino acid entropy the codon entropy is 

also increased. 

Figure 2.8.c represents the entropy of amino acids as a function of codons for all the studied 

species. Although there are some outliers, there can be seen an increasing trend in the entropy 

level. The data points within the interval 𝑥 = [3.98 − 4.05] are not distinguishable due to the 

dense distribution of data points. Hence, they are plotted as an inset figure determined by a box. 

In Ref. [141], the authors studied the entropy of a living cell, especially the obtained information 

on assembling and protecting a living state of a cell. A living cell counts as an open system that 

is far from an equilibrium state and each cell exchanges material and heat with the environmet 
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cyclically [142]. This process involves absorption of high energy molecules by cells through their 

membranes in order to produce metabolic energy for maintaining the temperature in the cell and 

synthesizing the various cellular components [141,143]. Similar to the protein-synthesis process, 

in which genetic information contained in DNA is transcribed into RNA and translated into amino 

acids, the difference between the entropy of a protein and the corresponding entropy of the gene 

that codes for it is negative, it is expected that the entropy of a codon and the corresponding amino 

acid in different species follows the same pattern. In the former case (gene to protein), that entropy 

is reduced due to the relation between the entropy and the molar heat of reaction,  

𝑄 = 𝑇∆𝑆 (2.6) 

heat would be 𝑄 < 0 which would seemingly contradict the second law of thermodynamics. 

However, this process is a controlled process that consumes energy, much the same as is the case 

in the temperature and entropy decrease in a refrigerator that is balanced by work performed by 

the engine. In a living system, this energy comes from ATP and GTP molecules. To be specific, 

in protein synthesis, in order to form the aminoacyl-tRNA ester linkage, one ATP molecule is 

required for the transfer of RNA (tRNA) (another ATP molecule is needed to drive the reaction 

forward), one GTP molecule for tRNA binding to the ribosome,  and another GTP molecule as 

input for translocation. Therefore, three high energy molecules can be estimated as used in the 

protein synthesis for each amino acid. Note that here we are only interested in a simple estimate 

of the energy needed for protein synthesis [141,143] in which the additional costs of energy in the 

DNA transcription are excluded. We will compare the energy of ATP molecules needed for 

protein synthesis with the energy obtained using equation (2.6) for each amino acid. Using 

equation (2.5) and (2.6) the heat of reaction can be evaluated at 37 ℃ for E. coli and human to 
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give 𝑄𝐸𝑐𝑜𝑙𝑖 = −2.704 kJ/mol and 𝑄𝐻𝑢𝑚𝑎𝑛 = −2.91 kJ/mol, respectively. According to Ref. 

[141], the energy required for protein synthesis can be estimated as the energy of creating four 

high energy phosphate bonds per every amino acid. The energy of ATP hydrolysis into ADP can 

be estimated at around 30 kJ/mol, and the energy of GDP hydrolysis is also comparable to the 

ADP hydrolysis energy; however, it is highly substrate-dependent [143–151]. Hence, to add an 

amino acid to a peptide sequence at least ~90 kJ/mol of work is required by the cell in protein 

synthesis. Comparing this amount of energy with 𝑄𝐸𝑐𝑜𝑙𝑖  and 𝑄ℎ𝑢𝑚𝑎𝑛, it is clear that this value is 

higher by almost two orders of magnitude and hence more than sufficient to balance the associated 

entropy reduction. Furthermore, the protein folding process causes an additional entropy 

reduction of the system which could account for additional bridging of the energy balance [152–

154]. Another aspect worth considering is the change in the translational entropy of water 

molecules interacting with the protein’s surfaces and the surfaces of DNA molecules. These water 

molecules attracted to hydrophilic surfaces experience a loss of some degrees of freedom, 

particularly translational but also some rotational degrees. Hence, by including the above 

mentioned effects and modifying the entropy and the calculated energy of the cellular machinery, 

the entropy reduction paradox can be resolved by the first law of thermodynamics, i.e. the energy 

conservation law [153,155]. 

2.4.7 Amino acids probability of occurrence in body tissues 

It is also interesting to consider the probability distribution of amino acids across different body 

tissues and also check the consistency of amino acid distributions in different organisms. Using 

the BioGPS databank, sequences of various body tissues, such as heart, brain, kidney, and etc., 

were extracted and the corresponding probabilities of amino acids have been calculated [156,156–
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163]. Interestingly, the abundance of amino acids in different human body tissues is compatible 

with the human probability obtained in section 2.4.4. In Figure 2.9.a, the probability distribution 

of alanine is plotted for the studied cell types. It is clear that the occurrence probability of alanine 

is consistent among the human body tissues. The detailed list of the cell types as well as the twenty 

amino acid probability distribution plots can be found in Table A.1 in Appendix A.3. In addition, 

the average probabilities over body tissue in different cell types have been plotted and compared 

with the amino acid probability in the human in Figure 2.9.b. The results are fairly consistent 

except for arginine, which shows a slight difference between the body tissues and human average 

(variations less than 1% are considered to be acceptable). To conclude, amino acid probability 

distributions across the human body tissues are consistent with the overall probability of amino 

acids in human. Figure 2.9.c shows the calculated Shannon entropy for the studied body tissues 

and it demonstrates a high consistency of entropy among different body tissues [164]. In addition, 

in Figure 2.9.d the Shannon entropy of amino acid is illustrated for the studied body tissues.  
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(a) 

(b) 

Alanine probability of occurence in the body tissues

ol
fa

ct
or

y 
bu

lb
he

ar
t

en
do

th
el

ia
l c

el
l

pr
os

ta
te

 g
la

nd
ci

ng
ul

at
e 

co
rte

x
ad

re
na

l c
or

te
x

tra
ch

ea
se

m
in

ife
ro

us
 tu

bu
le

cu
ltu

re
 c

on
di

tio
n:

C
D

4+
 c

el
l

br
ai

n
to

ns
il

co
lo

n
sp

in
al

 c
or

d
sk

in
ve

rm
ifo

rm
 a

pp
en

di
x

in
te

rs
tit

ia
l c

el
l

K-
56

2 
ce

ll
ki

dn
ey

sm
oo

th
 m

us
cl

e
cu

ltu
re

 c
on

di
tio

n:
C

D
34

+
ce

ll
ly

m
ph

ob
la

st
cu

ltu
re

 c
on

di
tio

n:
C

D
56

+
ce

ll
m

ed
ul

la
ob

lo
ng

at
a

pa
rie

ta
ll

ob
e

ge
rm

ce
ll

th
yr

oi
d

gl
an

d
ad

re
na

lg
la

nd
su

bt
ha

la
m

ic
 n

uc
le

us
H

L-
60

ce
ll

pi
ne

al
gl

an
d

po
ns

pa
nc

re
at

ic
 is

le
t

na
sa

ln
er

ve
tri

ge
m

in
al

ga
ng

lio
n

gl
ob

us
 p

al
lid

us
ly

m
ph

no
de

pl
ac

en
ta

cu
ltu

re
 c

on
di

tio
n:

C
D

8+
ce

ll
re

tin
a

to
ng

ue
ba

si
s 

pe
du

nc
ul

ic
er

eb
ri

at
rio

ve
nt

ric
ul

ar
no

de
m

on
oc

yt
e

D
AU

D
Ic

el
l

hy
po

ph
ys

is
sk

el
et

al
m

us
cl

e
de

nd
rit

ic
 c

el
l

br
on

ch
ia

le
pi

th
el

ia
lc

el
l

sa
liv

ar
y 

gl
an

d
sm

al
li

nt
es

tin
e

bl
oo

d
lu

ng
su

pe
rio

r c
er

vi
ca

l g
an

gl
io

n
er

yt
hr

oi
d

pr
og

en
ito

rc
el

l
ca

ud
at

e
nu

cl
eu

s
am

yg
da

la
pa

nc
re

as
ce

re
be

llu
m

te
st

is
sp

in
al

 g
an

gl
io

n
oc

ci
pi

ta
ll

ob
e

bo
ne

m
ar

ro
w

pr
ef

ro
nt

al
co

rte
x

th
ym

us
Le

yd
ig

ce
ll

M
O

LT
-4

ce
ll

ad
ip

oc
yt

e
R

AJ
Ic

el
l

B
-ly

m
ph

oc
yt

e
th

al
am

us
ca

rd
ia

c 
m

us
cl

e 
fib

er
hy

po
th

al
am

us
ut

er
us

co
lo

re
ct

al
 a

de
no

ca
rc

in
om

a
ce

ll
ov

ar
y

te
m

po
ra

ll
ob

e
liv

er

0

0.02

0.04

0.06

0.08

0.1

0.12

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n 

of
 a

la
ni

ne
 in

 b
od

y



` 

39 
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Figure 2.9 (a) Probability distribution alanine in different body tissues (listed in Table A.1 in 

the Appendix) the average value and the standard deviation for alanine is 0.07 ± 0.001, (b) 

comparing the average probability distribution of all 20 amino acids over the body tissues 

including the error bar (in green bars) with the amino acid occurrence frequency in human 

obtained from Swiss-Prot database 𝑃AA−SP (blue bars), (c) the Shannon entropy of all amino 

acids for different studied body tissues is shown to be highly conserved across the body tissues, 

and, (d) summation over the Shannon entropy for all body tissues based on different amino acid 

concentrations shown in an increasing order. Leucine has the highest entropy 17.17 ± 0.001 

and tryptophan has the lowest entropy 4.12 ± 0.002 and the highest and the lowest standard 

deviations are respectively for histidine ±0.001 and lysine ±0.0046. 

2.4.8 Amino acids probability of occurrence in mitochondrial protein 

Since mitochondrial DNA codes for different proteins, it is interesting to investigate if there are 

any variations in the probability distributions resulting from these two types of DNA sequences. 

Hence, we have next analyzed the occurrence frequency of mitochondrial proteins for all twenty 

amino acids. Based on the compiled data (received courtesy of Dr. Eric. A. Schon, Columbia 

University; personal communication) about gene products found in fungi and animal 

mitochondria, an attempt was made to obtain all the genes available in either animals 

(213 proteins) or fungi (516 proteins), from NCBI database [106, 107] (see Table A.2 for the 

name of the genes). As an example, Figures 2.10.a, and b represent the occurrence frequency 

of animal and fungi mitochondrial proteins for proline. Within a good approximation, the 

frequency of the proline is constant over all the selected proteins. In Figure 2.10.c, the average 

overall occurrence frequency of different proteins is illustrated for each amino acid for animal 

(orange) and fungi (dark green) cases. The mitochondrial proteins for animal and fungi cases 

are reasonably consistent. In Figures A.4 and A.5 in the Appendix, the plots of mitochondrial 

protein for animal and fungal is provided for all the amino acids. 



` 

41 

(a) 

(b) 

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Animal mitochondrial protein

0

0.02

0.04

0.06

0.08

0.1

0.12

P
ro

lin
e 

oc
cu

re
nc

e 
fre

qu
en

cy
 in

 a
ni

m
al

 m
ito

ch
on

dr
ia

l p
ro

te
in



` 

42 

(c) 

Figure 2.10 (a) Occurrence frequency of 213 animal mitochondrial proteins (listed in Table 

A.2) for proline (standard deviation ±0.0009), (b) occurrence frequency of 516 fungal

mitochondrial proteins for proline (listed in Table A.2) (standard deviation ±0.003), (c) average 

amino acid probability distribution for animal and fungal mitochondrial proteins is shown in 

orange and green respectively, the average standard deviation is ±0.001 [103]. 

2.4.9 Probability of codons in different species 

As mentioned earlier, 64 triplets of DNA base pairs (or RNA bases) code for twenty amino acids 

(with three codons representing stop instructions) and each amino acid is denoted by one or more 

codons. Now our aim is to obtain the codon frequency for the species studied in section 2.4.6. The 

corresponding sequences were extracted from NCBI, a databank of biomedical and genomic 

information [106,107]. Due to the huge and scattered types of data, the averages for each codon 

over the species were calculated and plotted with the standard deviation for each codon. In 

Appendix A.5 Figure A.6, the plots of all 64 codons in each species are given. The consistency of 
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the occurrence frequency of codons is illustrated in Figure 2.11. Comparing this with the result 

found in section 2.4.4, where leucine has the highest probability of occurrence, it can be observed 

that only one codon of leucine has the highest probability. This codon also has the lowest energy 

among all the leucine codons. Although this conclusion is valid for leucine, histidine, cysteine 

and asparagine, it is not possible to generalize it for all the amino acids (See Figure A.6).

Figure 2.11 Occurrence frequency of codons in different species from E. coli to human among 

synonymous codons (normalized to the highest frequency codon values). The frequencies were 

obtained using the NCBI database. Each codon is represented by the one-letter representation 

code followed by a number (See Table A.3 for the conversion to the three letter code and 

orders). The corresponding codons are grouped together along the x-axis. For example, for 

glycine these are G1, G2, G3 and G4. Bars represents the standard deviation from the average 

value of probability for each codon and it ranges between ±0.002 to ±0.014. 
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2.5 Conclusion 

In this work, we have analyzed the energy and probability of occurrence of amino acids and the 

corresponding codons in order to find a possible correlation between the amino acid and codon 

energy values and the corresponding frequency of amino acids found in human and a diverse set 

of species according to the evolutionary tree of life. Our results show that there seems to be no 

correlation between amino acid energy and the corresponding frequency of occurrence in human. 

However, we found that amino acids with higher degeneracy are more probable. In addition, 

occurrence frequencies of amino acids and codons were also studied across different human 

organs and body tissues as well as specifically for mitochondrial proteins in fungi and animals. 

The results show that amino acid distribution in different species and different organs in human 

are quite consistent and the fluctuations around the mean are within the standard deviation. On 

the other hand, there are some essential amino acids that the human body cannot produce by itself 

and they need to be obtained from nutrients to survive. This trend could not be explained well by 

the energetic or probabilistic consideration approach, however it indicates a stable attractor in the 

protein composition space, which can be counted as a manifestation of biochemical stability of 

biological systems in terms of their amino acid composition. We also examined the paradoxical 

aspect of entropy reduction across the species in terms of amino acid probability distributions 

compared to the corresponding nucleic acid distribution. By analyzing the process of transcription 

and translation, it can be concluded that an explanation of this paradox is given by the energetic 

input involving ATP and GTP molecules that are required in these processes. 
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Chapter 3 - Testing Amino Acid-Codon Affinity Hypothesis Using 

Molecular Docking 𝟑3 

3.1 Abstract 

Genetic code refers to a set of rules that assign trinucleotides called codons to amino acids in the 

process of protein synthesis. Investigating the genetic code’s logic and its evolutionary origin has 

always been both intriguing and challenging. While the correspondence rules between codons and 

amino acids in the genetic code are well-known, it is still unclear whether those assignments can 

be explained based on energetic or/and entropic arguments. As an attempt at deciphering basic 

thermodynamic rules governing DNA translation, we used molecular docking to investigate the 

ability of amino acids to bind to their corresponding anticodon compared to other codons. Based 

on docking scores, which are expected to correlate with binding affinity, no correlation with 

genetic correspondence rules was observed suggesting a more subtle process, other than direct 

binding, to explain codon-amino-acid specificity. 

 3.2 Introduction 

DNA is a molecule that stores the genetic information of a living organism from generation to 

generation. It has a double helix structure made of two strands coiled around each other. Based 

on the central dogma of molecular biology, DNA is involved in protein synthesis, a two-step 

process, which includes transcription and translation [7,10,90,165,166]. In the transcription 

 
3 This chapter is partially based on a paper which is under review as: Arbabi Moghadam S., Preto J., Klobukowski 
M., and Tuszynski J.A., “Testing amino acid-codon affinity hypothesis using molecular docking” in BioSystems 
journal. 
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process, the DNA molecule is transcribed into a messenger ribonucleic acid (mRNA). The copied 

mRNA carries all the genetic information for the synthesis of a target protein and leaves the 

nucleus of the cell. With the help of the transfer ribonucleic acid (tRNA) in the cytoplasm, the 

mRNA directs protein synthesis in a process called translation [7,10,90,165,166]. The tRNA is 

responsible for bringing amino acids together in the translation process in order to make a peptide 

chain. Translation occurs in the ribosome, a macromolecular complex made of RNA and 

polypeptides, in which the small ribosomal subunits bind to mRNA and initiator tRNA, which 

adheres to the triplets of nucleotides (codons) and eventually induce the assembling of amino 

acids into polypeptide chains. Although this process are well understood, a dynamic or even 

thermodynamic description, specifically and quantitatively explaining the codon-amino-acid 

correspondences, is still lacking. There is indeed a strong motivation to study those 

correspondences from the point of view of energetics and structure complementarity, for example 

to investigate whether direct binding of those two actors together may explain such specificity. 

The issue of whether specific amino acids are coded by certain codons in the genetic code based 

on their chemical interactions was raised in earlier publications [28,167]. The stereochemical 

hypothesis postulates that assigning a codon to an amino acid involves a stereochemical basis 

[28]. There are several experimental studies on whether the amino acids bind to their cognate 

anticodons or not for some specific amino acids such as tryptophan, isoleucine, histidine, tyrosine, 

arginine and phenylalanine but not for all [10,28,168–175]. However, the question of codon-

amino-acid specificity has not yet been tackled from a structural perspective.  

In this study, the goal is to look at this issue using a computational structure-based approach. 

Since the amount of molecular biological data is increasing dramatically, computational tools to 

estimate and analyze molecular interactions are critical to probe protein or DNA-related 
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mechanisms. Among all the computational methods for drug design such as molecular dynamics 

and homology modeling, molecular docking counts as an essential tool enabling to estimate the 

binding affinity quickly as well as to determine the binding mode of a ligand to a protein on an 

atomic scale [176]. For this study, we use a combination of steered molecular dynamics (SMD) 

[9,177–182] and molecular docking to probe the possibility of direct interactions between amino 

acids and their corresponding anti-codons which could eventually be used as a molecular basis 

for genetic correspondence rules. However, as a result of our computations we found that there is 

no obvious trend that can be seen from the results of amino-acid-codon docking. Although further 

improvements to our model can be made, e.g. regarding receptor flexibility, the inability of 

docking scores to select the correct codon-amino-acid pairs consistent with the genetic code, gives 

some indication that direct binding between the two entities may never occur during the 

translation process and that other mediators in the ribosome machinery may be involved that 

explain genetic code assignment. 

3.3 Material and methods 

RNA-structures preparation. A single-stranded RNA helix was created using MOE software 

containing all the 64 codons of the genetic code in sequence, thus resulting in a 192-nucleotide-

long RNA structure, which was further protonated at neutral pH. Due to the length of the RNA 

strand, the structure was split into 8 fragments with 8 codons, corresponding to 24 nucleotides 

each. 

Steered Molecular Dynamics. Each RNA fragment was used as a starting structure for our SMD 

simulations. SMD was run using Amber 14 subsequent to minimization (See Appendix B.1 for 

more details). For minimization, 2500 steps of steepest decent followed by 5000 steps of 
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conjugate gradient were performed. For each SMD run, the pulling force was applied to the 

backbone oxygen of each residue at both ends of the RNA fragment. Minimization and SMD 

simulations were run using Amber’s multisander utility allowing to run multiple independent 

simulations in parallel. Simulations were performed in implicit solvent using a generalized Born 

model and the FF14SB force field. The temperature was set to 298K and a time step of 0.002ps 

was used for the SMD simulation. Regarding pulling parameters, a spring constant of 6 

kcal/mol/A2 and a pulling speed of 100 Å/𝑛𝑠 were chosen. Figure 3.1 illustrates RNA-strand 

pulling with the SMD method [9,177–186], showing the structure before (helix strand) and after 

the pulling process (unfolded structure). 

 

Figure 3.1 Pulling the RNA strand using SMD simulation. Top figure shows a folded RNA 

structure containing codons and the bottom plot represents unfolded structure for the first 9 

nucleotides after performing SMD simulations. 

Amino-acids preparation. Initial structures of the 20 standard amino acids were generated with 

MOE’s Protein Builder utility. The structures were protonated at neutral pH and energy-
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minimized using MOE. The minimized amino acids were then used as ligands in our docking 

simulations. 

Docking. For each RNA fragment, the final structure sampled at the end of SMD simulations was 

used in our docking simulations. Visual inspection confirmed that each structure was completely 

unfolded. Since we are interested in estimating the ability of each amino acid to bind each 

anticodons/codon docking of each amino acid was performed separately to each codon excluding 

inter-codon regions. Therefore, the total number of codon-amino-acid docking simulations was 

20 ∗ 64 = 1280. In the present study, docking was carried out via the 3dRPC method. 3dRPC is 

a new computational method that is particularly convenient to predict three-dimensional RNA-

protein interactions [187–190]. 3dRPC’s scoring function is a combination of two methods 

including a built-in force-field-based score and a FFT-based score computed from the RPDOCK 

algorithm [187,189,190] (See Appendix B.2 for more details). 

3.4 Results and discussion 

In this work, molecular docking was performed to test the hypothesis whether amino acids have 

a tendency to bind to their corresponding anticodons/codon from the genetic code. Consistent 

with the native double helical shape of DNA, RNA molecules are usually modeled as helical 

structures although in the ribosome machinery, the straightened structure of the mRNA is 

involved in the translation process. In order to better understand this situation within a cell 

environment, RNA helices made of the 64 existing codon types (8 RNA fragments made with 8 

codons each) were first unfolded using SMD that were subsequently used as targets in docking 

experiments [177]. A summary of docking results is reported in Table 3.1 showing, for each amino 

acid, the top-scored codon, i.e. the codon that led to the best score from docking simulations (2nd 
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column). We also reported the (best-ranked) codon, which is genetically-assigned to each amino 

acid as well as its rank (3rd column). We expected to see that amino acids had higher binding 

affinities to their respective anticodons/codon in comparison to other codons. However, the 

docking results disprove the hypothesis, and there was no obvious trend showing that amino acids 

were binding to their anticodon except leucine, which has the strongest binding score to UUG, 

one of its codons. Several possible reasons can be discussed here. As an example, as mentioned 

elsewhere [10,28], glycine has a preference to bind to its anticodon but does not bind to a hairpin-

bearing phenylalanine or tryptophan anticodon. In the same study, alanine was also found to prefer 

binding to its anticodon but not to a hairpin-bearing serine or phenylalanine anticodon [10,28]. 

However, our docking results did not correlate with these experimental results [10,28]. For 

example, there were no obvious trends in binding of serine to any of its anticodon/codons more 

than to the other codons. It had a higher binding score and stronger binding affinity to codons 

such as I2 (AUC) C2 (UGC) and L4 (CUC). Based on our results, none of the amino acids tends 

to bind to their anticodon except for phenylalanine, which has the highest binding score to its 

anticodon, which is glutamic acid (GAA). Table 3.1 also shows the number of mutual categories 

that each amino acid shares with the amino acid genetically-assigned to the top-scored codon (4th 

column). Since amino acids can be categorized in different groups based on their chemical 

features [90], it is tempting to investigate whether each amino acid shares common features with 

the amino acid genetically-assigned to the top-scored codon. Notably, amino acid groups overlap 

meaning that an amino acid can be assigned to more than one group. These groups include polar, 

aliphatic, hydrophobic, hydroxylic, aromatic and small/tiny as shown in Figure B.1 in the 

Appendix B. For instance, based on these characteristics, alanine is involved in three categories 

and the third codon of proline, P3, which has the highest binding score to alanine, is in one of the 
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categories (See Table B.1 for amino acid/codon notation and order in the Appendix B). About 

30% of amino acids do not match a category with the top-scored codon and only 15% of the amino 

acids assigned to the same group with the top-scored codon. Moreover, 70% of the amino acids 

belong to at least one mutual group with their highest ranked codon. 

Table 3.1 Amino-acid-codon docking results using the 3dRPC scoring method. The table 

lists the top-scored codons, the best-ranked codon to an amino acid and its rank and number of 

mutual group highest ranked codon shared with the amino acid. 

Amino acid Codon with highest score 
 Codon assigned to amino 

acid from genetic code 
(rank) 

Number of mutual 
categories/total number 

of categories 

Alanine P3 A2 (8) 1/3 

Arginine P3 R2 (3) 0/3 

Asparagine R2 N2 (21) 1/3 

Aspartic acid R4 D2 (8) 2/4 

Cysteine K1 C1 (12) 1/4 

Glutamic acid R5 E1 (30) 2/3 

Glutamine P3  Q1 (30) 0/2 

Glycine P3 G3 (6) 1/2 

Histidine L2 H2 (31) 1/4 

Isoleucine V1 I1 (5) 2/2 

Leucine L2 L2 (1) 3/3 

Lysine P1 K1 (43) 0/3 

Methionine P4 M (37) 0/1 

Phenylalanine E1 F2 (42) 0/2 

Proline  C1  P1 (5) 1/1 

Serine  I2 S3 (9) 0/2 

Threonine H2 S3 (24) 2/4 

Tryptophan K1 W (27) 1/3 

Tyrosine I2 Y1 (27) 1/3 

Valine  H2 V3 (29) 1/3 
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For further analysis, we studied the highest and the lowest binding score of each amino acid to 

find any correlation between the amino acids and the corresponding codons falling into the same 

category, based on the charge, size, and other characteristics. For instance, we investigated 

whether an amino acid, like alanine belonging to the hydrophobic, small and tiny groups, has a 

better/worse binding score than a codon in the same/different group. However, our results show 

that some of the amino acids bind strongly to a codon in the same group, although some other 

counterexamples were found. Figure 3.2 shows that isoleucine has a stronger binding affinity to 

the V1 codon (GUU) where they are involved in two mutual groups; they both belong to the 

aliphatic and hydrophobic categories. On the other hand, isoleucine has the lowest binding affinity 

to the S4 codon (UCG) and they are not involved in any group together. In another example, 

arginine has a stronger binding affinity to P3 codon (CCA), which is not similar to arginine in 

terms of its chemical characteristics, and has the weakest binding affinity to its codon, namely R6 

(AGG). These two amino acids are examples that demonstrate that no obvious trend could be 

extracted from these docking results. In addition, the plot of the docking score for each amino 

acid to all 64 codons is shown in Figure B.2 in the Appendix B, and the codon for each amino 

acid is represented by different color (red).  

Authors in refs. [10,28] claimed that amino acids bind selectively to their cognate anticodons in 

the hairpin experiment. Therefore, their results showed that a complex of four nucleotides (C4N) 

RNA’s hairpin, with the help of aspartic acid-valine dipeptide, bound to its cognate amino acids 

of aminoacyl-adenylates [10]. In the present study, single amino acids (rather than dipeptide 

molecules) were docked onto each codon as we expect this situation to better account for the 

translation process in the ribosome machinery. On the other hand, codons have several single 
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bonds in their chemical structures. These single bonds create a huge conformational space for a 

given molecule, with various allowed dihedral angles.  
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Figure 3.2 Amino acid-codon docking scores for isoleucine (a) and arginine (b) using 

3dRPC scoring method. The red bars illustrate the cognate codon that codes for the 

corresponding amino acids. Isoleucine anticodons are N1, D1 and Y1 while arginine anticodons 

are T4, A2, S4, P4, S1 and P1. This figure shows that there is no correlation found between the 

amino acid and the corresponding codon or anticodon. 

Figure 3.3 shows different docked poses of alanine to GGA along with their docking scores. The 

3dRPC docking score for the yellow, green and orange is -5.001, -4.58 and -4.46, respectively. In 

addition, we used another software called HDOCK for glycine docking to the 64 codons to 

confirm the results of the 3dRPC method. Figure B.3 shows the glycine docking scores for all 64 

codons using 3dRPC and HDOCK. Needless to say, the results for each method can only be 

qualitatively compared, and the obtained values of the two methods are not expected to be 

identical. However, we were able to compare the trends. It was observed that all four codons of 

glycine are scattered, and no obvious trend could be observed to prove the hypothesis that an 

amino acid preferentially binds to its cognate anticodon/codon(s).   

 

 

 
 

  
Figure 3.3 Right: Top three best docked poses of GGA to alanine with respect to the docking 

score. Alanine is displayed using yellow, green and orange in different poses with various 
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docking scores, -5.001, -4.58 and -4.46, respectively. The GGA codon is represented by the 

cyan molecular surface. Left: all three docking poses shown in one complex structure.  

3.5 Conclusions 

In the present work, we have reported our attempts to find a relation between the binding affinity 

of a codon to its corresponding amino acid in the translation process. To tackle this problem, we 

explored whether amino acids preferentially bind to their genetically-assigned anticodon/codons. 

Previous publications [10,28] claimed that glycine (alanine) preferentially bind to their anticodons 

and do not bind to a hairpin-bearing phenylalanine or tryptophan (serine or phenylalanine) 

anticodon. To investigate these findings computationally, we used molecular docking algorithms 

to determine amino acids’ affinity for RNA codons. Using SMD, RNA structures were stretched 

out from a helix form to a linear strand. A total of 1280 molecular docking simulations were 

performed, one for every codon-amino acid pair. The docking results for each amino acid turned 

out to be randomly distributed between codons, and no obvious trend could be extracted. This 

lack of correlation might be related to the fact that  we did not consider the structure for docking 

as a hairpin experiment, which was a simplified version of what occurs in nature within the 

ribosomal machinery. Another reason could be that in the hairpin experiment, a peptide chain was 

used rather than a single amino acid, while we considered the RNA or ligand as triplets, which 

may result in significant changes in the obtained results. Finally, the receptor (i.e., RNA) 

flexibility was not considered in our docking protocol but may improve correlation with the 

genetic code rules. We expect that the fairly small size of a single codon makes the conformational 

space of the receptor relatively fast to explore so that more accurate results can be provided in 

future publications. 
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Chapter 4 - Probability Distributions of p53 mutations and their 

Corresponding Shannon Entropies in Different Cancer Cell Types 𝟒4 

4.1 Abstract  

Due to the vital role of the p53 protein mutations in about 50 percent of the human cancers, in this 

work, we investigate the probability distributions of different mutations in the p53 across various 

human cancer cells. Using the p53 database (IARC TP53), we employed statistical analysis to 

determine the frequency of occurrence of amino acid mutations across various cancer types. We 

show that amino acid hotspot mutations of p53 are highly frequent in cancers regardless of their 

codon location in the sequence, and at least one of the hotspot mutations has the highest 

probability in various cancers. We also calculated the associated Shannon entropy values for all 

the possible mutations in a number of cancer types and compared them to the five-year survival 

rate for various cancer types. We have found no evidence of correlation between mutation entropy 

and 5-year survival probability values. 

4.2 Introduction  

A permanent change in the nucleic acid sequence of a gene is known as a gene mutation. A 

mutation stems from an error in the DNA replication process, meiosis, mitosis, or for any other 

DNA damage reason. The smallest mutation happens when a single base pair (in a codon) is 

replaced by another base pair. In synonymous mutations, replacing a base pair does not change 

 
4 This chapter is partially based on a paper submitted as: Arbabi Moghadam S., Omar S. I., and Tuszynski J.A., 
“Probability Distributions of p53 Mutations and their Corresponding Shannon Entropies in Different Cancer Cell 
Types” in Theoretical Biology and Medical Modeling journal. 
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the codon that codes for the amino acid in the corresponding protein peptide sequence [191–193]. 

In contrast, in nonsynonymous mutations, the amino acid will be changed. Gene mutations can be 

attributed to two different origins, namely somatic (acquired) or hereditary (also called germline) 

mutations [191–193]. A somatic mutation occurs locally in a tissue or an organ, often due to some 

environmental factors such as UV radiation. Parents have a significant role in the former category 

since these hereditary mutations or germline mutations are existed in every cell of the body 

[52,194]. Hence, considering the importance of p53 in the pathogenesis of human cancer gives us 

a great motivation to study the probability of amino acids represented by p53 mutations in 

different cancer types in order to find any correlation between them. 

TP53 codes for the tumor suppressor protein called p53 [195,196]. In human DNA, TP53 is 

located on the 17th chromosome (17P13.1). TP53 codes for over 15 various isoforms of its 

product protein denoted p53 [195–197]. The p53 protein is made of 393 amino acids (aa), which 

are divided into five main domains: 

1-N-terminal transactivation domain (aa 1-43 and 44-60), which is involved in the activation of 

different transcription factors, binds to transcription factors and plays the role of a mediator in 

some interactions [198–201]. 

2-Pro-rich domain (aa 61-100), which is important for p53 stability and also has a function in 

transcription activation and induction of transcription-independent apoptosis [201–203]. 

3-DNA binding domain (DBD) (aa 101-300), which primarily binds to DNA. It is also responsible 

for binding with the p53 corepressor [201,203]. 

4-Tetramerization domain (aa 301-323), which plays a role in the regulation of the oligomeric 

state of p53 [201,204–206]. 
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5-Basic C-terminal domain (aa 360-393), which is important for the regulation of the sequence 

[204,207]. 

The DBD of p53 is made of an immunoglobulin like β-sandwich of two antiparallel β-sheets, 

providing a scaffold for a flexible DNA-binding surface. This DNA-binding surface is created by 

two large loops stabilized by a zinc atom and a loop–sheet–helix motif [208–212]. Zinc binding 

is critical for correct protein folding and requires a reduction of thiol groups on cysteines 

[197,208–213]. In its role as a tumor suppressor protein, p53 binds to the DNA regulating the cell 

cycle [197,201,213]. The p53 protein controls the following cellular processes: (a) cell 

proliferation, (b) cell death, (c) nutrient deprivation, (d) nucleotide depletion, (e) hypoxia and 

oxidative stress and (f) hyperproliferative signals [201]. These and other cellular functions are 

performed by p53 primarily by triggering apoptosis, DNA repair, regulation of energy metabolism 

and anti-oxidant defense [197]. Stimuli that activate p53 include DNA damage, nutrient 

deprivation, nucleotide depletion, hypoxia, oxidative stress, and hyperproliferative signals 

[197,201,213]. The activated protein plays its role by virtue of being a transcription factor as it 

binds to the promoter region of different genes to activate their expression in order to induce the 

above-listed functions as well as cell cycle arrest when required [197,201,213]. 

Numerous studies show that virtually all cancer types exhibit p53 protein mutations, and several 

studies used computational methods, such as molecular docking, to find pharmacological 

compounds that are predicted to restore the function of the p53 mutant to its wild-type state 

[50,214–230]. It has been hypothesized that on their own, these mutations can lead to tumor 

initiation, and progression [50,214–225]. Due to the importance of preventing the formation of 

cancer in multicellular organisms and the significant role of p53 protein in conserving the cell’s 

stability, p53 has been described as “the guardian of the genome” [213,231–240]. A vast majority 
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of the p53 mutations, approximately 95%, take place in the DNA binding domain. Interestingly, 

about 40% of these amino acid mutations happen in only six specific positions, known as hotspot 

mutations, in which the frequency of the hotspot mutations is much higher than in other mutations. 

These hotspot mutations involve the following specific residue changes R175H, G245S, R248W, 

R249S, R273H, R282Q [52]. The most common type of mutation in cancer is mainly missense, 

nonsense and deletion but the pattern of mutation is different in different ethnic groups, which 

also depends on the geographical location [241]. Most mutations in the DBD region are missense; 

in contrast, outside this region, missense mutations represent only about 40%, the majority of 

mutations being nonsense or frameshift [49]. TP53 mutations occur in nearly all types of cancer, 

such as: ovarian, esophageal, colorectal, head and neck, laryngeal and lung cancers, sarcomas, 

breast, brain, testicular cancer, cervical cancers malignant melanoma, and leukemia. Mutations 

have been found to be more abundant in advanced stages of the disease. Interestingly, it was also 

found that in elephants, cancer prevalence was significantly lower than expected based on 

extrapolation from other species, including humans, which stems partly from the number of copies 

of the p53 protein in elephants and humans, namely twenty copies in elephants and one in humans 

[238,239]. The p53 gene counts as the highly frequent mutated gene in human cancers, and more 

than half of the human tumors include deletions or mutations of the p53 gene bases. For instance, 

individuals having a single p53 gene’s functional copy develop Li-Fraumeni syndrome (LFS), 

which leads to their predisposition to developing cancer. These rare conditions create multiple 

autonomous tumors in different tissues. This demonstrates the importance of studying p53 

mutations and their consequences for cell division. 

Using different experimental biological techniques, such as gene knockout in mice, has revealed 

vital information regarding the mechanisms of initiation and progression of cancer in molecular 
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level [242–244]. When the p53 protein binds to the promoter region of the p21 gene, it activates 

its transcription and hence its expression. The p21 protein interacts with a cyclin-dependent 

kinase2 (CDK2), which is a protein normally involved in cell division [197,213,245–248]. The 

formation of the p21-CDK2 complex inhibits the function of the latter protein and hence 

progression of the cell-cycle is inhibited [197,213,245–248]. Mutations in p53 can, therefore, 

inhibit its transcriptional activity and hence alter its control over the cell cycle. Thus, cell division 

would progress without control and consequently, a tumor can form. A recent study by Baugh et 

al., discussed the causes behind the hotspot mutations in p53 [52,249], which were listed as: 1) 

the mutations in the gene alter the structure of the expressed protein, 2) in a specific DNA 

sequence, such as a methylated cytosine residue in a CpG dinucleotide, changing it to thymidine, 

causes hotspot mutations to occur at these residues, 3) environmental mutagens create specific 

changes in the p53 gene and 4) the altered protein causes cancer due to an allele-specific gain of 

function [52]. In the present work, we investigate the probability distribution of p53 mutations 

among the various amino acids and across a number of cancer types. Below, we discuss the 

methodology employed to this end. 

4.3 Methodology 

For this study, we extracted information regarding the probability distributions of the available 

p53 mutations from the IARC TP53 database (http://p53.iarc.fr/). This database has organized and 

gathered all the published information on the TP53 gene variations from peer-reviewed literature 

on human cancers since 1989 [213]. The IARC dataset provides valuable information on TP53 

gene variations and mutations associated with each human cancer sample. This information 

includes TP53 germline mutations, somatic mutations, synonymous or nonsynonymous 
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mutations, functional classifications (based on the transcriptional activity), exon numbers, and 

several other details. Among these categories, TP53 somatic mutations were mainly considered 

in this research. Somatic mutations refer to the mutations in sporadic (as opposed to genetic) 

cancers reported in primary tissues, cell lines, and fluids in the body. 

We are interested in finding how frequent is a specific conversion of an amino acid into another 

amino acid in the given gene sequence. For instance, we need to know the frequency of mutating 

arginine to the other 19 amino acids and compare it with other amino acids, so that this would 

result in a matrix of 19 × 19 possibilities or 20 × 20 including non-mutated cases. In the gene 

sequence, different types of mutations occur, and they are recorded in the p53 database as well. 

The mutation types are missense, silent, nonsense, frameshift, splice, insertions or in-frame 

deletions, intronic, and upstream mutations in the 5’ or 3’ UTR (untranslated region). In missense 

mutations, which are in the nonsynonymous substitution category in the genetic code, a single 

nucleotide is altered and the produced codon codes for a different amino acid. This type of point 

mutation changes the protein sequence encoded. Silent mutations are those types of point 

mutations in which the changed nucleotide still codes for the same amino acid, and the encoded 

protein remains the same. The other mutation type involves nonsense mutations that arise when a 

point mutation of a nucleotide is an introduction of a stop codon. In this case, this mutation in the 

DNA sequence leads to a premature termination of a protein [213,250]. Splice mutations refer to 

the mutations that delete, insert or change the number of nucleotides in the specific site at which 

splicing occurs during the processing of precursor messenger RNA into mature messenger RNA 

and are located in the two first and last intron nucleotides, which remain conserved and hence, 

nominated for change in splicing. Also, intronic mutations happen in introns that are located 

outside of the splicing site. In human cancers, approximately 90% of the mutations are missense 
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mutations, and the produced protein by these mutations is not sufficiently able to bind to the DNA 

sequence to regulate the transcriptional pathway of p53 [52]. Among the 189 different mutations 

in the trinucleotides, eight of them are referred to the codons that contain about 28% of all p53 

mutations. Therefore, in our calculations, we are interested in finding the frequency of missense 

and silent mutations in p53 protein in different types of cancer. Using the IARC database, all wild-

type to mutants of p53 in 75 different cancer types have been found. Table 4.1 shows all the 

human cancer types studied in the present work. 

Table 4.1 Cancer types studied with respect to p53 mutations [213]. 

Topography Database 
Total Topography Database 

Total Topography Database 
Total 

Adrenal gland 65 Liver 1196 Prostate 373 

Anus 5 Lung 3047 Pyriform sinus 12 

Biliary tract 73 Lymph nodes 762 Rectosigm. Junct. 40 

Bladder 1516 Meninges 2 Rectum 691 

BONES (limbs) 53 MOUTH (floor) 94 Renal pelvis 58 

BONES (other) 231 MOUTH (other) 689 Salivary gland 22 

Brain 1840 Nasal cavity 190 Sinuses 219 

Breast 2874 Nasopharynx 62 Skin 1052 

Cervix uteri 117 Nerves 79 Small intestine 13 

Colon 1144 Oropharynx 259 Soft tissues 406 

Colorectum, nos 1758 Other digestive org. 3 Spinal cord 5 

Corpus uteri 217 Other endocrine gl. 7 Stomach 978 

Endocrine glands, 
nos 1 

Other female gen. 
org. 25 Testis 29 

Esophagus 1873 Other head & neck 6 Thymus 21 

Eye and adnexa 29 Other male gen. org. 2 Thyroid 121 

Female genital org., 
nos 

3 Other respir. Syst. 22 TONGUE (base) 13 
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Gallbladder 110 Other sites 4 TONGUE (other) 208 

Gum 81 Other urinary org. 28 Tonsil 18 

Head & neck, nos 665 Ovary 2303 Unknown site 25 

Heart/med/pleura 13 Palate 28 Up. Urinary tract, 
nos 

172 

Hematop. System 925 Pancreas 490 Ureter 26 

Hypopharynx 183 Parotid gland 29 Urinary tract, nos 5 

Kidney 147 Penis 14 Uterus 73 

Larynx 437 Peritoneum 46 Vagina 3 

Lip 30 Placenta 2 Vulva 108 

The probability distribution of each of the mutations to other amino acids has been obtained 

considering the somatic mutations among all the cancer diseases listed in Table 4.1. Each mutation 

of the p53 protein is associated with a number of the human samples in the IARC database. The 

probability for each mutation from the wild-type sequence is obtained using the formula  

𝑃𝑖𝑗 =
𝑛𝑖𝑗
𝑁

 (4.1) 

where 1 < 𝑖 < 20 refers to each amino acid for all somatic mutations available in the database, 

𝑛𝑖𝑗 is the frequency of missense or silent mutations involving 𝑖𝑗 amino acid pairs, 𝑁 is the total 

number of mutations reported in the database and  ∑ 𝑃𝑖𝑗𝑖𝑗 = 1. Figure 4.1 shows glycine to alanine 

mutations of p53 protein in different human cancer types extracted from the IARC database. The 

total number of mutations for this amino acid is 38, and they are distributed unevenly between the 

17 cancer types. For instance, liver cancer has a total number of 1198 mutations, among which 8 

stem from glycine to alanine mutations, which gives us the probability distribution for this specific 

amino acid. Similarly, using equation (4.1), the probability distribution for other amino acid 

mutations were extracted.  
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Figure 4.1 Somatic mutations of glycine to alanine in different cancers, IARC TP53 database, 

R20, July 2019 [213]. 

4.4 Results and Discussion 

Having used the IARC TP53 database, the amino acid mutations of p53 protein in different human 

cancer have been analyzed. Similar to the example of glycine to alanine shown in Figure 4.1, all 

of the amino acid mutations can be presented as the elements of a matrix whose size is 20 × 20. 

In the p53 protein, some of the amino acids do not mutate as reported in the IARC database. From 

all 400 possible permutations, 189 cases were mutated and the rest (400-189 = 211) did not 

involve any mutations. The terminology “mutated” means that there is at least one mutation 

between two amino acid regardless of the number of repetitions in cases in (IARC TP53 database, 

R20, July 2019) [213]. For instance, there is some information about glycine to alanine mutations 

in the database and this number is 38 and it is repeated in 17 different cancer types.  
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Moreover, mutations for each category were extracted based on wild-type to mutant changes in 

amino acids, including missense and silent mutations. Figure 4.2.a shows the number of all 

mutations found in different cancer types for each amino acid. In this figure, for each type of cancer, 

blue bars show the total number of mutations and the red bars show missense and silent mutations. 

Lung cancer has a total number of 3047 different reported mutations (shown by blue bars in Figure 

4.2.a), which is the highest number of mutations compared to the other cancers. Among this 

number, 1880 are missense and silent mutations (shown by red bars in Figure 4.2.a). Other 

cancers, such as bladder and breast cancer are the second and third highest mutated cancers, 

respectively. Summation over the elements of the 20 × 20 mutation matrix has been calculated 

using equation (4.2) as: 

𝑃𝑀,𝑆 = ∑(𝑝𝑖𝑗)
𝛼

20

𝑖,𝑗=1

 (4.2) 

where 𝑃𝑀,𝑆 refers to the sum over all missense and silent mutations, 𝑝𝑖𝑗 stands for the occurrence 

frequency of each mutation (i to j), and 𝛼  refers to the cancer type (1 < 𝛼 < 75). The results of 

equation (4.2) are presented in Figure 4.2.b. Since we only focus on the missense and silent 

mutations, the summation over all the probabilities is not equal to 1. The rest of the contributions 

are for the other types of mutations (in order to compare Figure 4.2.a and 4.2.b for each cancer 

type, the same order is chosen for the cancer type, in the x-axis, see Appendix C Figure C.1). In 

addition, Figure 4.3.a and b show the summation over occurrence frequency, 𝑝𝑖𝑗, of all cancer 

types in one graph. The red bars demonstrate the hot spot mutations of p53 protein, which are 

R175H, G245S, R248W, R249S, R273H and R282Q. Mutation of arginine to histidine, R-H, 
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arginine-to-tryptophan R-W, arginine-to-glutamine R-Q, arginine-to-cysteine R-C, glycine-to-

serine G-S and arginine-to-serine R-S, are the top-six highly mutated amino acid pairs. 

(a) 

 

(b) 
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Figure 4.2 (a) Total number of amino acid mutations for each cancer type in decreasing order, 

blue bar shows all types of mutations recorded for each cancer type in the IARC database, the 

red bar shows the missense and silent mutations for each cancer type. (b) Sum over all mutation 

occurrence frequencies in each cancer type as given in equation (4.2) (The summation reaches 

one for each cancer if other types of mutations are taken into account (not only missense and 

nonsense). 
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Figure 4.3 (a) Summation over all the occurrence frequencies of p53 mutations in 75 different 

cancers types, red bars show the occurrence frequency of p53 hotspot mutations, (b) to represent 

these large data points better, the same data are shown in 4 subplots in the same order as plot (a) 

and the hotspot mutations are labeled in red. 

Among all 75 studied cancer types, 79% have at least one arginine-to-histidine mutation, 73% 

have at least one arginine to glutamine, 71% have arginine to tryptophan. For the next two hotspot 

mutations, this number drops to 55% for glycine to serine and 48% for arginine to serine. 

Moreover, in ~84% of the cancer types at least one of the hotspot mutations has a higher 

frequency compared to other mutants. Figure 4.4 shows the mutation frequency of p53 in two of 

the highly mutated cancer types, which are lung (a) and breast (b) cancers. In Figures C.2 in the 

Appendix C, a histogram of all the mutations in the different types of cancer has been plotted 

separately. Similarly, in most of them, the highest frequency mutations belong to one or more 

hotspot mutations of p53 protein. 
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(a) 

 

(b) 

 

Figure 4.4 Frequency of amino acid mutations in the p53 protein in (a) lung and (b) breast 

cancer using the IARC database (for only missense and nonsense mutations). The red bars in 

both plots represent the hotspot mutations of the p53 protein. They are more frequent in these 

cancer types as well. 

In order to produce clear and easy to understand graphs, two-dimensional (2-D), and three- 

dimensional (3-D) heat map representations of the amino acid mutations’ frequency have been 

plotted. Figure 4.5.a demonstrates a 20 × 20 matrix with the occurrence frequency of the 

corresponding mutations of the p53 protein in 2-D and Figure 4.5.b is a 3-D representation, in 

which zero means there is no amino acid mutation in that cancer type. The results are color-coded 
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starting from blue, which means there were no mutations, to yellow as the frequency of that p53 

mutation increases. As mentioned earlier, lung cancer has been reported to have the highest 

number of mutations among all cancers. Arginine to histidine and arginine to tryptophan are the 

highest frequency mutations in lung cancer.  

(a) 

 
(b) 
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Figure 4.5 The 2-D (a) and 3-D (b) plot of p53 mutation frequency in lung cancer obtained 

from the IARC database. The color bar changes from blue to yellow, which represents the 

mutation frequency from 0 to 0.04. Zero means there is no mutation from Wild-Type to that 

specific mutant reported in the database, and the higher the frequency of mutations, the more 

yellow it is represented in both (a) and (b) plots. For each mutation, the Wild-Type to mutant is 

represented by the first letter representation of the amino acids shown in pink.  

Next, we investigate the dissimilarity factor relative to a reference number. First, we consider lung 

cancer, which has the highest number of reported mutations. The dissimilarity factor ∆𝛼𝛽 is 

defined as 

∆𝛼𝛽=
√∑ (𝑝𝑖𝑗

𝛼 − 𝑝𝑖𝑗
𝛽
)
2

20
𝑖,𝑗=1

𝑁
=
√∑ (𝛿𝑖𝑗

𝛼𝛽
)
2

20
𝑖,𝑗=1

𝑁
 (4.3) 

where 𝑁 is the normalization factor, 𝛼 corresponds to all the other cancer types relative to cancer 

type 𝛽, and  𝑝𝑖𝑗  is the occurrence probability of a mutation of i to j. Equation (4.3), ∆𝛼𝛽, varies 

from zero to one (0 < ∆𝛼𝛽< 1), whereby 1 indicates that the two compared cancer type mutations 

are dissimilar (the higher the value, the lower the similarity). Moreover, the similarity factor can 

be obtained from ∆𝛼𝛽′= 1 − ∆𝛼𝛽. In Figure 4.6.a and 4.6.b, dissimilarity and similarity 

coefficients are plotted for all the 75 cancer types. It should be noted that both plots in Figure 4.6 

are complementary to each other. One conclusion that can be readily drawn is that most of the 

cancers have similar mutations to those found in lung cancer. Furthermore, some of them, such 

as cancer of the endocrine glands, placenta and meninges, which have a small number of 

mutations, are less likely to have similar amino acid mutations to those in lung cancer and hence 

the similarity factor is low. 
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(a)  

 
(b)  

 
Figure 4.6 Mutation dissimilarity factors (a) and mutation similarity factors (b) obtained from 

Eq. (4.3) for all cancers with respect to the lung cancer (these plots are complementary to each 
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other). Lung cancer has been assumed to be the reference due to its highest number of mutation. 

The more similar to the reference cancer type, the closer the value to zero is (i.e., similarity for 

lung cancer to itself is zero and it means they are identical in terms of mutation types).  

As a general calculation, by taking each cancer as a reference, dissimilarity and similarity factors 

have been obtained for all other cancer types and plotted in Figure 4.7 in the Appendix C, which 

shows a 75 × 75 symmetric matrix for dissimilarity factors. As explained in Equation (4.3), 𝛿𝑖𝑗
𝛼𝛽 

represents the value of each matrix element. The diagonal elements are zero since they represent 

the dissimilarity of a mutation frequency of each cancer to itself, 𝛿𝑖𝑗
𝛽𝛽
= 0 and the off-diagonal 

elements show the dissimilarity factor between two cancer types. 

 

Figure 4.7 The dissimilarity factors between different cancer types. Using Eq. (4.3), a 75 × 75 

matrix of dissimilarities has been obtained with respect to each cancer type, 𝑖 = 𝑗 columns are 

zero since they show the dissimilarity factors of each cancer to itself, and 𝑖 ≠ 𝑗 shows the 
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dissimilarity of each cancer to the rest of the 74 cancer types. Color bar changes from blue to 

yellow to show the dissimilarity of each cancer to the reference cancer type. 

The next stage to this approach is to consider the entropy values corresponding to the probability 

distribution of mutations in different cancers. Entropy is an important concept in studying cancer 

from the view point of information theory and statistical thermodynamics [251–259]. Based on 

the second principle of thermodynamics, in an isolated system, entropy always increases. Also, at 

the macroscopic level, entropy is a statistical measure of disorder [260]. Entropy can be computed 

as a system-specific entity that allows us to predict the gap between the present and estimate the 

final stage of a biological system based on the statistics of macroscopic characteristics of the 

system. The dynamics of the carcinogenesis process, which, among other processes that are 

dysregulated, is associated with the misplacement of internal cellular information leading to 

pathological transformations. It can be quantified by accumulation of genomic mutations, which 

can be studied by using concepts from information theory [260]. Previous studies showed that 

Shannon entropy is a useful concept for creating a theoretical model of carcinogenesis and 

prognostic models for patient survival. In this study, we apply the Shannon entropy relation to 

obtain the entropy of p53 mutations in different cancers [259–262]. The Shannon entropy of a 

system, which is characterized by a probability distribution 𝑝𝑖𝑗𝛼 , can be computed using the relation  

𝑆𝛼 = −𝜅𝐵∑𝑝𝑖𝑗
𝛼  𝑙𝑛(𝑝𝑖𝑗

𝛼 )

20

𝑖,𝑗

 (4.4) 

where 𝑝𝑖𝑗𝛼  is the occurrence probability of an amino acid mutation and 𝜅𝐵 is the Boltzmann 

constant, 𝜅𝐵 = 0.0083144621 
𝑘𝐽

𝑚𝑜𝑙𝐾
. With the help of equation (4.4) the entropy values for the 
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studied mutations for various cancers are obtained and plotted in Figure 4.8. As can be clearly 

seen, lung cancer has the highest entropy. Recall that lung cancer also has the highest number of 

p53 mutations. However, this trend is not seen in the rest of the cancer types. For example, bladder 

and ovarian cancers are the second and third ranked cancers, respectively, in terms of the number 

of mutations, although here they rank fourth and eleventh among the cancers ordered by their 

mutation entropy values.  

 

 

Figure 4.8 The Shannon entropy for different cancer types calculated from Eq. (4.4) (using the 
occurrence frequency obtained from the IARC database). 

Also, it is interesting to find out whether there is a correlation between the entropy of p53 

mutations for a given type of cancer and the corresponding 5-years survival rate. Therefore, the 

5-year survival rates for the available cancer type can be compared using the available databases. 

LU
N

G
S

O
FT

 T
IS

S
U

E
S

LY
M

P
H

 N
O

D
E

S
B

LA
D

D
E

R
P

R
O

S
TA

TE
B

R
E

A
ST

S
K

IN
H

E
A

D
&N

E
C

K
, N

O
S

M
O

U
TH

 (o
th

er
)

E
S

O
P

H
A

G
U

S
O

V
A

R
Y

H
E

M
A

TO
P

. S
YS

TE
M

LA
R

Y
N

X
S

TO
M

A
C

H
O

R
O

P
H

A
R

Y
N

X
N

A
S

A
L 

C
A

V
IT

Y
S

IN
U

S
E

S
TO

N
G

U
E

 (o
th

er
)

P
A

N
C

R
E

A
S

C
O

R
P

U
S

 U
TE

R
I

H
Y

P
O

P
H

A
R

Y
N

X
G

A
LL

B
LA

D
D

E
R

B
R

A
IN

K
ID

N
E

Y
LI

V
E

R
C

O
LO

N
B

O
N

E
S

 (o
th

er
)

C
E

R
V

IX
 U

TE
R

I
TH

YR
O

ID
U

P
. U

R
IN

A
R

Y
 T

A
R

C
T,

 N
O

S
A

D
R

E
N

A
L 

G
LA

N
D

G
U

M
R

E
C

TU
M

N
E

R
V

E
S

C
O

LO
R

E
C

TU
M

, N
O

S
R

E
N

A
L 

P
E

LV
IS

M
O

U
TH

 (f
lo

or
)

V
U

LV
A

U
TE

R
U

S
B

IL
IA

R
Y 

R
A

C
T

LI
P

B
O

N
E

S
 (l

im
bs

)
P

E
R

IT
O

N
E

U
M

U
N

K
N

O
W

N
 S

IT
E

R
E

C
TO

S
IG

M
. J

U
N

C
T.

TE
ST

IS
TH

Y
M

U
S

P
A

R
O

TI
D

 G
LA

N
D

O
TH

E
R

 F
E

M
A

LE
 G

E
N

. O
R

G
.

P
A

LA
TE

E
Y

E
 A

N
D

 A
D

N
E

X
A

O
TH

E
R

 U
R

IN
A

R
Y

 O
R

G
.

U
R

E
TE

R
N

A
S

O
P

H
A

R
Y

N
X

S
A

LI
VA

R
Y

 G
LA

N
D

S
M

A
LL

 IN
TE

S
TI

N
E

H
E

A
R

T/
M

E
D

/P
LE

U
R

A
TO

N
G

U
E

 (b
as

e)
O

TH
E

R
 R

E
S

P
IR

. S
Y

S
T.

TO
N

S
IL

P
E

N
IS

O
TH

E
R

 E
N

D
O

C
R

IN
E

 G
l.

P
Y

R
IF

O
R

M
 S

IN
U

S
O

TH
E

R
 H

E
A

D
&

N
E

C
K

O
TH

E
R

 S
IT

E
S

U
R

IN
A

R
Y

 T
R

A
C

T,
 N

O
S

S
P

IN
A

L 
C

O
R

D
FE

M
A

LE
 G

E
N

IT
A

L 
O

R
G

., 
N

O
S

V
A

G
IN

A
A

N
U

S
O

TH
E

R
 D

IG
E

S
TI

V
E

 O
R

G
.

M
E

N
IN

G
E

S
P

LA
C

E
N

TA
O

TH
E

R
 M

A
LE

 G
E

N
. O

R
G

.
E

N
D

O
C

R
IN

E
 G

LA
N

D
S

, N
O

S

Cancer types

0

5

10

15

20

25

30

35

40

E
nt

ro
py

 (J
/m

ol
K

)



` 
 

 
 
  

76 

Using the statistical information provided by the Surveillance, Epidemiology, and End Results 

(SEER) Program, which is an authoritative source for cancer statistics located in the United States, 

the statistical data on 5-years survival of cancer patients were collected. There is a dedicated 

websites at https://seer.cancer.gov/. SEER collects and curates information on cancer cases from 

all around the world. The 5-years survival rates were collected based on the patient’s information 

for the period 2009-2015. These values are obtained comparing survival rates in people who are 

diagnosed with cancer with those who are healthy without diagnosed cancer, having the same age, 

sex, and race [263,264]. Figure 4.9 shows a plot of entropy as a function of the survival rate for 

all the available cancer types in the SEER database. The data are scattered and only a weak 

correlation can be found [263,264].  

 

Figure 4.9 Mutation entropy of the p53 protein as a function of 5-years survival rate (using 

SEER database). Each of the cancer types is shown with a blue star symbols and a weak 

correlations can be seen.  
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As discussed earlier, if it is equally likely for any amino acid to be mutated to any other amino 

acid, then it is a reasonable expectation to have the same probability distribution for any amino 

acid mutations in every cancer type. However, our results showed that some of the amino acids 

are more probable than others in general. Moreover, in recent decades studies specifically focused 

on the p53 protein showed that there are some hotspot mutations in well-defined locations of the 

p53 sequence. Our results show that most of the p53 hotspot mutations have a higher occurrence 

frequency as well. These observations are in contradiction to the random permutation theory and 

indicate that the mutation location in the genetic sequence is important for a mutation to happen 

and it is not a random event. Therefore, there should be a correlation between the occurrence 

probability of a mutation and the location in the p53 protein sequence. Despite the findings in this 

study, mutations in p53 could still be random. However, p53 might activate cell death in abnormal 

cells if the mutations do not affect the wild-type activity of p53 [195,265]. If this is the case, then 

only cells with p53 mutations that alter the protein’s tumor suppressor activity would be reported 

and hence bias the results showing that some mutations are more likely than others. 

4.5 Conclusions 

In this study, the frequency of p53 mutations of amino acid has been studied in a large number of 

cancer types. In terms of the number of somatic mutations, lung cancer has the highest number of 

such mutations. After lung cancer, breast, ovarian, esophageal, brain, and colorectal cancers have 

the next highest numbers of mutations. We showed that in ~84% of somatic mutations, at least 

one of the hotspot mutations has the highest frequency. The top-five highly mutated amino acids 

are; arginine-to-histidine, arginine-to-tryptophan, arginine-to-glutamine glycine-to-serine, 

arginine-to-serine. Moreover, the Shannon entropy of the mutations was also computed and 
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analyzed as a possible characteristic of the associated malignancy. Lung cancer has the highest 

entropy value of all cancer types and also the highest number of p53 mutations. However, our 

results indicate there is no correlation between the entropy of p53 mutations and the number of 

mutations for all cancer types in general. We also examined the hypothesis that entropy may be 

correlated with the five-year survival rate for the available cancers types as listed in the SEER 

database. Except for the lung cancer, which is the most highly mutated cancer, no obvious trend 

could be found between the p53 mutation entropy and either the five-year patient survival rate or 

the occurrence frequency of mutations across all cancer types. 
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Chapter 5 – Cell Death and Survival Due to Cytotoxic Exposure 

Modeled as a Two-State Ising System 𝟓5 

5.1 Abstract 

Cancer chemotherapy agents are assessed for their therapeutic utility primarily by their ability to 

cause apoptosis of cancer cells and their potency is given by an EC50 value. Chemotherapy uses 

both target-specific and systemic-action drugs and drug combinations to treat cancer. It is 

important to judiciously choose a drug type, its dosage, and schedule for optimized drug selection 

and administration. Consequently, the precise mathematical formulation of cancer cells response 

to chemotherapy may assist in the selection process. In this work, we propose a mathematical 

description of the cancer cell response to chemotherapeutic agent exposure based on a time-tested 

physical model of two-state multiple-component systems near criticality. We describe the Ising 

model methodology and apply it to a diverse panel of cytotoxic drugs administered against 

numerous cancer cell lines in a dose-response manner. The analyzed dataset was generated by the 

Netherlands Translational Research Center B.V.(Oncolines). This approach allows for an accurate 

and consistent analysis of cytotoxic agents’ effects on cancer cell lines and reveals the presence 

or absence of the bystander effect through the interaction constant. By calculating the 

susceptibility function, we see the value of EC50 coinciding with the peak of this measure of the 

system’s sensitivity to external perturbations. 

 
5 This chapter has been partially published as a research article as: Arbabi Moghadam S., Rezania V., and Tuszynski 
J. A., “Cell death and survival due to cytotoxic exposure modeled as a two-state Ising system”, Royal Society of 
Open Science (R. Soc. Open Sci), 7: 191578, doi: https://doi.org/10.1098/rsos.191578]. 
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5.2 Introduction  

Chemotherapy is a standard cancer therapy modality based on the concept of cytotoxicity of drugs 

or drug combinations inflicting lethal damage to cancer cells but being less damaging to normal 

cells. Cytotoxicity refers to killing or damaging a viable cell by chemical compounds or 

pathogens. Toxic agents usually damage molecular targets such as metabolic sites, signaling 

proteins or DNA, which are essential to the cell’s reproductive ability and survival. The result is 

dose-dependent cell death or inhibition of its proliferative potential. Unlike radiotherapy, which 

specifically targets cancer cells in a tumor, chemotherapy is typically applied systemically and is 

not site-specific unless combined with target-specific antibodies or via special drug delivery 

strategies. Hence, it may also affect metastasized cells distant from the primary tumor site and 

also the entire body of the patient with concomitant detrimental side effects [56–59]. Besides the 

collateral damage to healthy cells, another major shortcoming of chemotherapy is the emergence 

of drug resistance in the population of tumor cells. This is commonly due to the heterogeneity of 

tumor cells, some of which are sensitive to a given drug and others resist it. Due to the survival 

of the fittest, the resistant subpopulation proliferates when exposed to a cytotoxic agent while 

sensitive subpopulation is eradicated making the tumor more malignant over time. Consequently, 

we should judiciously choose a pharmacological agent, its dose and scheduling, which can be a 

very complex, multi-factorial problem, considering both tumor destruction and the collateral 

damage to the healthy tissues. Furthermore, chemotherapy-transfected cells are likely to host toxic 

anabolites resulting from the therapy, which can directly transfer into neighboring untransfected 

cells through diffusion resulting in a secondary wave of damaged cells. This refers to a so-called 

bystander effect extensively reported in the literature [61–71]. In general, it describes the 
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population of dead and/or damaged cells that are not directly targeted by either chemotherapy or 

irradiation. 

Cytotoxicity mechanisms are commonly analyzed using the Hill model representing an empirical 

sigmoidal fit describing the binding equilibria in ligand-receptor interactions [266] based on a 

simple reaction scheme: 𝑅 + 𝑛𝐿
𝐾𝑑
↔ 𝑅𝐿𝑛, where R is the receptor, n (called the Hill coefficient) is 

the number of ligands L, and Kd is the dissociation constant. Despite its simplicity, the Hill 

equation is not always physically plausible and the Hill coefficient n can only be accurately 

estimated for extremely positive cooperative interactions among multiple ligand binding sites. 

Even for a reaction with a high degree of positive cooperativity, e.g. binding four oxygen 

molecules to hemoglobin, the Hill coefficient ranges from 1.7 to 3.2 rather than 4 [266]. Therefore, 

other physically plausible reaction schemes such as a “two-state’’ (activated and inactivated) 

receptor model have been proposed to account for complex cases with various ligand-receptor 

cooperativities [266]. The main limitation of such models is a large number of adjustable 

parameters required to fit experimental data, e.g. seven parameters are needed for the hemoglobin-

oxygen two-state receptor model. In addition, the observed bystander effects cannot be addressed 

by the above models. For these reasons, we propose a more accurate and better-motivated 

modeling approach to cytotoxicity, following on its successful applications in physics and other 

fields. To improve a statistical analysis of the effects of chemotherapeutic agents on tumor cells 

we adopt the concepts introduced for phase transitions and multistability. This is appropriate for 

cells under cytotoxic attack since cytotoxicity (and irradiation) is a dynamical process, which 

triggers a stochastic transition from a proliferating cell (live) to a non-proliferating cell (dead or 

senescent). As a result, cytotoxicity can be viewed as a transition between two different biological 

states present in replicas of manifestly identical systems (cancer cell cultures). Phase transitions 
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have been successfully analyzed in many-body systems in physics, chemistry, and even social 

sciences and economics. Phase transitions ranging from the solid ↔ liquid ↔ gas transitions at 

the macroscopic level to the superconductor-metal transition at the microscopic level, have been 

exquisitely understood employing statistical model systems such as the Ising or the Landau model 

(see SI Text for details). Bistability is a common motif in systems undergoing phase transitions, 

which can exist in two distinct states and switch between them at the transition point in response 

to a change in the so-called control parameters [60]. The system’s response is reflected in its order 

parameter, i.e. a macroscopic property that is zero in the disordered phase and nonzero in the 

ordered phase. The so-called generalized susceptibility function is the first order derivative of the 

order parameter with respect to the control parameter and it describes the system’s sensitivity to 

perturbations. Generalized susceptibility of an infinitely large system diverges at the critical point 

(the tipping point) as the system switches from one stable phase to the other. Biological systems 

such as cancer cells positioned at a threshold of viability can indeed be viewed as dynamical 

systems at criticality, which exhibit clear bistability characteristics between being alive and dead. 

This perspective leads to a meaningful connection between biology and physics providing a 

physical model with a better mathematical insight into cancer cells’ behavior [60,267–269,40]. 

The Ising model, first introduced to statistical physics by Wilhelm Lenz in 1920, is one of the 

simplest examples of dynamical systems undergoing a phase transition [270]. An Ising system 

must be at least two-dimensional in space, in the absence of an external magnetic field, for a 

spontaneous phase transition to occur, i.e., no phase transition takes place in one-dimensional 

Ising systems [40,60,267–269,271–274]. The Ising model is a standard mathematical model of a 

phase transition in a lattice of spins ½ (with only two states: +1/2 and -1/2) where each spin is 

allowed to interact with its neighbors [76,77]. Beneath a characteristic temperature called the 



` 
 

 
 
  

83 

Curie temperature, the Ising system exhibits a ferromagnetic phase (spins are aligned along the 

same axis) while above this temperature a paramagnetic phase is stable where spins are disordered 

and no net magnetization of the sample exists. The transition from a non-magnetized state to a 

magnetized state depends on both temperature and the applied magnetic field’s strength. 

Generally, the Ising model corresponds to any N-dimensional lattice whose each site is occupied 

by a spin with two possible states, pointing either ‘up’ or ‘down’ [59]. The mathematical notation 

used for the spin variable is 𝑠𝑖 = ±1/2 where +1/2 refers to spin up and -1/2 refers to spin down. 

In this study, the Ising model has been applied to both interacting and non-interacting generalized 

spin systems [59,76–82]. We arbitrarily assign a spin-up state to a live cell while a spin-down 

state to a dead cell. This bystander effect [61,72–75,275] may account for the cell-cell interactions 

in a manner similar to spin-spin interactions between neighboring spins, hence we propose a 

model whereby a damaged cancer cell might affect the survival status of the neighboring cells. 

Due to the influence of neighboring cells on individual cell fate, the drug concentration reduces 

the chance of survival of other cancer cells in the neighborhood [61]. These types of interactions 

are distance-dependent, so the farther apart the neighboring cells are, the weaker their intercellular 

interactions [61,72–75,275]. 

Our aim is to implement the spin-1/2 Ising model of phase transitions as an elegant and powerful 

mathematical approach to study a cancer cells exposed to cytotoxic chemotherapeutic agents (See 

SI Text for details) [60,72–82,270–273,275–280]. Recently, a similar approach has been applied 

to ionizing radiation response of tumors [61]. In analogy to the Ising model for ferromagnetic 

materials with long-range interactions, these authors proposed to study tumor response to a 

uniform ionizing radiation field. In particular, using the mean-field approach individual cells are 

averaged out and characteristic features such as cell survival curves, tumor control probabilities, 
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fractionation and bystander effects emerge naturally showing that the bystander effects cannot be 

ignored at low-dose radiotherapy [61]. Below, we elaborate on the use of the Ising model to a 

dose-response cancer cell survival dataset provided by the Netherlands Translational Research 

Center B.V. (Oncolines). These experimental data correspond to inhibition profiles obtained in a 

uniform manner for numerous cell lines exposed to a number of chemotherapy agents [83,84]. 

5.3 Methods 

Similarly to the Ising model with two spin states, up and down, the effect of chemotherapeutic 

drugs on cancer cells is associated with two possible outcomes: either survival or death states of 

cancer cells, respectively. For simplicity, we assign two states as 𝑠𝑖 = {0,1}, where 𝑠𝑖 = 0 refers 

to the live state of the 𝑖th cell and 𝑠𝑖 = 1 represents the dead state of the 𝑖th cell. Following the 

radiation-induced bystander effect [61,62], we invoke the bystander effect for chemotherapy-

exposed cancer cells in a culture by introducing a classical Ising Hamiltonian applicable for 

interacting spin systems as: 

ℋ = −∑𝐽𝑖𝑗𝑠𝑖𝑠𝑗

𝑁

𝑖𝑗

+∑ℎ𝑖(1 − 2𝑠𝑖)

𝑁

𝑖=1

 (5.1) 

where 𝑖𝑗 indices are summed over all nearest-neighbour cell pairs at site 𝑖 and 𝑗, 𝐽𝑖𝑗  denotes the 

strength of the interaction between neighbouring cells 𝑖 and 𝑗 (namely the strength of the bystander 

effect), and ℎ𝑖 represents the potency of the external agent at location of 𝑠𝑖. 𝐽𝑖𝑗 = 0 means there 

is no interaction between cells. Similarly to spin systems, it is expected that the interaction 

strength is always positive for all cells 𝑖 and 𝑗, so 𝐽𝑖𝑗 ≥ 0, and the summation ∑ 𝐽𝑖𝑗
𝑁
𝑖𝑗  over all the 
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neighbouring cells is finite. The partition function and the probability of finding the system in 

state {𝑠1, 𝑠2, … , 𝑠𝑁} with 𝑠𝑖 = {0,1} is obtained in a standard manner as [61] 

𝑍 =∑∑…

𝑠2

∑𝑒−ℋ(𝑠1 ,𝑠2,…,𝑠𝑁)/𝑘𝐵𝑇

𝑠𝑁𝑠1

 (5.2) 

𝑃(𝑠1, 𝑠2, … , 𝑠𝑁) =
𝑒−ℋ(𝑠1,𝑠2 ,…,𝑠𝑁)/𝑘𝐵𝑇

𝑍
 (5.3) 

where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the absolute temperature in Kelvin. The 

corresponding average value of the order parameter (magnetization for spins or survival rate for 

cells) 𝑀𝑖 = 〈𝑠𝑖〉, is found from Eq. (5.1)-(5.3) as 

2𝑀𝑖 − 1 = 𝑘𝐵𝑇
𝜕

𝜕ℎ𝑖
(ln(𝑍)) (5.4) 

This order parameter in the case of cytotoxicity corresponds to the average number of surviving 

cells at a given concentration of the toxic agent acting on them. In general cell survival is a 

function of temperature, which is typically kept constant in cell-based assays. Future experiments 

with temperature as a variable parameter, could further test the model. However, in cancer cell 

system, the most commonly used control parameter affecting cell viability is the toxic agent’s 

concentration. In what follows, non-interacting and interacting cell situations are discussed 

separately [61]. 

The case of non-interacting cells: In this case, the interaction strength, 𝐽𝑖𝑗  vanishes, which 

corresponds to the absence of the bystander effect. The partition function in the non-interacting 

case 𝑍𝑁𝐼 with a constant field h, which represents the control parameter, is  
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𝑍𝑁𝐼 = (𝑒
−ℎ/𝑘𝐵𝑇 + 𝑒ℎ/𝑘𝐵𝑇)𝑁 (5.5) 

The order parameter, i.e. the survival rate for cancer cells, 𝑀, is calculated as 

𝑁(2𝑀 − 1) = 𝑘𝐵𝑇
𝜕 ln(𝑍𝑁𝐼)

𝜕ℎ
= tanh (

ℎ

𝑘𝐵𝑇
) (5.6) 

From the partition function, we then calculate the probability of the system occupying each of the 

two states. It is especially interesting to calculate the probability of the state in which all cancerous 

cells are dead and there would be no correlations between cells, i.e. 𝑠𝑖 = 1, which is obtained 

using Eq. (5.5) as 

𝑃𝑁𝐼(1, 1,… ,1) = (
𝑒ℎ/𝑘𝐵𝑇

𝑒−ℎ/𝑘𝐵𝑇 + 𝑒ℎ/𝑘𝐵𝑇
)

𝑁

= 𝑅(𝐶)𝑁 (5.7) 

where 𝑅(𝐶) is the death rate as a function of drug concentration, and 𝑆(𝐶) = 1 − 𝑅(𝐶) is the 

survival probability of a cell. Hence, magnetization and external field in the Ising model 

correspond to death rate, 𝑅, and drug concentration, 𝐶, respectively, and Eq. (5.6) is written as 

2𝑅 − 1 = tanh (
ℎ

𝑘𝐵𝑇
) (5.8) 

As shown below, Equation (5.8) gives very good agreement with most of the cytotoxicity assays. 

When ℎ/𝑘𝐵𝑇 approaches its maximum value, all cells are dead and the death rate is at a maximum. 

Conversely, when ℎ/𝑘𝐵𝑇 approaches its minimum value, all cells are in the survival state and the 

death rate is zero. Knowing the functional dependence of the survival rate on drug concentration, 

𝑆 =  𝑆(𝐶), allows one to determine the values of the model parameters for each chemotherapeutic 

agent and for each cancer cell line. For example, considering diffusion of drug molecules 
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throughout the tumor with a heterogeneous microenvironment, one would expect the survival rate 

to follow the generalized Michaelis-Menten dynamics as 

𝑆(𝐶) =
1

1 + (
𝐶
𝐶𝑀
)
𝛼 (5.9) 

where 𝐶𝑀 is a Michaelis constant representing the drug concentration associated with reaching 

the half-maximal inhibition effect [281]. The cytotoxic drug concentration, which gives a half-

maximal effective cytotoxic concentration, is known as EC50. Another metric related to a drug’s 

potency is called IC50 (inhibition coefficient 50) and refers to the inhibition of a process or 

reaction to the level of  50% of its maximum value. The EC50 and IC50 values are both measures 

of drug’s potency and are related and sometimes used interchangeably despite a subtle difference 

between them [282,283]. The parameter 𝛼 shows the slope of the dose-response curve and 

depends on the system’s heterogeneity, drug-binding efficacy and diffusion of drug molecules. It 

can be estimated by fitting the solution to experimental data points. In cytotoxicity assays, 𝐶𝑀 is 

usually denoted as EC50. Equating Eqs. (5.7) and (5.9), we find that the control parameter, ℎ/𝑘𝐵𝑇, 

is associated with the logarithm of the anti-cancer drug concentration according to  

ℎ =  
𝛼𝑘𝐵𝑇

2
ln (

𝐶

𝐶𝑀
). (5.10) 

The case of interacting cells: Here, the coupling constant 𝐽𝑖𝑗 is non-zero, which makes the exact 

solution impossible to calculate analytically at least in the 3D case while it is very complicated in 

2D and hence we resort to approximations. A convenient approach to solving this problem is to 

apply the mean-field approximation where the quadratic terms in spin fluctuations are neglected. 

The Hamiltonian in this case becomes  
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ℋ = ℋ0  + ℋ1 (5.11) 

where 

ℋ0 = ∑ 𝐽𝑖𝑗〈𝑠𝑖〉〈𝑠𝑗〉 + ∑ℎ𝑖

𝑁

𝑖=1

𝑁

𝑖<𝑗=1

 (5.12) 

ℋ1 = −∑(2ℎ𝑖 + 𝐽𝑖
eff)𝑠𝑖

𝑁

𝑖=1

 (5.13) 

and 𝐽𝑖eff = ∑ 𝐽𝑖𝑗〈𝑠𝑗〉
𝑁
𝑗≠𝑖  is the effective interaction coefficient between cells and ℎ𝑖 is the direct 

effect of cytotoxicity on cells. From Eq. (5.12), it follows that ℋ0 is an average value for the 

Hamiltonian with no effect on any particular cell directly while the first term in Eq. (5.13) signifies 

the effect of the control parameter on the 𝑖th cell 𝑠𝑖 and the second term can be interpreted as the 

average bystander effect from all other cells on the 𝑖th cell 𝑠𝑖 [61,62]. Hence, the partition function 

𝑍 given by Eq. (5.2) becomes  

𝑍 = 𝑒−ℋ0/𝑘𝐵𝑇 ∏(1+ 𝑒(2ℎ𝑖+𝐽𝑖
eff)/𝑘𝐵𝑇 )

𝑁

𝑖=1

 (5.14) 

Note that Eq. (5.11) is a general result valid for any drug concentration distribution used in 

numerical computations [61]. To derive some analytical results, however, we need to assume 

again a uniform drug distribution via ℎ = ℎ𝑖 , which leads to the uniform magnetization, 𝑀 = 𝑀𝑖, 

representing an average survival response of the cell culture, and the effective constant interaction 

strength, J. As a result, the partition function and the order parameter are found after several steps 

of calculations as; 
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𝑍 = [2𝑒−𝜆𝑀(𝑀−1) cosh (
ℎ

𝑘𝐵𝑇
+ 𝜆𝑀)]

𝑁

 (5.15) 

and  

2𝑀 − 1 = tanh (
ℎ

𝑘𝐵𝑇
+ 𝜆𝑀)  (5.16) 

where 𝜆 = 𝐽/2𝑘𝐵𝑇 [61]. Using the fact that the order parameter, 𝑀, and control parameter ℎ, are 

equivalent in the case of cancer cells to the death rate, 𝑅 and the logarithm of concentration, 

log(𝐶), respectively, we rewrite equation (5.16) as 

2𝑅 − 1 = tanh [
ℎ

𝑘𝐵𝑇
+ 𝜆𝑅] (5.17) 

which reduces to Eq. (5.8) when 𝜆 = 0. Inserting Eq. (5.10) in Eq. (5.16), we find that 

𝑅 =
1

2
(1 + tanh [1.15𝛼 log (

𝐶

𝐶𝑀
) + 𝜆𝑅]) (5.18) 

where 1.15 = ln(10)/2 [281]. As shown in the next section, equation (5.18) provides excellent 

agreement with the cytotoxicity experiment data. Equation (5.18) has a critical value for 𝜆, at 

which a discontinuity in the death rate emerges and can be solved numerically for given values of 

𝛼 and 𝜆. Upper panels in Figure 5.1 illustrate the death rate, 𝑅, as a function of log( 𝐶/𝐶𝑀) for 

four values of 𝛼 and 𝜆, respectively. Figure 5.1.a shows the result for uncorrelated cells, which 

presents similar behavior to that found in the Landau theory of phase transition (See section D.1 

and Figure D.1 in Appendix D) [73,74,275,277]. As shown in Figures 5.1.a-c, increasing the 

interaction strengths between cells for 𝜆 = 0, 0.5, and 1, triggers their transit from live to dead 

states as a result of only a subtle change in the drug concentration. As stated above the generalized 
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susceptibility function, 𝜒 = 𝜕𝑀/𝜕ℎ, describes the sensitivity of the order parameter to a change 

in the control parameter [284,285], which here corresponds to the survival rate’s change due to 

the change in the drug concentration. Using the Ising model results, equation (5.18), the cancer 

cell susceptibility function is calculated as the first derivative of the death rate, 𝑅, with respect to 

the log( 𝐶/𝐶𝑀): 

𝜒 =
1

2
[
1.15𝛼(1 − tanh2𝛿)

1 −
𝜆
2
(1 − tanh2𝛿)

 ] (5.19) 

where 𝛿=1.15𝛼 log(𝐶/𝐶𝑀) + 𝜆𝑅. In the case of no interaction, 𝜆=0, using equation (5.19) we 

show that the susceptibility function maximum occurs at “zero-field” or 𝐶 = 𝐶𝑀 with 𝜒max = 

0.575𝛼.  The susceptibility of the Ising model was extensively studied by Fisher [284,285]. Lower 

panels in Figure 5.1 depict susceptibility calculated using equation (5.19) as a function of 

log( 𝐶/𝐶𝑀) for various values of 𝛼 and 𝜆, respectively. In the case 𝜆=0, Figure 5.1.d, the 

susceptibility maximum occurs at zero-field, while by increasing 𝜆 it peaks at concentrations 

below 𝐶𝑀. Interestingly, by increasing 𝛼 in the non-zero 𝜆 case, the maximum shifts towards zero-

field. This demonstrates that there is a competition between 𝛼 and 𝜆, where larger values of 𝛼 

provide solutions similar to 𝜆 = 0. This is observed in the parameter values found using the 

experimental data. 

 

(a)                                                     (b)                                                      (c) 
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(d)                                                      (e)                                                       (f) 

 

Figure 5.1 Solution plots for the death rate (a, b and c) and susceptibility (d, e, and f) of 

equations (5.18) and (5.19), for four values of 𝛼= 0.5, 1, 5 and 10; (a) and (d): 𝜆= 0, (b) and (e): 

𝜆= 0.5, (c) and (f): 𝜆=1. 

5.4 Results and discussion 

In this study, we applied the Ising model methodology to better understand and more accurately 

describe cancer cell response to chemotherapy agents. Inhibition profiles of 13 diverse anti-cancer 

compounds were analyzed from proliferation assays performed on 66 cancer cell lines provided 

by Oncolines, Inc., the Netherlands [83,84] (See section D.2 in Appendix D for experimental 

methodology). The anti-cancer compounds tested were: Afatinib, Bortezomib, Busulfan, 

Cisplatin, Doxorubicin, Idelalisib, Irinotecan, Methotrexate, Paclitaxel, Palboliclib, Tazemetostat, 

Trametinib and Vincristine [286–290]. For all the 13 compounds and 66 cell lines (See Table D.1 
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in Appendix D), the death rate, 𝑅, is plotted in terms of the logarithm of anti-cancer drug 

concentration, log(𝐶), and fitted to the following function 

𝑅 = 𝑎[𝑏 + tanh(𝑐(𝑙𝑜𝑔(𝐶) + 𝑑))] (5.20) 

where 𝑎 , 𝑏, 𝑐 and 𝑑 represents the best-fit parameters. As an example, Figure 5.2.a shows the 

results for Bortezomib acting on a melanoma cell line (A375). Based on the cell response-Ising 

model, the EC50 value marks the drug concentration at which the phase transition from a live 

system to a dead one occurs. In Figure 5.2.a, dashed lines represent the best-fitting function and 

a red star and a purple circle represent the experimental and predicted EC50 values, respectively. 

Taylor expansion of the fitted function around EC50 is shown using a green solid line in Figure 

5.2.a. Note that the solid line in cyan shows the susceptibility in equation (5.19) and its highest 

value coincides with the EC50 concentration, which provides a rationale for the thus far arbitrary 

use of EC50 as a significant parameter for cytotoxicity estimates. These findings also demonstrate 

good agreement between our model and the Landau mean-field theory of phase transition (see SI 

Text). Figure 5.2.b illustrates a similar behavior for Paclitaxel applied to other cell lines, namely: 

769-P (Kidney), A-172 (Blood), A-375 (Skin), A-427 (Lung), BxPC-3 (Pancreas), BT-549 

(Breast) and Colo-205 (Colon). All findings in this section demonstrate good agreement between 

the proposed model and the experimental data. 
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(a) 

 

(b) 

  

 

Figure 5.2 (a) Profile of the death rate in terms of the logarithm of the drug concentration for 

the melanoma A375 cell line upon its exposure to the Bortezomib drug. Dashed line represents 

the fit to Eq. (5.18), the solid line in cyan is the corresponding susceptibility obtained from Eq. 

(5.19), the red star represents the experimental EC50 value, the purple circle shows the 

predicted EC50 value from our model and the solid green line shows the Taylor expansion 

around the coefficient 𝑑 (which shows the correlation to the Landau theory of phase transition). 
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(b) Profile of the death rate in terms of the log(𝐶) of Paclitaxel drug for different cell lines in

different colors and the data points are demonstrated in various symbols. 

One of this model’s advantages is its ability to predict a precise value of EC50 by finding the 

parameter 𝑑 of the fitting function. For those cytotoxic drugs, which follow the model, the 

difference between the predicted and experimental values of EC50is very minor, on the order of 

10−3. Comparing the fitted curve with equation (5.18) derived from the cell response-Ising model 

in Table 5.1, one finds excellent agreement between the predicted and observed results for non-

interacting cell lines (𝜆 = 0 in equation (5.18)). Table 5.1 shows the average value of the fitting 

parameter for all the 66 cell lines tested followed by the correlation coefficient for each cytotoxic 

drug between the experiment and the cell response-Ising model. The best-fit parameter values 

among the cell lines are fairly consistent for 𝑎, 𝑏, 𝑅2 and 𝜒 among the cytotoxic drugs, although 

some small fluctuations can be seen for parameter 𝑐 and 𝑑 values. To study the possibility of the 

bystander effect, we use equation (5.18), derived using the Ising model, with an assumption that 

𝛼 = 1. The obtained values are fairly consistent among all the drugs (See Figure D.3 in the 

appendix D). It emerges that drugs with higher correlations to our model have a high susceptibility 

values as well. The correlation coefficient includes the cell lines with 𝑅2 > 0.5 and the 

susceptibility 𝜒 < 10. These two conditions drop ~16% of the cases studied, which do not follow 

the model. One possible reason for this is that the experimental EC50 reported is not appropriate, 

possibly meaning that the drug was not cytotoxic for that particular cell line or the drug dosage 

was not sufficiently high. 

Table 5.1 The best-fit parameters to equation (5.20), 𝑎, 𝑏, 𝑐 and 𝑑, susceptibility, 𝜒, and 

correlations with the theoretical model (± stands for standard deviation) 
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Predicted parameters based on the Ising model 

Cytotoxic 
drugs A b c d 

Equation 
(5.20) 0.5 1 1.15𝛼 -log 10 (EC50)

Estimated fitting parameters of equation (5.20) when 𝝀 = 𝟎 

Cytotoxic 
drugs A b c d 𝑹𝟐 𝝌

Total 
correlation 

(%) 

Bortezomib 0.47 ± 0.02 1.08 ± 0.06 5.98 ± 6.49 7.68 ± 0.36 0.99 ± 0.01 2.57 ± 2.7 100.0 

Methotrexate 0.45 ± 0.06 1.09 ± 0.08 8.16 ± 7.54 7.66 ± 0.35 0.99 ± 0.01 2.99 ± 2.6 100.0 

Paclitaxel 0.43 ± 0.07 1.07 ± 0.07 2.37 ± 1.01 7.52 ± 0.55 0.99 ± 0.01 1.01 ± 0.5 100.0 

Vincristine 0.45 ± 0.04 1.09 ± 0.07 4.37 ± 4.14 8.00 ± 0.61 0.99 ± 0.02 1.80 ± 1.4 100.0 

Doxorubicin 0.48 ± 0.06 1.07 ± 0.09 2.16 ± 2.60 6.96 ± 0.49 0.99 ± 0.03 0.99 ± 1.1 97.0 

Irinotecan 0.43 ± 0.11 1.14 ± 0.12 3.37 ± 4.72 5.51 ± 0.54 0.97 ± 0.04 1.21 ± 1.5 95.5 

Cisplatin 0.54 ± 0.26 1.10 ± 0.06 2.37 ± 3.45 5.16 ± 0.54 0.98 ± 0.02 1.11 ± 1.4 93.9 

Afatinib 0.51 ± 0.09 1.14 ± 0.16 2.38 ± 1.25 5.47 ± 0.37 0.98 ± 0.02 1.15 ± 0.6 87.7 

Trametinib 0.31 ± 0.20 1.15 ± 0.36 3.92 ± 6.63 7.69 ± 0.90 0.92 ± 0.11 0.60 ± 0.7 72.7 

Idelalisib 0.67 ± 0.75 1.16 ± 0.20 3.95 ± 6.09 4.43 ± 0.88 0.91 ± 0.10 1.00 ± 1.1 71.2 

Tazemetostat 0.20 ± 0.17 1.51 ± 0.45 6.50 ± 10.57 5.18 ± 0.71 0.80 ± 0.16 1.32 ± 1.6 62.1 

Palbociclib 0.63 ± 0.27 1.10 ± 0.10 2.95 ± 4.84 5.14 ± 0.48 0.98 ± 0.02 1.50 ± 2.2 59.1 

Busulfan 0.52 ± 1.65 1.44 ± 0.45 10.12 ±9.13 4.49 ± 3.50 0.70 ± 0.17 1.76 ± 2.3 53.0 

In addition, Table 5.2 lists the fitting results of our model to all the cytotoxic drugs for interacting 

cells, 𝜆 ≠ 0, and we fitted the data with the equation 𝑅 = 0.5(1 + tanh(1.15(log(𝐶) −

log(EC50)) + 𝜆𝑅). Although for some drugs such as Trametinib, Idelalislib, Tazemetostat and 
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Busulfan, only a few of the cell lines have been fitted very well to the model, the results does not 

show the existence of the bystander effect in most cell lines. It is important to note that no obvious 

trend has been found between the interacting and non-interacting cell lines for each drug. In other 

words, the cell lines that were not following the model in the non-interacting case, are not well 

fitted to the model in the interacting case either (See section D.3, Table D.2 and Figure D.2 in the 

appendix D). 

Table 5.2 Results of the application of the Ising model for interacting cells yielding the equation 

R= 0.5(1 + tanh(1.15(log(𝐶) − log(EC50)) + 𝜆𝑅) (± stands for the standard deviation). 

Cytotoxic drugs 𝝀 𝑹𝟐 Total correlation 
(%) 

Bortezomib 0.41±0.21 0.96±0.03 98.5 

Methotrexate 1.01±1.53 0.95±0.04 75.8 

Afatinib 0.71±0.71 0.87±0.20 66.7 

Vincristine 1.18±0.93 0.95±0.08 63.6 

Doxorubicin 1.00±0.95 0.97±0.03 57.6 

Paclitaxel 0.98±0.79 0.93±0.09 56.1 

Cisplatin 0.89±0.72 0.96±0.03 53 

Palboliclib 0.86±0.59 0.83±0.12 51.5 

Irinotecan 1.22±1.06 0.93±0.10 40.9 

Trametinib 0.72±0.34 0.80±0.16 10.6 

Idelalilsib 0.31±0.24 0.90±0.08 9.1 

Busulfan 0.21±0.12 0.89±0.01 4.5 

Tazemetostat 0.17±0.04 0.81±0.04 4.5 
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In the original dataset, there are some cell lines for which the corresponding IC50 (or EC50) 

value was not reported. This is due to it exceeding the maximum tested concentration 

(< 31600 𝑛𝑀). At this concentration, the compounds still show less than 50% inhibition of cell 

proliferation. Figure 5.3 shows the correlation of each cytotoxic drug’s profile with the cell 

response-Ising model prediction and the percentage of cells with missing IC50 values. We found 

that Busulfan, Palbociclib, Tazemetostat, Idelalisib and Trametinib exhibit a relatively low 

correlation with the model while these cytotoxic drugs, except Palbociclib, have a high number 

of missing IC50 values. On the other hand, cytotoxic drugs with perfect correlations have only 

one cell line without an IC50 value measured. Therefore, there appears to be an inverse 

relationship between the correlation coefficient and the missing IC50 (or EC50) values. Those 

cell lines, which are missing the IC50 values appear not to follow the Ising model. One conclusion 

that can be reached is that the Ising model as applied to cytotoxicity is sensitive to the IC50 values. 

For those cell lines for which the measurement has been made either below or above the IC50 

values only, no phase transition has occurred so the model will not work (recall that the maximum 

value of the experimentally measured IC50 was 31.6 𝜇𝑀). Figure 5.3 shows correlation of the 

drugs with the cell response-Ising model in blue and the drugs with missing IC50 in red. 

Interestingly, eight of the drugs tested, namely Bortezomib, Methotrexate, Paclitaxel, Vincristine, 

Doxorubicin, Irinotecan, Cisplatin and Afatinib, exhibit excellent consistency with the cell 

response-Ising model (exceeding an 87% correlation coefficient) while for the rest of the drugs 

the correlation coefficient is between 52% and 73%.  

Since a diverse set of cancer cell lines was used among the 66 cell lines tested, this could have 

contributed to a low correlation coefficient for the drugs, which target a specific cancer type. For 

example, Busulfan is mostly used for treating bone marrow transplantation, especially in chronic 
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myelogenous leukemia (CML), such as represented by the following cell lines: SR, MOLT-4, K-

562, SK-N-AS, SK-N-FI. The Ising model was fitted very well for bone marrow and chronic 

myelogenous leukemia (CML) cell lines in this case. This trend can also be seen for Trametinib, 

Idelalisib, Tazemetostat and Palbociclib. Correlated and uncorrelated cell lines have also been 

represented using green and red colors, respectively. 

Figure 5.3 Good correlations with the cell response-Ising model and the corresponding EC50 

values, blue bars represent the good correlations (%) and the red bars shows the missing EC50 

reported for each cytotoxic drug (%) 

Figure 5.4 shows the effect of cytotoxic drugs on the cell lines in different categories such as: cell 

lines with 𝑅2 < 0.5, exhibiting insufficient cytotoxic dose, showing a bizarre reversal effect (i.e. 

increasing the dose decreases the cells death rate), showing efficacy of less than 40%. Figure 5.4.a 

shows the number of the cells exposed to different drugs, which kill less than 40% of the cells. It 
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demonstrates the cells that either were not responding well to the cytotoxic drugs or the drug was 

not cytotoxic enough. Comparing Figure 5.4.a and Figure 5.3, one can see that the drugs with a 

missing IC50 value have a lower death rate, such as Busulfan, Tazemetostat, Trametinib and 

Idelalisib. Figure 5.4.b illustrates the cell lines for which the dosage used was insufficient to cause 

the death of these cell lines. Also, Figure 5.4.c shows the efficacy of the drug on these cancer cell 

lines. Over 90% of the cell lines have a lower efficacy for Busulfan. The efficacy value is 35% 

and 33% for Tazemetostat and Idelalisib, respectively and 1.6% for Irinotecan and Methotrexate. 

Finally, Figure 5.4.d shows that some of the cell lines show a toxicity reversal effect when exposed 

to Tazemetostat, Busulfan and Trametinib such that increasing the cytotoxic dosage decreases the 

death rate, although the number of such cases is negligible. 

(a) (b) 

 
(c) (d) 
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Figure 5.4 Weak correlation cell lines in different categories of (a) having 𝑅2 < 0.5, (b) 

exhibiting insufficient cytotoxic dose, (c) showing reversal effect and (d) efficacy of less than 

40% in the death rate. 

As part of our study, the interacting cases with a non-zero 𝜆, have also been considered. The same 

datasets have been fitted to equation (5.18) and the implicit equation for log(𝐶) was solved. The 

interaction coefficients were assumed to be positive, 𝜆 = 𝐽/2𝑘𝐵𝑇 ≥ 0 in order to conform to the 

known biological effect (𝜆𝐶 = 2)  (See Table D.2 and Figure D.3 in the appendix D). 

Until now all the cases analyzed in this work involved typical well-plate cytotoxicity assays, in 

which cell culture grows within a plane and is then exposed to toxic chemotherapy agents. Spatial 

dimensionality of physical systems undergoing phase transitions plays a crucial role in the 

response of the system to control parameter changes. In order to explore whether this can also be 

seen in biological systems such as cancer cells, we have found some experimental data in the 

literature that provide examples of dimensionality dependence. Figure 5.5 shows a comparison 

between the cell response-Ising model and the experimental data from reference [291] in which 

the drug Nitazoxanide was studied as a colorectal cancer therapy candidate. In Figure 5.2 of 

reference [291], HCT116 and HCT116 GPF cells were exposed to two cytotoxic drugs, 

Nitazoxanide and Mitomycin in monolayer two-dimensional and multicellular tumor spheroid 

(3D) cell cultures for 72 hours. Here, dose-response curves for the two drugs have been compared 

to the cell response-Ising model in Figure 5.5. The black dashed lines and blue dashed lines 

represent the best fit values of the cell response-Ising model in the cases with a non-zero and zero 

𝜆 and the red line shows the HCT116 cell line exposed to Mitomycin a) 2D and b) 3D and 

Nitazoxanide c) 2D and d) 3D. It can be seen that in the case with no cell-cell interactions, 𝜆 = 0, 
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the two cytotoxic drugs have a better correlation than in the interaction case. In the presence of 

the interaction term, 𝜆 ≠ 0, the values of 𝜆 in the curves 𝑎 to 𝑑, are 1.32,−3.01, 0.74 and 0.05, 

respectively. These values show that the model doesn’t work well for the Mitomycine 3D 

experiment, while for Nitazoxanide 3D, the 𝜆 value shows that the cell-cell interactions are very 

weak (almost zero). However, in the case of the 2D experiments for both drugs, we see a better 

correlation in the cell-cell interaction cases, see Figures 5.5.a and c. We can, therefore, tentatively 

conclude that spatial dimensionality does indeed affect the response of cell cultures to cytotoxic 

agents but a more in depth analysis of larger datasets is required to develop an appropriate 

mathematical model that captures these complex systems’ behavior better than the present Ising 

model. 

(a)
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(b) 

 

(c) 
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(d) 

Figure 5. 5 Death rate profile for the colorectal cancer cell line, HCT116, exposed to 

Nitazoxanide and Mitomycin cytotoxic drugs (solid red line) Ref. [291]. Blue and black dashed 

lines represent the best fit curves to the cell response-Ising model for interacting and non-

interacting cases, respectively. 

5.5 Conclusions 

In this study, the physical concepts developed for the theory of phase transitions occurring in 

bistable systems were for the first time applied to describe the effects of various chemotherapeutic 

agents on cancer cell lines. Specifically, we adopted the Ising model of a spin system and applied 

it to the survival plots of cancer cells at different concentrations of the various chemotherapeutic 

agents these cells were exposed to. This model was originally proposed for a spin system in a 

uniform external field with a constant interaction parameter and a variable temperature. In the 

case of cancer cells, the external field is analogous to the logarithm of the drug concentration 

while the interaction parameter describes the cell-cell interactions and hence accounts for the 

bystander effect. Unlike in physical systems, temperature is kept constant for cancer cells in the 

reported assays. It should be noted that this model has been successfully applied to both 
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interacting and non-interacting cells depending on the underlying biological situation. We have 

tested the model on a consistently produced data set of 66 cancer cell lines exposed to 13 different 

cancer chemotherapy drugs. The results show good agreement between the cell response-Ising 

model and the biological data. Using the bistabiliy concept in the Ising model, EC50 (or IC50) 

values can be very accurately determined with an error on the order of 1 𝑛𝑀 by one of the 

parameters of the fitting function in the non-interacting case. The cell-cell interaction was also 

applied to the experimental data, although in our case, most of the cell lines tend to be non-

interacting. Nonetheless, the presence of interactions can be determined using our fitting 

procedures and it offers a clear biological insight that bare experimental data do not reveal. We 

have additionally introduced the thermodynamic concept of the susceptibility function and found 

its peak to closely coincide with the value of EC50. Further studies should be performed 

considering a non-constant interaction term as well as non-uniform fields in the Ising model 

applied to cytotoxicity assays with both 2D and 3D geometries and various cell concentrations. 

In addition, spatial dimensionality of the cancer cell culture was shown to affect the response to 

cytotoxic agents, which requires a future study to gain insight into how 2D culture may not be an 

appropriate proxy for tissue-based studies. This approach is expected to introduce a high level of 

consistency in cytotoxic data analysis and hence better confidence in the preclinical data 

assessment for cancer chemotherapy and related applications.  
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Chapter 6 – Conclusions and Future Work 

The research reported in this thesis concerns fundamental questions in biological systems and 

performed a search to find underlying physical bases for the empirical observations in biology. 

The issues investigated in this connection include the logic of the genetic code, the probability 

distribution of protein mutations, and the statistics of surviving cancer cells under toxic stress. 

While spanning a range of seemingly disparate topics, all these questions concern the applicability 

of physical approaches to basic biological units of living systems such as genes, proteins, and 

cells. It has been our goal to shed light on empirical facts from genetics, molecular, and cell 

biology applying the lens of statistics, thermodynamics, and the physics of phase transitions.  

6.1 Amino acid and codon energy and probability in the genetic code 

6.1.1 Summary 

 In Chapter 2, we investigated the occurrence frequency of amino acids and codons from the point 

of view of energy and occurrence frequency in order to obtain an underlying correlation from 

physical approaches instead of purely experimental observations between amino acid and codons. 

We were motivated to find correspondence correlation between probability of amino acid over 

the species in the evolutionary tree of life. The energy estimates of the 20 natural amino acids 

were evaluated using GAMESS software based on a semi-empirical method employing and the 

Hartree-Fock method and PM3 basis sets. The energy values of codons and those of amino acids 

have been obtained and contrasted in search of a pronounced correlation between the two, which 

would give a logical explanation for the assignment of codons to amino acids found in nature. 

However, the results generated using our methods were scattered, and no correlation could be 
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found. In addition to the amino acid energy obtained from GAMESS, another software called 

Gaussian  was also used to obtain the amino acid energy. These results showed that except for the 

two outliers, cysteine and methionine, the results of the two methods were well correlated. This 

discrepancy could be due to the parametrization differences between the two software dealing 

with Sulphur containing atoms. Moreover, we showed that higher degeneracy amino acids are 

more probable, shedding some light on the question of amino acid abundance in nature. However, 

from the energetic point of view, our results did not confirm the hypothesis put forward that the 

higher frequency stems from the cheap energetic cost in natural systems, including humans. 

Moreover, our results interestingly show that the amino acid probability distribution is highly 

conserved across the species according to the evolutionary tree of life that included in our analysis 

various species from bacteria to human body tissues, as well as animal and fungal mitochondrial 

proteins. Finally, in our research focused on the fundamental issues in cell biology, we analyzed 

the paradox of the apparent entropy reduction in the process of transcription and translation, which 

starts from DNA and takes it to RNA ending in protein synthesis. We showed that the entropy 

reduction paradox occurring across the biological species could be explained by the involvement 

ATP and GTP macromolecules.  

6.1.2 Future work  

There is a lot of room for future work and unanswered questions regarding the topics broached in 

this thesis. This is because questions remain unanswered about the origin of the genetic code as 

an algorithm providing rules for codon-to-amino acid assignments and its advantages, the 

evolution of the genetic code, and eventually, the reasons behind having exactly 20 amino acids 

with their specific physico-chemical characteristics. 
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6.2 Amino acid-codon docking 

6.2.1 Summary 

We followed one of these particular questions with an in-depth analysis In Chapter 3, whose aim 

was to test the hypothesis if amino acids have an increased propensity to bind to their cognate 

codon or anticodon due to the differences in the associated binding free energies. We tested this 

hypothesis using computational structure-based methods, in particular as RNA-protein docking 

simulations. The 3D structure of the RNA strand used contained all 64 codons created with the 

help of MOE software. After protonation and structural minimization, we used steered molecular 

dynamics (SMD) simulations of the RNA structure and applied the docking protocol using the 

3dRPC method to all the amino acid-codon pairs ignoring the codon-codon interactions. Our 

results show that there is no obvious trend that can be seen to confirm the hypothesis that the 

amino acids are more likely to bind to their codon or anticodon. In fact, two paradoxical examples 

of isoleucine and arginine directly contradict this hypothesis. 

6.2.2 Future work 

Further improvements in the calculations performed can be made in the future. Namely, the 

interaction between codons can be taken into account before implementing the docking 

simulation. In addition, instead of a single amino acid, a peptide chain can be used to find the 

binding affinity of the docking complex. This might restrict the flexibility of the receptor in the 

RNA, making this a more realistic representation of the situation. 
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6.3 Probability of amino acid mutations in the p53 protein 

6.3.1 Summary 

Having attempted to understand if any potential free energy-based considerations can shed light 

on the rules of the genetic code and its consequence for protein synthesis, we then turned our 

attention to proteins and protein mutations. As a particularly important example of a protein that 

plays a crucial role in cancer initiation, and progression, we studied p53. In Chapter 4, the specific 

aim of our analysis was to study the frequency of the p53 protein mutations in its gene sequence 

across various cancer types. We focused on the somatic mutations of p53, which are reported in 

human cell lines, primary tissues, and fluids in the human body. We showed that some of the 

amino acid mutations are especially highly probable; these mutations are: RH (79%), RW (71%), 

RQ (73%), GS (55%), and RS (48%). We also showed that in ~84% of the cancer types, at least 

one of the above-mentioned mutations is the highest frequency mutation. In addition to the 

frequency analysis, the Shannon entropy of each mutation was calculated for all studied cancer 

types. We endeavored to find a quantitative relationship between the entropy of p53 mutations 

and the number of p53 mutations. We showed that except for lung cancer, no noticeable trend 

could be found. Also, we demonstrated that there is no discernable correlation between Shannon 

entropy and the five-year-survival rate for cancer patients. In other words, while p53 is a highly 

mutated functional protein in all types of cancer that loses its tumor-suppressing function due to 

mutations, the entropic measure of the mutation statistics does not turn out to be a prognostic 

factor in the survival outcome for these mutations at a cancer epidemiology level.  
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6.3.2 Future work 

Thus, we subsequently focused only on the missense and silent mutations, which cover most of 

the p53 mutation cases in cancer. However, it might be interesting to study the other types of 

mutations as well as, in particular, the codon mutations in p53. Further research is still needed on 

the p53 protein due to its significant role in suppressing tumors. Other than the statistical approach 

conducted in the present study, more computational simulations need to be performed in order to 

improve cancer chemotherapy treatments, which aim to reactivate mutated p53 proteins. Focusing 

on the high-frequency (“hot spot”) mutations of p53 can lead to measurable improvement of 

clinical outcomes by restoring the protective function of this key protein playing multiple 

functions in all eukaryotic cells. 

6.4 Ising-Cytotoxicity Model 

6.4.1 Summary 

In Chapter 5, we applied the physical concept of a phase transition and the related idea of critical 

systems’ bistability to explain the response of cancer cells to cytotoxic compounds in 

chemotherapy-based cancer treatments. We used the Ising spin ½ model as a powerful 

mathematical model developed in the theory of phase transitions and bistable systems to describe 

the two biological states of cancer cells (dead or alive), which are reflected in the dose-response 

curves. We assigned the physical spin-up and spin-down states in the Ising model to the biological 

dead and alive states of the cancerous cells analyzed. The concentration of the chemotherapy 

agent was represented by an external field similar to the magnetic field that aligns spin states of a 

magnet. In this case, this “cytotoxic” field promotes cell death and disfavors the state of being 
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alive. In addition, neighboring cells interact with each other in a manner similar to spin-spin 

interactions in magnetic systems. In cancer cell biology, this interaction between cells in the 

neighborhood is termed the bystander effect whereby the interacting cells tend to behave similarly 

whether or not they have been physically affected by the damaging agent. The effect of cytotoxic 

drugs on cancer (and normal) cells in the presence and absence of the bystander effect have also 

been investigated in this study by solving the Ising Hamiltonian with spin-spin interactions and 

applying the results to the biological data made available to us. The Ising cytotoxicity model was 

applied to numerous panels of cytotoxic compounds tested experimentally on many cancer cell 

lines by our collaborators in the Netherlands Translational Research Center B.V.(Oncolines). We 

showed that the analyzed data have a very good agreement with our model, and the results are 

highly consistent. In addition, our model has been demonstrated capable of predicting the value 

of the EC50 for each case very accurately, and the EC50 value coincided with the maximum value 

of one of the key characteristics of systems at criticality, namely the susceptibility function. It 

should be mentioned that one of the key findings about phase transitions is the singularity of the 

generalized susceptibility function at the critical point and hence the finding that the susceptibility 

function for cancer cells peaks at the EC50 value gives additional support for the use of these 

physical concepts in the area of cancer cell biology. Our work in this field is one of the very first 

that proposes the use of this methodology. Finally, the proposed model has been successfully 

implemented on the dose-response data of two-dimensional and three-dimensional spheroid 

models in the absence (λ=0), and presence (λ≠0) of the constant interaction between cancer cells 

correspond to the absence and presence of the bystander effect. We also showed that spatial 

dimensionality does affect the cell response to the cytotoxic compounds.  
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6.3.2 Future work 

It should be noted that in the theory phase transitions, the two parameters that determine the so-

called universality class of critical systems are: the number of order parameter components and 

the dimensionality of physical space in which the system exists. Therefore, these two aspects 

merit further attention, and it requires more data, especially regarding the dimensionality of cancer 

cell cultures used in such studies. Therefore, this is a potential subject for further studies on the 

non-constant interaction factor in different spatial dimensionalities (1D, 2D, and 3D) on a larger 

experimental dataset and in-depth analysis to develop a mathematical model which is able to map 

the behavior of these complex systems. This could be of importance in finding a correlation 

between simplified in vitro studies in 2D cell cultures and more relevant in vivo studies with 

xenograft tumors in 3D grown in animal models. Such results could be of practical importance in 

deciding whether or not particular chemotherapy compounds should be further developed or 

abandoned in spite of their promising in vitro properties. Currently, such decisions are made 

entirely empirically, and to the best of our knowledge, no mathematical model has been 

implemented to the in vitro-in vivo correlation analysis of chemotherapy drugs. 
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Appendix A 𝟔6  

A.1 Occurrence probability of amino acids across different species 

  

  

 
6 This section has been accepted for publications partially as supplementary material of Arbabi Moghadam S., 
Klobukowski M., and Tuszynski, J.A., “A Search for the Physical Basis of the Genetic Code” in BioSystems journal. 
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Figure A.1 Occurrence probability of amino acids across different species. The frequencies 

obtained from the NCBI databank, and are plotted for each amino acid across various species. 

The lowest standard deviation is for tryptophan ±0.001 and the highest standard deviation is for 

alanine ±0.02. 
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A.2 Occurrence probability of all 20 amino acids in each specie  
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Figure A.2 Occurrence probability of all 20 amino acids in each species. The frequency is 

obtained from the NCBI database for each species. The lowest standard deviation is for octopus 

±0.02 and the highest standard deviations is for sponge ±0.03.   
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A.3 The body tissues name and plots of probability

Table A.1 The complete list of studied body tissues. 

1-Olfactory bulb 40-Tongue

2-Heart 41-Basis pedunculi cerebri

3-Endothelial cell 42-Atrioventricular node

4-Prostate gland 43-Monocyte

5-Cingulate cortex 44-DAUDI cell

6-Adrenal cortex 45-Hypophysis

7-Trachea 46-Skeletal muscle

8-Seminiferous tubule 47-Dendritic cell

9-Culture condition:CD4+ cell 48-Bronchial epithelial cell

10-Brain 49-Salivary gland

11-Tonsil 50-Small intestine

12-Colon 51-Blood

13-Spinal cord 52-Lung

14-Skin 53-Superior cervical ganglion

15-Vermiform appendix 54-Erythroid progenitor cell

16-Interstitial cell 55-Caudate nucleus

17-K-562 cell 56-Amygdala

18-Kidney 57-Pancreas

19-Smooth muscle 58-Cerebellum

20-Culture condition:CD34+ cell 59-Testis

21-Lymphoblast 60-Spinal ganglion
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22-Culture condition:CD56+ cell 61-Occipital lobe

23-Medulla oblongata 62-Bone marrow

24-Parietal lobe 63-Prefrontal cortex

25-Germ cell 64-Thymus

26-Thyroid gland 65-Leydig cell

27-Adrenal gland 66-MOLT-4 cell

28-Subthalamic nucleus 67-Adipocyte

29-HL-60 cell 68-RAJI cell

30-Pineal gland 69-B-lymphocyte

31-Pons 70-Thalamus

32-Pancreatic islet 71-Cardiac muscle fiber

33-Nasal nerve 72-Hypothalamus

34-Trigeminal ganglion 73-Uterus

35-Globus pallidus 74-Colorectal adenocarcinoma cell

36-Lymph node 75-Ovary

37-Placenta 76-Temporal lobe

38-Culture condition:CD8+ cell 77-Liver

39-Retina
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Alanine probability of occurence in the body tissues
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Glutamine probability of occurence in the body tissues
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Glycine probability of occurence in the body tissues
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Methionine probability of occurence in the body tissues
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Figure A.3 Amino acid probability distribution in different human body tissues. The list of the 

human body tissues can be found in Table A.1. The standard deviation varies between ±0.0004 

and ±0.002 which the lowest standard deviation. It corresponds to histidine and the highest 

standard deviation corresponds to lysine. 

   

Tyrosine probability of occurence in the body tissues

ol
fa

ct
or

y 
bu

lb
he

ar
t

en
do

th
el

ia
l c

el
l

pr
os

ta
te

 g
la

nd
ci

ng
ul

at
e 

co
rte

x
ad

re
na

l c
or

te
x

tra
ch

ea
se

m
in

ife
ro

us
 tu

bu
le

cu
ltu

re
 c

on
di

tio
n:

C
D

4+
 c

el
l

br
ai

n
to

ns
il

co
lo

n
sp

in
al

 c
or

d
sk

in
ve

rm
ifo

rm
 a

pp
en

di
x

in
te

rs
tit

ia
l c

el
l

K-
56

2 
ce

ll
ki

dn
ey

sm
oo

th
 m

us
cl

e
cu

ltu
re

 c
on

di
tio

n:
C

D
34

+ 
ce

ll
ly

m
ph

ob
la

st
cu

ltu
re

 c
on

di
tio

n:
C

D
56

+ 
ce

ll
m

ed
ul

la
 o

bl
on

ga
ta

pa
rie

ta
l l

ob
e

ge
rm

 c
el

l
th

yr
oi

d 
gl

an
d

ad
re

na
l g

la
nd

su
bt

ha
la

m
ic

 n
uc

le
us

H
L-

60
 c

el
l

pi
ne

al
 g

la
nd

po
ns

pa
nc

re
at

ic
 is

le
t

na
sa

l n
er

ve
tri

ge
m

in
al

 g
an

gl
io

n
gl

ob
us

 p
al

lid
us

ly
m

ph
 n

od
e

pl
ac

en
ta

cu
ltu

re
 c

on
di

tio
n:

C
D

8+
 c

el
l

re
tin

a
to

ng
ue

ba
si

s 
pe

du
nc

ul
i c

er
eb

ri
at

rio
ve

nt
ric

ul
ar

 n
od

e
m

on
oc

yt
e

D
A

U
D

I c
el

l
hy

po
ph

ys
is

sk
el

et
al

 m
us

cl
e

de
nd

rit
ic

 c
el

l
br

on
ch

ia
l e

pi
th

el
ia

l c
el

l
sa

liv
ar

y 
gl

an
d

sm
al

l i
nt

es
tin

e
bl

oo
d

lu
ng

su
pe

rio
r c

er
vi

ca
l g

an
gl

io
n

er
yt

hr
oi

d 
pr

og
en

ito
r c

el
l

ca
ud

at
e 

nu
cl

eu
s

am
yg

da
la

pa
nc

re
as

ce
re

be
llu

m
te

st
is

sp
in

al
 g

an
gl

io
n

oc
ci

pi
ta

l l
ob

e
bo

ne
 m

ar
ro

w
pr

ef
ro

nt
al

 c
or

te
x

th
ym

us
Le

yd
ig

 c
el

l
M

O
LT

-4
 c

el
l

ad
ip

oc
yt

e
R

AJ
I c

el
l

B-
ly

m
ph

oc
yt

e
th

al
am

us
ca

rd
ia

c 
m

us
cl

e 
fib

er
hy

po
th

al
am

us
ut

er
us

co
lo

re
ct

al
 a

de
no

ca
rc

in
om

a 
ce

ll
ov

ar
y

te
m

po
ra

l l
ob

e
liv

er

Body tissue

0

0.02

0.04

0.06

0.08

0.1

0.12

Pr
ob

ab
ilit

y 
di

st
rib

ut
io

n 
of

 ty
ro

si
ne

 in
 b

od
y

Valine probability of occurence in the body tissues

ol
fa

ct
or

y 
bu

lb
he

ar
t

en
do

th
el

ia
l c

el
l

pr
os

ta
te

 g
la

nd
ci

ng
ul

at
e 

co
rte

x
ad

re
na

l c
or

te
x

tra
ch

ea
se

m
in

ife
ro

us
 tu

bu
le

cu
ltu

re
 c

on
di

tio
n:

C
D

4+
 c

el
l

br
ai

n
to

ns
il

co
lo

n
sp

in
al

 c
or

d
sk

in
ve

rm
ifo

rm
 a

pp
en

di
x

in
te

rs
tit

ia
l c

el
l

K-
56

2 
ce

ll
ki

dn
ey

sm
oo

th
 m

us
cl

e
cu

ltu
re

 c
on

di
tio

n:
C

D
34

+ 
ce

ll
ly

m
ph

ob
la

st
cu

ltu
re

 c
on

di
tio

n:
C

D
56

+ 
ce

ll
m

ed
ul

la
 o

bl
on

ga
ta

pa
rie

ta
l l

ob
e

ge
rm

 c
el

l
th

yr
oi

d 
gl

an
d

ad
re

na
l g

la
nd

su
bt

ha
la

m
ic

 n
uc

le
us

H
L-

60
 c

el
l

pi
ne

al
 g

la
nd

po
ns

pa
nc

re
at

ic
 is

le
t

na
sa

l n
er

ve
tri

ge
m

in
al

 g
an

gl
io

n
gl

ob
us

 p
al

lid
us

ly
m

ph
 n

od
e

pl
ac

en
ta

cu
ltu

re
 c

on
di

tio
n:

C
D

8+
 c

el
l

re
tin

a
to

ng
ue

ba
si

s 
pe

du
nc

ul
i c

er
eb

ri
at

rio
ve

nt
ric

ul
ar

 n
od

e
m

on
oc

yt
e

D
A

U
D

I c
el

l
hy

po
ph

ys
is

sk
el

et
al

 m
us

cl
e

de
nd

rit
ic

 c
el

l
br

on
ch

ia
l e

pi
th

el
ia

l c
el

l
sa

liv
ar

y 
gl

an
d

sm
al

l i
nt

es
tin

e
bl

oo
d

lu
ng

su
pe

rio
r c

er
vi

ca
l g

an
gl

io
n

er
yt

hr
oi

d 
pr

og
en

ito
r c

el
l

ca
ud

at
e 

nu
cl

eu
s

am
yg

da
la

pa
nc

re
as

ce
re

be
llu

m
te

st
is

sp
in

al
 g

an
gl

io
n

oc
ci

pi
ta

l l
ob

e
bo

ne
 m

ar
ro

w
pr

ef
ro

nt
al

 c
or

te
x

th
ym

us
Le

yd
ig

 c
el

l
M

O
LT

-4
 c

el
l

ad
ip

oc
yt

e
R

AJ
I c

el
l

B-
ly

m
ph

oc
yt

e
th

al
am

us
ca

rd
ia

c 
m

us
cl

e 
fib

er
hy

po
th

al
am

us
ut

er
us

co
lo

re
ct

al
 a

de
no

ca
rc

in
om

a 
ce

ll
ov

ar
y

te
m

po
ra

l l
ob

e
liv

er

Body tissue

0

0.02

0.04

0.06

0.08

0.1

0.12

Pr
ob

ab
ilit

y 
di

st
rib

ut
io

n 
of

 v
al

in
e 

in
 b

od
y



` 
 

 
 
  

150 

A.4 Frequency of animal and fungal mitochondrial proteins for each amino 

acids 
Table A.2 Animal and fungal mitochondrial protein gene names [103] . 

Fungal Gene symbol Animal Gene symbol 

1-SAL1      105-nuo40    209-AGP2     313-CCM1       417-HNT1       1-TK2       105-SMCP     209-MSRA     

2-RTC6      106-PRD1     
210-
MRPS9    

314-BXI1       418-BUD22      2-PPP6C     106-LIG3     210-SPG7     

3-
YOR304C-A 

107-USO1     
211-
ECM31    

315-YPT11      419-TAP42      3-NME4      107-DAP3     211-REXO2    

4-cia30     108-PGS1     212-RIM2     316-PUS4       420-COG8       4-GSTA4     108-IDH3G    212-STARD13  

5-cia84     109-nuo-21   213-GPX2     317-GCV2       421-CSM3       5-KMO       109-ALDH5A1  213-MYO5A    

6-peg1      110-ADK2     214-BNA4     318-TOM22      422-ARG7       6-MRPS12    110-PRKX       

7-maiA      111-RAD27    
215-
YBL096C  

319-LYS4       423-RKR1       7-TP73      111-RIDA       

8-MDM35     112-COQ3     216-MAP2     320-PHB2       424-SOM1       8-PPM1G     112-HK2        

9-mug164    113-COQ8     217-UBP13    321-MIC26      425-KEI1       9-SLC25A20  113-MRPL12     

10-MRP10    114-ERV1     218-POA1     322-PSP2       426-MRX9       10-CFAP410   114-BLVRA      

11-bms1     115-YIM1     219-CDS1     323-UBC9       427-NDE2       11-KIF1B     115-DAPK1      

12-CYC1     116-MSP1     220-CST26    324-MIC27      428-HEM25      12-MRPS14    116-MAPK12     

13-CYC7     117-MRP17    
221-
TCM62    

325-ALT1       429-YFH1       13-DNAJA2    117-HAP1       

14-QCR6     118-EHD3     222-FMP23    326-SCS3       430-CRD1       14-NIPSNAP2  118-HMGCS2   

15-QCR7     119-BMH1     223-PHO88    327-DOC1       431-YDL218W    15-SLC25A12  119-ALDH18A1   

16-CYB2     120-PSO2     224-AIM3     328-MTO1       432-FMP45      16-MPC2      120-NDUFV3     

17-TDH3     121-FAA1     225-IFA38    329-MTC3       433-PUF3       17-CDS2  121-MCCD1      

18-COX1     122-GPI10    226-POP7     330-MDM34      434-ISA1       18-KRT75  122-RAB2A      

19-CCP1     123-ATP7     227-FZO1     331-NCS6       435-FRA1       19-B3GALT4 123-RPS18      

20-SOD2     124-MRPL9    228-MBA1     332-MRM2       436-nuo-10.5   20-LDHA      124-PPIA       

21-CIT1     125-MSK1     229-MCX1     333-RMD9       437-PAM18      21-CYB5R3    125-UBE2I      

22-GPM1     126-GUT1     230-OM14     334-MPC1       438-LAM6       22-GSR       126-PPP2CA     

23-VAR1     127-GUT2     
231-
YBR238C  

335-YGL069C    439-BUD20      23-SOD1      127-SLC25A3    

24-TUB2     128-MGM1     232-MIC12    336-MRH4       440-FMP25      24-ABL1      128-CDK17      

25-TUF1     129-GLN1     233-SDH8     337-PUS2       441-COQ10      25-EGFR      129-NFKB2      

26-TEF1     130-YMC1     234-YSY6     338-PKP2       442-RCL1       26-TGFB1     130-PRKCE      

27-COX4     131-OAC1     235-MGE1     339-GEP7       443-MIM1       27-APOA1     131-TOP2B      

28-CDC9     132-NDI1     236-YPT31    340-JAC1       444-MDM38      28-APOH      132-CAV1       

29-PHR1     133-KNS1     237-MSG5     
341-
YGR012W    

445-NGL1       29-MT2A      133-P          
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30-ATP4     134-ARP2     238-CBR1     342-EAT1       446-YOL046C    30-ESR1      134-EEF1A2     

31-ILV5     135-MRP49    239-RPS20    
343-
YGR021W    

447-SDH5       31-MMP1      135-PTPN11     

32-CYC3     136-BIO2     240-BAT1     344-IMO32      448-AVO1       32-CAT       136-BCL2L1     

33-CYT1     137-APE2     241-HSP10    345-TIM21      449-GAS4       33-RAF1      137-RBL2       

34-TOM70    138-ACP1     242-PNT1     346-TAM41      450-ALE1       34-ANXA1     138-TP53BP2    

35-ADR1     139-DPH5     243-GGC1     347-FMP48      451-THI72      35-CAPNS1    139-AUH        

36-QCR2     140-ISF1     244-NAB3     348-PIL1       452-GEP3       36-TYMS      140-MRPL58     

37-PEP4     141-ZUO1     245-PSD1     349-TPC1       453-MET7       37-GNAI2     141-ENDOG      

38-PIF1     142-MSS1     246-XDJ1     350-PCP1       454-DGA1       38-APP       142-FASTK      

39-RAD2     143-VPH1     247-TIM17    351-GTF1       455-TUM1       39-ALDH2     143-GCKR       

40-ILV2     144-SCM4     248-FAA2     352-SHY1       456-HRK1       40-PCCA      144-GK3P       

41-CHO1     145-SUA5     249-ILV3     
353-
YGR164W    

457-RDL2       41-PCCB      145-GK2        

42-NUC1     146-CYS4     250-CEM1     354-PUS6       458-TIM18      42-FABP3     146-STARD3     

43-ERG20    147-TOR2     251-ACO2     355-PBP1       459-MSC6       43-GSN       147-OXA1L      

44-MSS18    148-PET127   252-UBP12    356-TIM13      460-CIR2       44-GPX1      148-PEA15      

45-FLO11    149-ura3     253-YHB1     357-RSM27      461-GUP2       45-CAPN1     149-PLEC       

46-PRB1     150-SFA1     254-AFG3     358-MPC3       462-OXR1       46-HSP90AA1  150-RPS6KA2    

47-ATP5     151-FMT1     255-OXA1     359-LSC2       463-FMP40      47-ANXA6     151-TAZ        

48-
YML002W  

152-
MGM101   

256-
HEM14    

360-MTM1       464-rga8       48-ANXA5     152-CLPP       

49-ADH4     153-CAT2     257-RRG9     
361-
YGR266W    

465-AIM41      49-MRPL3     153-ME3        

50-COX7     154-COX13    258-JLP2     362-TOM7       466-PPT2       50-QDPR      154-PCK2       

51-PET122   155-AIM26    259-NTA1     363-LSC1       467-VIK1       51-HMGB1     155-PTPN21     

52-MAS1     156-NFU1     260-ARG2     364-SUN4       468-GRE2       52-HMOX1     156-AGK        

53-MRS3     157-HFA1     
261-
YJL067W  

365-SMM1       469-PUS9       53-AFG3L2    157-SLC25A53   

54-SSA1     158-LIP5     262-ATM1     366-RCF2       470-YDL157C    54-IFI6      158-EARS2      

55-PET54    159-DLD1     
263-
YIL161W  

367-ATP23      471-DIN7       55-ARAF      159-SLC25A30   

56-MTF2     160-TIM23    264-MET18    368-MRPL50     472-REX3       56-THRA      160-THEM4      

57-SEC7     161-SKG6     265-PRM5     369-MRPS12     473-SLM3       57-HSPA5     161-SLC25A25   

58-MAS2     162-YPT7     266-PRK1     370-RSM19      474-MCP1       58-HSPA8     162-MTHFD1L    

59-nuo-12   163-SFC1     267-SYG1     
371-
YNR040W    

475-TMS1       59-DBT       163-QSOX2      

60-MRP13    164-DUT1     268-PDR11    
372-
YNL285W    

476-ATG9       60-BCKDHA    164-USP30      

61-MRP7     165-SDH3     
269-
MRPL49   

373-POP3       477-MCD1       61-UNG       165-ATG9A      

62-GLN4     166-TOM6     270-HXT9     374-BOR1       478-ATP16      62-ALAS1     166-BPHL       

63-HAP3     167-MRPS5    
271-nuo-
24   

375-GOR1       479-LEU9       63-TPT1      167-MCAT       

64-gatA     168-PTH2     272-CIN1     376-FOL1       480-RRG1       64-PRKAR2A   168-RHOT2      
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65-MRPL31   
169-
YBL059W  

273-MSS2     
377-
YNL247W    

481-MDM32      65-MTHFD2    169-RHOT1      

66-CBS1     170-PRX1     274-SNM1     378-MRX7       482-YOR022C    66-AKR1B1    170-SLC35F6    

67-PMS1     171-SEF1     275-IAH1     379-MRPL19     483-USB1       67-CYP11B1   171-SLC25A29   

68-CPR1     172-TOR1     276-POP1     380-MRPL22     484-PUF2       68-ST6GAL1   172-PDPR       

69-ARO3     173-TOM20    277-GPD2     381-APC1       485-YOR225W    69-COX7C     173-TRPV1      

70-CBS2     174-MDJ1     
278-
nuo14.8  

382-ESBP6      486-MCT1       70-CREB1     174-GDAP1      

71-MTF1     175-MAC1     279-MDJ2     383-YNL122C    487-CRC1       71-HMGA1     175-PNPT1      

72-CTA1     176-CTF13    280-ZIM17    384-APJ1       488-MAM3       72-PRKCA     176-NEU4       

73-PDX1     177-TMA19    281-SLS1     385-MTQ1       489-YDR061W    73-GJA1      177-ST8SIA1    

74-PET123   178-MRP8     282-CIR1     386-SAM50      490-YPS3       74-LGALS3    178-MRPS31     

75-PDI1     179-OAR1     283-UTP10    387-ERG13      491-GLO4       75-CYP11B2   179-USP7       

76-MDM10    
180-
MRPL38   

284-
PAM16    

388-TGL2       492-PST2       76-RXRA      180-WNT2B      

77-ARG8     181-RPS27A   285-QRI7     389-REX2       493-ORT1       77-BTF3      181-TBRG4      

78-RDS2     182-CBT1     286-RPN11    390-LSM3       494-GEP5       78-ALAS2     182-NEK1       

79-YAP1     183-MIA40    287-CIT3     391-ACT1       495-YOP1       79-COX7B     183-TEFM       

80-YMR31    
184-
YKL162C  

288-ALD4     392-YAT1       496-MRX4       80-ATP5PB    184-YME1L1     

81-MRPL44   185-MCR1     289-GUS1     393-TIM10      497-TY2B-DR1   81-MPST      185-DNAJC2     

82-HOP1     186-CMC1     290-DLD2     394-alp16      498-MRPL23     82-MT3       186-MTERF1     

83-ATP15    187-HOT13    291-FMP33    
395-
SPBC31F10. 

499-FMP16      83-tud       187-BAG1       

84-OSM1     
188-
YKL030W  

292-MRX5     396-NUM1       500-PTC5       84-AK4       188-NIPSNAP1   

85-
MRPS28   

189-TCD2     293-AIM23    397-CYT2       501-nuo21.3c   85-MAPK3     189-SLC25A21   

86-SDH2     190-MIC60    294-MDV1     398-ARG5,6     502-HAA1       86-NDUFS1    190-SLC25A23   

87-MCK1     191-CAF4     295-IML2     399-nuc-2      503-RRP12      87-ATP5F1D   191-NLN        

88-RAM1     192-UTH1     296-BNA3     400-ACS1       504-TY3B-I     88-ced-4     192-AGXT2      

89-GAS1     193-FMP46    297-TIM54    401-SED1       505-B12J7.040  89-porB      193-BCO2       

90-SLY1     194-PAM17    298-AIM22    402-GCR2       506-apg-2      90-PRDX2     194-CLPB       

91-MRPL8    
195-
YKR070W  

299-
YJL045W  

403-AAT1       507-dim-5      91-KIF5B     195-SLC25A31   

92-MRPL20   196-DRE2     
300-
YJL043W  

404-MDM1       508-erp38      92-USP6      196-QRSL1      

93-MSM1     197-TRZ1     301-COX16    405-TIM44      509-cbs-1      93-NF2       197-MRPL18     

94-MRPL25   198-OMA1     
302-
MRX12    

406-ENA2       510-DFG16      94-IDC34.5 198-GOLPH3     

95-MRS4     
199-
MRPL11   

303-BNA2     407-YSA1       511-ODC2       95-GPX4      199-OSGEPL1    

96-MIR1     
200-
MRPL27   

304-
YJR085C  

408-MRPL13     512-TY3B-G     96-ETFB      200-NOX4       

97-TOM40    
201-
MRPL17   

305-AIM25    409-RNT1       513-PET20      97-COL18A1   201-MRPL40     

98-SCO1     
202-
MRPL36   

306-
RSM26    

410-YML133C    514-ND6        98-FEN1      202-XPNPEP1    
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99-PKC1     
203-
MRPL37   

307-
YJR111C  

411-
YMR102C    

515-SPBC1703.0 99-CSK       203-ADPRHL2    

100-nuo78   
204-
MRPL40   

308-RSM7     412-EAR1       516-Q0010      100-ECI1     204-RAB20      

101-nuo-
32  

205-
MRPL16   

309-JHD2     413-ABZ2        101-CRAT     205-SLC25A10   

102-IFM1    206-SCO2     310-IBA57    414-YMD8        102-ATP5PO   206-APEX2      

103-MEF1    207-YMC2     311-TTI2     
415-YIR020C-
B  

 103-IDH2     207-AASS       

104-ERG6    208-GRS1     312-AAD10    416-MIX14       104-TSC2     208-WARS2      
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Figure A.4 Occurrence frequency of animal mitochondrial proteins for each amino acid [103]. 

The list of these mitochondrial proteins can be found in Table A.2. The standard deviations for 

these plots vary between ±0.0009 and ±0.007, in which the minimum standard deviation 

corresponds to tryptophan and the maximum standard deviation corresponds to glycine.  
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Figure A.5 Occurrence frequency of fungal mitochondrial proteins for each amino acid [103]. 

See Table A.2 for the list of the corresponding genes. The standard deviations vary between 

±0.0004 and ±0.002, where the minimum standard deviation corresponds to tryptophan and 

the maximum standard deviation corresponds to serine. 

A.5 Frequency of codons in different creatures from E. coli to human  
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Figure A.6 Occurrence frequency of codons in different species from E. coli to human among 

synonymous codons (normalized to the highest probable codon). The frequency of each codon 

was obtained using the NCBI database. Along the x-axis the labels correspond to codons for 

each amino acid and  are grouped together, i.e., glycine codons are shown as G1, G2, G3 and 

G4. The conversion from G# to the three letter codon can be found in Table A.3.  

Table A.3 Amino acid and codon table notation. 
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1-letter 
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of codon (#) 

3-letter 
representation 

of codon 
Amino acid 
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G3 GGA Methionine M ATG 

G4 GGG 

Valin 

V1 GTT 

Cysteine 
C1 TGT V2 GTC 

C2 TGC V3 GTA 

Alanine 

A1 GCT V4 GTG 

A2 GCC 
Phenylalanine 

F1 TTT 

A3 GCA F2 TTC 

A4 GCG 
Tyrosine 

Y1 TAT 

Aspartic acid 
D1 GAT Y2 TAC 

D2 GAC 

Isoleucine 
I1 ATT 

Serine 

S1 TCT I2 ATC 

S2 TCC I3 ATA 

S3 TCA Tryptophan W TGG 

S4 TCG 
Lysine 

K1 AAA 

S5 AGT K2 AAG 

S6 AGC 

Arginine 

R1 CGT 

Asparagine 
N1 AAT R2 CGC 

N2 AAC R3 CGA 

Glutamic acid 
E1 GAA R4 CGG 

E2 GAG R5 AGA 

Threonine 

T1 ACT R6 AGG 

T2 ACC 

Leucine 

L1 TTA 

T3 ACA L2 TTG 

T4 ACG L3 CTT 

Proline 

P1 CCT L4 CTC 

P2 CCC L5 CTA 

P3 CCA L6 CTG 

P4 CCG 

STOP 
STP1 TAA 

Histidine 
H1 CAT STP2 TAG 

H2 CAC STP3 TGA 
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Appendix B 𝟕7 

B.1 Steered Molecular Docking (SMD) 

Using a suitable definition of the interaction potential, the basic interactions of the system are 

modeled by the given potential energy, which helps to predict the statistical and dynamical 

properties of the complex by including the intermolecular interactions. By stretching the structure 

from one or more ends toward the chosen degree of freedom or direction, SMD manipulates the 

protein/ligand structure in order to keep the ligand in the restraint point and analyze the behavior 

of the target protein [9,177–181]. This method allows us to model experimentally impossible 

situations. Hence, the implemented non-equilibrium work to the system during the steering level 

is associated with the difference between the free energy of the system going from one state, A, 

to the other state, B, by implementing the Jarzynski equality as [292] 

𝐺𝐵 = 𝐺𝐴 −
1

𝛽
𝑙𝑛〈𝑒−𝛽𝑊𝐴→𝐵〉𝐴 (B1) 

where 𝐺 stands for the Gibbs free energy and 𝑊 is the performed work in a non-equilibrium state 

[183–185,293]. For the SMD simulations we used Amber14 [182]. Using the sander module, an 

Amber Hamiltonian has been applied to the system as a force field with the general form of 

𝑉(𝑟) = ∑
𝜅𝑏
2
(𝑟𝑖𝑗 − �̅�𝑖𝑗)

2
𝑛

𝑖,𝑏𝑜𝑢𝑛𝑑

+ ∑
𝜅𝜃
2
(𝜃𝑖 − �̅�𝑖)

2

𝑛

𝑖,𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑
𝜅𝜑
2
[1 + cos(𝑛𝜑 − �̅�)]2

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

 

 
7 This section has been submitted partially as supplementary material of Arbabi Moghadam S., Preto J., Klobukowski 
M., and Tuszynski J.A., “Testing amino acid-codon affinity hypothesis using molecular docking” in BioSystems 
journal. 
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           + ∑ (
𝐴𝑖𝑗
𝑟𝑖12

−
𝐵𝑖𝑗
𝑟𝑖6
)

𝑖<𝑗,𝑛𝑜𝑛𝑏

+∑(
𝑞𝑖𝑞𝑗
4𝜋𝜀0𝑟𝑖𝑗

)

𝑖<𝑗

 (B2) 

where the first three terms above represent covalent interactions (bonds, angles, and dihedral 

angles) and the last two describe non-covalent interactions (represented by the Lennard-Jones and 

Coulombic potentials). Parameters �̅�𝑖𝑗 (displacement), �̅�𝑖𝑗 (angle) and �̅� (dihedral) are obtained at 

equilibrium and 𝜅𝑏, 𝜅𝜃 and 𝜅𝜑 are obtained from the empirical values [182,186]. This potential 

can be used for applying forces to the protein-ligand complex in a solvent.  

B.2 3dRPC 

There are a few software packages or webservers available for protein-RNA docking; such as 

HDOCK and 3dRPC. We used the 3dRPC server [187–190] since HDOCK has a size limitation 

for ligands, and the RNA and amino-acids used in our study represent small complexes. The 

3dRPC is a computational means that is being used to estimate 3D RNA-protein complex 

structures. The success rate of this method is higher than other RNA-protein docking methods and 

is comparable to the most common protein-protein docking methods that have been tested as a 

benchmark [189]. In order to predict the RNA-protein structural complex, this method is using a 

combination of the RPDOCK algorithm (explained below), for conformational sampling and the 

3dRPC scoring method for choosing the most accurate and correct docked pose. The RPDOCK 

algorithm is constructed based on fast Fourier transform (FFT) docking algorithms, which 

consider the characteristics of possible interactions of any RNA-protein complex [187]. 

Electrostatic effects, geometric complementarities, as well as stacking interactions, are the three 

important factors that RPDOCK takes into account in an RNA-protein interface due to looser 
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atom packing in an RNA-protein interface [188]. The 3dRPC-score is a potential in which 

nucleotide-residue conformations are considered as statistical parameters [190]. This method is 

also considered as a statistical potential in which the energy of each pair of the RNA-protein 

complex is affected by the conformation [190,294] and categorized by the RMSD (Root Mean 

Square Deviation) value. The 3dRPC-Score statistical potential is defined as  

𝐸𝑖𝑗(𝐶) = − ln (
𝑃𝑖𝑗(𝐶)

𝑃𝑖𝑃𝑗 ∗ 𝑃𝑣
) (B3) 

where 𝑃𝑖𝑗(𝐶) is the probability of nucleotide type 𝑖 and residue type 𝑗 which are in the C-category, 

𝑃𝑣 in the ideal state, refers to the probability of C-category for nucleotide residue pairs. For all 20 

amino acids and four nucleotides, there would be (4 × 20) combinations of possible nucleotide-

amino acid pair which can be grouped into 10 classes using the K-means clustering method [190]. 

The success rate of the 3dRPC scoring method using RPDOCK decoys has been studied as a 

benchmark for 72 complexes by Huang et al., who compared it to other methods such as IT-Score-

PR and DECK-PR [190]. The success rate is measured by the number of correct predictions. In 

the first prediction, IT-Score-PR and 3dRPC-Score have a similar success rate, namely46% and 

DECK-PR stands on 36%. In the first ten predictions, IT-Score-PR performed better than 3dRPC-

Score, although the latter performed better than DECK-PR. However, after the top ten predicted 

poses, 3dRPC-Score and IT-Score-PR perform in a similar way, and both had a better success rate 

than DECK-PR. In general, based on the IRMSD factor between unbound and native structures, 

the benchmarked cases are divided into three categories, easy, medium, and difficult targets 

IRMSD > 2.5 Å, 2.5 ≤ IRMSD ≤ 5Å and IRMSD > 5Å, respectively [187,188,190,294]. For easy 

cases, 3dRPC-Score and IT-Score-PR have similar performance measures but better rank than 
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DECK-PR. For difficult cases, all the methods fail. More details of the 3dRPC method can be 

found elsewhere [189]. In this work, the best-ranked poses by 3dRPC were used. 

Figure B.1 Venn diagram illustrating the properties of amino acids [99]. 

Table B.1 Amino acid and codon table notation. 

Amino acid Codon Anticodon Amino acid Codon Anticodon 

Glycine 

G1 GGT T2 ACC 
Glutamine 

Q1 CAG L2 UUG 

G2 GGC A2 GCC Q2 CAA L6 CUG 

G3 GGA S2 UCC Methionine M AUG H1 CAU 

G4 GGG P2 CCC 

Valin 

V1 GUU N2 AAC 

Cysteine 
C1 UGU T3 ACA V2 GUC D2 GAC 

C2 UGC A3 GCA V3 GUA Y2 UAC 

Alanine 

A1 GCU S6 AGC V4 GUG H2 CAC 

A2 GCC G2 GGC 
Phenylalanine 

F1 UUU K1 AAA 

A3 GCA C2 UGC F2 UUC E1 GAA 

A4 GCG R2 CGC 
Tyrosine 

Y1 UAU I3 AUA 

Aspartic acid 
D1 GAU I2 AUC Y2 UAC V3 GUA 

D2 GAC V2 GUC Isoleucine I1 AUU N1 AAU 
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Serine 

S1 UCU R5 AGA I2 AUC D1 GAU 

S2 UCC G3 GGA I3 AUA Y1 UAU 

S3 UCA STP1 UGA Tryptophan W UGG P3 CCA 

S4 UCG A3 CGA 
Lysine 

K1 AAA F1 UUU 

S5 AGU T1 ACU K2 AAG Q2 CAA 

S6 AGC A1 GCU 

Arginine 

R1 CGU T4 ACG 

Asparagine 
N1 AAU S5 AGU R2 CGC A2 GCG 

N2 AAC G1 GGU R3 CGA S4 UCG 

Glutamic acid 
E1 GAA F2 UUC R4 CGG P4 CCG 

E2 GAG L4 CUC R5 AGA S1 UCI 

Threonine 

T1 ACU S5 AGU R6 AGG P1 CCU 

T2 ACC G1 GGU 

Leucine 

L1 UUA STP1 UAA 

T3 ACA C1 UGT L2 UUG Q2 CAA 

T4 ACG R1 CGU L3 CUU K2 AAG 

Proline 

P1 CCU R6 AGG L4 CUC E2 GAG 

P2 CCC G4 GGG L5 CUA STP2 UAG 

P3 CCA W UGG L6 CUG R3 CAG 

P4 CCG R4 CGG 

STOP 

STP1 UAA L1 UUA 

Histidine 
H1 CAU M AUG STP2 UAG L5 CUA 

H2 CAC V4 GUG STP3 UGA S3 UCA 
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Figure B.2 Amino acid-codon docking results using the 3dRPC docking method. Red bars 

represent the corresponding codon for each amino acid. 

Docking comparison: In order to confirm the docking results using the 3dRPC method, we used 

another software called HDOCK. This software is used for protein-protein or protein-RNA/DNA 

docking. The HDOCK has been designed based on a hybrid algorithm of ab initio docking and 

template-based modeling. This program is an FFT-based program developed for molecular 

docking calculations [295–297]. The scoring function is based on a modified long-range shape-

based function to calculate the best pose binding affinity [295,298]. Using HDOCK, we calculated 

the docking score of glycine to all 64 possible codons. Figure B.3 illustrates the glycine scores 

for all 64 codons via the 3dRPC and HDOC methods.  
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Figure B.3 Docking score comparison between 3dRPC and HDOCK method for glycine 

docked to all 64 codons. Red bars represents the 3dRPC score for the corresponding codons for 

each amino acid. 
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Appendix C 𝟖8 

(a) 

 

(b) 

 

 
8 This section has been submitted partially as supplementary material of Arbabi Moghadam S., Omar S. I., and 
Tuszynski J.A., “Probability Distributions of p53 Mutations and their Corresponding Shannon Entropies in Different 
Cancer Cell Types” in Theoretical Biology and Medical Modeling journal. 
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Figure C.1 (a) Numbers of mutations for each cancer type shown in decreasing order. (b) Sum 

over all the amino acid occurrence frequencies in each cancer type in Eq. (1.2) in the same order 

of appearing in plot (a). 
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Figure C.2 Frequency of amino acid mutations in the p53 protein in different cancers. The data 

extracted using IARC database. Each plot shows the mutations of the p53 protein in specific 

cancer types. The red bar shows the p53 hotspot mutations.  In almost all of the cancer types at 

least one hotspot mutation exists and it is one the highest frequency mutations (in almost 84% of 

the studied cases).  
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Appendix D 𝟗9 

D.1 Landau theory of phase transitions 

Landau theory of phase transitions is commonly used to study phase transitions in magnetic 

materials. Unlike the Ising model, Landau theory doesn’t directly and explicitly rely on the 

interactions between individual spins. Instead, it approximates their interactions by introducing a 

single average effect. These systems are described by a free energy function, 𝐹(𝑀), a power series 

of the magnetization, 𝑀, as an order parameter. To guarantee equal spin orientation in the absence 

of the external magnetic field, the even powers in the summation are only allowed, so that the free 

energy of Landau theory would read as 

𝐹(𝑀, 𝑇) = 𝐹0 − ℎ𝑀 +
𝐴

2
𝑀2 +

𝐵

4
𝑀4 + 𝒪(𝑀6)  (D.1) 

where 𝐴 = 𝑎(𝑇 − 𝑇𝐶) and ℎ is the external magnetic field as a control parameter, 𝑇 is temperature 

and 𝑇𝐶 is the critical temperature for this system that marks the phase transition point 

[73,74,275,277]. Since the free energy is expected to be at a minimum at thermodynamic 

equilibrium, three different situations should be considered. The first one is when 𝐴 < 0, in which 

the free energy will have two minima. The second case is when 𝐴 > 0, hence the free energy is 

characterized by only one minimum taking place at the origin (𝑀 = 0), and finally the third case 

when 𝐴 = 0 which will be a transition between the first and second case. Figure D.1.a depicts all 

the three conditions of the Landau free energy in the absence of an external field [73,74,275,277]. 

 
9 This section has been published partially as supplementary material of Arbabi Moghadam S., Rezania V., 
and Tuszynski J. A., “Cell death and survival due to cytotoxic exposure modeled as a two-state Ising system”, in 
Royal Society of Open Science (R. Soc. Open Sci), 7: 191578, doi: https://doi.org/10.1098/rsos.191578]. 
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Solving the Landau model for equilibrium conditions gives the following results for 

magnetization, external field and the susceptibility, 𝜒, near critical temperature 

𝜕𝐹(𝑀)

𝜕𝑀
= 0    and    ℎ = 0,     𝑀 = {

±(
𝑎(𝑇𝑐 − 𝑇)

𝐵 )
1/2

     𝑇 < 𝑇𝑐

0                                   𝑇 > 𝑇𝑐
,         (𝛽 =

1

2
) 

𝜕𝐹(𝑀)

𝜕𝑀
= 0      (Close to 𝑇𝑐),                 ℎ = 𝐵𝑀

3,                                        (𝛿 = 3)  

𝜒−1 =
𝜕2𝐹

𝜕𝑀2
> 0,                       𝜒−1 = {

𝑎(𝑇 − 𝑇𝑐)        𝑇 > 𝑇𝑐
 

−2𝑎(𝑇𝑐 − 𝑇)    𝑇 < 𝑇𝑐

,                 (𝛾 = 1) 

(D.2) 

So, close to 𝑇𝑐 magnetic field and the magnetization follow ℎ ≈ 𝑀3, in our model, 𝑇𝑐 can be 

related to the EC50 value and we showed in figure D.1.b that the model is working close to 𝑇𝑐 

and Landau theory of phase transition and Ising model for cytotoxicity are correlating. 

(a) 

 

(b) 

 

Figure D.1 (a) Free energy of Landau theory for different conditions in temperature, (ℎ = 0), 

(b) Plot of magnetization as a function of external field when (𝑞 = 0) for different temperature 

limits 𝑇 < 𝑇𝐶   (𝑘𝐵𝑇 = 0.1), 𝑇 = 𝑇𝐶(𝑘𝐵𝑇 = 1) and 𝑇 > 𝑇𝐶  (𝑘𝐵𝑇 = 1.9). 
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D.2 Experimental data 

All these 13 cytotoxic drugs have a defined principal molecular target; they belong to a specific 

cytotoxic classification and they are used against a particular cancer type in clinical trial 

experimental assays [286–290]. In addition, information about all the 66 cell lines has been 

obtained from the American Type Culture Collection (ATCC). The cell lines were cultured in 

ATCC-recommended media. Using the method of ATPlite 1step, the cell proliferation assays 

were extracted [83,84]. The exposure time was 72 hours for all compounds except for Vincristine 

and Tazemetostat where it was 120 hours. After 72 hours, inhibition of growth in the presence of 

these compounds was determined. The experiments were also carried out for the same cell lines 

without adding any compound but only by adding vehicle (DMSO) to the cells in order to provide 

controls for comparison. Between the two untreated profiles, growth inhibition is given for an 

increasing concentration of drug every 72 hours. Each experimental assay was repeated twice 

while increasing the concentration and the data between two untreated cells were measured four 

times. For most of the compounds the following quantities are reported: IC50 (note that the IC50 

is the same as 𝐶𝑀  in equation (5), i.e. the inhibition concentration where the response is reduced 

by half; GI50, the growth inhibition that denotes the drug concentration at which it causes 50% 

reduction in cancer cells growth; and LD50, the lethal dose that represents the amount of drug 

which kills 50% of a test sample. The maximum concentration tested for the compounds was 31.6 

𝜇𝑀 and no further increases in the concentration were made [83,84]. 
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D.3 Data pre-processing 

In the Table D.1 the experimental IC50 values of the studied cell lines, collecting by the 

collaborators in the Netherlands Translational Research Center B.V. (Oncolines), are listed 

[83,84]. The empty cells shows that the IC50 was higher than 31.6 𝜇𝑀 and they were not measured 

experimentally. For analysing the data, the death rate is obtained using the cell survival rates, 

𝑅(𝐶) = 1 − 𝑆(𝐶). Using the cell response-Ising model, the death rates has been fitted with the 

Eq. (5.20). For obtaining the fitting parameters in the interacting and non-interacting cells, Python 

and MATLAB software have been used and the codes can be found in the Dryad repository [299]. 

Table D.1 The anti-cancer compounds used in experimental assays [286–290]. 

Name 

Main target and 

Classification of 

cytostatic 

Clinical trial use 

Busulfan 
DNA alkylating 

(Alkylating agents) 

bone marrow transplantation, especially in chronic myelogenous 

leukemia (CML) and other leukemias, lymphomas, 

and myeloproliferative disorders 

Methotrexate 
folate synthesis 

(Antimetabolites) 

breast cancer, leukemia, lymphoma, lung 

cancer, and osteosarcoma 

Paclitaxel 

Tubulin 

(Anti-microtubule agents-

Taxanes) 

ovarian cancer, breast cancer, Kaposi sarcoma, lung 

cancer, cervical cancer, and pancreatic cancer 

Vincristine 
Tubulin (Anti-microtubule 

agents-Vinca alkaloid) 

acute lymphocytic leukemia, acute myeloid 

leukemia, Hodgkin's disease, neuroblastoma, and small cell lung 

cancer 

Doxorubicin 
topoisomerase II (Antitumor 

antibiotics) 

breast cancer, bladder cancer, Kaposi's sarcoma, lymphoma, and 

acute lymphocytic leukemia 

Cisplatin 
DNA damage 

(Others/platin-like) 

testicular cancer, ovarian cancer, breast cancer, bladder 

cancer, cervical cancer, head and neck cancer, esophageal 

cancer, lung cancer, mesothelioma, brain 

tumors and neuroblastoma 
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Irinotecan 
topoisomerase I 

(Topoisomerase inhibitors) 
Treat colon cancer and small cell lung cancer 

Bortezomib proteasome multiple myeloma and mantle cell lymphoma 

Tazemetostat EZH2 

lymphoma (non-Hodgkin lymphoma adult patients with certain 

genetically defined solid tumors, including INI1-negative 

tumors and synovial sarcoma, and patients with mesothelioma 

characterized by BAP loss of function) 

Specific kinase inhibitors 

Afatinib EGFR 
non-small cell lung carcinoma (NSCLC) with common 

epidermal growth factor receptor (EGFR) mutation 

Idelalisib PI3K hematological malignancies 

Palbociclib CDK 4/6 ER-positive and HER2-negative breast cancer developed 

Trametinib MEK advanced malignant melanoma 

D.4 Cell lines agreement to the Ising model 

In Table D.2, the studied cell lines are listed for 13 drugs in an increasing order of the correlation 

coefficient with the Ising cytotoxicity model. Cell lines having good agreement with the model 

are shown in orange, filtering by 𝑅2 > 0.5 and the susceptibility 𝜒 < 10, while cell lines with 

poor agreement are shown in red labeled by a cross mark. 

https://en.wikipedia.org/wiki/Non-small_cell_lung_carcinoma
https://en.wikipedia.org/wiki/Tumors_of_the_hematopoietic_and_lymphoid_tissues
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Figure D.2 Fitting parameters for equation (5.20), a, b, c, d and 𝑅2 for the cytotoxic drugs 

tested. The average value of the parameter corresponds to each compound shown in black star. 

Error bars show the standard deviation to the average value for each case. 

Table D.2 Behavior of the cell lines with respect to the 𝑅2 < 0.5 and the susceptibility 𝜒 > 10. 

The red cells represent the outlier to the model. 
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769-P           X   MCF7            X  

786-O         X X X   C-33 A        X  X X  X 

A-498           X   DoTc2 4510        X  X X  X 

A-704         X    X CAL 27             X 
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ACHN        X   X   COLO 205           X  X 

A-172          X   X DLD-1         X     
CCRF-
CEM           X   HCT 116             X 

Jurkat 
E6.1         X     HCT-15           X  X 

KU812          X  X  LS 174T              

SUP-T1         X  X X X LoVo          X X   

SR          X    RKO             X 

MOLT-4              SW48            X  

K-562          X X   SW480          X   X 

A-204       X  X  X X  SW620            X  

SJCRH30           X  X SW948       X    X  X 

A375          X X   SNU-C2B        X  X   X 

COLO 829           X X X T24          X X X  

MeWo       X       RT4            X  
RPMI-
7951            X X J82            X X 

A388        X     X Daoy         X     

A-427            X  U-87 MG         X  X X X 

A-549           X   T98G            X X 

NCI-H460              SK-N-AS           X X  

SHP-77   X   X   X X   X SK-N-FI   X         X  

NCI-H82         X X   X MG-63            X X 

AN3 CA      X    X  X  U-2 OS         X X   X 

AsPC-1        X    X X VA-ES-BJ            X  

BxPC-3         X   X X DU 145        X X     
MIA 

PaCa-2              LNCaP 
FGC         X   X X 

AU-565         X  X   TT       X     X X 

BT-20          X X X X FaDu        X  X  X X 

BT-549         X  X X  OVCAR-3            X  

Hs 578T      X   X     PA-1         X X X  X 

 

D.5 Interaction parameter, 𝝀 

Figure D.3 compares the fitting parameter averaged over all 66 cell lines, 𝑎, 𝑏, 𝑐, 𝑑 and 𝜆 for each 

cytotoxic drug in two cases of interacting and non-interacting cells, respectively, followed by the 

average and error bars. It can be seen that the two cases are fairly consistent in the values of a, b, 

c, and d, and the important interaction parameter, 𝜆, changes between 2.1 to 6.1 on average. 



` 
 

 
 
  

209 

However, considering plots 5.1.a to c, and the large value of c, the cell-cell interactions are not 

significant. 

 

 
Figure D.3 Ising cytotoxic model’s best-fit parameters for the cases with interactions using the 

equation 𝑅 = 0.5(1 + tanh(1.15(log(𝐶) − log(EC50)) + 𝜆𝑅) (in black) and the non-

interacting cases described by the equation 𝑅 = 0.5(1 + tanh(1.15(log(𝐶) − log(EC50))) (in 

red)  in all cancer cells exposed to chemotherapy drugs. The standard deviations from the 

average values are shown in each plot. 
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