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Abstract  
 

Fetal alcohol spectrum disorder (FASD) encompasses a large spectrum of physical, cognitive and 

behavioral deficits resulting from prenatal alcohol exposure.  Studies using magnetic resonance imaging (MRI) have 

shown structural and functional brain alterations in children and adolescents with FASD.  This thesis addresses the 

following three absences in the neurodevelopment / FASD literature. 1) The most common differences reported in 

structural brain imaging studies of FASD is reductions in regional brain volumes associated with prenatal alcohol 

exposure.  However, most studies of regional brain volume have examined individual brain regions separately, 

ignoring complex relationships between structures that may be able to better discriminate individuals with FASD. 

2) Previous studies of brain function in FASD populations have largely employed task-based functional MRI (fMRI) 

with few studies using resting-state fMRI (rs-fMRI) a method that measures intrinsic functional connectivity 

between brain structures at rest.  The few studies of resting-state functional connectivity in FASD have used 

samples limited in size and have reported contradictory findings of increased / decreased functional connectivity in 

FASD justifying the need for studies of larger cohorts of children/adolescents with FASD. 3) Most MRI studies of 

neurodevelopment of the human cortex rely on indirect measures of brain structure (e.g. thickness) and function 

(e.g. blood oxygen level dependent signal), results of which infer but do not explicitly measure microstructural 

changes.  In-vivo studies using diffusion MRI of the adult human cortex have shown promise in differentiating 

regions with known microstructural differences but have relied on long-acquisitions (~1 hour) along with 

anatomical registration to a T1-weighted image prone to registration errors.  This thesis aims to address these 

fundamental challenges by first using machine learning to classify children/adolescents with FASD from controls 

and investigate whether patterns (i.e. multivariate analysis) of regional volumetric brain reductions can better 

discriminate those with FASD relative to analysis of any individual brain region. Secondly, resting-state functional 

connectivity is investigated in a large multisite cohort of children/adolescents with FASD and compared to controls.  

This project also required an additional analysis of between-site reliability and correction of functional connectivity 

measurements using data acquired from the same 8 individuals at the same 4 sites used in the multisite FASD 

cohort.  Thirdly, a framework for diffusion analysis of the cortex is proposed that segments the cortex in native 
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diffusion tensor imaging space (removing the need for additional anatomical imaging/registration) and applied to 

diffusion data acquired at 1.5mm isotropic resolution.   

Data presented in this thesis present novel information about patterns of regional brain volume 

differences in FASD, demonstrating that an FASD classification model generated from multiple regional brain 

volumes can more accurately discriminate individuals with FASD from controls (accuracy 77%, sensitivity 64%, 

specificity 88%) when compared to models generated from any brain region independently.  Additional evidence is 

provided showing differences in FASD related regional brain volume change between males and females, 

suggesting that FASD classification models should be created separately for males and females.   Functional 

connectivity analysis revealed decreased internetwork connectivity between regions primarily associated with the 

salience network, frontal-parietal network and language network and suggests underlying deficits in the functional 

network brain architecture are associated with prenatal alcohol exposure.  Both the classification and functional 

connectivity findings provide evidence of altered brain structure and function in individuals with FASD and this 

knowledge has the potential to inform diagnostic and medical interventions for this population in the future.  

Furthermore, this thesis proposes a framework for in-vivo analysis of diffusion tensor imaging (DTI) of the cortex.  

Results here show accurate segmentation of the cortex on native DTI.  Additionally, surface-based diffusion 

measurements extracted from the cortex revealed values in line with other higher-resolution (1.0 mm - 1.25 mm 

isotropic) acquisitions. Given the short scan time (~3.5 minutes) the proposed technique could be a useful 

approach for the study of clinical or neurodevelopmental populations.  Overall, this thesis provides novel 

contributions to the understanding of the effects of prenatal alcohol exposure on the developing brain and 

provides methodological advances for future studies of the development of cortical microstructure.   
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Introduction 
Brain development is a complex process involving changes to brain structure and function throughout life.  Many 

studies using in-vivo magnetic resonance imaging (MRI) have sought to characterize typical changes in brain 

structure and function throughout life, providing a baseline in which to compare atypical patterns of human brain 

development.  Typical patterns of brain development are sensitive to a variety of environmental factors resulting 

in downstream consequences to structural and functional developmental trajectories.  Fetal alcohol spectrum 

disorder (FASD) is an umbrella term that encompasses the cognitive and behavioral deficits associated with 

prenatal exposure to alcohol.  Animal studies of FASD have shown the neurotoxic effects of in-utero exposure to 

alcohol on the developing fetus.  Furthermore, in-vivo MRI studies of children / adolescents with FASD have 

demonstrated that differences in brain structure and function associated with prenatal alcohol exposure persist 

throughout development and consistently report decreased total brain volume with disproportionate volumetric 

reductions in subcortical grey matter structures.  However, at the commencement of this thesis project no studies 

had examined patterns (i.e. multivariate analysis) of volumetric reductions observed in FASD using machine 

learning combined with structural MRI, only a few studies that were limited in sample size examined differences in 

functional connectivity between brain regions in FASD using resting-state functional MRI (rs-fMRI) and no studies 

had examined cortical microstructure using diffusion MRI using an acquisition/analysis method appropriate (short 

acquisition with high-resolution) for the study of neurodevelopment and FASD.  Overall, this thesis aims to use MRI 

acquisition / analysis methods not typically applied in the FASD literature to better understand the associated 

structural and functional differences observed in children / adolescents prenatally exposed to alcohol.  

Multiple MRI studies have assessed volumetric differences in total and regional brain volume in FASD with 

the most consistently reported finding being reduced total brain volume associated with prenatal exposure to 

alcohol (Donald et al., 2015; Lebel et al., 2011).  Furthermore, studies of regional brain volumes have observed 

disproportionate reductions in children and adolescents with FASD in some subcortical brain volumes (e.g. 

putamen, caudate and hippocampus) in children (Nardelli et al., 2011; Roussotte et al., 2012) as well as regions of 

the cortex  (e.g. regions of the parietal, temporal and frontal lobes) (Astley et al., 2009a; Chen et al., 2012).  

However, all previous volumetric studies of FASD have relied on univariate analysis ignoring potential relationships 
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between brain structures that may aid in discriminating controls from FASD.  The first aim of this thesis was to use 

a machine learning classification model (i.e. multivariate analysis) generated from regional brain volumes to 

identify child / adolescents prenatally exposed to alcohol.  Based on the added discriminative information provided 

by including multiple variables here it was hypothesized that classification using the machine learning approach 

would more accurately discriminate individuals with FASD relative to univariate analysis which has been the 

traditional approach in cross-sectional FASD studies of regional brain volume difference. The results in Chapter 4 

show that the classification model generated from a support vector machine (SVM) is more accurate compared to 

classification models generated for each of 87 brain regions separately.  In addition, this work examines 

differences in model weights (a measure of predictive importance) between brain regions showing that the 

multivariate model primarily favors regions with previously reported volumetric reductions in individuals with 

FASD.   Furthermore, results from this chapter suggest that a marked classification imbalance in sensitivity and 

specificity between males and females can be improved by generating models separately for males and females 

suggesting that sex should be accounted for in brain volume classification studies of FASD, and further supports 

the notion that prenatal alcohol exposure affects regional brain volumes differently in males compared to females.  

Task-based functional MRI studies of observed alterations in brain function associated with prenatal 

alcohol exposure. Few studies have examined alterations in functional connectivity at rest in individuals with FASD 

and only three were published at the start of this thesis work (Santhanam et al., 2011; Wozniak et al., 2016, 2013). 

Given the limited sample size of these studies only individual connections (a priori selected connections, not whole 

brain), individual networks or global connectivity measures (not regionally specific) were investigated. The second 

aim of this thesis was to investigate alterations in functional connectivity associated with prenatal exposure to 

alcohol in a large multisite cohort of individuals using a whole-brain analysis of individual functional connections. 

Given previous observations of structural and functional alterations associated with FASD it was hypothesized that 

a whole-brain functional analysis of a large cohort of children / adolescents with FASD,  would similarly detect 

altered functional connectivity in children and adolescents with FASD.  In Chapter 6 results are presented from a 

functional connectivity analysis of a large multisite cohort (N=133) of children / adolescents with FASD and 

controls.  As part of this multisite study rs-fMRI data was acquired for the same individuals scanned twice at each 
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site, and in Chapter 5 a reproducibility analysis is presented along with a proposed strategy for the correction of 

between site variability in functional connectivity measurements. The FASD cross-sectional analysis in Chapter 6 

(using the proposed site corrections from Chapter 5) revealed decreased internetwork connectivity between 

regions primarily associated with the salience network, frontal-parietal network, and language network and 

suggests underlying deficits in the functional network brain architecture are associated with prenatal alcohol 

exposure. 

At the time this thesis commenced, in-vivo studies using diffusion MRI of the cortex primarily relied on 

long diffusion MRI acquisitions (~ 1 hour in length, plus acquisition of T1-weighted anatomical image for 

delineation of the cortex) to achieve diffusion data appropriate for analyzing the microstructural organization of 

the human cortex.  The third and final aim of this thesis was to design a method that enabled surface-based 

analysis of diffusion MRI across the cortex in native diffusion tensor imaging space, for the eventual application to 

in-vivo studies of neurodevelopment.  It was hypothesized that by using software designed to analyze the cortex in 

native diffusion tensor imaging (DTI) space on 1.5mm isotropic images, measurement of diffusion in the cortex 

would show primarily radially oriented diffusion relative to the cortex along with regional variability in other 

diffusion parameters such as fractional anisotropy and mean diffusivity. Notably, both findings would be in line 

with previous higher resolution (1.0 – 1.25 mm isotropic) studies of diffusion MRI of the cortex.  The analysis 

pipeline presented in Chapter 7 uses diffusion data acquired in 3.5 minutes and presents an algorithm to 

automatically segment the cortical surface on diffusion data in native imaging space, removing the need for 

additional anatomical imaging and problematic registration between modalities. Results from this analysis show 

that similar diffusion tensor values and regional variability across the cortex compared to previous studies using 

longer and higher resolution acquisitions. Importantly, the presented acquisition / analysis framework has the 

potential for use in future studies of the development of cortical microstructure in neurodevelopmental 

populations given that only a single diffusion acquisition is needed and avoids problematic registration between 

modalities. 

Overall, this thesis presents novel information about the effects of prenatal alcohol exposure on the 

structure and function of the childhood / adolescent brain, along with methodological advances for application in 
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future studies focused on the development of cortical microstructure. Following these research chapters, a brief 

discussion is presented of the potential impact and future directions of these three diverse research projects. 
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1 Brain Development and Structure  

1.1 Organization of the Human Brain from Microstructure to Macrostructure 
Much of the brain is composed of two types of cells namely, neurons and glial cells. Neurons are the 

primary contributor to brain function and pass information through a network of interconnected neurons via 

electrical and chemical signaling.  On the other hand, glial cells primarily play a supporting role in brain function 

through several tasks including but not limited to, insulating neighboring neurons from each other, and providing 

structural and metabolic support to neurons.  Although individual neurons vary in shape and size across the brain 

they all consist of three fundamental parts; a cell body which has a nucleus to carry out synthesis for almost all 

neuronal proteins and membranes; dendrites which receive and integrate input from other neurons and a 

myelinated axon that is the output of the neuron.  There are approximately 100 billion neurons distributed across 

the brain and arranged in a pattern that allows for long range communication between brain regions.   For 

example, myelinated axons are arranged in bundles within areas deemed “white matter” for its colored 

appearance and connects “grey matter” regions primarily consisting of cell bodies, glia and dendrites.  The regional 

discrepancy in microstructural composition as well as the involvement of brain regions in cognitive and behavioral 

functions is the criteria used for segregating the brain into distinct regions.  In general, the brain is organized into 3 

primary structures, the cerebrum and cerebellum which each have left and right hemispheres and the brain stem 

(Figure 1.1). Components of the cerebrum (the region of focus for this thesis) are summarized in the following 

sections. 
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Figure 1.1. A) Brain tissue segmentation of a structural brain image classified into cortical grey matter (blue), 
subcortical grey matter (pink) and white matter (green). B) On a large scale the brain is organized into three 
fundamental structures, the cerebrum (cyan), cerebellum (orange) and brain stem (purple).   
 

1.1.1 Cerebral Cortex 
The cerebral cortex is a region of grey matter surrounding each cerebral hemisphere. Neurons within the 

cortex have an architectural organization comprised of 6 layers oriented parallel (tangential) to the cortical surface 

and cortical columns oriented perpendicular (radial) to the cortical surface.  Connections between neurons within 

the cortex mainly run tangentially between neurons within the same cortical layers and radially to neurons within 

the same cortical columns through adjacent cortical layers. The cortex also has a folded geometry consisting of gyri 

(the ridge of the folds) and sulci (the depression of the folds).  Among individuals the folding of the brain is largely 

variable however consistent sulci can be identified between individuals that separate the 4 primary functional 

regions of the cortex, namely the frontal, parietal, occipital and temporal lobes of each hemisphere (Figure 1.2). 

The frontal lobe extends from the most anterior portion of the cerebrum to the central sulcus and is associated 

with high-level cognitive functions such as emotional processing and problem solving. Notably, the frontal lobe 

also contains the motor cortex located on the anterior bank of the central sulcus and is the primary region 

associated with motor control.  The parietal lobe is located on the posterior side of the central sulcus and is 

primarily associated with sensory processes.  The occipital lobe is located in the posterior portion of the brain and 

is associated with visual processes, whereas the temporal lobe is located on the lateral portions of each 

hemisphere and is involved in auditory and memory processes.  



 
 

7 
 

 

 

Figure 1.2.    A) Segmentation of the inner (green) and outer (pink) cortical boundaries shown on an axial slice of a 
post processed structural brain MRI. B) Histological section of the cortex Golgi stained to highlight the cell soma 
and dendrites.  The cortex has a primarily radial (columnar up-down) and tangential (left-right) microstructural 
organization. C) At a large scale the cortex is organized into lobes; frontal, temporal, parietal, and occipital. Images 
B and C modified from Wikimedia Commons (public domain). 

 

1.1.2 Subcortical and Limbic Grey Matter Structures 
A series of grey matter structures are located underneath the cortex within each of the cerebral 

hemispheres and referred to as deep grey matter structures given their location within the brain. One of these 

regions is the thalamus which is situated above the brain stem and has the primary role of transferring sensory 

input to the cortex.   The basal ganglia is a family of smaller grey matter structures namely, the striatum (consisting 

of caudate nucleus, putamen and nucleus accumbens), globus pallidus, subthalamic nucleus and substantia nigra. 

Degradation of the basal ganglia nuclei is often linked to distinct movement disorders (e.g.  Huntington’s disease, 

Parkinson’s disease), and regions of the basal ganglia have been associated with motor (e.g. putamen) and higher-

level cognitive functions (e.g. caudate).  Two grey matter structures located within the medial temporal lobe are 

the amygdala and the hippocampus and are differentiated from the cortex based a difference in internal 

microstructure.  Both regions are integrated components of the limbic system and are associated with crucial 

functions of human behavior, for example the amygdala is largely implicated in emotional processing whereas the 

hippocampus is associated with the consolidation and recall of memories.  
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Figure 1.3. 3D rendering of the multiple subcortical grey matter structures shown on an average structural brain 
MRI template.  

 

1.1.3 White Matter Organization Leading to Large-Scale Functional Networks  
The white matter of the cerebrum is primarily composed of myelinated axons that are the basis for long 

range connections between regions of the cortex.  Bundles of axons form tracts that either connect regions in 

opposite cerebral hemispheres (commissural fibers), connect regions within the same hemisphere (association 

fibers), or contain bundles of projection fibers that connect the central nervous system (cerebrum and cerebellum) 

to the body’s peripheral nervous system via the spinal cord.  Large white matter tracts can be segmented with 

diffusion MRI and are often studied individually. The largest white matter structure in the brain is the corpus 

collosum and is the primary commissural tract between the left and right hemispheres.  Association tracts connect 

grey matter regions within each hemisphere with the most commonly reported tracts in MRI studies being the 

arcuate fasiculus, unicinate fasiculus, superior fronto-occipital fasiculi, inferior fronto-occipital fasiciuli, cingulum, 

superior longitudinal fasiculi, and inferior longitudinal fasiculi. Furthermore, the anterior limb of the internal 

capsule and the corticospinal tract are the predominantly reported projection tracts in in-vivo studies of the 

human brain.  Although tracts in the cerebral white matter can be segmented and investigated individually, 

together they form the underlying framework of large-scale functional networks within the brain. 

Investigations of the in-vivo brain function using any of electroencephalography, 

magnetoencephalography, or functional MRI (fMRI) (pertinent to this thesis, see Section 2.4 for details) have 
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revealed a distinct topology of functional brain networks. Conventionally, regions of functional brain networks are 

referred to as nodes and connections between regions are referred to as edges in line with language used in the 

mathematical field of graph theory. Neurons within the nodes of functionally connected brain networks activate 

together and the strength (i.e. correlation) of activation patterns within and between functional brain networks is 

task dependent.  The most commonly reported functional network is the default mode network (DMN) and is 

primarily composed of five cortical regions the posterior cingulate cortex, precuneus, medial prefrontal cortex, and 

left/right lateral parietal lobe which are connected via underlying white matter tracts (left / right superior frontal-

occipital fasiculus, cingulum, and genu of corpus callosum) (Heuvel et al., 2009) (visualization in Figure 1.4).  The 

DMN was originally referred to as the task negative network because it was activated in the absence of a 

behavioral task with strong synchrony of activation between regions. Since then, multiple “resting-state” 

functional networks have been consistently reported in studies by acquiring fMRI while a subject is at rest. While 

there are many methods that attempt to categorize brain regions into networks based on their structural and 

functional connectivity, in general there are seven (including the DMN) commonly reported groupings of these 

regions (Yeo et al., 2011). The frontoparietal network consists of the left / right lateral prefrontal cortex and the 

left / right posterior parietal cortex and primarily connected via the superior longitudinal fasciculus.  The 

sensorimotor network is connected by the body of the corpus collosum and consists of precentral / postcentral 

gyrus and the supplementary motor area.  The salience network consists of the anterior cingulate cortex (ACC), left 

/ right anterior insula, left / right rostral prefrontal cortex, and the left /right supramarginal gyrus.  The language 

network consists of the left and right posterior superior temporal gyri that are involved in language processing, as 

well as the bilateral inferior frontal gyrus and these regions are primarily connected in each hemisphere through 

the arcuate fasciculus association tract.  The network implicated in visual processing is connected via the splenium 

of the corpus callosum and contains regions of the primary, ventral and dorsal visual systems.  Finally, the dorsal 

attention network is composed of the left / right frontal eye fields and the left / right intraparietal sulcus and is 

structurally connected through a branch of the superior longitudinal fasciculus and connected to each hemisphere 

through the corpus callosum.   
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Figure 1.4. Functional and structural connectivity of the Default Mode Network (DMN) A) Regions of the DMN that 
have strongly synchronized functional activity at rest. B) Primary white matter tracts connecting the distant regions 
of the DMN. All images adapted from Wikimedia Commons (public domain). 

 

1.1.4 In Utero Brain Development 
The complex organization of the human central nervous system arises from a much simpler structure 

during embryonic development (for general overview see (Vanderah and Gould, 2015) where information for this 

section was obtained).  The start of this process begins around the third week of the gestational period when a 

band of ectoderm thickens to form the neural plate.  The plate begins to fold and close in on itself and forms the 

neural tube by the end of the fourth week of development.  At this point the neural tube already has begun to 

separate into three primary vesicles; the prosencephalon (forebrain); the mesencephalon (midbrain), and the 

rhombencephalon (hindbrain) (Figure 1.5a).  During week five the primary vesicles subdivide into five secondary 

vesicles namely the telencephalon (“end brain”); diencephalon (“in-between brain”); mesencephalon a primary 

vesicle that does not split during this stage of development; the metencephalon; and the myelencephalon (Figure 

1.5b).  Importantly for the focus of this thesis, the telencephalon eventually becomes the cerebral hemispheres, 

and the diencephalon becomes the thalamus, as well as other structures in the brain. In short, the other secondary 

vesicles eventually become inferiorly located structures of the central nervous system. The metencephalon 

becomes the cerebellum as well as the pons which is a critical structure in the brain stem, whereas the 
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myelencephalon and the mesencephalon become the medulla and the midbrain of the brain stem respectively.  At 

six weeks the left and right portions of the telencephalon expand forming the basis of the two separate cerebral 

hemispheres. 

 

Figure 1.5. Initial stages of embryonic development including the development of (a) the Forebrain, Midbrain and 
Hindbrain, followed by (b) the further subdivision of these structures into the Telencephalon, Diencephalon, 
Mesencephalon, Metencephalon and Myelencephalon.  Image from Wikimedia Commons (public domain). 

 

 After these initial stages of embryonic development, rapid growth of the telencephalon is observed, and 

the diencephalon begins to form the thalamus and hypothalamus.  Around the same time the base of the 

telencephalon thickens becoming the basal ganglia. The telencephalon continues to grow and eventually folds 

down over the diencephalon and these two secondary vesicles join to form the cerebrum.  At this point the surface 

of cerebral hemispheres are smooth structures containing the ventricle zone but attain a progressively folded 

shape throughout development.  The development of this folded geometry occurs after the widespread 

proliferation and migration of neurons and glial cells from the ventricular zone into layers of cortical grey matter 

during months three to five of development.  Neurons follow the orientation of radial glial fibers into the cortex 

and settle into the deep layers of the cortex first followed by subsequentially formed neurons settling in superior 

layers of the cortex. As soon as a neuron stops migrating the process of forming connections with other neurons 

begins.  Axons from each neuron will grow in the direction of molecular signals generated from target neurons 

starting a period of rapid synaptogenesis (the formation of synapses between neurons) in the brain.  The specific 

timing and location of molecular signaling gives rise to the intricate network structure of the cortical white matter 
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tracts as well as the neuronal connections within the cortex.  The process of rapid growth and synaptogenesis in 

the developing brain continues through the second (weeks 13 to 26) and third trimesters (weeks 27 to end of 

pregnancy) until birth. 

 The process of human brain development requires the successful completion of a complex series of 

events.  Errors in the early developmental stages can affect the composition of structures that are formed in later 

stages of development.  Interestingly, congenital malformations of brain structure are often associated with 

abnormal development of the nervous system during specific developmental stages.  For example, between the 

fourth and eighth week of development the prosencephalon may fail to separate into the secondary vesicles, the 

telencephalon and diencephalon, resulting in a family of malformations called holoprosencephaly.  Notably, the 

timing of this altered development coincides with the generation of facial structure, thus holoprosencephaly is 

usually associated with facial malformations as well.  Importantly for the work in this thesis, environmental insult 

from alcohol during critical developmental periods has been shown to alter the typical developmental processes in 

both brain and facial structure.  

 

1.1.5 Altered Brain Development in Fetal Alcohol Spectrum Disorder 
Alcohol is a teratogen meaning that exposure to alcohol in-utero can disrupt the typical development of 

an embryo or fetus.  Experimental studies using animal models enable the study of altered neurodevelopment as it 

relates to the frequency, quantity, and timing of prenatal alcohol exposure. Through these studies a multitude of 

candidate mechanisms have been proposed (for review see (Goodlett et al., 2005)) that relate alcohol exposure to 

the disruption of naturally occurring processes that form the brain in-utero such as neurogenesis and myelination.  

Given the intricate sequence of events it is likely that multiple mechanisms could play a role in affecting brain 

development including but not limited to oxidative stress: decreased growth factor-signaling: gene expression and 

cell-cell interactions (Goodlett et al., 2005).  Notably, these mechanisms could be onset by interactions with 

ethanol itself or neurotoxic metabolites that are produced during metabolism of ethanol.  In addition, the dosage 

and timing of exposure play a role in the degree and pattern of altered brain development (Guerri et al., 2009) and 
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there is strong evidence that exposure during day 7, 8 and 9 in mice pups (associated with weeks 3 and 4 in 

humans) is associated with the craniofacial abnormalities frequently observed in humans who were prenatally 

exposed to alcohol (Sulik, 2005). 

In 1973, the first observations were reported linking clinically confirmed prenatal alcohol exposure to  

common physical and behavioral deficits observed in children born to women who were severe chronic alcoholics 

during pregnancy (Jones et al., 1973; Jones and Smith, 1973).  Consistent presentation of growth deficits, 

intellectual disabilities and abnormal craniofacial features led to the criteria for a diagnosis of fetal alcohol 

syndrome (FAS). Since then the FAS diagnosis has been recognized as a more severe subtype of a larger spectrum 

of disorders deemed fetal alcohol spectrum disorder (FASD) where individuals present with varying levels of the 

three anomalies initially observed. More specifically, various diagnostic criteria exist for FASD (Astley, 2004; Cook 

et al., 2016) but all involve a multidisciplinary medical assessment of the following four criteria: 1) confirmation of 

prenatal alcohol exposure during pregnancy; 2) growth deficiencies (weight or height); 3) central nervous system 

dysfunction requiring evaluation of both hard (e.g. abnormally small head circumference) or soft (e.g. poor 

performance on behavioral assessment) neurological signs; 4) identification of characteristic facial features 

including short palpebral fissures, thin vermillion border and smooth philtrum (see Figure 1.6).  Notably, subtypes 

of FASD other than FAS, require the confirmation of a subset of the mentioned criteria.  For example, a diagnosis of 

partial fetal alcohol syndrome (pFAS) can be obtained if the individual has confirmed prenatal alcohol exposure, 

behavioral and cognitive deficiencies but only presents with a subset of the facial characteristics needed for a full 

FAS diagnosis.  On the other end of the spectrum a diagnosis of alcohol related neurodevelopmental disorder 

(ARND) could be given to an individual not exhibiting physical deficiencies or craniofacial abnormalities but had 

confirmed prenatal alcohol exposure and showed striking behavioral/cognitive deficiencies that could not be 

explained otherwise (Chudley et al., 2005; Eugene Hoyme et al., 2005).  Additional subtypes of FASD have been 

proposed in the original Canadian diagnostic guidelines (see (Chudley et al., 2005)) and these guidelines were used 

to diagnosis the cohort analyzed in Chapter 6.  More recently these guidelines have been updated (Cook et al., 

2016) to include broader subcategories of the FASD diagnosis (e.g. diagnosis of FASD with sentinel facial features, 

and FASD without sentinel facial features) that are utilized to categorize individuals in the analysis included in 
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Chapter 4 of this thesis. Importantly, all modern diagnostic guidelines (Astley, 2004; Chudley et al., 2005; Cook et 

al., 2016; Eugene Hoyme et al., 2005) require the assessment of CNS dysfunction evaluated by behavioral testing 

or head circumference and do not require the assessment of CNS structural abnormalities via imaging. Although 

abnormal behavioral and head circumference potentially relate to regionally specific damage to the CNS these 

measurements are largely indirect and inadequate for the understanding of the effect prenatal alcohol exposure 

has on developing brain structure and function.  Early attempts to understand the impact of prenatal alcohol 

exposure on brain structure relied on post-mortem studies of small samples of individuals.  Autopsy of individuals 

who had been heavily exposed to alcohol have shown striking microencephaly (smaller brain), agenesis (failure in 

development) of the corpus callosum (Clarren et al., 1978; Jones and Smith, 1973).  Although informative at the 

time, post-mortem studies of prenatal alcohol exposure largely select for individuals who are most severely 

exposed and thus do not represent the far larger population of individuals prenatally exposed to alcohol that live 

well into their adulthood.  In contrast, in-vivo studies of brain structure and function using MRI can provide an 

understanding of the down-stream effects prenatal alcohol exposure has on the developing brain by capitalizing on 

larger samples of individuals more reflective of the broader FASD community.  This knowledge is critical for the 

development of future interventions that could be tailored to individuals that fall under the FASD umbrella as well 

as for the overall advancement of our understanding of this diverse category of neurodevelopmental disorders.  
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Figure 1.6. Facial features characteristic of Fetal Alcohol Syndrome (FAS). Image modified from Wikimedia 
Commons (public domain).    
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2 Magnetic Resonance Imaging and Analysis Methods 

2.1  Nuclear Magnetic Resonance Signal and Relaxation 
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) experiments primarily rely on 

two fundamental nuclear phenomenon; 1) a non-zero magnetic moment observed from atoms that contain an odd 

number of protons and/or neutrons and 2) atomic particles possess intrinsic spin angular momentum (or spin).  

When exposed to an external magnetic field (B0) the non-zero magnetic moment of a nuclei will align parallel (spin 

up) or anti-parallel (spin down) with the external magnetic field. If a population of nuclei are exposed to an 

external magnetic field, slightly more nuclei will align parallel to the magnetic field because it is a lower energy 

state.  This imbalance in orientation results in a non-zero magnetic moment parallel to B0 (longitudinal 

magnetization) and is the foundation of the signal that is ultimately measured in an MRI experiment. Importantly, 

the ratio between the spin angular momentum and the net-magnetization referred to as the gyromagnetic ratio (γ) 

differs between nuclear species.  Once the magnetization is aligned with B0 the net-magnetization precesses 

around B0 at the rate defined by the Larmor frequency (ω0) which is proportional to the gyromagnetic ratio and 

strength of the external magnetic field (equation 2.1). 

ω0 = γB0                                                                                                                                              (2.1) 

 Water molecules consisting of two hydrogen atoms and one oxygen atom (H2O) are abundant in human 

tissue and for this reason the proton within each hydrogen nuclei (γ for 1H = 42.58 MHz / Tesla) are the primary 

source of signal for most MRI techniques. During an MRI experiment a radio frequency (RF) pulse (also referred to 

as B1) is applied orthogonally to B0 at a specific amplitude and frequency.  The frequency of the RF pulse is selected 

as the Larmor (resonant) frequency for hydrogen protons and in turn protons absorb this energy causing the net 

magnetization to “tip” into the transverse plane (orthogonal to B0).  The amplitude of the RF pulse determines the 

amount of energy received by the magnetic spins causing the net-magnetization to rotate by a differing amount 

into the transverse plane. An RF pulse applied in this manner is considered an “excitation pulse” and from a high 

level can be described by “flip angle” rather than the pulse amplitude.  After the application of an excitation pulse 

the net magnetization is flipped into an orientation with components in both the transverse and longitudinal 

planes, for example a flip angle of 90o converts all longitudinal magnetization into the transverse plane. The 
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magnetization can be described by a 3-dimensional vector M composed of Mx and My (or together as Mxy) that 

describe the magnetization in the transverse plane and Mz which describes the magnetization in the longitudinal 

plane (direction aligned with the static magnetic field).  As soon as M is flipped by any amount the magnetization 

begins to relax back to equilibrium (Mz = M0 and Mxy = 0, i.e. where M is realigned with B0) at a rate described by 

two relaxation time constants T1 and T2.  This process was quantified in a mathematical analysis performed by 

Felix Bloch in 1946 (Bloch, 1946) and in this seminal work the Bloch equations were proposed and in the presence 

of a static background magnetic field (i.e. B0) can be solved to explain the evolution of longitudinal (equation 2.2) 

and transverse (equation 2.3) net magnetization as a function of time.    

Mz(t) = M0 + (Mz(0) − M0)e−t/T1                                                                           (2.2) 

Mxy(t) = Mxy(0)e−t/T2                                                                                (2.3) 

In biological tissue T1 is the spin-lattice relaxation constant which is the time for nuclear spins to exchange energy 

with the surrounding environment a process that causes Mz to return to M0.  T2 is the spin-spin relaxation constant 

which describes the process of dephasing that individual spins encounter when they pass through the magnetic 

moments of neighboring atoms, in turn this causes Mxy to return to 0. T1 and T2 times differ between types of 

biological tissues and thus are the primary source of image contrast for MRI in the human brain (Figure 2.1).   

 

Figure 2.1. T1 (A) and T2 (B) relaxation curves based on a 90◦ flip angle for two theoretical tissues with differing 
relaxation rates.  Note that if a measurement is taken at time ta or tb a contrast in signal amplitude is generated 
between the two tissues. 
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An additional component of relaxation is magnetic susceptibility of the tissue being measured which can cause 

additional dephasing of spins and a loss in the received signal leading to an increase in the transverse relaxation 

time (T2* in equation 2.4). 

1
𝑇𝑇2∗

= 1
𝑇𝑇2

+ 1
𝑇𝑇2′

                                                                                (2.4) 

Notably, the effects of signal loss resulting from magnetic susceptibility can be reversed by applying a 180◦ 

refocusing pulse halfway between the time of excitation and the time the signal is read. This spin-echo pulse 

effectively reverses the effect of susceptibility by allowing an equal amount of time for the spins to dephase 

(before the refocusing pulse) and then rephase (after the refocusing pulse) allowing for a measurement relative to 

T2 rather than T2*. 

 

2.2 Generating a Magnetic Resonance Image 
Generating an MR image requites the magnetically induced signal to be encoded spatially by varying the 

magnetic field in 3 dimensional locations.  Practically this is achieved by applying magnetic fields in addition to B0 

and B1 called gradients that vary the magnetic field along the X,Y and Z dimensions.  In general, gradients are used 

to spatially select and encode the magnetic signal during the three fundamental steps of acquiring an MR image.  

The first step in typical 2D MRI is to select a slice and is accomplished by applying a slice select gradient (any 

combination of X, Y or Z gradients) along the axis perpendicular to the imaging slice. The slice select gradient 

effectively varies the precession frequency of the spins along the chosen axis. At the same time as the slice select 

gradient is applied an excitation RF pulse is applied that is designed to have a specific frequency center and range.  

The center frequency of this pulse is chosen to match the frequency of the spatially varying magnetic field at 

desired slice location and the transmit bandwidth of the pulse is chosen in a particular range that corresponds to a 

band of frequencies (width) along the gradient direction. By applying a linearly varying gradient and a excitation 

pulse at the same time only the magnetic spins within the selected frequency range (around the frequency center) 
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absorb the transmitted energy from the excitation pulse, effectively selecting a slice with a thickness 

corresponding to the frequency band and a location corresponding to the frequency center. 

 Following slice selection, the signal is then encoded along the other two dimensions using frequency and 

phase encoding respectively.  The two major contributors to this technique were Paul Lauterbur (Lauterbur, 1973) 

and Peter Mansfield (Mansfield, 1977) whom shared the Nobel prize in Medicine in 2003 for their respective 

contributions to the field.  When nuclear spins are exposed to a magnetic gradient of strength G (in the slice select 

direction) their resonance frequency (ω) changes as a function of their location (r) along the gradient (equation 

2.5) in the rotating frame of reference. Typically, in frequency encoding the gradient strength is left constant while 

the signal is read out in increments of time to acquire a set of data points over the entire frequency range. In 

addition to being able to temporarily manipulate signal frequency in a spatially dependent manner, gradients can 

be used to alter the phase of the magnetically induced signal.  After a spin is exposed to a gradient (i.e. gradient 

turns off) the resulting spins will have acquired a phase shift (φ) proportional to both the strength G and the time 

(τ) that the gradient is left on (equation 2.6).   

ω(r) = γ{B0 + G●r}                                                                               (2.5) 

φ(r) = γ{G r τ}                                                                                (2.6) 

In practice phase and frequency encoding of a volume is achieved using iterations of two steps.  First, a phase 

encode gradient is applied for a fixed length of time and secondly a frequency encoding fixed gradient strength is 

applied at the same time the signal is read out. Importantly, in a gradient echo sequence prior to reading out the 

signal a gradient is applied in the opposite direction of the frequency encode gradient for half the time (relative to 

the duration of the frequency encode gradient).  Because gradients cause dephasing of protons by applying an 

initial reversed gradient prior to the readout the signal will rephase (be maximal) at the center of the readout 

creating an “echo”.  The sequence of phase encoding followed by frequency encoding is repeated in steps with 

each step varying the phase encoding gradient strength to fully sample a 2D frequency space “k-space” that is the 

Fourier transformation of a 2D image (i.e. slice). Thus, in a simple 2D MR imaging acquisition slice selection is 

combined in sequence with phase encoding and frequency encoding to acquire a stack of 2D k-space slices which 
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are transformed separately using an inverse Fourier transformation to attain a final 3D volume (Figure 2.2). In 

addition to the sequence of events, the timing of events can give rise to drastically different contrast in an MR 

image.  The echo time (TE) is the time from slice excitation to the center the readout and the repetition time (TR) is 

the time between excitations of the same slice.  If TR is kept short relative to T1 relaxation times M0 will not fully 

recover and if TE is also kept short differences in T2 relaxation will not have time to evolve (i.e. minimize T2-

weighting) resulting in a T1-weighted image.  Whereas, if TE is kept long relative to T2 relaxation times differences 

in T2 relaxation between tissues will have time to evolve and if TR is also kept long M0 will fully recover (i.e. 

minimize T1-weighting) resulting in a T2-weighted image.  

Notably, the fundamental principles of MRI acquisition (slice selection, phase encoding, frequency 

encoding) as well as the basic MRI pulse sequence parameters (TR, TE) are used to describe the variety of MRI 

sequences that are used to image brain structure, function and microstructure in this thesis work and are 

summarized in the following sections. 

 

Figure 2.2. Typical gradient echo MRI sequence consisting of a slice excitation (A) played out simultaneously with a 
slice selection pulse (B).  A phase encoding gradient (C) is then applied and followed by a frequency encoding 
gradient (D) to read out a single line of k-space. This sequence is then repeated with varying phase encode 
amplitudes to readout all of k-space (E).  An inverse Fourier transform (FT-1) is applied to k-space to attain a single 
MRI slice (F).  
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2.3 Structural Brain Imaging Acquisition and Analysis 
As mentioned in the previous section the image contrast generated in MR images often results from 

differing T1 or T2 relaxation rates between biological tissue. In typically used proton imaging the difference 

between relaxation rates between structures arises largely from the differing microenvironments between tissue 

types and is strikingly apparent in the human brain.  For example, grey matter (primarily composed of cell bodies, 

glia and dendrites) in the brain has a longer T2 relaxation time relative to white matter (primarily composed of 

myelinated axons) causing a T2-weighted image to have lower intensity in regions of white matter relative to grey 

matter (Figure 2.3).  

 

Figure 2.3. T1- weighted and T2-weighted images of the brain.  Note the marked differences in tissue contrast 
between the images. 

 

Regional differences in signal intensity are not limited to large scale tissue types alone.  Some subcortical regions 

can also be distinguished based on differences in T2-weighted signal intensity, for example the putamen has a 

much higher signal intensity than the globus pallidus that likely reflects the greater iron accumulation within 

globus pallidus (Schenker C et al., 1993).  Regional differences in T1-weighted and T2-weighted signal intensity 

between grey matter structure have led to the use of manual and automated segmentation techniques that 

parcellate the brain for the purpose of volumetric analysis of individual brain structures.  Given the small size of 
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subcortical and cortical brain structure, segmentation techniques are usually applied to images acquired with 3D 

MRI sequences that enable high-resolution imaging with a slice thickness on the order of ~1 mm.  Changes in total 

brain volume as well as unique regional trajectories of subcortical and cortical grey matter development during  

childhood / adolescence have been reported in a multitude of studies using volumetric analysis (Giedd et al., 1999; 

Narvacan et al., 2017).  Additionally, altered regional brain volumes have been reported in multiple 

neurodevelopmental disorders relative to controls such as FASD (Donald et al., 2015; Lebel et al., 2011),  ADHD 

(Friedman and Rapoport, 2015), and Autism (Ha et al., 2015).  Mechanisms for observed volumetric change have 

been suggested to be unique for individual grey matter structures, for example reductions in putamen volume are 

associated with iron accumulation late in life (Daugherty and Raz, 2016), whereas atrophy of the cortex during 

aging is likely driven by cellular shrinkage and a reduction in dendritic arborization (Morrison and Hof, 1997). The 

following sections detail the acquisition and analysis methods applied in the volumetric analysis presented in 

research Chapter 4. 

 

2.3.1 MPRAGE - Structural Brain Imaging Acquisition  

Volumetric analysis of regional brain structure requires high-resolution (~1 mm isotropic) imaging with 

whole brain coverage. In typical 2D MRI the thickness of a slice is inversely related to the strength of the gradient 

and linearly related to the bandwidth of the applied excitation pulse. Given that RF pulses are typically chosen to 

be of a short duration (i.e. large bandwidth) the gradient strength becomes a limiting factor in attaining a ~1 mm 

slice thickness. To this end, 3D MRI sequences have become the most common technique in volumetric studies of 

the human brain structure in-vivo.  In contrast to 2D MR sequences which include a single phase encode step, 3D 

MR imaging adds additional phase encoding in the slice select direction after an initial slab selection (thicker than 

conventional 2D MRI slice).  By adding spatial encoding along the slab select direction, 3D MRI bypasses the need 

to excite thin slices and can attain submillimeter spatial resolution within each slab.  In addition to resolution, 3D 

MRI has an advantage in the signal to noise ratio (SNR) attained within each voxel. Signal to noise ratio in MRI is 

proportional to the (total acquisition time)1/2 and 3D MRI acquires more data points relative to 2D MRI yielding an 

increase in SNR proportional to the (number of slices within each slab)1/2 for 3D MRI compared to 2D MRI.  The 
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benefits in resolution and SNR make 3D MRI advantageous for imaging small structures leading to this category of 

MR acquisition being commonly applied in studies of whole brain volumetric analysis. 

 The most commonly used 3D-T1-weighted sequence for whole brain imaging is the magnetization 

prepared rapid acquisition with gradient echo (MPRAGE) (Mugler and Brookeman, 1991) that adds two 

modifications to a standard 3D gradient echo sequence to attain a primarily T1-weighted contrast in a short 

acquisition time. To generate a T1-weighted contrast, MPRAGE applies an initial 180◦ inversion RF pulse prior to 

slab select and encoding steps.  After the inversion pulse longitudinal magnetization recovers towards equilibrium 

for a specified inversion time (TI) typically between 600-900ms generating a T1-weighted signal.  After the chosen 

TI time the signal is read out with a spoiled gradient recalled echo (GRE) which uses successive iterations of a 

excitation pulse with a low flip angle (5◦ -12◦) followed by phase encoding in two dimensions within the excited 

slab.  In 3D MRI phase encode steps in the slice select direction are less than in-plane phase encode direction, thus 

to reduce the acquisition time all phase encode lines in the slice select direction are acquired after the inversion 

pulse and then inversion/spoiled GRE steps are repeated for each in-plane phase encode step. Notably, the short 

data collection time following the inversion creates a heavily T1-weighted contrast that delineates the boundaries 

of subcortical and cortical brain structures. 

 

2.3.2 Automated Volumetric Brain Image Analysis 
Volumetric analysis has historically used manual segmentation techniques that require an expert 

anatomist or trained technician to manually label and trace single or all brain structures within an anatomical 

image.  Manual segmentation involves the detailed labeling of multiple brain structures on every imaging slice 

based on the image intensity of the structure, the overall position of the structure, as well as the position of the 

structure relative to other nearby brain structures. Thus, manual tracing of all subcortical/cortical brain structure 

on high-resolution imaging (~1 mm isotropic) can be an extensive process that can require days of work per 

subject. To enable volumetric analysis in large cohorts (for example greater than 100 subjects) automated 

segmentation methods have been developed that use image processing algorithms to parcellate a whole-brain 
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image into sub structures based on image intensity and spatial priors.  Automated segmentation techniques have 

the advantage of being user independent resulting in highly reproducible volumetric measurements that can be 

compared between studies. The most common automated segmentation software used in volumetric studies of 

the brain is FreeSurfer (Fischl, 2012) and is the method applied in the volumetric analysis in the current thesis 

work. FreeSurfer is a software package that generates both subcortical and cortical grey matter segmentations 

allowing for a whole brain volumetric analysis. 

 Whole brain segmentation (Fischl et al., 2002) in FreeSurfer labels voxels from native imaging space for 

each tissue class (e.g. grey matter, white matter or CSF) as well as subcortical (e.g. hippocampus) and cortical (e.g. 

superior frontal gyrus) brain structures.  To model the likelihood of a given voxel being assigned a structural label 

FreeSurfer uses a spatially varying Markov Random Field (MRF) which is a Bayesian approach that enables the 

inclusion of spatial priors during automated labelling.  To attain label probabilities, whole brain T1-weighted 

images for each subject are registered to a probabilistic atlas generated from 39 manually traced healthy adults.  

From this atlas each voxel is assigned a probability of belonging to a specific anatomical class (e.g. putamen, 

hippocampus, white matter, or cortical grey matter) that is derived from the voxel image intensity and the 

frequency with which that voxel was identified as an anatomical structure in the 39 manual tracings.   To favor 

anatomically correct segmentations (e.g. amygdala always is anterior to the hippocampus) the chosen label of a 

given voxel is also dependent on both the anatomical label and spatial relationship (anisotropic weighting of 

probabilities) of neighboring voxels. All probabilities are encoded into an MRF which is solved using an iterative 

process whereby voxels are sequentially updated at each location to maximize the probability of the segmentation, 

then this process is repeated until no labels are changed.  The result of this algorithm is a whole brain 

segmentation consisting of anatomic labels for left/right cortical grey matter, left/right cortical white matter and 

left/right subcortical structures (e.g. caudate, putamen).  Note that this initial segmentation does not parcellate 

the cortical grey matter into sub regions and rather cortical segmentation is handled by an additional surface-

based segmentation. 

 In the human cortex, brain regions involved in similar cognitive functions are often anatomically bordered 

by large sulcal folds along the cortical surface.  Thus, automated techniques for parcellating the cortex are aided by 
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considering regional differences in sulcal depth, a surface-based measurement that requires the boundaries of the 

cortex to be modelled as surfaces (Dale et al., 1999) rather than a contiguous set of individual voxels.  FreeSurfer 

accomplishes this in following steps. Firstly, FreeSurfer creates a pseudo-white matter mask that contains a 

combination of voxels labeled as cerebral white matter plus subcortical and ventricular structure that is superficial 

to the cortical grey matter.  The pseudo-white matter mask is then tessellated to generate a 3D surface mesh 

consisting of vertices and edges along the outside of the mask.  This initial surface model is then deformed to areas 

of large image contrast along the border of the WM/cortex, by moving vertices incrementally along the image 

gradient (i.e. first derivative of the image) to a target WM/cortex image intensity while at the same time 

constraining the curvature and vertex spacing of the surface.  This surface deformation results in a smooth surface 

that is located on the WM/cortex boundary.  The surface deformation algorithm is then repeated to attain a 

surface that is located on the cortex/CSF by moving the WM/cortex vertices outward along the image gradient to a 

cortex/CSF target intensity while restricting movement when the vertices are within proximity of each other (i.e. in 

sulcal folds where walls of the surface will face each other).   The WM/cortex surface is then inflated (Fischl et al., 

1999)to attain a measurement of sulcal depth at each vertex which is used to perform spherical registration to a 

surface-based atlas of parcellated cortical regions (Fischl et al., 2004).  Regional parcellations of the cortex are then 

interpolated back to voxels in the subject’s image while constraining labeled voxels to be within the WM/cortex 

and cortex/CSF boundaries.  In FreeSurfer, this process results in labeling of 35 cortical regions per hemisphere. 

The FreeSurfer segmentation workflow is outlined in Figure 2.4. 

 After segmentation voxels for each subcortical and cortical label can be summed to attain a measurement 

of volume for each brain region and can be used for input into subsequent statistical analysis.  Importantly, 

automated segmentation methods are not error free and need to be inspected for accuracy prior to further 

analysis. 
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Figure 2.4. FreeSurfer segmentation pipeline using A) T1 MPRAGE whole brain acquisition.  B) Each voxel is labeled 
using probabilistic modelling into one of a number of subcortical/tissue classes. C) A pseudo white matter (WM) 
mask is created containing all voxel labeled WM and some internal structures (e.g. ventricles). D) The WM mask is 
tessellated to create a 3D model and this surface is further corrected using successive surface deformations along 
the T1-weighted image gradient outputting a WM / Cortex surface. E) The WM / Cortex surface is expanded 
outward along the image gradient to the Cortex / CSF boundary.  F) Surface based registration relying on 
measurements of sulcal depth and curvature is employed to parcellate the cortex into separate regions. 

 

2.4 Echo Planar Imaging for Functional and Diffusion MRI 
Many MRI techniques require the rapid acquisition of multiple images in a short amount of time. Echo 

planar imaging (EPI) was one of the first imaging sequences proposed (Mansfield, 1977; Stehling et al., 1991) and 

allows for the acquisition of an entire slice in a single excitation.  The EPI sequence first selects a slice then 

immediately applies a phase encode gradient followed by a frequency encode gradient to read out a single line 

from the edge of k-space.  Following the acquisition of an initial k-space line, a phase encode “blip” is applied 

followed by a frequency encode in the inverted direction to read out an adjacent line of k-space.  Phase encode 
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“blips” combined with frequency encodes of alternating polarity are repeated until all of k-space is traversed in a 

zig-zag fashion after a single slice excitation (single-shot).  The aforementioned gradient-echo EPI is typically used 

in functional MRI to rapidly acquire multiple T2* weighted imaging volumes (~2-3 seconds per volume) over time 

but this technique is highly sensitive to susceptibility effects and spatial deformations present in the T2* images.  

To reduce T2* effects in diffusion weighted imaging (DWI), a 180◦ refocusing pulse can be added after the 

excitation pulse to create a spin-echo EPI image with T2 weighting.  In spin-echo EPI the k-space readout is 

centered at the spin-echo resulting in a slightly longer imaging time relative to gradient-echo EPI, however in DWI 

a longer imaging time is usually accepted given the reduction in spatial distortion and susceptibility artifacts. 

 

2.5 Functional Magnetic Resonance Imaging 
Regional activation of neurons has been shown to be closely coupled with an influx of cerebral blood flow 

and the oxygenation of red blood cells in these regions (see the following for review of underlying physiology (Kim 

and Ogawa, 2012)). Specifically, under resting conditions regions of the brain will have steady flow of oxygenated 

hemoglobin into the arterioles of the capillaries. Neurons at rest will extract oxygen from the oxygenated 

hemoglobin creating a consistent ratio of oxygenated to deoxygenated hemoglobin in the venules of capillaries.  

When neurons activate the regional blood vessels will dilate creating an increase in oxygenated hemoglobin 

locally.  This increase in oxygenated hemoglobin is more than needed to meet local metabolic demands thus 

neuronal activity is associated with an increase in the ratio of oxygenated to deoxygenated hemoglobin (Fox and 

Raichle, 1986).  Given that deoxygenated hemoglobin is paramagnetic and oxygenated hemoglobin is diamagnetic 

an increase in signal is observed in T2* weighted images at the site of neuronal activity relative to resting 

conditions. The measurable difference in signal between resting and active conditions is called the blood oxygen 

level dependent (BOLD) signal and was first reported in humans in multiple cortical regions (Bandettini et al., 1992; 

Frahm et al., 1992; Kwong et al., 1992; Ogawa et al., 1992) which lead to the popularity of task-based functional 

MRI (fMRI) studies.  In task-based fMRI studies the BOLD signal is typically measured by acquiring multiple 

gradient-echo EPI images during the application of a stimulus (e.g. checkerboard or fingertap) and compared to 

measurements acquired during a baseline/rest condition (e.g. blank screen or no finger tap).  However, it was later 
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observed that intrinsic patterns of functional connectivity were observed between regions of the motor cortex 

during the resting condition (Biswal et al., 1995) suggesting that measurements of fMRI signal fluctuations at rest 

relate to the intrinsic functional network structure of the brain.  Regions of the brain that have strongly correlated 

resting-state fMRI signals are considered networks and multiple functional brain networks have been identified at 

rest (Damoiseaux et al., 2006) that relate to both lower level (e.g. visual and motor) and higher level (e.g. executive 

function) cognitive functions.   

 

2.5.1 Resting-State Functional Magnetic Resonance Imaging Analysis 
During a resting-state fMRI (rs-fMRI) experiment multiple MRI volumes are acquired with gradient echo 

EPI over a period time with a relatively short TR (~2-3 s).  To achieve whole brain coverage in a short acquisition, 

typical resolution of an EPI image is lower (~2-4 mm isotropic) relative to standard structural images.  Thus, for the 

purpose of anatomical alignment between subjects an additional structural image (e.g. 1 mm isotropic MPRAGE) is 

usually acquired during the same scanning session. To account for subject motion functional images are first 

realigned (registered) across time, followed by registration to the structural imaging volume.  Even after 

realignment, volumes that were acquired during severe patient motion (> 1 mm) will contain motion artifact and 

are typically removed in subsequent analysis.  Respiratory related modulations and cardiac pulsations have been 

shown to correlate with the fMRI signal and thus post-processing methods have been developed to mitigate the 

impact of confounding physiological noise. The physiological noise reduction method used in this thesis CompCor 

(Behzadi et al., 2007) extracts fMRI timecourses from CSF and white matter segmentations where a signal related 

to brain function is not expected and removes (regresses) these signals from the fMRI time course at each voxel.  

Notably, this method has the advantage of not requiring the monitoring of a subject’s physiology (e.g. heart rate 

monitoring) but has shown increased sensitivity to detect functional brain activity when compared to methods 

that utilize physiological monitoring. In cross-section studies fMRI volumes are typically registered to an 

anatomical template in a standard coordinate frame (e.g. Montreal Neurological Institute (MNI) space) so that 

group comparisons can be performed.  The final step of pre-processing of fMRI images is spatial smoothing and is 

usually performed with a gaussian kernel larger than the acquired EPI voxel resolution to increase the SNR of the 
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BOLD signal across the image at the cost of reducing the effective spatial resolution of the images.  The result of 

these pre-processing steps is a set of fMRI volumes registered to a standard template space where the time course 

of each voxel relates to the functional activation of that location over time. 

Functional connectivity analysis of rs-fMRI data requires the correlation of time courses from separate 

regions of the brain.  Several methods exist for analyzing fMRI to examine positive or negatively correlated brain 

regions.  In the work presented in this thesis two methods based of regions of interest (ROI) are applied namely, 

seed-based analysis and ROI-to-ROI analysis (Figure 2.6). Seed-based analysis extracts a time course (e.g. average 

across voxels) from a region of interest (seed) and then correlates this time course to all other voxel time courses 

in the image outputting a connectivity map (correlations at each voxel) for that specific seed.  Connectivity maps 

can be visualized to investigate regional patterns of positively and negatively (anti-correlated) connected regions 

with a given seed.  For example, when a seed placed in the precuneus the outputted connectivity map will have 

positive connectivity to regions of the prefrontal cortex and left/right lateral parietal lobe which are known regions 

of the default mode network (DMN).   In ROI-to-ROI analysis time courses are extracted for multiple ROIs and each 

pair of ROI time courses are correlated resulting in a connectivity matrix consisting of correlations for every 

pairwise correlation between ROIs.  Connectivity matrices can then be compared between groups by statistical 

analysis of individual connections (correlations).  Rather than correlations (e.g. spearmans correlation) functional 

connectivity analysis methods will apply a Fisher Z-transformation to correlations to normalize the distribution of 

values for statistical analysis.  ROI-to-ROI analysis is useful to examine whole-brain functional connectivity rather 

than relying on apriori selection of a specific seed region in seed-based analysis. In Chapter 6 of this thesis seed-

based connectivity analysis is used to ensure that the selected ROIs are similarly connected in both control and 

FASD groups. Whereas ROI-to-ROI analysis is used to investigate group differences in individual functional 

connections.  
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Figure 2.5. Visualization of the functional connectivity analysis techniques used in the current thesis.  A) Firstly 
multiple EPI volumes are acquired over time resulting a 4D dataset where a time course in each voxel is related to 
the functional activity in that region. B) In seed-based analysis a time course is extracted from a single ROI and the 
correlated to all other time courses in the image resulting in a functional connectivity map.  C) In ROI-to-ROI 
analysis time courses for multiple ROIs are extracted and correlated between all pairs of ROIs resulting in a 
connectivity matrix reflecting whole brain functional connectivity. 

 
Two commonly used functional connectivity analysis strategies not used in the current thesis were analysis of 

global network properties (Rubinov and Sporns, 2010) and independent component analysis (ICA) (Calhoun et al., 

2009).  Global network properties based on graph theory (e.g. global efficiency, shortest path length) can be 

derived from connectivity matrices but rely on thresholding connectivity matrices (i.e. excluding weakly correlated 
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connections).  Given that the amplitude of connectivity may be different between the four sites used in the current 

thesis work (see Chapter 5) global network properties may be confounded by site and thus were avoided for this 

work.  ICA of rs-fMRI data aims to separate the 4-dimensional data into spatial components such that each 

component shares the same time course.  Algorithms used to segregate the data into components in ICA are 

largely influenced by SNR and we show in Chapter 5 a large difference in SNR between the 4 sites used in the fMRI 

work precluding the use of ICA in these analyses. 

 

2.6 Diffusion Magnetic Resonance Imaging 
Diffusion describes the random Brownian motion of molecules in a fluid due to thermal collisions.  The 

displacement (r) is described in one dimension by equation 2.9 (Einstein, 1905) where t is time and D is the 

diffusion coefficient of the substance.  Within substances without barriers such as CSF  

〈𝑟𝑟〉 = √2𝐷𝐷𝐷𝐷                                                                                                  (2.9) 

in the brain, water molecules will freely diffuse equally in all directions based on a random walk (isotropic 

diffusion).  However, in regions of white matter axon bundles in the brain, water molecules are more likely to 

encounter cellular barriers perpendicular to the bundle rather than along to the bundle resulting in an increase in 

the displacement of water molecules along the tract relative to across the tract (anisotropic diffusion).  The 

directional dependence of diffusion measurements in the brain allows for probing of the local microstructural 

environment of tissues using MRI. 

In a typical diffusion MRI experiment the pulsed gradient spin echo (PGSE) technique (Stejskal and Tanner, 

1965) is played out prior to the phase encode/readouts of a single-shot spin-echo EPI sequence to attain a 

diffusion-weighted image (DWI).  The PGSE technique (visualized in Figure 2.7) requires the application of 

symmetric diffusion encoding gradients of the same duration, amplitude and direction. The first gradient is applied 

between the 90◦ excitation pulse and a 180◦ refocusing pulse, while the second gradient is applied between the 

180◦ refocusing pulse and the EPI readout. During the application of the first diffusion encoding gradient, spins will 

acquire phase (dephase) in the direction of the applied gradient and stationary spins will be rephased after the 
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application of the refocusing pulse and second encoding gradient. However, spins that move along the gradient’s 

axis during the PGSE technique will be exposed to asymmetric gradient dephasing and rephasing because gradient 

strength changes linearly across space. Hence, the PGSE technique is sensitive to signal loss resulting from the 

dephasing of spins that move along the direction of the diffusion encoding gradients.  The measured signal loss 

due to diffusion in DWI images, follows equation 2.10 where the signal depends on the gradient amplitude (G), 

gradient duration (δ), time between the onset of two diffusion gradients (Δ), and the apparent diffusion coefficient 

(ADC).  Furthermore, this equation can be simplified in terms of b-value (b) in equation 2.11.  

 

Figure 2.6. Stejskal and Tanner pulse spin echo sequence for diffusion encoding.  Gradients of the same amplitude 
(G) and duration(δ) are played out on either side of a refocusing pulse to attain diffusion weighting along the 
gradient direction. The time between the onset of the two gradients (Δ).  Note that combinations of gradients in 
the X, Y and Z directions can be used to attain diffusion weighting in any possible direction. 

 

𝑆𝑆
𝑆𝑆0

= 𝑒𝑒−𝛾𝛾
2𝐺𝐺2𝛿𝛿2(∆−𝛿𝛿3)𝐴𝐴𝐴𝐴𝐴𝐴                                                                       (2.10) 

𝑆𝑆
𝑆𝑆0

= 𝑒𝑒−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                                                               (2.11) 

Here the diffusion coefficient is referred to as ADC because the diffusion measured is not the intrinsic 

diffusion coefficient of water but rather is affected by the degree of hindrances/restrictions by the tissue 

microstructure.   Note that in order to solve for the ADC an additional measurement is needed (S0) which is the 

observed signal without any diffusion encoding.  In MRI this is attained by acquiring a set of images (in addition to 

diffusion weighted images) with no diffusion encoding gradients (i.e. b0 image) but with all other sequence 

parameters consistent between diffusion weighted and b0 images.  MRI gradients can be applied in any 

combination of X, Y and Z directions, thus diffusion encoding gradients can be applied to measure ADC along any 3-

dimensional axis.  In DWI in-vivo brain imaging the diffusion weighted signal is highly dependent on the direction 
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of the applied gradient relative to the orientation of the subject’s head inside the scanner.  Thus, rotationally 

invariant modelling of the diffusion signal was proposed based on the tensor model (Basser et al., 1994) which is a 

3-dimensional ellipsoid.  In diffusion tensor imaging (DTI), images are acquired for a minimum of 6 directions and 

stored in a diffusion matrix. An eigenvector decomposition of this matrix yields the 3 eigenvectors (ε1, ε2, ε3) that 

describe the axes of the diffusion tensor ellipsoid and 3 eigenvalues (λ1, λ2, λ3) which describe the magnitude of 

diffusion along each axis (Figure 2.8).  Here ε 1 is considered the primary eigenvector and composes the long axis of 

the tensor, whereas ε2 and ε3 are orthogonal to ε1 and define the plane along the short axis of the ellipsoid.  

Typical, diffusion tensor imaging protocols will acquire multiple b0 images along with multiple diffusion weighted 

images each sampling a unique direction to model the tensor for each voxel within the image.  

 

Figure 2.7. Measurements of the diffusion coefficient are made for multiple diffusion directions and stored in the 
diffusion matrix (A).  After an eigenvalue decomposition the diffusion within each voxel can be modeled as a 
tensor by three eigenvectors that describe the axis of the tensor and (B) three eigenvalues (λ1, λ2, λ3) that describe 
the magnitude of diffusion along each axis.  Isotropic (C) and anisotropic (D) diffusion tensors are shown.   

 

In order to acquire multiple diffusion weighted and b0 volumes are acquired using a single shot EPI 

modified to include the PGSE technique after slice excitation (Turner et al., 1991).  As described in Section 2.4, 

single shot EPI acquires an entire slice after a single slice excitation allowing for rapid acquisition of multiple whole 

brain images required for diffusion MRI. This rapid acquisition provides notable advantages for in-vivo diffusion 
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MRI. Given that diffusion MRI is sensitive to spin motion along the diffusion encoding direction, any subject motion 

in this direction can cause erroneous measurements of diffusion.  The rapid slice acquisition of EPI reduces the 

time interval of the acquisition, in turn reducing motion artifacts and the probability of erroneous diffusion 

measurement. Given that alignment between acquired whole brain volumes is essential for modeling the diffusion 

tensor within each voxel, EPI allows for a relatively short total acquisition time decreasing the probability of inter 

volume subject motion during the acquisition.  The beneficial rapid acquisition of EPI also has some notable 

disadvantages relating to spatial distortions of images.  Local magnetic field inhomogeneities are created by 

susceptibility induced off resonance of processional frequencies in areas of air tissue interfaces. Off resonance can 

result in either signal loss due to T2* dephasing in some brain regions (e.g medial temporal lobe) or positional 

errors that cause spatial deformation in other regions (e.g. anterior portions of the frontal lobe).  As described 

above the PGSE technique requires gradients to be rapidly turned on and off causing eddy currents that result in 

spatial distortions unique to each diffusion weighted imaging direction.  In order to model the diffusion tensor 

within each voxel, individual voxels need to be in aligned across the multiple b0 and diffusion weighted volumes. 

Hence, post-processing techniques have been developed to simultaneously correct for subject motion and spatial 

distortions resulting from eddy currents (Andersson and Sotiropoulos, 2016).  

In this thesis work, single shot spin-echo EPI images were acquired using a simultaneous multi-slice 

acquisition technique that allowed for a clinically relevant scan time of 3.5 minutes.  The chosen protocol included 

the acquisition of 6 b0 images, along with 30 b1000 images (i.e. b-value of 1000) appropriate for modelling the 

diffusion tensor. Importantly, the diffusion imaging protocol used in the current thesis acquired images with a 

1.5mm isotropic resolution enabling the segmentation and analysis of tensor properties of the cortical grey matter. 

 

2.6.1 Diffusion Tensor Parameters 
From the tensor model parameters can be calculated that help to quantify the shape of the ellipsoid and 

relate to the microstructural environment in brain tissue.  Mean diffusivity (MD) is calculated as the average of the 

3 tensor eigen values over all directions (equation 2.11) and characterizes the mean ADC within a voxel.  Fractional 
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anisotropy (FA) is a calculation of the standard deviation of the 3 tensor eigenvalues normalized to a value 

between 0 and 1 (equation 2.12) and describes the anisotropy of diffusion within a voxel (i.e. FA = 0 highly 

isotropic, FA = 1 highly anisotropic).  

𝑀𝑀𝑀𝑀 = λ1+ λ2+ λ3
3

                                                                               (2.11) 
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                                                        (2.12) 

These parameters are calculated for each voxel in DTI analysis creating diffusion parameter maps for MD and FA 

that show large differences between brain tissues (Figure 2.10).  Water molecules in CSF diffuse freely 

unconstrained by microstructural barriers and thus have a high MD value relative to neighboring brain tissue. As 

previously mentioned, water within white matter encounter barriers perpendicular to axonal bundles but not 

parallel to the axon bundle making diffusion highly anisotropic in these regions and characterized by large FA 

values in parametric maps. The last tensor parameter used in this thesis work is the primary eigenvector (ε1) which 

is a vector that describes the primary diffusion direction within a voxel.  Typically, the primary eigenvector is used 

for tractography which is the process of segmenting the white matter into anatomically distinct tracts.  However, 

in this thesis the primary eigenvector is extracted in cortical grey matter and the direction of this vector is 

measured relative to the cortical surface normal using the absolute value of the dot product between these 

vectors.  This calculation is the radiality of the primary diffusion direction relative to the cortex which is a measure 

thought to reflect the columnar microstructure of cortical grey matter. 
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Figure 2.8. Example FA, MD and primary eigenvector maps.  Increased FA is observed in the white matter of the 
brain because of the large anisotropy found in the white matter tracts of the brain, whereas MD is primarily high in 
the regions containing CSF because of the absence of boundaries to molecular diffusion.  Primary eigenvectors 
show the orientational sensitivity of the diffusion tensor to the white matter tracts that project in a fanning 
orientation into the cortex. 

 

2.7 Statistical Analysis 
Multiple statistical methods are used in the thesis research chapters to test for relationships between independent 

(e.g. FASD or control group) and dependent (e.g. extracted imaging metrics) variables. In short conventional 

statistical tests (e.g. t-test, linear regression, correlation analysis) were used for the investigation of group 

differences in imaging metrics between FASD and controls, as well as relationships between imaging metrics and 

demographic / behavioral measures. In addition to more standard statistical techniques, measurement of 

intraclass correlations (ICC) allowed for quantification of the reproducibility and repeatability of imaging metrics 

across sites and scans.  Finally, an advanced method of statistical modelling called machine learning was used to 

assess the predictive capacity of imaging metrics for classifying controls and FASD participants rather than 

conventional testing of statistical associations.  The following sections give a general overview of the two non-

conventional statistical techniques used in this thesis research namely, reproducibility/repeatability using ICC and 

machine learning analysis. 

 

2.7.1 Measurement of Repeatability and Reproducibility 
Reproducibility of scientific findings has been identified as an area of particular relevance to the field of 

neuroimaging (Poldrack et al., 2017).  Measurements of brain structure (e.g. volume or microstructure) and 



 
 

37 
 

function (e.g. connectivity) should be repeatable and reproducible across scans and sites in order to maintain 

confidence in cross-sectional studies.  Repeatability refers to the variation in a measurement taken multiple times 

under identical experimental conditions (e.g. test-retest imaging data of the same subject on the same scanner), 

whereas reproducibility refers to the variation in a measurement taken multiple times under varying experimental 

conditions (e.g. test-retest imaging data of the same subject but acquired using differing imaging protocols or 

scanners).   In this thesis the reproducibility was evaluated for rs-fMRI functional connectivity measures and 

repeatability was evaluated for rs-fMRI functional connectivity and cortical microstructure by analyzing data 

acquired from the same subjects scanned multiple times.  Intra class correlation (ICC) is a measure of repeatability 

(or reproducibility) and in the context of this thesis research is used to assess the consistency of imaging measures 

taken multiple times from the same individual.  In general, the ICC measures the consistency or absolute 

agreement between measurements taken multiple times for the same subjects.  Ten different variants of ICC exist 

and the particular model used is chosen to match the conditions of a reproducibility experiment (Koo and Li, 2016).  

For example, to quantify test-retest repeatability (functional connectivity Chapter 5, cortical diffusion 

measurement Chapter 7), the ICC(A, 1) two-way random, single-score model (Mcgraw and Wong, 1996) was used.  

Whereas, to test multisite reproducibility (functional connectivity Chapter 5), the ICC(A,1) two-way mixed, single-

score model (Mcgraw and Wong, 1996) was used.  ICC values range from 0 (no agreement between repeated 

measurements) to 1 (absolute agreement between repeated measurements) with values interpreted as poor (ICC 

< 0.5), fair (ICC 0.5 to 0.75), good (ICC 0.75 to 0.9), excellent (ICC > 0.9) (Koo and Li, 2016).   

 

2.7.2 Machine Learning Approaches for Multivariate Analysis 
Typical volumetric analysis relies on univariate statistical analysis which examines volumes of individual 

structures separately. However, univariate analysis ignores complex relationships between brain structure that 

may be able to better differentiate groups of individuals (e.g. Controls and individuals with FASD) and identify 

patterns of brain pathology.  Machine learning is a subfield of computer science which aims to build predictive 

models from datasets.  In general, a machine learning algorithm takes multiple variables as input to build a 

multivariate predictive model that is either capable of separating groups (classification) or predicting a continuous 



 
 

38 
 

variable (regression) from provided input.  Many machine learning algorithms exist that can be categorized into 

three overarching categories: supervised learning, unsupervised learning and reinforcement learning. 

Supervised classification learning (the method used in the current thesis Chapter 4) takes multiple 

variables as input along with associated labels (e.g. patient or control) to train a model that is capable of predicting 

the label of data that was not originally included during training.  In this thesis work, the support vector machine 

(SVM) classification model was chosen based on accurate performance in other neurological and psychiatric 

diseases (Orrù et al., 2012) and a linear kernel was used for increased interpretability of highly contributing brain 

regions to the model. The support vector classifier (SVC) aims to build a hyperplane (a plane in more than 3 

dimensions) that is maximally distant from other points in multidimensional space such that points on opposing 

sides of the plane are classified into two distinct groups.  The SVC maximizes the margin of the hyperplane 

(distance between plane and closest data point) based on the equation 2.7 and equation 2.8, where x is an input 

vector, w is a vector of feature weights and b is a bias vector.  

wTx - b = 1 (margin #1, for all points above the hyperplane)                                                         (2.7) 

wTx - b=-1 (margin #2, for all points below the hyperplane)                                                         (2.8) 

Notably, the maximal distance for each margin is 2/||w|| (Figure 2.5) so the aim of an SVC is to minimize ||w|| 

with the constraint that no data points fall within the margin.  However in “real-world” datasets, the data for two 

groups are unlikely to be completely separable by a hyperplane, thus this second constraint is typically relaxed (by 

a soft margin parameter “C”) that allows data points to be within the margin boundaries which when chosen 

properly has the added advantage of ignoring potential outliers.   



 
 

39 
 

 

Figure 2.9. Plot of Support Vector Machine decision boundary (red line) based on two categories of data (blue and 
green dots).  A decision boundary (red line) is fit to the data such that the margin (area between dashed lines) 
between the two categories is maximized. Image from Wikimedia Commons (public domain). 

 

The process of optimizing the model weights (w) and the soft margin parameter “C” is considered the “training” 

step of machine learning algorithms requiring an additional “testing” procedure to evaluate the predictive 

performance of the model.  The goal of machine learning classification algorithms is to generate predictive models 

that perform well on unseen data meaning data that was not included during the training of the model.  Thus, 

classification models are typically evaluated using measures of accuracy on “test data” that is unseen at the time of 

training.  When sufficient test data is unavailable, another approach called “k-fold cross validation” is used to 

emulate test data. In k-fold cross-validation the dataset is first broken into k number of subsets then a machine 

learning algorithm will train a predictive model on all but one subset and then test the predictive model on the 

left-out subset. This procedure is repeated k number of times while testing the model on a different subset each 

iteration resulting in measurements of accuracy for each subset.  In Chapter 4 k-fold cross validation is used select 

the SVM soft margin parameter “C” in the training of a predictive model and the resulting model is evaluated on a 

completely independent test dataset. 
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3 MRI in Fetal Alcohol Spectrum Disorder 

3.1 Volumetric / Classification Studies in FASD 
Studies of brain structure in children and adolescents with FASD have primarily relied on structural MRI 

segmentation to assess volumetric changes related to prenatal exposure to alcohol.   Reductions in total brain 

volume associated to prenatal alcohol exposure have been consistently reported in children and adolescents with 

FASD (Archibald et al., 2001; Astley et al., 2009a).  In studies that have analyzed brain tissue such as grey matter 

and white matter separately a larger reduction associated with prenatal alcohol exposure was observed in total 

grey matter volume (Archibald et al., 2001) and total cortical grey matter volume (Roussotte et al., 2012) relative 

to white matter and CSF volume suggesting that volumetric measurements of grey matter may be a sensitive 

measure to differentiate controls from those prenatally exposed to alcohol. Furthermore, studies of regional brain 

volumes have shown some subcortical brain volumes (e.g. putamen, caudate and hippocampus) are 

disproportionately reduced in children and adolescents with FASD (Nardelli et al., 2011; Roussotte et al., 2012).  

Notably, the caudate was the first reported region to have lower volume associated with prenatal alcohol exposure 

(Mattson et al., 1996), a finding that has since been consistently reported in the literature (Astley et al., 2009a; 

Inkelis et al., 2020; Treit et al., 2017).  In addition, regions of the cortex have also shown regional differences in 

volumetric reduction associated to FASD in children and adolescents.   Specifically, volume of the parietal, 

temporal and frontal lobes have all shown local decreased volume in FASD children/ adolescents relative to 

controls (Astley et al., 2009a; Chen et al., 2012).  Since the publication of the thesis work presented in Chapter 4, 

one study has investigated age-related volumetric change in a cohort of adolescent control (n = 55) and FASD (n = 

106) participants (Inkelis et al., 2020).  This study primarily focused on developmental trajectories of these regional 

brain structures but also reported overall reductions in regional volumes in the FASD group for the caudate, 

putamen, corpus callosum and pallidum.  Taken together, volumetric studies of children and adolescents with 

FASD suggest that volumetric reductions of multiple brain regions are associated with prenatal alcohol exposure, 

suggesting that these measurements may be useful in differentiating typically developing children and adolescents 

from those who were prenatally exposed to alcohol. However, these studies all use univariate analysis to detect 
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group differences which treats each brain region independently and ignores complex relationships (patterns) 

between structures that may be more suited to identifying individuals prenatally exposed to alcohol. 

Few studies have combined multivariate analysis with biological based measurements to identify 

individuals prenatally exposed to alcohol (Table 3.1). Multimodal classification of FASD has been performed using 

features derived from psychometric and eye tracking data achieving an 83% accuracy (Zhang et al., 2019), and 

achieved relatively high classification accuracies using psychometric data (78% accuracy) and eye tracking data 

(76%) separately. Notably this study used a subset of the NeuroDevNet cohort used as the training data in Chapter 

4 of this thesis.  Another study used epigenetic DNA methylation features (again in a subset of the NeuroDevNet 

cohort) to classify FASD individuals and achieved a 83% accuracy in predicting FASD (Lussier et al., 2018).  Facial 

features extracted from 3D laser scans achieved ~80%-90% accuracy identifying individuals with FAS (Fang et al., 

2008), a subtype of FASD that exhibits sentinel facial features and is thought to be the “most affected” subgroup 

on the FASD spectrum. Three way classification has been attempted for groups of children and adolescents 

namely, FASD, ADHD and healthy controls, in a study using eye tracking data and achieved a 77% classification 

accuracy (Tseng et al., 2013).  To our knowledge no study has attempted FASD classification using measures of 

regional brain volume reduction which have been the most consistently reported difference in structural MRI 

studies of FASD to date. 
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Table 3.1. Summary of FASD machine learning classification literature using biologically based measurements 

Study Sample Age Features Classification 
Results 

Fang et al. 2008 Dataset #1 (50 FAS, 32 Controls) 
Dataset #2 (36 FAS, 31 Controls) 

 Dataset #1 - mean ~13.5±3.5 years 
Dataset #2 - mean ~5.0±2.0 years 

Pattern recognition 
techniques used to extract 
facial features from 3D laser 
scans for each subject. 

~80-90% 
accuracy 

Tseng et al. 2013 13 FASD, 21 ADHD, 18 Controls FASD – mean 12.21 ± 2.10 years 
ADHD – mean 11.19 ± 1.83 years 
Control – mean 10.67 ± 1.82 years 

Features extracted from eye 
tracking data while 
participants attended to 
videos 

77% three-way 
classification 
accuracy 

Lussier et al. 2018A Training: 83 FASD, 96 Controls 
Test: 24 FASD, 24 Controls 

Training – range 5 - 18 years  
Test - range 3.5 - 18 years 

Features extracted from 
genome wide analysis of 
DNA methylation patterns 

83% accuracy 

Zhang et al. 2019A 45 FASD, 82 Controls Range 5 – 18 years Psychometric data plus 
antisaccade measurements 
extracted from eye tracking 

83% accuracy 

Zhang et al. 2019A 

– dMRI features 
22 FASD, 24 Controls Range 5 – 18 years Features extracted from DTI 

modelling of the corpus 
callosum 

67% accuracy 

A Sample includes subjects from the NeuroDevnet cohort used as the training data in Chapter 4 of this thesis 

 

3.2 Functional MRI Studies in FASD 
The majority of studies using MRI to study brain function in children and adolescents with FASD have used task-

based fMRI designs to examine brain function of participants while performing a cognitive task.  Altered brain 

function has been observed in FASD participants during a wide range of tasks spanning multiple cognitive domains 

(e.g. executive function, attention, and working memory) and results are summarized here. The go/no-go 

inhibition task has been shown to elicit a higher activation in child/adolescent FASD participants in regions of the 

frontal and parietal lobes (Fryer et al., 2007). Greater activation was also observed in young adults with FASD 

relative to controls during a sustained visual attention task with the larger activation localized to an occipital 

temporal region of the brain (Li et al., 2008).  Similar regions (e.g. parietal, frontal, temporal regions) have also 

been reported to have greater activation in children with FASD during a number processing task (Meintjes et al., 

2010). Similarly, greater activation in children/adolescents with FASD during spatial working memory in frontal 

/insular regions (Malisza et al., 2005; Spadoni et al., 2009)  and verbal working memory in frontal regions (O’Hare 

et al., 2009; Sowell et al., 2007).  At the time of Chapter 6 being published, only studies using the conventional n-

back task had reported contradictory findings in children with FASD with lower functional activation (Astley et al., 
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2009b; Roussotte et al., 2011) and higher functional activation (Diwadkar et al., 2013) being reported in frontal, 

temporal and parietal regions. Notably, the consistent finding of greater activity during multiple tasks suggests a 

general increase in regional functional demand in children/adolescents with FASD.  Since the work from Chapter 4 

was published only one other task-based fMRI study has reported alterations in functional activity in children with 

FASD.  This study used a non-symbolic number processing task and found decreased activation in the right parietal 

lobe of children with FASD compared to controls (Woods et al., 2018). Overall, task-based fMRI has provided a 

greater understanding of the relationship between brain function and cognitive performance in 

children/adolescents with FASD, however these studies are often confounded by the behavioral/cognitive 

differences that exist between individuals with FASD and typically developing controls.  In addition, the 

practicalities of performing task-based fMRI in a clinical environment preclude the use of this technique for an 

assessment of brain function in a diagnostic setting. 

Resting-state functional MRI studies assess the intrinsic functional architecture (i.e. “connectivity”) of the 

brain in absence of a cognitive task.  At the time this thesis was initiated few studies had used rs-fMRI to 

investigate functional connectivity in individuals with FASD (Table 3.2).  Early work investigated functional 

connectivity in FASD using ROI-to-ROI analysis to investigate the resting-state functional connectivity between a 

few a priori selected pairs of ROIs finding lower interhemispheric connectivity between para-central ROIs in 

children/ adolescents with FASD (Wozniak et al., 2011).  In this same sample an analysis of global network 

properties revealed greater characteristic path length and less global efficiency in the FASD cohort (Wozniak et al., 

2013) with additional studies demonstrating that these features also may be useful for identifying FASD 

participants that did not show striking facial dysmorphology patterns most commonly associated with FAS 

(Wozniak et al., 2016). 

Other studies have attempted to examine altered functional connectivity associated with FASD in the 

context of established resting-state functional networks.  For example lower functional connectivity was observed 

in young adults with FASD in connections of the default mode network (Santhanam et al., 2011) suggesting that 

functional alterations associated with prenatal alcohol exposure can be observed into early adulthood.  Using ICA 

multiple functional connectivity networks (i.e. components) were investigated in a cohort of neonates prenatally 
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exposed to alcohol finding greater functional connectivity in a component related to motor function (Donald et al., 

2016).  At the time this thesis work was initiated no studies had investigated similar functional networks in children 

/ adolescents prenatally exposed to alcohol but two reports other than the work in Chapter 6 have since been 

published.  The first of these studies used ICA to investigate multiple functional networks in a cohort of 57 children 

/ adolescents (19 FASD, 19 heavily exposed nonsymdromal, 19 controls).  Decreased connectivity was observed in 

the FASD group in five functional networks namely, the anterior DMN, salience network, dorsal attention network, 

ventral attention network, and right frontal-parietal network (Fan et al., 2017). The second work examined 

functional connectivity to the sensorimotor network in a cohort of individuals which primarily consisted of the 

same children / adolescents from the NeuroDevNet dataset analyzed in Chapter 6. In this study greater 

connectivity was observed in the FASD group between the sensorimotor network and the anterior cingulate cortex 

(ACC) and lower connectivity was observed in the FASD group between the sensorimotor network and regions of 

the DMN (Long et al., 2018).  Even with the publication of these two studies the work in Chapter 6 is to date the 

only FASD study that investigates multiple functional networks in a relatively large sample of children/adolescents 

(n=127, 66 FASD, 67 controls).  
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Table 3.2. Summary of resting-state functional connectivity studies in FASD 

Study Sample Age (years) Analysis Method Primary Finding 

Wozniak et al. 2011A 21 FASD, 23 Controls 10 – 17 ROI-to-ROI analysis 
of a priori selected 
pairs of ROIs 

Decreased interhemispheric connectivity 
between para-central ROIs 

Wozniak et al. 2013A 24 FASD, 31 Controls 10 – 17 Global Network 
Properties 

Greater characteristic path length and less 
global efficiency in the FASD cohort 

Wozniak et al. 2016 75 PAE, 68 Controls 7 – 17  Global Network 
Properties 

Global network properties (e.g. 
characteristic path length, global efficiency) 
were altered in a large proportion of 
individuals who were prenatally exposed to 
alcohol but could not be diagnosed by facial 
dysmorphic features alone. 

Santhanam et al. 

2011 

21 Dysmorphic FASD 
21 Non-dysmorphic FASD 
22 Controls 

9 – 24  ROI-to-ROI / Seed 
based analysis 

Decreased connectivity in FASD between 
regions of the DMN 

Donald et al. 2016 13 PAE, 14 Controls 2-4 weeks old 
(neonates) 

ICA Greater functional connectivity in the PAE 
group within the sensorimotor network 

Fan et al. 2017 19 FASD,  
19 heavily exposed 
nonsyndromal  
19 Controls 

11.3 ± 0.9 ICA  Decreased connectivity was observed in the 
FASD group in regions of five functional 
networks, the anterior DMN, salience 
network, dorsal attention network, ventral 
attention network, and right frontal-parietal 
network 

Long et al. 2018B 50 Controls, 59 PAE 5 - 18 years Seed-Based 
Analysis of 
Sensorimotor 
network 

Greater connectivity in the FASD group 
between the sensorimotor regions and the 
anterior cingulate cortex (ACC) and lower 
connectivity in FASD between the 
sensorimotor regions and the DMN 

A The same subjects were included in the cohorts of both studies 
B Cohort analyzed in this study primarily consisted of the NeuroDevNet cohort analyzed in Chapter 6 of this thesis 

 

3.3 Studies of Cortical Microstructure in the Human Brain 
Ex-vivo studies of diffusion magnetic resonance imaging (MRI) of the human cerebral cortex have shown 

sensitivity to underlying cortical microstructure, such as radial anisotropy reflecting the columnar structure of the 

cortex (McNab et al., 2013, 2009; Miller et al., 2011) and laminar specific patterns of radial and tangential 

diffusion relative to the cortex (Aggarwal et al., 2015; Leuze et al., 2014).  Early in-vivo studies have attempted to 

characterize the measurements of the diffusion tensor in the cortical grey matter (GM), finding a negative 

relationship between a subject’s age (~18-77 years old) and MD (Jeon et al., 2012) as well as sensitivity of cortical 

MD measurements to differentiate groups of  individuals with neurological disorders such as Multiple Sclerosis 

(Rovaris et al., 2006) and mild cognitive impairment (Ray et al., 2006).  Notably, these early studies relied on low-

resolution DTI acquisitions (~3.0 mm isotropic) suggesting that increased MD measurements in the cortical GM 
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may be a result of partial volumes between GM and the large MD values of adjacent CSF.  Thus, more recent 

studies of the cortex which is estimated to be ~1-5 mm thick have used high-resolution (~1mm isotropic) diffusion 

acquisitions that are less susceptible to partial volume measurements with neighboring CSF and superficial WM.  

In-vivo DTI with high-resolution (1mm isotropic) has shown sensitivity to microstructural properties of the cortex 

revealing diffusion anisotropy, albeit less than white matter, and a mostly radial orientation of the primary 

eigenvectors to the cortical surface with tangential orientation in somatosensory cortex in adults at 3T (McNab et 

al., 2013). Measurements of radiality are also associated to cortical depth in 1mm isotropic DTI measurements at 

7T with decreased radiality observed at lower cortical and sulcal depths (Kleinnijenhuis et al., 2015).  Other work 

at 7T (1.05mm isotropic) has shown a similar predominant radial orientation of the primary eigen vectors in the 

crowns of the gyri, but tangential orientation was observed in the sulcal fundus (Gulban et al., 2018).   

To date, the majority of studies focused on diffusion MRI measurements of the cortex have utilized the 

publicly available imaging data from the Human Connectome Project (HCP) (Sotiropoulos et al., 2013; Van Essen 

et al., 2013) which includes high-resolution (1.25 mm isotropic) diffusion MRI at 3T (1 hour acquisition) from 

~1000 subjects. Studies analyzing the HCP data have shown regional differences in neurite density (Fukutomi et 

al., 2018) and fibre orientation (Calamante et al., 2018).  Additional work using the HCP data has shown promise 

in using diffusion MRI to discriminate cortical regions (Ganepola et al., 2018), suggesting that changes in the 

diffusion signal across the cortex correspond to differences in tissue microstructure between cortical regions.  

Another study using the HCP data, generated a three-dimensional coordinate system based on cortical folding 

patterns alone (Cottaar et al., 2018), finding that the ratio of radial to tangential diffusion across the cortex is 

fairly consistent but decreases in this ratio were observed in the sulcal fundi and the somatosensory cortex.  

 Note that all aforementioned studies rely on the acquisition of an additional structural image (e.g. 1mm 

isotropic T1 MPRAGE) to delineate the inner and outer cortical boundaries with available automated methods 

(Dale et al., 1999; Kim et al., 2005).  3D models of these cortical models are then coregistered to DTI images to 

extract diffusion measurements within the cortex.  However, this registration of DTI to T1-weighted MPRAGE can 

be problematic, due to spatial distortions caused by eddy currents and susceptibility artifacts of EPI acquisitions. 

Additionally, all aforementioned high-resolution diffusion MRI studies of the cortex use acquisition protocols ~1 
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hour in length precluding their use in developmental or some clinical populations.  In Chapter 7, a software 

analysis pipeline is presented that automatically segments the cortex in native DTI space bypassing the need for 

additional imaging and problematic registration.  Additionally, in Chapter 7 an acquisition protocol is presented 

with a slightly lower resolution than previous cortical studies (1.5mm isotropic) but yields DTI measurements in 

line with high-resolution diffusion MRI cortical studies and is acquired in 3.5 minutes. 

 

Table 3.3. Summary of high-resolution (~1mm isotropic) in-vivo diffusion MRI studies in adult human cortex 

Study Sample Field 
Strength 

Resolution Diffusion  
Model 

Primary Finding 

McNab et al. 2013 6 healthy 
adults 

3T 1mm isotropic slabs 
centered on the 
central sulcus 

DTI Primary eigen vector is oriented 
radially to the cortical surface 
except for tangential orientation in 
the post central sulcus. 

Kleinnijenhuis et al. 

2015 

5 healthy 
adults 

7T 1mm isotropic  DTI Radiality measurements are 
dependent on both the cortical and 
sulcal depth. 

Gulban et al. 2018A 3T – 6 healthy 
adults 
7T - 6 healthy 
adults 

3T and 7T 1.25 mm isotropic  DTI and “Ball and 
Stick”  

Tangential fibres observed in 
superficial cortical depths. Crossing 
fibres in deep cortical depths using 
“Ball and Stick” modeling 

Fukutomi et al. 2018A 505 healthy 
young adults 

3T 1.25 mm isotropic NODDI Neurite density measures were high 
in areas known to have increased 
myelin content. 

Calamante et al. 2018A 8 healthy 
young adults 

3T 1.25 mm isotropic CSD Average Fibre Orientation 
Distribution observed high in areas 
of increased myelin content. 

Ganepola et al. 2018A 40 healthy 
young adults 

3T 1.25 mm isotropic Diffusion signal 
measured 
relative to cortex 

Diffusion MRI can be used to 
discriminate cortical regions with 
known architectonic differences 

Cottaar et al. 2018A 29 healthy 
young adults 

3T 1.25 mm isotropic Ball and Stick Proposed 3D coordinate system 
based on the cortical surface that is 
highly predictive of diffusion in the 
cortex as well as superficial WM 

A Uses publicly available HCP diffusion MRI data 
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Research 
4 Multivariate Models of Brain Volume for the Identification of Individuals 
Prenatally Exposed to Alcohol1 

 

Abstract 

Magnetic resonance imaging (MRI) studies of fetal alcohol spectrum disorder (FASD) have shown reductions of 

brain volume associated with prenatal exposure to alcohol.  Previous studies consider regional brain volumes 

independently but ignore potential relationships across numerous structures. This study aims (i) to identify a 

multivariate model based on regional brain volume that discriminates children/adolescents with FASD versus 

healthy controls, and (ii) to determine if FASD classification performance can be increased by building classification 

models separately for each sex. 3D T1-weighted MRI from two independent childhood/adolescent datasets were 

used for training (79 FASD, aged 5.7 - 18.9 years, 35 males; 81 Controls, aged 5.8 - 18.5 years, 32 males) and testing 

(67 FASD, aged 6.0 - 19.6 years, 38 males; 74 Controls, aged 5.2 - 19.5 years, 42 males) a classification model.  

Using FreeSurfer, 87 regional brain volumes were extracted for each subject and were used as input into a support 

vector machine generating a classification model from the training data. The model performed moderately well on 

the test data with accuracy 77%, sensitivity 64%, and specificity 88%.  Regions that contributed heavily to 

prediction in this model included temporal lobe and subcortical gray matter. Further investigation of two separate 

models for males and females showed slightly decreased accuracy compared to the model including all subjects 

(male accuracy 70%; female accuracy 67%), but had different regional contributions suggesting sex differences.  

This work demonstrates the potential of multivariate analysis of brain volumes for discriminating 

children/adolescents with FASD and provides indication of the most affected regions. 

 

  

 
1 Chapter has been published elsewhere, Little G., Beaulieu C. “Multivariate models of brain volume for 
identification of children and adolescents with fetal alcohol spectrum disorder”. Hum Brain Mapp. 2019;1–14 
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4.1 Introduction  
A diagnosis of fetal alcohol spectrum disorder (FASD) relies on the identification of physical, cognitive, and 

behavioral impairments related to prenatal alcohol exposure (Popova et al., 2016).   Quantitative structural 

magnetic resonance imaging (MRI) studies have consistently reported reductions of total brain, white matter, and 

gray matter volumes in individuals with prenatal exposure to alcohol who are often diagnosed with fetal alcohol 

spectrum disorder (FASD) (for reviews, see Donald et al., 2015; Lebel et al., 2011).  Some structures may be 

disproportionately affected in FASD with larger proportional reductions in specific deep gray matter structures 

such as the caudate and putamen (Nardelli et al., 2011; Roussotte et al., 2012). These brain volume reductions 

have also been reported in infants and neonates with prenatal alcohol exposure for the corpus callosum (Jacobson 

et al., 2017) and gray matter (Donald et al., 2015).  In addition, larger volume reductions have been observed in 

males with FASD suggesting sex differences (Chen et al., 2012; Dudek et al., 2014; Treit et al., 2017).  However, 

most of these studies analyze each brain region separately (i.e. univariate analysis) and volumes have considerable 

overlap between groups making them unsuitable for individual FASD diagnosis.  

 

Machine learning classification takes multiple variables as input to build a multivariate classification model capable 

of separating groups based on the provided input.  In short, a multivariate classification model is a mathematical 

equation that describes a multidimensional boundary (e.g. a plane) where data points located on opposite sides of 

the boundary are classified into different groups (i.e. FASD versus control).  Machine learning classification of 

neuroimaging features has shown promise to discriminate individuals with brain disorders from healthy controls 

(Arbabshirani et al., 2017). These techniques have been applied in pediatric populations to identify 

neurodevelopment disorders such as attention deficit hyperactivity disorder (ADHD) and autism (Levman and 

Takahashi, 2015). Multivariate classification studies with neuroimaging data typically rely on a large number of 

samples to achieve stable models (Nieuwenhuis et al., 2012) and to date ADHD classification studies have been 

performed most often on the same cohort of children and adolescents collected as part of the ADHD-200 

consortium (Milham et al., 2012).  Classification models on the ADHD-200 data have achieved accuracies ranging 

from 55% using structural brain features (Colby et al., 2012) to 81% using resting-state functional connectivity 
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features (Fair et al., 2013) in classifying children/adolescents with ADHD.  Similar accuracies have been achieved in 

studies of large cohorts (> 100 participants) of children/adolescents with autism reporting classification accuracies 

of between 70% using a combination of regional brain volume and functional connectivity features (Zhou et al., 

2014)  to 91% using functional connectivity features alone (Chen et al., 2015).  To our knowledge only one study 

focusing on eye tracking and psychometric data has attempted FASD classification using neuroimaging based 

features.  This study extracted features from diffusion MRI of the corpus callosum, and achieved an accuracy of 

65%-70% in classifying children/adolescents with FASD (41 individuals with FASD, 35 controls) (Zhang et al., 2019) 

that was a subset of the larger cohort used in the current study. However, to date no study has investigated the 

utility of multivariate classification models using regional brain volumes (notably the most consistent finding across 

FASD MRI studies) in FASD.  Additionally, classification studies of neurodevelopmental disorders typically use a 

linear regression to reduce sex-related variation of input features, however in cases where there are group by sex 

interactions (e.g. those observed in FASD) this would be sub-optimal. 

 

This study had two key aims: (i) to identify a multivariate model based on regional brain volume capable of 

discriminating children/adolescents with FASD and (ii) to determine if FASD classification performance can be 

increased by building classification models separately for each sex given the known volume differences between 

males and females as a group (Cahill, 2006; Cosgrove et al., 2007). The brain volume model was developed and 

then tested on independent FASD/un-exposed control cohorts from two studies – a four-site pan-Canadian 

“NeuroDevNet” cohort (79 FASD, 81 controls) and a local single-site “CIHR” cohort (67 FASD, 74 controls).  
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4.2 Materials and Methods  

4.2.1 FASD / Typically Developing Subjects Training and Testing Datasets  
Two previously collected independent MRI datasets were used to generate and validate a predictive model. The 

training data was collected at four different sites across Canada as part of the NeuroDevNet project on FASD 

(Reynolds et al., 2011a) and was selected as the training dataset so that outputted models were generalizable to 

different centres or scanners.  One hundred and eighty-one childhood/adolescent healthy and FASD participants 

underwent brain MRI at four sites, but 21 subjects (11 FASD, 10 controls) were excluded for poor structural 

imaging quality. The remaining 160 subjects included 79 children with FASD (12.7±3.2 years, 35 males) and 81 

healthy un-exposed controls (11.9±3.4 years, 32 males). Group analysis of brain volumes has been reported 

elsewhere for the healthy controls and FASD groups in this cohort (Zhou et al., 2017).   FASD participants were 

recruited from six clinics across Canada and had an alcohol related disorder in accordance with the Canadian 

Guidelines for diagnosis of FASD (Chudley et al., 2005) or had confirmed prenatal alcohol exposure.  The FASD 

participants in the training data included 7 fetal alcohol syndrome (FAS), 13 partial fetal alcohol syndrome (pFAS), 

38 alcohol related neurodevelopmental disorder (ARND), and 21 confirmed prenatal alcohol exposure (PAE). In this 

study, subtypes were combined into two diagnostic groups, either 20 FASD with sentinel facial features (FAS or 

pFAS) or 38 FASD without sentinel facial features (ARND) in-line with updated diagnostic guidelines (Cook et al., 

2016). PAE subjects remained in a single group as the diagnostic guidelines characterize this group as “at risk of 

neurodevelopmental disorder and FASD”. All FASD subtypes were labelled as a single group for machine learning 

classification. 

 

The testing data for model validation was collected under a Canadian Institutes of Health Research (CIHR) project 

on brain development.  Participants with brain MRI included 67 participants with FASD (12.1±3.3 years, 38 males) 

and 74 controls (11.5±3.5 years, 42 males).   Notably, 57 FASD and 66 control participants were included in our 

previous study on volumes/DTI/cortical thickness (Treit et al., 2017). The other 10 FASD participants were included 

in a much earlier diffusion MRI study (Lebel et al., 2008), and were the participants that did not overlap the FASD 

participants from (Treit et al., 2017). An additional 8 controls were randomly selected males from a typical 
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development cohort (Narvacan et al., 2017) and were added to provide a similar ratio of males and females in the 

control and FASD groups. All three studies combined for the test data used the same 3D MPRAGE protocol on the 

same scanner at the University of Alberta. Participants from the FASD group were recruited primarily through an 

FASD diagnostic clinic at the Glenrose Rehabilitation Hospital in Edmonton, AB, and were  diagnosed based on 

Canadian guidelines (Chudley et al., 2005) and the 4-digit diagnostic code (Astley, 2004) .  The FASD participants in 

the testing data included 10 FAS, 4 pFAS, 2 ARND, 1 fetal alcohol effect (FAE), 7 neurobehavioral disorder alcohol 

exposed (NBD:AE), 9 static encephalopathy alcohol exposed (SE:AE), 16 “FASD” without further specification, and 

18 with no FASD diagnosis but confirmed prenatal alcohol exposure (PAE). As in the training data, subtypes were 

combined into two diagnostic groups, either 14 FASD with sentinel facial features (FAS or pFAS) or 35 FASD 

without sentinel facial features (ARND, FAE, NBD:AE, SE:AE, or FASD) consistent with updated diagnostic guidelines 

(Cook et al., 2016). All FASD subtypes were labelled as a single group for the testing of the machine learning 

classification model. Further demographic information for training and testing datasets was collected via 

questionnaire including ethnicity and current medication and are summarized for the training and testing cohorts 

in Tables 4.1 and 4.2, respectively.    

 

This study was approved by the Human Research Ethics Boards at Queens’s University, University of Alberta, 

Children’s Hospital of Eastern Ontario, University of Manitoba and the University of British Columbia.  Written 

informed consent was obtained from parent or legal guardian of children/adolescents. Assent was obtained from 

each child/adolescent before study participation. 
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4.2.2 Cognitive Testing 
Cognitive assessments were performed on the day of the MRI scan at all four sites by research assistants trained 

by the same neuropsychologist for between site consistency.  Research assistants were not blinded to FASD 

diagnosis and participants took their medication as usual on the days of behavioral testing. The cognitive batteries 

performed for both the training and testing datasets were different but included evaluations of core functions 

affected in PAE such as math, reading, executive function, memory, and inhibition.  For a full summary of the 

behavioral tests,  see previously published work for training data (Zhou et al., 2017)  and testing data (Treit et al., 

2017). Only behavioral tests that were conducted in the majority of participants in both the training/testing 

cohorts were included for analysis in the current study: the Woodcock Johnson III Tests of Achievement (WJ-III 

ACH) evaluated mathematic and quantitative reasoning skills (Woodcock et al., 2001) and the Woodcock Reading 

Mastery Tests - Revised (WRMT-R) provided a comprehensive assessment of reading ability (Woodcock, 1998).  

Results for behavioral tests for the participants/cognitive tests in the current study are presented for both the 

training and testing groups in Tables 4.1 and 4.2, respectively. 
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Table 4.1. Participant characteristics and demographics for training “NeuroDevNet” data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aGroup differences of categorical variables (e.g. sex) assessed with Mann-Whitney U; continuous variable (e.g. 
age) assessed with independent samples t-test (* p < 0.05). 
  

 Control FASD p-valuea 

Participant Characteristics n = 81 n = 79  
Age (years) 11.9±3.4   

(5.8 – 18.5) 
12.7±3.2 
(5.7 – 18.9) 

0.138 

Males (%) 32 (40%) 35 (44%) 0.540 
FASD Subtype (%)    

FASD with sentinel facial features  0 (0%) 20 (25%) < 0.001* 
FASD without sentinel facial features 0 (0%) 38 (48%) < 0.001* 
Confirmed Prenatal Alcohol Exposure (PAE) 0 (0%) 21 (27%) < 0.001* 

Ethnicity (%)    
Indigenous 1 (1%) 41 (52%)  < 0.001* 
Caucasian 74 (91%) 24 (30%)  < 0.001* 
Other 5 (6%) 14 (18%) 0.024* 
Unknown 1 (1%) 0 (0%) 0.323 

Medication (%)    
Stimulants 1 (1%) 12 (15%) 0.001* 
Antidepressants 0 (0%) 3 (4%) 0.078 
Antipsychotics 0 (0%) 3 (4%) 0.078 
Stimulants and Antipsychotics 0 (0%) 8 (10%) 0.003* 
Stimulants, Antipsychotics & Antidepressants 0 (0%) 2 (3%) 0.151 
Other 7 (9%) 24 (30%) < 0.001* 
No Medication 73 (90%) 38 (48%) < 0.001* 

Comorbidities (%)    
ADHD 1 (1%) 40 (50%) <0.001* 
Anxiety 0 (0%) 10 (13%) 0.001* 
Depression 0 (0%) 4 (5%) 0.041* 
Bipolar 0 (0%) 2 (3%) 0.151 
Oppositional Defiant Disorder 0 (0%) 6 (8%)  0.012* 
Conduct Disorder 0 (0%) 2 (3%) 0.151 
Autism 0 (0%) 1 (1%) 0.311 
Other Disorder 0 (0%) 23 (29%) <0.001* 

Site (%)    
University of Alberta 42 (52%) 34 (43%) 0.266 
Queens University 18 (22%) 22 (28%) 0.413 
University of Manitoba 8 (10%) 10 (13%) 0.579 
University of British Columbia 13 (16%) 13 (16%) 0.945 

Cognitive Test (Age Standardized Score)    
Woodcock Johnson - Quantitative Concepts 18A&B 
mathematics 

n = 80/81 n = 78/79  
105±12 
(69 – 129) 

83±19 
(37 – 129) 

<0.001* 

    
Woodcock Reading Mastery Test Revised - Word ID n = 80/81 n = 78/79  

106±13 
(71 – 134) 

91±14 
(52 – 126) 

<0.001* 
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Table 4.2. Participant characteristics and demographics for testing “CIHR” data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aGroup differences of categorical variables (e.g. sex) assessed with Mann-Whitney U; continuous variable (e.g. 
age) assessed with independent samples t-test (* p < 0.05). 

 

4.2.3 Image Acquisition 
The training “NeuroDevNet” MRI data was acquired at four MR imaging centres: University of Alberta (1.5T 

Siemens Sonata), Queen’s University (3T Siemens Trio), University of Manitoba (3T Siemens Trio), and University of 

British Columbia (3T Philips Intera).  3D T1-weighted images were acquired with high-resolution (1 x 1 x 1 mm3) 

MPRAGE using 160 axial slices, TI = 1100 ms, and flip angle = 15o, but repetition (TR) and spin echo (TE) times were 

set individually per site given variations in scanner performance resulting in slightly different acquisition times: 

University of Alberta - TE = 4.38 ms, TR = 2180 ms, scan time 5:41 min; Queens University - TE = 3.45 ms, TR = 2180 

 Control FASD p-valuea 
Participant Characteristics n = 74 n = 67  

Age (years) 11.5±3.5   
(5.2 – 19.5) 

12.1±3.3 
(6.0 – 19.6) 

0.26 

Males (%) 42 (57%) 38 (57%) 0.99 
FASD Subtype (%)    

FASD with sentinel facial features  0 (0%) 14 (21%) < 0.001* 
FASD without sentinel facial features 0 (0%) 35 (52%) < 0.001* 
Confirmed Prenatal Alcohol Exposure (PAE) 0 (0%) 18 (27%) < 0.001* 

Ethnicity (%)    
Indigenous 1 (1%) 19 (28%) <0.001* 
Caucasian 55 (74%) 15 (22%) <0.001* 
Other 8 (11%)  5 (7%) <0.001* 
Unknown 10 (14%) 28 (42%) <0.001* 

Medication (%)    
Stimulants 0 (0%) 19 (28%) <0.001* 
Atypical Antipsychotics 0 (0%) 22 (33%) <0.001* 
Antidepressants 0 (0%) 10 (15%) <0.001* 
Other 0 (0%) 9 (13%) <0.001* 

Comorbidities (%)    
ADHD 0 (0%) 33 (49%) <0.001* 
Anxiety 2 (3%) 12 (18%) <0.001* 
Reactive attachment disorder 0 (0%) 8 (12%) <0.001* 
Other Disorder 0 (0%) 17 (25%) <0.001* 

Cognitive Test (Age Standardized Score)    
Woodcock Johnson - Quantitative Concepts 18A&B 
mathematics 

n = 66/74 n = 52/67  
107±13 
(77 – 135) 

82±13 
(53 – 118) 

<0.001* 

    
Woodcock Reading Mastery Test Revised - Word ID  n = 66/74 n = 52/67  

107±13 
(81 – 147) 

89±14 
(52 – 134) 

<0.001* 
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ms,  scan time 5:15 min;  University of Manitoba - TE = 3.45 ms, TR = 2180 ms, scan time 5:15 min; University of 

British Columbia - TE = 3.6 ms, TR = 1858 ms, scan time 6:23 min. The testing “CIHR” data included 3D T1-weighted 

images exclusively acquired at the University of Alberta (1.5T Siemens Sonata) site using an MPRAGE sequence (1 x 

1 x 1 mm3) with TE = 4.38 ms, TR = 1870 ms, TI = 1100 ms, flip angle = 15o, scan time 4:29 min. Other images were 

also acquired over 25 min included T2-weighted, fluid-attenuated inversion recovery (FLAIR), resting-state 

functional (for NeuroDevNet), and DTI; however, none of these are the focus of the current report on brain 

volumes. 

 

4.2.4 Automated Brain Segmentation 
 In this study, only regional brain volumes rather than other imaging metrics were used as predictors for 

classification because reductions in regional brain volumes have been the most commonly reported differences in 

FASD populations relative to controls (Donald et al., 2015; Lebel et al., 2011).  Regional brain volumes were 

extracted from T1-weighted structural images using the automated segmentation pipeline FreeSurfer version 5.3 

(Fischl, 2012).  Volumetric loss relating to FASD has been observed in numerous brain regions (Donald et al., 

2015) with some regions being consistently reported including: regions of subcortical grey matter, total white 

matter, corpus callosum, and regions of the cortex. Hence, volumes of 87 regions were selected for classification 

analysis including subcortical gray matter (12 - 6 regions for left and right), left/right total white matter (2 - left and 

right), corpus callosum segmentations (5 regions), and cortical parcellations (68 - 34 regions for left and right). 

Note that left and right segmentations were kept separate for analysis. Notably, ventricular segmentations were 

excluded based on limited reports of volumetric differences in FASD, right/left nucleus accumbens were excluded 

based on the low scan-rescan reliability of FreeSurfer segmentations (Morey et al., 2010), and cerebellum/brain 

stem were excluded due to partial coverage in many participants.  Each included volume was then standardized 

across training and test datasets (i.e. mean centered to zero and scaled to unit variance over entire training/testing 

datasets) as this is a requirement of the support vector learning algorithm used to build a classification model. 
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4.2.5 Predictive Model Training 
Using the brain volumes from the training data as input, a linear support vector machine (SVM) was trained to 

predict FASD or control using the scikit-learn machine learning toolbox version 0.18.1 (Pedregosa et al., 2011).  This 

SVM algorithm was selected based on accurate performance in other neurological and psychiatric disease 

classification studies (Orrù et al., 2012) and a linear kernel was used to allow for the identification of highly 

contributing brain regions to the model.  The multisite data was selected for training so that the classification 

model generated by the SVM was robust to between site variation of regional brain volume measurements, and 

would perform consistently across different sites.  A single classification model was generated by fitting the SVM 

hyperparameter “C” based on the training data using a combination of leave-one-out cross-validation with internal 

ten-fold validation for parameter selection.  For each internal fold, the soft margin constant “C” was selected from 

a list of possible values (10-4, 10-3, 10-2, 1, 10, 100) as the parameter with the highest average accuracy over the 

ten-fold internal validation.  A single value of “C” for the training data was then chosen as the mode of all selected 

parameters from the leave-one-out folds and a single classification model was fit to the entire training data.  This 

model was then used to predict FASD or control for each subject in the test data. 

 

4.2.6 Model Evaluation / Interpretation 
Three measures of model performance were calculated on both the leave-one-out cross-validation training results 

and the test dataset predictions, namely accuracy, sensitivity, and specificity.  In addition, normalized feature 

weights (decision boundary weight divided by maximum weight in model) of the trained model were investigated 

to identify brain regions that contributed the most to FASD prediction. To compare the performance of the 

multivariate prediction model to more conventional univariate analysis, the same training/testing procedure was 

performed on each of the 87 individual brain volumes separately.  Both cross-validation training and test set 

accuracies were compared between the multivariate model and all other univariate models. Permutation tests 

were performed on multivariate and univariate test accuracies by calculating the accuracy of the trained models 

on 2000 permutations of test data labels (FASD/Control).  Note that because of the number of evaluations 
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performed, only multivariate/univariate models that performed higher than a multiple comparison corrected p-

value (p < 0.0005 = 0.05/88 tests) on the testing data permutation tests are presented.   

 

4.2.7 Sensitivity of Model to Participant Demographics 
To test for sensitivity of the classifier to FASD sub-group, the number of true positives and false negatives was 

compared between the 3 subtypes (FASD with sentinel facial features, FASD without sentinel facial features, and 

confirmed PAE without official FASD diagnosis). Next the distance from support vector decision boundary was 

calculated for each subject in the test data as a measure of how closely a subject matched the FASD prediction 

model.  A positive boundary distance value indicates the subject was predicted “Control”, whereas a negative 

value indicates the subject was predicted “FASD”. For comparison between models, distance values were scaled by 

the maximum absolute distance of the test samples.  Regional brain volumes are known to differ between males 

and females (Cahill, 2006; Cosgrove et al., 2007) and change throughout childhood / adolescence with regionally 

specific developmental trajectories (Giedd et al., 1999; Narvacan et al., 2017). Boundary distances were used to 

test for systematic classification errors related to sex (t-test), age (linear regression), and age-by-sex interaction 

(linear regression). To test for sensitivity of the classifier to a specific cognitive phenotype, linear regression was 

performed between boundary distance and two separate behavioral tests which were Woodcock Johnson 

Quantitative Concepts (mathematics) and Woodcock Johnson Word Identification (reading), notably these were 

the only tests performed in a majority of individuals from both the training and testing cohorts. All statistical tests 

were performed separately for FASD and Control groups and corrected for multiple comparisons (Bonferroni 

correction: 5 tests by 2 groups, 10 comparisons, effective p < 0.005).   

 

4.2.8 Sex Specific Modelling 
Following these primary analyses, two approaches were taken to address sex related differences in model 

performance. Approach 1: The addition of sex as a control variable in a linear regression is a common approach for 

addressing sex related variation in classification studies (some examples; Fair et al., 2013; Nielsen et al., 2013).   
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In this study, the entire modelling procedure was repeated with brain volumes adjusted for sex using a linear 

regression prior to model training.  Approach 2: The same modelling procedure was performed on raw brain 

volumes for males (n=35 FASD, n=32 controls) and females (n=44 FASD, n=49 controls) separately in the training 

cohort and then applied to the males (n=38 FASD, n=42 controls) and females (n=29 FASD, n=32 controls) in the 

test cohort.  Both correction techniques were compared to the original model (which did not account for sex-

related variation) using measures of accuracy, sensitivity, and specificity separately for males and females in the 

test cohort.   

 

4.3 Results 

4.3.1 FASD Classification Model / Performance 
A binary classification model based on brain volumes was created to discriminate between typically developing 

individuals and those with FASD.  The 10 most heavily weighted brain regions in the model included 3 subcortical 

gray matter regions (left globus pallidus, left and right caudate), 3 cortical gray matter regions located in the 

temporal lobe (right superior temporal gyrus, bank of the right superior temporal gyrus, and left inferior temporal 

gyrus), 2 cortical regions located in the frontal lobe (left and right pars triangularis), and 2 along the cingulate gyrus 

(right posterior cingulate and right isthmus of the cingulate).  A visualization of all model weights for each 

segmented brain region is shown in Figure 4.1.   
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Figure 4.1. Visualization of model generated from brain volumes from the training dataset. All regions are 
displayed as 3D renderings, with the exception of left/right white matter segmentations displayed as a transparent 
overlay on an axial image from the FreeSurfer average template.  For visualization purposes, globus pallidus 
renderings are displayed on a separate axial image.  All regions of the brain are color coded by normalized support 
vector classifier weightings (weight divided by maximum absolute value weight in model).  The 10 most heavily 
weighted regions are listed in order with corresponding colors.  Model weightings were strongest for left/right 
regions of the temporal lobes, subcortical regions (left/right caudate and left globus pallidus), bilateral frontal lobe 
regions (left/right pars triangularis), and two regions in the cingulate of the right hemisphere. 

 

The model showed moderate performance on the training data (NeuroDevNet) with accuracy 71%, sensitivity 58%, 

and specificity 84%, and achieved similar results on the independent test data (CIHR) with accuracy 77% (p-value = 

0.0005), sensitivity 64%, and specificity 88%.  Notably, the multivariate classification model outperformed all 

univariate classification models for accuracy in the test data (77% compared to the next highest 72% for the left 

caudate model), and in the training data (71% compared to 67% for the left caudate model).  Accuracies for the 

multivariate and univariate classification models are presented in Figure 4.2.  The  multivariate classification model 

was more specific (88%) compared to all other univariate models that achieved higher than chance classification 

accuracy (58% right hippocampus - 85% right putamen), whereas sensitivity of the multivariate model (64%) was 

within range of the above chance univariate models (right putamen 46% - 79% left thalamus). Boundary distance, 

accuracy, sensitivity, and specificity for the multivariate classification model are presented alongside the left 
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caudate univariate model in Figure 4.3.  Notably in both the univariate left caudate volume and multivariate model 

distance measurements there was a significant proportion of FASD participants minimally overlapping the controls.  

In total 17 FASD participants (10 females; age 12.22 ± 3.43 years; 7 FASD with sentinel facial features, 4 without 

sentinel facial features and 6 prenatally exposed without official diagnosis) had a left caudate volume smaller than 

~3.1 cm3 whereas only 1 control had a left caudate volume below that threshold. No controls and 8 FASD 

participants had a left caudate volume lower than ~2.7 cm3. Similarly, the multivariate model had 20 FASD 

participants (9 females; age 12.23 ± 3.27 years; 7 FASD with sentinel facial features, 6 FASD without sentinel facial 

features and 7 prenatally exposed without official diagnosis) with no overlapping controls below a distance from 

decision boundary value of -0.38 (the lowest control value).  Of these 20 FASD participants that did not overlap 

controls in the multivariate model, 5 had a caudate volume larger than 3.1 cm3 demonstrating that the 

multivariate and univariate models are discriminating different individuals. 
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Figure 4.2. Performance of the multivariate brain volume prediction model (solid red line) compared to models 
generated using each brain region volume separately (dashed lines).  Both the accuracy of the models on the test 
data and leave-one-out cross-validation accuracy on the training data are shown.  Models are listed from highest 
to lowest accuracy and are presented if they performed significantly greater than chance (permutation test, p < 
0.0005) in the test cohort.  The multivariate model outperformed all univariate models in both the training and 
testing data. Notably, 8 of these 13 regions are deep grey matter structures including bilateral caudate and 
bilateral thalamus. 
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Figure 4.3. Distance from classification boundary for multivariate classification model (A) and raw volume for the 
top performing univariate model (B, left caudate) are presented for all subjects in the test “CIHR” cohort separated 
by group (FASD/Control).  Values above the support vector machine decision boundary (black line) were classified 
as the control group whereas values below the decision boundary were classified as FASD.   A large proportion of 
FASD participants had a distance from decision boundary that did not overlap any of the controls (20 FASD with 
boundary distance < -0.38), and similarly a large proportion of FASD had minimal overlap with controls below a left 
caudate volume of ~3.1 cm3 (1 control, 17 FASD). 

 

4.3.2 Diagnostic, Demographic, and Cognitive Associations to FASD 
Classification Model 
When separating classification performance in the FASD group by the 3 diagnostic subtypes, differences were 

observed between the proportion of true positives (TP) to false negatives (FN) between subtypes.  Notably, almost 

all the FASD subjects with sentinel facial features were correctly classified (11 TP, 3 FN), whereas the other two 

subtypes, FASD without sentinel facial features (21 TP, 14 FN) and PAE (11 TP, 7 FN), had a lower proportion of TP 

relative to FN. 
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T-tests revealed a systematic difference in classification boundary distance between control males and females (t-

statistic -3.67, p-value = 0.0005) indicating more false positives for females compared to males which may be a 

result of lower brain volumes observed in typical females relative to typical males, as a group.   Linear regression 

results relating classification boundary distance to 4 demographic variables of interest, namely: age, age by sex, 

Woodcock Reading Mastery Test-Revised Word Identification (reading), and Woodcock Johnson Quantitative 

Concepts (mathematics) were not significant in the FASD or control groups. 

 

4.3.3 Sex Specific Models 
To further investigate the effect of sex on model performance, the original classification model was evaluated 

separately for males and females.  The classification accuracies of the entire training set were similar for males 

(76%, p = 0.0005) and females (77%, p = 0.0005), but sensitivity was lower and specificity was greater for males 

(sensitivity 53%, specificity 98%) compared to females (sensitivity 79%, specificity 75%).   In other words, 1/42 

male controls were misclassified as FASD, whereas 8/32 female controls were misclassified as FASD.  A larger 

difference in classification accuracy was observed in the FASD groups where 17/38 male FASD were misclassified 

as controls whereas only 6/29 female FASD were misclassified.   

 

The first approach for reducing sex related bias in sensitivity/specificity was to fit a model based on sex adjusted 

volumes.  This approach performed moderately well on the test data, however sensitivity remained low for males 

relative to females: male accuracy 72% (p-value = 0.0005), sensitivity 58%, specificity 86%; female accuracy 74% (p-

value = 0.0005), sensitivity 72%, specificity 75%. The second approach for reducing sex-related bias in FASD 

prediction was to create separate models for males and females.  Both models performed moderately well on the 

test data and had similar sensitivity and specificity between males and females: male accuracy 70% (p-value = 

0.0005), sensitivity 68%, and specificity 71%; female accuracy 67% (p-value = 0.01), sensitivity 62%, and specificity 

72%.  Notably, sensitivity in the male FASD group was increased by creating separate models for males and 

females at the cost of decreased specificity and overall accuracy.  Classification performance and classifier 
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boundary distance separated by sex and group is presented in Figure 4.4 for the original model, the model 

adjusted for sex and the models created separately for each sex. 

 

Figure 4.4. Distance from classification boundary is presented here for each subject in the test data separated by 
group (Control, circle / FASD, diamond) and sex (Male, blue / Female, red) for the unadjusted multivariate model 
(A), the multivariate model using regional brain volumes adjusted for sex (B), and creating separate classification 
models for males and females (C).  Positive values indicate the subject was classified to the control group while 
negative values indicate the subject was classified to the FASD group. The most misclassifications in the unadjusted 
model were male FASD participants labelled as controls (18/38 misclassified) and a notable number of female 
controls were incorrectly labelled FASD (8/32 misclassified).  Adjusting brain volumes for sex improved imbalance 
in specificity between males compared to females, whereas creating separate models improved the sex related 
imbalance in both specificity and sensitivity. 
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In general, the predictive models created separately for males and females had primary contributions from 

volumes of different brain regions.  Of the 5 most heavily weighted regions in the male model, 4 were subcortical 

grey matter regions (left globus pallidus, left/right caudate, right hippocampus), and one was the right superior 

parietal region of the cortex.  In contrast, of the 5 most heavily weighted regions in the female model, only one 

was subcortical grey matter (right amygdala), 3 were cortical regions (left superior parietal, right bank of the 

superior temporal gyrus, and right pars orbitalis), and 1 was the posterior part of the corpus callosum.  The model 

weights for the male and female models are visualized in Figure 4.5.   
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Figure 4.5. Visualization of prediction models generated on the training data for males (32 Controls, 35 FASD) and 
females (49 Controls, 44 FASD) separately. All regions are displayed as 3D renderings, with the exception of 
left/right white matter segmentations displayed as a transparent overlay on an axial image.  All regions of the brain 
are color coded by support vector classifier weightings (feature importance). The 5 most heavily weighted regions 
in each model are listed in order with corresponding colors.  Four of the 5 most heavily weighted regions in the 
male model are subcortical structures whereas 4 of the 5 most heavily weighted regions in the female model are 
cortical or corpus callosum regions. 
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4.4 Discussion 

4.4.1 FASD Classification  
This study reports a multivariate classification model based on brain volume that showed moderate accuracy (77% 

in test cohort) in identifying individuals with FASD from control participants. Notably, this classification accuracy is 

comparable to that reported in neuroimaging classification studies of other neurodevelopmental disorders such as 

ADHD (81% accuracy using resting state functional MRI measurements, Fair et al., 2013) and Autism (70% accuracy 

using brain volume and resting state functional MRI measurements,  Zhou et al., 2014).  To our knowledge, only 

one other study that primarily focused on eye tracking/psychometric data has attempted classification of FASD 

participants from controls using imaging data.  In that study, an accuracy of 67% was achieved using features 

extracted from diffusion MRI of the corpus callosum on a relatively small sample (training: 19 controls, 11 FASD, 

testing: 22 controls, 24 FASD) of children/adolescents that partly overlapped the training cohort from the current 

study (also from NeuroDevNet) (Zhang et al., 2019).  Notably, the accuracy using diffusion MRI features extracted 

from the corpus callosum was lower than the accuracy reported from the current study using brain volumes (77%), 

however the same study reported highest accuracies using features derived from other physiological/behavioral 

measurements (e.g. eye tracking data 76% and psychometric data 78%).   

 

Other studies have classified FASD participants based on other modalities such as epigenetic DNA methylation 

features where a predictive model trained on an overlapping cohort from the training dataset in the current study 

achieved 83% accuracy in predicting FASD (Lussier et al., 2018).  Additionally, features extracted from 3D facial 

laser scans achieved ~80%-90% accuracy identifying individuals with FAS (Fang et al., 2008), a subtype of FASD 

that exhibits sentinel facial features, the same subtype of FASD that had a high classification accuracy with 

multivariate brain volumes in the current study (11/14 FASD participants with sentinel facial features correctly 

classified in the test cohort). In a three way classification task of FASD, ADHD and control participants, a 77% 

classification accuracy was achieved using features extracted from eye tracking data collected while participants 

attended to videos (Tseng et al., 2013).   



 
 

69 
 

 

Taken together, these studies suggest that there may be value in combining multiple types of diagnostic and 

clinical features in future classification models to improve accuracy, including other modalities of MR imaging such 

as diffusion MRI and resting state functional MRI which were not part of this current analysis on brain volumes. 

Multimodal classification of FASD has been performed using features derived from psychometric and eye tracking 

data achieving 83% accuracy (Zhang et al., 2019), but showed no additional accuracy when including diffusion 

MRI; however the sample size was limited in that study (22 controls, 24 FASD). 

 

Changes in total brain volume as well as unique regional trajectories of subcortical and cortical grey matter 

development during  childhood / adolescence (Giedd et al., 1999; Narvacan et al., 2017) may impact classifier 

performance.  In a supplementary analysis of classification performance (see Appendix A), no difference in age was 

observed between incorrectly/correctly classified controls or between incorrectly/correctly classified individuals 

with FASD in the test cohort, suggesting that classification performance was not confounded by age. 

 

4.4.2 Relating Multivariate and Univariate Analysis of FASD Regional Brain 
Volumes 
In this study, the multivariate FASD classification model outperformed all univariate models that were based on 

separate brain region volumes by ~5% in both the test and training cohorts.  This result suggests that there is a 

pattern of volume change involving multiple brain structures that is more discriminative of children/adolescents 

with FASD relative to any one brain region independently.  Of the univariate models with above chance accuracy, 

regions are consistent with previous studies reporting volume loss associated with FASD (Donald et al., 2015). 

Above chance univariate models consisted of 8 subcortical grey matter structures (left/right caudate, left/right 

thalamus, right putamen, right hippocampus, right amygdala, left globus pallidus), both left/right white matter 

volumes, and 3 cortical grey matter regions (right inferior parietal, left rostral middle frontal gyrus, left bank of the 

superior temporal sulcus).  On the other hand, multivariate model weights indicated fewer subcortical regions as 
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heavily contributing to prediction (left/right caudate and left globus pallidus in the top ten), whereas cortical 

regions in the temporal lobe (left inferior temporal, bank of the right superior temporal sulcus, right superior 

temporal sulcus) and other subdivisions of the cortex (right posterior cingulate, right isthmus cingulate, right/ left 

pars triangularis) were more prominent.  Taken together, univariate and multivariate results suggest that the 

increased accuracy of the multivariate model (relative to univariate models) may be a result of the inclusion of 

cortical regions.   

 

In the current study a model trained using only the left caudate had a test accuracy only 5% lower than the model 

generated from all brain regions together.  Notably, the caudate was one of the first reported brain structures with 

differences associated with prenatal alcohol exposure (Mattson et al., 1996).  Since then, the caudate has been 

reported in animal models to be one of the more vulnerable regions to ethanol induced apoptosis (Young and 

Olney, 2006) which may underlie the observed volume reductions associated with prenatal exposure to alcohol in 

children and adolescents (Astley et al., 2009a; Cortese et al., 2006; Riikonen et al., 2005). Additionally, caudate 

volume has also been associated with deficits in both cognitive control and verbal learning/recall in 

children/adolescents with FASD (Fryer et al., 2012).  In the current study, the classification model based solely on 

left caudate volume outperformed (72% test accuracy) the models based on other basal ganglia structures (e.g. left 

globus pallidus (64% accuracy), left putamen (63% accuracy), right putamen (67% accuracy), right caudate (67%)). 

The caudate takes input from the frontal eye fields and the frontal/parietal lobes, and has efferent pathways to the 

prefrontal cortex. Other basal ganglia structures such as the putamen and globus pallidus are implicated in neural 

pathways related to motor function. Hence, a larger effect of prenatal alcohol exposure on the caudate relative to 

other basal ganglia structures may reflect larger deficits in FASD to higher-order cognitive functions (e.g. executive 

function, problem solving) compared to motor functions.  Additionally, a more recent study has demonstrated that 

shape-based features of caudate asymmetry can be combined with facial morphology features to better 

discriminate controls from those with FAS (Suttie et al., 2018).  Taken together these findings suggest that the 

caudate is one of the most heavily impacted brain structures post prenatal alcohol exposure.   In this study, a left 

caudate volume decision boundary of ~3.6 cm3 (larger size indicating control) was generated from the training data 
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and performed adequately (accuracy 72%; sensitivity 70%; specificity 74%) on the test data. Notably, a large 

proportion of FASD participants (17/67) had left caudate volumes lower than all but one control at a threshold of 

3.1 cm3 and suggests that a volume threshold could be used as a highly specific indicator of FASD.  Similarly, 

distance from the decision boundary of the multivariate model is highly specific at values lower than -0.38 with 

20/67 FASD participants and no controls having values below this threshold.  Interestingly, at these lower values 

both left caudate volume and distance from the multivariate decision boundary were not sensitive to a particular 

sex or FASD diagnostic subtype, suggesting that both these measures may provide added value for further 

subdividing the FASD diagnosis based on brain structure alone.  Importantly, the FASD model performed more 

accurately in the subtype of FASD with sentinel facial features relative to the other participants that did not display 

these features, suggesting a pattern of FASD brain volume change that is also likely to be associated with other 

structural changes in an individual.  This finding is consistent with other univariate studies showing that facial 

dysmorphic features are related to more severe volumetric reductions in FASD (Astley et al., 2009a; Roussotte et 

al., 2012), and may reflect the timing of ethanol exposure between three to four weeks post gestation in humans 

when the brain and face are early in their development (Godin et al., 2011, 2010). Notably, more extensive 

volumetric reductions in the dysmorphic FASD participants could also be related to a higher level of prenatal 

ethanol exposure (although this was unavailable in our study) complicating the face-brain interpretation. 

 Along with ADHD, the participants in this study had a wide range of comorbid diagnoses (e.g. ADHD, 

Oppositional Defiant Disorder, etc).  Importantly, to be of clear clinical use a classification model would be able to 

discriminate individuals with FASD from those with other neurodevelopmental disorders.  Results from this study 

demonstrate that individuals with FASD can be discriminated from controls using regional brain volumes. However, 

it is unknown whether regional brain volumes or the same classification model could be used to discriminate 

individuals with FASD from those with other neurodevelopmental disorders. 

 

The investigation of model weights can also aid in identifying regions that may be affected in FASD but that are not 

detected by univariate analysis alone.  In this study, both the left and right pars triangularis of the frontal lobe 



 
 

72 
 

heavily contributed to the model.  Notably, the volume of the bilateral pars triangularis has been associated with 

reading disorders such as dyslexia (Eckert et al., 2003) and deficits in language have been repeatedly observed in 

complex language tasks in participants with FASD (Becker et al., 1990; Mattson et al., 1998). Although the frontal 

lobe has shown volume loss in children/adolescents prenatally exposed to alcohol, to our knowledge pars 

triangularis volume has not been associated with FASD.  Given that the pars triangularis regions were absent from 

the univariate models that performed higher than chance, this result implies that in the context of other FASD 

related regional volume change a multivariate model can extract additional information about structural change 

that is undetectable by univariate analysis alone. 

 

4.4.3 FASD Classification with Sex Specific Models 
To date, the most common approach for dealing with sex related variation in large classification studies of 

neurodevelopmental disorders is to perform classification on volumes adjusted for sex resulting from a 

multivariable linear regression with sex added as a covariate (Some examples being Fair et al. 2013; Zhou, Yu, 

and Duong 2014).  However, in neurodevelopmental disorders such as FASD where reductions in regional brain 

volumes appear to be larger for males relative to females (Chen et al., 2012; Dudek et al., 2014; Treit et al., 2017) 

assuming the same effect of sex on volume  between controls and FASD will have the effect of reducing but not 

eliminating between sex bias in sensitivity/specificity.  Results from the current study demonstrate experimentally 

that when sex is not accounted for in FASD classification, sensitivity/specificity can differ greatly for males 

(sensitivity 53%, specificity 98%) compared to females (sensitivity 79%, specificity 75%) but this disparity can be 

reduced at the expense of accuracy by using sex adjusted volumes (male accuracy 72%, sensitivity 58%, specificity 

86%; female accuracy 74%, sensitivity 72%, specificity 75%).  Furthermore, this study proposes building FASD 

classification models separately for males and females which further reduced the imbalance in 

sensitivity/specificity, albeit at a larger decrease in accuracy (male accuracy 70%, sensitivity 68%, and specificity 

71%; female accuracy 67%, sensitivity 62%, and specificity 72%).  The observed decrease in accuracy of separate 

male/female models may be a result of the limited sample size for males/females in the training data and would 

likely be improved with the inclusion of more participants.  An advantage of this technique is the ability to 
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investigate heavily contributing regions that are useful for prediction of FASD in males and females separately.  

Notably, subcortical regions heavily contributed to male FASD prediction (left/right caudate, left globus pallidus, 

right hippocampus) whereas cortical regions primarily contributed to female FASD prediction (left superior parietal 

cortex, right bank of the superior temporal gyrus, right pars triangularis), suggesting that patterns of volume 

change differ between males and females.  The higher subcortical weightings in the male classification model likely 

reflects the greater relative volume reductions of subcortical grey matter regions in males compared to females 

with FASD (Dudek et al., 2014; Treit et al., 2017). Several neurophysiological/neurochemical effects of PAE are 

reported to be greater in males relative to females, including reductions in long term potentiation (Sickmann et al., 

2014), increases in dopamine D1R binding (Converse et al., 2014), and reduced sensitivity to testosterone (Lan et 

al., 2009).  More heavily weighted cortical regions in the female model is surprising, given that previous studies 

have reported no significant differences in the volume of cortical regions in females with FASD (Chen et al., 2012) 

and less pronounced effects of PAE on measures of cortical thickness relative to subcortical volume (Treit et al., 

2017).  It seems here that a pattern (i.e. multi-variate) of cortical volume reduction may more accurately 

discriminate females with FASD from controls compared to PAE related volume change within individual (i.e. 

univariate) cortical regions.  Overall, results from this study suggest that there is value in modeling FASD related 

regional brain volume change separately for males and females.  Notably, the classification differences reported 

here between males/females could be confounded by sex by group imbalances in demographics. However, no 

such group by sex interaction effects were observed in the test cohort for any of the demographic variables listed 

in Table 4.2 (data not shown), suggesting that demographic imbalances are not driving the observed classification 

differences between males and females. In the training cohort a small difference in age was observed between 

male control (age 11.3±3.5 years) and male FASD (age 13.3±2.7 years) participants, potentially impacting the 

weightings of the male FASD classification model. However, this male classification model heavily weighs 

subcortical regions whose volumes have been shown to change minimally over childhood/adolescence  in both 

longitudinal and cross-sectional samples (Narvacan et al., 2017), suggesting that age differences are not influencing 

the model weightings presented in this study. 
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4.4.4 Study Limitations and Future Directions 
There are several limitations in this study, primarily related to the imbalanced distribution in 

demographics/comorbidities in the training/testing FASD groups relative to controls.  The samples in this study 

consisted of control groups primarily of Caucasian descent, whereas about half the FASD participants self-

identified as indigenous potentially confounding classification results.  However, in a follow-up analysis, sensitivity 

to FASD classification differed minimally between the ethnic categories in the testing cohort (indigenous: 63%; 

Caucasian 67%; other 60%; unknown 64%) suggesting that ethnicity was not influencing classification performance. 

ADHD is a common comorbid diagnosis within FASD populations having an estimated prevalence of >70% (Burd et 

al., 2003) and was highly prevalent in the training/testing cohorts included in the current study (training FASD: 

50%; testing FASD: 49%).  Additionally, in this study a large proportion of FASD participants were on medication 

regimens that were highly discordant between individuals, and those participants were not asked to refrain from 

taking medication throughout the study.  Such confounds in comorbid diagnosis and medications may impact 

reported cognitive scores and classification results in the FASD group.  Again, a secondary analysis was conducted 

and showed minor differences between classification sensitivity between an ADHD-comorbid diagnosis (67% 

sensitivity) /no-ADHD diagnosis (62% sensitivity), as well as classification of FASD participants on different 

medications (stimulants 58%, atypical antipsychotics 59%, antidepressants 60%, and other medication 67%). This 

equally distributed sensitivity among demographic categories suggests that even though the FASD classification 

model was generated from imbalanced control/FASD training data, the model itself represents a discriminative 

pattern of brain volume difference that is associated with prenatal alcohol exposure and does not reflect 

differences based on ethnicity, comorbid diagnosis or medication regimen.  

 The training and testing FASD cohorts of the current study contained both individuals with a formal FASD 

diagnosis as well as those with confirmed alcohol exposure but non-diagnosed.  Importantly, the classification 

results from the test cohort showed similar sensitivity between the FASD participants without sentinel facial 

features (test sensitivity 60%), and those in the PAE (non-diagnosed) group (test sensitivity 61%), suggesting that 

regional brain volumes were similarly affected in the diagnosed and undiagnosed individuals.  In a secondary 

analysis excluding the PAE group (data not shown), decreased accuracy and sensitivity was observed in the test 
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cohort (accuracy 74%, sensitivity 53%, specificity 88%) relative to when PAE (non-diagnosed) were included 

(accuracy 77%, sensitivity 64%, and specificity 88%) warranting the inclusion of the PAE group in the analysis. 

  

4.4.5 Conclusions 
In this study a multivariate classification model was generated for discriminating children/adolescent controls from 

those with FASD.   The model performed better than univariate analysis in discriminating FASD from controls and 

had predictive contributions from regions with known volumetric reduction in FASD.  Additionally, a large 

proportion of FASD participants in the test data had little to no overlap with controls at negative distance from 

boundary values, and low left caudate volume values, suggesting that these measures should be investigated as a 

potential indicator of FASD.  Classification accuracy of models generated separately for males and females had 

lower accuracy than the model containing all participants, but notably these models were more balanced in 

sensitivity and specificity suggesting that sex should be taken into account in brain volume based classification of 

FASD.  Overall, this study shows the value in multivariate analysis of brain volume for the classification of FASD and 

identification of brain regions affected in children and adolescents prenatally exposed to alcohol. 
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Appendix A 
While Chapter 4 was in review, questions were raised about how the presented classification results are impacted 

by the age of individuals. Changes in total brain volume as well as unique regional trajectories of subcortical and 

cortical grey matter development during  childhood / adolescence have been reported in a multitude of studies 

(Giedd et al., 1999; Narvacan et al., 2017).  However, variability in developmental trajectories between brain 

regions as well as demonstration of continuous development across these ages suggest that dividing a sample into 

separate childhood vs early adolescent groups would be arbitrary.  It is nonetheless important to determine 

whether the performance of the FASD/Control classification model differs by age of the subjects in either group.   

In Chapter 4 we originally assessed age-related classification bias using a linear regression testing for an effect of 

age on the model distance from decision boundary (a measure of how closely a subject matched the FASD 

prediction model). In this analysis no age-related effect was observed supporting the notion that the model is 

unaffected by age.  To increase confidence in this finding, we conducted a secondary analysis in response to 

reviewer feedback separating the testing cohort into groups of correctly/incorrectly classified controls (65 correct, 

9 incorrect) and FASD (43 correct, 24 incorrect). Control and FASD groups separated by classification performance 

are plotted by age in Figure A1.  Notably, correctly classified control as well as correctly classified FASD participants 

were equally distributed across the entire age range in the study, and no significant difference in age between 

correct and incorrectly classified subjects was found in either group, suggesting that correct classification does not 

differ by age from childhood to adulthood.    
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Figure A1. FASD classification model performance in the test cohort separately for A) Control (correctly classified 
age 11.4 ± 3.3 years, incorrectly classified age 11.8 ± 4.6 years) and B) FASD (correctly classified age 12.5 ± 3.6 
years, incorrectly classified age 11.3 ± 2.5 years) groups. Notably, correctly classified Control and FASD participants 
were well distributed across the entire age range.  Additional analysis did not detect a difference in age between 
incorrectly/correctly classified Control (t-test, p =0 .76) or FASD (t-test, p=0.14) participants.  These results suggest 
that the FASD classification model is not biased towards any particular age range.  
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5  Inter-site Reproducibility of Functional Connectivity Relative to Intra-site 
Repeatability 

 

Abstract 

Multi-site resting state functional MRI (rsfMRI) studies are commonly used to enable larger sample sizes over 

diverse populations. Few multisite rsfMRI reproducibility studies have been conducted that have included 

participants repeatedly scanned at multiple sites to address between-site reproducibility and within-site 

repeatability in the same cohort.  This study aimed to i) investigate the multi-site reproducibility and within-site 

repeatability of rsfMRI functional connectivity data acquired on the same individuals scanned two times at 

multiple sites, and ii) evaluate the effectiveness of correcting for between-site variation using the commonly 

applied technique of including site as a covariate in statistical analysis. Participants included 8 individuals scanned 

twice at four sites as part of the NeuroDevNet imaging study. Seven core functional networks with 30 regions of 

interest (ROIs) were examined using ROI-to-ROI analyses. Intraclass correlations for individual connections 

demonstrated poor between site reproducibility (ICC ~0.2) and higher but poor repeatability (ICC ~0.4) however, 

this was in line with previous intra-site and inter-site reproducibility studies that used comparable methods. Site-

correction of functional connectivity values resulted in increased reproducibility measures of (increase of ICC > 

0.05) in 49/435 whereas the majority of connections (380/435) had minimal changes in reliability (ICC change 

between -0.05 to 0.05) and only 6 functional connections had changes in reproducibility < -0.05. Data presented in 

this reproducibility study help aid in the analysis and interpretation of results when using the rsfMRI data from the 

NeuroDevNet cohort and supports the use of multisite correction using a linear mean shift (i.e. using site as a 

covariate) in multisite functional connectivity studies. Notably, the method for correcting between site variability 

developed here was applied to the cross-sectional FASD analysis in Chapter 6. 
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5.1 Introduction 
Resting state functional magnetic resonance imaging (rsfMRI) enables the study of the intrinsic functional 

connectivity between regions while a subject is at rest.  Given the absence of a cognitive task during acquisition, 

rsfMRI analysis has become a popular method for assessing alterations in functional connectivity associated with 

typical or atypical neural development (Hull et al., 2017; Konrad and Eickhoff, 2010) as well as various 

neuropsychiatric disorders (Greicius, 2008).  The widespread use of rsfMRI has led to studies of its test-retest 

reliability (repeatability) to quantify the stability of functional connectivity measures acquired from multiple scans 

under the same experimental conditions (i.e. repeatability). Repeatability studies have aimed to quantify the test-

retest consistency of functional connectivity measures and have generally reported poor agreement between 

scans (see (Noble et al., 2019) for review).  While rsfMRI functional connectivity studies are typically conducted at 

a single site with the same MRI hardware and protocol, multi-site studies are commonly employed to enable larger 

sample sizes over diverse populations; some examples include healthy (n=1414 over 35 sites, 3T/1.5T (Biswal et al., 

2010)) and ADHD (n=776 over 8 sites, 3T/1.5T (Fair et al., 2012)). In these studies, site differences in connectivity 

values do exist, but investigations of between-site variability are precluded due to different populations (and 

protocols) per site. Early work on the multisite reproducibility of task-based fMRI has proposed using participants 

repeatedly scanned at multiple sites to address multi-site reproducibility for the task-related BOLD signal (Forsyth 

et al., 2014; Friedman et al., 2008; Zou et al., 2005).  More recently, multisite reproducibility has been assessed for 

rsfMRI connectivity measurements using the same approach.   

In a study of ten subjects scanned repeatedly on two same-vendor 3T MRI functional connectivity values 

extracted using an independent component analysis revealed highly reliable (Intra Class Correlation (ICC) > ~0.9) 

connectivity values in regions of intra-network connectivity (Jann et al., 2015).  Other work analyzed rsfMRI images 

with an ROI-to-ROI (connectivity matrix) approach from eight participants scanned repeatedly on eight different 3T 

MRI scanners with different vendors (5 Siemens, 3 GE) reporting poor reproducibility (ICC = 0.07 - 0.17) with a 5 

minute acquisition and higher but still poor reproducibility (ICC = 0.21 - 0.36) using a longer 25 minute acquisition. 

Importantly, this study observed no effect of site or vendor on measures of functional connectivity suggesting that 

low reproducibility is a result of test-retest repeatability of the functional connectivity measurements. More recent 
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work has analyzed multisite reproducibility of multivariate measures of functional connectivity in a single subject 

scanned on 3T MRI systems from 13 different sites across 3 vendors.  In this study, both site and vendor related 

effects were reported in connectivity measures as well as a difference in the ability to detect (“fingerprinting”) this 

subject among others scanned at the 13 sites (Badhwar et al., 2020).  Given the limited study of between-site 

reproducibility of rsfMRI functional connectivity measures, further work is needed to address the inconsistencies 

of previously reported measures of multisite reproducibility. 

 To date, the most common approach to reducing between-site variance in multisite functional 

connectivity studies is to use site as a covariate in a multiple linear regression.  More recent work has proposed 

more complex corrections for between site variability based on statistical harmonization techniques (Yamashita et 

al., 2019; Yu et al., 2018), as well as a method based on principle component analysis (Bari et al., 2019).  Although 

these techniques show promising gains in harmonizing functional connectivity across sites the studies did not 

address modelling site as a covariate in linear regression. Thus, more work is needed to assess the utility of 

correcting for between-site effects by using site as a covariate in a linear regression or in other words applying a 

mean shift in connectivity values specific to each site and connection.  

This study has two aims: 1) to investigate multi-site reproducibility of ROI-to-ROI functional connectivity 

by examining the same healthy participants scanned at four imaging sites (2 x 3T Siemens, 1.5T Siemens, 3T Philips) 

across Canada, as part of the NeuroDevNet study on childhood development (Reynolds et al., 2011b); 2) to 

evaluate the utility of using site-corrections that are based on the average connectivity values calculated for each 

site. 

 

5.2 Materials and Methods  

5.2.1 Participants / Image Acquisition  

This study was approved by the Human Research Ethics Boards at Queens’s University, University of Alberta, 

Children’s Hospital of Eastern Ontario, University of Manitoba and the University of British Columbia.  Written 
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informed consent was obtained from each individual before study participation.  For assessing between site 

reproducibility of functional connectivity measures, eight healthy young adults (age 28 ± 6 years, 2 males/6 

females) underwent two sequential imaging sessions at each of the four sites (mean 102 days from first to last 

scan).  Structural and functional images were collected for each participant at four MR imaging centres: University 

of Alberta (1.5T Siemens Sonata, one channel receive coil), Queen’s University (3T Siemens Trio, 32 channel receive 

coil), University of Manitoba (3T Siemens Trio, 32 channel receive coil), and University of British Columbia (3T 

Philips Intera, 32 channel receive coil).  Each session had a total acquisition time of approximately 25 min including 

anatomical T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), and DTI imaging.  For this study 

resting-state functional imaging was acquired using an echo planar imaging gradient-echo sequence with: 3 mm 

isotropic voxels, 40 axial slices, FOV = 192 x 192 mm2, TR = 2.5 s, TE = 30 ms (3T scanners)/ 40 ms (1.5T scanner), 

phase encode direction anterior-posterior (Siemens Scanners) / posterior-anterior (Philips scanner), flip angle = 90 

deg, 140 time points, 6 min total acquisition.  Additionally, T1-weighted images used for anatomical registration 

were acquired with a high-resolution (1 x 1 x 1 mm3) magnetization prepared rapid acquisition gradient echo 

(MPRAGE) sequence with: 160 axial slices, FOV = 256 x 256 mm2, inversion time (TI) = 1100 ms, flip angle = 15 deg, 

TR ~ 2100 ms, TE ~ 3.5 ms, and acquisition time ~ 5:30 min.  

5.2.2 Pre-Processing  

All study participants and scans were processed separately and analyzed using the same standard pipeline from 

the Functional Connectivity Toolbox (version 17.a https://www.nitrc.org/projects/conn).  Functional volumes were 

realigned, unwarped, and co-registered to the anatomical images using the statistical parametric mapping toolbox 

(SPM 12b).  The artifact detection toolbox was employed for scrubbing and removing time points with corrupted 

data greater than 0.5 mm in movement or with changes in mean signal intensity greater than 2 standard 

deviations (conservative settings 95th percentile). Masks of white matter and cerebrospinal fluid were generated 

using SPM segmentations of anatomy.  Principal component analysis was performed on voxel by time series 

matrices from each mask.  For the purpose of removing unwanted signal from the fMRI time course per voxel, the 

first five components from the white matter and cerebrospinal fluid masks were used as nuisance regressors in a 

https://www.nitrc.org/projects/conn
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multiple linear regression.  Anatomical images were then spatially normalized to the MNI306 template, and the 

calculated transformation was used to spatially normalize the preprocessed functional volumes to the MNI306 

template (SPM 12b).  Spatially normalized functional volumes were then smoothed with an 8mm (~3 times voxel 

size) full width half max gaussian kernel (SPM12b) as has been suggested to increase sensitivity in group inference 

experiments (Mikl et al., 2008). 

5.2.3 Functional Connectivity ROI Based Analysis  

Regions of interest (ROIs) were taken from the network specific mask included in the functional connectivity 

toolbox version 17.a (Whitfield-Gabrieli and Nieto-Castanon, 2012). These ROIs were generated from an 

independent component analysis of 497 healthy individuals from the Human Connectome Project. Included in this 

toolbox are labels that specify the functional network (e.g. DMN, Dorsal Attention) for each ROI.   In this study 

regions of interest from 7 a priori defined networks were used: default mode network (4 ROIs), dorsal attention 

network (4 ROIs), language network (4 ROIs), frontal-parietal network (4 ROIs), salience network (7 ROIs), 

sensorimotor network (3 ROIs) and visual network (4 ROIs).  ROIs from the cerebellum were excluded in the 

analysis because a large proportion of the participants had missing coverage.  Correlations between ROI time 

courses (averaged across voxels within each ROI) were calculated between all 30 ROIs for each subject and scan, 

resulting in a connectivity matrix per subject for each scan. Correlations from each connectivity matrix were then 

Fisher z-transformed.  

 

5.2.4 Repeatability and Reproducibility Analysis of Functional Connectivity  

A qualitative analysis was performed to assess regional variability of signal amplitude and temporal signal to noise 

ratio (SNR) in native imaging space. Both mean signal intensity (average across time) and temporal SNR (mean 

amplitude divided by standard deviation over time) maps were calculated for each subject and scan.  Both maps 

were inspected for general patterns of regional differences between sites for individual subjects.  A quantitative 

analysis of reproducibility was performed on ROI-to-ROI connectivity matrices for all pairwise connections from the 
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30 ROIs used in this study.  For each connection (z-scored correlation) measurements of repeatability (test-retest 

within site) and reproducibility (inter-site reliability) were calculated (MATLAB) using intraclass correlation (ICC) a 

measure that assesses the fraction of total variance caused by between-subject rather than within-subject 

measurement error. Within-site repeatability (two-raters) was calculated per site using the ICC(A, 1) two-way 

random, single-score model (Mcgraw and Wong, 1996).  Inter-site reproducibility was calculated using only the 

first scan from each subject with the ICC(A,1) two-way mixed, single-score model (Mcgraw and Wong, 1996) and 

was calculated across all 4 Sites (4 raters).  ICC values range from 0 (no agreement between repeated 

measurements) to 1 (absolute agreement between repeated measurements) with values interpreted as poor (ICC 

< 0.5), fair (ICC 0.5 to 0.75), good (ICC 0.75 to 0.9), excellent (ICC > 0.9) (Koo and Li, 2016).  As a summary measure 

of between-site reproducibility and repeatability for each ROI used in the study, ICC values were averaged for all 

connections for each of the 30 ROIs. 

 

5.2.5 Evaluation of Proposed Site Correction Technique  
Typically, multisite studies use site as a covariate in a multiple linear regression to model the between site variance 

between scanners / sites.  To test whether linearly modelling site is an appropriate procedure we calculated a site 

correction factor and applied these corrections in a leave one out framework as to not overfit the dataset used in 

the current study.   Firstly, between site correction factors (linear mean shift) were calculated for each site in the 

following way for each connectivity matrix. First, a site correction matrix (Δ) was calculated for each site by 

subtracting the site mean correlation matrix (average of a site’s connectivity matrices) from the total mean 

correlation matrix across all traveling subjects and sites (average all connectivity matrices). The inverse of this Δ 

matrix was then applied to each individual’s correlation matrix within each site/scan. This approach would be 

analogous to covarying by site in a linear regression. Notably, this correction technique would ultimately reduce 

between-site variability if applied to all subjects in the test-retest cohort and would amount to an overfitting of the 

dataset and not accurately reflect the generalizability of this technique to unseen data.  Hence, to appropriately 

test the technique we applied the correction in a leave-one-out framework where site corrections are calculated 



 
 

84 
 
from 7 subjects (56 functional images) and applied to the left-out subject (8 functional images). This process is 

repeated for all 8 subjects resulting in a site corrected connectivity matrix for each scan / subject.  ICCs were 

calculated as previously done across all 4 scanners for each corrected ROI-to-ROI z-scored correlation and 

compared to the initial ICC values attained prior to between-site correction. As performed in the initial 

reproducibility analysis ICC values were averaged across all connections for each of the 30 ROIs and compared to 

ROI summary measures prior to application of the proposed site correction technique. 

5.3 Results 

5.3.1 Temporal Signal to Noise Ratio and Qualitative Reproducibility Analysis 
Mean rsfMRI signal intensity (average over time) maps as well as tSNR images were extracted for each scan and 

subject and are displayed for a single subject at all four sites in Figure 5.1. Mean intensity maps displayed a similar 

grey to white matter contrast and anatomical detail across site however, variability in the spatial distortions 

between sites were observed in anterior regions of the brain that are prone to magnetic susceptibility. Temporal 

SNR values varied substantially between sites with markedly lower tSNR observed for images acquired with the 

1.5T Siemens Sonata system relative to the three other higher field strength systems. Of the 3.0T systems the 

Philips Intera had higher tSNR values compared to two Siemens Trio scanners that had much more comparable 

tSNR values. In addition, the tSNR values on the 1.5T Siemens Sonata system were homogeneous across the brain 

whereas tSNR values at the 3 other higher field systems varied regionally.  These observations were consistent for 

all subjects and scans in the study. 

Functional connectivity (Fisher z-score) matrices were extracted for each subject / scan using 30 ROIs 

from 7 different functional networks.  Example connectivity matrices are displayed for a single subject for all scans 

and sites in Figure 5.2.   The expected pattern of intra/inter-network functional connectivity (strong intra network 

connectivity, weaker inter network connectivity) was observed in the majority of scans within the study regardless 

of site; however, connectivity matrices extracted from the images acquired on the 1.5T Siemens Sonata displayed a 

more distributed pattern of connectivity with smaller differences between inter-network and intra-network 
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connectivity values.  This discrepancy could be explained by the lower tSNR observed in the 1.5T Siemens Sonata 

images. 

  



 
 

86 
 

 

Figure 5.1. Single slice from (A) mean resting state functional MR images over time (after pre-processing but 
before smoothing and MNI registration) and (B) temporal signal to noise ratio (tSNR, mean signal divided by 
standard deviation over time) images acquired from a single subject at the four different sites from the 
NeuroDevNet imaging study.  Large differences in tSNR were observed between sites with markedly lower tSNR 
observed at a lower field strength (1.5T Siemens Sonata) whereas greater tSNR was observed on the 3.0T Philips 
Intera.  Regional differences in tSNR were not observed on the 1.5T Siemens Sonata suggesting that field strength 
rather than the single channel coil setup was driving the tSNR differences between sites. 
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Figure 5.2. Functional network specific ROIs used in the current study (A) as well as functional connectivity 
matrices with rows and columns color coded by network association (B) extracted from the same subject for each 
scan at all four sites.  Seven of the eight scans demonstrate expected patterns of intra/inter-network connectivity 
(strong intra network connectivity, weaker inter network connectivity) with scan 2 from the 1.5T Siemens Sonata 
displaying a more distributed pattern of connectivity.  In addition, the contrast between positive intra-network 
connectivity and weaker inter-network connectivity was less apparent on connectivity matrices acquired on the 
1.5T Siemens Sonata. 
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5.3.2 Within-site Repeatability Analysis 
Intraclass correlation (ICC) values were calculated for each ROI-to-ROI connectivity value as a measurement of 

within-site repeatability and are presented in Figure 5.3.  ICC values across the ROI-to-ROI matrix ranged from less 

than 0 (poor repeatability) to ~0.8 (good repeatability) and showed lower reliability at the 1.5T Siemens Sonata site 

compared to the 3.0T sites (see Figure 5.3b). In general, ICC values for the 3.0T sites were within the same range 

for all three sites however, the spatial patterns of ICC values over the connectivity matrices were different across 

the 3.0T sites and showed no strikingly consistent  patterns of increased repeatability in areas of intra-network or 

inter-network connectivity. 

Summary measures of within-site repeatability are displayed in Table 5.1 and were calculated as the 

average ICC across all 29 connections for each ROI for each site. Notably, there was little agreement in the most 

reliable regions between sites.  For example, the 1.5T scanner had highest repeatability values (mean ICC 0.30- 

0.35) for the left / right posterior superior temporal lobe (ICC 0.30 ± 0.38, ICC 0.30 ± 0.32 respectively) of the 

language network, the right supramarginal gyrus (ICC 0.30 ± 0.33) and left/right rostral prefrontal gyrus (ICC 0.35 ± 

0.24, ICC  0.30 ± 0.32 respectively) of the salience network and the left lateral parietal cortex (ICC 0.30 ± 0.31) of 

the default mode network.  Whereas, the 3.0T Philips Intera site had highest repeatability (mean ICC 0.41 to 0.55) 

in the left / right inferior frontal gyrus (ICC 0.50 ± 0.28, ICC 0.55 ± 0.20 respectively) of the language network, the 

left lateral prefrontal cortex (ICC 0.42 ± 0.25) of the frontal parietal network, the left /right lateral sensorimotor 

network regions (ICC 0.44 ± 0.28, ICC 0.41 ± 0.32 respectively) and the left lateral parietal cortex (ICC 0.46 ± 0.20) 

of the default mode network. 
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Figure 5.3 Within-site reproducibility of ROI-to-ROI connectivity matrices calculated as the Intraclass correlation 
(ICC) for functional connectivity values for each site. Repeatability was markedly higher on the 3.0T systems 
compared to the 1.5T scanner.  In general, among the 3.0T sites the patterns of reliability are more similar 
between the two Siemens Trio sites relative to 3.0T Philips Intera site.    
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Table 5.1. Within-site repeatability measured as the average intraclass correlation (ICC) across all connections for 
each ROI for each site. 

ROI, region of interest, L left, R right 

 

 

 

 

 

Network Region UofA 
1.5T Siemens 

Queens 
3.0T Siemens 

Trio 

Winn 
3.0T Siemens 

Trio 

UBC 
3.0T Philips 

Intera 
Default Mode 
Network 

Medial Prefrontal 0.28 ± 0.33 0.29 ± 0.33 0.32 ± 0.20 0.36 ± 0.26 
Lateral Parietal (L)  0.30 ± 0.31 0.31 ± 0.27 0.25 ± 0.31 0.46 ± 0.20 
Lateral Parietal (R) 0.29 ± 0.30 0.29 ± 0.27 0.46 ± 0.29 0.39 ± 0.27 
Posterior Cingulate  0.18 ± 0.34 0.36 ± 0.32 0.19 ± 0.36 0.24 ± 0.30 

Visual Primary  0.13 ± 0.33 0.37 ± 0.26 0.12 ± 0.38 0.25 ± 0.30 
 Ventral  0.09 ± 0.35 0.40 ± 0.35 0.14 ± 0.34 0.23 ± 0.35 
 Dorsal (L)  0.20 ± 0.36 0.40 ± 0.26 0.33 ± 0.36 0.32 ± 0.30 
 Dorsal (R)  0.14 ± 0.38 0.30 ± 0.33 0.32 ± 0.41 0.25 ± 0.32 
Sensorimotor Lateral (L) 0.22 ± 0.35 0.38 ± 0.24 0.41 ± 0.30 0.44 ± 0.28 
 Lateral (R) 0.17 ± 0.31 0.41 ± 0.25 0.38 ± 0.30 0.41 ± 0.32 
 Superior 0.21 ± 0.31 0.28 ± 0.29 0.43 ± 0.34 0.35 ± 0.28 
Salience Anterior Cingulate   0.11 ± 0.42 0.41 ± 0.28 0.32 ± 0.38 0.33 ± 0.24 
 Anterior Insula (L)  0.08 ± 0.37 0.48 ± 0.25 0.40 ± 0.29 0.34 ± 0.27 
 Anterior Insula (R)  0.20 ± 0.32 0.49 ± 0.21 0.44 ± 0.31 0.32 ± 0.33 
 Rostral prefrontal (L)  0.35 ± 0.24 0.42 ± 0.34 0.36 ± 0.33 0.35 ± 0.37 
 Rostral prefrontal (R)  0.30 ± 0.32 0.48 ± 0.31 0.39 ± 0.36 0.26 ± 0.34 
 Supramarginal Gyrus (L)  0.22 ± 0.29 0.45 ± 0.28 0.28 ± 0.38 0.37 ± 0.36 
 Supramarginal Gyrus (R)  0.30 ± 0.33 0.43 ± 0.27 0.37 ± 0.28 0.37 ± 0.26 
Dorsal Frontal Eye Field (L)   -0.05 ± 0.33 0.39 ± 0.36 0.28 ± 0.33 0.07 ± 0.38 
 Frontal Eye Field (R)   0.14 ± 0.33 0.40 ± 0.29 0.30 ± 0.31 0.27 ± 0.29 
 Intraparietal sulcus (L)   0.24 ± 0.29 0.42 ± 0.28 0.23 ± 0.32 0.35 ± 0.28 
 Intraparietal sulcus (R)   0.07 ± 0.33 0.39 ± 0.30 0.14 ± 0.37 0.28 ± 0.31 
Frontal Parietal Lateral Prefrontal (L)   0.19 ± 0.42 0.21 ± 0.34 0.25 ± 0.31 0.42 ± 0.25 

Posterior Parietal (L)   0.24 ± 0.32 0.30 ± 0.35 0.27 ± 0.38 0.28 ± 0.31 
Lateral Prefrontal (R)   0.25 ± 0.26 0.27 ± 0.35 0.28 ± 0.27 0.34 ± 0.38 
Posterior Parietal (R)   0.18 ± 0.37 0.31 ± 0.32 0.47 ± 0.34 0.16 ± 0.40 

Language Inferior Frontal Gyrus (L)  0.22 ± 0.41 0.42 ± 0.29 0.25 ± 0.37 0.50 ± 0.28 
 Inferior Frontal Gyrus (R)  0.28 ± 0.33 0.36 ± 0.30 0.16 ± 0.39 0.55 ± 0.20 
 Posterior Superior 

Temporal Gyrus (L)  
0.30 ± 0.38 0.54 ± 0.20 0.30 ± 0.31 0.32 ± 0.34 

 Posterior Superior 
Temporal Gyrus (R)  

0.30 ± 0.32 0.52 ± 0.27 0.45 ± 0.19 0.29 ± 0.26 
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5.3.3 Between-site Reproducibility Analysis and Multisite Correction 
Intraclass correlation (ICC) values were calculated for each ROI-to-ROI connectivity value as a measurement of 

between-site reproducibility and are presented in Figure 5.4.  ICC values across the ROI-to-ROI matrix ranged from 

less than 0 (poor reproducibility) to ~0.6 (fair reproducibility) and showed elevated reproducibility in connections 

between specific networks (see Figure 5.4b). In general, compared to other ROI-to-ROI connections between site-

reproducibility was relatively greater (~0.3 to ~0.6) in inter-network connections between the salience network 

and other functional networks namely, the default mode network, the sensorimotor network, the frontoparietal 

network, and the language network. Intra-network connections displayed relatively lower reproducibility relative 

to inter-network connections except for greater reproducibility in connections within the sensorimotor network 

(ICC ~0.40) and the language network (ICC of ~0.60). Summary measures of reproducibility are displayed in Table 

5.2 and were calculated as the average ICC across all 29 connections for each ROI. Of the 7 most reproducible 

(mean ICC > 0.27) regions 3 were from the salience network (right supramarginal gyrus ICC 0.34 ± 0.22, left 

supramarginal gyrus ICC 0.29 ± 0.13, left rostral prefrontal cortex ICC 0.27 ± 0.20), 1 was from the language 

network (right posterior superior temporal gyrus ICC 0.27 ± 0.21),  1 was from the frontal parietal network ( right 

lateral prefrontal cortex ICC 0.27 ± 0.20), 1 was from the sensorimotor network (superior motor region ICC 0.29 ± 

0.21) and 1 was from the dorsal attention network (left intraparietal sulcus ICC 0.28 ± 0.16).  Of the 6 least reliable 

(ICC < 0.17) regions, 2 were from the DMN (medial prefrontal ICC 0.13 ± 0.18, left lateral parietal cortex ICC 0.14 ± 

0.19), 2 were from the dorsal attention network (right frontal eye field 0.17 ± 0.12, left frontal eye field ICC 0.09 ± 

0.15), 1 from the visual network (primary visual cortex ICC 0.16 ± 0.11) and 1 from the frontal parietal network (left 

posterior parietal cortex ICC 0.16 ± 0.15). 

A site-correction technique (linear mean shift) was used to reduce between site variability in functional 

connectivity measures and was applied in a leave-one-out framework so that the site-corrections were not overfit 

to the dataset. After the application of the site-correction technique, the majority of connections (380/435) 

showed minimal change in ICC values (change in ICC -0.05 to 0.05).   Of the remaining connections 49/435 showed 

larger ICC increases > 0.05 whereas only 6/435 connections had decreased in reliability < -0.05 indicating that the 

site-correction technique reduces between site variance in connections (see Figure 5.3c). In addition, larger 
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increases in reproducibility (increase of ICC ~0.2) were observed in specific network connections namely, intra-

network salience connections, as well as dorsal attention to default mode network connections, and 

somatosensory to visual network connections.  Notably, ranking of regions based on average reproducibility across 

connections yielded the same top 6 and bottom 6 regions before and after site-correction (See Table 5.2). 

 

 

Figure 5.4. Between-site reproducibility of ROI-to-ROI connectivity matrices calculated as the Intraclass correlation 
(ICC) for functional connectivity values before (A) and after the application of site-correction (B). The difference 
between the two reproducibility matrices (After site-correction minus before site-correction) is displayed (C).  
Compared to other ROI-to-ROI connections between site-reproducibility was relatively greater (~0.3 to ~0.6) in 
inter-network connections between the salience network and other functional networks namely, the default mode 
network, the sensorimotor network, the frontoparietal network, and the language network.  Intra-network 
connections displayed relatively lower reproducibility relative to other connections except for the sensorimotor 
network and the language network which showed poor to fair (ICC of ~0.4 to ~0.6) reproducibility. Small gains in 
between-site reproducibility were observed after the application of the site-correction technique for almost all 
ROI-to-ROI connections (D, red/pink colored connections) with larger increases (ICC ~0.2) observed for intra-
network salience connections, as well as dorsal attention to default mode network connections, and sensorimotor 
to visual network connections. 
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Table 5.2. Between-site reproducibility measured as the average intraclass correlation (ICC) across all connections 
for each ROI.  ICC values are presented before and after the application of the proposed between-site correction 
technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ROI, region of interest, L left, R right 

  

Network Region ICC Before  
Site-Correction 

ICC After 
Site-Correction 

 

Default 
Mode 
Network 

Medial Prefrontal 0.13 ± 0.18 0.13 ± 0.19 
Lateral Parietal (L)  0.14 ± 0.19 0.16 ± 0.23 
Lateral Parietal (R) 0.24 ± 0.19 0.27 ± 0.22 
Posterior Cingulate  0.18 ± 0.18 0.21 ± 0.21 

Visual Primary  0.16 ± 0.11 0.19 ± 0.13 
 Ventral  0.22 ± 0.20 0.25 ± 0.21 
 Dorsal (L)  0.25 ± 0.16 0.27 ± 0.18 
 Dorsal (R)  0.22 ± 0.16 0.24 ± 0.18 
Sensorimotor Lateral (L) 0.26 ± 0.18 0.27 ± 0.18 
 Lateral (R) 0.26 ± 0.22 0.28 ± 0.23 
 Superior 0.27 ± 0.20 0.29 ± 0.21 
Salience Anterior Cingulate   0.21 ± 0.22 0.22 ± 0.23 
 Anterior Insula (L)  0.23 ± 0.16 0.25 ± 0.16 
 Anterior Insula (R)  0.23 ± 0.20 0.23 ± 0.22 
 Rostral prefrontal (L)  0.27 ± 0.20 0.29 ± 0.21 
 Rostral prefrontal (R)  0.23 ± 0.20 0.24 ± 0.21 
 Supramarginal Gyrus (L)  0.29 ± 0.13 0.32 ± 0.14 
 Supramarginal Gyrus (R)  0.34 ± 0.22 0.37 ± 0.22 
Dorsal Frontal Eye Field (L)   0.09 ± 0.15 0.11 ± 0.17 
 Frontal Eye Field (R)   0.17 ± 0.12 0.19 ± 0.12 
 Intraparietal sulcus (L)   0.28 ± 0.16 0.32 ± 0.19 
 Intraparietal sulcus (R)   0.22 ± 0.20 0.26 ± 0.23 
Frontal 
Parietal 

Lateral Prefrontal (L)   0.18 ± 0.23 0.19 ± 0.25 
Posterior Parietal (L)   0.16 ± 0.15 0.18 ± 0.17 
Lateral Prefrontal (R)   0.27 ± 0.20 0.29 ± 0.20 
Posterior Parietal (R)   0.21 ± 0.16 0.23 ± 0.17 

Language Inferior Frontal Gyrus (L)  0.24 ± 0.18 0.25 ± 0.18 
 Inferior Frontal Gyrus (R)  0.21 ± 0.23 0.21 ± 0.24 
 Posterior Superior 

Temporal Gyrus (L)  
0.23 ± 0.21 0.25 ± 0.22 

 Posterior Superior 
Temporal Gyrus (R)  

0.27 ± 0.21 0.28 ± 0.23 
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5.4 Discussion 

5.4.1 Reproducibility of Functional Connectivity Measures Between Sites 
Functional connectivity matrices across site and scan showed expected patterns of functional connectivity (i.e. 

strongly positive intra-network connectivity, weak/strongly negative inter-network connectivity) despite large 

variations in tSNR between sites.  However, connectivity matrices extracted for individual scans from the 1.5T 

scanner showed a reduction in the contrast between inter-network and intra-network connections that was likely 

a result from the observed lower tSNR at the lower field strength. This result is unsurprising given that the SNR of 

the fMRI signal has been experimentally observed to increase with field strength (Gati et al., 1997).    

Within-site repeatability measures of functional connectivity calculated for each ROI were considered 

poor (ICC < 0.5) for all sites which is in line with other test-retest studies using similar methods and has been 

estimated at 0.29 in a meta-analysis  (Noble et al., 2019). ICC values were markedly lower for the 1.5T siemens 

sonata relative to the 3.0T systems, which again likely reflects the lower SNR at this site.  In previous studies intra-

network connections have been observed to have greater repeatability (Shah et al., 2016; Shehzad et al., 2009), 

whereas another study reported greater reliability in inter-network connections (Wisner et al., 2013).  Notably, no 

striking relationship was observed between connectivity strength and reliability in the current study.  

Average between-site reproducibility for each ROI had ICC values of ~0.2  in line with test-retest reliability 

discussed above and comparable to the reproducibility range detected for 25 minute scans acquired in an eight 

site multisite reproducibility study at 3.0T using a similar ROI-to-ROI functional connectivity analysis (Noble et al., 

2017).  Notably, both the aforementioned study and the current study report lower ICC values compared to a 

study of multisite reproducibility of functional connectivity between two different 3.0T Siemens TRIM Trio systems 

(Jann et al., 2015) that used an independent component analysis and only investigated strongly positively 

connected regions (ICA z-score > 2.0) which may explain the discrepancy in reproducibility measurements between 

these studies.  In the current study, differences in multisite reproducibility existed between connections of specific 

networks.  Internetwork connections to the salience network were observed to have higher reproducibility than 
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other connections except for intra-network connections in the sensorimotor and language networks where the 

majority of connections within each network had a greater reproducibility (ICC > ~ 0.4) suggesting that these 

networks are stable across site.  

 

5.4.2 Multisite Correction 
This study applied a site correction metric equivalent to covarying by site in a linear regression to reduce 

between site variance in functional connectivity measures. Increases in multi-site reproducibility measurements 

were observed after correction for most connections in the ROI-to-ROI connectivity matrix suggesting that mean 

correction of functional connectivity values based on site is an appropriate technique to reduce between-site 

variability. However, observed increases in reproducibility were minimal (ICC increase ~0.05) after site corrections 

were applied suggesting that although site-correction will not bias the measurement of functional connectivity 

values, this technique has limited use for completely removing between site variance in this data.  Other more 

complex techniques that consider the distribution of values across site rather than simply the mean may be more 

advantageous for reducing between-site variance in functional connectivity measures.  For example techniques 

based on statistical harmonization (Yamashita et al., 2019; Yu et al., 2018) and a previously proposed method 

based on principle component analysis (Bari et al., 2019) have both shown value in reducing between site variance 

in functional connectivity measurement, thus future work could evaluate the efficacy of these methods on using 

data acquired at multiple sites from the same subjects. 

5.4.3 Limitations 
Although efforts were made to harmonize rsfMRI acquisition protocols between sites a few differences remained.  

Firstly, the phase encode direction on the Philips Intera system was reverse (posterior to anterior) compared to the 

Siemens systems (anterior to posterior) causing EPI spatial distortions to manifest in opposite directions between 

vendors in this data.  In addition, field maps as are typically acquired in fMRI data were not acquired here 

precluding the correction for the differing spatial distortions between sites.  In data presented here the distortions 
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were primarily observed in the prefrontal cortex which may explain the poor reproducibility (ICC 0.181) observed 

in connections to this region. 

 Apart from the ROI-to-ROI connectivity analysis used in the current study, a multitude of techniques exist 

for analyzing rsfMRI images outside of the scope of the current study including but not limited to graph theory 

analysis (Bullmore and Sporns, 2009) and independent component analysis (Beckmann et al., 2005).  Graph theory 

analysis takes connectivity matrices as input and calculates measures relating to the network properties of the 

connectivity matrix.  Notably, this category of network analysis relies on the connectivity matrices themselves so 

we anticipate that the reproducibility results presented here could help inform multisite graph theory analysis in 

the future, especially considering the highest reproducibility was primarily observed in weak inter-network 

connections that would normally be removed during the thresholding step of graph theory analysis.   On the other 

hand, relating the results from the current study to studies using ICA remains difficult given that the conventional 

ICA decomposes the rsfMRI signal into multiple network components and removes components deemed artifact 

based on their spatial/temporal properties.  When ICA was applied separately per site on data collected from the 

current study, the spatial characteristics of the components differed between sites (data not shown) likely due to 

the differing tSNR profiles between sites and precluded a proper comparison of ICA functional connectivity metrics 

across site.  Thus, further work could investigate how to best mitigate the tSNR differences observed between sites 

during post-processing (e.g. filtering, denoising) to enable ICA analysis across site to study functional connectivity.  

 

5.5 Conclusions 
Here we present functional connectivity reproducibility data from 8 subjects scanned twice at 4 separate sites 

across Canada. Reproducibility values for individual connections demonstrated similar between site reproducibility 

(ICC ~0.2) to previous multisite reproducibility study of 8 subjects scanned at 8 different sites.  Correction for 

multisite variability was performed using a procedure identical to using site as a covariate in a linear regression and 

evaluated in a leave-one-out framework.  Site-correction of functional connectivity values resulted in minimal 

changes to reproducibility measures in the majority of connections, with only a few connections (6/435) showing a 
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decrease in reproducibility lower than -0.05. These findings support the application of the multisite correction 

technique in future rsfMRI studies of the multisite NeuroDevNet cohort (See Chapter 6).  
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6 Altered Functional Connectivity Observed at Rest in Children and 
Adolescents Prenatally Exposed to Alcohol2 

 

Abstract 

Studies of brain structure in fetal alcohol spectrum disorder (FASD) have shown the global and focal effects that 

prenatal alcohol exposure has on the brain, suggesting but not measuring altered function in FASD. This study 

aimed to i) identify resting-state functional networks in children and adolescents with FASD, ii) investigate 

functional connectivity differences compared to healthy controls, and iii) assess the links to cognitive deficits.  

Participants included 66 children/adolescents with FASD (aged 5.5 – 18.9 years) and 67 healthy controls (aged 5.8 

– 18.5 years) scanned across four sites as part of the NeuroDevNet study.  Six core functional networks with 27 

regions of interest (ROIs) were examined using seed-based and ROI-to-ROI analyses. Average seed-based 

connectivity maps showed significant spatial overlap of positively correlated regions for all six core networks 

between FASD and controls, but there was less overlap for negatively correlated regions. ROI-to-ROI matrices 

demonstrated lower inter-network connectivity between regions primarily associated with the salience network 

(anterior cingulate cortex, bilateral insula), frontal-parietal network (bilateral posterior parietal cortex), and 

language network (right posterior superior temporal gyrus).  Post-hoc correlations of the FASD participants 

without medication revealed a relationship between functional connectivity and performance on two cognitive 

tests associated with math ability and attention.  Even though participants with prenatal alcohol exposure exhibit 

very similar intra-network functional connectivity patterns as controls, their lower inter-network functional 

connectivity suggests underlying deficits in the functional network brain architecture that may be related to 

cognitive impairment.  

 
2 Chapter has been published elsewhere, Little G., Reynolds J., Beaulieu C. “Altered Functional Connectivity 
Observed at Rest in Children and Adolescents Prenatally Exposed to Alcohol”. Brain Connectivity. 2018;8(8):503-15 
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6.1 Introduction  

The prevalence of fetal alcohol spectrum disorder (FASD) has been estimated as high as ~1 in 100 and is 

characterized by a wide range of physical, cognitive and behavioral impairments (May et al., 2009).  Behavioral 

deficits in FASD are not limited to a single cognitive domain and include deficits in motor function, attention, 

learning and memory, expressive and receptive language, executive function and visuospatial skills (Riley and 

McGee, 2005).  The impact of prenatal alcohol exposure on behavior provides insight into potential widespread 

neurological damage and motivates the study of anatomical and functional brain abnormalities in this debilitating 

disorder. 

Findings from structural magnetic resonance imaging (MRI) include abnormal regional brain volumes, cortical 

thickness, and white matter microstructure in FASD (for review see (Donald et al., 2015)). Results from these 

studies suggest, but do not explicitly measure, altered brain function in FASD.  Task-based functional magnetic 

resonance imaging (fMRI) studies of children / adolescents with FASD have reported differences in functional 

activity while performing a variety of cognitive tasks. Studies of inhibition tasks (Fryer et al., 2007; O’Brien et al., 

2013) have shown higher activation in participants with FASD in regions of the frontal and parietal lobes as well as 

the cingulate gyrus. A task-based study of sustained attention reported greater activation in an occipital-temporal 

region (Li et al., 2008).  Children with FASD showed greater activation in parietal, frontal and inferior temporal 

regions while performing a number processing task (Meintjes et al., 2010). Several studies have investigated 

functional activation related to working memory in FASD, as follows.  Studies utilizing a conventional n-back 

working memory task have reported both lower (Astley et al., 2009b; Roussotte et al., 2011) and higher (Diwadkar 

et al., 2013) functional activation  in frontal, temporal, and parietal regions. Studies into subdomains such as 

spatial working memory (Malisza et al., 2005; Spadoni et al., 2009)  have been more consistent reporting greater 

activation in inferior frontal lobe and insular cortex.  Studies of verbal working memory (O’Hare et al., 2009; Sowell 

et al., 2007) have also shown greater activation of frontal regions.  Studies of young adults with FASD have shown 

differences in functional activation during spatial working memory (Malisza et al., 2005) and number processing 
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(Santhanam et al., 2011) suggesting that functional abnormalities persist into adulthood.  Taken together task-

based fMRI studies suggest more regional functional demand in children/adolescents with FASD.   

Resting-state functional MRI (rsfMRI) has provided insight into typical brain development (Stevens, 2016) and a 

variety of neurodevelopmental disorders such as Autism (Hull et al., 2017) and ADHD (Konrad and Eickhoff, 2010), 

but has had limited study in FASD. Studies of global network properties have suggested widespread functional 

network differences in FASD such as greater characteristic path length and less global efficiency in children and 

adolescents prenatally exposed to alcohol (Wozniak et al., 2013), with the potential for identifying FASD 

participants from controls who could not be classified based on facial dysmorphology features alone (Wozniak et 

al., 2016). Other studies have investigated specific functional connections in FASD populations using region of 

interest (ROI) based analysis. Children and adolescents prenatally exposed to alcohol (same sample as (Wozniak et 

al., 2013)) had lower inter-hemispheric connectivity between para-central ROIs (Wozniak et al., 2011). In an 

investigation of default mode network (DMN) connections, lower connectivity was observed at rest, as well as 

reduced task-related deactivation of the DMN in young adults with FASD (Santhanam et al., 2011).  Rather than 

investigating individual functional connections between regions or global network properties, other work has 

investigated the impact of prenatal alcohol exposure on connectivity in multiple functional networks 

simultaneously using independent component analysis. Greater connectivity of motor related networks was 

observed in neonates prenatally exposed to alcohol (Donald et al., 2016), that may indicate a delayed development 

of the functional compartmentalization of these brain networks.   

To our knowledge, only one study has investigated multiple functional networks in a sample of 

children/adolescents with FASD (Fan et al., 2017). In a group of 57 participants (19 FASD, 19 heavily exposed 

nonsymdromal, 19 controls), independent component analysis showed lower within-network connectivity in FASD 

compared to controls in five regions of five separate functional networks: anterior default mode (right post-

central), salience (right middle frontal), dorsal attention (left precentral), ventral attention (right precentral), and 

right fronto-parietal (left crus II of the cerebellum) networks.  Results in rsfMRI studies suggest that the functional 

organization of the brain is altered in FASD and differences are widespread manifesting in multiple networks at 
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various stages in development.  Given the limited study of functional networks in large samples of children / 

adolescents prenatally exposed to alcohol more work is needed to evaluate the consistency of previous findings as 

well as to explore differences in inter-network connectivity and the relationship of functional connectivity to 

cognitive deficits in this population. 

This study investigated alterations in functional connectivity of resting state networks in children / adolescents 

with FASD.  Specifically, the study aims were to: 1) identify the spatial overlap of positively- and negatively-

connected regions of 6 core networks, namely the default mode, visual, fronto-parietal, salience, language, and 

ventral attention networks in a relatively large cohort of 66 children/adolescents prenatally exposed to alcohol 

relative to 67 controls, 2) investigate differences of functional connectivity between the nodes of these 6 networks 

in FASD, and 3) determine whether functional connectivity alterations in FASD are associated with cognitive 

deficits. 

 

6.2 Materials and Methods  

6.2.1 FASD / Typically Developing Participants   

This study was approved by the Human Research Ethics Boards at Queens’s University, University of Alberta, 

Children’s Hospital of Eastern Ontario, University of Manitoba and the University of British Columbia.  Written 

informed consent was obtained from a parent or legal guardian and assent was obtained from each child before 

study participation. 

Participants (healthy control and FASD) were recruited as part of the NeuroDevNet multi-site imaging project on 

FASD (Reynolds et al., 2011a). Structural and functional MRI were acquired for 178 participants with 45 (22 FASD, 

23 Controls) being excluded for poor structural / functional imaging quality or excessive motion during the rsfMRI 

scan, and individuals with less than 5 minutes of scan time after artifact detection and removal. The remaining 133 

participants included 66 children with FASD (12.9±3.4 years, 37 males) and 67 healthy controls (12.3±3.4 years, 40 
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males).  Participants were scanned at 4 sites across Canada, namely University of Alberta (24 FASD, 30 Controls), 

Queens University (18 FASD, 14 Controls), University of Manitoba, (10 FASD, 8 Controls), and University of British 

Columbia (14 FASD, 15 Controls).   Children/adolescents in the FASD group had either formal diagnoses according 

to the Canadian guidelines (Chudley et al., 2005) as fetal alcohol syndrome (FAS, n=5), partial FAS (pFAS, n=10), 

and alcohol related neurodevelopmental disorder (ARND, n=33), or confirmed prenatal alcohol exposure without a 

formal diagnosis (PAE, n=18). All FASD subtypes were combined into one group for statistical analysis. 

Socioeconomic status (SES) was calculated using Hollingshead’s Four-factor Index of Social Status [Hollingshead, 

2011].  Further demographic information was collected via questionnaire including ethnicity, current medication, 

and comorbid psychiatric disorders (Table 6.1). 
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Table 6.1. Participant characteristics and demographics for FASD and control groups 

 FASD Control p-valuea 

Participant characteristics n = 66 n = 67  
Age (years) 12.9±3.4 (5.5 – 18.9) 12.3±3.4 (5.8 – 18.5) ns 
Males (%) 37 (56) 40 (60) ns 
Ethnicity (%)    
   Aboriginal 37 (59) 1 (1)  < 0.001 
   Caucasian 20 (29) 60 (88)  < 0.001 
   Other 9 (12) 6 (10) ns 
Medication (%)    
   Antidepressants 1 (2) 0 (0) ns 
   Antipsychotics 2 (3) 0 (0) ns 
   Stimulants 4 (6) 1 (2) ns 
   Stimulants and Antipsychotics 7 (11) 0 (0) 0.006 
   Stimulants, Antipsychotics &       
Antidepressants 

2 (3) 0 (0) ns 

   Simulants and Other Medication 7 (11) 0 (0) 0.006 
   Other 7 (11) 3 (4) 0.006 
   No Medication 36 (55) 63 (94) < 0.001 
Comorbidities (%)    
   ADHD 32 (48) 1 (1) <0.001 
   Anxiety 9 (14) 0 (0) 0.002 
   Depression 4 (6) 0 (0) 0.042 
   Bipolar 2 (3) 0 (0) ns 
   Oppositional Defiant Disorder 6 (9) 0 (0)  0.012 
   Conduct Disorder 2 (3) 0 (0) ns 
   Autism 1 (2) 0 (0) ns 
   Other Disorder 16 (24) 0 (0) 0.001 
SES 43±15 (11 – 66) 48±8 (22 – 66) 0.012 
Site (%)    
   University of Alberta 24 (36) 30 (45) ns 
   Queens University 18 (27) 14 (21) ns 
   University of Manitoba 10 (15) 8 (12) ns 
   University of British Columbia 14 (21) 15 (22) ns 
% removed volumes during 
preprocessing 

6± 4 (0 - 16) 5± 4 (0 - 17) ns 

    
a Group differences of categorical variables (e.g. sex) assessed with Mann-Whitney U;  continuous variable (e.g. 
age) assessed with independent samples t-test (at p < 0.05). 
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6.2.2 Cognitive Testing  

Research assistants trained by a single neuropsychologist for consistency across the four sites performed a battery 

of cognitive assessments. The test battery included five major evaluations of core functions affected in PAE such as 

math, reading, executive function, memory, and inhibition as follows.  The Woodcock Johnson III Tests of 

Achievement (WI-III ACH) evaluated mathematic and quantitative reasoning skills (Woodcock et al., 2001).  The 

Woodcock Reading Mastery Tests - Revised (WRMT-R) provided a comprehensive assessment of reading ability 

(Woodcock, 1998).The Behavior Rating Inventory of Executive Function (BRIEF) assessed executive function with 

greater scores indicating a higher level of dysfunction in a particular sub-domain of executive function. The 

Working Memory Test Battery for Children (WMTB-C) was assessed to evaluate working memory (Pickering and 

Gathercole, 2001).  Seven subtests of the Developmental Neuropsychological Assessment (NEPSY-II) (Korkman et 

al., 2007) were administered to assess basic concept formation, selective/sustained attention, inhibition, and 

short-term/long-term memory of verbal information. Notably, the cognitive results presented here are from a 

subset of a larger cohort of participants in the NeuroDevNet study on FASD (Paolozza et al., 2014a, 2014b). 

 

6.2.3 Image Acquisition  

Structural and functional images were collected for each participant at four MR imaging centres: University of 

Alberta (1.5T Siemens Sonata), Queen’s University (3T Siemens Trio), University of Manitoba (3T Siemens Trio), and 

University of British Columbia (3T Philips Intera).  Each session had a total acquisition time of approximately 25 min 

including anatomical T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), and DTI imaging.  For 

this study resting-state functional imaging was acquired using an echo planar imaging gradient-echo sequence 

with: 3 mm isotropic voxels, 40 axial slices, FOV = 192 x 192 mm2, TR = 2.5 s, TE = 30 ms (3T scanners)/ 40 ms (1.5T 

scanner), phase encode direction anterior-posterior (Siemens Scanners) / posterior-anterior (Philips scanner), flip 

angle = 90 deg, 140 time points, 6 min total acquisition.  Additionally, T1-weighted images used for anatomical 

registration were acquired with a high-resolution (1 x 1 x 1 mm3) magnetization prepared rapid acquisition 
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gradient echo (MPRAGE) sequence with: 160 axial slices, FOV = 256 x 256 mm2, inversion time (TI) = 1100 ms, flip 

angle = 15 deg, TR ~ 2100 ms, TE ~ 3.5 ms, and acquisition time ~ 5:30 min.  

 

6.2.4 Intersite Correction Participants   

For assessing between site reproducibility of functional connectivity measures, eight healthy young adults (age 28 

± 6 years, 2 males/6 females) prospectively underwent two sequential imaging sessions at each of the four sites 

(mean 102 days from first to last scan). 

 

6.2.5 Pre-Processing  

All study participants were processed and analyzed using the same standard pipeline from the Functional 

Connectivity Toolbox (version 17.a https://www.nitrc.org/projects/conn).  Functional volumes were realigned, 

unwarped, and co-registered to the anatomical images using the statistical parametric mapping toolbox (SPM 12b).  

The artifact detection toolbox was employed for scrubbing and removing time points with corrupted data greater 

than 0.5 mm in movement or with changes in mean signal intensity greater than 2 standard deviations 

(conservative settings 95th percentile). After removing time points with corrupted data, participants with less than 

5 minutes (120 volumes) remaining were excluded from analysis (5 Controls, 6 FASD).  Masks of white matter and 

cerebrospinal fluid were generated using SPM segmentations of anatomy.  Principal component analysis was 

performed on voxel by time series matrices from each mask.  For the purpose of removing unwanted signal from 

the fMRI time course per voxel, the first five components from the white matter and cerebrospinal fluid masks 

were used as nuisance regressors in a multiple linear regression.  Anatomical images were then spatially 

normalized to the MNI306 template, and the calculated transformation was used to spatially normalize the 

preprocessed functional volumes to the MNI306 template (SPM 12b).  Spatially normalized functional volumes 

were then smoothed with an 8mm full width half max gaussian kernel (SPM12b). 

https://www.nitrc.org/projects/conn
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6.2.6 Functional Connectivity ROI Based Analysis  

Regions of interest (ROIs) were taken from the network specific mask included in the functional connectivity 

toolbox version 17.a (Whitfield-Gabrieli and Nieto-Castanon, 2012). These ROIs were generated from an 

independent component analysis of 497 healthy individuals from the human connectome project and are detailed 

in Table 6.2. Included in this toolbox are labels that specify the functional network (e.g. DMN, Dorsal Attention) for 

each ROI.   In this study regions of interest from 6 a priori defined networks were used: default mode network (4 

ROIs), dorsal attention network (4 ROIs), language network (4 ROIs), frontal-parietal network (4 ROIs), salience 

network (7 ROIs), and visual network (4 ROIs).  ROIs from the sensorimotor and cerebellar networks were excluded 

in the analysis because a large proportion of the participants had missing coverage.  First, for the purpose of 

investigating spatial connectivity patterns between groups, seed-based connectivity maps were created for each 

individual by extracting a mean time series across all voxels of a given ROI, and correlating the time series to all 

voxels in the subject’s image resulting in 27 seed-based connectivity maps per subject for the six networks.  By 

investigating multiple seed-based connectivity maps within a given network, this analysis remained sensitive to 

differences related to specific network ROIs.  Secondly, correlations between average ROI time courses were 

calculated between all 27 ROIs for each subject, resulting in a connectivity matrix per subject. Correlations from 

seed-based maps and connectivity matrices were then fisher z-transformed. The same analysis was performed on 

the images acquired from the 8 travelling control participants from the multisite reproducibility data. 
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Table 6.2. Regions of interest are listed for the six core networks for both seed-based and ROI-based analysis 
(center of mass in MNI coordinates) that were taken from the network specific mask included in functional 
connectivity toolbox version 17.a (Whitfield-Gabrieli and Nieto-Castanon, 2012). 

Network Region 
Number 

Region Center of 
Mass (x,y,z) 

ROI size 
(mm3) 

Default 
Mode 
Network 

1 Medial Prefrontal (1,55,-3) 10770 
2 Lateral Parietal (L)  (-39,-77,33) 8328 
3 Lateral Parietal (R) (47,-67,29) 10610 
4 Posterior Cingulate  (1,-61,38) 38660 

Visual 1 Primary  (2,-79,12) 73660 
 2 Ventral  (0,-93,-4) 41710 
 3 Dorsal (L)  (-37,-79,10) 24830 
 4 Dorsal (R)  (38,-72,13) 33970 
Salience 1 Anterior Cingulate   (0,22,35) 8504 
 2 Anterior Insula (L)  (-44,13,1) 3568 
 3 Anterior Insula (R)  (47,14,0) 3104 
 4 Rostral prefrontal (L)  (-32,45,27) 9328 
 5 Rostral prefrontal (R)  (32,46,27) 4648 
 6 Supramarginal Gyrus (L)  (-60,-39,31) 1864 
 7 Supramarginal Gyrus (R)  (62,-35,32) 2272 
Dorsal 1 Frontal Eye Field (L)   (-27,-9,64) 704 
 2 Frontal Eye Field (R)   (30,-6,64) 432 
 3 Intraparietal sulcus (L)   (-39,-43,52) 26280 
 4 Intraparietal sulcus (R)   (39,-42,54) 25100 
Frontal 
Parietal 

1 Lateral Prefrontal (L)   (-43,33,28) 13620 
2 Posterior Parietal (L)   (-46,-58,49) 6656 
3 Lateral Prefrontal (R)   (41,38,30) 14060 
4 Posterior Parietal (R)   (52,-52,45) 6696 

Language 1 Inferior Frontal Gyrus (L)  (-51,26,2) 3856 
 2 Inferior Frontal Gyrus (R)  (54,28,1) 4296 
 3 Posterior Superior 

Temporal Gyrus (L)  
(-57,-47,15) 18100 

 4 Posterior Superior 
Temporal Gyrus (R)  

(59,-42,13) 13500 

ROI, region of interest, L left, R right 
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6.2.7 Multisite Correction  

To account for variability in connectivity measures between sites the travelling control data was used to generate 

correction factors (linear mean shift) for each connectivity matrix in the childhood/adolescent cohort using the 

following process. First, a site correction matrix (Δ) was calculated for each site by subtracting the site mean 

correlation matrix (average of 16 functional images) from the total mean correlation matrix across all traveling 

subjects and sites (average of 64 functional images). The inverse of this Δ matrix was then applied to each 

individual’s correlation matrix within each site. This approach would be analogous to covarying by site in a linear 

regression, except the site estimates per connection are taken from an independent sample of 8 travelling control 

participants scanned twice at each site.  

 

6.2.8 Spatial Overlap of Connected Regions   

Average seed-based connectivity maps were calculated separately for control and FASD groups for all 27 seeds and 

were thresholded to fisher z-scores greater than 0.25 and less than 0.  Positively and negatively connected regions 

between corresponding control and FASD maps were visually compared to assess general between group spatial 

agreement of connected regions. Positively connected  (z-score >0.25) and negatively connected (z-score < 0)  

group average maps were created and binarized where 1 indicates values other than zero.  As a quantitative 

measure of voxel-wise spatial agreement between groups, dice coefficients were calculated between average 

control and FASD binarized maps resulting in a measure of overlap between groups separately for positive and 

negative connectivity maps for each seed.  The dice coefficient used in this instance is calculated as 2 times the 

number of voxels intersecting FASD and control maps, divided by the sum of all voxels in the control map plus all 

voxels in the FASD map. 
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6.2.9 Group Comparison / Network Matrices Analysis  

Connectivity matrices per subject were used to test for group differences in individual functional connections 

between controls and FASD participants. A general linear model was used to assess between group differences for 

every connection between ROIs, covarying for effects of age, sex, number of removed timepoints during scrubbing, 

and average motion during scanning session.  Results were then corrected for multiple comparisons (27 ROIs, 351 

connections) using false-discovery rate (FDR) correction and results (t-statistics, FDR-corrected p-value) were 

reported for connections with group differences exceeding an FDR corrected p-value < 0.05.  To assess whether 

potential confounds influenced the group effect observed between FASD and controls, four potential confounding 

variables were selected for further analysis, namely diagnosis of ADHD, aboriginal ethnicity, currently on 

medication including stimulants, and currently on medication other than stimulants.  The effects of confounders 

on connections surviving FDR-correction were assessed within the FASD group using separate multivariate linear 

models (p < 0.05) for each potential confounder including covariates previously included in the between-group 

analysis.  Furthermore, a within-group (non-medicated FASD group and control group separated) correlation 

analysis was performed to test for relationships (uncorrected for multiple comparisons p < 0.05) between cognitive 

scores and functional connectivity of the connections that show between group differences surviving FDR-

correction.  

 

6.3 Results 

6.3.1 Cognitive and Behavioral Differences in FASD  

Relative to controls, the FASD group had lower cognitive scores as well as higher BRIEF scores for all tests (Table 

6.3).  The cognitive tests with the greatest differences were related to response inhibition, whereas the largest 

difference in BRIEF scores were related to working memory and behavioral regulation. 
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Table 6.3. The FASD group showed poorer cognitive test performance in all tests relative to controls, as well as 
greater deficits in executive function (BRIEF) in all parent reported behaviors. 

 

a Group differences assessed with independent samples t-test (at p < 0.05). 

 

  FASD Controls % Change 
 

 

Cognitive Test Subtest/Domain N 
(/66) 

Standard 
Score 

Range N 
(/67) 

Standard 
Score 

Range FASD 
from 

Control 

p-valuea 

Woodcock 
Johnson 

Quantitative 
concepts 18A&B 
(mathematics) 

65 84±20 37-129 66 105±12 69-129 -20% <0.001 

Woodcock reading 
mastery test-
revised 

Word ID 65 92±14 52-118 66 106±13 71-134 -13% <0.001 

NEPSY II Animal sorting 59 8±3 2-18 60 10±4 1-18 -20% <0.001 
 Auditory 

attention 
60 8±4 1-13 65 11±3 3-18 -27% <0.001 

 Response set 58 10±3 1-14 60 12±3 5-14 -20% 0.018 
 Inhibition naming 59 7±4 1-17 64 10±3 3-16 -30% <0.001 
 Inhibition 

inhibition 
57 7±3 1-15 64 10±4 2-19 -30% <0.001 

 Inhibition 
switching 

54 8±4 1-19 59 10±2 4-15 -20% <0.001 

 Memory for 
names + delay 

59 7±3 1-16 65 9±3 2-15 -22% <0.001 

BRIEF parent 
form 

Inhibition 57 68±13 42-100 63 49±9 37-76 +28% <0.001 
Shift 57 67±14 38-95 63 48±8 36-73 +28% <0.001 
Emotional 
Control 

57 64±12 43-91 63 48±10 24-78 +25% <0.001 

Behavioral 
Regulation Index 

57 69±12 45-97 63 48±9 36-80 +30% <0.001 

Initiate 57 65±12 40-86 63 50±10 36-73 +23% <0.001 
Working 
Memory 

57 70±12 40-90 63 49±10 36-79 +30% <0.001 

Plan 57 267±12 38-84 63 50±11 35-81 +5% <0.001 
Organize 57 58±9 37-72 63 51±9 34-71 +12% <0.001 
Monitor 57 65±12 36-82 63 49±11 31-81 +25% <0.001 
Metacognition 
index 

57 64±10 42-85 63 55±15 33-91 +14% <0.001 

Global Executive 
Composite 

57 70±11 43-94 63 50±13 6-92 +29% <0.001 
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6.3.2 Spatial Characteristics of Connectivity in FASD  

All six networks, namely the default mode, dorsal attention, language, frontal parietal, salience and visual 

networks, had similar connectivity patterns between healthy controls and participants with FASD for all 27 seeds. 

Average connectivity maps per group are presented for 6 seeds, one per network (Figure 6.1).   In general, average 

connectivity maps for both the control and FASD groups demonstrated excellent spatial agreement in positively 

connected regions (z-score > 0.25) for all seeds, given high dice coefficients (0.85 +/- 0.04) with 25 of the 27 seeds 

greater than 0.8 (as high as 0.89).  However, the dice coefficient between controls and FASD maps were notably 

lower for negative correlations (0.71 +/- 0.06) with only 1 of 27 seeds being greater than 0.8 (left posterior parietal 

seed of the frontal parietal network)  and the lowest being 0.55 for the anterior cingulate seed of the salience 

network.  
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Figure 6.1. ROIs used for seed-based connectivity analysis are visualized separately for six functional networks (A-
F).  Average connectivity maps for control (N=67) and FASD (N=66) groups are presented for only one select seed 
(circled) within each network.  Strong spatial agreement was observed between group average maps of positively 
and negatively connected regions in all seeds suggesting that the spatial organization of these functional networks 
is similar in FASD.  Quantitatively, dice coefficients for positive regions (red bars) were 0.85 +/- 0.04 with 25 of 27 
seeds yielding greater than 0.8, with the exception of the two posterior supramarginal gyrus seeds of the salience 
network (ROIs 6 and 7 in E). Dice coefficients for negatively connected regions (blue bars) indicated less overlap 
between controls and PAE with 0.71 +/- 0.06 and only 1 of 27 regions with values greater than 0.8.  The lowest dice 
coefficient was 0.55 from negatively connected regions to the anterior cingulate cortex seed (ROI 1 in E) of the 
salience network. 
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6.3.3 Functional Connectivity Differences in FASD:   

The three connections that had statistically significant between-group differences of altered connectivity (FDR-

corrected p < 0.05) in FASD are rendered in 3D and displayed along with bee-swarm plots of individual z-scores for 

each connection (Figure 6.2). Relative to controls, all 3 connections in FASD showed different inter-network 

connectivity to regions within the salience network.  Relative to controls, functional connectivity was lower for the 

anterior cingulate cortex (ACC) to the left posterior parietal cortex (PPC), the right insula to the right posterior 

parietal cortex (PPC) and the left insula to the right posterior superior temporal gyrus (pSTG). The absolute 

differences of between group averages in functional connectivity ranged from 0.140 to 0.176 for all three 

connections. In the control group all connections had positive average fisher z-scores, whereas the FASD average 

connectivity qualitatively had a trend of negative or close to zero connectivity in the 2 connections between the 

salience and the frontal parietal network.  Notably, a more robust group effect was observed (T(127) = 4.40, p = 

0.0078) in the connection between the anterior cingulate and left posterior parietal cortices relative to the other 

two connections. 
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Figure 6.2. (A) Three network connections that involve the salience (green ROIs), frontal parietal (pink ROIs), and 
language (blue ROI) networks show (B-D) significant (p < 0.05 FDR corrected for all network edges) lower 
functional connectivity between FASD, N=66 (red) and Control, N=67 (blue) groups. Three different views are 
shown for the same three connections in (A) that all involve reduced inter-network connectivity from salience 
network regions including (B) ACC to the left PPC, (C) right PPC to the right insula, and (D) the right pSTG to the left 
insula. Note that the three views shown in (A) are oriented axial left to right (L/R), sagittal posterior to anterior 
(P/A), and coronal left to right (L/R) respectively. ACC anterior cingulate cortex; PPC, posterior parietal cortex; 
pSTG, posterior superior temporal gyrus. 
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6.3.4 Potential Confounding Variables and Cognitive Associations 

Results of post-hoc analysis of the 3 connections with observed group differences are reported in Table 6.4. No 

significant (p < 0.05) effects related to diagnosis of ADHD, aboriginal ethnicity, and medication not including 

stimulants were observed between functional connectivity of the 3 remaining connections in the FASD group.  A 

positive effect on functional connectivity (p < 0.05) was observed between the FASD group on at least one 

stimulant relative to the non-medicated FASD group in connectivity between the right pSTG and the left insula.  

Functional connectivity values are presented for this connection as bee-swarm plots (Figure. 6.3) separating the 

FASD group by medication class.  The FASD group on at least one stimulant had an observed increase in functional 

connectivity (p < 0.05) relative to the non-medicated FASD group. 

 

Table 6.4. Post-hoc analysis of potential confounds in the FASD group for the three connections with lower 
functional connectivity in the FASD group relative to controls. 

  ACC  to Left PPC Right PPC to Right 
Insula 

Right pSTG to Left 
Insula 

 N Beta T-stat p-vala Beta T-stat p-vala Beta T-stat p-vala 
Medicated including at 
least one stimulant  

20 -0.28 -0.338 0.737 0.076 1.005 0.320 0.197 2.551 0.014* 

Medicated with Non-
Stimulants 

10 0.126 1.125 0.267 0.115 1.161 0.252 0.98 0.953 0.346 

Aboriginal Ethnicity 37 0.009 0.138 0.891 0.053 0.895 0.375 0.009 0.137 0.892 
ADHD Comorbidity 32 0.009 0.139 0.890 0.002 0.025 0.980 0.091 1.415 0.162 

a Statistical differences were assessed with a multivariate linear regression (* and bolded text for p < 0.05) adjusting 
for age, sex, number of volumes removed during scrubbing, and average motion per subject. 
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Connectivity values for the 3 connections surviving FDR-correction were carried forward to test for relationships to 

cognitive scores in the non-medicated FASD group and control group separately.  In the non-medicated FASD 

group a positive correlation (r = 0.472, p = 0.006) was observed between scores on the NEPSY II Auditory Attention 

subtest and functional connectivity between the left insula and right pSTG (Figure 6.4A).  Additionally, in the non-

medicated FASD group a negative correlation (r = -0.356, p = 0.036) was observed between performance on 

Woodcock Johnson Quantitative Concepts Subtest and functional connectivity between the left PPC and the ACC 

(Figure 6.4B). Within the control group no statistically significant correlations were observed between z-scores 

from the 3 connections investigated and cognitive scores. 
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Figure 6.3. Statistically significant (uncorrected p < 0.05) correlations (red lines) between two inter-network 
connections and cognitive scores in the non-medicated FASD group (red) are presented along with 95% confidence 
intervals (red dotted lines). A) A positive correlation was observed in the non-medicated FASD group, N=32, 
between standard scores on the NEPSY II – auditory attention subtest and functional connectivity between the 
right posterior superior temporal gyrus (pSTG) and the left insula.  B) A negative correlation was observed in the 
non-medicated FASD group, N = 35, between the standardized score on the Woodcock Johnson Quantitative 
Concepts subtest of math ability and functional connectivity between the left posterior parietal cortex (PCC) and 
the anterior cingulate cortex (ACC).  Correlations were not observed in the control group (blue). NEPSY II standard 
scores have an expected value (population av   erage) of 10, whereas the Woodcock Johnson Quantitative 
Concepts standard scores have an expected value (population average) of 100. Note that the black dotted lines 
indicate a functional connectivity value of zero. pSTG, posterior superior temporal gyrus. 
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6.4 Discussion  

6.4.1 Spatial Patterns of Resting State Networks in FASD 
This study reports six resting-state functional networks in children/adolescents with FASD that share strong spatial 

agreement with controls in positively connected regions and slightly weaker spatial agreement of negatively 

connected regions; namely the default mode, fronto-parietal, salience, dorsal attention, language, and visual 

networks.  These results suggest that spatial patterns of connectivity remain intact in FASD, and that the ROIs can 

be confidently used for between-group analysis in this study. This is in agreement with one study that showed 

similar connectivity patterns in FASD of the salience, default mode, visual, somatosensory, fronto-parietal, and 

dorsal/ventral attention networks (Fan et al., 2017).  In addition, similar functional connectivity patterns have been 

shown in adults with FASD in a seed-based analysis of the default mode network (Santhanam et al., 2011), and in 

an independent component analysis of neonates with FASD (Donald et al., 2016) in motor regions.   These results 

are unsurprising given that regional functional connectivity patterns have been shown to be highly replicable in 

large samples (Yeo et al., 2011), and different rsfMRI analysis techniques have been applied successfully in many 

studies of other neurodevelopmental disorders such as Autism (Hull et al., 2017) and ADHD (Konrad and Eickhoff, 

2010). 

 

6.4.2 Functional Connectivity Differences in FASD  
In this study, functional connectivity differences were primarily observed in connections to the salience network, a 

network thought to be involved in identifying stimuli that are meaningful or important for behavior.  Functional 

connectivity differences were also observed in connections to the frontal-parietal network that plays a role in 

executive function, a known cognitive deficit in FASD (Rasmussen, 2005). More recently it has been suggested that 

the salience network modulates the switching between the default mode network and the executive function 

network (Goulden et al., 2014), suggesting that the lower connectivity in FASD in both the salience and fronto-

parietal networks could be interrelated. Moreover, abnormal connectivity in any of these networks could result in 

more widespread cognitive deficits observed in FASD rather than deficits related to a specific cognitive domain. 
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Functional connectivity was lower in three inter-network connections for the FASD participants, in agreement with 

other work reporting lower functional connectivity in children /adolescents with FASD in both the bilateral 

posterior parietal cortices (Wozniak et al., 2011), and in other networks including the salience and fronto-parietal 

networks (Fan et al., 2017).  Importantly, these results differed with the current findings as the previous studies 

showed functional connectivity differences within strongly correlated (intra-network) regions whereas differences 

in this study were observed between weakly connected (inter-network) regions.  Relative to controls, lower 

connectivity between networks may indicate decreased between network integration in these disorders. To our 

knowledge, functional connectivity studies of FASD have only investigated intra-network connectivity making a 

comparison to previous findings difficult.  However, FASD diagnosis is highly comorbid with ADHD (note: 48% of 

our FASD participants, Table 6.1) where studies have shown lower inter-network connectivity primarily related to 

the Default Mode Network connections in adults with ADHD (Castellanos et al., 2008) and children and adolescents 

with ADHD (Sripada et al., 2014).  More specifically these studies report lower connectivity to the cingulate cortex 

(Castellanos et al., 2008) as well as regions related to both salience and frontal parietal networks (Sripada et al., 

2014) overlapping regions with lower connectivity in our study. This suggests that inter-network connectivity 

deficits could be common in populations with neurodevelopmental disorders rather than specific to FASD. 

Two connections were observed to have positive average connectivity in the control group and negative average 

connectivity in the FASD group. Negative correlations have been an area of controversy in the field and 

distributions of positive and negative correlations have been shown to change based on varying preprocessing 

steps (Chai et al., 2012), and may have a vascular basis in large cerebral veins (Bianciardi et al., 2011), thus a 

proper interpretation based purely on these quantitative values is not yet feasible.  Future work investigating 

anticorrelations and their physiological basis could provide a better understanding of how negative and positive 

connectivity manifest in FASD. 

The analysis from this study did not use slice timing correction as a preprocessing step. A secondary ROI-to-ROI 

analysis was performed while including slice timing correction as a preprocessing step and this resulted in the 

same three connections showing similar group differences (data not shown).  In addition, most multi-site rs-fMRI 
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studies use site as a covariate to correct for inter-site systematic differences (Di Martino et al., 2014; Fair et al., 

2013). This is necessary practically since most studies don’t usually acquire prospective scans from the same 

traveling subjects at each site. A reanalysis of our data using the conventional “site as a covariate” approach 

showed the same FASD versus control group difference for the anterior cingulate cortex to right posterior parietal 

connection.  However, of the three connections with group differences from the original analysis, there were small 

systematic decreases in group difference T-statistics when using site as a covariate resulting in two of the three 

connections having a slightly larger p-value than the statistical threshold of p < 0.05 (see Appendix B Table B1). This 

suggests that the traveling participant correction technique may improve sensitivity to detect group differences 

across site. For a secondary analysis demonstrating the consistency of these findings across site see Appendix B 

Figures B1 and B2. 

 

6.4.3 Regional Functional Alterations in FASD 
A large number of fMRI studies have reported alterations of brain activation in FASD during tasks related to 

working memory, executive function, sustained attention, and number processing.  Of these studies, many have 

shown alterations in functional activity of the anterior cingulate cortex, both parietal lobes, posterior superior 

temporal gyrus, and both insular cortices, the same regions that showed robust lower resting functional 

connectivity in our study.  Task-related fMRI studies of working memory and verbal learning have reported lower 

activation in FASD of the right posterior parietal cortex during a 2-back task related to working memory (Astley et 

al., 2009b), greater activation in FASD in the right inferior parietal cortex during a spatial working memory task 

(Diwadkar et al., 2013), greater activation in FASD in the left inferior parietal lobe during a verbal working memory 

task (O’Hare et al., 2009) and greater activation in FASD in right superior parietal cortex during a verbal learning 

task (Sowell et al., 2007).  Additionally, the anterior cingulate has shown greater activity in FASD in a go/no-go 

(executive function) task (O’Brien et al., 2013), and decreased activity in a working memory task (Roussotte et al., 

2011).  Insular cortices have shown differential functional activation in PAE participants during tasks related to 

working memory (Norman et al., 2013; Roussotte et al., 2011; Spadoni et al., 2009) and  number processing 
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(Meintjes et al., 2010), while the posterior superior temporal gyrus has shown greater activation in FASD 

participants during a working memory task (O’Hare et al., 2009).   Even though the relationship is unclear between 

resting functional connectivity and task-related functional activity,  resting state functional connectivity has been 

shown to predict task-related activation patterns of a variety of cognitive tasks in healthy participants (Tavor et al., 

2016).  Given that both task-related activity and resting-state functional connectivity of similar regions are 

reported to be altered in FASD, a relationship between greater functional demand and lower functional 

connectivity could exist in this disorder. 

 

6.4.4 Functional Connectivity may be Associated with Structural/Metabolic 
Alterations in FASD 
Structural MRI studies of volume have shown abnormal regional cortical volumes in FASD.  Cortical thickness 

studies of FASD have shown thicker (Sowell et al., 2008b; Yang et al., 2012) and thinner cortex (Zhou et al., 2011) in 

the parietal lobe, as well as thinner cortex in the posterior superior temporal gyus (Chen et al., 2012).  Diffusion 

MRI studies of children/adolescents with FASD have revealed alterations to white matter structure in long range 

tracts that connect regions with reduced functional connectivity in the current study. Specifically, the lateral 

splenium of corpus callosum (Sowell et al., 2008a) and bilateral superior longitudinal fasciculus (Lebel et al., 2008) 

showed lower fractional anisotropy in their respective tracts suggesting that structural “connectivity” may explain 

the lower functional connectivity in FASD from this study. One MR spectroscopy study has shown lower metabolic 

ratios of NAA/Cho and NAA/Cr in both the right parietal cortex and anterior cingulate of adolescents/young adults 

(ages 14-21) with FASD (Fagerlund et al., 2006).  Converging results from multiple imaging modalities in similar 

regions may indicate an underlying structural and metabolic explanation for the functional connectivity results 

observed in this study; many studies have shown structural and metabolic differences in FASD participants in other 

brain regions, so another possible interpretation is that non-local structural/metabolic differences could have 

indirect effects on functional connectivity differences reported in this paper.   
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6.4.5 Correlations to Cognitive Scores 
Within group correlations with cognitive test scores indicated a positive correlation between performance on the 

NEPSY II auditory attention subtest and functional connectivity between the left insula and the right posterior 

superior temporal gyrus only in the non-medicated FASD group. Interestingly, it has been suggested that the 

anterior insula is involved in high-level cognitive tasks such as attention and may be responsible for mediating the 

switching between other task-related networks (Menon and Uddin, 2010). The posterior superior temporal gyrus is 

thought to be involved in auditory  language processing (Friederici et al., 2000) a necessary component of the 

auditory attention task in this study.  This suggests that this inter-network connection may be functionally specific 

to the observed auditory attention task performance in the FASD group. Additionally, a negative correlation was 

observed between the average connectivity from the left posterior parietal region of interest to the anterior 

cingulate and math ability (Woodcock Johnson Quantitative Concepts 18A&B) only in the FASD group.  Previous 

work has revealed a relationship between white matter structure in the left parietal lobe and math ability in 

healthy young adults (Matejko et al., 2013) and in children/adolescents with FASD (Lebel et al., 2010).  

Interestingly, in both these studies, math ability was positively correlated to measures of fractional anisotropy 

(white matter “integrity”) contrary to the negative correlation with left parietal lobe functional connectivity 

observed in this study. Taken together, these studies show that larger fractional anisotropy and less functional 

connectivity of the left parietal lobe are predictors of positive math outcomes in children/adolescents with FASD. 

Furthermore, this may indicate that lower functional connectivity is a compensatory change related to underlying 

structural deficits in FASD.   Notably, brain-behavior relationships were only found in a subgroup of medically naive 

FASD participants.  A secondary analysis including all FASD participants yielded no such relationships (data not 

shown), suggesting that separating groups by medication status may be desired to be sensitive to brain-behavior 

relationships. 
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6.4.6 Limitations 
Several limitations exist in the current study, primarily associated with unknown environmental exposures.  Animal 

studies have shown a dose-dependent effect of developmental alcohol on neurodegeneration (Ikonomidou et al., 

2000).  The patients in the current study were recruited long after birth and many were adopted from a young age 

so an accurate characterization of maternal alcohol consumption was not available. Even though socioeconomic 

status was characterized from a child’s current household, children prenatally exposed to alcohol often experience 

adverse environmental events at a young age (McCrory et al., 2010) that could have a varying effect on the 

development of functional connectivity patterns in children and adolescents. To control for these confounds, 

future work may be able to characterize the level and timing of exposure as well as adverse life events to better 

assess the effect of prenatal alcohol exposure on functional connectivity. 

 In our sample, participants with FASD had a variety of comorbid diagnosis including ADHD, Anxiety, 

Depression, Bipolar, Oppositional Defiant Disorder, Conduct Disorder, or Autism.  Comorbidities in this population 

are quite common and thus developmental effects of various medications, treatments and diagnosis are difficult to 

separate.  In this study, post-hoc testing revealed that greater connectivity between the left insula and the right 

posterior superior temporal gyrus in the FASD group was associated with current use of stimulant medication 

(Figure 6.3).  Importantly, an analysis of the entire cohort showed lower connectivity in this same connection for 

the FASD group relative to controls.  Taken together these results suggest that the group difference was not driven 

by stimulant, and if anything the effect of stimulant weakened the observed group difference. To our knowledge, 

no studies have investigated the effect of stimulant use on brain function in an FASD cohort. However, increased 

insular connectivity may be comparable to task-based studies of children with ADHD that show different salience 

network activity in the right insula and anterior cingulate associated with stimulant use (Rubia et al., 2014). 
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Figure 6.4. Difference between functional connectivity of FASD participants who were medicated with at least one 
stimulant (N=20, orange/black MED+STIM), medicated without stimulants (N=10, orange MED NO STIMS) and not 
medicated (N=36, red NO MED). Relative to the no stimulants or non-mediated FASD, functional connectivity was 
greater in one connection (out of the three tested from Figure 6.2), namely between the right posterior superior 
temporal gyrus (STG) and the left insula, in the FASD participants medicated with at least one stimulant. Notably 
this latter connectivity was near the control mean (dashed blue line). Note that the black dotted line marks a 
functional connectivity value of zero. 
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6.4.7 Conclusions  
In this study of children/adolescents aged 5-18 years, functional connectivity of 6 resting-state networks were 

identified in the FASD participants that were spatially consistent with the same functional networks in the control 

group.  Functional connectivity was lower in inter-network connections between salience network regions and 

regions of the fronto-parietal and language networks. This suggests abnormal network to network functional 

communication in FASD.  Functional connectivity of two connections in the non-medicated FASD group were 

associated with math ability and performance on an attention task indicating that these changes may underlie 

cognitive deficits.  Overall, individuals with prenatal alcohol exposure demonstrate functional differences in 

regions spanning multiple networks of the brain. 
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Appendix B 
During peer review of the manuscript presented in Chapter 6 additional analysis was conducted to justify the use 

of the site-correction technique and to demonstrate the robustness of the results across site.  This Appendix 

includes some of the work included for that response to reviewers. 

To account for site variability, this study prospectively acquired images for eight healthy adults scanned twice at all 

four sites. We repeated the analysis from the original manuscript to investigate the effect of adding site as a 

covariate to uncorrected ROI-to-ROI matrices. In general, covarying by site made little difference to our significant 

findings between the two groups, but the t-statistics were systematically smaller when covarying by site (~0.1 

lower) than when using site corrections from travelling phantoms (Table B1). As a result, of the three functional 

connections that had statistically significant group differences in FASD, only one connection (anterior cingulate to 

right posterior parietal) surpassed the statistical threshold of p < 0.05. This could either be explained by a 

combination of two factors: 1) corrections based on traveling subjects are more accurately reducing between site 

variance in functional connectivity values or 2) the degrees of freedom are reduced when adding site as a covariate 

reducing the sensitivity of this technique to detect group differences.   

Table B1.  Results of linear regressions for an effect of group (FASD versus controls) calculated using two different 
site correction techniques independently. 

 Site Correction Using Traveling 
Subjects 

Site as a Covariate 

Functional Connection T-stat (127) FDR Correct P-val T-stat (124) FDR Correct P-val 
Salience Anterior insula 
(R) to Frontal Parietal 
PPC (R)  

3.76 0.0455 3.68 0.0615 

Salience Anterior insula 
(L) to Language pSTG 
(R) 

3.63 0.0474 3.53 0.0683 

Frontal Parietal PPC (L) 
to Salience ACC 

4.40 0.0078 4.31 0.0113 
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Secondary analysis was conducted separating participants by site: 1.5T Siemens University of Alberta (24 FASD, 30 

Controls), 3.0T Siemens Queens University (18 FASD, 14 Controls), 3.0T Siemens University of Manitoba (10 FASD, 

8 Controls), 3.0T Philips University of British Columbia (14 FASD, 15 Controls).  Average seed-based connectivity 

maps were generated with the anterior cingulate seed for each site for the childhood/adolescent control and FASD 

groups separately (Figure B1). The anterior cingulate seed was chosen for this example because analysis of the 

entire group showed distinct differences in FASD relative to controls.  Average connectivity maps from the 1.5T 

scanner showed a pattern of weaker positive and negative functional connectivity compared to the other sites. 

Even with these notable differences across sites, lower connectivity was located in the left temporal lobe and left 

parietal cortex in the average connectivity maps of the FASD group at each site.  
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Figure B1. Average connectivity maps (anterior cingulate cortex seed) separated by site and group.  Absolute 
functional connectivity was lower at the 1.5T site compared to the 3T sites.  Functional connectivity was lower in 
the FASD group in the posterior parietal cortex (blue arrow) and the temporal lobe (red arrow) at all 4 sites. 
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Secondly, the three connections that had statistically significant group differences when considering participants 

across all sites were examined separately at all four sites to see if lower connectivity in the FASD group was 

consistent across all sites (Figure B2). Mean functional connectivity appeared lower in the FASD groups across all 

sites, adding to the robustness and confidence of our primary findings. 

 

 

Figure B2. Comparison of functional connectivity values per site for the three ROI-to-ROI connections that showed 

statistically significant FASD versus control group differences over the entire sample.  Functional connectivity 

values (uncorrected for site) are shown for three connections (A-C) for FASD (red) and Control (blue) at all four 

sites: 1.5T Siemens Sonata (University of Alberta), 3T Siemens Trim Trio (Queens University), 3T Siemens Trim Trio 

(University of Manitoba), and 3T Philips Intera (University of British Columbia). Average functional connectivity 

appeared lower in FASD in all three connections at all 4 sites.  When separating the sample by site, statistically 

significant differences (* t-test uncorrected p < 0.05) indicated lower connectivity in FASD at three sites for the 

anterior cingulate cortex to the left posterior parietal cortex connection (A), at one 3T site for the right posterior 

parietal cortex to right insula connection (B) and at two 3T sites for the right posterior STG to left insula connection 

(C). ROI, region of interest; STG, superior temporal gyrus.  
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7 Anisotropy of the Human Cerebral Cortex Segmented on Diffusion MRI3 
 

Abstract 

Diffusion tensor imaging (DTI) of the cerebral cortex reveals diffusion anisotropy, albeit less than white matter, 

with mostly a radial orientation of the primary eigenvectors to the cortical surface. The inner and outer boundaries 

of the cortex are usually defined on 3D-T1-weighted images and then applied to the co-registered DTI, but this is 

prone to registration errors given distortion of diffusion images acquired with the typical 2D-EPI. Given the 

thickness of the cortex, typical segmentation methods require high-resolution imaging with sufficient gray-white 

matter contrast to delineate the cortical boundaries.  Here an automatic cortical boundary segmentation method 

was developed to work directly only on the native DTI images by using fractional anisotropy (FA), mean diffusivity 

(MD) and mean diffusion weighted images (DWI), the latter with excellent gray-white matter image contrast. This 

new method was applied to 15 healthy young adults (10 cross-sectional, 5 test-retest) to measure FA, MD, and 

radiality of the primary eigenvector across the cortex on whole-brain 1.5 mm isotropic images acquired at 3T.  The 

proposed method accurately segmented the cortical boundaries for all individuals in the cross-sectional and test-

retest cohorts.   Both FA (~0.15) and MD (~0.75x10-3 mm2/s) were relatively stable across the cortex, although focal 

regions such as the post-central sulcus, anterior insula, and medial temporal lobe showed higher FA. The primary 

eigenvectors were primarily oriented radially to the cortex surface, but there were tangential orientations in the 

sulcal fundi as well as in the post-central sulcus.   The proposed method demonstrates the feasibility and accuracy 

of cortical analysis in native DTI space while avoiding the acquisition and potentially problematic registration of 

other imaging types like 3D T1-weighting.  

 
3 submitted currently in review 
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7.1 Introduction 
 

There has been growing interest in diffusion magnetic resonance imaging (MRI) of the cerebral cortex 

given improvements in scanner hardware and acquisition methods that enable the necessary high spatial 

resolution (see recent reviews – (Assaf, 2019; Kroenke, 2018)). Early on, diffusion MRI yielded interesting 

observations of  high anisotropy with primary eigenvectors perpendicular to the cortical surface in neonates, 

followed by a reduction of this anisotropy with development (see review – (Neil and Smyser, 2018)).    Although 

those studies showed that this anisotropy diminished with age, ex vivo and in vivo studies listed below suggested 

that cortical anisotropy persisted to adulthood, albeit less than that observed in the more commonly investigated 

and highly anisotropic white matter (WM) tracts. 

Ex vivo diffusion MRI studies with much higher spatial resolution (e.g. 0.5 x 0.5 x 0.5 mm3, 0.8 x 0.8 x 0.8 

mm3, or 0.94 x 0.94 x 0.94 mm3) than typically used in vivo have demonstrated radial anisotropy in the adult 

human cortex (McNab et al., 2013, 2009; Miller et al., 2011), likely reflecting the orientation of the radial glia that 

provide the scaffolding for neural migration during development.  Laminar specific patterns of radial and tangential 

diffusion relative to the cortex (Aggarwal et al., 2015; Leuze et al., 2014) and dependence of fractional 

anisotropy (FA) and mean diffusivity (MD) on cortical depth (Kleinnijenhuis et al., 2013) have also been shown in 

ex vivo human cortex.  Variability in the diffusion signal across the cortex has enabled segmentation of cortical 

layers that are in agreement with histology (Bastiani et al., 2016).  Radiality in the cortex was associated with 

microstructure of the cortical columns in multiple sclerosis post-mortem (McKavanagh et al., 2019) suggesting 

sensitivity to neuropathology. 

In vivo studies with  high spatial resolution (~1 x 1 x 1 mm3) have also observed diffusion anisotropy in the 

adult cortex, with a predominantly radial orientation relative to the cortical surface (Gulban et al., 2018; 

Heidemann et al., 2010; McNab et al., 2013), in agreement with the ex-vivo studies.  In addition, a primarily 

tangential diffusion orientation relative to the cortex surface has been observed in the post-central sulcus (McNab 

et al., 2013), the sulcal fundi (Gulban et al., 2018), and regions of the parietal and occipital lobes (Golay et al., 
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2002). Microscopic FA in the cortical grey matter (GM) has persisted even when minimizing WM signal via 

inversion recovery, suggesting that cortical anisotropy is not driven by adjacent WM (Lawrenz and Finsterbusch, 

2019).  The diffusion tensor is changed with proximity to the cortical surface such that decreased radiality, 

decreased MD and increased FA is associated with deeper cortical and sulcal depths using varying resolutions such 

as 3 mm isotropic at 3T (Kang et al., 2012), more moderate resolution (0.6 mm x 0.6 mm x 3 mm) at 3T (Truong 

et al., 2014), or high resolution (1 mm isotropic) at 7T (Kleinnijenhuis et al., 2015).  Notably, radiality of the 

primary diffusion direction peaks in the middle of the cortex (Kleinnijenhuis et al., 2015; Truong et al., 2014) 

reflecting either partial volume measurements with superficial white matter and surrounding cerebrospinal fluid 

(CSF) or may reflect differences in laminar microstructure across the cortex. Diffusion MRI has been able to 

parcellate the cortex (Ganepola et al., 2018; Nagy et al., 2013), suggesting sensitivity to regional cytoarchitectonic 

differences.  The Human Connectome Project (1.25 mm isotropic, multi-shell, hour long scan) diffusion imaging 

studies of the human cortex have shown regional differences of neurite density (Fukutomi et al., 2018), fibre 

orientation distribution patterns across the cortex that correspond with known patterns of myeloarchitecture 

(Calamante et al., 2018), and a gyral coordinate system to predict fibre orientations (Cottaar et al., 2018).     

Notably, the majority of these in-vivo diffusion MRI studies of the cortex typically use an additional 

anatomical image (e.g. 3D T1-weighted) for delineation of the inner and outer cortical boundaries with available 

methods (Dale et al., 1999; Kim et al., 2005), which is then transferred to the co-registered diffusion images. 

However, this is prone to registration errors given the spatial distortions of diffusion images acquired with 2D 

single-shot echo planar imaging (EPI), as has been previously discussed (Cottaar et al., 2018). There would be a 

number of advantages to identify the cortex on the diffusion images/maps directly. Previous studies have shown 

promise in using diffusion MRI to segment brain tissue (i.e. WM, GM, CSF) using measurements extracted from 

both the diffusion tensor (Hasan et al., 2007; Yap et al., 2015) and models requiring the acquisition of multiple 

shells (Jeurissen et al., 2014).  However, to investigate diffusion measurements relative to the cortex, GM tissue 

must be further segmented into cortical / non-cortical GM and then modelled as a 3D surface to calculate radiality.   
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Here an automatic cortical boundary segmentation method is presented that follows the same framework 

as previously proposed cortical segmentation algorithms, but it is applied directly on the DTI images and maps.   

The proposed method requires whole-brain diffusion MRI acquired at a high enough spatial resolution to clearly 

delineate the cortex on a mean DWI.  The new method uses a surface deformation procedure similar to those 

previously proposed for cortical segmentation of anatomical T1/T2 weighted images (Dale et al., 1999; Kim et al., 

2005), but uses quantitative parameters calculated from the diffusion tensor (i.e. FA and MD) along with the 

image intensity of the mean DWI image to first classify brain tissue and then deform a 3D surface model to the 

inner and outer cortical boundaries.   This new method was evaluated for segmentation accuracy on whole-brain 

1.5 mm isotropic diffusion images acquired in 3.5 minutes at 3T.  FA, MD, and radiality were extracted from 

parcellations of the cortical regions in a cross-sectional cohort of 10 healthy young adults.  Test-retest reliability of 

the cortical diffusion measurements were assessed in a separate cohort of 5 healthy young adults. 

 

7.2 Materials and Methods  

7.2.1 Participants, Data Acquisition and Pre-processing 
This study was approved by the Human Research Ethics Boards at the University of Alberta and written informed 

consent was obtained from all individuals prior to study participation.  For cross-sectional analysis, 10 healthy adult 

participants (26.5 ± 6.1, 20-38 years; 3 females) underwent diffusion tensor imaging (DTI) on a 3T Siemens Prisma 

(64 channel head coil).  For reliability analysis, 5 additional participants (24.9 ± 3.8, 22-31 years; 3 females) 

underwent 2 imaging sessions (2.0 ± 2.2, 1-6 days between imaging sessions). Diffusion tensor imaging was 

acquired with a single-shot EPI spin-echo sequence: multi-band=2, GRAPPA R=2, 6/8 partial Fourier, 6 b0, 30 b1000 

s/mm2, 30 b2000 s/mm2 (not used here), TR=4700 ms, TE=64 ms, FOV=220 mm, 90 1.5 mm slices with no gap, 

1.5x1.5 mm2 zero-filled to 0.75x0.75 mm2 in-plane, and 6 min scan (although only 3.5 min for just b0 and b1000). A 

brain mask was generated on the mean b0 image (BET, FSL v6.0.2) and image volumes were corrected for eddy 

current distortions/motion (FSL v6.0.2, eddy).  Tensor models were fit (DIPY v0.15.0) outputting fractional 

anisotropy (FA), mean diffusivity (MD), and primary eigenvector maps. Additionally, a mean b1000 diffusion 
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weighted image (DWI) was output and was normalized using N4 correction based on the spatial variations of signal 

intensity estimated from the mean b0 image.  The diffusion weighted image and diffusion parameter maps are 

visualized in Figure 7.1. Striking WM / GM contrast is observed on the mean DWI with a contrast to noise ratio 

(CNR) of 40. CNR was calculated from a single subject as the average GM voxel intensity minus average WM voxel 

intensity divided by the standard deviation of the intensity from a noise ROI represented by a cube on the corner 

of the image. 
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7.2.2 Voxel-Based White Matter Segmentation 
Previously proposed cortical segmentation algorithms (Dale et al., 1999; Kim et al., 2005; Schuh et al., 2017) on 

T1 or T2 weighted images (not used here) first require a pseudo white matter mask of voxels identified as WM, 

subcortical GM (excluding hippocampus and amygdala) and ventricles.  Here a pseudo white matter mask is 

generated based on FA and MD parametric maps and the mean b1000 DWI. To initialize a region growing 

algorithm, a subset of voxels on the mean b1000 DWI were initially labeled as one of the following three tissue 

categories, either GM, WM, or non-brain tissue (includes cerebro-spinal fluid). Voxels were labelled using tensor 

parameters as WM (FA > 0.25), GM (FA = 0.05 - 0.15 or MD = 1.0 – 1.2 x 10-3 mm2/s) or non-brain tissue (MD > 1.2 

x 10-3 mm2/s).  Notably the lower and upper MD bounds chosen for GM will label voxels that reflect partial volume 

measurements of CSF and GM but was selected to ensure that GM voxels fully enclose the perimeter of the 

cerebrum. Mean brain intensity and standard deviation was calculated on the mean b1000 DWI across all labeled 

GM and WM voxels. These intensity values were used to correct misclassified voxels from the tensor-based 

segmentation. Voxels with high intensity primarily located in the cortex (mean DWI intensity  > mean brain 

intensity + 2 standard deviations) were labelled GM and voxels with low intensity values exterior to the cortex 

(mean DWI intensity < mean brain intensity – 2 standard deviations) were labelled as non-brain tissue.  This initial 

voxel labelling creates a segmented image where most voxels are labeled except for in regions adjacent to 

GM/WM boundary and medial/lower depths of the cortex which are labelled in the following steps. 
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Figure 7.1. (A) Mean b1000 DWI, (B) FA map and (C) MD map acquired with 1.5x1.5x1.5 mm3 resolution (zero-filled 
in-plane by two in these images) at 3T in 3.5 minutes for whole brain.   The mean b1000 DWI shows excellent grey-
white matter contrast whereas the FA and MD maps highlight the white matter and outer cortical surface, 
respectively.  (D)  Primary eigenvectors from tensors are overlaid on a cortical segmentation of the mean b1000 
image.  Radial orientation normal to the curvature of the cortex was primarily observed in the crown of gyri. 
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In order to generate a pseudo-white matter mask, all WM and brain structure contained within the cortex 

of the cerebrum must be identified; the presented method accomplishes this by using a non-linear transformation 

from MNI space to the subject’s native image space by registering the FSL Human Connectome 1065 FA template 

(included in FSLv6.0.2) to the subject’s FA map (FLIRT/FNIRT FSLv6.0.2). Three masks were generated for the 

cerebellum, subcortical grey matter, and hippocampus/amygdala in MNI space by merging associated Freesurfer 

anatomical segmentation labels provided in the Human Connectome processing pipeline (Glasser et al., 2013).  

The masks were then transformed from MNI space to each subject’s native image space using the previously 

calculated transformation.  Voxels in the subcortical mask were then labelled WM whereas 

hippocampus/amygdala were labelled GM. Finally, unlabeled voxels were then labelled either GM or WM using the 

intensity of the mean b1000 image as input to a random walker algorithm (scikit-image v0.16) outputting a singular 

cluster of WM voxels. This WM segmentation was then split into left and right hemispheres using an additional 

mask of the medial boundary. Initial tissue segmentations and an initial voxel-wise WM segmentation are shown 

for a single subject in Figure 7.2B and 7.2C, respectively.  A surface model consisting of vertices (~175000) and 

edges was generated for each hemisphere with the Medical Imaging Registration Toolbox (MIRTK v2.0.0) along the 

boundary of the voxel-based WM segmentation.  This surface was then smoothed (Laplacian smoothing, 300 

iterations, relaxation factor of 0.1) and the topology of the surface corrected to be consistent with a sphere using 

FreeSurfer v6.0 (Fischl, 2012). 
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Figure 7.2. Cortical segmentation workflow in native DTI space using mean b1000 images, and FA/MD maps. (A, B) 
Voxels are classified from FA/MD into white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF), and 
then filling subcortical grey matter/ ventricles with registration to brain atlas. (C) Unlabeled voxels are then filled 
using a random walker algorithm outputting a singular cluster of WM voxels that is then separated into left and 
right hemispheres. (D) The WM segmentation is tessellated and then smoothed to create an initial WM /cortex 
surface that is deformed to closest edge on the mean DWI while using the tensor-based force yielding a (E) refined 
WM / cortex boundary. (F) The refined WM / cortex surface is moved outward along the surface normal to the low 
intensity edge on the mean b1000 DWI to generate the cortex / CSF boundary surface. (G) A midthickness surface 
is generated halfway between the WM/ cortex and cortex / CSF surfaces and is used to extract (H) FA, (I) MD, and 
(J) radiality from within the cortical boundaries. 
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7.2.3 Surface-Based Inner and Outer Cortical Boundary Segmentation 
Typically used cortical segmentation algorithms (Dale et al., 1999; Kim et al., 2005) on T1 or T2-weighted images 

(neither one used here) take a surface model as input and move vertices to high contrast regions along the 

white/grey matter and grey/CSF (pial) boundaries while constraining the curvature and self-intersection properties 

of the surface.   In general, these algorithms iteratively apply surface deformations based on external/internal 

forces calculated per vertex upon each iteration.  In conventional methods, external forces are based on the image 

intensities of a T1 or T2-weighted image and are used to move the surface to a target boundary along the cortex.  

In contrast, internal forces are calculated based on the properties of the surface itself (i.e. internally) such as local 

curvature or vertex position relative to the surface.  Internal forces are used to regulate the curvature (i.e. prefer a 

smooth surface) and promote equidistant spacing between vertices.  

Here, a method is proposed that uses the excellent WM/GM contrast on the mean b1000 DWI, as well as 

FA and MD parametric maps to segment the cortex. Here the WM / cortex and cortex / CSF surfaces are obtained 

in each participant by deforming the initial WM surface model using the MIRTK with external/internal forces (for 

details on surface deformation using internal/external forces see (Schuh et al., 2017)). Each force requires the 

selection of force weights (i.e. the contribution of force to surface deformation) and various parameters that are 

specific to each external/internal force.  The developmental Human Connectome Project (dHCP) cortical 

segmentation pipeline designed for use with T1 and T2 weighted images (Makropoulos et al., 2018) has validated 

the parameters chosen for each force through visual inspection of resulting surfaces and for this reason, where 

possible, parameters were matched to those from the dHCP pipeline, whereas weights were chosen 

experimentally based on the accuracy of the resulting surfaces. 

In the current work, two external forces were used for surface deformation.  First, as in previously 

proposed methods for cortical segmentation (Kim et al., 2005; Schuh et al., 2017), an edge distance force was 

calculated. However, rather than T1 or T2-weighted images, the mean b1000 DWI intensity is used to identify 

image edges (weight 1.4, parameters: edge smoothing 1 mm, closest maximum of gradient calculated along 

surface normal). To restrict the movement of the surface across large sulcal gaps (e.g. central sulcus) where the 
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intensity gradient is the same for the WM / cortex and opposing cortex / CSF boundary, a second force is applied 

based on FA, MD and mean DWI intensity.  For this force a tensor-based force map is generated by multiplying the 

FA map by -1 adding an offset of 0.2 (the target FA value for the WM /cortex boundary) and setting CSF voxels (MD 

> 1.2 x 10-3 mm2/s or mean DWI intensity < mean brain intensity – 2 standard deviations) to a value of 1.0.  An 

example tensor-based map is visualized in Figure 7.3A and has negative values (where surface is pushed outward) 

within white matter regions, positive values (where surface is pushed inward) in areas of cortex / CSF and a value 

of ~0 in areas adjacent to the WM / cortex boundary.  A force is calculated for each vertex/iteration as the distance 

to the minimum value along the surface normal on the tensor-based force map (weight 1.6, smoothing 1 mm). 

Effectively, when applied together the edge distance force and tensor-based force will favor WM / cortex edges on 

the mean b1000 DWI with an FA of 0.2 (the FA offset on the tensor-based force map), while discouraging 

deformations into regions of CSF or GM that have positive values in the tensor-based force map.  Notably, without 

the addition of the tensor-based force, surface deformations will propagate across large sulcal gaps (e.g. central 

sulcus) where the intensity gradient of the WM /cortex boundary is similar to the CSF / cortex boundary on the 

opposing side of the sulci (Figure 7.3B). As performed in the dHCP pipeline (Makropoulos et al., 2018) and to 

avoid overfitting of the surface to local anomalies in mean DWI intensity, external forces were applied using 3 

levels of averaging from neighboring vertices (level 1 neighboring forces averaged 4 times, level 2: neighboring 

forces averaged 2 times, and level 1: neighboring forces averaged once). 

 Internal forces used here, namely repulsion, mean curvature and gaussian curvature forces, are the same 

as those used for the dHCP cortical segmentation pipeline (Makropoulos et al., 2018).  In the current study, 

parameters for these internal forces match those in the dHCP pipeline; however, weights for internal forces were 

chosen experimentally to ensure that the resulting surfaces followed the WM/cortex boundary.  Internal forces 

used were: repulsion force (weight 4.0, parameters: front facing radius 0.5 mm, back facing radius 1.0 mm), mean 

curvature force (weight 4.0), gaussian curvature force (weight 1.0, parameters: minimum 0.1, maximum 0.2, 

outside 0.5).   
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Internal and external forces are applied using 100 iterations for each level of the external force averaging 

which provided the iterations necessary for the surfaces to deform into the WM/cortex boundary. Surface self-

intersection was avoided by preventing vertices from moving closer than a distance of 0.1 mm to the surface. To 

constrain the distance between neighboring vertices upon each iteration, the surface is resampled such that each 

vertex is between 0.5 mm to 1.0 mm to all neighboring vertices.  Following this initial surface deformation, 300 

iterations are performed without the tensor-based force but with all other previously used forces/parameters, 

allowing the surface to expand into the WM/cortex boundary within some gyral crowns where the target FA value 

of the tensor-based force (0.2) is not accurate (Figure 7.3C).  

 

 

Figure 7.3. (A) Tensor-based force generated from FA / MD maps and mean DWI intensities.  Areas in blue / light 
blue (force amplitude < 0) indicate regions with an outward force, whereas yellow/red areas (force amplitude > 0) 
indicate regions with an inward force. (B) Visualization of WM / cortex surfaces generated while using both an 
edge-based force and the tensor-based force (yellow) compared to surfaces generated using only the edge-based-
force (blue).  Without the application of the tensor-based force, the surface deformations propagate over large 
sulcal gaps to areas where signal intensities change from low to high on the opposing side of the surface.  (C) 
Visualization of the final surface deformation where the WM / cortex surface generated while using both an edge-
based force and the tensor-based force (yellow) is further refined using only the edge-based force (green) to allow 
the surface to expand properly into the WM / cortex boundary of the gyral crowns. 
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To generate the cortex / CSF surface, the WM / cortex surface is first expanded 1.5 mm outwards along 

the surface normal (normal force 0.25, 500 iterations, max displacement 1.5 mm) while using the same internal 

forces used previously.  This intermediate surface is then deformed to the cortex / CSF boundary by optimizing the 

edge distance force on the mean b1000 DWI (weight 1.0, smoothing 1 mm, edge force averaging levels/iterations: 

4:100, 2:100, 1:200), again using the same internal forces used for the WM / cortex deformations. Both WM / 

cortex and cortex / CSF surfaces were projected to axial, coronal, and sagittal image slices and qualitatively 

inspected for segmentation accuracy. 

 

7.2.4 Surface-based Diffusion Measurements 
To minimize diffusion measurements from non-cortical voxels, a medial surface was created by finding the half-

way point between the inner/outer cortical boundaries (i.e. the Euclidean mean of corresponding WM / cortex and 

cortex / CSF vertex coordinates).  FA, MD, and primary eigenvector values were interpolated onto mid-thickness 

surface vertices using the value of the enclosing voxel. The radiality index measures how aligned a tensor is relative 

to the normal of a surface and is calculated here as the absolute value of the dot product of the mid-thickness 

surface normal and the primary eigenvector interpolated at each mid-thickness vertex.  

 

7.2.5 Spherical Registration and Regional Analysis 
Patterns of cortical folding especially in large sulci (e.g. central sulcus) are consistent between healthy individuals, 

thus surface-based registration techniques predominantly rely on measurements of sulcal depth to align a 

subject’s cortical surface to a template.  To calculate sulcal depth, the WM / cortex surface model was inflated 

using FreeSurfer v6.0. For registration purposes, the inflated surface was mapped to a sphere using FreeSurfer v6.0 

(Fischl, 2012).  The subjects were then registered to the population average template (Van Essen et al., 2012) 

using the Multimodal Surface Matching algorithm (Robinson et al., 2014) by minimizing the difference between 

sulcal depth maps of the subject and template on corresponding spheres.  To qualitatively assess regional 
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differences in surface-based diffusion measurements, maps of FA, MD, and radiality were resampled to the 

template and then averaged.  Brodmann’s areas distributed with the population average template  (Van Essen et 

al., 2012) were combined to create parcellations of the temporal lobe (Brodmann’s areas, 20, 21, 22, 27, 28, 35, 

36, 37, 38), occipital lobe (Brodmann’s areas, 17, 18, 19), parietal lobe (Brodmann’s areas, 1, 2, 3, 5, 7, 23, 26, 29, 

30, 31, 39, 40), frontal lobe (Brodmann’s areas, 4, 6, 8, 9, 10, 11, 24, 25, 32, 33, 44, 45, 46, 47), and insula 

(Brodmann’s areas, 41, 42, unlabeled portion of the insula). These parcellations were dilated so that all surface 

vertices of the template were labeled while restricting the dilation along the medial wall which contains non-

cortical structures (e.g. corpus callosum and ventricles).  Regional parcellations were then resampled to the 

subject’s native space and measurements of FA, MD and radiality were extracted in native imaging space and 

averaged per lobe for each region. Whole-hemisphere measurements of FA, MD, and radiality were also extracted 

separately for the left and right hemispheres of each subject.  Mean and standard deviations were calculated for 

FA, MD and radiality for each region per hemisphere across all 10 subjects in the cross-sectional cohort. To test for 

statistical differences between regions, measurements were averaged across hemispheres and regional differences 

were assessed by multiple pairwise t-tests (SPSS v2.4) using a Bonferroni corrected p-value (p-value < 0.003 = 0.05 

/ 15 i.e. 3 measurements by 5 regions).  Secondly, statistical differences between hemispheres were assessed 

separately for FA, MD, and radiality with a paired t-test (SPSS v2.4) using a Bonferroni corrected p-value (p-value < 

0.017 = 0.05 / 3 measurements).   

 

7.2.6 Test-retest Analysis 
Segmentations of WM /cortex and cortex /CSF boundaries, along with surface-based FA, MD, and radiality maps 

were visually inspected for between scan consistency.  Measures of FA, MD, and radiality were extracted for each 

regional parcellation (left and right hemisphere separate) and repeatability of each regional measure was 

calculated as the intraclass correlation (ICC) across the 5 subjects and 2 scans, the ICC(A, 1) two-way random, 

single-score model (Mcgraw and Wong, 1996). ICC values range from 0 (no agreement between repeated 

measurements) to 1 (absolute agreement between repeated measurements) with values interpreted as poor (ICC 
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< 0.5), fair (ICC 0.5 to 0.75), good (ICC 0.75 to 0.9), excellent (ICC > 0.9) (Koo and Li, 2016). Additionally, the 

difference between scan 1 and scan 2 (delta) was calculated for FA, MD, and radiality for each region per 

hemisphere as the value at scan 1 minus value at scan 2.  
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7.3 Results 

7.3.1 Cortical Segmentations on Native DTI 
The proposed automated cortical segmentation method applied to 1.5 mm isotropic DTI images/maps alone 

generated inner (WM / cortex) and outer (cortex / CSF) boundaries for all 15 subjects included in the study (10 

cross-sectional, 5 test-retest). The entire segmentation pipeline takes ~3 hours when executed in a high-

performance computing environment (Hardware: 16 cores, AMD Ryzen thread ripper 2990wx, 64 GB Ram, Linux 

Ubuntu 18.04 operating system).  Example segmentations of inner and outer cortical boundaries for 3 subjects are 

visualized in Figure 7.4.  Segmentations were qualitatively assessed and deemed accurate for most of the cortex 

for all subjects included in the study. Only cortical areas prone to magnetic susceptibility in the temporal lobes had 

noticeably poor segmentations due to distortions and image intensity shifts that negated any WM / cortex or 

cortex / CSF distinction on the mean b1000 DWI.     
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Figure 7.4. White matter (WM) / cortex inner boundary (green) and cortex / CSF outer boundary (pink) derived 
from the DTI cortical segmentation workflow displayed for three of the subjects from the cross-sectional cohort.  
Cortical surfaces are displayed on (A) a single slice of the mean b1000 diffusion weighted images and for the left 
hemisphere as 3D surfaces for (B) WM/cortex and (C) cortex/CSF.  Grey regions indicate the mask of the medial 
wall used to restrict vertex movement and separate hemispheres.  Even with substantial subject variability in 
cortical folding and brain size/shape, reasonably accurate cortical segmentations were generated in all cases. R – 
right hemisphere, L – left hemisphere. 
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7.3.2 Diffusion Measurements in Native Imaging Space 
Surface-based maps of FA, MD, and radiality were generated for all 10 subjects. FA, MD, and radiality maps are 

displayed along with histograms for an example subject in Figure 7.5A, 7.5C, and 7.5E. FA and MD were within 

range of expected values for grey matter for all subjects (histogram peaks at FA ~ 0.15, MD ~ 0.75 x  10-3 mm2/s), 

suggesting that the mid-thickness surface was located within the cortical boundaries. Histograms of radiality across 

the cortex had a highly skewed distribution towards a radiality value of 1.0 (indicating that the primary eigenvector 

is perpendicular to the surface). Lower FA (FA ~0.12) was observed in lateral portions of the parietal and frontal 

lobes relative to other regions (FA ~ 0.15). Additionally, markedly higher FA values (FA > 0.3) were observed along 

the bank of the post-central sulcus (Figure 7.5A), notably a thinner cortical area, as well as the anterior portion of 

the insula and medial portions of the temporal lobe. In contrast, there were no striking regional differences on MD 

maps.  Additionally, in all subjects an increase in radiality was observed in the crowns of the gyrus (FA > 0.15) 

relative to the fundus (FA < 0.15), as well as a low radiality (~0) along the post-central sulcus where FA values were 

> 0.3.  Average surface maps of FA, MD, and radiality were generated for the 10 subjects and are displayed on the 

average template in Figure 7.5B, 7.5D, and 7.5F.  Consistent with regional difference observations in subject level 

maps, average maps showed decreased FA values in portions of the parietal and frontal lobes relative to the rest of 

the cortex.  Additionally, areas of high FA (> 0.3) corresponded to regions with low radiality (<0.2) and were 

observed along the post-central sulcus.   

 As outlined in the methods, average regional measurements of FA, MD and radiality were extracted for 

each subject using parcellations of the insula, temporal, occipital, frontal and parietal lobes with each hemisphere 

measured separately.  Average FA, MD and radiality values of the 10 cross-sectional subjects are displayed for the 

5 regions for each hemisphere in Figure 7.6.  Pairwise t-tests (left/right averaged) indicated FA values were higher 

(p < 0.003) in the temporal lobe (0.167 ± 0.005)  and insular region (0.156 ± 0.006) relative to all other regions, and 

FA in the frontal lobe ( 0.147 ± 0.004) was higher compared to the parietal (0.136 ± 0.003) lobes. The observed 

regional difference in radiality was primarily driven by statistically higher (p < 0.003) radiality in the frontal lobe 

(0.72 ± 0.03) compared to the occipital (0.65 ± 0.02) and parietal (0.66 ± 0.03) lobes, whereas no statistical 

difference was observed in radiality values for the insula (0.70 ± 0.03), and temporal lobe (0.68 ± 0.03) relative to 
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any other regions.  MD values were largely consistent across most regions namely, the frontal (0.77 ± 0.01 x 10-3 

mm2/s), temporal (0.76 ± 0.01 x 10-3 mm2/s), and occipital (0.77 ± 0.02 x 10-3 mm2/s) lobes, with higher (p <0.003) 

MD values observed in the parietal lobe (0.78 ± 0.01 x 10-3 mm2/s) relative to the insula (0.76 ± 0.01 x 10-3 mm2/s). 

Paired t-tests indicated small but statistically significant differences (p < 0.017) between left and right hemispheres 

in measures of MD and radiality. Lower MD values were observed in the left hemisphere (0.763 ± 0.012 x 10-3 

mm2/s) compared to the right hemisphere (0.775 ± 0.012 x 10-3 mm2/s).  whereas higher radiality was observed in 

the left (0.689 ± 0.025) hemisphere relative to the right (0.682 ± 0.029) hemisphere.  
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Figure 7.5. Diffusion parameter surface visualization on midthickness and inflated surfaces for (A, C and E) a single 
subject (left) and (B, D and F) average of ten subjects on the template (right). Surface-based FA, MD and radiality 
maps are displayed for the left hemisphere as well as corresponding histograms across the hemisphere. In both 
subject-level and average maps, FA/MD were generally homogeneous and within range of expected cortical grey 
matter values, except high FA values were observed along the somatosensory cortex, the medial temporal lobe 
and in the anterior portion of the insula. Radiality maps showed predominantly high radiality values with increased 
radiality in the crown of the gyri relative to the sulcal fundi, and a markedly lower radiality was observed along the 
central sulcus.    
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Figure 7.6. Average (B) FA, (C) MD, and (D) radiality across the 10 individuals in the cross-sectional cohort, along 
with (A) lobe parcellations displayed on the midthickness surface of the template. Color of asterix indicate a 
statistical difference in pairwise t-test (p < 0.003) with the corresponding lobe. FA values were variable between 
regions with the temporal lobe (~0.17) and insula (~0.16) having higher values compared to all other regions 
whereas frontal lobe (~0.15) had statistically higher values than the parietal lobe (~0.14). Similar MD values were 
observed across all regions with values ~ 0.77 x 10-3 mm2/s, with higher MD values were observed in the parietal 
lobe (~ 0.78 x 10-3 mm2/s) compared to the insula (~ 0.76 x 10-3 mm2/s). Radiality was higher (*, p < 0.003) in the 
frontal lobe (~0.71) relative to the parietal (~0.66) and occipital lobes (~0.65). 
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7.3.3 Test-retest repeatability 
Surface-based maps of FA, MD, and radiality were generated for all 5 subjects in the test-retest cohort.  Maps of 

FA, MD, and radiality for an example subject scanned twice are visualized in Figure 7.7.  Maps of FA, MD and 

radiality had consistent patterns of regional variation between repeat scans of the same individuals.  Regional 

measurements of FA, MD, and radiality for all 5 participants in the test-retest cohort are presented per 

hemisphere in Figure 7.8, along with corresponding ICC and delta (scan 1 minus scan 2) values. Regional measures 

of radiality had the highest ICC values relative to repeatability measurements of FA and MD with all regional 

radiality measurements ranging from fair (ICC 0.5 to 0.75) to excellent (ICC > 0.9). Excellent repeatability was 

observed for radiality in the left (ICC 0.96) / right (ICC 0.97) frontal lobes, left (ICC 0.99) / right (ICC 0.98) parietal 

lobes, left insula (ICC 0.97), and right occipital (ICC 0.92) lobes, whereas good (ICC 0.75 to 0.9) reliability was 

observed in the right insula (ICC 0.88) and left (ICC 0.73) / right (ICC 0.85) temporal lobes.  Repeatability ranged 

from poor (ICC < 0.5) to excellent for regional measurements of both FA and MD. Excellent repeatability for FA was 

observed in left (ICC 0.90) / right (0.90) frontal lobes and for MD in the left temporal lobe (ICC 0.93). Poor 

repeatability was observed for FA in the left (ICC 0.03) / right (ICC -0.54) temporal lobes largely reflecting the large 

delta (scan 1 minus scan 2) from a single subject, resulting from a poor segmentation in the inferior temporal lobe 

that caused overestimated FA bilaterally for this scan. Poor repeatability was observed in MD measurements of the 

right frontal (ICC 0.33) and right occipital (ICC 0.28) lobes.   
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Figure 7.7. (A) White matter (WM) / cortex inner boundary (green) and cortex / CSF outer boundary (pink) derived 
from the DTI cortical segmentation for the same subject scanned twice. Surface-based (B) FA, (C) MD, and (D) 
radiality maps for the mid-thickness surface of the left hemisphere from the same subject.  Consistent cortical 
segmentations and patterns for all three DTI derived maps were observed between scan 1 (left) and scan 2 (right). 
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Figure 7.8. Average (A and B) FA, (C and D) MD, and (E and F) radiality within lobe parcellations separated by 
hemisphere for the 5 individuals (different shapes) in the test-retest cohort.  Intraclass correlation (ICC) values are 
a measure of test-retest repeatability and are shown along with deltas (scan 1 minus scan 2) for each measure per 
lobe. FA values had excellent (ICC > 0.90) repeatability for the left/right frontal lobes whereas poor (ICC < 0.50) 
repeatability was observed in the temporal lobes (ICC left: 0.03, right: -0.54) that was primarily driven by markedly 
different FA values for a single subject (yellow triangle). MD repeatability ranged from poor to excellent with 
lowest repeatability, along with a smaller range of MD values, being observed in the occipital and frontal lobes.  
Repeatability values for radiality ranged from good (ICC 0.75 to 0.90) to excellent in 8 of the 10 regions with fair 
(ICC 0.5 to 0.75) repeatability in the left temporal lobe (ICC 0.73) and left occipital lobe (ICC 0.67).  
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7.4 Discussion 

7.4.1 Cortical Segmentation on Native DTI 
This study proposes a novel surface-based cortical segmentation method that is applied directly on DTI images 

removing the need for registration to an additional anatomical image. The method utilizes the mean b1000 DWI 

image which was acquired at a 1.5mm isotropic resolution to attain excellent GM/WM contrast along the cortical 

boundaries.  Other surface-based cortical segmentation methods rely on T1 or T2 weighted image intensities.  

However, these methods would fail if applied to a mean b1000 DWI because of the suppressed CSF signal. Thus, 

we propose using a combination of mean DWI signal intensity and FA / MD values during both the tissue 

classification and surface-based deformation steps of the segmentation algorithm.  By using DTI measurements in 

conjunction with image intensities, the algorithm avoids surface-deformations into the large sulcal gaps that would 

otherwise occur by using image intensities alone (Figure 7.3b).  Using this method, accurate segmentations were 

generated in all cases except in areas of known increased magnetic susceptibility (e.g. lateral temporal lobe) 

resulting from the lack of visible WM / cortex contrast in this region.  Conventional algorithms used to register DWI 

to anatomical images such as boundary-based registration (Greve and Fischl, 2009) rely on GM / WM contrast, 

thus registration with a conventional T1-weighted image would also be problematic in this region.  

Diffusion measurements reported here are in the range of expected grey matter values (FA ~ 0.15, MD ~ 

0.75 x10-3 mm2/s) suggesting that tensor measurements are being extracted from the cortex and not from 

superficial WM or exterior CSF.  Additionally, measurements of the radiality of the primary eigenvectors relative to 

the cortex in individual subjects were high across the cortex (~1.0) and histograms were in agreement with in-vivo 

and ex-vivo measurements of the radial orientation of the cortex using higher resolution diffusion imaging at 1 mm 

isotropic resolutions (Gulban et al., 2018; McNab et al., 2013), furthering support that the proposed 

segmentation pipeline is accurately delineating the cortex. Segmentations as well as surface-based patterns of FA, 

MD, and radiality for each of the 5 test-retest subjects were also largely consistent between scans.  Although 

surface segmentations on high-resolution (1mm isotropic) T1-weighted images benefit from undistorted anatomy 
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it is problematic to assume that cortical boundaries generated on such an image will translate properly to a 

typically much lower resolution (not to mention distorted) DTI scan (Kang et al., 2012). This consideration is 

particularly important when calculating radiality (McNab et al., 2013) or orientationally invariant features 

(Ganepola et al., 2018; Nagy et al., 2013) which both require an accurate measurement of the direction of the 

cortical surface normal. 

 The proposed cortical segmentation algorithm requires the a priori selection of FA and MD parameters for 

the generation of the initial voxel-based tissue classification and the tensor-based force used in surface-

deformations for the initial location of the WM/ cortex boundary.  Notably both steps are subsequently updated 

using the image intensity on the mean b1000 DWI such that the segmentations are not biased by the selection of 

these initial parameters.  When applied to healthy controls in this study, the a priori selected FA and MD values 

produced adequate initial tissue classification and WM / cortex boundaries for input into the subsequent steps. 

However, the current study was on neurotypical young adults, and the algorithm parameters will need to be 

assessed for different ages and those with clinical disorders given changes in DTI parameters.  

Importantly, the proposed segmentation pipeline relied on the selection of multiple parameters specific to 

each internal / external force and were chosen experimentally based on the resulting cortical segmentations 

through visualization on 2D image slices. Similarly, previous cortical segmentation algorithms for T1-weighted 

images such as those included in FreeSurfer (Dale et al., 1999), CIVET (Kim et al., 2005), and dHCP cortical 

segmentation pipeline (Schuh et al., 2017) have also optimized force and smoothing parameters based on the 

accuracy of the resulting surfaces. Although the parameters reported here may be specific to the proposed data 

acquisition technique, it is speculated that these parameters could be optimized for other diffusion MRI protocols.  
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7.4.2 Regional Variation in Surface-Based Diffusion Measurements 
Surface-based FA, MD, and radiality maps provide insight into variations of the diffusion tensor measures across 

the cortex.  Radiality was observed to be high across the majority of cortical regions, with the exception of low 

values being observed in sulcal fundi and post-central sulcus.  Previous studies have observed lower radiality in the 

sulcal fundi relative to the rest of the cortex with whole brain 1 mm isotropic diffusion MRI acquisitions in vivo at 

7T  (Gulban et al., 2018; Kleinnijenhuis et al., 2015) and numerous studies have reported diffusion primarily 

oriented tangentially to the cortical surface along the post-central sulcus in high-resolution (1 mm-1.25 mm 

isotropic) diffusion MRI in-vivo at 3T (Cottaar et al., 2018; McNab et al., 2013).  Importantly, in this study higher 

FA in the expected range of white matter (> 0.3) was observed in portions of this region suggesting that radiality 

measurements of the post-central sulcus measurements may reflect measurements from a lower cortical depth or 

potentially measurement of a partial volume effect with superficial WM and should be interpreted with caution.  

  In other regions, FA was largely within the expected range of grey matter (~0.15) that has been previously 

reported for the cortex in-vivo at b1000 at 3T (Fukutomi et al., 2019; McNab et al., 2013) acquired using 1 mm 

and 1.25 mm isotropic resolutions, respectively. Elevated FA values were observed in a region in the anterior 

portion of the insula, and in the medial regions of the temporal lobe similar to previously reported surface-based 

FA measurements at b1000 (Fukutomi et al., 2019) .  This was confirmed by regional analysis where higher FA 

values were observed for cortical parcellations of the insula and temporal lobe compared to all other regions and 

frontal lobes showed statistically higher values compared to the parietal and occipital lobes.  

Repeatability of cortical FA ranged from between fair and excellent with only the temporal lobe having poor 

repeatability (ICC < 0.5).  To our knowledge, only one other DTI study has reported surface-based measurements of 

repeatability (coefficient of repeatability) and cortical patterns that suggest lower repeatability in temporal lobe, 

insula and regions surrounding the medial wall in an analysis using all shells (b1000, b2000, and b3000) from the 

HCP data (Fukutomi et al., 2018).  Large methodological differences exist between these repeatability 

experiments including, but not limited to, cortical segmentation method, number and choice of b-values, image 

resolution, ROI or vertice-based measurement, and choice of repeatability measure, all of which could potentially 
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impact repeatability measurement. Values for MD were largely consistent (~0.75 x 10-3 mm2/s) across the cortex in 

line with previously reported cortical MD values (McNab et al., 2013); however, more regional variability between 

cortical regions has been previously reported using the HCP b1000 data (Fukutomi et al., 2019) and may reflect 

the noted methodological differences between the two studies.  Repeatability for MD was also poor to fair for 6 of 

10 regions in the cortex that may reflect sensitivity of MD to partial volume measurement, a known issue in 

cortical DTI studies (Kang et al., 2012). 

Regional differences in FA and radiality could be explained by regional differences in cytoarchitecture across 

the cortex; for example the frontal lobe is primarily composed of regions with agranular structure (relatively 

thicker, larger pyramidal neurons, lacking clear granular layers) whereas the occipital, and parietal lobes contain a 

higher proportion of regions containing granular structure (thinner, predominantly tangentially oriented 

myelinated fibre bands) (Triarhou, 2013; von Economo and Koskinas, 1925).  Thus, these results suggest that FA 

and radiality may be a sensitive marker to the underlying microstructural variation of the cortex. Note that given 

the limited sample size of the cross-section cohort in this study (n=10), large regional parcellations were selected 

to reduce the number of multiple comparisons between regions.  However, the number of cortical regions in 

humans has been estimated to be ~150 to 200 (Van Essen et al., 2012), and suggests that the regional 

measurements presented here could be more specific in finely defined cortical regions.   

 

7.4.3 Diffusion MRI Acquisition Considerations for Measuring Cortical 
Anisotropy 
In this study, the proposed automatic segmentation method was applied to images acquired at 3T with a 90 slice, 

1.5 mm isotropic voxels, whole brain, single b1000 shell, 30 direction DTI protocol with a scan time of 3.5 minutes 

(note 6-minutes here with the extra b2000 shell not used in the current pipeline) enabled by using a simultaneous 

multi-slice acceleration factor of 2.  Previous studies have used higher b-values (e.g. b2000, b3000) to extract 

diffusion measures sensitive to cortical microstructure such as neurite density (Fukutomi et al., 2018; Schmitz et 

al., 2019), fibre orientation distribution patterns across the cortex that correspond with known patterns of 
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myeloarchitecture (Calamante et al., 2018) and for cortical parcellation (Ganepola et al., 2018).  Future work will 

attempt to use the proposed segmentation pipeline along with the unused b2000 shell from the presented 

diffusion acquisition to model more complex structures (e.g. fibre crossings) in the cortex. 

 Although the resolution was lower than the 1 mm isotropic resolution used in more recent cortical diffusion 

studies in vivo acquired in about ~1 hour (only b1000 shell) at 3T (Gulban et al., 2018; Kleinnijenhuis et al., 2015; 

McNab et al., 2013), the clinically relevant scan time of 3.5 min used here makes this acquisition suitable to 

studies of cortical microstructure in neurodevelopmental or clinical populations. In fact, radiality measurements in 

this study agreed with those from higher-field and higher-resolution studies demonstrating that 1.5 mm isotropic 

resolution is high enough to extract such basic properties relating to cortical microstructure.   Importantly, typically 

used cortical segmentation algorithms such as those implemented in FreeSurfer (Fischl, 2012) and CIVET-CLASP 

(Kim et al., 2005) analysis pipelines recommend using high resolution (1 mm isotropic)  T1-weighted / T2-

weighted images for cortical delineation (reflecting its thickness of 1 mm – 5 mm), and their accuracy can be 

improved with sub-millimeter (0.5 mm isotropic) imaging resolution (Lüsebrink et al., 2013).  It is anticipated that 

the proposed method would benefit from similar high resolution imaging, however inherent challenges with 2D-

EPI preclude straight forward implementation of 1 mm isotropic acquisitions for whole brain. For instance 

increased echo time, combined with smaller voxel results in a large decrease in SNR that is typically counter 

balanced by much longer scan times as done previously to measure DTI in the cortex (Gulban et al., 2018; 

Kleinnijenhuis et al., 2015; McNab et al., 2013).  Novel techniques have been proposed to reduce the trade off in 

scan time such as 3D DTI acquisitions (Song et al., 2014)   or super-resolution imaging techniques (Ning et al., 

2016). Thus, future work is needed to investigate novel imaging methods in the context of cortical diffusion 

analysis to examine the effect of higher resolution on these measurements. 

Importantly, the images used in the current study were acquired using a 64 channel receive coil, which was 

accounted for by bias field correcting the mean DWI image prior to segmentation.  Notably, all other diffusion 

images were left uncorrected, so bias fields were unaccounted for while modelling the tensor.   Given that the 

cortex is located on the perimeter of the brain the 64-channel coil is expected to provide increased SNR in the 
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cortex.  However, this may result in subtle alterations in diffusion parameters as a function of cortical depth, as 

such future studies may investigate the role SNR plays at varying cortical depths, or crowns versus deep sulci. 

 

7.4.4 Conclusions 
Here, a novel cortical segmentation and analysis method applied directly to diffusion images was presented to 

yield diffusion parametric maps and regional DTI measures of the healthy human cortex in vivo.  Cortical boundary 

segmentation was performed in native DTI space using a surface deforming algorithm relying on the mean DWI 

image WM/GM contrast combined with FA and MD maps. Accurate segmentation of the cortex was obtained for 

all healthy participants.  FA, MD, and radiality of the primary eigenvector relative to the cortex were within range 

of expected values and their regional variability was in agreement with higher spatial resolution studies that 

require longer scans and registration to an additional anatomical image.   The proposed method segments the 

cortex in native DTI space and will benefit from more accurate measurements of cortical diffusion properties in 

studies of neurodevelopment and clinical populations.  
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8 Summary & Conclusions 

The novel research presented in this thesis adds considerable knowledge to various fields of MRI and 

neuroimaging FASD research.  In Chapter 4 and Chapter 6 novel data is presented that adds to the understanding 

of structural and functional changes associated with prenatal alcohol exposure. Chapter 5 presents novel data 

analysis methods of functional connectivity reproducibility across multiple sites and Chapter 7 presents a novel 

strategy for analyzing diffusion metrics in the cortex. 

In Chapter 4, a machine learning approach was used to build a predictive model that achieved a 77% 

accuracy in classifying controls from participants with FASD.  Given that all previous volumetric studies in FASD 

studied brain regions independently it was particularly interesting to see that there was large agreement between 

regions of the brain heavily weighted in the predictive model (e.g. caudate, temporal lobe) and brain regions that 

have been commonly reported to have reduced volume in FASD from earlier studies.  In addition, the multivariate 

predictive model outperformed all other univariate analysis suggesting that there is a value in classifying FASD 

based on patterns of volumetric change rather than single structure.  Finally, this study presented separate FASD 

classification models for males and females showing large difference in both performance and regional weighting 

of models. This result furthers supports analyzing males and females separately in FASD studies in agreement with  

recent studies (Inkelis et al., 2020; Treit et al., 2017).  Although a 77% accuracy in identifying individuals with FASD 

is in the range of other studies that have attempted FASD classification using biologically based measures, it is 

certainly not accurate enough to be applied clinically. Thus, the model has potential to be used in conjunction with 

other FASD diagnostic measures (e.g. behavioral, facial measurements).  Given that other studies have shown 

value in classifying FASD based on epigenetic (Lussier et al., 2018), facial image (Fang et al., 2008), eye tracking 

(Tseng et al., 2013) and psychometric (Zhang et al., 2019) data, further machine learning studies could attempt to 

combine features from multiple sources to train a more accurate classification model.  In fact, the NeuroDevNet 

imaging dataset has enabled an ongoing research project that aims to investigate whether diffusion parameters 

extracted from WM and/or measurements of cortical thickness can be combined with the regional volumes 

presented in Chapter 4 to boost the accuracy of the FASD classification model. 
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The primary purpose of the research in Chapter 5 was to assess variability of functional connectivity 

measures across the four sites to further support the findings resulting from the analysis of the multisite 

control/FASD cohort in Chapter 6. However, two findings from this multisite reproducibility study have broader 

implications for multisite rs-fMRI research.  Firstly, modest between site reproducibility (ICC ~ 0.2) was observed in 

functional connectivity measurements which is in line with the only other study to report ICC values using similar 

analysis methods (Noble et al., 2017). Secondly, using linear site correction (i.e. covarying by site in linear 

regression) improves between site reproducibility by small margins in an overwhelming majority of the functional 

connections used in this study.  This result suggests that covarying by site is an appropriate method for accounting 

for some of the between site variability observed in functional connectivity measurements. However given the 

limited effectiveness of linear site correction, future studies may examine the use of more complex site correction 

techniques such as statistical harmonization that have been shown to better account for between site variability in 

functional connectivity measures. 

Alterations in functional connectivity were observed in the FASD cohort in the research presented in 

Chapter 6.  Notably, to date, only a handful of studies have investigated functional connectivity with rs-fMRI in 

individuals with FASD. The primary results from the work showed decreased connectivity in the FASD group in 

connectivity in internetwork connections of the salience network, and further supports other studies that have 

observed decreased functional connectivity in FASD (Fan et al., 2017; Wozniak et al., 2011). In conjunction with an 

additional somatosensory study published in the same year on the same NeuroDevNet FASD cohort (Long et al., 

2018) these works were the first to report alterations in functional internetwork connectivity.  Considering that 

internetwork connectivity is often ignored in favor of focusing on strongly connected intranetwork connections, 

these results suggest that FASD functional connectivity studies may benefit from expansion of functional 

connectivity analysis to internetwork connections as well.    

 Recruitment in FASD studies is a challenging prospect resulting in notable limitations relating to the 

clinical and demographic characteristics of FASD cohorts.  Firstly, large demographic imbalances are typically 

observed in FASD studies. In Chapter 4 and Chapter 6 of this thesis, a large proportion of individuals with FASD 
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were aboriginal (referred to as indigenous in Chapter 6), were on some form of medication, had a comorbid 

diagnosis, were living in adopted homes or in foster care. On the other hand, our control group was primarily 

Caucasian, unmedicated, and had no other diagnosis which potentially confounds this image analyses.  Future 

studies would benefit from attempts to control for recruitment reducing these biases between groups. However, 

one of the benefits of large multisite cohorts like those used in Chapter 4 and Chapter 6 is the ability to test for 

within-group effects of these potential confounds.  In Chapter 4 subsequent analysis was performed that showed 

no difference in classification accuracy in the FASD group relating to ethnicity, medication status or comorbid 

diagnosis, suggesting that the classification model represented a pattern of volumetric change in FASD and was not 

sensitive to potential confounding variables.  In Chapter 6 subsequent analysis was performed to test for a 

relationship between functional connectivity of the connections found to be different in the FASD group and 

potential confounds. In that analysis only stimulant use and not any other potential confounding variables, related 

to the functional connectivity in the FASD group.  Notably, stimulant use was associated with increased functional 

connectivity suggesting that the effect of stimulants “mitigated” the decreased functional connectivity observed in 

the group effect rather than being the source of the effect.  

 In Chapter 7 of this thesis a method is presented to extract in-vivo diffusion measurements of diffusion 

from the cortex.  Very few studies have investigated cortical microstructure with diffusion MRI to date and the 

majority have used long acquisitions (~1 hour long) at high-resolution (~1mm isotropic) such as the publicly 

available HCP diffusion imaging data. Previous studies have also relied on registration of diffusion MRI to an 

additional structural image acquired for the purpose of delineating the cortical boundaries. The technique 

proposed in Chapter 7 utilizes diffusion data (~1.5mm isotropic) acquired in 3.5 minutes and proposes a surface-

based cortical segmentation algorithm performed on native DTI removing the need for additional structural 

imaging and problematic registration between modalities.  Notably, cortical segmentations presented in Chapter 7 

were accurate on all ten subjects in the study. Interestingly, resulting surface-based diffusion metrics showed 

predominantly radially oriented primary eigenvectors and showed regional differences in FA values that may relate 

to underlying microstructure across the cortex.  Given the short scan time and the added benefit of foregoing 
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registration to a structural image, the proposed method has the potential for use in large scale studies of 

development and clinical populations.  

 The primary limitation of the research presented in Chapter 7 is the resolution of the data relative to the 

size of cortex (1mm-5mm thick) which could result in cortical diffusion measurements to be skewed by partial 

volumes of the superficial white matter or exterior CSF.  Importantly, the results presented in Chapter 7 are in line 

with higher resolution (1mm isotropic) studies that attempt DTI of the cortex (McNab et al., 2013).  However, to 

more thoroughly address resolution as a limitation to this type of analysis future studies should investigate how 

surface-based DTI parametric maps change as a function of resolution.  Importantly, the analysis framework 

presented in this thesis is analogous to resolution (as long as the edge of the cortex can be detected) meaning that 

it could be applied to higher resolution data as well, opening the possibility of applying this cortical analysis 

framework to high resolution in-vivo data in the future. 

 Although the projects presented here tackle three diverse areas of research, all aforementioned work 

adds to the scientific fields of MRI applications and/or MRI methods for the study of brain development.  The first 

study of machine learning classification of FASD using regional brain volumes is presented and resulted in a 

predictive model that achieved a moderately high classification accuracy (77%) in identifying individuals with FASD.  

A multisite study of functional connectivity alterations in FASD showed decreased functional connectivity in FASD 

and to date is one of only two studies that utilized cohorts consisting of more than 100 subjects.  Finally, a new 

method is proposed to study DTI in the cortex that has the potential for application in a multitude large scale 

diffusion MRI studies in developmental or clinical populations. 
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