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Abstract

Comprehensive Two-Dimensional Gas Chromatography - Time-of-Flight Mass Spec-

trometry (GC×GC-TOFMS) is an advanced instrumental technique that separates

complex mixtures along two chromatographic dimensions, followed by multivariate

detection that collects mass spectral information at a high acquisition rate. GC×GC-

TOFMS improves upon the sensitivity and selectivity of traditional Gas Chromatog-

raphy - Mass Spectrometry (GC-MS), and as such many more chemicals can be

identified and quantified within a much shorter span of time.

Current commercial offerings, and some academic works have largely focused on

capitalising upon the sensitivity and selectivity of GC×GC-TOFMS in order to find

more chemical components per chromatogram, often achieved by removing interfering

noise from the signal and digging far into the Signal-to-Noise Ratio (SNR). For exper-

iments where it is necessary to correlate some observable characteristic of the samples

being analysed with the chemical information available in the GC×GC-TOFMS chro-

matograms, this usually creates far more features than samples. This is a common

problem in the practice of chemometrics, and there are a number of feature selection

routines and rank-deficient solutions to the inverse least squares problem that can

correct for this inequality of variables to samples. However, a problem arises when

these features are poorly integrated and/or associated across multiple samples. This

has been a persistent and known problem within the chromatography community for

years, and while it remains an active area of research, little has been done to develop

an algorithm to properly quantify and identify these chemical components without

excessive programmatic steps that are prone to failure.
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The main issue surrounding this problem is the fact that chemical components

often drift between runs along both their first- and second-dimension retention modes.

Although chemometricians have been using Parallel Factor Analysis 2 (PARAFAC2)

to model chromatographic drift along one mode for decades, thus far, no algorithm

has been developed to handle drift in two modes using a similarly mathematically

satisfying way.

In this work, I present improvements to the Feature Selection by Cluster Resolu-

tion (FS-CR) algorithm that enables high quality information to be extracted from

peak tables with a number of integration artefacts such that many more combina-

tions of data can be analysed in a much shorter span of time; generally improving

upon the feature selection routine. This algorithm was tested upon a number of

datasets, most of which were created during the course of this research. Following

this, a parsimonious solution for the analysis of GC×GC-TOFMS data with drift

in two modes will be proposed, named PARAFAC2×2. Within a particular region

of the chromatogram, this algorithm appears capable of deconvolving components

with drift that varies across each sample independently, under close to the worst

conditions possible. To the end of creating a parameter-free pre-processing routine

for entire chromatograms, a novel method for predicting the chemical rank of a ma-

trix will be proposed. This may enable automated, parameter-free processing of raw

GC×GC-TOFMS data sometime in the near future.
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Quite generally, the familiar, just because it is familiar, is not cognitively

understood. The commonest way in which we deceive either ourselves or others

about understanding is by assuming something as familiar, and accepting it on that

account; with all its pros and cons, such knowing never gets anywhere, and it knows

not why. Subject and object, God, Nature, Understanding, sensibility, and so on, are

uncritically taken for granted as familiar, established as valid and made into fixed

points for starting and stopping. While these remain unmoved, the knowing activity

goes back and forth between them, thus moving only on their surface.

-Phenomenology of Spirit (1807) §31, Georg Wilhelm Friedrich Hegel (translated by

A.V. Miller)
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Chapter 1

General Introduction

1.1 Motivation

Modern analytical instruments have allowed researchers to investigate the chemical

characteristics of complex samples in unprecedented detail. In most cases very little

of this information is of practical use, but it is possible to correlate some quantifiable

metric of an interesting batch of samples with a useful, (typically small) subset of

their observed chemical characteristics. This is a type of “soft” modelling, wherein

the goal of an experiment is not to prove a hypothesis, but rather to generate one

where none exists. This type of analysis is particularly useful for samples whose char-

acteristics are difficult to measure conventionally; so much so, that unconventional

analytical measurements become a viable alternative. Many diseases are difficult to

diagnose using the tools currently available to physicians, and correlating the en-

dogenous chemical composition of bio-fluids (such as blood or urine) with diseases

states represents a very promising research avenue for which modern instrumentation

is well-suited [3].

Soft modelling is a departure from the practice of “hard” modelling more widespread

in the practice of chemistry, or any other physical science. Hard modelling involves

a relationship between experimental data, and a parametric equation that can be

derived from, or related back to, first principles. Hard models have the advantage

of being consistent with much broader theories of the physical sciences, but rely on
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a comprehensive understanding of the system being studied. This may be inspired

by, or derived from relationships observed in experimental data, but for insight into

complicated, indirectly observed phenomena this may not always be possible for a

human theorist.

Soft models are named for their ability to adapt to the information provided, in-

dependent of human intervention [4]. For either the flexible soft models calculated

by computers, or the inflexible hard models made by humans, the predictive ability

of a model must be evaluated by determining the accuracy of predictions made on

previously unconsidered data, or compared against a known solution for which an

automated determination is sought. Since soft modelling has begun to enjoy con-

siderable attention in recent years within the relatively new disciplines of “Artificial

Intelligence” (AI), and “Machine Learning” (ML), there have been many prominent

studies that have flirted with disregarding model validation altogether [5]. This prac-

tice is roughly analogous to deriving an expression incorrectly, and refusing to apply

it to the experimental data it was designed to predict.

The study of the algorithms and statistics that generate new hypotheses from an

over-abundance of chemical information, generally falls within the scope of “chemo-

metrics”[6]. Application of similar principles to problems of biological interest, fall

within one of the newer disciplines with the “-omics” suffix: “Genomics” for the analy-

sis of genetic data, “Proteomics” for the analysis of protein data, and “Metabolomics”

for the analysis of small-molecule metabolites [7], etc. The chemical diversity for

each type of data increases as a limited number of genes transcribe a greater number

of proteins, and as proteins are modified post-translationally and catalyze or affect a

currently unknowable number of different chemical reactions in a biological system[8].

The potential for insight into disease appears to be much greater for metabolite in-

formation, as metabolic expression can vary due to a biochemical dysfunction at any

step. However, the challenge for analysing complex mixtures with a high degree of

chemical diversity is also considerable and necessitates sophisticated analytical in-
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strumentation[9].

1.2 Analytical Instrumentation

1.2.1 Gas Chromatography

The practice of chromatography encompasses different methods for separating com-

plex mixtures into (ideally) pure components by exploiting differences in their chem-

ical properties. Unlike spectrometric techniques, which analyse mixtures directly, a

carefully optimised chromatographic separation can yield quantitative and qualita-

tive information of several distinct chemical species, by physically separating them

and passing them sequentially to a detection device. Chromatographic separations

typically vary by their choice of stationary phase and mobile phase. Movement of

analytes of interest between the stationary phase and mobile phase typically follows

a partition coefficient K, analogous to a reversible chemical reaction at equilibrium.

Liquid Chromatography (LC) exploits the relative affinities for molecules soluble in

a liquid mobile phase, versus a solid stationary phase. Reverse-phase liquid chro-

matography is a common technique, that utilises a hydrophobic stationary phase

(typically functionalised silica) versus a relatively polar liquid mobile phase that is

usually comprised of water mixed with either methanol or acetonitrile[10].

Gas Chromatography (GC) separates mixtures in the gas phase, according to the

partition coefficient between the analyte and stationary phase which affects the dis-

tribution of a particular analyte between the mobile phase (where components are

able to move through the column), and the stationary phase where the molecules

are stationary. Chemicals with a higher partition coefficient spend longer in the sta-

tionary phase, and less time in the mobile phase which increases the amount of time

required to reach the detector. The time a particular analyte spends in the column,

from the moment it is injected, until the moment it reaches the detector is defined

as the retention time, or tR. For the mobile phase, a sufficiently inert, low viscosity
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gas such as helium, hydrogen, or occasionally nitrogen, is typically used. Since there

is no significant interaction between the analytes and the mobile phase, the choice of

stationary phase is an especially important consideration for GC.

Ideally, the stationary phase should be able to exploit minor differences in chemi-

cal characteristics of the analytes of interest while maintaining a reasonable degree of

affinity for the analytes. An overzealous stationary phase can slow down the analysis

time, with diminishing returns for the quality of the separation, while a poorly re-

tentive phase will yield no separation. Most popular stationary phases are based on

films of modified polydimethylsiloxane (PDMS), due to their stability at high tem-

peratures and predictable interactions with the analytes of interest. However there

is also growing interest in Ionic Liquid (IL) stationary phases, which are typically

reserved for mixtures that are unable to be resolved using the more affordable and

robust PDMS-based types.

Following a GC separation, a univariate detector at the end of the column can

record the analytical signal as a time-series measurement. Since the behaviour of

chemical species in the column is not discrete, the retention of a chemical component

is (under idealised circumstances) distributed about an average retention time as a

function of its variance and magnitude. Optimisation of GC separations seeks to

minimise the variance (peak width), and maximise the resolution (peak separation)

of each component, within a time-frame that is as short as possible. Since closely

eluting chemical components can be difficult to quantify using a univariate detector,

a carefully optimised separation also has consequences for the accuracy of an analysis.

The efficiency of a separation is related to the well-known Van-Deemter Equation[11]:

H = A+
B

u
+ Csu+ Cmu (1.1)

H is the height equivalent to a theoretical plate; a lower theoretical plate height

suggests a greater number of theoretical plates within a given length of column,

L, such that the number of plates is given by N = L/H. u is the average linear
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velocity of the carrier gas in cm/s. The A, B, Cs, and Cm terms are the Eddy

Diffusion, Longitudinal Diffusion, resistance to mass-transfer in the stationary phase,

and resistance to mass transfer in the mobile phase terms, respectively. The A term

refers to diffusion brought about by the collision of analyte molecules with small

particles within the column (which is common-place for HPLC). Since GC columns

are almost exclusively open-tubular, the A term is zero. Within the practice of

GC using open-tubular columns, depending on the linear velocity of the carrier gas,

either the B or C terms dominate, depending on whether the value for u is less than

or greater than where its derivative dH/du = 0.

The resolution of two closely eluting analytes is dictated by the Purnell Equa-

tion[11]:

Rs =

(︄√
N

4

)︄(︃
α− 1

α

)︃(︃
k2

k2 + 1

)︃
(1.2)

Where N is the number of theoretical plates (i.e. the efficiency of the separation),

k2 is defined as the retention factor (k = tR−tm
tm

) of the later eluting component, and α

is the selectivity ratio (α = k2
k1

= K2

K1
) The Purnell Equation illustrates that optimising

resolution between peaks is a balancing act involving the column geometry (N), the

retention it offers (k2), and the relative differences between component interactions

with the column (α).

GC separations can be optimised via a wealth of knowledge on the topic, based on

parameters such as the oven temperature program, the column geometry, stationary

phase chemistry, and the choice of carrier gas [12][13][14].

1.2.2 Mass Spectrometry

Mass spectrometry can be used to analyse molecules based on their spectra of mass-

to-charge ratios (m/z) following fragmentation via a high energy ionisation state. Un-

like LC, it is readily coupled to GC systems and there are no significant consequences

regarding ion suppression as is frequently encountered when using electrospray ionisa-
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tion (ESI) [15]. This is because the high volatility and minimal volumes of gas required

for a GC separation are much more favourable, and the more straightforward method

of Electron Impact Ionisation (EI) is possible. Electron impact ionisation bombards

neutral analytes leaving the separation step with high energy electrons generated via

thermionic emission of a high-temperature filament with an electrical current applied.

A plate situated opposite to the filament is maintained at a high positive voltage [16],

which draw the electrons across the ionisation source through electrostatic forces.

When the neutral molecules are bombarded with an electron of sufficient energy, an

electron is removed to generate a radical cation. Molecules that contain sufficient

kinetic energy from the impact will fragment through loss of neutral radicals into

smaller cations that can be detected using a mass analyser.

Time-of-Flight (TOF) Mass Spectrometers and quadrupole (qMS) Mass Spectrom-

eters are popular choices for mass analysers. Briefly, TOF instruments separate mass-

to-charge ratios through measurement of the length of time spent in a flight tube due

to the action of a constant kinetic energy pulse applied to the ions perpendicular to

their trajectory leaving the ion source. Quadrupole mass analysers utilise at least four

metal rods: two opposite to each other held at a constant voltage, and two whose

voltage varies across a continuum of radio-frequencies to select for stable ion trajec-

tories [17]. The length of time required to scan through all interesting m/z ratios is

not trivial, and quadrupoles are generally capable of much lower acquisition rates.

The quality of the mass spectra extracted can also suffer, as the magnitude of the

peak varies during the time-scale of the quadrupole scan[18]. TOF instruments on

the other hand are able to handle a much higher acquisition rate and are suitable for

short, high-efficiency separations with lower peak widths, but generally suffer from a

reduction in dynamic range [19].

Closely eluting peaks, when analysed using GC-MS can be resolved using multi-

variate deconvolution techniques [20][21]. This decreases the reliance on a perfect

chromatographic separation, as imperfectly resolved components can still be quan-
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tified and identified using a library search on each components’ deconvolved mass

spectra. The practice of assigning more or less significance to particular ions is an

active area of research, and affects what hits are listed in a library search [22][23]. The

retention index, defined as the retention of an analyte relative to a series of n-linear

alkanes is also useful for this purpose [24].

1.2.3 Comprehensive Two-Dimensional Gas Chromatography

Mixtures that challenge the practical limitations of a single chromatographic separa-

tion may benefit from an additional chromatographic dimension that can differentiate

poorly resolved components using a complementary selection criteria - evading the

limitations of Equation 1.2 for two unresolved components. Improvements to the se-

lectivity of the separation for one pair of closely-eluting analytes can negatively affect

the resolution of other analytes, and increasing column performance will not help if

the limitation is k2 or α in Equation 1.2. This issue scales with the complexity of

the samples, since the number of poorly-resolved pairs predictably increases as more

components are introduced within the limited time-frame of a chromatographic sepa-

ration, as is commonly encountered with petroleum, natural products, and biological

samples. For these mixtures, even using hyphenated techniques such as GC-MS,

deconvolution of complex co-elutions may not always be sufficient.

For analytes that are unresolved along one chromatographic dimension, it is pos-

sible to couple the first separation to further chromatographic separations to better

resolve closely-eluting components. This can be done for specific regions of a single

chromatogram, where there are a number of poorly resolved components collected and

separated using a different mechanism, or for an entire chromatographic separation

for eluent fractions collected at regular intervals. Comprehensive two-dimensional

chromatography belongs to the latter of the two categories, and separates an entire

chromatographic run along two dimensions.

The most mature comprehensive two-dimensional separation technology is compre-
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hensive two-dimensional gas chromatography, owing to the relative ease of modulating

fractions of eluent from the first dimension onto the second at regular intervals, and

the ability to affect complementary separations using only a change in stationary

phase chemistry without the need to change or modify the composition of the mobile

phase [25].

1.2.4 Comprehensive Two-Dimensional Gas Chromatography
- Time-of-Flight Mass Spectrometry

The modulation period, PM , in the practice of GC×GC is the amount of time between

injections of collected fractions of first-dimension effluent onto the second-dimension

column. Typically this period lasts only a few seconds, allowing for adequate sam-

pling of first dimension elution profiles, and sufficient time for the second-dimension

separation to proceed. As such, peaks that approach the detector following a short

second-dimension separation are typically quite narrow. This necessitates the use

of a high speed detection system, which is not a problem for widespread univariate

detectors such as flame-ionization detector (FID) systems. However, for applications

requiring multivariate detection it does necessitate the use of a high-throughput mass

spectrometer. Most hyphenated GC×GC systems are coupled with a high-speed

TOFMS usually operating between 100-200 spectra/s; however fast quadrupole sys-

tems may also be used, provided they can acquire at least 20 spectra/s without

significant reduction in spectral quality.

GC×GC-TOFMS out-paces traditional GC-MS in every performance-based metric

[26][27]. Utilising two complementary separations offers far more peak capacity (the

maximum theoretical limit of how many components can be well-resolved during a

chromatographic run), and sensitivity (since the action of the modulator tends to

increase the Signal-to-Noise ratio). Despite these advantages, and despite widespread

use of GC-MS, GC×GC-TOFMS has not yet reached widespread acceptance in com-

mercial laboratories. There are many hypotheses as to why this may be the case: the
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relatively high cost of a GC×GC-TOFMS instrument, the need for expert personnel

to operate a GC×GC-TOFMS, and the generally poor output of commercial data

analysis software used to identify and quantify interesting signals [28].

Over the last few years, GC×GC-TOFMS instrumentation has become much more

robust and affordable. There are now several vendors who provide a variety of instru-

mentation alternatives. With this proliferation of the technique, users are demanding

more from the software, and are becoming more interested in processing suites of

dozens, hundreds, or even thousands of samples for discovery-type problems (e.g.

biomarker discovery in metabolomics data sets). In these situations, the traditional

GC×GC data processing tools are inadequate, leaving users with complex data sets

that require days or weeks of expert user intervention for curation of robust peak

tables. Addressing these needs is the focus of this thesis.

1.3 Chemometrics

Chemometrics is the study of mathematical, statistical, and computational methods

to analyse chemical data, or to design optimal experimental or measurement condi-

tions within either a practical or theoretical framework. It is roughly analogous to

similar disciplines in Psychology, and Economics (Psychometrics, and Econometrics)

that encountered a need for such work much earlier in their histories. Chemomet-

rics developed alongside the use of computers in the laboratory, as some of the very

first digital instruments became commercially available in the 1970s. This is likely

one of the earliest points where analytical chemists were commonly faced with the

task of analysing data with many more variables that observations, since experimen-

tal observations acquired through conventional chemical analyses had hitherto been

prohibitively expensive and time-consuming.

A distinguishing characteristic of chemometrics is its focus on algorithmic, rather

than purely statistical methodologies. For example, variants of the NIPALS algo-

rithm (Nonlinear Iterative Partial Least Squares) [29] are incredibly widespread, and
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have been extensively developed by chemometricians. This has led to the distinction

between chemometrics and disciplines such as machine learning (more closely asso-

ciated with computer science), being somewhat blurry. However, there is typically

a bias towards linear models within chemometrics as these models tend to be more

interpretable and correspond better to the latent chemical phenomena being stud-

ied. This is different than more typical machine learning tools which often rely on

highly non-linear techniques such as Artificial Neural Networks (ANNs). Although

pervasive and well-characterised, neural networks are generally poorly interpretable

in a chemical sense. Consequently, they are generally avoided as a principal means of

analysing chemical data.

1.3.1 Unsupervised learning: Matrix Decomposition

Unsupervised learning extracts useful information from data (typically a matrix, X),

without any additional user-supplied information such as a panel of observable charac-

teristics (typically a vector, or matrix Y of length equal to the number of observations

in X). Examples of unsupervised learning are clustering algorithms such as k-means

or k-nearest neighbour, and DBSCAN, but encompass certain matrix decomposition

techniques as well.

Matrix decomposition reduces the dimensionality, or rank, of an m × n matrix

X via projections of the original variables to latent variable structures calculated as

linear combinations of observable variables that maximise or minimise a desirable

characteristic of the data. The latent variables can be used to recover informative

trends within the data, reduce the amount of memory required to store the infor-

mation encoded in the matrix, or the scores themselves can serve as a simplified,

lower-dimensional representation of the data as pre-processing for further analysis.

Different techniques for matrix decomposition can be classified by what character-

istics of the data are being sought, and the amount and manner in which each latent

variable influences the determination of others. Considerations for numerical stability

10



are also important, since convergence to a global optimum is not guaranteed for all

matrix decompositions [30].

Principal Component Analysis

Principal Component Analysis (PCA), is one of the most ubiquitous matrix decom-

position techniques. PCA decomposes an m×n matrix, X into an m×R column-wise

orthogonal score matrix (T ) projected within an n×R column-wise orthonormal basis

(V ):

X = TV T + E (1.3)

Where R is the number of latent variables. TV T can be used reconstruct the

original matrix, X, using the components that maximise the variance explained by

the model. E is the m× n matrix of residual errors not accounted for by the model.

T is commonly referred to as the principal component “scores”, and V the “loadings”.

Either can be calculated from the right and left eigenvalues of matrix X, via:

XXT = QleftΛQ
−1
left (1.4)

XTX = QrightΛQ
−1
right (1.5)

Due to the fact that eigendecompositions can only operate on square matrices the

scores matrix, T , is calculated from the left eigenvectors and the square root of the

R×R matrix of eigenvalues:

T = Qleft

√
Λ (1.6)

Singular value decomposition is a more straightforward way of performing PCA,
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decomposing the rectangular matrix, X directly via:

X = UΣV T (1.7)

Where the m × n is a diagonal, rectangular singular value matrix contains the

square root of the eigenvalues. This relationship can be proven using the well-known

identities:

XXT = UΣV TV ΣTUT = U(ΣΣT )UT (1.8)

XTX = V ΣTUTUΣV T = V (ΣTΣ)V T (1.9)

Where it is evident that XXT = QleftΛQ
−1
left = U(ΣΣT )UT and XTX = QrightΛQ

−1
right =

V ΣTUTUΣV T = V (ΣTΣ)V T , and since Σ is a diagonal matrix, the eigenvalue matrix,

Λ corresponds to the square of the singular values along the diagonal. Analogous to

Equation 1.7, the principal component scores of matrix X can be calculated as:

T = UΣ (1.10)

Variables in the matrix, X are typically centred and scaled to ensure that the most

interesting aspects of the data are being considered. Centring such that the mean of

each column = 0, is commonly referred to as “mean-centring”, and scaling such that

the standard deviation, σ, = 1 is commonly referred to as “autoscaling” when used in

conjunction with mean-centring. If the column-wise standard deviations and means

are known, then the original data can be recovered without any loss of information.

Multivariate Curve Resolution

Multivariate Curve Resolution (MCR) is another common matrix decomposition tech-

nique applied to matrices of chromatographic regions with hyphenated, multivariate
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detectors such as mass spectrometers or Diode Array Detectors (DAD). Any such

matrix can be decomposed using MCR:

X = CST + E (1.11)

Where C is an m×R matrix of parallel vectors that contain the elution profiles of

the calculated components, and are typically quantitative. S is an n×R matrix that

contains the spectral information, or the resultant deconvolved multivariate signals

of each component. Unlike PCA, there are no constraints for how the calculation of

one component affects the other (i.e. orthogonality), and because of this there is no

guarantee for the uniqueness of the resultant solution. This is commonly known as

“rotational ambiguity”, and can be demonstrated with the following expression:

CST = C(PP−1)ST (1.12)

Where any non-singular, arbitrary R × R rotation matrix, P , can be applied to

either the “scores” or “loadings” in Equation 1.11 such that: C = CP and S =

S(P−1)T to explain exactly the same amount of variance in matrix X. This ambiguity

is equally applicable to PCA, but since the rotation of the matrix itself is fixed relative

to the orientation of the axes of most significant variance, the rotation matrix, P , in

effect can only affect the signage of the principal components (i.e. a rotation of π

about some axis).

While PCA can be calculated via eigendecomposition, or singular value decom-

position there is no convenient mathematical method for calculating MCR. As such,

the Alternating Least Squares (ALS) algorithm is the most widely used method of

calculating an MCR model:
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Algorithm 1: Multivariate Curve Resolution - Alternating Least Squares
(MCR-ALS)[31]
Result: C,S = MCR-ALS(X,R,ϵ)
C ∈ Rn×R, S ∈ Rm×R, X ∈ Rm×n

σold = 1e9 %%Arbitrarily large number
while σold−σnew

σold
> ϵσold do

σold = σnew

C = XS(STS)−1

S = XTC(CTC)−1

σnew = ||X − CST ||2F
end

At each iteration, each column of C or S can be normalised to its Euclidean norm,

depending on what mode is desired to contain the quantitative information. PCA

can also be calculated using a minor variation of Algorithm 1, known as Nonlinear

Iterative Partial Least Squares (NIPALS) [32], by adding a matrix deflation step

following the calculation of each latent variable and its scores:

Algorithm 2: Principal Component Analysis - Nonlinear Iterative Partial
Least Squares (PCA-NIPALS)[33]
Result: T ,V = PCA-NIPALS(X,R,ϵ)
T ∈ Rn×R, V ∈ Rm×R, X ∈ Rm×n

σold = 1e9 %%Arbitrarily large number
for r ∈ [1, R] do

while σold−σnew

σold
> ϵσold do

σold = σnew

T = Xvr(v
T
r vr)

−1

V = XT tr(t
T
r tr)

−1

σnew = ||X − trv
T
r ||2F

end
E = X − trv

T
r

X = E
T (:, r) = tr
V (:, r) = vr

end

PCA-NIPALS is more numerically stable compared with methods utilising eigende-

composition or SVD, but the same advantages afforded to it as an iterative algorithm,

also necessitate much more computation time. The matrix deflation step helps to en-

sure that the calculation of each subsequent principal component is orthogonal to the

14



previous loadings and scores matrices, but due to rounding errors this relationship

is not guaranteed[34]. As with MCR-ALS, one mode is normalised at each iteration

within the ALS step to constrain the other mode to express the relative expression of

the components being studied in the other mode.

Projection Pursuit Analysis

A more general theory of matrix decomposition is encompassed by Projection Pursuit

Analysis (PPA). Projection Pursuit Analysis (PPA) is a technique first proposed by

Friedman and Tukey [35] that seeks to find “interesting” projections based on the

pursuit of a particular projection index. This is a general enough description to en-

compass other common linear decomposition techniques: Independent Component

Analysis (ICA) maximises a projection index of statistical independence, and PCA

maximises an index of the explained variance of the data. All projection indices make

assumptions about what characteristics of the data are most interesting for the an-

alyst, save for those instances where the projection index is selected manually. Hou

and Wentzell in 2011 [30] first described the minimisation of kurtosis as a projection

index, to reveal resultant clustering of the data. This was motivated by the observa-

tion that highly resolved score clusters present a very low kurtosis, K, or tendency

for the data to feature a relatively low number and extremity of outliers as described

by the following equation:

K =
1
n

∑︁n
i=1(zi − z̄)4

1
n
(
∑︁n

i=1(zi − z̄)2)
2 (1.13)

Where zi refer to the score of each sample, as projected along a vector, v such that

zi = xT
i v. Calculation of the projection vector is tantamount to minimising:

K =
n
∑︁n

i=1

(︁
vTxix

T
i v
)︁2

(vTXTXv)2
(1.14)

A drawback of PPA is that for novel projection indices there is seldom a conve-

nient mathematical method for calculating the model, so sophisticated algorithms
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are required to find a solution. Oftentimes, these algorithms require several different

parallel initialisations to ensure convergence to a global minimum.

1.3.2 Tensor Decomposition

A tensor is a multidimensional array of numbers of order N . They are a natural

extension of vectors from scalars, and matrices from vectors. Conversely, vectors are

commonly referred to as 1st-order tensors, and matrices as 2nd-order tensors, since

both are indexed by an N × 1 vector.

4th-order tensors are frequently encountered when discussing decompositions of

GC×GC-TOFMS data. For a particular region of the chromatogram, a tensor,

X ∈ RI×J×K×L presents as I mass spectral acquisitions, J mass-to-charge ratios,

K modulations, and L samples as illustrated below:

J

I
K

J

I
K

J

I
K

L

Figure 1.1: A graphical representation of a 4th-order tensor

As for matrices, it is possible to decompose a tensor of any order into a series

of informative parallel vectors. There are a number of different techniques for ten-

sor decomposition but for the purposes of this thesis, only Parallel Factor Analysis

(PARAFAC) and the related technique PARAFAC2 will be discussed in detail.

Parallel Factor Analysis (PARAFAC)

PARAllel FACtor analysis (PARAFAC) is one extension of PCA to higher-order ten-

sors, and was proposed independently by several authors. Hitchcock first proposed

the idea of representing a tensor as a finite series of rank-1 tensors [36], but the idea

of a PARAFAC model was proposed by Harshman in 1970 [37]. At close to the same
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time two other researchers (Carroll and Chang) published a similar model under the

name of CANDECOMP (CANonical DECOMPosition) in the sphere of psychometrics

[38].

A 3rd-order tensor, X ∈ RI×J×K = Xk can be decomposed using a PARAFAC

model, using matrix notation:

Xk = FDkA
T + Ek (1.15)

Where F is an I×R matrix of scores, Dk is series of diagonal matrices of R×R×K

dimensions, and A is a matrix of J ×R loadings. Typically, F and A are normalised

column-wise to their Euclidean norm such that the diagonal matrices Dk contain the

quantitative information. Ek are the error matrices, as slabs. Rather than unfolding

Xk as an I ∗ K × J matrix, PARAFAC models do not suffer from the rotational

ambiguity of bilinear models of matrices. If it were possible to rotate the components

of a PARAFAC model as in Equation 1.15, such that the same data is explained,

albeit with variations of the existing components then the following identity would

hold:

FDkA
T = FNN−1DkMM−1AT (1.16)

Where N and M are R×R rotation matrices, similar to P in Equation 1.12. Since

N−1DkM would need be a diagonal matrix for equivalency, the only possible matrices

that would satisfy Equation 1.16 are permutation (where the components could be

represented in a different order) or scaling matrices (where the quantitative informa-

tion would be distributed across either A or F in addition to Dk). The resultant

indeterminancies can be categorised as to do with the order of the components, or

the treatment of non-quantitative loading matrices, and are therefore considered to

be trivial [39]. For most practical considerations, the PARAFAC model is considered

to have a unique solution, and is preferable in most cases to decompositions that
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operate on the unfolded matrix.

Equation 1.15 is a convenient representation of a 3rd-order tensor using matrix no-

tation, however the model is typically calculated using the Khatri-Rao (KR) product.

The KR product is defined as the column-wise Kronecker product for two matrices,

A and B with an equal number of columns, R, that correspond to the number of

chemical factors:

A = [a1, a2, ..., aR] (1.17)

B = [b1, b2, ..., bR] (1.18)

A⊙B = [a1 ⊗ b1, a2 ⊗ b2, ..., aR ⊗ bR] (1.19)

Using the KR product, a PARAFAC model can be calculated (using a variant of

Harshman’s tensor notation for brevity):

X I×J∗K = F (A⊙D)T (1.20)

Using the Alternating Least Squares Algorithm [39] for a 3rd-order tensor, a PARAFAC

model that minimises ||X I×J∗K − F (A⊙D)T ||2F can be found:
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Algorithm 3: Parallel Factor Analysis - Alternating Least Squares
(PARAFAC-ALS)[39]
Result: F ,D,A = PARAFAC-ALS(X ,R,ϵ)
F ∈ RI×R, D ∈ RK×R,A ∈ RJ×R,X ∈ RI×J×K

σold = 1e9 %%Arbitrarily large number
while σold−σnew

σold
> ϵσold do

σold = σnew

Z = (A⊙D)
A = X J×I∗KZ(ZTZ)−1

Z = (A⊙ F )
D = XK×J∗KZ(ZTZ)−1

Z = (D ⊙ F )
F = X I×J∗KZ(ZTZ)−1

σnew = ||X I×J∗K − F (A⊙D)T ||2F
end

Where D is not solved for as a series of diagonal matrices as in Equation 1.15, but

as a matrix of parallel vectors, similar to a bilinear decomposition. Implementation

of Algorithm 3 is highly vectorisable, computationally efficient, and can be extended

to higher orders without very much difficulty. A PARAFAC model for a 4th-order

tensor can be described as the following:

X I×J∗K∗M = F (B ⊙ A⊙D)T (1.21)

Where B is an additional M × R series of parallel vectors, as-yet undefined for

the M th mode. It could easily be considered as an additional chromatographic mode,

in which case we can describe Equation 1.21 using more familiar terms relevant to

GC×GC-TOFMS data analysis. Let F1 ∈ RK×R be the first-dimension modulations,

F2 ∈ RI×R be the second-dimension acquisitions, Dl ∈ RR×R×L of quantitative load-

ings per sample, and A ∈ RJ×R of mass-to-charge ratios:

X I∗K×J×L = (F2 ⊙ F1)lDlA
T (1.22)

Equation 1.22 is displayed primarily to demonstrate that the unfolded elution times

of the first- and second-dimensions can be described as the KR product of F1 and F2.
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If a 4th-order PARAFAC model for a GC×GC-TOFMS region were being constructed,

it would be more straightforward to operate on a variation of Equation 1.21.

Modelling chromatographic data using tensor decomposition techniques, such as

PARAFAC present many benefits over commercial software offerings. Namely, that

the quantity of each component is solved for as a regression step in the calculation of

the model such that low-abundance peaks that are close to the background noise can

still be reasonably quantified as a very small number as opposed to an outright zero.

The presence of too many zeros in a m × n matrix of chemical characteristics and

samples can make modelling the observable characteristics of the samples extremely

difficult, especially in those cases where the number of chemical factors far exceeds

the number of samples. Tensor methods are generally seen as being more reliable

for the identification and quantification of chemical factors in chromatographic data;

however, they do require some expert user intervention in order to determine an

appropriate number of components and for the selection of regions of interest (ROIs),

that best describe the latent chemical phenomena being studied.

PARAFAC2

A fundamental assumption of any PARAFAC model is that across all slices of the

data, similar information is indexed in the same locations. Very small drifts do

not have disastrous impacts on model performance; however, the percent of variance

explained by the model will be lower. This is somewhat at odds with what is observed

in chromatographic data, as typically retention times will drift over the course of an

experiment; more-so when significant numbers of samples have been run, or when a

significant period of time elapses from the collection of the first sample to the last.

Since retention time is not as readily quantised in the same way as mass-to-charge

ratios, the retention of a band of analytes exhibits significant Gaussian behaviour

exiting the column as an average of the equilibrium conditions between the stationary

and mobile phases along the length of the column. Over time the retention of the
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analytes may become markedly different as the column conditions change, primarily

due to the degradation of the column. Since each column is somewhat unique due to

minor imperfections in the manufacturing process, correcting retention time drift is

not as simple as installing a new column.

PARAFAC2 is a variation of a standard PARAFAC model that is equipped to

handle drift in one mode, and typically operates on 3rd-order tensors, although ex-

tensions to higher orders for instrumentation such as GC-MS/MS are possible. The

basic concept for PARAFAC2 was first described by R.A. Harshman in 1972 [40].

H.A.L Kiers published an “indirect" fitting of PARAFAC2 in 1993 [41], and pub-

lished a much simpler version of the algorithm in 1998 [42] along with R. Bro [43].

The simpler, “direct fitting" approach calculates Pk orthogonal, unique peak profiles

per each k matrix slab along Xk, and calculates the remaining terms via one iteration

of PARAFAC-ALS on XkPk:

Xk = PkFDkA
T (1.23)

Pk is calculated using a simplification of the following expression via SVD [42]:

Pk = XkADkF
T (FDkA

TXT
k XkADkF )−1/2 (1.24)

FDkA
TXT

k = UkΣkV
T
k (1.25)

Pk = VkU
T
k (1.26)
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Algorithm 4: Parallel Factor Analysis 2 - Alternating Least Squares
(PARAFAC2-ALS)[42]
Result: Pk,F ,Dk,A = PARAFAC2-ALS(Xk,R,ϵ)
Pk ∈ RI×R,F ∈ RR×R, D ∈ RK×R,A ∈ RJ×R,X∥ ∈ RI×J×K

σold = 1e9 %% Arbitrarily large number
while σold−σnew

σold
> ϵσold do

σold = σnew

for k ∈ [1, K] do
UkΣkV

T
k = SV D(FDkA

TXT
k , R)

Pk = VkU
T
k

end
%% PARAFAC-ALS
Z = (A⊙D)

F = XT
k Pk

R×J∗K
Z(ZTZ)−1

Z = (A⊙ F )

D = XT
k Pk

K×J∗R
Z(ZTZ)−1

Z = (D ⊙ F )

A = XT
k Pk

J×R∗K
Z(ZTZ)−1

σnew =
∑︁K

k=1 ||Xk − PkFDkA
T ||2F

end

In Algorithm 4, the quantitative information is typically stored in either the F or

Dk components. The direct fitting solution for PARAFAC2 has been shown to be

unique under relatively mild conditions [42]. PARAFAC2 does not function exclu-

sively on tensors, since the dimension of each frontal slab can vary along the mode

that is free to vary. As such, it is not necessarily a tensor decomposition technique,

but is generally mentioned in the context of other tensor decomposition tools [44].

Flexible Coupling PARAFAC2

A drawback of PARAFAC2 is the reliance on SVD to calculate the elution profiles

directly, such that the profile scores within Pk are orthogonal. This is a severe con-

straint for relatively closely eluting components that can be corrected by F , but only

assuming that the components do not drift independently (See Chapter 5 for a more

detailed treatment of this). Recently [45], a flexible coupling approach has enabled
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the calculation of the elution profiles via a coupled expression that minimises:

Xk = argmin||Xk −BkDkA
T ||2F + µk||Bk − PkB

∗||2F (1.27)

Note that Pk in this case is calculated via: Pk = SV D(BkB
∗) → UV T , which

enables for a flexible descent as the model iterates, to a non-negative determination

of Bk using a non-negative least-squares solver:

Algorithm 5: Flexible Coupling PARAFAC2-ALS [46]
Result: Bk,Dk,A = PARAFAC2×2(Xk,R)
Bk ∈ RI×R, Dk ∈ RR×R×L, A ∈ RJ×R, and X ∈ RI×J×K

Inititialise randomly;
while σold−σnew

σold
> ϵσold do

for ∀k ∈ [1, K] do
[U,Σ, V ] = SV D(Bk ∗B∗, R)
Pk = UV T

end
B∗ = ||

∑︁K
k=1 µkP

T
k Bk||R

A = ||
∑︁K

k=1

XT
k BkDk

DkB
T
k BkDk

||R
Bk = ||XkAkDk+µkPkB

∗
k

DkA
T
k AkDk+µkIR

||R %% See Appendix C.2
for ∀k ∈ [1, K] do

Dk =
BT

k XkAk

(BT
k Bk)(A

T
k Ak)

end
if i = 1 then

for ∀k ∈ [1, K] do
Σ = SV D(Xk, 2)
SNR ≈ Σ1/Σ2

µk = 10−SNR/10 ||Xk−BkDkA
T
k ||2F

||Bk−PkB
∗
k ||

2
F

end
else

if i < 10 then
for ∀k ∈ [1, K] do

µk = µk ∗ 1.05
end

end
end
i = i + 1

end

Note that in Algorithm 5, the determination for many components is expressed
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as a normalised sum of slice-wise calculations, as opposed to previously where these

components were determined via the KR product.

Certain features of Algorithm 5 are original work for this thesis, in particular the

determination of an appropriate SNR via SVD. Further details will be provided in

Chapter 5. While uniqueness for this approach has not been proven for the flexible

coupling approach, it is guaranteed to improve the fit with each iteration.

1.3.3 Supervised Learning: Regression and Discriminant-Type
Analyses

The goal of the aforementioned matrix and tensor decomposition techniques serve as

a method for extracting useful chemical information from the data in an unsupervised

way. With enough extracted chemical factors, it is possible to correlate their relative

abundances across several samples with a vector or matrix of the samples’ observable

qualities:

Y = Xb (1.28)

For a simple case, where each sample has one observation associated with it in

the Y block, Y is an m × 1 vector. X is an m × n matrix of samples and variables

or features. The Y block can contain quantitative information (for regression-type

problems), or class information for discriminant-type problems. Discriminant-type

problems typically encode class information as a vector or matrix of 1s and 0s, and a

value of 0.5 at the line across Ŷ is typically used as a decision boundary to assess the

class membership of the predicted scores according to Ŷ = Xb. In either case, the

method by which the model is calculated is virtually identical. The regression vector,

b, can be solved in the least-squares sense:

b = (XTX)−1XTY (1.29)

For cases where there are many more variables than observations n >> m, the
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nature of the inverse in Equation 1.29 marks the difference between Multivariate Lin-

ear Regression (MLR) for a classical least squares inverse, a Principal Component

Regression (PCR) for a rank-deficient pseudo-inverse, or Partial Least Squares Re-

gression (PLSR). Partial Least Squares is a widely used inverse least squares solver

in chemometrics, since it uses the characteristics of Y to inform the calculation of

the latent variable structures in X such that the variables most correlated with Y

in X inform the model more strongly. Conversely, poorly informative variables in

X do not influence the predicted scores Ŷ = Xb, and in turn do little to influence

the model. PLSR is usually calculated using a variation of the NIPALS algorithm,

or more recently SIMPLS [47]. There is a wealth of literature regarding PLSR and

its equivalent for discriminant-type problems, Partial Least Squares - Discriminant

Analysis (PLS-DA) [29] for the interested reader. As with any supervised learning

technique, model validation is critical since the ability for PLSR to correctly model

the training data is almost a surety given a matrix with enough variables.

Least-Squares Solvers

Least-squares solvers, such as those used to calculate Equation 1.29, or any latent

variable structures as part of the ALS algorithm can be constrained such that the

solution meets some user-defined conditions. Typically, this condition is informed by

a user’s domain-specific knowledge of the data. While calculating the quantitative

scores for a chromatographic peak for example, it may be useful to constrain each

score vector unimodally (i.e., such that there is a single peak for each parallel vector).

The use of constraints on least-squares solvers is motivated by the idea that the latent

variable structures ought to correspond to physio-chemical phenomena that are not

at odds with the more general theories of chemistry. An unconstrained least squares

solver may just as easily solve for two negative components, whose product amounts

to the same positive values observed in the data. While the two components may

accurately represent the data when considered together, based on our current under-
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standing of physics, there exists no negative value for a possible quantity of chemical.

The components themselves may be poorly interpretable in this scenario, since an

entire component is not likely to be entirely negative or entirely positive. Constraints

are usually applied to data where the data is not typically centred prior to analysis

(i.e. MCR-ALS and PARAFAC), and a direct representation of the latent chemical

phenomena is required. Negative values are to be expected with most centring, and

enjoy usage whenever the interpretation of the relative magnitude of the resultant

scores and loadings is required.

The analyst must balance the needs of representing the latent chemical phenom-

ena accurately, versus constraining the model unnecessarily. Generally speaking,

unimodality is the harshest constraint that can be applied to chromatographic data;

oftentimes bimodal factors can be decomposed into further components, provided

that the loadings are sufficiently resolved along the spectral mode. For most appli-

cations in chromatographic data analysis, non-negativity constraints are applied in

(typically) one mode to gently guide the algorithm to converge to a non-negative

solution in the remaining modes.

Non-negative least squares solvers have been historically quite slow, but recent de-

velopments by Bro [48] and Van Benthem [49] have enabled much faster non-negative

matrix factorisations. Bro also published one of the first unimodally constrained least-

squares solver in 1998 [50]. The combinatorial approach proposed by Van Benthem

was used in the vast majority of cases in this work.

1.3.4 Feature Selection

Feature selection seeks to identify a useful subset of variables in the data for inclu-

sion, while excluding variables that do not contribute to model performance. Ideally,

feature selection will identify a subset of variables that yield a robust model that is

resistant to noise and easy to interpret. Feature selection is usually motivated by

instances where there are many more variables than samples, in order to simplify the
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regression step of the analysis, and to minimise the risk of over-fitting the data.

A number of variable selection techniques exist, which can be broadly classified

as belonging to filter, wrapper, or embedded-type methods. All of these techniques

have relative advantages and disadvantages[51] [52]. Briefly, filter methods are easy to

apply to many different types of data, but require careful optimisation of thresholds.

Selection based on a Fisher-ratio threshold is a common example of a filter method

[53] [2] [54]. The approach is fast, but since it evaluates each variable independently,

it cannot account for relationships between correlated variables. Selectivity ratios and

Variable Importance in Projection (VIP) scores are metrics for feature selection which

do consider each variable in the context of others - either by examining the weighted

variable correlation with the vector of observed values, y, within its projection to the

latent variable space (in the case of VIP scores) or the ratio of variance explained

to residual variance (in the case of Selectivity Ratios) [55]. Wrapper-type methods

reduce user intervention through automated model quality assessment as different

combinations of variables and samples are tested and validated, but may still require

carefully optimised user parameters. These also require large numbers of iterations

in order to find an optimal variable subset. Recursive weighted Partial Least Squares

(rPLS) [56] is a modern implementation of a wrapper-type method [57], but meth-

ods such as Genetic Algorithms (GA) [58] and Random Forests (RF) [59] have been

used as variable selection routines within the framework of wrapper methods as well.

Embedded methods incorporate an extra step to make decisions about variable se-

lection during model calculation, independent of model quality assessment. Powered

partial least squares discriminant analysis is an example of this technique [60], but

embedded methods based on classification by Support Vector Machines (SVM) are

also applied [61]. Ideally, this approach makes objective decisions about variable se-

lection, and reduces the dependency on extensive cross-validation, but the extra step

increases the computation time required for these techniques. Embedded methods

are not as extensively used, perhaps because they assess variable significance based
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on optimisation criteria instead of a statistical measure of performance [62].

Hybrid variable selection routines incorporate elements of two or more classes of

variable selection, most commonly to reach a compromise between the simplicity of

threshold methods, and the reliability of wrapper methods [63] [64]. An initial subset

of variables exceeding a particular threshold are considered, and model performance is

evaluated once per iteration or multiple times either by adding (forward-selection) or

removing (backwards-elimination) high-ranking variables until the predictive ability

of the model is no longer improved. Variables that are consistently retained across

multiple cross-validation sets are retained, and others are discarded.

PCA can be employed as a data reduction technique that can be used to reduce

the complexity of the feature selection problem, and a qualitative tool often used by

investigators to examine the effect of variable selection on the most significant axes

of variance in the data. Classes well-separated along their most significant principal

components typically perform well using a targeted discrimination technique such as

Linear Discriminant Analysis (LDA), Partial Least Squares - Discriminant Analysis

(PLS-DA), or Support Vector Machines (SVM). As such, it is often convenient to

examine variable subsets within their principal component space [65] [66].

Feature Selction by Cluster Resolution (FS-CR)

Feature selection by cluster resolution (FS-CR) is a supervised learning technique

that returns a subset of variables whose linear combination provides the best possible

separation between two or more sample classes in principal component (PCA) space as

determined by the Cluster Resolution (CR) metric. There are two basic assumptions

for the operation of the algorithm: That a useful, discriminating subset of variables

is of relatively low rank, and can be adequately described using only a few principal

components, and that classes resolved along relatively few principal components are

trivial to separate using supervised classification methods.

The latest implementation of FS-CR operates within the framework of a hybrid
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filter/wrapper method with a combination of backwards-elimination and forward-

selection to consider individual variables within the context of others. Variables are

first ranked, typically through the application of either Fisher ratio [67] or selectivity

ratio[68] [69], and the algorithm evaluates candidate variables via a hybrid backwards-

elimination / forward-selection routine [70]. The initial population of variables to be

included in the preliminary model is determined through analysis of the true and

null distributions of ranking metric values [66]. Backwards-elimination proceeds by

sequentially removing variables beginning with the lowest-ranked (based on ranking

metric) variable and working towards the highest-ranked. If CR improves when a vari-

able is removed, that variable is permanently discarded; otherwise it is returned and

permanently retained. This proceeds until the entire initial population of variables has

been tested. Forward-selection is then performed, testing as-yet unconsidered vari-

ables to see if their inclusion improves the model based on the variables that survived

the backwards-elimination step. Forward-selection proceeds from the highest-ranked

variable that was not included in the initial population being considered until a stop

condition is met [66].

The FS-CR algorithm has several advantages, including the fact that the utility of

a variable is evaluated in the context of the information provided by other variables

(unlike in methods such as a Fisher-ratio cut-off threshold). Unlike feature selection

methods based on a partial least-squares regression, variables are considered in an

unsupervised projection to their principal component space. This helps to reduce

the risk of over-fitting because the model is not seeking to impose a favourable pro-

jection on the data, but is seeking to find a group of variables that naturally lend

themselves to favourable projections via PCA[71]. The results can also be thoroughly

cross-validated by redistributing the samples among the training (data which is used

to calculate the principal components), optimization (data for which CR is calcu-

lated within the previously calculated principal component space), and validation

(data that measures the predictive accuracy of the variables) sets through multiple
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iterations of the algorithm and retaining only those variables that survive in a given

fraction of all iterations (typically 75-90%). Other hybrid feature selection routines

are structurally similar to the FS-CR algorithm in this regard, but a metric describing

the accuracy of cross-validation results is more commonly employed to assess variable

subsets.

FS-CR employs the CR metric to assess variable subsets, which is defined as the

maximum confidence interval over which two or more classes can be separated when

projected into the principal component space of the candidate feature subset. This is

more sensitive to favourable orientations of sample scores, and is much less granular

than cross-validation results alone.

FS-CR has been successfully deployed for datasets where the number of features

greatly exceeds the number of samples, and in cases where there are many pre-

processing artefacts or spurious signals. These situations often arise with weak sig-

nals close to the detection limits of analytical instrumentation or in data derived

from highly variable populations of samples (often encountered in natural products,

petroleum, and metabolomics samples). Two challenges for the application of FS-CR

include the need for a relatively large number of samples (30 per class is a typical

minimum) so that they can be properly partitioned into training, optimisation, and

validation sets, and the relative slowness of the cluster resolution calculation which is

performed nC2 times for each variable being tested where n is the number of classes in

the optimisation problem. Calculation of CR scales poorly for multi-class problems:

for a three-class problem, CR is calculated three times for each variable considered,

and in datasets with seven classes, CR is calculated 21 times per variable [69], as the

overall CR for the iteration is calculated as the product of the individual pair-wise bi-

nary combinations of different classes. This puts a practical limitation on the number

of classes that can be analysed within a reasonable time-frame using this technique.

As mentioned previously, GC×GC-TOFMS data presents thousands of unique

chemical features per sample, owing to the high specificity and sensitivity of the
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instrument. In most cases, where the chemical characteristics of the samples are

complex, not nearly all of these features are identified within every sample. Making

this problem worse is the fact that there is no surety that the features identified in

individual samples are reliable. Commercial software, which grew out of traditional

one-dimensional chromatography software, utilises simple programmatic steps to try

and find similar features across multiple samples, provided that these features fall

within a threshold of the maximum retention times and exceed a threshold for a

mass spectral match factor. Chemical features that do not meet the selected criteria

are either excluded from the final peak table, or if there is a sufficient number of

features that are consistently different enough in terms of their retention time and

extracted mass spectra, they may be assigned into their own column. Within a ma-

trix of samples and observations, each column of chemical features is analogous to an

entirely separate dimension within an n dimensional space spanned by features of the

data; without reduction of the feature space in some way, it is difficult to associate

improperly separated variables with each other.

The raw output of chromatographic instruments are not especially useful. Each

observation is a multivariate signal that does not correspond to the presence of a

single chemical component, but one of several observations of many potential chemical

components in the case of co-elutions. Only once the chemical components have been

deconvolved from interfering signals, quantified, and found across multiple samples

can a matrix of m samples and n chemical characteristics be generated.

The aforementioned matrix of chemical characteristics is especially important for

the interpretation of the resultant model. Knowledge of what chemicals are correlated

with an observable outcome offers better insight into the system being studied, than

by analysis of the raw signal alone. Additionally, the same signals may drift between

the collection of each sample due to minor variations in the operating conditions

of the instrument. Correlating the same component across multiple samples within

multidimensional separations is even more difficult, as variation is possible in each
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chromatographic mode. This necessitates the development of tools that can identify

identical chemical factors across multiple samples, despite the very likely outcome

that these factors may not always be found in exactly the same place.

Principal component analysis decomposes the matrix into components that best

inform the axes of the most variance within the data. Data that is highly correlated

with the principal component axes score higher, than data that is not highly cor-

related. In this way, principal component analysis can mitigate the effect of poorly

integrated features on the overall structure of the data. For example, if two features

are incorrectly identified as different peaks due to failure of the pre-processing and in-

tegration software, they may both score highly along the principal components, even

as different features. In effect, it is easier to observe either variables’ influence on the

model, despite being part of an entirely different dimension in the original data.

1.4 Thesis Objectives

A single GC×GC-TOFMS chromatogram can present thousands of unique chemi-

cal features. Of these features, it is likely that only a few hundred will be found

across multiple samples. There are currently extremely low standards for commercial

GC×GC-TOFMS data analysis platforms. Few of these platforms provide detailed ex-

planations of the algorithms used in their data processing, making objective scrutiny

of the mechanism by which raw data are transformed into a peak table difficult.

Additionally, data is often stored in proprietary file formats and exporting the data

to a generic format is not easily automated, potentially slow, and not practical for

routine users. This was the impetus for the development of software to permit the

rapid translation of Leco ChromaTOF®(v4.xx) “.peg” data files into generic formats

or to permit them to be read directly into MATLAB[72]. This has made comparison

of different software platforms an extremely difficult task [73]; after all, comparing

platforms that do not disclose their methodologies is ultimately just a comparison of

different brands and trademarks, with no insight to truly explain the reasons for the
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observed differences. Additionally, there are dozens of user parameters needed to ex-

tract and align features from GC×GC-TOFMS experiments. This makes processing

of data highly subjective, based on the experience and opinions of the user. With

few detailed explanations of commercial algorithms, it is difficult to choose optimal

parameters for analysis. For example, a common challenge is that a set of parame-

ters that identify and quantify small chromatographic peaks very well, are unlikely

to quantify large peaks well. In some software offerings, large peaks quantified with

parameters optimised for smaller peaks are likely to be split into several smaller peaks

that do not adequately represent the underlying chemical information.

1.5 Thesis Outline

In Chapter Two of this thesis, improvements to the Feature Selection by Cluster

Resolution (FS-CR) algorithm will be presented. These improvements are primarily

achieved through the development and implementation of a numerical solution to

the calculation of the cluster resolution metric. This replaces the previous dynamic

programming approach and improves upon the computational efficiency of this cal-

culation by almost 70-fold.

Subsequently, In Chapters Three and Four, applications of the new feature selection

routine will be shown, demonstrating its utility and its power. Difficulties associated

with generating a reliable, aligned series of peak tables in these studies demonstrate

the need for a more powerful, robust, and objective approach to extracting qualita-

tive and quantitative data from a set of raw GC×GC-TOFMS data, providing the

motivation for Chapters Five and Six.

In Chapter Five, an algorithm that can deconvolve multiple coeluting features in

a region of GC×GC-TOFMS data excised from multiple samples in a straightfor-

ward and parsimonious way is introduced. This algorithm is all that is needed for a

targeted analysis of GC×GC-TOFMS data, and can be used to generate calibration

information for metabolite standards. However it is difficult to generalise the use of
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this algorithm to multiple regions of interest without human intervention to select an

appropriate number of components to deconvolve. This number of chemical compo-

nents, denoted as either k or R, is related to a concept known as the chemical rank of

a matrix. A novel method for estimating the chemical rank of a matrix is presented

in Chapter Six. This may one day enable the automated analysis of series of entire

chromatograms without any human intervention.
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Chapter 2

An Efficient and Accurate Numerical
Determination of the Cluster
Resolution Metric in Two Dimensions

2.1 Theory

2.1.1 Cluster Resolution

Cluster resolution (CR) is defined as the maximum confidence interval over which two

confidence ellipses (drawn around the scores of their corresponding sample classes)

can be separated within a linear subspace. This linear subspace is typically com-

prised of the first and second principal components. As it currently stands, CR is

calculated by increasing and decreasing the value for the confidence interval until a

point is reached where the two ellipses are just “touching”. However in addition to be-

ing slow, dynamic programming is mathematically unsatisfying. The method works

by calculating a number of points along confidence ellipses projected within two or

three principal components, and uses graphical methods to determine whether or not

they intersect. Improvements to the efficiency of this method have been made by

“hopping”[70] between intervals where the ellipses do intersect, and where the ellipses

do not intersect. This reduces the number of iterations of the algorithm, and solves

some issues regarding the granularity of confidence ellipse calculations. However

there is still the need to determine the coordinates of many points multiple times for
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each calculation of cluster resolution, and the accuracy scales with the computational

workload required for a properly representative graphical determination.

2.1.2 Mathematical Description of Confidence Ellipses

For two uncorrelated score vectors in principal component space, confidence ellipses

for one class follow the form [74]:(︃
T1√
S1

)︃2

+

(︃
T2√
S2

)︃2

= χ2 (2.1)

Where T1, and T2 are vectors containing the first and second principal component

scores of the confidence ellipsis, S1 and S2 are the variances associated with each prin-

cipal component, and χ2 corresponds to the size of the ellipse for a given confidence

interval, as defined by the χ2 distribution. Equation 2.1 can be rewritten in more

general parametric form:

T1 = T 0
1 +

√︁
Λχ2 cos(θ) (2.2)

T2 = T 0
2 +

√︁
λχ2 sin(θ) (2.3)

In Equation 2.2, T 0
1 and T 0

2 refer to the mean of each cluster along the first and

second principal components. Λ, and λ describe the major and minor eigenvalues,

which correspond to the variance of the data, and θ encompasses the angle associated

for a given point along the ellipse. For the majority of cases where T1, and T2 are not

completely uncorrelated, the angular components of Equations 2.2 are multiplied by a

rotation matrix, Rs, as a function of an angle ϕ. ϕ is calculated as the angle between

the major eigenvector of the ellipse, v1v1v1, relative to the first principal component of

the data:

ϕ = arctan
v1v1v1(2)

v1v1v1(1)
(2.4)
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Where Rs for a two-dimensional case follows:

Rs =

⎡⎣cosϕ − sinϕ

sinϕ cosϕ

⎤⎦ (2.5)

Previously, CR was calculated by increasing the confidence statistic by the same

factor for each of the two confidence ellipses until the point where a collision between

the two ellipses was detected (or decreased similarly until a collision no longer oc-

curred). This requires several hundred points around the ellipse to be calculated for

each increment. Accuracy is improved by increasing the granularity of the expan-

sions/contractions and/or the number of points along the ellipse, at the expense of

computation time. While this is a reliable method of determining cluster resolution,

it is computationally costly. Consequently, in this work a numerical solution through

minimisation of some cost function is sought.

2.1.3 Derivation of a Numerical Solution

The intersection of two confidence ellipses can be described as the intersection of two

lines, for a pair of angles that stem from the centre of each confidence ellipse.⎡⎣T 1
1

T 1
2

⎤⎦+
√︂

χ2
1

⎡⎣u1

v1

⎤⎦ =

⎡⎣T 2
1

T 2
2

⎤⎦+
√︂

χ2
2

⎡⎣u2

v2

⎤⎦ (2.6)

Where T i
j refers to the ith confidence ellipse centre for the jth principal compo-

nent scores. Vector components u, v are shorthand for the following expansions from

Equations 2.2 and 2.5:

u1 =
√︁
Λ1 cos θ1 cosϕ1 −

√︁
λ1 sin θ1 sinϕ1 (2.7)

u2 =
√︁
Λ2 cos θ2 cosϕ2 −

√︁
λ2 sin θ2 sinϕ2 (2.8)

v1 =
√︁

Λ1 cos θ1 sinϕ1 +
√︁

λ1 sin θ1 cosϕ1 (2.9)
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v2 =
√︁

Λ2 cos θ2 sinϕ2 +
√︁

λ2 sin θ2 cosϕ2 (2.10)

For almost any pair of θ1, θ2, depending on their positions relative to the angle of

the ellipses, ϕ1, ϕ2, χ2
1, and χ2

2 can be solved for by rearranging Equation 2.6.

1

−(u1v2) + u2v1

⎡⎣−v2 u2

−v1 u1

⎤⎦⎡⎣T 2
1 − T 1

1

T 2
2 − T 1

2

⎤⎦ =

⎡⎣√︁χ2
1√︁

χ2
2

⎤⎦ (2.11)

The euclidean norm of Equation 2.11 can be used to constrain the problem as the

minimization of a cost function:

min f(θ1, θ2) =

√︄(︃√︂
χ2
1

)︃2

+

(︃√︂
χ2
2

)︃2

(2.12)

2.1.4 Practical Considerations

For an accurate numerical solution to the cluster resolution problem, at the minimum

of Equation 2.11, χ2
1 ought to be equal to χ2

2. By minimising Equation 2.12, the

results often approach this equality. Ideally, a solution is found when ∂/∂θ1 = 0 and

∂/∂θ2 = 0, such that the intersection of two lines at the minimum of Equation 2.12

becomes: √︂
χ2
1

⎡⎣∂u1/∂θ1

∂v1/∂θ1

⎤⎦ = 0 (2.13)

√︂
χ2
2

⎡⎣∂u2/∂θ2

∂v2/∂θ2

⎤⎦ = 0 (2.14)

Setting Equations 2.13 and 2.14 equal to each other and expanding the differentials

yields:

√︂
χ2
1

⎡⎣−√
Λ1 sin θ1 cosϕ1 −

√
λ1 cos θ1 sinϕ1

−
√
Λ1 sin θ1 sinϕ1 +

√
λ1 cos θ1 cosϕ1

⎤⎦ =
√︂

χ2
2

⎡⎣−√
Λ2 sin θ2 cosϕ2 −

√
λ2 cos θ2 sinϕ2

−
√
Λ2 sin θ2 sinϕ2 +

√
λ2 cos θ2 cosϕ2

⎤⎦
(2.15)

It is clear that a solution for θ1, θ2 can be found that satisfies Equation 2.15 as a

system of nonlinear equations. However, there is no guarantee that a solution to this
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system of equations would minimise Equation 2.12 nor would a minimum of Equation

2.12 necessarily satisfy Equation 2.15. It is possible to find a minimum subject to

the constraints of 2.13 and 2.14 via Lagrange’s method; however, it was shown to

be computationally inefficient, and unstable given the complexity of the equations

involved, and the potential for undifferentiable points on the optimisation surface

(i.e. for two lines parallel to each other such that the χ2 at which they converge

is undefined). The accuracy of the algorithm is therefore somewhat limited, but it

will be shown that minimising Equation 2.12 yields a workable approximation by

calculating an intermediate of the upper and lower bounds of χ2 via the mean:

χ2
mean = min f 2/2 (2.16)

The confidence interval (defined as cluster resolution, ξ, for this particular problem)

is calculated from the cumulative χ2 distribution function with two degrees of freedom

(DOF) using the chi2cdf function in the MATLAB® Statistics and Machine Learning

Toolbox [75]. Where:

ξ = F (x|ν) =
∫︂ x

0

t(ν−2)/2e−t/2

2ν/2Γ(ν/2)
dt (2.17)

In Equation 2.17, ν refers to DOF, Γ is the Gamma function, and x is the input

χ2
mean value from Equation 2.16.

2.2 Materials and Methods

2.2.1 Implementation

Equation 2.12 was minimised using an implementation of the Nedler-Mead Simplex

algorithm available as fminsearch in MATLAB® 2018b (64 bit)[76]. This algorithm

outperformed its equivalent quasi-Newtonian counterparts, both in terms of the relia-

bility and speed of its convergence rate, due in part to its ability to operate without the

need for an analytical determination of the gradient at each iteration. The tolerance

39



for convergence was set at 2.5 × 10−6 for the numerical experiments, and 1 × 10−8

for the classification data. Randomly generated two-dimensional data, simulating

scores in the first and second principal components for a balanced dataset were gen-

erated (See A). The original (dynamic programming) and new numerical approach

to determination of cluster resolution were applied to the data. All computations

were performed on a Lenovo ThinkCentre M700 running Ubuntu 18.04 LTS "Bionic

Beaver" with 8 Gb RAM, and an Intel i3-6100T CPU @ 3.20 GHz.

The most recent implementation of the FS-CR algorithm was used for selecting

discriminating features in the experimental data using both the current dynamic

programming, and proposed numerical method for determining CR. Variables were

ranked using Fisher Ratios and populations for backwards elimination and forward

selection were calculated using experimental true and null distributions of significant

features [66]. The numerical implementation of the CR algorithm has been made

freely available online: 10.5281/zenodo.4064280.

2.2.2 Experimental Data

A dataset comprising the volatile organic chemical signatures of 162 samples of cot-

ton and polyester fabrics recovered from a wear trial, wherein participants each wore

bi-symmetrical shirts comprised of one-half cotton, and one-half polyester fabric was

used to compare the algorithms with real data. Details of the wear trial can be found

elsewhere [77], but the stated goal of the analysis was to find discriminating chemical

signatures between the cotton and polyester samples indicating which compounds

were particularly well-retained on the different fabrics following multiple wear-wash

cycles. Both washed and unwashed samples were categorised only as belonging to

either the cotton or polyester classes. The sampling was performed using Solid Phase

Micro-Extraction (SPME) fibres with a “tri-mode” divinylbenzene/carboxen/poly-

dimethylsiloxane (DVB/CAR/PDMS) extraction phase (SUPELCO, Bellefonte, PA).

Extractions were performed on the headspace of 2.0 × 2.0 (± 0.2 cm) samples of fab-
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ric, sealed within 10 mL crimp-top vials at 30 °C for 21 h. The potentially large

in-class variation makes for a somewhat challenging dataset for classification.

2.3 Results and Discussion

0 0.05 0.1 0.15 0.2 0.25

Computation time (s)

Numerical

Dynamic Programming

Figure 2.1: Average computation times for numerical and dynamic programming
determinations of cluster resolution for two clusters. Error bars indicate ±s.

Figure 2.2: Example calculation, comparing the numerical and dynamic programming
implementation of the cluster resolution metric, with the corresponding optimisation
surface. “X” is the location of the optimum values for θ1, and θ2 found by the Nedler-
Mead Simplex algorithm via the minimisation of Equation 2.12.

In the absence of an analytical solution to the cluster resolution metric, a numeri-

cal experiment consisting of 200 randomly generated data sets was used to compare

the performance of the numerical implementation of the algorithm with the current

version. The dynamic programming implementation requires an initial guess for CR,
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Figure 2.3: Secant plot comparing the relative percent differences in the determina-
tion of cluster resolution using the numerical (left, white hemisphere) vs. dynamic
programming (right, grey hemisphere) approach for data with sample classes. All cal-
culations agreed within a 15% relative error. Lines intersecting with the edge of the
circle at the left side of the circle indicate the % relative difference of the numerical
method for the determination of cluster resolution, for an averaged value for cluster
resolution indicated by the colour of the line - similar to the intersection with the
right hand side of the circle, expect with respect to the % relative difference for the
dynamic programming approach.

and 0.75 was used, as this is a typical initial guess used in practice. The numeri-

cal solution does not require an initial guess for CR. An example solution and the

corresponding optimisation surface for the numerical method is shown in Figure 2.2.

For N = 200 sets of randomly generated data, the average time required to calculate

cluster resolution was 2±1 ms using the numerical method, and 163±65 ms using the

current dynamic programming approach. For two clusters in two-dimensional space,

the numerical method is on average 65 times faster (Figure 2.1). The two methods

provided similar results that agreed within 15% (2.3) and the ellipses do not appear

to significantly overlap in any of the solutions from the numerical method (See: Sup-

porting Information 1). Comparing the two methods with a secant plot (Figure 2.3)

shows the tendency for the the dynamic programming approach to underestimate

cluster resolution vs. the new, numerical approach.
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2.3.1 Calculation of the cluster resolution metric for N clus-
ters

The number of times cluster resolution is calculated per evaluated variable depends

on the binomial coefficient, nCk where k = 2 and n is the number of sample classes.

This is due to the fact that it is necessary to calculate the cluster resolution between

each pair of classes to evaluate the overall cluster resolution for the model (Ξ). Con-

sequently, computation time scales poorly for variable selection problems with more

than two classes. In general, the overall cluster resolution is calculated as the product

of the individual cluster resolutions for each possible combination of clusters:

Ξ =
nC2∏︂
n=2

ξ

⎛⎝n

2

⎞⎠ (2.18)

To compare the compounded improvement for multi-class problems offered by the

numerical approach vs. the current approach, randomly generated data sets simu-

lating n-class problems were generated as before (2 < n < 7). 30 data sets were

simulated per value of n. Results are summarized in Figure (2.4). For the 7-class

problem, a single Ξ calculation required 3.3 ± 1 s using the dynamic programming

approach, and 0.040±0.005 s using the numerical approach, an 82-fold improvement.
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Figure 2.4: Average computation time for Ξ in N -class problems for 2 < N < 7 for
numerical and dynamic programming methods. s refers to sample standard deviation
for the dynamic and numerical computation times.

2.3.2 Comparison of Predictive Capabilities

Feature Selection by Cluster Resolution has proven to be extremely useful for selecting

useful subsets of sparse datasets, typical of peak tables generated GC×GC-TOFMS

data, and so one such dataset was used from a previous study [78]. The dataset is

available at: https://doi.org/10.7939/DVN/RLMSRW.

Partial Least Squares Discriminant Analysis (PLS-DA) was used to generate a clas-

sification model; the discrimination threshold for predicted Y scores was generated

using a Bayesian technique [79]. The external validation set was used to evaluate

prediction results, following strict class membership assignment designated by the

aforementioned threshold. Results for predictions were made using PLS-DA without

feature selection (Figure 2.5, row 1), with the current dynamic programming (DP-

FS-CR) implementation (Figure 2.5, row 2), and the numerical (NM-FS-CR) imple-
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mentation (Figure 2.5, row 3), and summarized using predicted Receiver-Operator

Characteristics (ROC) and prediction accuracy, where prediction accuracy is defined

as the ratio of the sum of the true positive rate (TP) and true negative rate (TN)

over the sum of all prediction rates including the false positive (FP) and false negative

(FN) rates:

Accuracy = (TP + TN)/(TP + FP + TN + FN) (2.19)

The dataset contains a high number of replicates, and was divided evenly between

training and validation sets for a critical analysis of each models’ predictive ability.

External validation samples were centred and scaled according to values calculated

in the training set. All results are presented with respect to Class 1 (cotton samples)

versus Class 0 (polyester samples). Within the training set, 200 combinations of

training and optimization sets were generated and used for both DP-FS-CR and NM-

FS-CR routines, with variables selected at least 90% of the time across all sample

combinations being included in the final feature subset. In the training set, there

were a total of 81 samples: 63 class 1, and 18 class 0. In the validation set there were

also a total of 81 samples, with 61 class 1 and 20 class 0 samples.

Results from the confusion matrices and predicted ROC curves suggest that the

variables selected using NM-FS-CR perform better than the much slower DP-FS-CR

algorithm in terms of predictive ability. DP-FS-CR selected a total of 32 variables,

and NM-FS-CR selected a total of 46, with total computation times of 14760 and

1468.3 seconds respectively. All but two variables that were selected using DP-FS-

CR were also selected using NM-FS-CR (Table 2.1), in addition to 16 variables that

were unique to the NM-FS-CR method. It was previously shown that using a simple

thresholding method for feature selection with this dataset was unsuccessful [2].
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Figure 2.5: Summary of classification results using PLS-DA, DP-FS-CR, and NM-
FS-CR. Confidence ellipses are displayed for a confidence interval of 95%

2.4 Conclusions

Cluster resolution is a useful metric for evaluating model quality and guiding variable

selection routines. Cluster resolution permits consideration of favourable changes to

the relative positions and orientations of score clusters representing the distribution of

sample classes in principal component space, without relying solely on cross-validation

results as is done with other methods. Previously, there existed no mathematical for-

malization of the cluster resolution metric, and its determination relied on dynamic

programming. The speed and accuracy of the dynamic programming method de-

pends primarily on the number of points used in the confidence ellipse projections,

and a reasonable initial guess for the cluster resolution. The numerical solution to
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DP-FS-CR NM-FS-CR Common

32 46 30

1 1 1

3 3 3

4 4 4

5

9 9 9

11 11 11

21 21 21

22 22 22

23 23 23

28

30 30 30

35 35 35

54

56

69

75 75 75

76 76 76

78 78 78

79 79 79

84 84 84

85 85 85

109

123 123 123

141 141 141

148 148 148

165

228

236 236 236

260

280

308 308 308

336 336 336

458 458 458

483 483 483

610 610 610

662

806

912

1022 1022 1022

1342 1342 1342

1573 1573 1573

1614

1763

1842 1842 1842

2230 2230 2230

2531

2708

2766

Table 2.1: Variables selected using the DP-FS-CR and NM-FS-CR feature selection
routines. NM-FS-CR identified all but two variables identified using DP-FS-CR in
addition to 16 variables that were not identified using DP-FS-CR.
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the calculation of cluster resolution presented herein has demonstrated a substantial

improvement in computation speed, while generally maintaining or improving the ac-

curacy of the calculation. Preliminary results show that the variables selected using

the new numerical determination largely encompass the variables selected using the

dynamic programming approach, while also identifying additional useful variables.

Including these previously hidden variables has been shown to improve the predicted

ROC and prediction accuracy of the model.

The improvements in speed make it feasible to analyse many more combinations

of training and optimisation sets, and a greater number of classes within a reason-

able time-frame. As with any hybrid feature selection method, this extensive cross-

validation is generally considered to improve the robustness and predictive accuracy

of the model.

Although employed here as a feature selection routine, CR is a generally useful

metric for model quality that can be used in conjunction with validation and residual

analysis in any linear space to describe the expected utility of classification models.

It is the authors’ hope that the described mathematical formalization and freely-

available code will enable its use in a variety of different fields where multivariate

classification problems are encountered. Further studies are necessary to derive cost

functions for the resolution of N -Dimensional confidence ellipses, and validate the

applicability of this method for determining CR in higher dimensional PCA space.

An online tutorial for constructing confidence ellipses was instrumental in making

this work possible [80]. Automated colour palette generation made use of linspecer.m[81].

Figure 2.4 also utilised code for visualising error bars as as a translucent background

[82].
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Chapter 3

Global Metabolome Analysis of
Dunaliella tertiolecta, Phaeobacter
italicus R11 Co-cultures using
Thermal Desorption - Comprehensive
Two-dimensional Gas
Chromatography - Time-of-Flight
Mass Spectrometry
(TD-GC×GC-TOFMS)

3.1 Introduction

Microalgae oils represent a source of energy-rich fatty acids and lipids that have

long been considered as a carbon-neutral source of biologically-derived fuels [83] [84].

Limiting the commercial applicability of microalgae oil are the long times required

for algal growth and the limited yields of oil. In addition to optimisation of growth

conditions, bacterial co-cultures have been explored as a way of improving yields of

microalgae oils [85]. These co-cultures have improved the rate of growth for microalgae

colonies via directly observable mechanisms such as the synergistic exchange of oxygen

and carbon dioxide for aerobic bacteria[86], or the release of extracellular compounds

into the growth media [87]. For many co-cultures, although a change in the microalgal
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growth is apparent, there is no clear mechanism that can be inferred through analysis

of the growth media alone. In these cases, it may be useful to examine the biomass

directly.

Metabolomics has been used to great effect to correlate differences in small-molecule

metabolite expression with macroscopically observable phenomena. Algae metabolomics

in particular has seen some interest [88] [89], and has been used to gain insight into

chemical responses of microalgae to changes in their environment. The relative ex-

pression of these chemicals can be used to deduce the ecology of the bacterial-algal

relationships as either mutualistic [90] [91] or antagonistic [92], and such insight may

be used to further improve upon the microalgae oil yield.

Comprehensive two-dimensional gas chromatography - time-of-flight mass spec-

trometry (GC×GC-TOFMS) is a powerful analytical tool for the non-target exami-

nation of the chemical diversity of samples of volatile and semi-volatile organic com-

pounds owing to its improved resolution, sensitivity, and identification capabilities

over traditional one-dimensional gas chromatography - mass spectrometry (GC-MS).

For non-volatile species and those which chromatograph poorly, such as lipids, fatty

acids, and amino acids, extra derivatisation steps are required. These steps hydrolyze

bonds in large molecules (e.g. triacyl glycerides) and substitute groups such as methyl-

, ethyl-, or trimethylsilyl- for labile protons, enabling subsequent analysis in the gas-

phase. Techniques specific to a particular class of chemical compound, usually fatty

acids, are common in algae metabolomics since only a limited number of chemical

classes dominate the composition of microalgae oil. Analysis of Fatty Acid Methyl

Esters (FAMEs) is a common way of determining fatty acid expression by GC-MS,

for example. Targeted analysis of a limited number of chemical species often fails

to explain the observed phenomena however. Global metabolomic profiling aims to

encompass the broadest possible scope of all small-molecule metabolites, for the sim-

ilar aim of correlating changes in abundances of some small number of metabolites

with the different classifications of populations comprising the study data set (e.g.:
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healthy/diseased or different cultures of microalgae).

GC×GC-TOFMS often reveals several thousands of unique chemicals in a metabolomics

study. For a properly optimised analysis, most of these chemicals originate from the

biomass itself. However contamination at some stage of the sample preparation is

inevitable, especially for samples requiring derivatisation, as the reagents involved

(being reactive) are particularly difficult to purify. Even for chemical features that

are biological in origin, typically only a small subset of these features contain useful

or discriminating information. As such, for a limited number of samples, a feature

selection step is necessary to create informative models that are easy to interpret.

This chapter presents a workflow for preparing microalgae samples for global

metabolomic analyses that includes a novel technique for introducing the derivatised

sample matrix into the gas chromatograph. Using thermal desorption (TD), a con-

centrated sample of microalgae extract can be introduced directly into the instrument

without a prior filtration step. The injected sample is deposited into a small insert

in the thermal desorption unit, and heated to transfer the volatile and semi-volatile

components to a cryogenically cooled inlet. All low-volatility components that would

otherwise be deposited into the inlet itself remain within the insert inside of the TD

unit. Subsequent pyrolysis of heavy biomass residues between sample injections is

avoided in this way, and the analyses are relatively free of interference and contami-

nation. 70 samples of Dunaliella tertiolecta, Phaeobacter italicus R11 [93] [94], and

co-cultures of the two species were cultured and filtered for analysis. A useful sam-

ple normalisation and feature selection routine is demonstrated on this dataset, and

the authors present a short list of candidate metabolites that may be biologically

interesting for future study.
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3.2 Materials and Methods

3.2.1 Growth and maintenance of algal and bacterial strains

The Dunaliella tertiolecta CCMP 1320 strain was obtained from the Provasoli-Guillard

National Centre for Marine Algae and Microbiota (NCMA). The chlorophyte was

maintained in L1-Si media made with artificial seawater (35 g/L of Instant Ocean,

Blacksburg, VA, USA), at 18 ◦C with a diurnal incubator cycle (12:12 hour dark-

light cycle). Samples from the cultures of microalgae were examined microscopically

to rule out bacterial contamination before experimental use. These samples were also

inoculated onto marine agar plates, and incubated at 28◦C for three days to identify

any colony forming units (CFUs). (18.7 g of Difco Marine Broth 2216 with 9 g NaCl

and 15 g Difco agar in 1 L) . Experimental use of the algal cultures proceeded once

a cell concentration of 104 cells/mL was reached.

Samples of Phaeobacter italicus R11 were acquired from Botany Bay, Australia

[93]. The bacterial cultures were maintained at 28 ◦C on the aforementioned marine

agar plates, then transferred to 5 mL 50% dilute marine broth media (2216 Marine

Broth, Difco) where it was grown until reaching a stationary phase for 24 hours

before the experiments. Cell concentration for stationary phase Phaeobacter italicus

R11 was similar to the cell concentration of the algae cultures, at 104 cells/mL.

3.2.2 Preparation of samples

Algal-bacterial co-cultivation experiments were performed as described by Bramucci

et al. [95] in 12 well plates (Standard TC Growth Surface, Bacto (Oakville, Canada)).

Briefly, stationary phase bacterial colonies of Phaeobacter italicus R11 were washed

twice by centrifugation and re-suspended in L1-Si medium before dilution to the target

cell concentration 104 colony-forming units (CFU) /mL. For co-culture samples, D.

tertiolecta and Phaeobacter italicus R11 were mixed in a 1:1 ratio by volume at

equivalent cell concentrations in L1-Si medium made with artificial seawater. Mono-
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culture controls of both D. teriolecta and Phaeobacter italicus R11 were inoculated

in 1:1 (v:v) ratio with L1-Si made with artificial seawater. Mono- and co-cultures

were aliquoted in 6 mL volumes into 12-well plates and grown in a diurnal incubator

with a 12 hr dark-light cycle at 18◦C. During the mid-point of each dark cycle, 20 µL

of each sample were plated onto a 1.5% agar, 1/2 marine broth plates and incubated

for 24 h at 28◦C to confirm the absence of bacterial in mono-culture samples, and

enumerate the bacteria in co-culture samples. All samples were cultured until the

stationary phase, after 18 days.

3.2.3 Collection of culture samples

On day 18 of each samples’ incubation, each sample was collected by vacuum filtration

onto pre-weighed glass fibre filters (0.22 µm). Each sample was rinsed three times with

1 M PBS buffer to wash away the growth media. Filters were placed into clean, glass

vials covered with Kimwipes and stored at -80 ◦ before being lyophilised for 24 hours.

After the drying step, the filters were weighed once again to record the biomass. The

biomass was recorded to (± 0.001 g), which was insufficient to accurately determine

the mass of either bacterial culture samples, or the algae and culture samples. The

bacterial samples were recorded at 0.000 ± 0.002 g. Co-culture, and D. tertiolecta

samples presented an average biomass of 0.005 g ± 0.002 g and 0.005 g ± 0.002 g

respectively.

20 samples of D. tertiolecta + 1 replicate, quality control sample, 23 samples of

Phaeobacter italicus R11 + 1 replicate, quality control sample, and 27 co-cultured

samples + 3 replicate quality control samples were prepared and analysed for the

experiment. One quality control sample, part of the co-cultured samples, indicated

poor agreement with its corresponding sample, and indicated a change in the tightly-

controlled analytical conditions of the instrument. This sample was excluded from

the final dataset, bringing the total number of samples (including quality controls)

to 74. Careful inspection of data for samples before and after this particular sample
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indicated that this one anomalous result was the result of an isolated incident that

did not affect other samples.

3.2.4 Sample preparation and derivatisation

Liquid measurements were performed using either a 100-µL or 1000-µL Microman

positive displacement pipette and disposable pipette tips. For measurements of pure

reagent, a reusable positive displacement syringe system with a digital readout was

used (SGE eVolTM handheld automated analytical syringes).

The sample preparation procedure is divided into two main steps. During the

first step, an extraction protocol based on the widely-known Bligh and Dyer [96] [97]

method for the analysis of fatty acids was used to extract and separate the macro-

molecular plant material from the plant metabolites. Use of the chloroform extract

appeared to be a good choice of extraction solvent and offered decent coverage of

a wide variety of different chemical classes. During the second step, trimethylsilyl

derivatives of the extracts were generated based on the protocol of Chan et al. [98].

The glass fibre filter papers (GFFPs) used to collect each sample were submerged in

7-mL volumes of HPLC-grade methanol (>99.9%, Millipore-Sigma Canada) in 20-mL

scintillation vials (Chromatographic Specialties Inc., Oakville, ON, Canada) using a

clean spoonula. To each vial, 7 mL of HPLC-grade chloroform (>99.8%, Millipore-

Sigma Canada, Oakville, ON, Canada) were added, and sonication proceeded for an

additional hour. 3.5 mL of 18.2 MΩ deionised water (Elga PURELAB flex 3 system,

VWR International, Edmonton, AB, Canada) was then added to effect a separation

into a polar methanol/water layer and a chloroform layer, which was allowed to rest

overnight at 3 ◦C prior to extraction. 1.8 mL of the bottom (chloroform) layer was

extracted and transferred into 2-mL glass GC vials. For replicate measurements, an

additional 1.8 mL was transferred to an additional vial. The extracts were blown

down with nitrogen at 40 ◦C until there was no visible chloroform remaining, ap-

proximately two hours. 100 µL of toluene was added to the dry residue, which was
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then vortexed briefly before being evaporated under nitrogen at 40 ◦C once again.

The extra evaporation step using toluene ensures there were no remnants of moisture

in the vials as even traces of moisture interfere with the subsequent derivatisation

steps. 50 µL of methoxyamine (Millipore Sigma, Oakville, ON, Canada) in HPLC-

grade pyridine (Millipore Sigma, Oakville, ON, Canada) was added via a digital

positive displacement syringe, and the solution was incubated at 60 ◦C for two hours.

Following this, using another positive displacement syringe, 100 µL of N-Methyl-N-

(trimethylsilyl)trifluoroacetamide + 1% trimethylchlorosilane (MSTFA + 1% TMCS,

Fisher Scientific, Ottawa, ON, Canada) was added and vials were incubated at 60 ◦C

for an additional hour. 100 µL of the resultant solution was transferred to 1.8 mL

vials with fused glass 300-µL inserts. These vials were stored at 3 ◦C for up to 48

hours prior to analysis.

3.2.5 Sample introduction and operating conditions

3.2.6 Thermal desorption, sample introduction

The chloroform extracts were not centrifuged to remove non-volatile components from

the extract solution. Being a relatively non-polar solvent, exposure of chloroform to

plastic centrifuge tubes would present a significant risk of leeching contaminants from

the vials into the samples. To avoid this, the authors opted to inject the unfiltered,

derivatised extract directly into TDU insert tubes, with subsequent evaporation of

(semi-)volatile components directly from the insert tube, leaving the non-volatile

components in the insert. Inserts were replaced for every analysis.

A Gerstel MPS autosampler and sample preparation robot equipped with a 10-µL

Gerstel TriStar Liquid Syringe, a Thermal desorption Unit (TDU 2), and a pro-

grammed temperature vaporization inlet (CIS4; Gerstel US - 701 Digital Drive, Suite

K, Linthicum, MD 21090). The MPS system was programmed in Automated TDU-

Liner Exchange (ATEX) mode, where 9-µL aliquots of sample were injected into

clean TDU tubes containing a disposable microvial insert. TDU tubes (straight tubes
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with notch), were rinsed with high-purity (99.9%) toluene (Millipore Sigma Canada,

Oakville, Ontario) and baked in an oven at 400 ◦C for 1 hour between runs, with

new microvial inserts baked inside of the TDU tubes. Both the microvial inserts and

TDU tubes were allowed to cool inside of the oven before being fitted with transport

adapters for liquid injections. The transport adapter seals the microvial inside of the

TDU tube, maintaining cleanliness. A Teflon-coated septum in the adapter main-

tains carrier gas pressure before and after the liquid injections. The liquid syringe

was washed 6 times with each of 10 µL of 1:1 (v/v) acetone:hexane and HPLC grade

methanol (Fisher Scientific Co, Edmonton Alberta) both before and after the liquid

injection.

The TDU was operated in solvent vent mode, followed by a splitless injection from

the TDU to the inlet, and then splitless injection from the inlet to the GC×GC-

TOFMS. During the solvent vent step, the TDU was kept at an initial temperature

of 128 ◦C, and the TDU split vent was open for 5 min to vent the pyridine and MSTFA

solvent mixture. The TDU was fed with a constant flow supply of ultra-high purity

helium carrier gas (Linde Canada (formerly Praxair), Edmonton Alberta, Canada)

at 50 mL/min with the permanent split vent from the TDU set to 2.5 mL/min. The

remaining flow during the solvent vent step exited the system via the split line from

the CIS. Following solvent venting, the temperature of the TDU was raised to 280 ◦C

and injected via a splitless injection into the CIS at a flow rate of 50 mL/min for an

additional 5 min. During this step, the CIS was maintained at a temperature of 30 ◦C

with the split valve open, until the splitless injection from the TDU was completed.

30 ◦C was the lowest practical temperature that could be reliably maintained with

the cryogenic cooling system during the run. In the next step, the CIS ramped to

300 ◦C and injected with the split vent closed into the GC×GC-TOFMS. During

this time, the TDU ramped to 300 ◦C to clean the system, with the TDU split vent

open. The CIS operated in splitless mode for 150 s at 300 ◦C, until the split vent was

opened, at a total gas flow rate of 252 mL/min for a constant flow rate of 2 mL/min
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delivered to the head of the column. The inlet liner was baffled (Gerstel, US) to trap

volatile components, while allowing for an effective purging step between each run,

and system cleanliness was monitored via instrument blanks (one fast blank after

every sample, and one instrument blank under identical operating conditions to those

used for the samples twice per batch of 14 samples).

3.2.7 GC×GC-TOFMS method

The samples were separated on a LECO Pegasus 4D system (LECO, St. Joseph,

MI, USA) outfitted with a quad-jet dual-stage cryogenic modulator. The column set

featured a 60 m × 0.25 mm internal diameter; 0.25 µm film thickness Rxi-5SilMS in

the first dimension, and a 1.4 m × 0.25 mm internal diameter; 0.25 µm film thickness

Rtx-200MS second dimension column (Chromatographic Specialities, Brockville, ON,

Canada). The initial oven temperature was set to 80 ◦C, held for 4 min, and ramped

at 3.5 ◦C/min to a maximum oven temperature of 315 ◦C with a 10 min final hold.

The temperature program and flow rate of the method were directed by considerations

for speed optimised flow (SOF) [14] and optimal heating rate (OHR) [13] derived from

the column geometry and dead-time, respectively. The secondary oven offset was set

at +10 ◦C relative to the primary oven temperature and the modulator temperature

offset was set at +15 ◦C relative to the secondary oven temperature. The modulation

period (PM) was 2.50 s, with a hot pulse time of 0.60 s and a cool time of 0.65 s

between stages. The mass spectrometer collected spectra at 200 Hz, from 40 to 800

(m/z). The electron impact ionisation energy was -70 eV. The ion source temperature

was 200 ◦C, with a transfer line temperature of 300 ◦C. An acquisition delay of 650

s was used to ensure residual solvent did not damage the filament.

3.2.8 GC×GC-TOFMS data pre-processing

The data were pre-processed using LECO ChromaTOF® version 4.72. Baseline offset

for peak detection was set as a factor of 1.2 above the estimated noise level. Antici-
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pated peak widths were determined through a survey of 10 different peaks, both large

and small. The authors opted to direct the pre-processing parameter optimisation

towards detecting smaller peaks, so the peak size parameters were as follows: 10 s

for first-dimension peak width, and 0.1 s for second-dimension peak widths. The

second-dimension sub-peaks were combined if their deconvolved mass spectra met a

match factor of 650, and sub-peaks were only integrated if their signal-to-noise ratio

(SNR) was greater than a value of 6.

Peaks were integrated into the final peak table, if the SNR for the base peak was

greater than a value of 15, with 5 or more apexing masses. Peaks across multiple

samples were aligned if they were within two modulation periods of each other in the

first-dimension, or within 0.2 s of each other in the second-dimension. Quality control

samples were included in the alignment procedure, bringing the total number of sam-

ples to 75 (including one sample that was later discarded). Before being included in

the final table, an analyte must have populated at least 33% of the samples (25 sam-

ples), otherwise that analyte was discarded. This parameter was selected to minimise

the very common phenomenon of peak dropout in processed GC×GC-TOFMS peak

tables, and was not based on the population of unique classes of sample. Since the

number of variables for typical GC×GC-TOFMS experiments is much higher than

the number of samples, spurious class separations for targeted classification are very

common for poorly optimised peak tables. However considering the class makeup of

the dataset, chemical components unique to D. tertiolecta and co-cultured samples,

Phaeobacter italicus R11 and co-culture samples, as well as the co-culture class itself,

are not disallowed from the final peak table under these conditions.

Peak searching for analytes not recognised in the sample-wise pre-processing were

searched for down to a SNR ratio of 12.5. Initial library searching for all peaks was

performed for all samples using the National Institute of Standards and Technology

(NIST) mass spectral database (2017).
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3.2.9 Data analysis

The final peak table was exported from ChromaTOF®, and into MATLAB® 2020b.

Some functionalities of PLS Toolbox (R8.5.2; Eigenvector Research Inc.) were used

for the receiver-operator characteristics (ROC), as was the MATLAB® Statistics

and Machine Learning Toolbox. All data used in this work are available online at

https://doi.org/10.20383/102.0510.

3.2.10 Sample normalisation

Samples were normalised according to a class-based total useful peak area (cTUPA)

criterion, based on the absence of a reliable biomass measurement, and the need to

account for variability in the quantity of sample that eventually reached the instru-

ment. Using this method, peak areas were divided by the total peak area of analytes

detected in each sample of a given class. This allowed for a reasonable, and simple

method for comparing highly dissimilar samples (i.e. comparing a small bacterial

biomass against a much larger algal biomass) and extracting a useful discriminating

variable subset that best describes their differences. A similar approach, agnostic to

class labels, was reported for a study conducted on GC×GC-TOFMS using human

urine [99].

3.2.11 Feature selection, cross-validation

The normalised data were analysed using feature selection by cluster resolution (FS-

CR), a hybrid wrapper/threshold method for selecting features based on favourable

projections within a principal component subspace. This technique has shown to

be effective on a number of GC×GC-TOFMS datasets, and includes a robust cross-

validation routine that trains, optimises, and validates the model during each iter-

ation. To demonstrate the effectiveness of this tool, a series of ROC curves were

generated by reshuffling the data for each iteration, utilising a variable subset that

survived a certain ratio of previous combination of the data. A PLS-DA model with
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two latent variables was trained using half of the reshuffled samples, and validated

using the other half of the reshuffled samples. Further details are presented in the

Results section.

The FS-CR algorithm was operated for projection into two-dimensional principal

component subspaces, using autoscaled data (i.e. data that was mean-centred and

scaled via each variable’s standard deviation). The most recent version of the al-

gorithm was selected, utilising a numerical determination of the cluster resolution

metric[100], which allowed for 200 iterations of the algorithm to complete in about

30 min. Variables that survived 90% of all iterations were ultimately selected for the

final model.

Mass spectra and retention indices for analytes of interest were recovered from

the raw data and a library search using the Golm Metabolome Database [101] was

performed.

3.3 Results

Each of the resultant chromatograms are rich in chemical information, but at first

glance they are visually quite similar. The colour axes of Figures 1-3 are scaled to the

same maximum TIC of 7.5× 105. In spite of the high sample load, instrument blanks

were clean between runs, but despite the authors’ best efforts, the reagent blank itself

presents a great deal of interfering chemical information (See: Appendix B). This is

likely unavoidable, as the purity of MSTFA used for derivatisation is generally quite

poor (98%), and the pre-concentration step during the sample introduction likely

exacerbated this problem.
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Figure 3.1: Example Total Ion Current (TIC) chromatograms from each sample class
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Prior to analysis, all data was autoscaled. For the ROC curves, validation data

was centred and scaled according to the values obtained in the training set for a more

critical assessment of the model performance. The principal component analysis of the

raw data revealed some bimodality, likely due to the number of interfering chemicals

present in the reagent blank. Following cTUPA, the severity of the bimodality was

reduced, and the cluster of bacterial samples was well resolved from the chemically

similar co-culture and mono-culture microalgae samples (Figure 3.2). This aligns well

with our initial expectations of the data.

Using the selected features, the samples appear to be normally distributed about

the two axes of variance within each cluster. This suggests that the extracted features

are robust against interfering chemical information, and that the previously observed

bimodality of the data may have been a chemical, or instrumental artefact of the

analysis that did not significantly affect projections using the selected features (Figure

3.2).

In-class variance within the co-cultured microalgae samples appears to be much

higher than in the mono-culture samples, according to the projection within the

subspace of the selected features. Conversely, in-class variation for the bacterial

and mono-culture classes is relatively low, suggesting the selected metabolites are

disregulated within co-cultured samples (Figure 3.2).

The cross-validated receiver operator characteristics support the utility of this fea-

ture selection routine, and the extracted chemical characteristics. Although external

validation was not used, regardless of the samples chosen, the calculated area un-

der the curve is very close to ideal for all 200 combinations of the data that were

independently selected relative to the feature selection routine (Figure 3.3).

3.4 Discussion

16 analytes of interest were selected using the feature selection routine. In the sup-

porting information, there is a summary of each extracted analyte with the most
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Figure 3.2: From left to right: results of principal component analysis of the raw
data (autoscaled), similarly scaled data normalised to class-specific TUPA, and the
normalised, scaled data using the selected features from the FS-CR routine. Quality
control samples were not included in the feature selection routine, and are displayed
as filled icons connected to their corresponding replicate with a straight line, following
projection into the optimised principal component space.
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Figure 3.3: Cross validated receiver operator characteristics suggest that the calcu-
lated model is robust, and improves with more iterations. Light blue lines show the
results of further iterations, and red lines show the results of fewer iterations. Each
line is semi-transparent, but the AUC is close to 1 in all cases. Calculation of the
classification scores was based off the named class (Class 1), versus everything else
(Class 0).
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relevant information presented. Using each analyte’s quantification ion listed in the

output of ChromaTOF®, it is appears that the majority of the selected features are

not spurious signals, given their roughly Gaussian, uni-modal peak profiles in both

dimensions. However, the quality of the deconvolution appears to be poor in some

features that returned no probable library hit. This can be observed by the lack of

isotopic mass distributions for many prominent peaks in the mass spectra. It’s un-

likely that these features can be identified based solely on the extracted mass spectra,

although that isn’t to say that the features are not reliable.

Some library hits from the Golm Metabolome Database scored reasonably well

on the mass spectral dissimilarity score (1-dot product), but did not account for

a number of prominent peaks in the observed mass spectra. It’s possible that for

these standards, no good library spectra exist. For Analytes 5083 and 22226, a very

prominent peak at m/z = 143 is observed. This is a prominent peak in the mass

spectra for alkyl-quinolones [102], a class of antibiotics. Analyte 27584 appears to

bear some similarity to an unidentified compound uploaded to the Golm database as

part of an earlier study [103].

Representative mass spectra were extracted from individual samples where that

compound was identified. A drawback of ChromaTOF® software is that each sam-

ples’ features present their own mass spectra, and these mass spectra are associated

across multiple samples provided that a certain similarity in mass spectral charac-

teristics and retention time is reached. This means that the mass spectra from each

sample may differ somewhat, but the decision was made not to average the mass spec-

tra across multiple samples, as doing so could lower the precision of the extracted mass

spectra or bias the match score of the library match.

Further study will is needed to confirm the identities of these analytes, since few

were identified at level two or higher according to the Metabolomics Standards Ini-

tiative [104]. Below is a table summarising the quality of each of the mass spectral

hits, illustrating the reasoning behind each hits’ identification level. Compounds that
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were found in the reagent blank in addition to the samples were assumed to be less

reliable features, but may nonetheless still be identified.

65



Analyte
Name

Not found
in Reagent

Blank

Reasonable
Mass

Spectrum

Library hit
accounts for
significant

peaks

Retention
index match

Identification
level

Analyte 5083 TRUE TRUE FALSE TRUE 4

Analyte 8351 FALSE TRUE FALSE FALSE 4

Analyte 13706 TRUE FALSE FALSE FALSE 4

Hexadecane FALSE TRUE TRUE TRUE 2

Analyte 16951 TRUE TRUE FALSE TRUE 4

Analyte 17909 TRUE TRUE FALSE TRUE 4

Analyte 19404 TRUE TRUE FALSE FALSE 4

Analyte 21239 TRUE TRUE FALSE TRUE 4

Analyte 21318 TRUE FALSE FALSE FALSE 4

Analyte 22226 TRUE TRUE FALSE TRUE 4

Analyte 23041 TRUE TRUE FALSE TRUE 4

Analyte 23397 TRUE TRUE TRUE TRUE 2

Analyte 24829 TRUE TRUE FALSE FALSE 4

Analyte 27584 TRUE TRUE TRUE TRUE 4

Analyte 27833 TRUE TRUE FALSE TRUE 4

Analyte 33374 TRUE TRUE FALSE TRUE 4

Table 3.1: Identification levels for the significant features in the dataset, summarising
the factors that went into ascribing MSI Identification levels two (punative identifi-
cation) or four (unknown metabolite). Further details are available in the supporting
information.
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Several of listed metabolites appear to be biologically active based on their relative

expressions. These metabolites may affect cell-cell signalling, hormone regulation,

or be utilised as antibiotics in co-culture samples. These are of particular interest,

since bioactive compounds are known to play a role in bacterial-algal interactions. Of

particular interest is the homoserine lactone (HSL) which is produced by Dunaliella

tertiolecta, however it is absent from Phaeobacter italicus R11 B28 and the co-culture

sample C34 (Appendix B). HSLs are only known to be produced by the bacterial

group Proteobacteria [105] and so further structural elucidation is necessary to assert

whether or not HSL has actually been produced by a eukaryote. Previously, Schaffer

et al have identified a plant metabolite, coumaric acid, that can replace the HSL tail

to form a hybrid material-host signal [106], and so an analogous system with the

HSL ring structure being host derived warrants further investigation. Alternatively,

the Dunaliella teriolecta metabolite could be an HSL antagonist as Phaeobacter itali-

cus R11 is known to produce HSLs which are antagonised by the algal metabolites,

furanones [93] [107] [108].

3.5 Conclusion

Despite considerable interference from chemical and pre-processing artefacts, using

advanced instrumentation and data analysis methods it is possible to gain unprece-

dented insight into the metabolome of commercially interesting microalgae samples.

A complete workflow for profiling the global metabolome of microalgae samples has

been proposed, that may guide selection of bacterial inoculations for microalgae cul-

tures to improve the yield of cultivated, carbon-neutral biofuels in the future. This

study has also demonstrated the feasibility of using thermal desorption as a sample

introduction technique that can allow larger-than-normal aliquots of sample to be in-

troduced with effective pre-concentration and clean-up of dirty samples, without the

need for a centrifugation step. Additionally, the utility of cTUPA as a normalisation

strategy for highly dissimilar sample classes was demonstrated.
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Further work is needed to interpret, and test resultant theories of the relationship

between D. tertiolecta and Phaeobacter italicus R11 cultures. Doing so may enable

cultivation techniques that exploit this relationship for dividends in sustainable fuel

development. Presented here is a complete workflow, with some preliminary results,

that can serve as a benchmark for future experiments.
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Chapter 4

Application of FS-CR for Urinary
Metabolite Profiling of Human
Colorectal Cancer using
GC×GC-TOFMS: Limitations of
Feature Selection

4.1 Introduction

Colorectal cancer is the 2nd most common form of cancer in Canada, accounting

for 13% of all new cancer diagnoses in 2017; an estimated 26,800 individuals. It is

critical for all forms of cancer to be detected at an early stage to maximize the ef-

ficacy of treatment, but it is especially important for colorectal cancer: the 5-year

survival rate for Stage I is estimated to be 92%, compared with only 11% for Stage

IV. Colorectal cancer is typically diagnosed when a patient is at Stage III (29.1% of

diagnoses), while Stage IV accounts for 19.9% of diagnoses [109]. Symptoms for the

disease often do not manifest until the later stages, when the cancer has spread to

other organs, and early symptoms can be easily attributed to other diseases of the

gastrointestinal tract [110][111]. Diagnosis of colorectal cancer is confirmed by tissue

biopsy; however it is recommended for even asymptomatic individuals at a low risk

for developing the disease to start regular screening at age of 50 with a bi-annual

guaiac fecal occult blood test (gFOBT), and a sigmoidoscopy every five years [112].
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gFOBT tests for traces of blood within a fecal sample - often failing to diagnose col-

orectal cancer at a sufficiently early stage, and with relatively low patient compliance

[113]. Fecal Immunochemical Tests (FIT) are a more recent development, and signif-

icantly improve upon the sensitivity of gFOBT tests, however the poor specificity of

this test highlights the need for improvement [114]. Sigmoidoscopies are an invasive

method of testing, whereby a physician examines the bowel up to the sigmoid using

an endoscope. Effective screening has been shown to reduce patient mortality, but

constraints due to invasiveness, resources, and patient compliance reduce its efficacy,

especially within younger demographics not indicated to be at risk for the disease

[115]. Biological samples used for screening must therefore be easy to obtain to im-

prove patient compliance. Samples must also possess sufficient chemical information

to indicate the presence of the disease. Urine is a particularly attractive medium for

metabolomics studies because it is easy to obtain in large volumes, is relatively safe

for technicians to handle, and features a high degree of chemical complexity[116].

Metabolomics has been used to discover small molecule markers of colorectal can-

cer within human biofluids. Many different instrumental techniques have been em-

ployed to build profiles of the disease[117][118][119], and recently a high-throughput,

fully validated LC-MS method has been published, further indicating the utility of

metabolomics for colorectal cancer screening [120]. Gas Chromatography-Mass Spec-

trometry (GC-MS) is a commonly used instrument for the analysis of biofluid metabo-

lites; separations performed on a capillary gas chromatograph are relatively fast, effi-

cient, and the sensitivity and identification capabilities of the mass spectrometer are

good enough for discovery-based applications[116] [98] [121] [122].

Comprehensive two-dimensional gas chromatography – Time of flight mass spec-

trometry (GC×GC-TOFMS) has been demonstrated to outperform traditional GC-

MS on several different samples, including urine [123][124]. In this instrument, two

capillary columns of different chemical selectivities are coupled by means of a mod-

ulator. Poorly resolved compounds eluting from the first column undergo further
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separation in the secondary column. The reduction of signal noise coupled with a

cryogenic modulator has been demonstrated to improve the sensitivity of detection

[27] [125].

4.2 Materials and Methods

4.2.1 Reagents

HPLC Grade Methanol (>99.9%) was purchased from Millipore-Sigma Canada, HPLC

Grade Toluene (Millipore Sigma Canada), was dried with anhydrous sodium sulfate

(Millipore Sigma Canada) prior to use. 1 mL ampoules of N-Methyl-N-trimethyl-

silyltrifluoroacetamide + 1 % chlorotrimethylsilane (MSTFA + 1% TMCS) were pur-

chased from Fisher Scientific, Canada. Urease suspensions of approximately 160 mg

mL-1 of water were prepared the day of derivatization using urease from Millipore-

Sigma Canada, and 18.2 MΩ deionized MilliQ water (Elga PURELAB flex 3 system,

VWR International Edmonton). 2 mL Safe-Lock amber centrifuge tubes were pur-

chased from Eppendorf Canada Ltd. 2 mL GC vials, 300 µL GC vials with inserts,

and GC vial caps were all purchased from Chromatographic Specialties Inc (Canada).

Liquid handling was performed using 20 µL, 200 µL, and 1000 µL Rainin XLS Dig-

ital pipettes (Mettler Toledo Inc., Canada) with filter tips (Froggabio Inc. Canada)

for aqueous and urine samples, and 100 µL and 1000 µL Microman Pipettes and

pipette tips for transferring organic solvents and various stages of the derivatisation

process. Samples were treated with heat and nitrogen using a 099A EV2412S Glas-

Col Heated Analytical Evaporator (Cole-Parmer Canada) using pre-purified nitrogen

(Praxair Canada Inc., Edmonton). Two quality control mixtures were used in the

study: one, a standard mixture (QC1) of adipic, azelaic and succinic acids (Milli-

pore Sigma Canada), and the second (QC2) was a fatty acid methyl ester mixture in

dichloromethane (SUPELCO 37 Component FAME Mix, Millipore Sigma Canada).

The internal standard used was d4-succinic acid dissolved in a 20 mM solution of
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sodium bicarbonate buffer at a concentration of 78.6 mg/L.

4.2.2 Urine Samples

Using a similar population from a previous study [126], urine samples were collected

from patients from the Grey Nuns Hospital, the Misericordia Hospital, the University

of Alberta Hospital, and the Royal Alexandra Hospital from October 2008-2010 in

Edmonton, Alberta. Patients who had been diagnosed with colorectal cancer but had

not previously undergone any treatment for the disease were eligible to participate in

the study. Information such as age, gender, and smoker status were collected during

recruitment, and for each patient the cancer was staged based off a review of the

pathology reports (Table 4.1). Within 1 hour of collection, urine samples were trans-

ferred to 1 mL vials that were labelled and frozen at -80 ◦C. Frozen urine was shipped

on dry ice in an insulated Styrofoam container, and immediately transferred to a -

80◦C freezer at the University of Alberta prior to analysis. Samples from a healthy

population were collected through the Stop COlorectal cancer through Prevention

and Education (SCOPE®) program [127]. Here, study participants of average or in-

creased risk of colorectal cancer provided midstream urine samples and demographic

information and were verified not to be suffering from colorectal cancer through a

colonoscopy performed 2 – 6 weeks after their urine was collected. The Health Re-

search Ethics Boards at the University of Alberta provided ethics approval for the

study.

Sixty-one samples were used in the study, with three randomly chosen replicate

samples. QC1 was run at the start and end of each day of analysis, and QC2 was

run towards the end to assess derivatisation and instrument variation respectively.

Reagent blanks were also run each day, in order to screen for derivatisation artefacts

in samples, and instrument blanks were run halfway through each day to ensure

system cleanliness.

Urine samples were prepared according to a modified protocol for the global derivati-
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sation of urine metabolites[98]. Samples were thawed on ice for 1 h, then vortexed

for 1 min. 200 µL of urine were collected and transferred into 2 mL centrifuge tubes.

Here, 1 µL of the internal standard was added along with 20 µL urease in water

(equivalent to 100 units). Samples were vortexed for one minute before incubating at

37◦C for 1 h. 1.7 mL of methanol was added to each of the samples, and they were

vortexed again for 1 min to precipitate the urease enzyme and extract the metabo-

lites. Samples were then centrifuged for 10 min at 10,000 g and 4 ◦C. 1 mL of the

supernatant was then transferred to a 2 mL vial. Vials were dried carefully under ni-

trogen at 60◦C (approx. 2 h). Following the drying step samples were stored at -80◦C

for up to 1 week prior to analysis. Frozen samples were thawed at room temperature

for 1 h, 100 µL of dry toluene was added, vials were vortexed for 1 min, and dried

under nitrogen at 60◦C to remove the toluene and residual moisture. All samples

were dried within 30 minutes. To the dried metabolite extracts, 50 µL of 20 mg mL-1

methoxyamine in pyridine solution was added, and the samples were incubated at

60◦C for 2 h. 100 µL of MSTFA was added to each sample and the samples were

incubated again at 60◦C for 1 h. Vials were then cooled at room temperature for 20

min. For each sample, 100 µL of the derivatised metabolite extract was transferred

to GC vials with 300 µL inserts using the disposable positive displacement pipet tips

for analysis by GC×GC-TOFMS.
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Label Diagnosis Age Sex Smoker

Control

N = 26

Healthy

N = 26

µ = 63.2

s = 5.8

Female = 11

Male = 15

Yes = 5

Ex-Smoker = 12

No = 9

Case

N = 32

Stage I

N = 4

Stage II

N = 6

Stage III

N = 17

Stage IV

N = 5

µ = 62.0

s = 5.5

Female = 12

Male = 20

Yes = 4

Ex-Smoker = 10

No = 18

Table 4.1: Demographic information for the study participants

4.2.3 GC×GC-TOFMS Method

Samples were analyzed on a Leco Pegasus 4D GC×GC-TOFMS (Leco Instruments,

St. Joseph, MI). The column used for the first dimension was a 60 m × 0.25 mm;

0.25 µm Rxi-5SilMS, and for the second dimension a 1.2 m × 0.25 mm; 0.25 µm Rtx-

200MS (Chromatographic Specialties). Ultra-pure helium (5.0 grade; Praxair Canada

Inc., Edmonton) was used as the carrier gas, with a constant flow rate of 2.0 mL min-1.

Injection was splitless, using a Restek Topaz split/splitless liner (Chromatographic

Specialties), and an injection volume of 0.2 µL. Inlet temperature was kept constant

at 250 ◦C for all runs. The temperature program of the primary oven began at 70 ◦C

(1 min hold) followed first by a ramp of 1◦C min-1 to 76◦C, followed immediately by

a second temperature ramp of 6.10 ◦C min-1 to a final temperature of 300◦C which

was held for 7 minutes. The secondary oven and modulator temperature offset were

constant at +5 ◦C and +15 ◦C respectively. The modulation period (PM) was 2.5 s.

Mass spectra were collected at an acquisition rate of 200 Hz over a mass range
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between 50 and 660 m/z. The detector voltage was 1700 V with an electron impact

energy of -70 eV. The ion source temperature was 225 ◦C with a transfer line temper-

ature of 225 ◦C. Total analysis time for each run was 52.36 min excluding cool-down

time.

4.2.4 Data Pre-processing Method

GC×GC-TOFMS data were processed using ChromaTOF® (v.4.43; Leco). Baseline

offset was set to 0.7 above the middle of the noise. The minimum SNR for base- and

sub-peaks were set at 6, and the mass spectral match required for the subpeaks to

be combined was set at 750. Expected peak widths throughout the entire chromato-

graphic run were expected to be approximately 8 seconds in the first dimension and

0.16 seconds in the second dimension. A region of each chromatogram from 0.5 s

≤ 2tR ≤ 0.75 s, comprised largely of siloxanes (column degradation artefacts), was

excluded from data processing.

The statistical compare feature of ChromaTOF® was used to align the peak ta-

ble based on the parameters of retention times (in the first- and second-dimensions)

and mass spectral match scores as described in previous literature[2]. Tolerances for

retention time shifts were ±1 modulation period (PM = 2.5 s) in the first dimension,

and tolerances for the second dimension separation were set to 0 s (default parame-

ters, used in previous studies). Mass spectra were associated across samples if they

matched with a score of 700 or greater for all m/z values with intensities greater than

10% of the most abundant peak.

Statistical compare was constrained to only accept analytes found in at least five

different samples. The peak table containing the raw data was then exported as a

.csv file for analysis in MATLAB® R2017a, Windows 64-bit version (The Mathworks

Inc., Natick, MA, USA), with multivariate statistical analysis performed using PLS

Toolbox (R8.5.2; Eigenvector Research Inc., Wenatchee, WA, USA).
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4.2.5 Normalisation

In order to select an informative subset of metabolites to distinguish healthy patients

from those diagnosed with colorectal cancer, a proper normalisation was sought to

correct for difference in hydration levels that would effect the relative quantification of

each metabolite. It is common to normalise urine samples to the expression of creati-

nine, assuming that creatinine is only affected by hydration levels and not metabolic

dysregulation. For the normalisation strategy utilising creatinine, all features were

normalized to a targeted creatinine peak at m/z = 329, using the calibration feature

of ChromaTOF®.

Total Useful Peak Area (TUPA) was also employed for the sake of comparison.

Using TUPA, all features were normalised according to the total peak area of fea-

tures identified in all other samples. This attempts to correct for hydration level

by considering the relative expression of many features, and may guard against the

model being biased towards the integration of spurious features.

4.2.6 Data Analysis

The FS-CR algorithm was used to select a useful subset of features. Using differ-

ent samples as training, optimization, and validation sets for the construction of the

model, the algorithm utilized the aforementioned hybrid backward-elimination/forward

selection (BE/FS) mechanism to maximize cluster resolution (CR). 100 different set

combinations were used to select the features used in the model. More detailed infor-

mation about this algorithm can be found in other literature [66] [71] [128] [100].

Prior to analysis, all input was split (80:20) into training and validation sets. The

validation data was mean-centred and scaled according to the values calculated in

the training set for a critical analysis of the predictive ability of the models, and to

mimic circumstances in which this test would be employed as a diagnostic tool, where

feature-wise variance and averages would not be available for individual samples.

The training set was cross-validated using a visualisation of the Receiver-Operatator
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Characteristics (ROC) of the features that exceeded the selected survival rate of 90%.

This was to assess the utility of cross-validation metrics for GC×GC-TOFMS data,

in addition to the external validation.

PLS-DA was used to classify the training and validation sets using the selected

features, and predicted scores in the validation set were used to generate the ROC

curves.

4.3 Results

Following feature selection the results using three normalisation strategies were com-

pared: no normalisation, normalisation to creatinine, and normalisation to TUPA.

Feature selection was performed on each of the resultant datasets, and the predictive

ability of each model, as assessed by cross-validation and the indication of samples

external to the training set were assessed.

Also considered are the agreement of the samples to the three randomly-selected

quality control samples, both before and after the feature selection routine:
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Figure 4.1: Projection of quality control samples into PCA space. Confidence ellipses
represent a confidence interval of 95%.

In Figure 4.1, the data was projected into PCA space using the selected features.

The solid shapes represent the QC samples, and are connected to their corresponding

replicates by a line. Replicates that are in good agreement present a relatively short

line, while replicates that are not in good agreement present longer lines. Note that

this diagram does not indicate classification accuracy, but rather the consistency of

the data insofar as the replicates agree with each other. Due to an instrumental

failure, and the fact that the replicates were chosen randomly, replicates in class 1

(case samples - red circles) were not accessible due to shift along the first dimension

retention axis that could not be accounted for by the commercial software being used.

Control samples are indicated by the blue triangles (class 0).

A PLS-DA model was constructed using the selected features to see how well each

normalisation strategy correctly indicated the external set.
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Figure 4.2: Comparison of different normalisation techniques

Figure 4.2 summarises the results of the PLS-DA classifier on the selected features.

A decision boundary was determined using a bayesian method [79], and the ROC was

calculated based on the scores of the validation set.

For further insight into what appears to be a problem with correctly indicating the

external set, the training samples were cross-validated by re-shuffling the data into a

1:1 test:validation set using the method described in Chapter 3.
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Figure 4.3: Cross-validation results at each iteration of the FS-CR algorithm

4.3.1 Discussion

Despite the appearance of sufficient cluster resolution for the TUPA normalised data

in Figure 4.1, when a PLS-DA classifier is utilised, the samples external to the model

are not correctly indicated. As such, the model is not useful from either a practical or

theoretical standpoint, since any model used to gain insight into a biological system

such as colorectal cancer should be able to indicate samples not originally considered

in the analysis. The results of the cross-validation study also indicates that the model

has failed to function as intended, since despite extensive combinations of data fed

into the FS-CR algorithm, it is clear that the AUC for the reshuffled data does not

improve significantly.

As with any supervised learning method, validation is the most important step of

the analysis. Despite favourable projections of the entire dataset, the variables judged

as most significant by the PLS-DA model do not correspond to the same features

present in the validation set. It has been shown, despite being able to overcome some

challenges regarding GC×GC-TOFMS data, that the FS-CR algorithm can suffer

from similar drawbacks of over-fitting, as does any supervised method. This may be

due to either the content of the data itself, or the quality of the integrated features.

Error and uncertainty to do with the quality of the raw data is propagated at var-

ious stages throughout the sample preparation and introduction steps. There is error
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associated with any measurement, but similar protocols that involve the trimethylsi-

lylation of human biofluids have been used routinely for critical applications[129].

While it is straightforward to determine the measurement uncertainty for targeted

analyses, measurements of several thousand different analytes in an untargeted anal-

ysis as presented above is not trivial. However, owing to the profound reduction

of matrix effects and negligible ion-suppression during the acquisition of the mass

spectra, GC-MS and GC×GC-TOFMS are widely regarded as being as highly re-

producible techniques. To highlight this, and to further implicate the failure of the

proprietary ChromaTOF® software, shown below are replicate injections of the d4-

succinic acid internal standard; each sample was extracted, derivatised, and analysed

on different days.

(a) Sample 6014. Extracted:
2017/09/24. Derivatised
and analysed: 2017/10/01.

(b) Sample 1161. Extracted:
2017/09/25. Derivatised
and analysed: 2017/10/05.

(c) Sample 7013. Extracted:
2017/09/23. Derivatised
and analysed: 2017/09/29.

Figure 4.4: Graphical overview of relative peak areas for the internal standard
from various samples at m/z = 251. The data was acquired and visualised using
ChromaTOF®, and each black square represents the apex of a feature that was in-
tegrated by the software. Drift along the first mode affects the distribution of the
relative peak area across multiple modulations, and rules out an assessment of the
raw chromatographic signal, without first visualising it as a contour plot.

This is far from an exhaustive overview of the reproducibility of each feature that

was analysed, but the results do suggest that the peak areas for the internal standard

appear to be consistent despite a significant overlap with the un-deuterated formula-

tion of the same metabolite, which is present in relatively high levels in human urine.

It would not be unreasonable however to extrapolate the performance of this partic-

81



ular analyte to many more analytes, given that ion-suppression is not an issue. Since

the deuterated standard was not integrated in any of the samples ChromaTOF® in

any of the samples, the objectivity and utility of the software is called into question

once more. Although it may be that the samples as they were prepared and analysed

do not contain the necessary information to discriminate between case and control

samples, it is still worth pursuing further work to try and rule out the role of the data

analysis software itself.

Shown below is a graphical representation of the population of the features within

the entire colorectal cancer dataset:
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Figure 4.5: Sparsity of the colorectal cancer dataset

It appears that there is a very high degree of “zero pollution” in the data. This is

present because the commercial software algorithms identified many of the features in

at least five samples, but in no other samples. This high degree of sparsity, at 38.74%

zeros, has a similar effect to a very large, random matrix. That is, it is well-known

in chemometrics that for a sufficiently large number of random variables relative to

the number of samples, a solution that discriminates between two classes is all but

assured. This commonly held dogma cautions against disregarding model validation,
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Figure 4.6: Sparsity of selected features

despite how attractive the training set may appear to the analyst.

The FS-CR algorithm does not appear to reduce the degree of sparsity under all

normalisation routines. Despite the fact that the TUPA normalised data appeared to

present the greatest agreement between replicate and QC samples in Figure 4.1, the

sparsity of matrix for the selected features increased (Figure 4.6).

The percent of populated features following feature selection was 41.09% for the

un-normalised data, 52.79% for the data normalised to creatinine, and 31.58% for the

TUPA-normalised data.

4.4 Conclusion

Under any of the normalisation schemes utilised, there appears to be no model that

can correctly indicate the external validation set using the data pre-processing and

exploration tools that have been proposed in this chapter. As such, the proposed

models are poorly diagnostic, and are likely a poor representation of the underlying

biological phenomena. There are two possible reasons for the unsatisfying conclusion

to this research. One possible reason is that there is no usable information in the

dataset that can correctly indicate case versus control samples. While this is certainly

possible, recent studies have proven that it is possible to detect colorectal cancer

polyps at a very early stage using a metabolomic test using LC-MS [126].
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Although differences in instrumentation can account for the failure of this study,

another possibility is that the information is still present, but obscured by sub-optimal

data pre-processing methods. It can certainly be argued that the parameters that were

used are sub-optimal. As mentioned previously, optimisation of the chromatographic

processing method is highly subjective, and many combinations of settings generate

data that looks acceptable for future analysis, and it is only through many iterations

of processing the entire data set through both the chromatographic and subsequent

chemometric processing that a “correct” solution is found.

This iterative, subjective process is incredibly slow and a waste of analysts’ valuable

time. This motivated the remainder of this thesis, where robust, objective methods

for analysing GC×GC-TOFMS data without the need for many subjective inputs are

sought.
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Chapter 5

PARAFAC2×N: Coupled
Decomposition of Multi-modal Data
with Drift in N Modes

5.1 Background

Multidimensional chromatographic separations are becoming more widespread, thanks

to advances in modulator technology that have enjoyed considerable interest over the

past two decades. The most mature of these technologies is Comprehensive Two-

Dimensional Gas Chromatography (GC×GC) which is frequently hyphenated to-

gether with a Time-of-Flight Mass Spectrometer. GC×GC-TOFMS is more sensitive

and selective than traditional gas chromatography - mass spectrometry, but despite

its considerable advantages, and many innovations that have reduced the analysis cost

for GC×GC-TOFMS separations, the technology suffers from challenges surrounding

data analysis that hinder its widespread deployment. Currently, few software pack-

ages offer a transparent and mathematically satisfying way of handling data from

multiple non-target analyses such as those frequently encountered in forensics and

metabolomics. Much of the challenge arises due to the fact that chemical components

are free to shift independently along the first and second chromatographic modes be-

tween runs. This is the major drawback encountered when performing a separation

utilising multiple chromatographic modes, as opposed to tandem mass spectrometric
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detectors, which due to regular and thorough mass calibrations do not suffer from

mass-to-charge ratio (m/z) drift between runs.

A number of proposals for the analysis of GC×GC-TOFMS data, based on the well-

understood theories of Multivariate Curve Resolution (MCR) [130], Parallel Factor

Analysis (PARAFAC) [131] and PARAFAC2 [132] have been presented in the litera-

ture. Models utilising linear rank-deficient solutions have proven to do well to extract

meaningful information that is robust against interfering chemical and/or electronic

noise. The drawback of these techniques is that skilled user intervention is neces-

sary to determine the chemical rank of the data, and identify regions of interest.

While PARAFAC2 has shown to be a useful, parsimonious approach to model drift-

ing chromatographic data with multi-channel detectors such as mass spectrometers,

it is limited in that it allows for drift in only one mode.

A number of practical solutions to handling GC×GC-TOFMS data have been pro-

posed, but these typically lean heavily on the dynamic programming aspect of data

analysis. Rather than modelling the data, programmatic solutions find, analyse and

associate regions of interest across multiple samples and correlate the chemical infor-

mation for inclusion into a peak table that describes similar chemical characteristics

of different samples. This is often done as part of a commercial software solution,

or as an additional piece of software designed to work on the peak tables for each

individual sample as exported by other software packages. A major issue with dy-

namic programmatic solutions is that failure of the software at any step can result in

misalignment of analytes across multiple samples, or as is more commonly observed,

splitting misidentified peaks into separate columns. In either case, further analysis of

imperfect peak tables may lead to erroneous conclusions for untargeted analyses.

There are typically a number of different parameters that require optimisation

using the software currently available. Since there is no objective measure for the

performance of different data analysis parameters, results that best align with the

analysts’ expectations are usually assumed to be correct. While the intuition of an
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experienced analyst is certainly useful, reliance on subjective measures for model

performance is far from an ideal solution. And for complex mixtures, there is often

not an ideal set of parameters that can handle the entire dataset in such a way that

matches the expectations of the analyst. For instance, parameters that integrate

and align large peaks handily, may miss smaller peaks which fall below integration

thresholds. This then obviates the purported advantages of GC×GC-TOFMS in

terms of sensitivity.

The primary motivation for this work has been the frustrating and time-consuming

chore of curating peak tables for large (i.e. > 200 sample) studies prior to performing

multivariate analyses of the data. Curation of peak tables or feature lists currently

requires the use of a variety of imperfect commercial and home-built software tools,

at the hands of subjective analysts with varying levels of skill and expertise.

For the subsequent multivariate analyses of peak tables, optimisation of the pro-

cessing parameters is a significant time-sink, where the processing parameters for the

peak table are modified several times in order to find a set of parameters that yields

a set of peak tables that appear to be of sufficient quality. Even worse, for the care-

less analyst, it is relatively easy to generate peak tables that when processed using

multivariate tools, appear to offer illuminating results, when in fact the model may

do little more than pick up on spurious signals leading to a meaningless result.

We propose a new modelling technique that exploits the high degree of redun-

dancy in GC×GC-TOFMS , as replicate samples via a direct decomposition of the

4-way data. This approach is based off of the flexible coupling method for 3-way

PARAFAC2, with an additional coupling constraint that restricts the descent of the

extracted mass spectra calculated from models that describe the first- and second-

dimension retention drifts. While extremely useful for analysing GC×GC-TOFMS

data, this technique can offer a general theory for modelling multi-dimensional chro-

matographic data with drift in N modes, and may also be extensible to hyperspectral

imaging datasets. Much like PARAFAC2, the proposed algorithm we are calling
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PARAFAC2×2, requires only the number of components and a region of interest in

order to work. This greatly simplifies the task of analysing GC×GC-TOFMS data,

removing the long lists of parameters to be optimised and subjectivity in data anal-

ysis.

5.1.1 GC×GC-TOFMS Data Structure

A univariate detector such as a flame-induction detector (FID) performs a series of

regular measurements at regular intervals as chemical components enter the detector

from the GC column. Certain regions of a single chromatogram with one dimension

of separation can be excised to analyse the chromatographic peak in question for

quantitative purposes. An excised region is a vector of length I, where I is the

number of acquisitions in the region of interest. The relative abundance of peaks

in this region can be obtained by the euclidean norm of the vector, assuming no

interfering analytes are present within the region, or by a non-linear, parametric fit

of several idealised Gaussian or modified Gaussian [133] functions to deconvolve the

signals of chemical interference.

When the separation is coupled to a multivariate detector, such as a Mass-Spectrometer

or a Vacuum UV detector, the number of different variables encompassed by the de-

tector can span and additional mode, denoted as J . An excised region encompasses

the number of acquisitions, I by the number of individual “detectors” (e.g. mass-

to-charge ratios, or m/z, for mass spectral detectors), J . Closely co-eluting factors

can be deconvolved using multivariate methods such as MCR or ICA, both of which

decompose the resultant I × J matrix.

A single GC×GC-TOFMS chromatogram presents itself as a 3rd order tensor, while

a series of GC×GC-TOFMS chromatograms presents itself as a 4th order tensor com-

prising I × J × K × L modes of mass spectral acquisitions, mass-to-charge ratios

(mass channels), modulations, and samples. The multidimensional separation is gen-

erated by capturing fractions of effluent from the first dimension and injecting them
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at regular intervals onto the second-dimension column via the modulator. The action

of the modulator creates slices of second-order information along the first chromato-

graphic dimension, such that for an individual GC×GC-TOFMS sample the data is

a 3rd order tensor. The Lth mode describes multiple samples extracted from either

the same region of the chromatogram, or entire chromatograms depending on what

is being considered.

5.1.2 PARAFAC Modelling of GC×GC-TOFMS Data

A PARAFAC model can be constructed that describes a 4thh order tensor, X ∈

RI×J×K×L, using the Khatri-Rao (KR) product:

X = F2(DL ⊙ F1 ⊙ A)T (5.1)

Where F2 is an I × R matrix, A is a J × R matrix, F1 is a K × R matrix, and

Dl is an L × R matrix that correspond to the characteristics of the data mentioned

previously in addition to the R chemical factors that best represent the characteristics

of the data being analysed. The KR product is commonly used as the tensor product,

owing to the simplicity by which the PARAFAC model can be optimised using the

Alternating Least Squares (ALS) algorithm that is analogous to the way in which

bilinear models are traditionally optimised.

A trilinear decomposition of the unfolded tensor X ∈ RI∗K×J×L of the data can be

made, observing that the KR product of the second-dimension elution profiles (I×R)

and the modulation matrices (K ×R) are equal to a single unfolded retention mode,

of dimension I ∗K ×R:

X = (F2 ⊙ F1)DLA
T (5.2)

Which is structurally similar to the trilinear PARAFAC1 model as described by
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Kiers and Bro, substituting F for (F2 ⊙ F1):

Xk = FDkA
T (5.3)

Xk here describes a 3rd order tensor, X ∈ RI×J×K as a series of matrices, X ∈ RI×J .

This notation is used to keep the notation consistent with the original direct fitting

algorithm for PARAFAC2 [43].

It is relatively straightforward to frame the problem as a PARAFAC2 model with

multiple samples’ first- and second-dimensions unfolded as one, with L samples:

Xl = (F2 ⊙ F1)lDlA
T (5.4)

Using the direct-fitting method, there are l unique, orthogonal peak profiles of

I ∗K ×R, Pl, and a non-singular R×R matrix, F :

Xl = PlFDlA
T (5.5)

In addition to unfolding the X ∈ RI×K×J×L tensor along the first and second

retention modes to effect an X ∈ RI∗K×J×L 3rd order tensor, tensors of similar orders

can be made by “stacking” second-dimension retention profiles for an X ∈ RI×J×K∗L,

or the first-dimension retention times’ equivalent as: X ∈ RK×J×I∗L. In all cases, it is

possible to construct a PARAFAC2 model on the resultant trilinear data. In the first

case, the XI∗K×J×L appears to avoid the problem of drift in two modes, by artificially

reducing the problem to drift along one combined retention mode. This method

appears to have an additional benefit, wherein the quantities of each component are

solved for directly. It is not possible to solve for the relative expression of each

component, per sample directly using the unfolded data in the other two cases.
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5.2 PARAFAC2 modelling for 4-way data unfolded
as: X ∈ RI∗K×J×L

A PARAFAC2 model for data unfolded as: X ∈ RI∗K×J×L may appear to account

for drift in two modes; however, there are practical limitations to the PARAFAC2

model, such that this method can only properly account for drift in one mode which

in this case is the mode containing the second-dimension acquisitions. PARAFAC2

can only account for small variations in retention time drift, based on the assumption

that the inner-product matrices: F T
l Fl (unfolded scores matrices from Equation 5.4)

are consistent across all samples. In the method for direct fitting of PARAFAC2, Fl

is defined as PlF , where Pl are the orthonormal scores matrices that are free to vary

across each sample, calculated as:

Pl = XlADlF
T (FDlA

TXT
l XlADlF )−1/2 (5.6)

Through the singular value decomposition of:

FDlA
TXT

l = UkΣlV
T
l (5.7)

Pl = VlU
T
l (5.8)

Because F T
l Fl is calculated as F TP T

l PlF , and because Pl is orthonormal such that

P T
l Pl = IR ∈ ∀l, F TP T

l PlF = F TF . Consequently, F itself is assumed to be constant

across all samples, and is calculated as an average for those samples where it differs.

F is calculated from the PARAFAC model of P T
l Xl which minimises:

P T
l Xl = ||P T

l Xl − FDlA
T ||2F (5.9)

F =
L∑︂
l=1

P T
l XlADl(DlA

TADl)
−1 (5.10)
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The P T
l Xl term presents mass spectral, or second mode loading information that is

also proportional to the relative abundance of each chemical factor. Across l samples,

this information will be relatively consistent, as long as Pl is describing the latent

chemical phenomena in the same way. And for small variations in retention time,

this is not usually a problem. Small retention time drifts of each component relative

to each other may not be significant, and small modelling errors are averaged out via

the calculation of F in Equation 5.10. For unfolded data however, small drifts across

the first retention mode are in practice large drifts across the combined first-and

second-dimension modes. This problem can be mitigated using the flexible coupling

approach for non-negative PARAFAC2 by Cohen and Bro, which does not rely on the

intermediate calculation of orthogonal peak profiles, and permits modelling on more

substantial retention drift relative to the different chemical factors thanks to softer

constraints on modelling the data.

5.2.1 A Flexible Coupling Approach for Non-negative PARAFAC2

Cohen and Bro proposed a flexible coupling method for modelling non-negative scores

along the mode that is allowed to vary in the PARAFAC2 model. Using this technique,

on a 3rd order tensor, X ∈ RI×J×K the non-negatives scores, Bk, are calculated as

the minimisation of:

Xk = argmin

K∑︂
k=1

||Xk −BkDkA
T ||2F + µk||Bk − PkB

∗||2F (5.11)

Where non-negativity can be enforced for any term with any non-negative least

squares solver. The Pk and B∗ terms in Equation 5.11 are the orthonormal scores of Bk

via SVD, and an R × R latent coupling factor, which together minimize the second

term proportional to the coupling factor, µk. The flexible coupling approach for

calculating non-negative PARAFAC2 can be implemented using the ALS algorithm,

although the numerical stability depends on an appropriate estimate for the coupling

constants, µk. As the solution approaches the optimum, it’s reasonable to increase
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the coupling constants, and to tighten restriction of the coupled terms. The distance

from the optimum can be estimated using:

µ1
k = 10−SNR/10 ||Xk −B1

kD
1
kA

1T ||2F
||B1

k − P 1
kB

1∗||2F
(5.12)

After the first iteration of the algorithm, where SNR is the estimated Signal-to-

Noise Ratio for each chromatographic slice. A convenient estimate of the SNR can

be used by calculating the ratio of the first singular value to the second singular value

for non-centred data. The first singular value can be thought of as the distance along

the axis of greatest variance within the data from zero, and the second singular value

as an estimate for the noise. This assumption breaks down where there is significant

instrumental noise and the offset of the data is far from zero. However, an advantage of

GC×GC-TOFMS data is that thanks to the action of the modulator there is relatively

little chemical noise, and the aforementioned assumptions are usually sufficient.

It is possible to solve for the unfolded scores, and sample-wise relative abundances

using the flexible coupling approach for data unfolded along one retention mode as

X ∈ RI∗K×J×L

Xl = argmin
L∑︂
l=1

||Xl −BlDlA
T ||2F + µl||Bl − PlB

∗||2F (5.13)

This helps to avoid the issue of inconsistent cross-products that limit the accuracy

of the model where there is significant drift of the chemical components relative to

one another. However the scores matrix Bl, is of a relatively high dimensionality

at I ∗ K unique indices. This introduces a high number of degrees of freedom, at

the expense of the high number of replicates it is possible to achieve by unpacking

GC×GC-TOFMS data in a different fashion. It is well known that PARAFAC mod-

els benefit from relatively high numbers of replicates, and lower degrees of freedom

when compared with 2nd order modelling of the similar, unfolded data. This ex-

ploits the rotational determinacy of the PARAFAC model versus equivalent matrix
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decomposition techniques.

5.3 PARAFAC2 modelling of 4-way data unfolded
as: X ∈ RI×J×K∗L or X ∈ RK×J×I∗L

A GC×GC-TOFMS dataset comprised of multiple samples can also be unfolded

into two third-order tensors as either consecutive slabs of second-dimension reten-

tion slices, or first-dimension retention slices ( Xkl ∈ RI×J×K∗L = X:,:,k,l or Xil ∈

RK×J×I∗L = Xi,:,:,l). The matrices Bkl and Bil are score matrices for the hlth unfold-

ing of the tensor Xijkl, where h is one of k or i. The same notation applies to all of

the other matrices with similar designations.

Xkl = argmin
KL∑︂
kl=1

||Xkl −BklDklA
T ||2F + µkl||Bkl − PklB

∗
kl||2F (5.14)

Xil = argmin
IL∑︂
il=1

||Xil −BilDilA
T ||2F + µil||Bil − PilB

∗
il||2F (5.15)

The advantage with these two methods for unfolding, is that there are either K ∗L

or I ∗L numbers of replicates. The problem of inconsistent cross-product matrices is

not eliminated; however, as in either case peaks invariably disappear and reappear for

properly selected regions of interest. As mentioned earlier, the problem of inconsistent

cross-product matrices is mitigated through the use of the flexible coupling approach

for non-negative PARAFAC2.

The advantage of unfolding the data as a series of second- or first-dimension elution

profiles is that it exploits the high degree of redundancy of GC×GC-TOFMS data.

This plays into the advantages of PARAFAC over second-order modelling. However,

further manipulation of the resultant scores are required in order to solve for the

sample-wise relative abundances. This is simple to do - the scores of either Bkl or Bil

can be unfolded for each sample as an I ∗K × R matrix and the data matrix itself

unfolded as an I ∗K × R matrix. The sample-wise abundances can be solved for in

95



the least-squares sense, where by unfolding B ∈ RI∗K×R×L, it is possible to solve for

each lth slice of the tensor Dl with the similarly unfolded tensor X ∈ RI∗K×J×L:

Dl = (BTB−1)BXA(ATA)−1 (5.16)

Where A is the J ×R matrix of the extracted mass spectra, common to the entire

dataset.

There are two further advantages of unfolding the data as first- or second-dimension

retention slices: unimodality constraints can be applied using an appropriate least-

squares solving algorithm, and modelling one sample is highly extensible to further

samples. Applying unimodality constraints may help to resolve co-elutions whose

mass spectra are highly similar, but would make it difficult to factor out the noise in

a straightforward manner. Applying the calculated model to new data would make it

easy to quantify analytes of interest across different analysis conditions (e.g. analysing

a sample using a low split ratio to find analytes of interest, and then searching for

those analytes in the same region of interest using a high split ratio).

5.4 The PARAFAC2×2 algorithm

While it is clear that a GC×GC-TOFMS dataset can be decomposed in a manner that

preserves the high number of replicates, the question remains as to which retention

mode to model. In theory, the retention mode to model should have the highest

resolution between closely co-eluting chemical factors. However this information is

difficult to predict, without first calculating the model itself.

In order the minimise the reliance on dynamic programming to select an appropri-

ate method for unfolding the data, and with an eye towards creating the most general

solution possible for the deconvolution and quantification of GC×GC-TOFMS fea-

tures, we propose a method that models both models simultaneously (using Equations

5.14 and 5.15), and at convergence averages the elution scores and corresponding mass
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spectra for each of the modelled retention modes to solve for the sample-wise load-

ings. The mass spectra for each model should be allowed to vary slightly, since while

the data is the same for both models, the observed chemical environment may differ

somewhat between models. The unified model can be described as the minimisation

of the following expression:

Xijkl = argmin
KL∑︂
kl=1

||Xkl −BklDklA
T ||2F + µkl||Bkl − PklB

∗T
kl ||2F+

IL∑︂
il=1

||Xil −BilDilA
T ||2F + µil||Bil − PilB

∗T
il ||2F+

µA||Akl − Ail||2F (5.17)

If the scores and mass spectra are in good agreement with each other, the average

of the results do not differ significantly from the results of the individual models

themselves. The descent that minimises the sum of residual squares for each model

informs the learning of the other via the mass spectral coupling constant, µA. As long

as an appropriate value for µA is selected, this method is readily able to converge to

a usable solution in relatively few iterations. However if this coupling constant is too

small the two models may begin to diverge, and if it is too large then the coupling

constant may limit the descent of the mass spectra, and converge to a sub-optimal

solution. It is also important to be cognisant of risk of converging to sub-optimal

solutions, depending on the initialisation of the algorithm. For this reason, as is

commonly done with PARAFAC2, 10 random initialisations may be utilised and the

sum of residual squares was measured after 80 iterations. The model with the lowest

sum of residual squares is selected as the “correct” initialisation, and is allowed to

continue to convergence.

Shown below is the description of the algorithm in its current implementation.

For each least-squares step, constraints such as non-negativity or unimodality can be

applied depending on what is deemed appropriate for the analyst.
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Algorithm 6: Coupled PARAFAC2×2 ALS
Result: F ,Dl,A = PARAFAC2×2(X ,R)
F ∈ RI×R×K×L, Dl ∈ RR×R×L, A ∈ RJ×R, and X ∈ RI×J×K×L

initialization: B0
kl = ||rand(I,R,K ∗ L)||R, B0

il = ||rand(K,R,I ∗ L)||R
A0

il = A0
kl = ||rand(J ,R)||R, B∗0

kl = B∗0
il = ||rand(R,R)||R

D0
kl = IR,∀kl ∈ [1, K ∗ L], D0

il = IR,∀il ∈ [1, I ∗ L]
µ0
kl =

||BklDklA
T ||2F

||Bkl||2F
, µ0

il =
||BilDilA

T ||2F
||Bil||2F

µ0
A = 10ω

||Xkl−B0
klD

0
klA

0T ||2F+||Xil−B0
ilD

0
ilA

0T ||2F
||Akl||2F

i = 1
while σold−σnew

σold
> ϵσold do

for h,H ∈ k, i & I,K do
for ∀hl ∈ [1, H ∗ L] do

[U,Σ, V ] = SV D(Bhl ∗B∗
hl, R)

Phl = UV T

end
B∗

hl = ||
∑︁H∗L

hl=1 µhlP
T
hlBhl||R

Ahl = ||
∑︁H∗L

hl=1

(︂
µAAhl+XT

hlBhlDhl

DhlB
T
hlBhlDhl+µAIR

)︂
||R %% See Appendix C.1

Bhl = ||XhlAhlDhl+µhlPhlB
∗
hl

DhlA
T
hlAhlDhl+µklIR

||R %% See Appendix C.2
for ∀hl ∈ [1, H ∗ L] do

Dhl =
BT

hlXhlAhl

(BT
hlBhl)(A

T
hlAhl)

end
if i = 1 then

for ∀hl ∈ [1, H ∗ L] do
Σ = SV D(Xkl, 2)
SNR ≈ Σ1/Σ2

µhl = 10−SNR/10 ||Xhl−BhlDhlA
T
hl||

2
F

||Bhl−PhlB
∗
hl||

2
F

end
else

if i < 10 then
for ∀hl ∈ [1, H ∗ L] do

µhl = µhl ∗ 1.05
end

end
end
i = i + 1;

end
end
F = ||BklDkl +BilDil||F ∀l ∈ [1, L]

Dl =
FT
I∗K×RXI∗K×J×LA

T
J×R

(FT
I∗K×RFI∗K×R)(AT

J×RAJ×R)
∀l ∈ [1, L]

A = ||Akl + Ail||R
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Note the convention: ||M ||R in Algorithm 6 is used to denote that each factor (R)

is normalised to its Euclidean norm. For the initial mass spectral coupling constant,

µA, an additional exponential term, ω, is added to control the initial descent of the

two modes with respect to each other. That is, typically a value of 2 or 3 is used

so that the two calculated mass spectra do not diverge at the outset. This constant

becomes more important for higher component numbers, but an exact value is not

critical for the proper functioning of the algorithm. Future work may highlight a

better way to estimate this parameter at the outset.

5.4.1 Analysis of Synthetic Data using PARAFAC2×2

Synthetic data, mimicking replicate samples of GC×GC-TOFMS data was generated

in in MATLAB® 2021a to evaluate the performance of the algorithm. Random

independent drift in both the first- and second-dimension retention modes across three

samples was chosen. For the first-dimension retention time, each peak was allowed to

vary ±1.5 modulations, and for the second-dimension retention time each peak apex

was allowed to vary randomly ±25 acquisitions. Relatively few replicate samples were

chosen for this data set to make the results easier to display, and to demonstrate this

algorithm’s utility despite handling relatively few samples. Synthetic mass spectra

were generated from random distributions of 45 “peaks” representing isotopic mass

distributions, and each spectrum was normalised to its Euclidean norm. Nominally,

the SNR was set to 500. White noise was added across every acquisition, modulation,

and mass channel relative to the maximum score value out of all components, per unit

of SNR. An additional offset of 6 times the maximum score value out of all components

per unit of SNR was added to ensure that all data was positive. The distribution for

each peak along the first-dimension retention time was set at 1.5 modulations, and

along the second-dimension retention time 20 acquisitions. The magnitude of the data

was multiplied by a factor of 104 to simulate ion counts typically encountered during

GC×GC-TOFMS experiments. The synthetic data was then inspected to ensure a
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visual similarity to real data, by examining the retention profiles across all channels.

The code used to generate the synthetic data, as well as the PARAFAC2×2 algorithm

is available online at https://github.com/mdarmstr.

All computations were performed on a computer equipped with an Intel® Core™

i7-6700K CPU @ 4.00 GHz with 16.0 Gb of installed memory (RAM) using a 64-bit

Windows 10 operating system.

Hyperparameters and convergence criteria for the PARAFAC2×2 algorithm as ap-

plied for the synthetic experiments were as follows: ϵ was set at 2.5× 10−6, and the

number of iterations during which the coupling constants µkl, µil, and µA the coupling

constants increased was 10. The non-negative solver used was the Fast Combinatorial

Non-negative Least Squares algorithm [49]. A constant of 3 was used as the value

for ω. In both cases, the algorithm converged to a solution in fewer than 30 iter-

ations, which took less than 30 seconds in total. Initialisation estimates were not

replicated to critically assess the utility performance of the algorithm, but several

random initialisations are possible in practise.

Because of the way the data is generated, the expected peak intensities depend

on the maximum score of each of the input factors. This maximum score varies,

depending on the first-dimension retention times (i.e. a Gaussian along the first

dimension may be modulated close to its apex in one sample, and further away from

its apex in another sample), but the recovered abundances are in relatively good

agreement with our expectations despite this limitation in precision.

The cosine correlation coefficient (cos(θ)) was used to measure the agreement be-

tween the calculated and synthetic scores and loadings (νSY N , and νOBS) using the

unfolded GC×GC scores and mass spectral loadings. This was calculated as the inner

product of each pair of matrices, with each column normalised to its Euclidean norm
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such that for each pair of entries:

cos(θ) =
νSY N · νOBS

||νSY N || · ||νOBS||
(5.18)

The percent variance explained was calculated using the formula from Bro et al.

[43]

%V AR = 100×

(︄
1−

∑︁I
i=1

∑︁J
j=1

∑︁K
k=1

∑︁L
l=1

(︁
Xijkl − FDlA

T
)︁2∑︁I

i=1

∑︁J
j=1

∑︁K
k=1

∑︁L
l=1 (Xijkl)

2

)︄
(5.19)

Shown below are the results of analysing a synthetic two-component elution. For

ease of comparison, an extra component was not used to model the noise.
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Figure 5.1: A simulated two-component model with a nominal SNR of 500. The
percent variance explained using this model was 99.9959%. The calculated model
demonstrates almost perfect agreement with the synthetic data.
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Figure 5.2: A simulated three-component model with a nominal SNR of 500. The
percent variance explained using this model was 99.9565%. These results are good,
despite almost complete overlap between two components in sample 1.

The components in the synthetic data are indexed in different positions relative to
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the calculated features, but they can be related to each other using a permutation

matrix, so this difference is inconsequential.

PARAFAC2×2 is stable for analyses with seven components, based on the synthetic

data that was tested. Beyond this level of complexity, the algorithm appears to have

issues with reliable deconvolution of the signals. These issues may have arisen due to

some limitation of the algorithm to deconvolve very complex data, or due to the fact

that there is a limited amount of separation space for the synthetic data. However,

for GC×GC-TOFMS data from a well-optimized separation and with a properly-

sized region of interest, this limitation should be of little practical import. Further

experiments will be needed to explore the limitations of this algorithm on a variety

of different datasets.

5.4.2 Analysis of Calibration Data using PARAFAC2× 2

Calibration data from a metabolomics study were used to test the PARAFAC2×2

algorithm. Presumably, calibration data follows a predictable trend that can be used

to judge the utility of PARAFAC2×2 for quantitative and targeted analyses.

Experimental Data Collection

A region of interest was excised from a calibration experiment, containing 67 different

calibrants that were dissolved in an amenable organic solvent mixture (either 50%

Acetonitrile - 50% Water, or 50% Isopropanol - 50% Toluene for polar and non-polar

compounds respectively). Standard solutions were aliquotted at different volumes

into 2-mL GC vials and blown down under nitrogen at 40◦C. Residual moisture was

removed by adding 100µL of toluene dried under anhydrous sodium sulfate, which

was again blown down using a stream of nitrogen at the same temperature. The

dry residual extract was derivatised following a standard two-step methoximation /

silylation approach. Briefly, 50 µL of 20 mg/mL methoxyamine HCl in pyridine at

60◦C for two hours, followed by 100 µL of MSTFA at 60◦ C for 1 hour. Based on
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the expected concentration of each standard within the pyridine/MSTFA solvent,

and the 1-µL splitless injection volume, the relative quantification results from the

PARAFAC2×2 were plotted against the calculated pg of analyte that reach the head

the first GC×GC-TOFMS column.

The two analytes present in this region of interest are the trimethylsilyl (TMS)

derivatives of salicylic acid and adipic acid (in this case, both derivatised molecules

contained two TMS groups). Their identities were confirmed by examining their

retention indices, mass spectra, and analysing samples each containing a small fraction

of analytes for confirmatory purposes.

5.5 Extension to Multidimensional Separations Data

Higher-order separations present an exciting new avenue of research for the analysis of

complex samples. However, while it is not impossible to model GC×GC-TOFMS data

by unfolding the retention times as a single retention mode, unfolding scales poorly for

higher-order chromatographic separations (e.g. GC× GC×GC, LC×LC×LC, LC×

GC×GC, etc). In addition to the excess degrees of freedom, there are practical issues

for calculating excessively large matrices, related to the available memory on the com-

puter system being used for the calculations. Utilising higher-order separations has

found more favour in the relatively new field of multidimensional liquid chromatog-

raphy, since the peak widths are generally much larger and there are fewer practical

limitations with regard to the sampling rate of the mass spectrometer [136]. Some

work has been done using comprehensive three-Dimensional Gas Chromatography-

Time-of-Flight Mass Spectrometry[137], but some issues persist with the published

setup - since the instrumental sampling rate was limited to 200 Hz for third-dimension

peaks eluting with a peak width of 50 ms, the sampling rate for a single peak is limited

to about 3-4 acquisitions per peak.

Consider a comprehensive three-dimensional separation, which can be described us-
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Figure 5.3: Results of the analysis of calibration standards using PARAFAC2×2. The
analysis utilised three-factors, but the noise component was not displayed for ease of
visualisation. Plots for the scores and TIC chromatograms are displayed for the 8th

sample in the calibration, where the calculated mass of the analyte on column was
2732.1 pg for salicylic acid (2TMS) and 1551.9 pg for adipic acid (2TMS)
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ing an intuitive extension of Equation 5.2 for a 5th order tensor, Xijklm ∈ RI×J×K×L×M

structured so that it contains I acquisitions along the third retention mode, K mod-

ulations from the second to the third dimension, and L modulations from the first

to the second separation dimension. DM represents the quantitative loadings for the

M th sample, and A is the matrix of J ×R mass spectra.

Assuming that the practical aspects of higher-order separations with hyphenated

multivariate detection methods (such as mass-spectrometers or spectroscopic meth-

ods) are overcome, it is possible to model N -dimensional drift using the same prin-

ciples that guided the expressions developed previously for GC×GC-TOFMS data,

where X ∈ RI×J∗K∗L∗M

X = F3(DM ⊙ F2 ⊙ F1 ⊙ A)T (5.20)

Or using unfolded data, where X ∈ RI∗K∗L×J×M :

X = (F3 ⊙ F2 ⊙ F1)DMAT (5.21)

A model similar to the one proposed for GC×GC-TOFMS data can be constructed

for an Xijklm tensor with drift in three modes.

Xijklm = argmin(||Xklm −BklmDklmA
T
klm||2F + µklm||Bklm − PklmB

∗T
klm||2F

+ ||Xilm −BilmDilmA
T
ilm||2F + µilm||Bilm − PilmB

∗T
ilm||2F

+ ||Xikm −BikmDikmA
T
ikm||2F + µikm||Bikm − PikmB

∗T
ikm||2F

+ µA||Aklm − Ailm||2F + µA||Aklm − Aikm||2F + µA||Ailm − Aikm||2F ) (5.22)

Where Xklm ∈ RI×J×K×L×M = X:,:,k,l,m, and other 3rd order X tensors follow

similar convention, with the subscripts indexing what slices are being considered.

Matrices associated with the non-negative PARAFAC2 decomposition are denoted

by similar subscripts.
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The number of terms that restrict the dissimilarity of the mass spectra with respect

to the different methods of unfolding that data are related to the number of possible

combinations of each of the terms, which is equal to the binomial coefficient, NC2.

For even higher orders of separations further extensions are possible, but it is not

convenient nor especially useful to come up with a generalised notation for these

circumstances. The authors leave this exercise to the interested reader.

5.6 Conclusions

A general theory of modelling separations data with drift in multiple modes is pro-

posed, and has been shown to work on experimental and synthetic data that are close

to the worst possible scenario for independent chromatographic drift in two modes.

The presents a parsimonious method for the deconvolution of signals and extraction

of both qualitative and quantitative metrics from GC×GC-TOFMS data, and elim-

inates the need for unreliable dynamic programming routines that may contribute

to peak splitting and/or peak drop-out commonly encountered in GC×GC-TOFMS

peak tables.

For targeted analysis of GC×GC-TOFMS data, this algorithm is sufficient. De-

termining appropriate regions of interest and a value for the component number is a

relatively simple task for a handful of components. Since the component number is

specific to each region, the number of parameters required scales with the number of

components being analysed in a series of chromatograms. While the number of data

analysis parameters does not scale with the number of components being analysed

using the currently available commercial offerings, there is still certainly a high de-

gree of complexity inherent to analysing entire chromatograms using a single set of

parameters, and there is no guarantee that a single set of parameters will be sufficient

to analyse all of the desired targets with a high degree of accuracy. The approach

proposed by the authors is more flexible, similar to the application of PARAFAC2

to GC-MS experiments, but requires skilled user intervention. This is a significant
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first step towards a holistic chemometric method for pre-processing entire GC×GC-

TOFMS experiments, but additional work is required to automate the selection of

regions of interest and choosing appropriate component numbers for each region.

It is also possible to model single samples using PARAFAC2×2, since a high num-

ber of replicates are inherent even with a single GC×GC-TOFMS sample. This makes

modelling of single chromatograms extensible to larger numbers of chromatograms us-

ing the same model, and the results of the analysis for one sample may be extrapolated

to several more.

Additional investigations are needed to evaluate this technique in relation to dif-

ferent methods for unfolding the data, which is not a trivial task, and is deserving

of its own article. Considerations for the practicality of unfolding data in a way that

generates more replicates at the expense of degrees of freedom, and computational

efficiency must be considered. However, to the best of the authors’ knowledge this al-

gorithm is the first of its kind applied to multidimensional chromatographic data, and

represents a significant leap forward for the field of GC×GC-TOFMS data analysis.
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Chapter 6

A priori prediction of chemical rank
in gas chromatography - mass
spectrometry data with projection
pursuit analysis

6.1 Introduction

Matrix decomposition techniques are a family of ubiquitous mathematical, and/or

chemometric methods often used to extract chemical information from overlapping

multivariate signals, commonly observed in gas chromatography-mass spectrometry

(GC-MS) data. Interpretation of coelutions presents a significant data analysis chal-

lenge for which matrix decomposition techniques are well-suited. The natural com-

petitor of GC-MS, High-Performance Liquid Chromatography - Mass Spectrometry

(LC-MS), largely evades the problem of overlapping signals through the use of tan-

dem mass analyzers, high-resolution mass spectrometers, and soft ionization (hence

little-to-no fragmentation of ions). Conversely, GC-MS is typified by hard electron

impact ionization (abundant fragmentation, with potential for common fragments in

coeluting compounds), and single-stage, unit-mass spectrometers. This necessitates

the development of additional software tools for processing data.

Techniques based on Multivariate Curve Resolution (MCR) [20], Independent Com-

ponent Analysis (ICA) [138], and PARAFAC/PARAFAC2 for N-way analyses [42]
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[43], have all been applied to the analysis of closely co-eluting factors in GC-MS data

to extract identifiable mass spectra and quantitative peak profiles. The advantages

of these techniques over various commercial offerings, is that matrix decomposition

techniques are generally more robust against integration artefacts which can arise

from random fluctuations of background noise, sub-optimal user parameters, or out-

right failure of proprietary algorithms in commercial software [139]. Problems with

current commercial implementations are numerous [140], and can be especially sig-

nificant for commercial GC×GC-TOFMS software [141] [142]. To counteract the

relatively low industry standards for GC-MS data analysis, a platform implementing

PARAFAC2 has been released: “PARAFAC2 based Deconvolution and Identification

System” (PARADISe) [139]. PARADISe allows users to extract high quality data, but

relies on experienced-user intervention for the selection of regions of interest (ROIs),

and the selection of an appropriate number of significant signal components in each

region. Determining an appropriate component number, k, has been a bottleneck for

the application of matrix decomposition techniques for automated data processing,

and is often considered to be a fundamental problem in the practice of chemometrics

[143].

Establishing a threshold for % variance explained, or determining the “elbow” in the

calculated eigenvalues [144] [145] [146] are somewhat arbitrary. The correct threshold

can vary depending on a number of factors, such as each components’ signal-to-noise

ratio, and the characteristics of the baseline noise. The elbow method calculates the

distance from each eigenvalue to a diagonal line from the first- and last-calculated

eigenvalues. This method is reliant on an appropriate number of calculated eigenval-

ues, which dictate the slope of the line, and tends to underestimate k when there is

more than one elbow in the series of eigenvalues. Cross-validation techniques are an-

other common way of determining the correct number of components [147], where the

predictive ability of models with particular values for k are measured, and the value

of k for the best performing model is selected as the optimum. Calculating several
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models, which is necessary for cross-validation techniques, is computationally inten-

sive, and can be somewhat deceptive when it comes to deconvolution-type problems,

as there is not a clear metric by which to assess the number of useful chemical com-

ponents for two-way data. Even so, calculating several models for cross-validation

purposes is still time-consuming given widespread reliance on the alternating least

squares algorithm and nonetheless would benefit immensely from an initial estimate

for the number of components, so as to reduce the number of models to calculate.

Worth mentioning is the Core Consistency Diagnostic (CORCONDIA) [148] for

tensor decomposition, which solves for the super-diagonal entries of the core tensor

for a Tucker model using the calculated loading matrices of a PARAFAC model for

a particular number of components. For a model with an appropriate number of

components, the super-diagonal entries should be close to 1, the off-diagonal entries

should be close to zero, and a model quality measure between 0 and 1 (typically

displayed as a percentage) can be determined. CORCONDIA has been generalised

for use with PARAFAC2, and has been deployed for semi-supervised manual inter-

pretation of raw GC-MS data [149] [139]. Convolutional neural networks have also

been applied within the framework of PARADISe to classify different components as

baseline noise, shouldering peaks, or useful chemical features [150].

Methods introducing a degree of statistical rigour have been influential, but many

theorems have too broad a scope for applications in matrix decomposition [151] [152]

and are generally not used. Other techniques have been published, but are somewhat

utilitarian in nature [153] [131].

Choosing the correct number of components for a principal component analysis

(PCA) [154], or for k-type clustering methods [155] have received considerably more

attention in the literature. Although it is worth noting that an appropriate number of

principal components is much less critical for principal component analysis than it is

for the decomposition techniques used in deconvolution. Overestimating the number

of components in PCA for example, only risks over-fitting, and does not dramatically
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change the results of the analysis as it would for MCR, ICA, or PARAFAC2. That

is, principal component N + 1, does not affect how principal components 1 to N are

calculated, even though the reverse is true. It is nonetheless worth mentioning there

are a number of methods to estimate an appropriate number of principal components

automatically and, at least in theory, some of these techniques could be applied to

deconvolution. A major drawback of techniques based on observing the diminishing

significance of subsequent principal components, is that it poorly accounts for chemi-

cal factors with highly similar mass spectra. In these cases, as many as one principal

component could reasonably account for the variance explained by dozens of factors

with highly similar mass spectra. This is a common problem for regions of interest

that present a high number of coeluting branched alkanes for example.

In this submission, we present an approach that decomposes a chromatographic

region via the automated pursuit of a projection index that minimises the kurtosis

of the resultant score matrix. If the data is scaled in an appropriate way, the scores

cluster in such a way that an appropriate prediction for the chemical rank of the

matrix can be made using a density-based clustering approach.

6.2 Motivation

For an m× n matrix, X, of m observations (sequential spectral acquisitions for GC-

MS-type data) and n variables (Mass-to-charge ratios (m/z) for GC-MS-type data)

where (m,n) ∈ ℜ, there will exist k significant chemical factors that can be extracted

as linearly independent parallel vectors via a matrix decomposition:

X = CST (6.1)

C is an m × k matrix containing the scores, or elution profiles, and ST a k × n

matrix of the loadings, or characteristic mass spectra, for the kth factor of the matrix

X. Typically, S is normalised to each columns’ euclidean norm such that the matrix
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C contains the quantitative information. There are several ways of solving for these

two factors, either by selecting a number of components that maximise the statistical

independence of the elution profiles, C, as is the case for ICA, or by approximating

each C, and S matrix via their least-squares solution iteratively, as in MCR-ALS. The

chemical rank of the matrix, is the integer value for k that corresponds to the number

of parallel vectors in the matrices C and S. An appropriate value for k is generally

understood as being the value that best represents the latent chemical phenomena

present within the matrix. A human analyst is typically the best judge of this, but

it is possible to imitate an analysts’ thought process by making some assumptions

about what projections of the data are worth considering.

Projection Pursuit Analysis (PPA) is a technique first proposed by Friedman and

Tukey [35] that seeks to find “interesting” projections based on the pursuit of an

interesting projection index. This is a general enough description to encompass a

other common linear decomposition techniques: ICA maximises a projection index

of statistical independence, and PCA maximises an index of the explained variance

of the data. All projection indices make assumptions about what characteristics of

the data are most interesting for the analyst, save for those instances where the

projection index is selected manually. Hou and Wentzell in 2011 [30] first described

the minimisation of kurtosis as a projection index to reveal resultant clustering of

the data. This was motivated by the observation that highly resolved score clusters

present a very low kurtosis K, or tendency for the data to feature a relatively low

number and extremity of outliers. Similar observations with a larger measure of

kurtosis are generally unimodally distributed, with a higher number of more extreme

outliers. Kurtosis can be described by the following equation:

K =
1
n

∑︁n
i=1(zi − z̄)4

1
n
(
∑︁n

i=1(zi − z̄)2)
2 (6.2)

Where zi refer to the score of each sample, as projected along a vector, v such that
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zi = xT
i v. Calculation of the projection vector is tantamount to minimising:

K =
n
∑︁n

i=1

(︁
vTxix

T
i v
)︁2

(vTXTXv)2
(6.3)

With respect to v, and determination of subsequent projection vectors can be made

on the deflated matrix. Equation 6.3 was minimised by Wentzell and Hou [30] using

a quasi-power method, and their algorithm was used for this work.

In order to make GC-MS data cluster in a way that’s directly observable using a

density-based metric, an appropriate scaling and pre-treatment of the data must be

applied. Normally, the change in intensity of a Gaussian peak increases until it reaches

an inflection point at x = µ±σ for an idealised distribution. The change in intensity

continues until the peak at x = µ is reached, and the observed change in intensity

increases and decreases similarly in the opposite direction. This idealised Gaussian

behavior is frequently observed when modelling the scores of any decomposition of

GC-MS data, and the resultant scores are typically rather diffuse for mean-centred

and/or autoscaled data (i.e. the resultant scores’ rate of change tends towards a

reduction in density, rather than an increase). To counteract this, each acquisition

can be scaled such that the intensity of each mass channel is bounded between 0 and

1 - commonly referred to as row-wise min-max scaling. In effect, this encourages the

resultant scores to cluster, by diminishing the effect of the changing intensity for each

of the peaks being analysed. Since the PPA algorithm works best on low-dimensional

data, the data was reduced to be approximately 5 times more variables than the

number of observations. Savitsky-Golay filtering was also employed to smooth the

data prior to analysis, with a polynomial order of 5, and a window size equal to the

minimum sample number for clustering + 4 (in this case, an odd number was always

selected).

Density-based spatial clustering of applications with noise (DBSCAN) was used

to estimate the number of clusters within the projection pursuit scores. Two major

parameters, the ϵ neighbourhood of each point, and the minimum number of neigh-
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bouring points required to form a cluster, can be estimated based on acquisition rate

of the instrument and expected peak-width ( 2σ) for each peak. These parameters are

also relatively easy to optimise, depending on the needs of the user. A typical value

for ϵ was 0.3, and a typical value for the minimum number of samples for inclusion

into a cluster was 5. A drawback of using DBSCAN here is its dependence on assign-

ing a single class membership to each observation. For poorly resolved components,

despite obvious clustering in the PPA scores, it is not always possible to assign repre-

sentative class membership. However the most significant benefit of using DBSCAN

is its ability to return an estimate for the number of clusters.

6.3 Materials and Methods

Test data was acquired from different sources to best evaluate the effectiveness of

the technique across different operating conditions. Gas Chromatography - Time-of-

Flight Mass Spectrometry (GC-TOFMS) data with a relatively high sampling rate

was previously published with the ICA-OSD package, and the operating conditions

under which it was collected are highlighted in the original study from which it was

obtained [156]. Gas Chromatography - quadrupole Mass Spectrometry (GC-qMS)

data with a relatively low sampling rate was extracted from an anonymous study

performed on an Agilent Technologies 5975C MSD (Agilent Technologies, Missisauga,

Ontario, Canada) equipped with a nominal 30 m (5% phenyl / 95% methyl)-equivalent

stationary phase, 0.25 mm internal diameter × 0.25 µ m film thickness capillary

column. Ultra-high purity helium (5.0 grade; Praxair, Edmonton, AB) was used as a

carrier gas operating under speed-optimised flow (2 mL/min) and an optimal heating

rate of 10 per minute of system dead time. The temperature program was initially

held for two minutes at 40 and at the end of the run at 325 for 5 minutes. The

single quadrupole collected three mass spectra per second from 25 to 500 m/z.

GC×GC-TOFMS data was collected on a Leco Pegasus 4D GC×GC-TOFMS with

a quad-jet liquid nitrogen cooled thermal modulator. The first-dimension column was
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a 60 m × 0.25 mm internal diameter × 0.25 µm film thickness Rxi-5SilMS (5% phenyl)

and the second-dimension column used was a a 1.2 m × 0.25 mm internal diameter

× 0.25 µm Rtx-200MS (trifluoroproyl). Helium was used as the carrier gas at speed

optimised flow (2 mL/min) and an optimal heating rate of 3.5 ◦C/min from an initial

temperature of 80 ◦C held for 4 minutes, and a final temperature of 315 ◦C held

for 10 minutes. Mass spectra were collected at 200 Hz between 50 and 660 m/z.

The detector voltage offset was optimized according to the internal quality control

parameters of the instrument with an electron impact energy of -70 eV. The ion source

temperature was 225 with a transfer line temperature of 225 .

Synthetic GC-MS data was generated with an in-house MATLAB® function using

a manually curated list of 100 different mass spectra obtained from the from the 2017

version of the National Institute of Standards and Technology Mass Spectral Database

(NIST MS Database). Among the list were 40 common targets for ignitable liquid and

pesticide analysis, and 60 randomly selected chemical components that were judged

to be amenable to analysis by GC based on their experimental or estimated retention

indices as reported in the NIST MS Database. Many of the common targets for

ignitable liquid analysis, such as the alkylbenzenes and structurally similar alkanes,

produce fragmentation mass spectra with many common ions and a high degree of

similarity. Consequently, the benefits and limitations of this technique for coelutions

of compounds with highly similar mass spectra are demonstrated in Appendix D.

Computations were performed on a Lenovo ThinkCentre M700 running Ubuntu

18.04 LTS “Bionic Beaver” with 8 GB RAM, and an Intel i3-6100T CPU @ 3.20

GHz. All routines were implemented using MATLAB® 2020b. Multivariate Curve

Resolution (MCR), and Savitsky-Golay Smoothing were performed using PLSToolbox

8.91.

Projection pursuit analysis was performed using the quasi-power described by Hou

and Wentzell [30]. 7 projection score vectors were used for analysis of subsequent

clustering. 50 initialisations of the data were used to ensure convergence to a global
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optimum. The DBSCAN algorithm used was part of the scikit-learn Python pacakage,

which appeared to offer better performance on these data [157].

The algorithms in this work have been published elsewhere, and the proposed

method is trivial to implement. The experimental data used in this work can be

found online at: https://doi.org/10.7939/DVN/NTLBGY.

6.4 Results and Discussion

6.4.1 GC-MS Results

MCR is a well-established technique for the deconvolution of 2-way GC-MS data, and

non-negativity constraints were used to ensure the results corresponded to quantita-

tive latent phenomena. k component numbers were calculated from the clustering of

the PPA scores using DBSCAN. MCR loadings were normalized to their maximum

m/z value and compared to library spectra from the NIST database via dot product

calculations. The highest scoring library spectra are listed as a match, with the dot

product converted to a percentage for the corresponding match factor.

The following dataset was collected on a quadrupole GC-MS, presenting a relatively

low sampling rate. The results of the automated analysis are summarized in figure

6.1.
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Figure 6.1: Summary analysis of a chromatographic region, with each of the compo-
nents accounting for 92.7%, 96.5%, 98.6%, 99.7% percent variance explained, respec-
tively. Projection pursuit scores with their predicted cluster membership are found
in A, and the cluster memberships are visualised using the raw data in B. Using the
predicted number of chemical factors, the resultant MCR scores are presented in C,
and the results of the library searches are presented in D. ϵ value used for clustering
was 0.3, and the minimum number of samples for clustering was 3, owing to the low
sampling rate of the instrument.
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The algorithm was able to identify several chromatographic regions that corre-

sponded well with the latent chemical factors, as subsequently deconvolved by MCR.

Although this appears to be a reasonable estimate for the chemical rank of the ma-

trix, one of the factors as identified by PPA-DBSCAN (Component 4) was split across

multiple acquisitions in a manner that suggests that this factor was spuriously iden-

tified. This behaviour, combined with the relatively low library match statistic for

this component suggests the presence of a significant amount of noise being captured

as (or in conjunction with real signal) in Component 4.

6.4.2 GC-TOFMS Results

Analysing one of the datasets from the ICA-OSD package, “gcms1”:
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Figure 6.2: Summary analysis of a chromatographic region, shipped as part of the
ICA-OSD package. Each component accounts for 46.8%, 70.8%, 97.1%, and 99.9%
of the variance explained, respectively. ϵ value used for clustering was 0.3, and the
minimum number of samples for clustering was 5, reflecting the higher sampling rate
of the instrument used for the analysis.
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The library hits for each of the components score relatively low, but each compo-

nent profile appears to correspond to a real chemical feature that was identified by the

PPA-DBSCAN algorithm. This could be due to the relatively low number of deriva-

tized metabolite standards in the NIST database that was used for this work. The

benefits of a higher sampling rate are apparent in this analysis, since each identified

cluster appears to correlate to real chemical features in the data.

6.4.3 Considerations for GC×GC-TOFMS Data

This algorithm can in theory be used for GC×GC-TOFMS unfolded along a sin-

gle retention axis; however, there are practical limitations to using PPA for large

datasets, since the global optimum for even smaller datasets is not always easy to

find. A workaround is to sum the modulations, or second-dimension acquisitions to

reconstruct either the first- or second-dimension retention times. This presents some

challenges for automation, since it is difficult to tell along which axis multiple com-

ponents are best resolved, without first calculating the model. As well, reconstructed

first-dimension chromatograms present much fewer observations for a typical region

of interest, but reconstructed second-dimension chromatograms typically offer less

resolution due to the very short length of the second-dimension column. An example

of this can be found in Appendix D.

6.4.4 Limitations of the approach

This approach is primarily limited by the clustering step, which makes it difficult to

assign class membership to components where there is significant overlap with other

co-eluting chemical factors. These factors are typically excluded from the clusters as

noise, or incorrectly assigned to a more prominent component.

For small regions of interest with relatively low sampling rates, there are few ob-

servations in the resultant matrix. Fewer observations make the clustering step more

difficult, but also analysis by projection pursuit analysis since the kurtosis of the
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resultant scores is not as obvious.

Examples of algorithm failure can be seen in Appendix D.

6.5 Conclusion

Kurtosis minimisation appears to be a useful projection index for predicting the

number of significant components in GC-MS data. While DBSCAN has been used

to make an automated estimate for the k component number, it presents a number

of drawbacks related to the necessary input parameters, and the fact that one ob-

servation must be assigned a single class membership. Nonetheless, our preliminary

results show that it is possible to discover useful projection vectors leading to clearly

identifiable clusters, that correlate with a useful prediction of k.

GC-MS data is among the most challenging types of data to analyse, since chemical

factors present in co-elutions often feature highly similar mass spectra. Projection

pursuit analysis can be used to discover small differences in these mass spectra, and

the resultant score clusters may resolve well enough to distinguish them. Correctly

indicating the number of chemical components is only half of the required theory for

an objective and parameter-free analysis of an entire GC-MS chromatogram. As it

currently stands, user input is still required to identify regions of interest that are

well-enough resolved from neighbouring regions of interest. A current standard for

region of interest selection and component number determination is currently absent,

and demands a great deal of innovation on both fronts. It is the authors’ hope

that this work presents an exciting new avenue for the automated determination

of k component numbers, and will lead to parameter-free analysis of entire GC-MS

experiments.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The primary aim of this thesis was to improve the methods by which users of GC×GC-

TOFMS can transform their raw data into useful information, with minimal impacts

from artefacts and spurious signals.

The numerical solution for the cluster resolution metric has been proposed, and

critically tested on a number of different datasets. Improvements to the computational

efficiency of this algorithm may enable its deployment as an online tool sometime in

the near future. As well, the speed with which the cluster resolution metric can be

calculated enables more combinations of data, and has been shown to generate reliable

results for classification problems that rely on peak table output from commercial

software. Any feature selection routine is limited by the quality of the input data

however, and external validation of the model remains the gold standard by which

selected chemical factors can be judged as significant.

There are a number of challenges posed by commercial offerings to process GC×GC-

TOFMS data: subjective settings for integration parameters, and an inability to cor-

rectly process both trace analytes and overloaded analyte signals in the same chro-

matogram while accounting for drifting signals. As such, a new processing algorithm

has been proposed. PARAFAC2×2 allows users to analyse either single or multiple

chromatograms within a particular retention window, without excessive parameters
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and within a reasonable amount of time. Compared with more straightforward meth-

ods of analysis, such as unfolding the data along a single retention axis, this method

preserves the high degree of redundancy for GC×GC-TOFMS data that greatly bene-

fits tensor decomposition methods. This has proven to be useful for targeted analyses,

as demonstrated with calibration data, and removes much of the uncertainty to do

with identifying features from the output of ChromaTOF®, since the mass spectra

are deconvolved in tandem with the sample-wise loadings. The results appear to be

highly interpretable, and seem to correspond well to the latent chemical phenomena

being studied.

Sometime in the near future the ultimate goal of this type of research will be auto-

mated application of chemometric tools for parameter-free pre-processing of GC×GC-

TOFMS data. To enable this, a novel technique for the estimation of the number of

latent factors (i.e. the chemical rank) has been proposed, utilising PPA that minimises

the kurtosis of the manifest scores. The clustering of these scores on appropriately

pre-processed data appear to cluster in a way that correlates to the number of chem-

ical factors in the matrix being studied. Although there are still some parameters

that need to be tuned by the analysis, with respect to the clustering algorithm: DB-

SCAN, it appears as though this technique offers simple a theoretical framework for

the estimation of the number of chemical factors within a dataset.

7.2 Future Work

7.2.1 Future work to do with FS-CR

There are two main categories of consideration for future work: the first is to do

with the cluster resolution metric. The cluster resolution metric currently minimises

a very complicated parametric equation using the Nedler-Mead Simplex algorithm.

This is relatively easy for the computer to manage, since the complexity is largely

due to arithmetic operations. However, scaling the cost function for determinations of
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the cluster resolution metric in higher dimensions will become prohibitively difficult,

and troubleshooting any errors even more so. The first step for the extension of the

cluster resolution metric to higher dimensions will depend on the application of more

standard matrix mathematics to find a minimum of a much simpler cost function.

This should be easy to do using the ALS algorithm.

It is also suspected that the cluster resolution metric may be a superior metric for

assessing model quality in classification methods, and by extension many wrapper-

type routines for feature selection could stand to benefit from utilising the cluster

resolution metric, as opposed to cross-validation metrics alone. As mentioned previ-

ously, the improvements to using cluster resolution have to do with the granularity

of the model quality results. As a non-linear optimisation problem with a smooth

surface close to the optimum, small differences in the sample positions in PCA space

can have a measurable effect on the results of the analysis by cluster resolution, re-

gardless of whether there are samples that have crossed the decision boundary based

on the inclusion or exclusion of a variable being considered. Future work will involve

building identical feature selection routines: one using cluster resolution, versus one

using a cross-validation metric and comparing the results on various datasets with

known solutions to the problem.

7.2.2 Future work to do with PARAFAC2×2

Extension of the PARAFAC2×2 algorithm to higher-order chromatographic, or ion

mobility modes presents an exciting avenue for tensor decompositions, and more

application-oriented analytical chemists. Doing so will be less straightforward, since

it will require the derivation of new cost functions related to the expression postulated

towards the end of Chapter 6. However, the rewards for reliable identification and

integration of extremely complex chromatographic data may well be worth it.

Flexible coupling PARAFAC2, and PARAFAC2×2 both rely on several initialisa-

tions to ensure convergence to a global optimum. This is a computationally intensive
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process, and may slow down batch analyses of multiple chromatographic regions of

interest considerably. Work is currently underway to perfect an algorithm that pro-

vides accurate initial guess for Flexible coupling PARAFAC2, and PARAFAC2×2,

using Independent Component Analysis (ICA). This approach appears to provide

more informative initial estimates for the score profiles, and ensures convergence to

the same solution every time. However, testing on further datasets is necessary to

lend credence to the idea that the initial estimates as provided by ICA are close to a

global optimum.

Examining the sample-wise loadings of PARAFAC2×2 does not appear to be par-

ticularly sensitive for quantitative analysis, despite the relatively tight error bars

for even extremely overloaded samples. To counteract this, it may be possible to

use the calculated scores to solve for quantitative, multivariate information in the

mass-spectral mode, and to perform a multivariate regression on those data, for each

chemical factor within a region of interest. Doing so may improve the sensitivity,

but a critical evaluation of the model performance will need to be done on external

validation (in this case, spike recovery) samples for either case.

7.2.3 Future work on Applications

The second category of major avenues for future work revolve around application of

the new tools presented within this thesis for the analysis of the existing datasets.

Many tentative bio-markers have not been conclusively identified, and it is currently

unknown if this is a problem with the ChromaTOF® software, the library search

tool, or if the molecules themselves are unknown and lack any library standards. As

mentioned previously, a damning critique of ChromaTOF® is an absolutely necessary,

but not particularly interesting avenue of research, given the scale and difficulty of

the task. Even so, research is currently underway to try and find a fair means of

comparison.
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7.2.4 Future work on automated k estimation

The current implementation of PPA is extremely slow, and may scale poorly to large-

scale analysis of many regions of interest. The current implementation of the algo-

rithm utilises a quasi-power method, and also requires a dimensionality reduction step

prior to analysis. The quasi-power algorithm requires a large number of initialisations

to confirm convergence to a global optimum, and this necessitates much redundant

computation time.

Independent Component Analysis (ICA) is a different matrix decomposition tech-

nique that seeks to maximise the statistical independence of the score vectors relative

to each other. A common implementation of the algorithm, Joint Orthogonalisation

of Diagonal Eigenmatrices (JADE), exploits higher order cumulants (such as kurtosis)

to calculate the maximally statistically independent components. It may be worth

considering if a similar algorithm may be possible for PPA.

7.2.5 Region of Interest Selection

A fully automated routine for the analysis of GC×GC-TOFMS data as yet requires

the automated selection of regions of interest. While there have been a number of

pragmatic, utilitarian solutions to this issue by a number of different researchers, the

vast majority of these solutions operate on single chromatograms. In order for the

PARAFAC2×2 algorithm to work, a similar region of interest must be selected that

is consistent across multiple samples, although similar to PARAFAC2, with some al-

terations it is possible for the retention windows to be of different sizes. Selecting a

similar retention window for all samples is inflexible, and selecting different retention

windows for each sample begs the question of how to properly associate them for anal-

ysis by PARAFAC2×2. Especially for experiments with significant drifts in retention

time, the former possibility is less than appealing. Currently there exists no mathe-

matically satisfying way of selecting regions of interest, and the type of mathematics

that may illuminate potential avenues of research typically fall within combinatorics,
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which is far outside of the scope of this thesis. It is possible however, for a number of

regions identified per sample, the inner product of their primary principal component

vectors could be used to gauge a comparison of the spectral information encoded

within each region of interest, such that along with a pair of retention times, an opti-

mum could be achieved that minimises the total sum of residual squares for all such

vectors. However, this is purely conjecture.

7.3 Outlook

While it may be possible to fully automate the analysis of GC×GC-TOFMS data in

the near future, care must always be given to ensure that proper model validation is

used. That is, while new developments in chemometrics may enable the analyst to save

time and obtain a more objective summary of the data, the added convenience may

just as easily be abused by companies and research groups with less than honourable

intentions regarding the data. Powerful instrumentation has increased the number of

features we are able to observe in our samples, but the number of samples we have

been able to acquire has not nearly kept pace. Routines such as feature selection, and

rank-deficient solutions to supervised learning problems just as easily enable their

users to tell lies about the data, as they do enable them to tell the truth. This has

been a major problem in metabolomics research as of late, and will likely plague the

next discipline to suddenly become encumbered with an overabundance of data.

The problem has grown despite the existing software solutions available to the ana-

lytical chemist, and it’s unlikely that peer-reviewed tools for the analysis of GC×GC-

TOFMS data will make the problem any worse. However, it is the author’s opinion

that relatively few high-quality features are always preferred over an abundance of

low-quality data. Despite the improvements made to the feature selection routine

that is popular in our research group, if the chemical information in the validation

set is significantly different than the chemical information found in the training set,

no feature selection is possible that will allow the model to correctly indicate the
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external samples.

In developing algorithms for GC×GC-TOFMS, or any other hyphenated chromato-

graphic separation, it is always important to resist the temptation to rely too much on

the programmatic aspects of data analysis; too often, a number of logical statements

can account for difficulties with the data that the algorithm is being tested on, but

these algorithms break down when data is fed to it that the author of the algorithm

did not expect to see. Early on in this research, a number of algorithms were tested

that could be categorised as suffering from such short-sightedness. Indeed, as the

demand for better and better tools for analysis are echoed in the chromatography

community, so does the demand for papers on data analysis. The best analysis is

always the analysis with the best mathematical theory that is applicable to the data.

Arbitrary thresholds for significance and conditional statements cannot be proven to

be unique, or even useful solutions, and their drawbacks are not clear when compar-

ing them with other analyses. Much of the academic work in this field leads to a

dead-end, even if the information is thoroughly peer-reviewed.

Nonetheless, it is an exciting time to be an analytical chemist. Many more appli-

cations are being discovered for the advanced instrumentation that is enjoying more

widespread use; owing to the incredibly detailed chemical characterisation, new in-

sights for disease are being found regularly, and new tests are being developed for

complex multivariate problems. Especially with the use of PARAFAC2×2, it may

be possible to quantify features reliably using 2-dimensional chromatography, which

may make such instrumentation more practical for routine applications.
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Appendix A: Sample Calculations for
“An Efficient and Accurate Numerical
Determination of the Cluster
Resolution Metric in 2 Dimensions”

145



146



147



148



149



150



151



152



153



154



155



Appendix B: Supporting Information
for “Global Metabolome Analysis of
Dunaliella tertiolecta, Rueger
iaitalica Co-cultures using Thermal
Desoprtion - Comprehensive
2-Dimensional Gas Chromatography -
Time-of-Flight Mass Spectrometry
(TD-GC×GC-TOFMS)”
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B.1 Example Instrument Blank, Reagent Blank

Figure B.1: Example reagent blank, demonstrating the low purity of derivatisation
reagents. Subsequent analysis will show that despite the high number of interfering
chemical components, the extracted features were generally not found in the reagent
blanks.

Figure B.2: Example instrument blank, demonstrating that the instrument was
largely free of contamination between runs, despite a heavy sample load. The ob-
served peaks are cyclic siloxanes, a byproduct of column degredation. These peaks
were not identified as significant in the analysis of the data.
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B.2 Overview of Extracted Features
Below are the summary analyses of the features determined to be most significant
according to the FS-CR routine. For each peak, the most relevant details about the
features are presented. The chromatograms display the peak using the quantitative
ion identified by ChromaTOF®, with the nominal retention times indicated by the
white cross. A representative sample for each class is displayed, including a reagent
blank. A plot comparing the mass spectra, in addition to a box plot summarising the
significance of each feature per class is also presented.

Linear alkanes between n = 12 and n = 32 were run at the start of the analysis,
and retention indices were calculated for all analytes that eluted within this window
- otherwise the retention index is listed as undefined.

Poor library matches within the Golm Metabolome Database do not reflect the
quality of the selected metabolites. The library may not contain an appropriate
standard, or the library mass spectra may have been collected on a different type
of mass spectrometer. Definitive identification of these analytes remains an open
research avenue for future work.
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 967.5
2tR(s): 2.070

Quantification Ion (m/z): 143 1-dotprod (Spectral Dissimilarity): 0.1923

Analyte Name (ChromaTOF): Analyte5083 Analyte Name (Library): Alanine, beta- (1TMS)

Retention Index (Observed): Undefined Retention Index Difference (Library): Undefined

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/784e1232-c517-423f-98f9-ae3eb5351dac.aspx
Contributor: Jäger C, Schomburg D Department of Bioinformatics and Biochemistry, Technische
Universität Carolo-Wilhelmina Braunschweig, Langer Kamp 19B, D-38106 Braunschweig, Germany
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Figure B.3: Summary analyses, Analyte 5083
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 1212.5
2tR(s): 1.695

Quantification Ion (m/z): 203 1-dotprod (Spectral Dissimilarity): Unknown

Analyte Name (ChromaTOF): Analyte8351 Analyte Name (Library): Unknown

Retention Index (Observed): 1284.99 Retention Index Difference (Library): Unknown
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Figure B.4: Summary analyses, Analyte 8351
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 1642.5
2tR(s): 1.905

Quantification Ion (m/z): 137 1-dotprod (Spectral Dissimilarity): Unknown

Analyte Name (ChromaTOF): Analyte13706 Analyte Name (Library): Unknown

Retention Index (Observed): 1480.80 Retention Index Difference (Library): Unknown
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Figure B.5: Summary analyses, Analyte 13706
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 1677.5
2tR(s): 1.270

Quantification Ion (m/z): 57 1-dotprod (Spectral Dissimilarity): 0.0846

Analyte Name (ChromaTOF): Hexadecane Analyte Name (Library): Pentadecane, n-

Retention Index (Observed): 1497.08 Retention Index Difference (Library): 2.92

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/e6650dda-783d-483f-bb3d-1d5c083da4ec.aspx
Contributor: Jäger C, Schomburg D Department of Bioinformatics and Biochemistry, Technische
Universität Carolo-Wilhelmina Braunschweig, Langer Kamp 19B, D-38106 Braunschweig, Germany
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Figure B.6: Summary analyses, analyte: “Hexadecane”
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 1932.5
2tR(s): 1.480

Quantification Ion (m/z): 117 1-dotprod (Spectral Dissimilarity): 0.2868

Analyte Name (ChromaTOF): Analyte16951 Analyte Name (Library):
2-Aminoadipic-acid (2TMS)

Retention Index (Observed): 1624.02 Retention Index Difference (Library): 3.79

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/bec90e9c-eafd-4bec-9ad6-d2cde2ecdbbe.aspx
Contributor: Jäger C, Schomburg D Department of Bioinformatics and Biochemistry, Technische
Universität Carolo-Wilhelmina Braunschweig, Langer Kamp 19B, D-38106 Braunschweig, Germany
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Figure B.7: Summary analyses, Analyte 16951
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 2025.0
2tR(s): 1.990

Quantification Ion (m/z): 228 1-dotprod (Spectral Dissimilarity): 0.2952

Analyte Name (ChromaTOF): Analyte17909 Analyte Name (Library): Oxaloacetate
(1MEOX) (3TMS) MP

Retention Index (Observed): 1672.07 Retention Index Difference (Library): 0.64

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/c0839970-b4b6-4089-9639-50f2aa8fd7d4.aspx
Contributor: Boelling C, Liebig F, Erban A, Kopka J, Max Planck Institute of Molecular Plant
Physiology, Department of Molecular Plant Physiology (Prof. Willmitzer L), Am Muehlenberg 1,
D-14476 Golm, Germany
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Figure B.8: Summary analyses, Analyte 17909
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 2180.0
2tR(s): 1.600

Quantification Ion (m/z): 69 1-dotprod (Spectral Dissimilarity): Unknown

Analyte Name (ChromaTOF): Analyte19404 Analyte Name (Library): Unknown

Retention Index (Observed): 1754.72 Retention Index Difference (Library): Unknown
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Figure B.9: Summary analyses, Analyte 19404
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 2370.0
2tR(s): 1.365

Quantification Ion (m/z): 195 1-dotprod (Spectral Dissimilarity): 0.1310

Analyte Name (ChromaTOF): Analyte21239 Analyte Name (Library): Homoserine lactone,
N-2-oxocaproyl- (1MEOX) (1TMS) BP

Retention Index (Observed): 1860.70 Retention Index Difference (Library): 0.51

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/7d96c6e2-42fc-46c8-85c2-0e11137c7210.aspx
Contributor: Boelling C, Liebig F, Erban A, Kopka J, Max Planck Institute of Molecular Plant
Physiology, Department of Molecular Plant Physiology (Prof. Willmitzer L), Am Muehlenberg 1,
D-14476 Golm, Germany
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Figure B.10: Summary analyses, Analyte 21239
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 2380.0
2tR(s): 1.775

Quantification Ion (m/z): 158 1-dotprod (Spectral Dissimilarity): Unknown

Analyte Name (ChromaTOF): Analyte21318 Analyte Name (Library): Unknown

Retention Index (Observed): 1866.42 Retention Index Difference (Library): Unknown
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Figure B.11: Summary analyses, Analyte 21318
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Peak Information Top Golm Metabolome Database Search Result
1tR(s): 2497.5
2tR(s): 1.320

Quantification Ion (m/z): 143 1-dotprod (Spectral Dissimilarity): 0.3436

Analyte Name (ChromaTOF): Analyte22226 Analyte Name (Library): Indole-3-acetic
acid, 1H- (1TMS)

Retention Index (Observed): 1935.06 Retention Index Difference (Library): 0.35

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/35e55241-8b1a-42c3-a602-c1f05b31f818.aspx
Contributor: Liebig F, Erban A, Max Planck Institute of Molecular Plant Physiology, Department
of Molecular Plant Physiology (Prof. Willmitzer L), Am Muehlenberg 1, D-14476 Golm, Germany
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Figure B.12: Summary analyses, Analyte 22226

168

http://gmd.mpimp-golm.mpg.de/Spectrums/35e55241-8b1a-42c3-a602-c1f05b31f818.aspx


Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 2597.5
2tR(s): 1.335

Quantification Ion (m/z): 165 1-dotprod (Spectral Dissimilarity): 0.2324

Analyte Name (ChromaTOF): Analyte23041 Analyte Name (Library): Pyruvic acid,
4-hydroxyphenyl-(1MEOX) (3TMS) MP

Retention Index (Observed): 1994.76 Retention Index Difference (Library): 1.63

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/14c81dc4-1c9f-4731-a2cd-974fdd692d47.aspx
Contributor: Boelling C, Liebig F, Erban A, Kopka J, Max Planck Institute of Molecular Plant
Physiology, Department of Molecular Plant Physiology (Prof. Willmitzer L), Am Muehlenberg 1,
D-14476 Golm, Germany
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Figure B.13: Summary analyses, Analyte 23041
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 2645.0
2tR(s): 2.045

Quantification Ion (m/z): 376 1-dotprod (Spectral Dissimilarity): 0.0793

Analyte Name (ChromaTOF): Analyte23397 Analyte Name (Library): Gluconic acid,
2-amino-2-deoxy-(7TMS)

Retention Index (Observed): 2024.59 Retention Index Difference (Library): 1.14

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/bfddda38-5af0-4dc1-a200-152b9380b8d4.aspx
Contributor: Boelling C, Liebig F, Erban A, Kopka J, Max Planck Institute of Molecular Plant
Physiology, Department of Molecular Plant Physiology (Prof. Willmitzer L), Am Muehlenberg 1,
D-14476 Golm, Germany
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Figure B.14: Summary analyses, Analyte 23397
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 2832.5
2tR(s): 1.865

Quantification Ion (m/z): 80 1-dotprod (Spectral Dissimilarity): Unknown

Analyte Name (ChromaTOF): Analyte24829 Analyte Name (Library): Unknown

Retention Index (Observed): 2145.06 Retention Index Difference (Library): Unknown
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Figure B.15: Summary analyses, Analyte 24829
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 3200.0
2tR(s): 1.415

Quantification Ion (m/z): 233 1-dotprod (Spectral Dissimilarity): 0.0553

Analyte Name (ChromaTOF): Analyte27584 Analyte Name (Library): NA

Retention Index (Observed): 2334.57 Retention Index Difference (Library): 1.87

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/3ffe8941-e355-4f09-a740-ec684f396a2f.aspx
Contributor: Kopka J, Max Planck Institute of Molecular Plant Physiology, Department of Molec-
ular Plant Physiology (Prof. Willmitzer L), Am Muehlenberg 1, D-14476 Golm, Germany
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Figure B.16: Summary analyses, Analyte 27584
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 3242.5
2tR(s): 1.475

Quantification Ion (m/z): 195 1-dotprod (Spectral Dissimilarity): 0.3819

Analyte Name (ChromaTOF): Analyte27833 Analyte Name (Library): Galactose-6-phosphate
(1MEOX) (6TMS) BP

Retention Index (Observed): 2416.04 Retention Index Difference (Library): 0.42

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/84406ec0-9f61-42c0-858c-37079019ec05.aspx
Contributor: Erban A, Strehmel N, Kopka J, Max Planck Institute of Molecular Plant Physiology,
Department of Molecular Plant Physiology (Prof. Willmitzer L), Am Muehlenberg 1, D-14476 Golm,
Germany
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Figure B.17: Summary analyses, Analyte 27833
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Peak Information
Top Golm Metabolome

Database Search Result
1tR(s): 4215.0
2tR(s): 1.840

Quantification Ion (m/z): 324 1-dotprod (Spectral Dissimilarity): 0.3138

Analyte Name (ChromaTOF): Analyte33374 Analyte Name (Library): Cycloeucalenol (1TMS)

Retention Index (Observed): Undefined Retention Index (Library): Undefined

Link: http://gmd.mpimp-golm.mpg.de/Spectrums/e68eba0e-3d8c-44a8-8bbe-0001a2b2c23f.aspx
Contributor: Moritz T, Umea Plant Science Centre, Department of Forest Genetics and Plant
Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden
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Figure B.18: Summary analyses, Analyte 33374
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Appendix C: Derivation of
Non-trivial Expressions used in
Flexible Coupling PARAFAC2 - ALS,
and Coupled PARAFAC2×2 - ALS

C.1 Derivation of an Expression to Solve for Akl, and
Ail

An expression that minimises the sum of squared residuals can also be described as
the minimisation of the square of the Frobenius Norm:

||A||F =

⌜⃓⃓⎷ m∑︂
i=1

n∑︂
j=1

|aij|2 =
√︁
tr(ATA) =

√︁
tr(AAT )

An expression for an estimate of Akl or Ail takes into account the coupling term
that controls the difference between the two expressions relative to the mass spectral
coupling constant, µA. Deriving an expression for Akl begins with calculating the
derivative of the following expression with respect to Akl:

∂

∂Akl

(||Xkl −BklDklA
T ||2F + µA||Akl − Ail||2F ) = 0

Which has been simplified from Equation 5.17, since the derivative with respect to
Akl of ||Xil −BilDilA

T ||2F + µil||Bil − PilB
∗||2F and µkl||Bkl − PklB

∗||2F are both zero.
Expanding the terms in the previous expression and adding an arbitrary constant, 1

2
,

to aid in simplification:

∂

∂Akl

1

2
tr
(︁
(Xkl −BklDklA

T
kl)

T (Xkl −BklDklA
T
kl)
)︁
+

∂

∂Akl

tr
(︁
µA(Akl − Ail)

T (Akl − Ail)
)︁
= 0
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∂

∂Akl

tr(
(︁
XT

klXkl

)︁
− ∂

∂Akl

tr
(︁
XT

klBklDklA
T
kl

)︁
− ∂

∂Akl

tr
(︁
AklDklB

T
klXkl

)︁
+

∂

∂Akl

tr
(︁
AklDklB

T
klBklDklA

T
kl

)︁
+

∂

∂Akl

tr
(︁
µA

(︁
AT

klAkl − AT
klAil − AT

ilAkl + AT
ilAil

)︁)︁
= 0

Note that the term ∂
∂A

(︁
AT

klAkl − AT
klA

T
il − AT

ilAkl + AT
ilAil

)︁
with respect to Akl is

equivalent when the derivative is taken with respect to Ail. This reveals that the
expression for the estimation of Akl is the same expression as the expression that
estimates Ail.

Using the following identities from the Matrix Cookbook:

∂

∂Akl

tr
(︁
XT

klXkl

)︁
= 0

∂

∂Akl

tr
(︁
XT

klBklDklA
T
kl

)︁
= XT

klBklDkl

∂

∂Akl

tr
(︁
AklDklB

T
klXkl

)︁
= XT

klBklDkl

∂

∂Akl

tr
(︁
AklDklB

T
klBklDklA

T
kl

)︁
= 2AklDklB

T
klBklDkl

∂

∂Akl

tr
(︁
AT

klAkl

)︁
= 2Akl

∂

∂Akl

tr
(︁
AT

klAil

)︁
= Ail

∂

∂Akl

tr
(︁
AT

ilAkl

)︁
= Ail

∂

∂Akl

tr
(︁
AT

ilAil

)︁
= 0

Substituting into the previous expression yields:

−2XT
klBklDkl + 2AklDklB

T
klBklDkl + 2µAAkl − 2µAAil = 0

2AklDklB
T
klBklDkl + 2µAAkl = 2XT

klBklDkl + 2µAAil

Solving for Akl

Akl =
µAAil +XT

klBklDkl

DklBT
klBklDkl + µAIR
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C.2 Derivation of an Expression to Solve for Bk,Bkl,
and Bil

An expression for Bkl and Bil can be solved for with respect to their respective coupled
terms, and only differ with respect to the arrangement of the data, and is agnostic
to the mass spectral coupling term, µA. As such, the following derivation can be
described for the flexible coupling method of calculating non-negative PARAFAC2
with respect to Bk.

∂

∂Bk

(||Xk −BkDkA
T ||2 + µk||Bk − PkB

∗||2) = 0

We can rearrange the original equation, adding an arbitrary constant as before, 1
2
,

to aid with simplification later on.

∂

∂Bk

1

2
tr((Xk−BkDkA

T )(Xk−BkDkA
T )T )+

∂

∂Bk

1

2
µk(tr((Bk−PkB

∗)(Bk−PkB
∗)T ) = 0

Expanding the equations, where (Xk − BkDkA
T )T = XT

k − ADkB
T
k and (Bk −

PkB
∗)T = BT

k −B∗TP T
k :

∂

∂Bk

1

2
(tr(XkX

T
k )− tr(XkADkB

T
k )− tr(BkDkA

TXT
k ) + tr(BkDkA

TADkB
T
k ))

+
∂

∂Bk

1

2
µk(tr(BkB

T
k )− tr(BkB

∗TP T
k )− tr(PkB

∗BT
k ) + tr(PkB

∗B∗TP T
k )) = 0

This equation can be simplified by using some convenient identities from [the Ma-
trix Cookbook](https://www.math.uwaterloo.ca/ hwolkowi/matrixcookbook.pdf):

∂

∂Bk

tr(XkX
T
k ) = 0

∂

∂Bk

tr(XkADkB
T
k ) = XkADk

∂

∂Bk

tr(BkDkA
T ) = XkADk

∂

∂Bk

tr(BkDkA
T ) = XkADk

∂

∂Bk

tr(BkDkA
TADkB

T
k ) = 2BkDkA

TADk

∂

∂Bk

tr(BkB
∗TP T

k ) = PkB∗
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∂

∂Bk

tr(PkB
∗BT

k ) = PkB
∗

∂

∂Bk

tr(PkB
∗B∗TP T

k ) = 0

∂

∂Bk

tr(BkB
T
k ) = 2Bk

Substituting into the previous equation yields:

−XkADk +BkDkA
TADk + µkBk − µkPkB

∗ = 0

Multiplying by the inverse of DkA
TADk:

−XkADk(DkA
TADk)

−1 +Bk + µkBk(DkA
TADk)

−1 − µkPkB
∗(DkA

TADk)
−1 = 0

Solving for Bk:

−XkADk + µkBk − µkPkB
∗ = −Bk(DkA

TADk)

−XkADk − µkPkB
∗ = −Bk(DkA

TADk)− µkBk

Yields the final form of the equation:

Bk =
XkADk + µkPkB

∗

DkATADk + µkIR

This solution is similar to the one released in Jeremy Cohen’s software package
[45], although the authors could not a previously published derivation.
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Appendix D: Supporting Information
for: “A-priori prediction of chemical
rank in gas-chromatography mass
spectrometry data with projection
pursuit analysis”

D.1 Library of Chemical Components used for Syn-
thetic Data
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

611143 C9H12

526738 C9H12

135988 C10H14

527844 C10H14

95636 C9H12
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

1678939 C10H20

1074437 C10H14

934747 C10H14

1074175 C10H14

99876 C10H14
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

934805 C10H14

1120214 C11H24

933982 C10H14

527537 C10H14

488233 C10H14
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

4292926 C11H22

95932 C10H14

91203 C10H8

112403 C12H26

4292755 C12H24
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

629505 C13H28

91576 C11H10

90120 C11H10

629594 C14H30

629629 C15H32
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

544763 C16H34

629787 C17H36

1921706 C19H40

593453 C18H38

638368 C20H42
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

629925 C19H40

112958 C20H42

629947 C21H44

629970 C22H46

1563662 C12H15NO3 O

O

O

H
N
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

470906 C12H14Cl3O4P O
P

O
O

O

Cl
Cl

Cl

22224926 C13H22NO3PS O
P

O
N
H

O

S

2032657 C11H15NO2S
O

H
N

O
S

32809168 C13H11Cl2NO2

O

N

O

Cl

Cl

50471448 C12H9Cl2NO3
O

N

O

O

Cl

Cl

187



CAS Number Chemical Formula Chemical Structure Mass Spectrum

95590 C4H6Cl2O2
Cl

ClO

O

123911 C4H8O2 O O

77258 C11H20O4 O

O

O

O

123386 C3H6O O

54340716 C9H16O2
O

O
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

55282912 C10H16O2 O

O

105533 C7H12O4
O

O O

O

4676511 C9H16O4 O

O

O

O

459734 C4H9NO2
O

O

NH2

1792172 C9H20N2O
H
N

O

H
N
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

52670344 C12H26

28080866 C12H18

623427 C5H10O2
O

O

16747287 C9H20

619998 C8H18
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

18636652 C9H20O
O

103797 C9H10O
O

71502224 C26H52

869294 C7H10O4
O O O

O

645670 C8H14O3 O

O

O
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

645670 C8H14O3 O

O

O

539888 C7H12O3 O

O

O

641827 C20H34O2
OHOH

2432828 C8H16OS
O

S

617323 C5H9NO2
O

N
O
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

103548 C11H12O2 O O

80262 C12H20O2
O

O

80751 C21H30O3 O

OH

O

759944 C9H19NOS
N

O

S

5132752 C15H30O2 O

O
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

5208377 C10H14O
OH

24051408 C11H14ClNO
Cl

H
N

O

629196 C6H14S2 S
S

1143460 C15H22O2
OO

4436811 C10H16O3
O O

O
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

771039 C8H8O4

OH

O

OO

71589 C24H34O4
O

OO
O

5096628 C22H27NO3 N

OH

O

OH

80999 C27H46O OH

590863 C5H10O
O
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

590863 C5H10O
O

97698 C5H9NO3
OH

O
H
N

O

141231 C19H38O3
OH

O

O

4551513 C9H16

623198 C8H10O3 O

O

O
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

5682699 C7H10O O

432246 C10H16O
O

619829 C8H12O4
O

OH

OH

O

94600 C10H16O4
O

O

O

O

124129 C8H15N N
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

7242924 C7H13N
NH2

2244168 C10H14O
O

629801 C16H32O O

122521 C6H15O3P O P

O

O

481345 C15H26O
OH
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CAS Number Chemical Formula Chemical Structure Mass Spectrum

611132 C6H6O3
O

O
O

77532 C15H26O OH

427305 C12H14N2O4
N
H

N

O

O O

O

930609 C5H4O2
O

O

2758181 C6H8O O
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D.2 Summary Analyses of GC-qMS Data

Figure D.1: Cumulative variances explained by component: 71.25
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Figure D.2: Cumulative variances explained by component: 55.41 86.76 96.01 99.14
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Figure D.3: Cumulative variances explained by component: 87.14
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Figure D.4: Cumulative variances explained by component: 75.06 78.88 95.07 99.07
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D.3 Summary Analysis of GC-TOFMS Data

Figure D.5: Cumulative variances explained by component: 61.54 99.63
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D.4 Summary Analysis of GC×GC-TOFMS Data

Figure D.6: Cumulative variances explained by component: 89.65
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D.5 Summary Analyses of Synthetic Data

D.5.1 1 Factor Synthetic Data

Figure D.7: Cumulative variances explained by component: 99.77
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Figure D.8: Cumulative variances explained by component: 99.43
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Figure D.9: Cumulative variances explained by component: 99.82 100.00
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Figure D.10: Cumulative variances explained by component: 99.74
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Figure D.11: Cumulative variances explained by component: 99.75
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Figure D.12: Cumulative variances explained by component: 99.84 100.00
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Figure D.13: Cumulative variances explained by component: 99.76
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Figure D.14: Cumulative variances explained by component: 99.82
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Figure D.15: Cumulative variances explained by component: 99.69
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D.5.2 2 Factor Synthetic Data

Figure D.16: Cumulative variances explained by component: 52.68 99.91
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Figure D.17: Cumulative variances explained by component: 55.69 99.88
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Figure D.18: Cumulative variances explained by component: 51.78 99.66
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Figure D.19: Cumulative variances explained by component: 54.81 99.90
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Figure D.20: Cumulative variances explained by component: 57.09 99.86
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Figure D.21: Cumulative variances explained by component: 51.51 99.65
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Figure D.22: Cumulative variances explained by component: 50.41 99.80
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Figure D.23: Cumulative variances explained by component: 51.54 99.89
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Figure D.24: Cumulative variances explained by component: 52.73 99.86
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Figure D.25: Cumulative variances explained by component: 52.60 99.90
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D.5.3 3 Factor Synthetic Data

Figure D.26: Cumulative variances explained by component: 58.01 88.34
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Figure D.27: Cumulative variances explained by component: 37.16 68.44 99.90
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Figure D.28: Cumulative variances explained by component: 33.63 66.98 99.91
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Figure D.29: Cumulative variances explained by component: 38.11 72.75 99.89
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Figure D.30: Cumulative variances explained by component: 33.49 67.84 99.91
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Figure D.31: Cumulative variances explained by component: 36.92 69.27 99.92
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Figure D.32: Cumulative variances explained by component: 33.12 66.77 99.90
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Figure D.33: Cumulative variances explained by component: 35.54 70.71 99.77
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Figure D.34: Cumulative variances explained by component: 38.15 75.22 99.89
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Figure D.35: Cumulative variances explained by component: 39.42 69.76 99.92
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D.5.4 4 Factor Synthetic Data

Figure D.36: Cumulative variances explained by component: 26.58 52.67 74.78 99.87
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Figure D.37: Cumulative variances explained by component: 26.51 53.65 78.29 99.93
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Figure D.38: Cumulative variances explained by component: 25.52 52.57 76.81 99.91
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Figure D.39: Cumulative variances explained by component: 43.26 75.39 98.99
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Figure D.40: Cumulative variances explained by component: 28.98 56.51 79.19 99.86
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Figure D.41: Cumulative variances explained by component: 28.00 55.51 80.73 99.92

240



Figure D.42: Cumulative variances explained by component: 28.71 55.02 77.02 99.95
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Figure D.43: Cumulative variances explained by component: 43.54 75.58 99.85
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Figure D.44: Cumulative variances explained by component: 28.45 55.43 81.13 99.95
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Figure D.45: Cumulative variances explained by component: 47.34 76.82 99.94
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D.5.5 5 Factor Synthetic Data

Figure D.46: Cumulative variances explained by component: 23.70 45.08 64.30 82.44
99.95
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Figure D.47: Cumulative variances explained by component: 27.68 51.74 72.51 90.25
99.96
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Figure D.48: Cumulative variances explained by component: 19.12 41.54 62.34 80.71
99.92
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Figure D.49: Cumulative variances explained by component: 63.33 85.70
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Figure D.50: Cumulative variances explained by component: 22.85 42.79 62.34 81.37
99.96
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Figure D.51: Cumulative variances explained by component: 24.35 47.30 67.22 83.89
99.94

250



Figure D.52: Cumulative variances explained by component: 30.88 53.13 75.77 95.95
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Figure D.53: Cumulative variances explained by component: 22.66 45.88 66.11 85.93
99.95
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Figure D.54: Cumulative variances explained by component: 40.85 61.05 81.62 99.51
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Figure D.55: Cumulative variances explained by component: 20.40 41.69 62.68 82.20
99.95
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